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ABSTRACT

The spectral characteristics of random modulated waves are

investigated with particular emphasis on the determination of power

density spectra of sinusoids that are -frequency modulated by band-

pass Gaussian noise. A1':'Linent parts of the theory of random

processes necessary for spectral analysis are reviewed, and a

general formulation of the problem of determining spectral charac-

teristics of random modulated waves is giv:en. The principal results

of this investigation are -given in Chapter IV where the variation of

FM by band-pass noise power density spectra as-a function of the

modulation parameters is treated in detail. Limiting cases of large

and small modulation indices are discussed, and a technique is

-developed for obtaining useful approximations of FM by band-pass

noise spectra. Thase results are verified by digital compu' ions

and experimental measurements. Finally, -spectra resulting from

FM by the combination of band-pass noise and a-sinu~oid, and simul'-

taneous AM -by low-pass noise and FM by band-pass noise are

investigated.
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I. INTRODUCTION

Frequency modulation techniques have found widespread

application in electronic communication and, more recently, radar

and radar countermeasures systems. It is not surprising, there-

fore, that considerable effort has been devoted to the study of

frequency modulation fundamentals. The development of analytical

techniques for determining frequency spectra of frequency modulated

waves has been of particular interest, where the modulating wave-

form-may be either periodic or random.

In the case of frequency modulation-by random waveforms

emphasis has been placed on determining spectra resulting from

use -of modulating waves that are obtained by filtering white- Gaus-

sian noise with a variety of low-pass filters. It is the principal

purpose of this investigation to consider modulations which consist

of Gaussian noise having a band-pass characteristic; in-particular

the case of FM-by-white Gaussian noise that has been filterr " by a

single stage L-R-C fiter will be treated. In-addition, a theory for

-computing spectra resulting from FM by a waveform consisting of

a sinusoid and band-pass Gaussian noise combined, -and, also, FM

by band-pass noise with simultaneous AM by low-pass noise will

be given.
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It is well known, and almost intuitively obvious, that there

exists a limiting condition wherein the spectral shape of an FM

waveform will closely resemble the probability density function

of the modulating voltage. This limiting condition is associated

with an increasing modulation index (ratio of deviation from center

frequency to deviation rate). Also it is known that frequency spectra

of amplitude modulated (AM) and FM waves are almost identical

for very low-moduiaiion indices. Therefore, in the case of FM

by band-pass noise, an interesting transition in the spectrum occurs

as the modulation index is increased, with the spectruen going from

a center frequency spike with two sidebands to a-Gaussian curve.

It will be posbible to determine the modulation index required to

produce an FM wave whose spectrum exhibits an essentially Gaus-

sian shape when a modulating noise -filter of a given _Q is employed.

Formal -analytical methods of computing FM spectra, in all

but the cases of relatively simple modulating waveforms, invari-

ably lead to complicated mabematical expressions which are

exceedingly difficult to-evaluate explicitly, and give little insight

into the interrelationship of the various modulation parameters.,

Thus one is forced to seek approximate expressions which are

capable of giving reasonably accurate results for the parameter

range of interest. This state of affairs is not unexpec': d wben

dealing with frequency modulation, but is clearly a- result of the

fact that frequency modulation is a nonlinear process. In
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nonlinear analysis approximate solutions are generally the only

useful solutions that can be obtained. Of course, in order to have

confidence that approximate solutions will provide useful results,

it is necessary to determine the conditions (or, equivalently, -the

range of parameters) under which the approximations are valid;

and also, insofar as possible, approximations should be verified

by comparison with experimental results obtained from the actual

or simulated nonlinear system and by evaluation of-exact calcula-

tions where the parameters have been fixed to make computation

possible. In this investigation of FM spectra, approximations will

be supported by both experimentally deter'mined and digitally

computed sp'sctral data.
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II. A SUMMARY OF 'THE THEORY -OF RANDOM PROCESSES

The determination uf epectral characteristics of random

-modulated Waves is essentially an applied problem -in the theory

of random processes. Accordingly, a summary of applicable

portions of the theory will be givcn in order to provide a basis for

a detailed formulation of the power spectrum problem.

Extensive literature exists on the general subject of random

(or stochastic) processes with books by Doob (1) , and Davenport

and Root (Z) being notable examples. The former is a rigorous,

mnathematical text, while the latter contains an applied, engineering

treatment of the subject. Throughout-the literature there is con-

siderable variation in the terminology and notation that are employed

to denote quantities and relationships that are essential for-power

spectrum computations. The notation introduced in this chapter

will be employed throughout the remainder of this report, and

defined quantities will be-underlined for emphasis;

A. THE RANDOM PROCESS

A random process can be simply defined as a collection

(or ensemble) of random time functions. A member function of the

ensemble can be written as x (t) where t is a continuous parameter,

1Numbers in parentheses refer to-references giver. oin page 84.
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denoting time, which ranges from -co to +o, and a is a typical

point in a probability measure space- fl. A classic example of a

random time function-that is of central-importance in electronics

is the noise voltage produced by a resistor due to thermal agitation

of electrons. A collection of the noise voltages produced by all

possible physical realizations of a resistor of R ohms, for-example,

would comprise a random process. Since it is not feasible to

fspecify each time fur.cti.... of a random process exactly, various

averages must be defined in order to describe the properties that

can be expected to apply to an arbitrary member function of the

ensemble. This will lead the way toward computing some important

properties of the output of a system which has a random input. Tbh

"system" -that will be considered in this, report is an -oscillator

which has -tlhe capability of being modulated in both amplitude and

phase, and we shall be interested in studying spectral properties

of the output-voltage for inputs which consist of various random

modulations.

1. Probability Distribution and-Density- Functions

The random time functions x (t) evaluated at a

specific time, t i , comprise a random variable which is defined

over te space iQ. (Note: Usagc dictates-the use of tlc word

variable instead of function as -Would be more appropriate.) Th

n order cumulative probability distribution -function of th set

I '-, ......... -- : '- i °- ..... = -'-' ....... i -;" ....... i' ......------------ .------------....- " -- ------- ---....... -.°-. ..........
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of random variables xa(t) xa(t).., xa(t n ) is ,inoted Pnf .and

defir.cd as

P nx(XI, ' ' ,  xn ; t i t t , ' ' _ tn )

=Prob [ax (tl)-:gxv.-. x (I~ xL a -j

where the second expression should be read as the probability that

x a(t) evaluated at time t1 will be less than or equal to the value

x and simultaneously xa(tZ)- is less than-or equal to x , -and, so

on to xa(tn) < x n . An equivalent interpretation is that the set of

points a which -correspond to those member functions of the

ensemble that meet the condition xa(ti) ! x..X (t

has a measure given by Pnx The function Pnf has the usual

properties associated with probability; for example, 0 g Pnx k 1

and Pnx is monotonic nondecreasing; In spectral analysis-the

second order probability distribution-function, Pzx' will-be of

central interest.

The probability density function, Wnx, is defined

as the mixed partial derivative of Pnx when this derivative exists.

