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ABSTRACT

Tani's integral method is extended to treat laminar two-dimensional
compressible boundary layers with heat transfer and arbitrary pressure
gradient for both attached and separated flows., A car efully chosen
one-parameter family for the vélocity profiles and a "universal'
stagnation enthalpy profile are assumed for attached flows. The
accuracy of the method is examined by comparing the results with
several ""exact' numerical solutions and satisfactory agreement is
obtained. For separated flows one-parameter families are assumed
for both the velocity and stagnation enthalpy profiles. In this case
the'accura.cy of the method is poor; however, suggestions are made

as to how it might be improved within the pre sent framework.
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1. INTRODUCTION

The phenomenon of flow separation is present in almost all
fluid mechanical devices. " Its presence is seldom welcomed since it
can cause reduced efficiencies, increased drag, buffeting, control
surface '"buzz', center of pressure shift on cylindrical-flare bodiesl, |
and many other troublesome effects. In fact, in many cases the onset
of separation puts an upper limit on the performance -- the well known
ngtalling'' of an airfoil is a good example of such a limit. On the other
hand, there are situations where separated flows may be beneficial,
such as for the reduction of drag and heat transfer at hypersonic speedsz.
Despite the obvious importance of flow separation, the problem has
escai)ed analytic treatment because of its complex nature, and remains
a poorly understood and essentially unsolved problem.

Separation may be defined by introducing the concept of a
"limiting streamline''. Because of the no slip condition, one cannot
strictly speak of a streamline ''at the wall'., At an infinitesimal distance
away from the wall, however, the flow has some finite velocity and hence
some definable direction. Thus the limiting streamline is given by the
limiting flow direction as the wall is approached. Since a streamline
cannot end in the fluid it must either pass on downstream to infinity
or close in the fluid. Separation is defined as the position at which the
limiting streamline leaves the wall and enters the interior of the fluid.
Reattachment is defined as the position where the streamline joins
either the surface or another fluid streamline. Intwo dimensional

flow, the slope of the limiting streamline at separation and at re-




attachment is defined as (dy/d:a _o = lim (v/u).

y -0
The point at which the surface shear stress vanishes also

coincides with the separation point in two-dimensional flow. For
three-dimensional flows, however, a vanishing shear stress is nota
sufficient condition for separation; thus the definition of separation
based upon the limiting streamline concef:t is preferable to that based .
upoﬁ the notion of zero shear stress.

®In the usual first order boundary layer theory the required
input" pressure distribution is given by the inviscid external flow.
If flow separation is present, however, the flow pattern and hence the
pressure distributions can be drastically altered from what they would be
were the fluid inviscid. The present boundary layer methods, then,
can predict when separation is likely to occur; but if separation does
occur, in many cases they give little reliable information about the
flow near the separation point and in particular say nothing about the
details of thoe flow behind separation. When the flow is supersonic, the
pressure field impressed by the external flow is related to the local
inclination of the external flow, which in turn depends on the '"upwash'

induced by the growth of the boundary layer. Thus the ""feedback loop"

" is closed and in this respect the problem is somewhat simpler than in

[ ]
the subsonic case.

Consider briefly the physical flow situation in a typical super-
sonic separatiné and reattaching f10w3. Sketch A on page 3 shows the
flow and the pressure distribution in a compression corner. Typically
the separated flow region is characterized by a more or less constant

pressure aft of separation followed by a rising pressure just before
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SKETCH A

reattachment. At the separation point the velocity along the limiting or
dividing streamline is zero. Because of mixing, as the fluid proceeds
downstream, the velocity along the dividing streamline increases. The
fluid is thus ""prepared" for the reattachment process. It is clear that
because of the conservation of mass flow inside the dividing streamline
there must be regions of reverse flow. In order for the flow to reattach
the fluid along the dividing streamline must be brought to rest and hence
the flow must experience a pressure rise prior to reattachment. The
whole flow process is a complicated interaction between the external
flow and the viscous flow field -- the external flow adjusts itself so as
to affect the viscous region in such a way as to achieve reattachment.
Steady flows similar to that just discussed also occur in other

shock wave boundary layer interactions3, behind blunt based bodies in




supersonic flow4, and near the leading edge of sharp nosed a.irfoilss.

