NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
THE ISOTHERMAL TRANSFORMATION CHARACTERISTICS OF 4330V (Mod + Si) STEEL

By

J. W. FORNEY

OMS Code 5520.11.43400.01
DA Project 50201008

April 1962 JUL 13 1962

FRANKFORD ARSENAL
RESEARCH AND DEVELOPMENT GROUP
PHILADELPHIA 37, PA
Requests for copies are to be made to Armed Services Technical Information Agency (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

The findings in this report are not to be construed as an official Department of the Army position.
REPORT R-1627

THE ISOTHERMAL TRANSFORMATION CHARACTERISTICS
OF 4330V (Mod + Si) STEEL

OMS Code 5520.11.43400.01 DA Project 50201008

PREPARED BY: J. W. FORNEY
J. W. FORNEY
Metallurgist

REVIEWED BY: H. MARKUS
H. MARKUS
Director
Metallurgy Research Laboratory

APPROVED BY: C. C. FAWCETT
C. C. FAWCETT
Acting Chief
Research and Development Group
Pitman-Dunn Laboratories

FOR: C. W. EIFLER
Colonel, Ordnance Corps
Commanding

FRANKFORD ARSENAL
Research and Development Group, Pitman-Dunn Laboratories
Philadelphia 37, Pa.

April 1962
ABSTRACT

The isothermal transformation characteristics of two heats of 433OV (Mod +Si) steel have been investigated by means of the metallographic method. Both heats are deep hardening, the hardenability being limited by the start of the bainite reaction. The isothermal transformation diagram indicates that this material may be suitable for ausforming, but not particularly suited to marquenching operations. The start of bainite transformation was found to vary within the compositional limits of the two heats of steel investigated. This would indicate that careful control of the composition would be necessary to achieve a high degree of uniformity of mechanical properties after heat treatment.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION.</td>
<td>1</td>
</tr>
<tr>
<td>MATERIAL.</td>
<td>1</td>
</tr>
<tr>
<td>EXPERIMENTAL PROCEDURE</td>
<td>2</td>
</tr>
<tr>
<td>Decomposition of Austenite.</td>
<td>2</td>
</tr>
<tr>
<td>Equilibrium Temperatures</td>
<td>4</td>
</tr>
<tr>
<td>Martensite Transformation</td>
<td>5</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>5</td>
</tr>
<tr>
<td>Decomposition of Austenite.</td>
<td>5</td>
</tr>
<tr>
<td>Critical Temperatures</td>
<td>10</td>
</tr>
<tr>
<td>CONCLUSIONS.</td>
<td>10</td>
</tr>
<tr>
<td>RECOMMENDATIONS.</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES.</td>
<td>17</td>
</tr>
<tr>
<td>DISTRIBUTION.</td>
<td>18</td>
</tr>
</tbody>
</table>
INTRODUCTION

Since World War II, the increasing emphasis on lightweight weapon systems has necessitated the use of steels of higher yield strength than those used previously. Although present recoilless rifle steels have a yield strength of 165,000 psi, proposed designs require a steel with a yield strength of 200,000 psi and good toughness.

A preliminary evaluation of commercially available steels indicated that steels having adequate strength were deficient in toughness, while those with adequate toughness were deficient in strength. Frankford Arsenal therefore developed a new steel, 433OV (Mod + Si), for use in recoilless rifles. Experimental work has shown that the mechanical properties of this steel meet the requirements of the recoilless rifle program.

To help plan improved heat treatments and to assist in the interpretation of microstructures observed in heat treated gun tubes, a study of the isothermal transformation characteristics of this steel was undertaken.

MATERIAL

Two heats of 433OV (Mod + Si) steel, from which experimental gun tubes had been fabricated, were selected for this investigation on the basis of their chemical composition. The compositions are shown in Table I.