Thus

n
Wnx(XIS x V .... Xn tit "t) . • ax Pnx(x '' 'n; t' t2"' tn)"

2 Th' 1'2 n 8x'nx



The joint cumulative -probability distribution function of order (nx,

zu;y) for the-random proc esses x a(t) and y (t) ts given by

P (XA x X '- T1 P' Y
nx, rxiy I n' *'D~ t~j.*.i n T1, rm)

= Prob[ {CL x (tik X,. .X(t ):;x; ,(irl.k Y1 ' yLm!c'1

Two-random processes arce called independent to order (nx, my) if

nxmy ~ n m i n '*V

In view of the fact that the averages that are important

in spectral theory can generally be -obtained using first and .9 ond

order distributions, henec-icrth higher ordered distributions will

not be employed in-the deveclopment to follow. This does not

reupresent any real loss in generality, however, since the extension

to higher-order statistics is straightforward.

One last definition pertaining to distribution functions

and a!,-o density functions is the-notion of stationarity. A distribu-

tion ;s said-to be stationary to second order if the distril'iton

function, P 2.x corresponding to x (01, is cqual-to the di~trih -.ion
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corresponding to x t+r) where T is a fixed parameter. That is,-

PZ(xl'xz"t2) P2',(xl,x 2 ; t 1 + T, t 2 + 7)

This reduces the number of-variables by one since T caa be taken

c, al to _t~ and thus P is a function of x1 x,, and t,- t -* A

similar definition applies for n thorder distributions. Also first

order stationary distributi,:.is are independent of time.

B. STATISTICAL AVERAGES

Since the random process is characterized a-s a function

of two variables, it is apparent that two-distinct types of averages

are possible. These are: (1) averages over the-ensemble variable,

a, -at a fixed time, t 1 ; and (Z) averages over time for a given

member function-of the ensemble.

1. Ensemble Aiverags

The ensemble-averag e, or expcted value.- of the

ridom variable x is defined as

E(x) =f x Ld-P I

where E is the expected value operator. Various moments of. the

random variable x are given by E(x r), Of principle importatice
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are the first moment E(x), also called the mean value of _1,u

the" second moment E(x2 ). The variance, denoted as 2, is given

by

02 EL(xE(x)) 2
1

On expanding and carrying out the indicated ensenble averaging

this expression reduces to

2

T = E(x) EE(x)]

Frequently, in order to obtain a less -cumbersome notation, a bar

will be used to-denote an ensemble average, that is,

E(lx n ) .- x n .

If the average value of a- reasonably well-behaved function , f, of

the random variable- x is desired, the average of I can be formu-

lated in terms of the distribution -function-of x instead of-the

distribution function of f, and

E Ff(x) J fo(.1)d P,
-00

For a justification of this procedure see Davenport and Root (Z).

2 For example, f is single valued and of bounder] variation.
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Finally it should be noted that the expected value

intevral reduces from a Stieltjes integral to an ordinary Riemann

integral if P xhas a continuous derivative. That is,

Jump dis5continuities in the monotonically nondecreasing distribution

function P can usually be accounted for by using delta functions

with the density function, W IIf g is a function of the two -vari-

ables x 1 and x. then the average-of g becomes

CO'Z j 0g x X)W , j x. t,,t 2) dxl dx,

-Note that, in general EIfAx )] is-a function of t I and E Ig(x 1 ,xz)1

is a function of t 1 and- t.; however, if- the distributions W1 A and

Wxare stationary, EEX1(x) ] is time independent and E 1g(xi t xz)1
depends only on-the time difference tt

An average of considerable -importance in probability

theory is the characteristic function, which, for the second order

case, is defined-as

E L[exp-(Jv 1 x 1 + jv 2 x2 )] M 2x(v 1 v 2 t1 , tz)



if W exists then the charactcriskir function becomes

Mz(vi IV ; tit t) fl exp (jv x1 +jvzx ) Wz.(xl,,xZ; tit t2 ) dx1 dx,,.

Thus the characteristic function is the Fourier transform of the

density function W2,X (except for the sign of the exponent of e).

The characteristic fundion-has great utility in

-computing the density function of the surn of two random variables

when the individual density functions are-known. Consider the

first order case of the sum of x 1 and yjwith Wlx(xl) and

Wjy (yj) given. The subscripts-wili he dropped for convenience

*(a standard practice) and stationarity of -W ix and W ly will be

assumned. Let z = x-+ y and the problem -is to find WIZ The

characteristic function of z is-

M1-7 = xp (jvz)] Eexp (jvx + iVv)j

If x and y are indcpendcrit-than

Mi _M1  M1

The density function-of z, W 1zcan now be computed from

02 M4 (v) exp tjzd



Z. Time Averages

The average over-time that is performed on members

of the ensemble is defined-as

A rim 1 0 Tr 2
Axa(tJ - xa(t)dt+ x (t) dt

where the time average operator is denoted by A. The two integrals

usually reduce to the single In ogral formula

A[x(t)]- lirn I x(t) dtT-- .o I Xaj - d

in view of the fact that, when the two integral:expression exists,

the single integral expression also exists and they are equal. It

is possible that the single integral expression may exist when-the

two integral expression does not-for certain functions, and in order

to .btain the desired property of time invariance for the linear

operator A, the two integral formulation of time average must bi

used.

The time average of a member function Xa(t) of a

random process will, in general, depend on the ensemble variable

a. When the time averages of the member functions are independent

of a, thbe random process is said to-be uniform. Actually -thc

character-of- the integral used for -ensemble averaging ie. such that

the -results- obtained are not changed if at most-a . ountable infin.ty



of member functions do not have the property-of uniformity. If

the notion of a random process is to be used in tba~ formulation of

a mathematical mnodel for a physical system, the assumption of

uniformity'must generally be made, in that only the member function

of the random process is E.vailable for experimental observation.

3. Equivalence of Time and-Ensemble Averages-

Suppos-e enaernble and time averaging are -performed

on- the function g(x 1 ,tx.) with reversed order as follows:

AE [g(x1 , x?)] = EA [g(x,, x 2 ]

Various necessary conditions for the existence of the- integral

[g(xi, x] ar -ivnby theorems on ergodic theory, Nov- if the

process is uniform, the relation, 'reduces8- to

AE [g(xl, x,)] A = x,

since A Ig(xj,$ xz2)] is independeat-of the ensemble variable and,

therefore, the ensemble average leaves A 1(x 1 ,x d] unchanged.

Also-if W2 x(xls x z -is stationary, then

E [ g(xl, xi)]. A Alg(icx da]
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This relationship provides th nk between ensemble averages

computed from the -random process model of a physical system,

and the measurements that may be made on an actual system

using time-averages. An excellent and thorough treatment of the

general subject of the relationships between ensemble and tine

averages, which is reviewed only briefly here, may be found in

a paper byW. M. Brown (3).

C. CORRELATION FUNCTIONS AND POWER SPECTRA

With the material covered in preceeding sections of this

chapter available, a theory for spectral characteristics of random

processes can be given without difficulty. The theory presented

here will-be based on ensemble averages; however, equivalence

with the spectral theory obtained for-time averages may be quickly

demonstrated with the aid of the results of the previous section.

1. Ensemble Covelation Functions

The autocorrelahon function for x (t) over the

ensemble-is defined as

Rx(ti # t2)-= E 1#] f f x W x 1  ; ti,t) dx1 dx2

~- - -- - -- ~-- - - - - - - 90 - --OD'-
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If W is stationary, then R is a function of the timc difference

-f,-ti which will be denoted as T. If-a random process has the

property that its correlation function depends only on the time

difference r, and if E xI  xI is independent of time; then

the process is called stationary in the wide sense. Cross-

correlation functions -are defined for two random processes x,(t)

andy (t) as

however, we shall not have need of functions of this type; conse-

quently-the terms autocorrelation and correlation will be synonymous

for the remainder of this report.