The flows can be either wholly laminar, wholly turbulent or "transitional"@
where transition takes place between separation and reattachment.

Several analyses have been devised to deal with certain super-
sonic separated flows. The base pressure problem has received a
~ great deal of attention and approximate methods have been developed
by Chapma.n3 , et al, to treat the laminar case and by Kor si:6 and his
co-workers for the turbulent case. In both methods, the details of the
flow in the recirculating region are in effect neglected. The mixing

.

process is assumed to take place at constant pressure and to be the
same as that which occurs in the classical free boundary mixing. The
analyses are valid when the thickness of the boundary layer at o
separation is zero. For these cases they are found to predict results
which compare favorably with experiment. However, for flows such as
the shock-wave boundary layer interaction the upstream boundary layer
is of a size comparable to the maximum height from the wall to the
dividing streamline after separation, and the analyses break down.
In such cases the previous '"history'' of the boundary layer becomes
important and the sizable reverse flow velocities cause the mixing
process to depart from the classical free boundary mixing.

The usual one-parameter Ka,rms.n- Pohlhausen momentum
integral method for attached boundary layer flows and its extension by
Thwa.ites7, Rott and Cra.bi:ree,8 Cohen and Reshotko9 and otherslo- i1
is inadequate for separated and reattaching flows. As shown in Sketch"

A there are regions between separation and reattachment where the

static pressure is very nearly constant and reversed flow occurs near




the surface. Since the velocity profile is determined solely by the
local pressure gradient in the Kr;rman- Pohlhausen method, a
* Blasius-type profile would be obtained for the pressure ''plateau'
region if the Pohlhausen quartic is employed. The reversed-flow
profiles found by Stewartsonl.5 along the 'lower branch'' of the Falkner-
Skan solution were incorporated into the Thwaites method by Cur1e13,
but it is not clear that this special family provides the required .
flexibility., Curle's computed pressure distributions do not show the
inflection in pressure as evidenced by experiments.
In an attempt to '"'unhook'" the velocity profile from the local
pressure gradient Crocco and Lees16 introduced a new momentum .
integral method in which the profile is determined by a single inde-
pendent shape parameter not explicitly related to the pressure g adient,
The Crocco-Lees method has been developed quite extensively”’ 18,
and has been used to calculate such problems as shock-wave boundary
layer interactions, yielding fairly good results. The main drawback
of the method is that it relies upon a mixing coefficient that is not
well known for separated flows.

Some of the arbitrary features of the Crocco-Lees method can
be eliminated by adopting and extending the two-moment method
developed by Tani19 for attached boundary layers. In this scheme the
velocity profile is still determined by a single parameter, say the non-

dimensional slope at the surface, a(x), but this parameter is independent

® 2 du
of the Thwaites- Pohlhausen pressure gradient parameter>\(x) = g)_ ?xe- c

The development of the boundary layer is determined by integrating the

two simultaneous first order differential equations for a(x) and )\ (x)




obtained by taking the integrals of momentum and mechanical energy
across the layer.

Lees and Reeve 329 applied this promising m‘ethod to adiabatic
separated flows. The purpose of the present study is to extend this
scheme to the more general case of arbitrary heat transfer at the
surface. Theoretical analyses of heat transfer in separated regions
havé been limited both in scope and in number. Chapman21 examined
the effects of heat transfer and mass injection; however, the laminar
layer was required to be thin and at constant pressure. Carlson's22
theory is one of the few that considered reverse flow velocity profiles,
but this analysis too was for constant pressure. Curle13 treated the
shock-wave boundary layer interaction; however, when heat transfer
was present'this met};od gave rather poor results for the prediction of
separation,and its accuracy in the separated flow region has not been
established.

It is well known that surface heat transfer can have a large
effect on the behavior of attached boundary layers. For instance, ina
positive pressure gradient cooling the surface delays separation and
heating the surface moves separation upstream. One of the objectives
of the present investigation is to determine the extent to which the
effect of s:rface cooling persists in separated and reattaching flow
regions. This effect could be significant in determining the Mach
number along the dividing streamline and hence, the extent of the
sepa.rated-reattaching‘ flow itself23.