*See REFERENCES
TABLE I. Composition of 4330V (Mod + Si) Steels

<table>
<thead>
<tr>
<th>Heat No.</th>
<th>C</th>
<th>Mn</th>
<th>S</th>
<th>P</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Si</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>21K631</td>
<td>0.34</td>
<td>0.98</td>
<td>0.005</td>
<td>0.015</td>
<td>0.95</td>
<td>1.82</td>
<td>0.42</td>
<td>1.37</td>
<td>0.14</td>
</tr>
<tr>
<td>21L482</td>
<td>0.31</td>
<td>0.91</td>
<td>0.006</td>
<td>0.013</td>
<td>0.94</td>
<td>1.77</td>
<td>0.44</td>
<td>1.43</td>
<td>0.10</td>
</tr>
</tbody>
</table>

These two heats represent the extremes in composition of the present commercially produced heats.

Specimens (1/4 inch square by 1/16 inch thick) were machined from the material. All specimens were plated with a 0.00025 inch thickness of nickel to prevent decarburization during subsequent heat treatments. They were then normalized at 1700°F for one hour and cooled in still air.

EXPERIMENTAL PROCEDURE

Decomposition of Austenite

The methods available for determining isothermal transformation are: magnetic, dilatometric, and metallographic. The results of this study were based solely on the metallographic method. This was preferred because it permitted study of the structure of the decomposition products in order to gain knowledge of the mechanisms of transformation.

As shown schematically in Figure 1, specimens for the study of the decomposition of austenite were heat treated (using the method prescribed by Davenport) according to the following schedule:
Figure 1. Diagram of Heat Treating Operations involved in Preparing Specimens of 4330V (Mod + St) Steel for estimating the progress of Decomposition of Austenite at Constant Temperature.
1. Austenitized at 1650°F.

2. Transferred to molten lead bath maintained at the temperature of interest, and held at that temperature for a predetermined time period.

3. Quenched in cold water.

By metallographic examination, the amount and type of transformation products formed during the time in the lead bath could be estimated visually. It was assumed that any untransformed austenite remaining in the specimen at the end of this isothermal hold appeared as martensite after the final quench in cold water.

Equilibrium Temperatures

The lower equilibrium temperature (A_{el}) was determined by plotting two curves:

1. Temperature vs time to the start of isothermal formation of austenite from martensite, and

2. Temperature vs time to the start of isothermal precipitation of carbide from austenite.

As they approached each other asymptotically, the A_{el} temperature was taken as halfway between these two curves at the point of their closest approach, within practical time limits (one week). Similarly, curves were plotted from which the upper equilibrium temperature (A_{e3}) was determined. These curves were found from temperature vs time for the start of isothermal precipitation of ferrite below A_{e3} and the start of isothermal solution of ferrite above A_{e3}.

The treatment of these specimens for determining the equilibrium temperature was similar to that used in the study of the isothermal decomposition of austenite, with one exception - fully hardened rather than austenitized specimens were immersed in the molten lead bath to study the formation of austenite above the equilibrium temperatures.
Martensite Transformation

The technique used to determine the M_S temperature and to study the progress of martensite transformation was that developed by Greninger and Troiano5 and is diagrammed in Figure 2. As the diagram shows, the specimens were austenitized, immersed into a constant temperature bath at the temperature under investigation and held at temperature for a predetermined time, tempered for two minutes at 900°F, and quenched in water. The specimens were then examined metallographically.

If the temperature under investigation was the M_S or below, martensite formed in the austenite during holding. This martensite was darkened by the tempering operation, and the residual austenite was transformed to martensite by the final water quench. The martensite formed at the temperature being studied appeared as dark, tempered martensite in a matrix of light, untempered martensite.

RESULTS AND DISCUSSION

Decomposition of Austenite

The isothermal transformation diagram for both heats of steel is shown in Figure 3, together with the corresponding microstructures and hardnesses. Both heats had similar transformation characteristics at temperatures above 1000°F. The transformation was extremely sluggish in this region; however, this may be expected with this type steel. At the upper nose of the curve, near 1250°F, 30 minutes were required to incubate the precipitation of ferrite.