An important property of correlation functions can

be easily derived by observing that the expected value of a non-

negative quantity is non-negative. Thus

z 1

m- -) 0

W.,

0-'*

X- 
+ 

&z-  2 x x 
1

x x
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-thus

and-for stationary -random processee

Rx,(o) ;! I-R,( I)

since

x1  =x 2  =RJO)

Z. Power Density Spectra of Random Processes

The power density spectrum. Sx(w), of a random

process x (t) is defined as the Fourier transform of the correla-

tion function Rx(') where the transform exists. Note that xa(t)

is assumed to be wide-sense stationary. Since a function is re-

quired to be absolutely integrable to insure existence of its

Fourier transform, unless R(T) goes to zero as " goes to infinity,

tb power density spectrum will not exist in the strict sense. Then

the correlationfunction is related to a cumulative power spectrum,

S (w) by

Rx(r) = " exp (JwT) d Sx(w)
-r O
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This last result, which is essentially the famous Wiener-Khinchin

Theorem, provides the basic procedure for computing power

spectra of random waveforms. As in the case of probability dis-

tribution and density functions, it is usually possible to introduce

delta functions to account for jump discontinuities in the cumulative

power spectrum. The appearance of delta functions in-power density

spectra accounts for power corresponding to discrete frequencies

including w =-0 (or dc). -it should be noted that there exist correla-

tion functions -for which the cumulative power spectrum has the

property that it is continuous everywhere except at a-finite set of

points; however, its derivative there i8 zero (the so called singular

case). In this situation, the delta function cannot-be used; however,

such casesare, fortunately, not commonly encountered in engineer-

-ing practice. The use-of power density spectra containing delta

functions willbe adequate for the power density spectra that will

be computed in this -report.

It remainc to give a justification for the name power

density spectrum for the fun'tion which has-been rather arbitrarily

defined-as the Fourier transform of an-ensemble correlation function.

If the inverse Fourier -transform is used to-express R (-) in terms

of Sx(w) then

i o

R (r) # S(w) exp (jur) dr
-00



-z6-

The correlation function evaluated at r" = 0 is simply the mean

squRre value of x (t); thus

cOD

R(O) =x = Sx(w) dw

-O

Also it can be shown (2) that the correlation function of the output,

yL(t) of a linear time invariant system can be given in terms- of

the -correlation function-of ,k. input, x (t), by the triple- convolution

Ry(7) = h(t) * hc(t) * Rx(t)

where h(t) is the system impulse response and -h c(t) is the complex

conjugate of h(-t). In the frequency domain this becomes

S y() IH(jw)I Z SX(w)

where H(Jw) is the system transfer function (Fourier transform of

h(t) ).

If'the systim characterized by H(jw) is assumed to

be a narrow band filter with unit response for w 5 W W and

zero-elsewhere then-

(Z
Ry(O) =y =. Sx(&) dw -.

i

S= -.....--- n ---- - - - - -- •-
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Now since y 7is always -positive and since wand- w.can be

closely spaced at any point along the frequency axis w~, it follows

that S ,(w) must be-a non-negative function of w. Also it can be

seen that 9,(w) isan even function by observing that

Sx(W) = 'R,(r) exp (-jw7-) dr j Rx(r) zoo w7 dr

since R- (7) is a real, even function; and, therefore,

jx-) c Rx,(r) cos (-wT) dr = J~x Rx(7) coosrd

-OD -OD

Thus, Sx(w) is seen to correspond to the distribution of power with

frequency.

A similar theory can be developed for time averages

by defining the autocor relation function, over time as 6A (7

Ax(t) x(t+'r)-] for uniform random processes. The time power

dens ity spectrum is

Xf(W) = f r A(,) exp (-JwTr) dr

If x CL(t) is not stationary -in the wide sense then R (t,,r

E [x a(t) x (t+7)] can be averaged over time to eliminate the t



dependence and a power- spectrum is computed as

f J exp -i r) AE [xa(t) xa(t+,)] dr

-CO

This power density spectrum is also denoted J(w) since

AE-[X (t) x_(t+7r)] A [x (t) x(t+7')]

Now if x a(t) is wide sense stationary then

E [x a(t) xC(t+T)] = A [ X(t) x a(t+7)]

and

x()= sx '))

D. THE GAUSSIAN RANDOM PROCESS

The Gaussian random process is of particular importan -

in the analysis of physical syst..-rms because of its frequent

occuyrence. For example, many noise voltages encountered in

electronic systems are characterized by either Gaussian distribu-

tions ornonlinear transformations of Gaussian distributions. The

wide-spread occurrence of phenomena that-have Gaussian properties

is predicted by the central limit theorem which states tha.c distribu-

tion of-the sum of n indepcndent random variables becomes Gaussian
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as n tendsr. to -infinity. This would serve to explain the fact that

the noise voltage of an-ohmic resistor is Gaussian in that it is

made up of the combination of a large number of impulses due to

thermally iiiduced motion of individual electrons.

The first, and second order Gaussian density functions

and the corresponding characteristic functions will be recorded

here forlater use. -It-will be assumed that-the random process

has a zeroiiiean value, 10"_ is E r..(y1 ] =0

- exp(--) M

IW2 (xt -x ti-t - XV) x

2 Zx(I 2 Z' t2 {7 [C - I 1 2- R(A,t 2)] 7 j 2

ex 2 .2 R x (ti P tz)1

M (vi v2 ;ti. 2 Y exp{f- .[, 2 v1 + ZR (tlt,) vv + (F ZI1

-~- -- - - - - - -- -
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An important property of Gaussian-distributed quantities

is the fact that if the input to a linear system is Gauiasian, then the

output is Gaussian. In other words linear- transformations of

Gaussian noise give Gaussian noise. (See Reference 4 for details.)

It is true, however, that a linear transformation may well result in

Gaussian distributions that are non-stationary.



III. FORMULATION OF THE RANDOM MODULATED WAVE

PROBLEM

A. THE ENSEMBLE CORRELATION FUNCTION OF A

GENERAL RANDOM MODULATED WAVE

A general expression for the random time function whose

spectral properties will'be investigated is as follows:

v(t) = C(t) cos [Wt + 4(t) +- ]

Here, specifically, v(t) represents the instantaneous voltage out-

put of a- sinusoidal oscillator, of radian frequency w,, whose

amplitude is modulated by C(t) and Whose instantaneous radian

frequency is given by wc + ;(t) with -0 being a fixed arbitary

phase -angle. Now if C(t) and 4(t)- are random variables, then

v(t) is a random variable. The ensemble parameter, a, will not

be indicated explicitly; however, -it is to understood that v(t),

C(t), and 4(t) represent member functions of random processes.