In the interest of simplicity only steady two dimensional laminar

boundary layers are considered here. The flow up to the separation




point is treated first and results from the approximate analysis are

compared with some '"'exact! solutions. Tani's19 method is generalized

by representing the velocity profiles as a weighted mean of the Blasius
and the average of the non-adiabatic similarity separation profiles,
rather than a quartic. The weighting parameter is again the non-
dimensional slope at the surface. The analysis is developed to deal
with the flow beyond separation and one example is briefly considered.
Only cases for which the externa} velocity is prescribed are

computed. The present study is, however, a preparation for treating

the interaction between the viscous layer and the external flow.




8

II. BOUNDARY LAYER INTEGRAL EQUATIONS

II.1. The Stewartson Transformation

The equations of the steady laminar two-dimensional com-

pressible boundary layer for perfect fluids are:

Continuity;

2 (pu) + ;?)-, (pv) =0 )

Momentum: .
wdu du — - 9 9 d
5 Ix *t ’Fva—;-‘ 3_5 = dy (A‘- d_"y.‘)
0 3 (2)
3
Energy: ‘

iRt s SF 1S IRVIC T

It is assumed that these equations are valid for the flow beyond
separation as well as for the attached flow. There has been some
question raised as to whether or not the full Navier Stokes equations
are required at the separation point. Oswatil:sch24 demonstrated that a
regular solution of the Navier-Stokes equations exists in the neighborhood
of the separation point. ¥ In fact, results identical to his are obtained
if only the usual boundary layer terms are kept. Thus by using integral
methods it should be possible to pass through this region without too
much difficulty., The assumption of negligible normal pressure gradients

for the separated flow seems to be a reasonable one, except possibly in

* The special singular solution found by C;;oldstein25 may not be
the one that occurs in nature.

Sl




certain cases near reattachment where the curvature of the external

streamlines is large.

For simplicity the viscosity law is taken to be

y
T (5)

As shown by Cohen and Reshotkog, Eqs. (1), (2), and (3) may be trans-
formed into the form of the two dimensional incompressible laminar
boundary layer equations by means of Stewartson's transformation26,
even when the flow is not adiabatic.

A stream function is defined

- 4
o=z
6
B e (6)
5

and the following variables are introduced:

- 2 A
iX a“ﬁf_q’x 7

WLy (8)
The transformed incompressible co-ordinates are denoted by
upper case letters X and Y. The subscript e refers to conditions at the
edge of the boundary layer, where the flow is assumed to be isentropic,
and the subscript w refers to conditions in the free stream. By using
Eq. (5) and the assumptions that Cp is constant and that Pr = 1, the

following equations are obtained for the flow in the incompressible plane:

U Vv _
%y*‘%’"o (9)
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U P ézL

where S is a dimensionless enthalpy defined by

Sl 1
b‘e (12)
and ho is the local stagnation enthalpy.
The stream function has been replaced by the transformed
velocities (U, V) defined by
U= ¥
Ve-%& (13)
and the resulting relation between the transformed and the physical
longitudinal velocities is
= a_"
U=%su
Eqgs. (9) - (11) are subject to the following boundary conditions:
UxX, 0) =0
V(X, 0) = 0
S(X, 0) = §, = constant (14)
lims = O
Y»w
lim U = U/X)

Y »
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1I. 2. Integral Form of Equations

When Pr = 1 it seems reasonable to assume that the velocity
(momentum) and the thermal boundary layers are of the same thickness.
Then integrating Eqs. (10) and (11) across the boundary layer bet;n/een
Y=0and Y=A and making use of Eq. (9) the following momentum and

energy integral equations are obtained

Uea'9 +z(z+u+é‘)o.‘db& = 26’_;;_;”-' (gg}o (15)

U dE* U (43 (16)
egf 'IZEQJ__X -.--ZV,.L{%—Y ”»

Following Tanilg, ‘the momentum equation, Eq. (10), is multi-
plied by U and integrated across the boundary layer to obtain the first

moment of the momentum equation:

2 a
Ue d6:* 2E \p*e _ cu e [V
AR SLE B it L
0

The boundary layer characteristics in the incompressible plane,
such as the displacement thickness 6i*’ the momentum thickness Oi .
the energy thickness Oi* , the enthalpy thickness 6 , and the enthalpy
flux thickness z , are defined as follows:

8
4" = /(/- -fi)d]’

(18)

A
o = J
% JRO-§)ar a




(20)

A
& = t/ SdY it

N
Z =/é/;\sdy (22)

Eqs. (15) - (22) have been given in similar form by Poot;s27
Through Stewartson's transformation the various boundary
layer characteristic thicknesses in the physical plane may be related

to those in the incompressible plane. Thus

4
J‘-.- Z (/' ‘Z" )Jy = Z_:’_;EO [Z/f-m.)(é«‘cf;“) * mge.-] (23)

é
= /L -
e o/a—‘-;e (/ -f‘—{’. )dl)v = QoY O

Bez (24)
6’ /Jﬁe (1= 42 )dy = Tt o’ (25)
9“==°/;,Lt, (%;“)4/= %’#’2‘/}/4 me)E + m,_-@.;"] (26)

where

me = &=/ Mez (27)
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IIi. VELOCITY AND TOTAL TEMPERATURE PROFILES

Following Tani19, Poots27 expressed the velocity and total tem-
perature profiles as fourth degree polynomials. For each profile,
four of the coefficients were determined by fitting the boundary con-
ditions at the wall and the edge of the boundary layer. The remaining
coefficient (identified with the gradient at the wall) for each layer was
used to characterize the shape of the profile. Thus the velocity and
temperature profiles are each members of a separate one-parameter

family. The development of these profiles along the surface and the

oiz dUe ]
growth of Oi (or ’7—— I3 ) is found by integrating the three

L simultaneous differential equations, Eqs. (15) - (17).

In the present paper it is also assumed that the profﬂes can be
expressed as members of one-parameter families. However, the pro-
file shapes were determined in a somewhat different manner, because
the use of Tani's quartic for the velocity profile was found to lead to
large errors near separation for the case of the cold walls. (This
point is discussed further in Section IV. 1. 1.)

Cohen and Reshotko28 present similar Falkner-Skan type
solutions (i.e., when U_ = ern) for the laminar compressible boundary
layer with heat transfer. When the separation profiles in the trans- o
formed plane for various values of S,, are normalized and compared,
these velocity profiles do not collapse to one universal curve (Figure 1).
Thus it would appear that at least two parameters are required to
represent the profiles for the general case of an arbitrary S . The

addition of a second parameter would require the addition of another
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differential equation (for example the second moment of the momentum
equation) in order to solve the flow problem. * However, to avoid the
added complexity of a second parameter, a kind of ''mean'' one-
parameter velocity profile to be used for all Sw was chosen in the

following way:
The velocity profile is written as 'IIJ'J_ = f(Y/a) + a(X) g(Y/a),
e

where a is identified with the gradient at the wall. Thus whena = 0,
U/Ue = f(Y/a) , iv e., the éepara.tion profile. The function f(Y/a) was
determined by taking, in a sense, the "average' of the exact similarity
separation profiles from Reference 28 for various values of Sw. The
representative average profile chosen for f(Y/A) was the same as the
exact separation profile for Sw = -0.8, except for slight modification
in order that the boundary layer have finite thickness.

For a=ap; , . the velocity profiles in the trans-
formed plane for all values of Sy reduce to the Blasius profile. Thus,

ap1, g(Y/A) = (U/Ue)BL - f(Y/A) , where the subscript BL refers to

the '"Blasius" values. Since "a' corresponds to the gradient at the wall,

the function g(Y/a) was then determined. Explicitly,

a(u/u.)
("('51'77:_)]3_1:) = f(0) +ap; 0 .
Y/A=0

By definition f'(0) = 0, and g was chosen such that g'(0) = 1. For the

profiles as chosen, apL = 1.99. The functions f(Y/A ) and g(Y/A) are

—

* Based on the similar solutions, this second parameter could
instead be determined as a function of S and thus the additional _
differential equation would not be required. This approach would make
the tabulation of the boundary layer functions defined by Eqs. (31) - (35)
very involved.
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given in Table 1 and are shown in Figure 2. This one-parameter
family is used to describe the velocity profiles in the separated flow
region as well as for attached flow.