The upper portion of the isothermal transformation diagram suggests a method of preparing this steel for machining which results in a fine pearlitic microstructure. This treatment involves austenitizing, quenching to 1250°F, holding for 10 hours, and air cooling. This treatment results in a hardness of Rockwell C22. It
Figure 2. Diagram of Heat Treating Operations involved in studying the Martensite Transformation in 4330V (Mod + Si) Steel

- 100% M
- 75% M
- 25% M
- 0% M

Temperature:
- 100°F
- 700°F
- 650°F
- 600°F
- 550°F
- 500°F

Room Temperature
Salt Quench
Temper at 900°F

Ae1
Figure 3. Isothermal Transformation Diagram for two heats of 4330V (Mod + Si) Steel, Austenitized at 1650° F (ASTM grain size No. 4)
should be applicable to fairly large cross sections because of the long holding time (30 minutes) available before transformation starts during cooling from the austenitizing temperature to the transformation temperature. Before this method would be acceptable, however, further work would be required to determine the machineability of the resulting structure.

After 5000 minutes at 1050°F, a small amount of transformation product appeared at the austenitic grain boundary, as shown in Figure 4. This product appears to consist of ferrite and carbides in a form generically similar to that of Davenport's X constituent.4

There was no indication of transformation after holding for 6000 minutes in the intermediate temperature range of 850°F to 1000°F. The lack of transformation in this temperature range and the long incubation time in the upper portion of the curve make this steel ideal for ausforming.

At the lower temperatures of isothermal transformation, heat 21K631 was slower in transforming; also, it had a lower Ms temperature than heat 21L482. These differences in transformation rate and Ms temperature may be related to the variations in chemical composition of the two heats. The effects of the various alloying elements on the start of bainite transformation, as shown by Hollomon and Jaffe,6 indicate that the higher percentages of carbon, manganese, chromium, and nickel in heat 21K631 should result in a slower transformation to bainite. Thus, although the differences in composition of the individual elements of the two heats were relatively small, their combined effects may be clearly seen.

The early start of transformation to bainite at the lower temperatures limits the hardenability of the steel. Although martensite and lower bainite appear to have the same microstructure and hardness, the presence of lower bainite will result in the degradation of the mechanical properties in this steel, as shown previously.3 Since the hardenability is controlled by the bainite-start curve and since this curve may shift with small changes in chemical composition, the hardenability of this steel may vary significantly from heat to heat unless the chemical analysis is closely controlled. Further, it appears that this steel cannot be marquenched in heavy sections because the time to the start of transformation to bainite is rather short. In steels of this type it is usually desired to develop the full strength characteristics.
In general, all the microstructures found in this steel were similar to those found in most low alloy-high strength steels. A representative microstructure, formed on oil quenching from 1650° F, is shown in Figure 5.

Critical Temperatures

The determination of the thermal equilibrium temperatures illustrated in Figure 6 gave an \(A_{e1} \) of 1337° F and an \(A_{e3} \) of 1428° F for heat 21K631. The equilibrium temperatures are necessary to complete the isothermal transformation diagram, but are not of great practical importance since most austenitizing is done several hundred degrees above the upper equilibrium temperature and most tempering is done several hundred degrees below the lower equilibrium temperature. Generally, it is not necessary to know the variation in the equilibrium temperature from heat to heat. Also, the upper portions of the isothermal transformation diagrams were similar for both heats. Therefore, the equilibrium temperatures were only determined for heat 21K631.

The results of the transformation-to-martensite study are shown in Figure 7. The reaction proceeds similarly for both heats, but at different temperatures. The \(M_s \) temperatures are 670° F for heat 21L482 and 585° F for heat 21K631. The reaction is a normal martensite transformation with a slow start and finish and a rapid transformation in the intermediate range.