The correlatioui function of,v(t) will now be formulated;

however, the question a6 to -vide sense stationarity of v(t) will be

lift open for the moment, and Rv will-be indicated as a function

of both ti and t., or equivalently t =t t and r=-t t



R v(tr)E 1v(t) v(t+Tr)]

=E {G(t) C(t+T) Cov r. Ct+.(t)+1os [W Ct+ CT~+4(W+r) + 0]}

Using the- trigonometric identity'for the product of two cosine

functions along-with the linearity property of the expected value

operator E gives

0(t) C(t+?r) cos [2Wt + w,, +d4b(t+T) + (t)21

+ (t) C(t+7) COS W [cT-+ 4O(t+r) -41(t)]}

The arbitrary phase angle 0- is assumed to be uniformly distributed

over the -interval 0 :c 0 :c 2w, that is

W 10 (0) 7

0 forall other 0

The required joint -probability density-function for the expected

value integral would havv '.he form W2 W2 W on the asump-

tion that the random variables C, 0, and 0 are independent. In

carrying out the-indicated expected vAlue operations to obtain-the

correlation function R v(t,7-), -the term-which involves the phase
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Angle 8 will vanish. This-can be seen by noting that the expression

0f (t) C(t+Tr) cos,{2w t + w + (t+7) +-4(t) + 20}

takes the forni

J ~ Jcos,[P(t. ')4 20] Wl0 (-O)dO W2CW 20
-O -OD -06 -OD 0

dC dC z dcf1 d 2

and

cos-(P +20) dO = 0
0

Thus the correlation function of v(t) reduces to

R (t, r) = E 0 (t) G(t4-'r) cos W r+ O(tWr) - 0(t)]}

In order to proceed further-the functions 0(t) and- 4 (t) must e

specified. The following cases will-be considered izn detail in the

chapters to -follow:

(1) Case I. -FM-by band-pass noise only. C(t) is a

constantt and 4{t) is obtained by integrating band-pass noise,

that is

- C

-- D- -f CO-- - - - - - - - - - - - - - - - - -
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where D -is the frequency sensitivity of the sinusoidal -oscillator
in rainsvl and v It) is a stationary Gaussian noise voltageradias/vo n
with zero mean.

(2)_ Case 1j. FM by band-pass noise combined with a
sine wave. This-is the same as Case I except that +(t) is niow

t 
-Cat) =D f0 [Vt) P EM sin (W t' +-d~ -A)t'

where E mandw mare the peak value and radian frequency of a
sine wave respectively, and a is a uniformly distributed random
phase angle. The band-pass noise spectrum -will-be centered-at

M

(3) Case 111. FM by band-pass noise with -simultaneous
AM by low-pass noise. The function +(t) is the same as in Case
but C(t) is now C(t) =C 0 + v a(t) where v a(t) is-a stationary
Gaussian -noise voltage with vzero mean and having a low-pass -power
density spectrum, Also v n(t) and va (t) are assumed to be-
indenendent.
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IV. FM BY BAND-PASS NOISE

The development of this chapter for the case of FM by

band-pass -noise represents the principal contribution of this

report. A method of approximation with which useful informa-

tion-concerning the shapeof the power density spectrum as a-

function of the essential modulation parameters will Le explored

in detail.

A. SPECIFICATION OF THE CORRELATION FUNCTION

IN TERMS OF THE MODULATING NOISE SPECTRUM

The correlation function for FM by band-pass noise.

was derived in Chapter III as

Rv(t,"') =-0E cosEwt+ (t+') - {t)J }
with

t

4(t) = D J0 Vn(t') dt'
-cD

If the power density spectri-: Sv (w), of the modulating noise is
n

specified, then-the correlation function can be evaluated as will

be -shown subsequently. Also the issue as to-the wide sense

stationarity of v(t), or equivalently the question of time- indepen-

dependence of Rv , will be settled.
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The correlation function, R,(t, 7'), can be written in the

following form where the equivalent time variables, t, = t and

41t+?W, have been used in place of- t and r', so that t+?) = (t2)

and (t)=4()

2
R (ts7r) -0Re {exp (jW r) E [exp (J+, j+-

the symbol -Re denotes "real part~of ". From the definition of the

second order--characteristic-function of +,, this is seen tobe

R(t1 ,t 2 ) = 0- Re exp (ij) M , (l, I- tie t2)]

Since +, is a linear transformation of a Gaussian -process, -it too

will be Gaussian, but not necessarily stationary; therefore

M -,(41; ti Itz) =ep [j7-2+tz

The terms +, and R4 (ti tz) = T', will now be computei

from the defining relatioi for -+,, that is-

t
+e(t) =D Jco vn(t ),dt
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The mean square value of * can be written as

= £j[D v v(x) d J v y

-00 -CO

D f j E [v(x) v n(Oy dy~x

for i 1 1, 2.

Thus
t. t.

D' J j Rvn(yx) dy dx

-CO -00

since vn is -stationary. Similarly

A = D2 f j Rv (y-x) dy dx
-¢'. -wD

Let y-x = u and y = v. This change- of variables maps the x, y:

plane into the u, v plane -as shown in Figure I.
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y

FIGUREt I MAPPING OF x, y TO u. v -PLANE

The integral for R (t~or) is-obtained for T - o. In terms of the

new variables U and v, the integral becomes

1 [~ ' udvlldu + 5rR~() dv du

000

+ fi1 R(U) t dv] du}

'1' -Cxo
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Similarly *~and become

D~ f ~(-[ .F~i dv] du + J'R(uns dv] du}

-1c -(00 -00

and

u+t

Rv(u- - + j R (u) [f dv] du .

+ 1  R n(u)[ f dv] du +f ()d

2U~ 
n 1~ (udv1~ 

du

DD o -- 00

f OD R (u)f I Idv]+fU~ du , v+ f t z dv du

0 n - O -00 -OD 0

where use has becen inade of the fact that Rv (u) is an even function.
n
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In a simnilar mnanner becomes

CD -u+t t

Dr= Rv (u)[f dvldu + IR Vn(U)r dv d
0-OD 0 -OD

+ R U dv] du

n -OD

Thus

72-o M ru 2 fdt 2 2

j R(U)[j v d + j2 dvjdu
0 -u+t t -00

zJTR v (U) f dcvl du - 2 ,R (u)[j' dvl du

=2 fJoRv (U)[Ifr dvl du - 2 JR v(U) IfS dv] du
_O -D 0 -00

- f0SR (u)[rf 2dv di +Z[ 1 R (U) [tZ dv du
o CD0 -OD

=2 fj7pRv(U)[r 2 dv -~ I dv du
0 -CD OCD

2 v .V(U)[f dvl du
0 U+t~

2 j (7e-u) Rv (u) dui

-- --- --
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At this point the correlation function R (u) is expressed in terms.
n

of the corresponding power density spectruhi S v (W) to get
n n

*1 ~-Z~~ (7-u) cos wu du dw

-O 0

where the Fourier-cosine transform expression for S (w) is used,
V nthat is

Rv7 f SJ S(W) Cos wii dw

The integral over u is easily evaluated to get-finally

+ - (-coswrdw
?r v

-CO

Thus the correlation function for v(t) becomes

Rv( r)=-4-.-cOS"exp - f Sv0 00 L (1-coswr) 1 ]

Note that Rv has-been shown to be independent- of -time.
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*B. THE POWER DENSITY SPECTRUM OF WHITE NOISE

PROCESSED BY A SINGLE STAGE LRC FILTER

The modulating voltage vn(t) is obtained-by filtering

"white" Gaussian noiseby a single stage LRC filter such as that

shown in Figure 2below.

L R-= Vn

FIGURE 2 SINGLE STAGE LRC FILTER

The transfer function of this filter is

95gn sH~~s) = "-t- s R__+ T.7

where gm is -the transconduc¢tance of the tube. Let

S2and
and



91 -43-.