Cohen and Reshotko?‘8 present total temperature profiles in
the incompressible transformed plane for various values of S, and
pressure gradient parameter B. If these profiles are ""normalized" by
ngcaling' the normal distance from the wall so that all profiles have the
same gradient at the wall, upon comparison an interesting result is
obtained. (Figure 3 shows the profiles at separation for various S,
compared with the "flat-plate" profile.) As long as the flow is attached
the S/SW profiles can be represented quite well by one ""universal' curve.
This universal curve is given by Crocco's integral of the energy equation
for the flat plate, namely, S/s, = 1 - (U/U gy, Wwhere (U/Ue)BL
is the "Blasius" profile. Thus, for attached flow the thermal profile
is taken as S/SW = [1-{f(Y/A) tagy, g(Y/A}] . In the separated
flow region the thermal profiles can no longer be represented by this
"universal' profile. The separated thermal profiles are assumed to be

the one-parameter family,

s/s,, = {1 - £(Y/a )} + b(X) g(Y/a) !
where for convenience f(Y/A) and g(Y/a) are the same functions as
those used for the velocity profiles.
Summarizing, the velocity profile for both attached flow and
separated flow (as long as the height of the reverse flow region is not
too large) is taken as
u/u, = f(Y/A) + a(X) g(Y/B) : (28)

For attached flow the "universal' thermal profile is used




16

S/S,, = ﬁ - f(Y/A)} - 1.99g(Y/A) , (29)
i.e., b= -1,99, while for separated flow the thermal profile is given by
s/s,, = ﬁ 3 (Y/a}+ b(X) g(Y/A) (30)

Now that the profile shapes are decided upon, Eqs. (18) - (22)
can be integrated graphically to give the various non-dimensionalized

boundary layer thicknesses in terms of a and b. Thus

(6,4)/A = .4204 - .0651a = D (31a)

(0/A = .09080 +.02616a - .00842a° = E (31b)

0*/A = .1368+.0360a - .006552° - .001182a% = F (31c)
A

(A/Uez) /( 8U/8Y)% dY = 1. 763 - .5040a + . 2068a° = (Q/4F) (32a)
(o]

3/swA = .4204+ .065lb =W . E (32b)

Z/s_A = .0908 +.0456a + .01947b + . 00842ab (32¢)

J. E=2 . F c

where J = (B/S_0,) and Z = (5/5w°i*) ;

w1
H = D/E |, G = F/E (33)
(20,/U,) (8U/8Y)y_o = P = 2aE (34)
-(z’i/swz) (85/8Y)y_g = R = -2bJ. E = -2bZ. F (35)

The quantities given by Eqs. (31) - (35) are functions of a and b
only and their numerical values are tabulated in Table 2.

Egs. (15) - (17) are now rewritten in the form

Ve cdi)_?_." + 2/2+:‘l*3ww)9.;zj—% = %oP (36)

U. d(6'6.") c*0.%(3+ 25, 2)dVe .
-———-dx + 2 ( ./ w )35(— Yo Q (37)
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(JO‘)+ 27%. g/yeg

(38)

X Given the external velocity U_= U_(X), the wall temperature and
the initial conditions, the set of first order differential equations,
Eqs. (36) - (38), can now be solved for the three unknown functiéns

a(X), b(X), and ol(x) %




18

'IV. SOLUTIONS OF THE BOUNDARY LAYER INTEGRAL EQUATIONS

IV.1l. Attached Flow

For attached flow, the ''universal" S/Sw profile is used and thus
"p" is constant and numerically equal to -1.99. The problem is
simplified and reduced to solving the two first order differential

equations, Egs. (36) and (37).

IV.1.1. Similarity Solutions

When the flow is a similar Falkner-Skan type flow (i. e., when
U, = CXm) a = const. and Egs. (%6) and (37) reduce to two algebraic
equations. Because of the way in yvhich the velocity and temperature
profiles were chosen the errors in the solution of the integral equations
are largest for a similar flow which is always on the verge of separation
(i.e., a = 0). For this case values of the pressure gradient parameter,
B= (2m/m+1), were calculated for various values of Sy Figure 3

shows a plot of B vs. S, calculated by the present method

separation
compared with exact solutions obtained by Cohen and Reshotkozs.