CONCLUSIONS

1. Isothermal transformation is sufficiently slow in 4330V (Mod + Si) steel in the high and intermediate temperature ranges to permit ausforming of this type steel.

2. Reaction time in the lower temperature range is too fast for this steel to be marquenched in heavy sections.
Figure 4. Microstructure of 4330V (Mod + Si) Steel, Heat 21K631, Isothermally Transformed at 1050° F and held 5000 minutes.

Figure 5. Structure of 4330V (Mod + Si) Steel Austenitized at 1650° F, Oil Quenched, Untempered.
Figure 6. Determination of Equilibrium Temperatures of 4330V (Mod + Si) Steel, Heat 21K631
3. The rapid formation of bainite limits the hardenability of this steel.

4. Variations in the time to start the bainite transformation indicate that careful control of the chemical composition is necessary to insure uniform heat treating results.

RECOMMENDATION

It is recommended that ausforming of 433OV (Mod + Si) steel be investigated as a means of increasing its strength-to-weight ratio.
Figure 7. Progress of Martensite Reaction in 4330V (Mod + Si) Steel
REFERENCES

DISTRIBUTION

1 - Chief of Ordnance
Department of the Army
Attn: ORDTS
Washington 25, D. C.

1 - Commanding General
Attn: Laboratory Service
Division
Aberdeen Proving Ground
Maryland

1 - Commanding General
Picatinny Arsenal
Attn: Technical Group
Dover, New Jersey

1 - Attn: Mr. Don Hall, BRL

1 - Commanding General
Army Research Office -
Durham
Box CM, Duke Station
Durham, North Carolina

1 - Attn: Mr. G. Morrow, D&PS

1 - Attn: Technical Library,
ORDBG-LM

1 - Commanding Officer
Raritan Arsenal
Attn: ORDJR-OML
Metuchen, New Jersey

1 - Commanding Officer
Rock Island Arsenal
Attn: Laboratory
Rock Island, Illinois

1 - Attn: Dr. P. Kosting

1 - Commanding Officer
Watertown Arsenal
Attn: Technical Group
Watertown 72, Mass.

1 - Commanding General
Ordnance Weapons Command
Attn: ORDOW-TM
Rock Island Arsenal
Rock Island, Illinois

1 - Attn: Mr. J. Bluhm

1 - Commanding General
Army Ordnance Missile
Command
Redstone Arsenal
Huntsville, Alabama

1 - Attn: Mr. A. Cristofak

1 - Attn: Deputy CG for Guided
Missiles

1 - Commanding Officer
Springfield Armory
Attn: Engineering Dept.
Springfield 1, Mass.

1 - Attn: Deputy CG for Ballistic
Missiles
1 - Commanding Officer
Diamond Ordnance Fuze Laboratories
Attn: Technical Reference Branch
Washington 25, D. C.

1 - Director
Naval Research Laboratories
Attn: Dr. G. R. Irwin
Washington 25, D. C.

1 - Commandant
U. S. Naval Proving Ground
Attn: Dr. H. Romine
Dahlgren, Virginia

1 - Commanding General
Aeronautical Systems Division
Attn: Materials Laboratory
Wright-Patterson Air Force Base
Ohio

1 - National Aeronautics and Space Agency
Lewis Research Center
Attn: Mr. Wm. F. Brown, Jr.
Cleveland, Ohio

1 - Aerojet General Corporation
Sacramento, California
Attn: Mr. J. J. Warga

1 - Allegheny Ludlum Steel Co.,
Watervliet, New York
Attn: Mr. A. Graae

1 - Battelle Memorial Institute
505 King Avenue
Columbus, Ohio
Attn: DMIC

1 - Bethlehem Steel Co.
Bethlehem, Pa.
Attn: Mr. A. Metzger

1 - Attn: Mr. D. Blickwede

1 - Cabot Shop
Pampa, Texas

1 - Carpenter Steel Co.
Reading, Pa.
Attn: Mr. N. Culp

1 - Curtis-Wright
Buffalo, New York

1 - David Taylor Model Basin
Carderock, Maryland
Attn: A. R. Willner
Structural Mechanics Laboratory