The amplitude frequency response squared becomes

H022 z
ljw) [ 12 = H0  with HO2  =

1W02 _ 22+ W2 C

If the power-density spectrum of v. -(t). is white, that is, Sn(w) N

for all w, -then the-power density spectrum of the output vn(t) is

-N 2

n (W02_ 22 + 122

The mean square value of vn(t) is given by

30H 0 N _ ___OD____

= S (w)dw=.- -. Oz z Z dw
-00 f - -(w 0 -w)+o

Evaluation of the integral 3 yields - Thus

vn(t= H0
2 N

3See Appendix A.
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In applying the modulating- voltage, vn(t), we will assume that N

is adjusted in order to maintain- vn (t) constant whenever w is

changed. Thus S (w) becomes
Vn

S (w n
S2--2 22nn

n (WO W +W 1A

Plots of this-function for values of Q t of 10 and 20- are -given
0

in Figure 3.

C. THE CORRELATION FUNCTION OF FM BY BAND-

PASS NOISE

The equation, derived-in Section IV-A, which gives

R v(r) in terms of Sv (w) can-now-be evaluated by use of the expres-
n

-sion for S (w) of Section-IV-B. Thus-
n

2 -
C0  D ____ n 1-Cos wr)

Rv(r cos W c exp n - (z - z +2 z dwl

-00 (Wo) - W ) + WA) (A

Upon eva-luation of h,- integral4 over w the iollowing expression for

R('.r) is obtained:

C2  2D ~ w ~~

-2-+ 1 100

Zw 0 " -F

4See Apperdix B.
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z -

Let mZ Dvn The quantity m is the-modulation index in= -4

that it-is the ratio of the rins frequency deviation to the center

frequency-of the modulation. With the use-of the definition of
W 0

Q = - the correlation function R (7) becornizzo
v

Rv ( ) = cos w rcex~ fmf-exp(- [cos

+ sin-b woF r

where

Before attempting to evaluate this expression it will be helpful to

consider-limiting cases-of the-spectrum Sv(w) :s m becomes very

small or very large.

D. LIMITING CASES FOR FM BY' BAND-PASS NOISE

i. Small Modulation Index

Starting with the expression for the correlation

function of v(t) in terms of S- (w), the power density spectrum
v n

of the modulating noise, we can obtain an expansion of the

spectrum, S () that is appropriate for small values of
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C0  Dbco; .
R() =-7 os Wcr exp [-I S (W) .-

c; j n to

-cxO

2S"0

Let then D m ± and
v n

R 0 C W Lr exp -M S (d) o 27 "

C LzW 2w2'J

0 _n

-- CO co "c e xp z co X

2 z co S v (W) cos t7

exp Hnt TWdw]
-wo

The second -exponential is now expanded in its power series to give

2O z1 2 m2 zco Sv n(W) Cos Wr 4 4R C0 ° Wor exP (- I t + . t+ X

S (S -

O0 OD

J0 S v(W) Cos U'7

-00 n C - d

Notice that in order for this expansion to be valid, the-integral

I -2"-"W dw must converge. This condition is clearly met

-OD
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Lby the S v(w) under consideration. S Mw is now obtained by taking
VnV

thc F~ourier transform of R,('r)

-f exp (--

miv I V C~

+ }~L n
4 6

For small mi the0 higher ordered terms-(in4 , in , etc.) can be

neglected; thus the resulting power density' spectrum-of v(t) is-

seen to contai n a carrier spike at w and sidebands- about thec

carrier which are -simply -elated -to the modulating noise power

spectrum S . The case for small m but with S v-(w)- such that
n iithe integral I does not converge_ can alsoobe treated. See

Reference 5.

2. large Modulation Index

In the final e-xpression for R v(,r) in Section-IV-C

let a=~ and w r -. t. Theai

R~~~(~'[ -~.cs.-- xep-alt I) cos bt + asin b t IvW0 0
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{ It is clear that for large values of m the correlation function

bcomes very small as 1 t[_ increases. Therefore a good ap-

proximation of the correlation function will be obtained if the

terme in the bracket are expanded in their power series and only

the lower order terms are retained. Let the bracketed terrn

equal f(t), that is,

i . exp(-aj tI) (cos bt + a sin bJ t[)

Expanding the-exponential and the cosine and sine-in their power

series gives-

f(t) =i--(I -alt I + a 2t - - zt )1 4+ - -+ abtj 4 b- 3I 1-

(a- b,- bZ_ tZ +

= (a b) t .

Buta -- and =i --- r, thus
4Q 4Q

f(t) = 1 t

when terms .4-higher order than t2 are neglected.
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The correlation function R (r) now becomes

c 2z  DZ 7

V no(s) = co exp - or)

0
orif1 2 = 2 - -

or, if- (Aw) =-D , where Aw is the mean square deviation of

the-carrier w c ,

I@r -

C 0  xi(Aw) 2  1R v('" )  LOS- - (#s c "  exp [_ z "

The power density spectrum is now obtained by use of the Fourier

cosine transform

C D r(AW) 2 2-
S (W) = T Dexp - z--~-- I coo uwj cos Wr d7

Using the trigonometric identity for the product of cosines gives

GoLc c[()Z

0 OD r 22

sV( - exp - A cos(W +-Wc)or dr

-COD

S~+ S ) + ()
V V



If AW << Wc# then'there is negligible contribution to the spectrum

S vjw) by Sv for w > 0, and similarly Sv(w) is very nearly equal

to Sv((w) for w < 0. It suffices, then, to consider only S V(W).

From Pierce's Table of Integral, No. 508 (6)

--4- (W) exp

The validity of this result is easily checked by noting that

++ +S(W) = S+(W) + S (W) =S (W) -+ S (-w) and

-00
C 20 1 S-2 () C

- r exp "d 7--
/7A - 002(6w

Thus the power in the carrier, -0c, is effectively redistributed -into

a continuous spectrum by the process of frequency modulation.

Notice that the spectrum of the modulated wave v(t) has beco:- e

Gaussian-as the modulation index m - co and thus, has the same

form as the probability density function of the modulating voltage v n(t).

Middleton (5) has shown that, under quite general conditions, the power

density spectrum of a frequency modulated wave tends to assume the

shape of the fir 6t order probability density function of the modulating

voltage when the modulation index goes to infinity 5

5See also Refcrences 7, 8, and 9.
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Now that the cases of both small and large modulation

indices have been examined, it is clear-that the power density

spectrum of FM by band-pass noise undergoes a rather striking

transition as the modulation index is increased as is shown-in

Figure 4. The question to be considered in the remainder of-this

chapter is the spectral' shape that is obtained for intermediate-

values-of the modulation index, m, as a function -of the bandwidth

of the modulating noise, or eriuivalently, the filter Q. Ultimately

it is- desired to obtain a measure of the deviation from the limiting

Gaussian spectrum that will result for-various-values of m and Q.

E. DIGITAL COMPUTATION OF FM BY BAND-PASS

NOISE POQWR DENSITY SPECTRA

In ordez to provide a basis for comparison with power

density spectra that are-obtained by use-of an approximation

technique, the Fourier transform of Rv(7") was performed by

digital computation for -selected values of m and 0. Returning

to a-form- given previously on page 48.