It should be mentioned that initially Tani's quartic was chosen
for the velocity profile and a one-parameter cubic was chosen for the
thermal profile. The full set of equations, Eqs. (36), (37), and (38),

were solved for § vs. S - This curve is also shown in

separation
Figure 4, and it can be seen that when these profile shapes are used
the integral method is in considerable error for cold walls. This

error is mainly caused by the large difference between Tani's quartic

velocity profile and the exact profiles at separation. For this reason
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" the profile.sha.pes were determined as stated in Section III, resulting
in improved accuracy for the cold wall. The qualitative shape of the

exact vs-S, curve is not matched by the integral method.

separation
Near 5 = -1.0 the exact curve has negative curvature whereas with

only a one-parameter family for the velocity profiles the integral method
gives positive curvature everywhere. However, the present method
gives values fairly close to the exact solution except at §, = -1. 0.

The displacement, momentum and en.tha.lpy thicknesses and the
gradient of S/SW at the wall were calculated by the present method for
the separation profile. These data compared with the exact results from
Reference 28 are shown in Table 3.

The comparison is favorable except for the displacement thick-
nessat§_ = -1.0 (highly cooled wall) where the errors brought about
by the one-parameter velocity profile show up rather strongly.

Again it is repeated that the errors in the present method will

most likely be greatest for this case of "incipient separation''.

IV.1l. 2. Flow with Linearly Decreasing External Velocity in

Transformed Plane

Calculations have been carried out for the case of a linearly

decreasing velocity in the incompressible plahe, i. e.,
=0(1-%)

where U, is the velocity at X = 0 and L is some characteristic length.

A Pohlhausen type parameter is introduced

= G\ = G & JU
A = 3”2 (40)
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Using Bys. (39) and (40), after some manipulation Eqs. (36) and

(37) may be put in the following form suitable for numerical integration

a4 . L :
dZ (1-%) [SA-df (41)

th: -_/__ = ¢
dz  (-2) [A“ ¢] (42)

where
X = x/L (43)
¢ = (EG’a- %-) (44)
g =(1+28,Z-H-5, w) (45)
S =(6+45,2) (46)

Now a, @, and } are functions only of a. Eqs. (41) and (42) may
be solved by eliminating X and numerically integrating the single result-
ing differential equation in the A - ,Ln G plane, and then by a simple
quadrature transforming to the X plane. A solution may also be
obtained by numerically solving Eqs. (41) and (42) simultaneously and
this second method was used here.

Eqs. (41) and (42) are subject to the initial condition that

A = 0 at X =0 (47)

The numerical integration was started by the Runge-Kutta
method and continued by Milnes methodzg. As Tani19 and Poot:s;27 found
with a uniformly retarded external velocity it was difficult to carry out
the solution right up to the separation point because of the rapid growth
of (dIlnG/dX) near separation. (The behavior near separation is discussed

in Section V.l.) However, the solution was carried out to X = 0.56 and
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extrapolated from there to separation.

From the numerical computation, values of a and N are
obtained for various values of X. Using this information the boundary
layer characteristics in the incompressible plane such as 6i* N °i 3 Oi* 4
&, F, (85/8Y)Y=0 and (BU/B,Y)Y=0 can be calculated. 3

Using the Hartree-Womersley method Poots27 obtained an "exact"
numerical solution for the above case of Sy = 1.0 and a linearly decrea.sit;g
external velocity (taking Ul = 1 and L = 8 to simplify the numerical
calculations). Poots also presented the results of an integral method
which amounted to solving the set of three differential equations,

Eqs. (36) - (38) , using Tani's quartic for the velocity profile and a
similar quartic for the total temperature profile, Calculations by the
present method compare favorably with the exact solution of Poots27 as
shown in Figures 5 and 6. The present integral method is somewhat less
accurate, but also simpler than the integral method of Poots. It is also
expected that the present method might be more accurate than the
integral method of Poots for the more interesting case of a cold wall
since the present velocity profiles are probably more realistic than
those represented by Tani's quartic.