1 - Firestone Tire & Rubber Co.
Defense Products Division
Akron, Ohio
Attn: Mr. D. Lucas
DISTRIBUTION (Cont'd)

1 - General Electric Co.
 Large Steam Turbine & Generator Division
 Schenectady, New York
 Attn: Mr. B. Wundt

1 - Harvey Aluminum
 19200 Southwestern Avenue
 Torrance, California
 Attn: Mr. R. Owens

1 - International Nickel Co.
 Research Laboratories
 Bayonne, New Jersey
 Attn: Mr. J. Sands

1 - Isaacson Iron Works
 Seattle, Washington

1 - Director
 Jet Propulsion Laboratory
 4800 Oak Grove Drive
 Pasadena, California
 Attn: A. J. Brothers

1 - Midvale-Heppenstall Co.
 Nicetown,
 Philadelphia 40, Pa.
 Attn: Mr. H. C. Meyers, Jr.

1 - National Forge & Ordnance
 Irvine, Pa.

1 - National Supply
 Torrance, California

1 - Ordnance Engineering Associates
 3032 N. Oakley Avenue
 Chicago 18, Illinois
 Attn: Mr. A. Kafadar

1 - Timken Roller Bearing Co.
 Canton, Ohio
 Attn: Mr. D. C. Ladd

1 - Titusville Forge
 Titusville, Pa.

1 - United States Steel Company
 Applied Research Laboratory
 Monroeville, Pa.
 Attn: Mr. J. M. Hodge

1 - Vanadium Alloys Steel Co.
 Latrobe, Pa.
 Attn: Mr. J. C. Hamaker
The isothermal transformation characteristics of two heats of 4330V (Mod + Si) steel have been investigated by means of the metallographic method. Both heats are deep hardening, the hardenability being limited by the start of the bainite reaction. The isothermal transformation diagram indicates that this material may be suitable for austenizing, but not particularly suited to marquenching operations. The start of bainite transformation was found to vary within the compositional limits of the two heats of steel investigated. This would indicate that careful control of the composition would be necessary to achieve a high degree of uniformity of mechanical properties after heat treatment.

DISTRIBUTION LIMITATIONS: None; obtain copies from ASTIA.
The isothermal transformation characteristics of two heats of 4330V (Mod + Si) steel have been investigated by means of the metallographic method. Both heats are deep hardening, the hardenability being limited by the start of the bainite reaction. The isothermal transformation diagram indicates that this material can be suitable for ausforming, but not particularly suited to marquenching. The start of bainite transformation was found to vary within the compositional limits of the two heats of steel investigated. This would indicate that careful control of the composition would be necessary to achieve a high degree of uniformity of mechanical properties after heat treatment.

The isothermal transformation characteristics of two heats of 4330V (Mod + Si) steel have been investigated by means of the metallographic method. Both heats are deep hardening, the hardenability being limited by the start of the bainite reaction. The isothermal transformation diagram indicates that this material can be suitable for ausforming, but not particularly suited to marquenching operations. The start of bainite transformation was found to vary within the compositional limits of the two heats of steel investigated. This would indicate that careful control of the composition would be necessary to achieve a high degree of uniformity of mechanical properties after heat treatment.

The isothermal transformation characteristics of two heats of 4330V (Mod + Si) steel have been investigated by means of the metallographic method. Both heats are deep hardening, the hardenability being limited by the start of the bainite reaction. The isothermal transformation diagram indicates that this material can be suitable for ausforming, but not particularly suited to marquenching operations. The start of bainite transformation was found to vary within the compositional limits of the two heats of steel investigated. This would indicate that careful control of the composition would be necessary to achieve a high degree of uniformity of mechanical properties after heat treatment.