Ca c t )C ] ~Rv(.L ) - .- 0- exp m f(t)jCos (-, C t f(tffexp -O0

wt
+ Clp(-

lob



(oc~ IW lc 0N+%w

aLOW MODUL.ATION INDEX

sv (w)
4 Ao

b. HIGH MODULATION INDEX

FIGURE 4 LIMITING CASES OF FM BY BAND-PASS
NOISE SPECTRA
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where

0 f(t) 1 exp (-a t ) ( Co s bt + a sin b I t I ) ,

we have that

0 co u t ) dt
Sv(W) = Rv(,r) exp (-jur) dr = r R( o) exp -JC0 t

-00 -000

exp [-mzf(t)] exp [-j ( d)t

Again if the assumption that c >> &w is made it will suffice to

consider only one of these integrals. The second integral, which

will give the behavior of the spectrum around w = wc and - c

becomes

S( CO 0 co exp -mzf(t)1 exp (-j3t) dt

Note that this integra1l does nt .oxist in t oe st.i.;t -en-- zca7ae

lmcxp[-m 2f(t) =x ex( - ) ;
t-0O



-55-

however exp (-m) can be subtracted and added to give an

expression of the form

+ C 2 OD C 0 0
S exp[-m ft) - m2]exp (-jpt) at +.~ exp(-m

()-U- f I-x T,-m,
-00 -00

exp (-jpt) dt

C 0  Q 2 C 0 7T? z
=0 °°exp [m (t) - m] cos Pt dt +-= 0 exp(-m ) 6(0)

0

The delta function term represents residual power at the carrier

frequency. Compntation of the first integral was performed-for

in = 4, with 1 -O, 20. The results of the computation are plotted

in Figure 5.

F. A TECHNIQUE FOR COMPUTING FM BY BAND-PASS

NOISE POWER DENSITY SPECTRA

It was shown in Section IV-D-Z that the power density

spectrum of FM by band-pyss Gar.stian noise assumes a Gaussian-

like shape as the modulation index becomes very large. In this

section an approximation technique is introduced which will make

possible a determination of the actual value of the modulation index

that is required to produce a power spectrum that will deviate from

the limiting Gaussian spectrum by a specified amount. As one would

expect, the requi red modulation index will be dependent on the bandwidth

of the modulating noise (or equivalently the Q of the modulating noise

filter).
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The starting point in this analysis is again-the correlation

fuz~ction of v(t) which is reproduced below for convenience:

R_ .)= -exp [.m f(t)] Cos
_0 W0

where

f(t) 1 exp (-.a tI(cos b-tj + a sin b It I

with

ab= ---. and t- w-71
4Q

It can be readily seen that the envelope of R ( t), that is,
C 0

0 x [.mzt] whichis-an even function, has successive

maxima at the points I t~ = .M and minima at i ti (Zri+IfTr
b -b

with n =0, 1, Z, - - . Attcntion will be concentrated on the behavior

of exp L..m'f(t)JI in the vicinity of the maximum points. The im-

portance of these points in determining the shape of the resulting

power spectrum becomes obvious when one observes that-the

envelope function decreases tapidly on either side of the rnnximum

points even for relatively modest values of m, for example on the

order of four.



To determine the behavior of the envelope near the critical points

for t>O let x=t -; then

exp[-m f(t}] - ex ( - - exp (-Tr, exp (-ax,

[cos (bl xl + ZnT) + a sin (blxl + Znir)a.

exp inZr. -exp,--.raexp -al xl1)cos bl x I +a din blxlI
- _b

The terms exp (-alxl), cos bIxI, and sin bixI are expanded-in

their power series as in Section IV-D-2 to obtain

exp[M -f(t) exp {mZ [i - exp -(- era ) ] +

when higher order terms in the resulting power series in x arc

neglected. Using this approximate expression for the envelope

function gives

C0  w t co

0 0 n=O
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where

-m
2  2 2nn wn m 2 2irna ZlTn 2

and

E =1I for n=.O and =2ZforzijO.n n

1
For cases of interest b = I- is very nearly equal

40Q
to-unity since values of Q on the order of ten or more will be con-

sidered. The power density spectrum ig found to be6

SVP 7-. Z£E exp(- exp, {-mZ[- exp(.)}
n= 0

exp-P{-J exp (W)] cos Ziwnp

where P W C as before. Relatively few terms of this power
0o

seric-, need be computed to determine the shape of the power

spectrum. For example, the curves shown in Figure 6 were

obtained using only the first three terms. The accuracy vf the

approximation is readily apparent when compared with the digitally

computed curves in Figure 5.

6 SeAppendinz C.
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As a smooth spectrum condition is- approached by

increasing m with Q fixed, the major contribution to the devia-

tion of the spectrum from the limiting Gaussian spectrum is

caused by the first maximum in the envelope of the correlationZir

function on each side of r = 0, that is, for r = ±- . This
s 0j corresponds to the n 1 term -in the power series expression

for S'(P). Also the maximum deviation for the Gaussian limitingv

it spectrum occurs at 1 = 0. Thus)A

AS v()max= Zexp(k)exp{rn2 [i -exp(-.)]}

where AS+ is the maximum deviation -from -the Gaussian
v max

spectrum.

if AS +(P) is fixed this expression provides a means

of determining the required m for a given Q. Two experimentally

determined power spectra are shown in Figure 7 illustrating the

appearance of the spectrum before and after smoothing takes place.

The data presented in .'igure 8 were determined by observing the

minimum rn required to produce an arbitrarily smooth spectrum

for various values of Q. The solid line was computed by use of

the relation between m and Q for AST(P) i per cent.
v max
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(a) Power Spectrum Before Smoothing

m =4.0 -f0=I2.15mc 'f,:O.6mc

Horizontal Scale 2Omc/division

(b) Power Spectrum After Smoothing

m=6.5 fa=12.Omc f1:O.6mc

Horizontal Scale 2Omc/division

FIGURE 7 FM B Y BAND-PASS NOISE POWER DENSITY
SPECTRA (EXPERIMENTAL)
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0 4 8 12 16 20 24 2R 32
MODULATING NOISE FILTER -0

FIGURE 8 MODULATION INDEX VERSUS MODULATING NOISEQ FOR A SMOOTH SPECTRUM CONDITION
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V. FM BY BAND-PASS NOISE AND A SINUSOID

In this chapter the approximation technique used to obtain

the power density spectrum of FM by band-pass noise will be

employed to study the case of FM by a waveform which consists

of the linear- sum of band-pass Gaussian noise and a sinusoid.

We start with the general expression for the FM correlation

function, that is

S 4z  cos (t + (t2 ) - *(t)]

where the modulation function- (t) is now

4(t) D j Vn(t) - Em sin (w0 t' + a)] dt'

00
t DE m

=D jvn(t') dt' + -mO Co. (O t + a})

-O)

Thus, the modulation function is seen to consist of a term duc to

-the noise identical to that employed in the FM by band-pass noise

only case, and a term du to the sinusoid. Let

t (t') at'
*~n

-a0

and

r(t) = ms cos (tot + a.)

DE
where ms W m is the modulation index corresponding to the(0
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sinusoid and a is a random phase angle that is uniformly distributed

over 0 to air. Note that m is defined in the usual way for FM

by a sinusoid, that is, the ratio of peak deviation and modulating

frequency. The- correlation function can now be written

Rv(T) Rexp(jwr) E,[exp(Jr 2 -jr l ) exp(jj 2 "jj

0= - R--R {exp(jw €')'E [exp(jr-jr)] E [exp (Ji-2 J~ )]}

with the last step being Justified-by the fact that the expected value

-of the product of two independent random variables is equal to the

product of the expected values. Note that the shortened notation

r(t.) = r. , etc. has been employed.