For comparison purposes, the boundary layer properties for the
case of a cold wall with the wall temperature equal to the initial tem-
perature of the external stream, i.e., Sw = -0, 762 were computed by
the present method. These results are shown in Figures 7 and 8.

The present method for a non-adiabatic wall predicts that the

heat transfer rate at separation is finite. Analyses such as Curle's13

which express the temperature profiles as power series of the velocity
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ratio, U/U_ , incorrectly yield zero heat transfer at separation and
can also reverse the sense of the wall temperature gradient in the

reverse flow region,

IV. 2. Separated Flow

For separated flow it is no longer possible to use the "univer sal'
S/8,, profile and the full set of differential equations, Egqs. (36), (37), and

(38) must be solved.

I1V. 2.1, Similarity Solutions

Again for the similar type flows, Egs. (36), (37), and (38) reduce
to a set of simultaneous algebraic equations. These equations were
solved for the particular case of §_ = -0.8 and g = -0.10. The velocity
and temperature profile were computed and are compared in Figure 9
with the exact solution of Cohen and Reshotkozg. The various integral
thicknesses Were not calculated in Reference 28 and thus no comparison
is made. However, as can be seen from Figure 9 the comparison of
the profile shapes is rather poor and the present integral method gives
only very rough estimates of such things as skin friction and wall heat
transfer rates. The reason for these discrepancies lies in the inability
of the assumed form of the velocity profile to match the exact profile

sha pe.
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V. DISCUSSION AND FUTURE WORK

V.1l. Singularity at the Separation Point

The present method points out rather simply some interesting
features that occur near the separation point. Eliminating (dOiZ/dX)
from Eqs. (36) and (37) one obtains

d6°. 26dG de = G* - 6%
Jf‘ ZGddzaj'(_ XLL%‘/Q GP#ZA[H-/ *SW(W-ZZW (48)

Near separation, as a —= 0, G(a) goes through a minimum,
i.e., (dG/da) = 0. Thus when (da/dX) is finite and (dG/da) = 0
unique value is obtained for A_ o ety A = Ao. However, for
example, in the case of a uniformly retarded externa.lv velocity (Section
IV. 1. 2.) when Eqs. (41) and (42) are integrated, it is found that a
value of A is reached before separation such that A< Ao (algebraically).
From Eq. (41) it can be seen that (dA/dX) <0 for all X up to separation.
Thus, when (dG/da) =0, A # /A S which implies that (da/dX) = -w ,
and a singularity occurs at this point. It is found that when (da/dX) at
separation is infinite, (d6*/dX) is also infinite; however, (dOi/dX) and

(dOi*/dX) remain finite. Examining the wall shear stress

/rw &3 ~ U
(ﬂ%%)yw a‘Z'e

dz J (49)
‘o U du _ 4

TR R HR

and since

q4a [
ax ~ a
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: @
dz ) ~ da
dX/p4o dX (50)

Keeping first order terms near separation, it can be shown

easily from Eq. (48) that

N

1
an~ (X - X)2 , thus (Bu/ay)y=0 ~ (X X)*®

separation separation

as assumed by Goldstein25 near the separation point. As Goldstein
found, for this special type of external velocity distribution (when
(dZUe/dXZ) § 0 ) the solution cannot be continued downstream of the
separation point.

Prandtl30 and later Meksyn31’ -

showed that the pressure
distribution in the region of separétion cannot be chosen arbitrarily
but must satisfy certain conditions compatible with the reverse flow
region downstream of separation. Prior to separation A must go
through a minimum and near separation (dZUe/dXZ) >0 . This
condition is evident from the integral form of the equations, if one
takes Eq. (40) and examines the conditions for (d/\/dX) to change sign,

| in order that A pass through N =A°at separation.