This expression for the correlation function is the same-as

that obtained for FM by band-pass noise only, except for the addi-

tional expected value term due to the sinusoid. This expected

value will now be evaluated.

E [exp (Jr 2 -jrl)] = E~exp (Jr.) exp (-irl]

= E (expisin cos (w0 t2 + ca)] exp[-Jms cos (W0 t i + a)]}.
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TI-e exponentials-can-be expanded by use of the following identity:

exp (jm s cos 0) = C k Jk(ms) cos kO
k=O

where Jk is the k Bessel function of be-first kind. The product

is written as a double sum to obtain

EFexp (jr- jr,)] =

7k= 2: k0 Jk(mS_) J1 (m,)-cos [k wta+ aL)] Ic o ti . d}..

If the product of the cosine terms is expanded-to obtain terms con-

sisting of the cosine of the sum of the arguments and the difference

of the arguments, it can be seen that the operation-of carrying out

the expected value integration with respect to the random phase a

will eliminate the cosine sum term, with the result that

E[exp (jr 2 - jr)] reduces to

k=0 1=0 1

Further it is seen that this expression yields a non-zero vawue only

when k = I.
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Thus

E[exp (jr2 - jr) = 02O Ek(_)k Jk(ms) cos kWOT

oo X £k Jk (ms) cos kwooT
k= 0

k=O

Z k i(ms) exp (jkwo )

Using the results obtained for FM by band-pass noise only, we find

that the adding of a sinusoidal modulation causes the resulting power

density spectrum to become

+ GO co o 2 (-)2
S c() = Z  c K nJk (nm-) exp-F Zc ]- I cos [tn( -k)]

v k=-oDn=O

where the notation of Appendix C has bccn used.

A relation between the modulation index, r, which corre-

sponds to the noise modulation, and m s, which corresponds to the

sinusoidal modulation, can be obtained in terms of the ratio of the

sinusoid to noise average power. Let

D2 Zm

Esin (W ot + CL) E m W C

E T. __7 22-7 2
inwm c) ~ m ° ms-

vn t z v ZDz

W 0
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or
M -

;' P

The power density spectrum can now be expressed in terms of the

parameters, m , p, and Q.

V( O m c nJk(ms)exp({exp "exp(
V 0 s k=-00 n=0 I

exp[p-k 2 exp (in Cos [Zrn (~)

where, as in Chapter IV, the assumption has been made that

b=
4Q

This expression, although rather formidable at first glance,

does yield an insight into the spectral shape that is obtained from

FM by band-pass noise and a sinusoid. The spectrum is seen to be

made up of the sum of a set of FM by band-pass noise spectra which

are centered at integer values along the p axis with each having a

peak value corresponding to Jk 2(m.). The degree to which each

component approaches a smooth Gaussian curve will depend on the
m

modulation index, m, or equivalently s Suppose p is lixed;
'V-p

then the value of m s required to produce smooth Gaussian shaped

components of the resulting spectrum can be determined from the

results of Chapter IV. In the limit, as m s becomes large, the

spectrum assumes a shape given by the probability density function

of the sum of the sinusoid and the band-pass noise.
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VI. SIMULTANEOUS FM BY BAND-PASS NOISE AND AM BY

LOW-PASS NOISE

The waveform to be considered in this chapter consists of

v(t) = C(t) cos- W t + (t) ,

where

C(t) = CO + Va(t)

and

t(t) = D Jt vn(t') dt'

-CO

The voltage vn(t) is band-pass noise- as bfore, while v a(t) consists

of noise which is obtained by passing white noise through a low-pass

RC filter.

The power density spectrum of the low-pass noise, va(t), is

2Wo v
a a

a

where a . As in the band-pass noise case the spectrum has

been adjusted so that a constant rms voltage, va (t) , is obtained

independent of wa. Note that wa is the conventional 3 db bandwidth

of the noise processing RC filter. Th- correlation function of Va(t)
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is easily obtained-by taking the inverse Fourier transform of S, a

to get

R v (.0)= va exp, (-w al j)
a

In Chapter III the correlation function of simultaneous FM by

band-pass noise and AM by low-pass noise was found to be

V 4 {C~t~ 'L7.) cos +

Substituting for the amplitude modulating function yields

R~r E E{ +C v ()+C v (t )+v (tz) t)

Cos [Wc1r + c(t 2 - c~

Using- the fact that v a(t) has a zero mean value, and the assumption

that va (t) and v n(t) are independent gives

Rv(7) =4{c + ~v~t) v~ti]} tcos [WC7 + F(tz) - F(t1 )]}

The second expected value is again identical with that obtaiincd in

Chapter IV, while the term EIV ( t 2 ) v (t1 )1 is simply R v (T) .
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Using the notation of Section IV-E, we get

C 2 t
R (_ )= 0 + L exp ( a II)IexP [-m2f(t)] Cos C

~v a

where a= is a measure of the percentage amplitude modulation.

Co0

The power density spectrum of simultaneous FM by band-pass

noise and AM by low-pass noise is thus seen to consist of two terms:

one which is identical with that of FM by band-pass noise only; and

one which results from a correlation function that is modified by the
Wal

factor 4 exp (- l )

The effect of simultaneous amplitude modulation can be

readily estimated by considering the influence of the factor

exp a' t' ) on the previous derivation of the spectrum of FM

by band-pass noise only. Recall that the correlation function of

FM by band-pass noise was approximated by a "eet of displaced

Gaussian functions whose amplitudes were adjusted to equal the

maxima of the envelope oi the exact correlation function at the
Zirn WalIt I

points t = -- . The major effect of the factor exp (- -00)

is to reduce the peak amplitudes of the approximating functions.

Thus the corresponding effect on the spectrum becomes one of

reducing the magnitude of the degree to which the .ower density

spectrum deviates from the limiting Gaussian shape. With these

considerations, the results of Appcndix C for FM by band-pass
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noise can be readily extended to the case of simultaneous FM by

band-pass noi.se- and AM by low-pass noise to obtain

S (P) EOn'~= C + L exp - aZr)] ex r)X

rar ZTnanp Zwnj32x x (-n .- ~-]e P- exp(
exp ~ ~ ~ Z -'Iepex _ _1Cs
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-VII. EXPERIMENTAL INVESTIGATION OF POWER DENSITY

SPECTRA

The system used to generate the various random modulated

waveforms discussed in this report is shown in Figure 9, Spectrum

analysis was accomplished using a modified AN/APR-9 receiver,

which is essentially a double IF frequency superheterodyne receiver

with RF preselection employed for image rejection. The local

oscillator klystron frequency is linearly swept between adjustable

frequency limits by a mechanical drive-unit., A display of the power

density spectrum of the receiver input waveform, such as that

shown in Figure 7, was obtained by use of an auxilliary oscilloscope

with a long persistence cathode ray tube. A voltage proportional to

the receiver local oscillator frequency was applied to the oscillo-

scope x-axis input; while the output of the receiver's narrow band

second IF, after suitable detection and integration, was applied to

the y-axis input of the oscilloscope. This method of rapid power

spectrum measurement. makes feasible an investigation of the effect

of the various modulation parameters that would be difficult, if not

impossible, if the conventional point-to-point power density spectrum

measurement technique were used.

An accurate determination of the frequency sensitivity of the

FM source (BWO) in radians/volt (denoted by D in L)s report) was

obtained by applying a sinusoidal modulating voltage of sufficient

amplitude to cause t he center frequency spectral line to he- zrevo.
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Since the center frequency spectral line is given by J 0
2 mS the

first null of this spectral line-will occur at a value of ms corre-

ksponding to the first zero of J (ms). The peak magnitude, Em , of

the modulating sinusoid that is required to produce the first null of

the center -frequency spectral line is measured, and D is then com-
W 0 m 8 W 0

puted from the relation D = = , where f0 = W is the frequency

of the-modulation. A similar technique using other spectral lines

having magnitudes of Jk(ms) can be used-to determine the value

of D corresponding to various modulation voltage magnitudes and

thereby determine the modulation linearity of the FM source. -Once

D has been determined, the mean square noise voltage v (t), re-

quired to produce a desired noise modulation index, m, is computed

from the relation

2
W m0v n t -M,=-D

and vn(t) is adjusted to obtain the required v n With the aid of a

true rms meter.
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APPENDIX A

If a band-pass circuit, whose transfer function is

H s
H(s) 0

is used to filter white noise, that is, noise having a constptit power

density spectrum, -then-the resulting output voltage, v It), has a

power density spectrum given by

HO2 2 w

is n W) 2_2 )z+ 2 2

where N is the constant power density level of the input noise. The

mean square output voltage is

HO H0 N OD w 2 dw
vn = z7

This integral can be readily evaluated by contour integration.

By analytic continuation th'e In-tegral becomes

I- - dz
C(WO +z z ) +CA) 4 7,Z

where C is a closed contour along the real line -oo < w < coand

encircling the tipper half planie. The integrand hap. twr., poles that

lie within the contour, one at z z , - I + W and
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another at z zi . The integral can be written

z2 dz =Zj Sum-of Residues at zI and -zi C (z-Zt)(z'zt )(z+Zt)(Z+zt

=Z,. j ,t + ,Z* ]
(-z

= .T. zt'zi  )(zi~zi)(zt +z 1 ) (-z 1 z*-z l z ,*zt )l'7;i* zi)I

Y - j (z t+ zi* _W I. J ,_

a - *'" z z Zj ln (z ) 
=

2. -

Note: The symbol Im denotes "imaginary part of."

The integral over the upper half z-plane circle can be easily

shown to be zero in view of the fact that the degree of the denomina-

tor of the integrand is greater, by two, than the degree of the

numerator. Thus the result

Jw 2 dw

isob0a ined

is obtained.
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APPENDIX B

In order -to obtain the correlation function of FM by band-pass

noise an integral of the form

(1 (-cos wr)dw-

must be evaluated. The integral I(w) can be written as the sum of

two integrals, I&(w and -I,(w), with

dw
-w (w - 2 )2+

and

- cos wT dw
-O(WO - W)+ W

These integrals are evaluated by means of contour integration.

By analytic continuation, the first integral, Ii(w), becomes

dz
(W)Z2 2 Z 22Z

C (W 0 -z ) +w W1Z

where the contour is taken along the real line -oD < w < o and the

upper half plane with the integral around the upper half plane being

zero as was the case in Appendixc A. Note that the polesi of the

integrand are also the same as those of the integral in Appendix A.
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(w) =2rj Sum of Residues at z i and -z1

,zi zi  W/ ) = J * :

2- z 1_ __ 11' ( W~ j

(z 1 -z 1 ) 1I Z 1 o-

The integral I,(W) is evaluated as follows, where the symbols

Re and Im denote "real part of" and "imaginary part of"

respectively:

cosT d Re p (jzrI dz
I Z(W) co w7 3 Re

(' -W+W C (c -z )+ -z

exp (j II) exp (-j z

z I zi z*

Z Z

= Rr [ z exp(JzIT) +  71 eXp(..Z*i7!)
I'lIz i - z *

= Re Z?.R z -
. - exp [I(Im(zI I ] [Re(z coRe(zjT

4 Im(z) sin R(zi II)]}

7,7
= ,,,/xp. "..Fc3 - , ll~

1l0 Z ..
=-h - I'I)* % o0
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APPENDIX C

In Chapter IV the correlation function of FM by band-pass

noise is approximated -using the following expression:

R(t = 0 t0o 0 =nexp-)J g(t)
v (TO wO0 n=OcoE p,112-ep _.

where

t 2 BTn.' F" Zrna Zrn 2g~t - -x exp- (t- --- + exp L--r

Let

2 2 Zirnaa n m exp( - - -)

and

t Zirn

n b

then 2

g(t) = exp n (t +

Also let

Kn = exp {-M2 [i- exp (- Zrna)]}

Now R can be writtenv
C0 W t 00

R- = - cos "--" C € K g(t)-WO -o0n=o n
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The power density spectrum, Sv (w), can now be obtained by taking

the Fourier transform of R (-). Thus

o 00 Ro,(t) e .xp t dt

Wt t
Upon writing the cos -- term contained in Rv(-) in exponential

form, Sv(w) becomes

S C 0 c Kn fgt-cP 0t0d+is (t) ex (W 'c t]dl.

-00 -OD

As before (Section IV-E) we assume that ' c> 0, which leads to

the conclusion that the power density spectrum appears centered

about the frequencies wo and -w . Since S (t.l) is an even function,
c cv

attention need only be focused on the spectral behavior around

wo = w cwhich is obtained by using only the first integral in the

expression for S (w). Thus S+ (P), which is S (w) expanded about
v V v

W = w with P== -,

+ OD co
"+0 n--r0 E

n K n  g(t) exp (-jpt) dt
0 n0 K

An asymptotic power series approximation for the power density

spectrum of FM by band-pass noise is thus obtained upon evaluation

of the integral

j g(t) exp (-jPt) dt
-00
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Substituting for g(t) leads to the two integrals~2
CL CO) dt

exp [ (t+tn jpt] dt4 j exp -n (t - -t dt

-00 -OD

If the first integral is evaluated, the second integral can be readily

obtained by simply changing the sign of t The first integral is
n

seen to be

a
3E texp - (t 2 + 2 (t n  t t + tn dt

-CO n

which upon completion of the square becomes

exp 2-z + Jtn exp[- (t + t n+ 4) d

n -cO n

Let

u = t + t n -* -

n

then this integral becomes

2

If OD exp " T u du . an
-CO n

This latst integral uses the well-known result of the integral of the

2
Gaussian first order probability density function, where o

is the variance. n



T hu s the integral

g(t) exp (-jot) dt

ea T exp ( tnP) + exP(.tn P)j
2n

2a
an thepowr eieaPoiaonorS()j

nn

S e (irna co2st rn

00 Tr O xrn

exp 2 exp,( !.n)j Co. Zl 4 3

Notice that the zeroth order term of this expression is

C 0 2 /i-tz

which is the same as that obtained in Section IV-D-Z for the limiting

case as the modulation index m becomes very large. Thus the

higher ordered termis in the expression for S+(f3) represent devia-

tions of the spectrum from the Gaussian lim~it for 1-ifermediate

values of m.
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