While the special class of flows where (dZUe/dXZ) So

(right up to the separation point) lead to a singularity at separation and

cannot be carried downstream, exact solutions for such cases are

nevertheless of interest for checking approximate methods.

e e e T i e
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V.2. Velocity Profiles in Separated Region

Examination of the solutions of the Falkner-Skan equation shows
that along the lower branch,lsthe maximum bacicflow velocity is zero at
separation, reaches a maximum as 8 increases algebraically and then
decreases to zero again as § —e 0. The displacement thickness |
increases without limit as p — 0 along the lower branch (i. e., at
B = 0 the profile is the classical free boundary mixing problem for zero
pressure gradient). Clearly sucha behavior cannot be reproduced by
the kind of one-parameter velocity profile chosen in the pre sént paper.
The need for such a behavior is illustrated by some work of Reeves*
for the shock-wave boundary layer interaction on an adiabatic flat plate.
Reeves used Tani's quartic for the velocity profile and included a
third integral moment equation to relate the pressure gradient to the
displacement effect of the boundary layer. It was found that the
pressure did not level off into the usual '"plateau" region but reached
a maximum and then decreased before rising again at reattachment,
The velocity profile was such that the displacement thickness could
not grow fast enough to obtain the pressure ''plateau'’.

Thus it would appear that for the reverse flow region it may be
necessary either to use a two-parameter velocity profile or to use
two or more layers. Another simpler and promising method has been
suggested by Professor L. Lees. A one-parameter family of velocity
profiles could be constructed based upon the '"lower branch'' Falkner-

Skan solutions. It should be noted that it is not necessary to relate the

* private communication
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parameter to any pertinent physical quantity, but only that the profiles
be denoted by this single parameter in such a way that the.integral

properties may be tabulated (as in Table 2).

V.3. Interaction Between Viscous Flow and External Stream

For all the examples computed here the external velocity
gradient was assumed to be given. Ina problem such as the shock
wave boundary layer interaction the external velocity is not known
a priori and the interaction between the viscous flow and the external
stream must be determined. The following equation is obtained by
applying the Stewartson transformation to the continuity equation and

integrating across the boundary layer

lan ® _ o, J” [/H e d9. dé' + e [20+£)
8.

It M 1+ me ,7" —

A (51)
+ (3 )+ (1) (e +2) - Me-l LJJY’%

where ® gtreamline direction angle relative to a flat wall

(oriented in the free stream direction) at y = 6,

I
o tan @ = Ue
2

And for example, when @ <<1, tan @ = @ in Eq. (51)and the
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linearized Prandtl-Meyer equation gives

@ o - IVM:J -/ _{ (52)

/+ %’M:') Moe

where

M_ =M + €& ;e << M

Thus M, takes the form of a depe;ldent variable when Eqs. (51):

and (52) are added to the set of Eqs. (36) - (38) .
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V1. CONCLUDING REMARKS

Tani's two-moment integral method has been extended to treat
non-adiabatic two-dimensional compressible boundary layers. The
assumption of a ""universal' stagnation enthalpy profile for all pressure
gradients and wall temperatures is found to be quite accurate for
attached boundary layers and provides a useful simplification. The
accuracy of the integral method is found to be sensitive to the choice of
the velocity profile. By use of the universal temperature profile and a
carefully chosen one-parameter velocity profile the problem is reduced
to solving two first order ordinary differential equations when the
pressure gradient is prescribed. Pr_edictions of the boundary layer
properties and the separation point b;r this method compare favorably
with '""exact' numerical solutions,

2 Flow beyond tl}e separation point is briefly considered. The
""universal'' temperature profile is no longer applicable. With the
assumption of.one-parameter families for temperature and velocity
profiles, it is necessary to solve three first order ordinary differential
equations, By comparing the present results with the reverse-flow
Falkner-Skan profiles found by Cohen and Reshotko28 one concludes
that the separated flow velocity profiles in any integral method must

be described either by a two-parameter family, or by the Falkner-

Skan farmily itself. Another possibility is to use a multi-layer method.
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* BOUNDARY LAYER FUNCTIONS f(Y/A) AND g(Y/A)
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TABLE 1

Y/a & f! g g'

0 0 0 0 1. 000
.1 . 0191 . 431 . 0903 . 779
28 . 094 1. 095 . 1505 . 404
i) . 242 1.870 L1671 -. 0864
.4 . 460 2. 41 . 1351 -.522
.5 . 699 2,22 .0739 -. 629
.6 .882 1.334 .0207 -.374
.7 . 958 . 530 . 0045 -. 0635
.8 . 988 . 1315 0 0
.9 . 996 . 0474 0 0
1.0 1. 000 0 0 0
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