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ABSTRACT

The spectral characteristics of random modulated waves are
investigated with particular emphasis on the determination of power
density spectra of sinusoids that are frequéncy modulated by band=
pass Gaussian noise. i’crlinent parts of the theory of random
processes necessary for spectral analysis are reviewed, and 2
general formulationof the problem of determining spectral charac-
teristics of random modulated waves is given. The principal results
of this investigation are given in Chapter IV where the variation of
¥M by band-pass noise power density spectra as-a function of the
modulation parameters is treated in detail. Limiting cases of large

and small modulation indices are discussed, and a technique is

-developed for obtaining useful approximations of FM by band-pass

noise spectra. These results are verified by digital compu’ 1ons
and experimental measurements. Finally, -spectra resulting from
FM by the combination of band-pass noise and a sinusoid, and simul-

taneous AM by low-pass noise and FM by band-pass noise are

investigated.
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: I. INTRODUCTION

Frequency modulation techniques have found widespread
b application in electronic communication and, more recently, radar
and radar countermeasures systems. It is not surprising, there-
fore, that considerable eifort has been devoted to the study of
frequency modulation fundamentals. The development of analytical
techniques for détermining frequency spectra of frequency modulated
waves has been of particular interest, where the modulating wave-

form.may be either periodic or random.

In the case of frequency modulation by random waveforms
emphasis has been placed on determining spectra resulting from
use of modulating waves that are obtained by filtering white: Gaus-
sian noise with a variety of low-pass filters. It is the principal
purpose of this investigation to consider moduiations which consist
of Gaussian noise having a band-pass characteristic; in-particular
the case of FM by white Gaussian noise that has been filters ~ by a
single stage L-R-C filter will be treated. In addition, a theory for
-computing spectra resulting from FM by a waveform consisting of
a sinusoid and band-pass Gaussian noise combined, and, also, FM
by band-pass noise with simultaneous AM by low-pass noise will

be given.
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It is well known, and almost intuitively obvious, that there
exists a limiting condition wherein the spectral shape of an FM
waveform will closely resemble the probability density function
of the modulating voltage. This limiting condition is associated
with an increasing modulation index (ratio of deviation from center
frequency to deviation rate). Also it is krown that frequency spectra
of amplitude modulated (AM) and FM waves are almost identscal
for very low-modulaiion indices. Thérefore, in the case of FM
by band-pass noise, an interesting transition in the spectrum occurs
as the modulation index is increased, with the spe¢trum going-from
a center frequency spike with two sidebands to a-Gaussiin curve.

It will be possible to determine the modulation index required to
produce an FM wave whose spectrum exhibits an essentiaily Gaus=

sian shapé when a modulating noise filter of a given Q is employed.

Formal analytical methodé of computing FM spectra, in all
but the cases of relatively simple modulating waveforms, invari-
ably lead to complicated mathematical expressions which are
exceadingly difficult to-evaluate explicitly, and give little insight
into the interrelationship of the various modulation parameters,
Thus one is forced to seek approximate expressions which are
capable of giving reasonably accurate vesults for the parametes
range of interest. This state of affairs is not unexpecizd when

dealing with frequency modulation, but is clearly a result of the

fact that frequency modulation is a nonlinear process. In
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nonlinear analysis approximate solutions are generally the only
useful solutions that can be obtained. Of course, in order to have
confidence that approximate solutions will provide useful results,
it is necessary to determine the conditions (or, equivalently, ‘the
range of parameters) under which the approximations are valid;
and also, insofar as possible, approximations should be verified
by comparison with experimental results obtained from the actual
or simulated nonlinear system and by evaluation of .exact calcula-
tions where the parameters have been fixed to make computation
possible. In this investigation of FM spectra, approximations will
be supported by both experimentally deterrmined and digitally

computed spzctral data:
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II1. A SUMMARY OF THE THEORY -OF RANDOM PROCESSES

The determination of epectral characteristics of random

modulated waves is essentially an applied problem in the theory

of random processes. Accordingly, a summary of applicable

porticns.of the theory will be given in order to provide a basis for

a detailed formulation of the power spectrum problem.

Extensive literature exists on the general subject of random
{or stochastic) processes with books by Dock (1)1, -and Davenport
and Root (2) being notable examples. The former is a rigorous,
mathematical text, while the latter contains an applied, engineering
treatment-of the subject. Throughout-the literature there is con-
siderable variation in the terminology and notation that are employed
to denote quantities and relationships that are essential for power
spectrum computations. The notation introduced in this chapter
will be employed throughout the remainder of this.report, and

defined quantities will.be-underlined for emphasis:

A. THE RANDOM PROCESS

A random process can be simply defined as a collection

(or ensemble) of random time functions. A_member function of the

ensemble can be written as xn(t) where t is a continuous parameter,

1. . .
Numbers in parcntheses refer to references given on page 84.
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denoting time, which ranges from -o to +o0, and a isa typical
peint in a probability measure space Q. A classic example of a
random time function-that is of central importance in electronics

is the noisé voltage produced by a resistor due to thermal agitation

B e e R N A

of electrons. A collection of the noise voltages produced by all

possiblé physical realizations of a resistor of R ohms, for-example,

; would comprise a random process. Since it is not feasible to
specify each time functis.. of a random process exactly, various
averages must be defined in order to describe the properties that
can be expected to apply to an arbitrary member function of the
ensemblé. This will lead the way toward computing some important
properties of the output of a system which has a random input. Th-
"system" that will be considered in this report i an oscillator

. which has-ihe capability of being modulated in both amplitude and
phase, and we shall be interested in studying spectral propertics
of the output voltage for inputs which consiet of various random

modulations.

1. Probability Distribution and-Density Functions

The random time functions xa(t) evaluated at a

specific time, ti , comprise a random variable which is defined
over tae space . (Note: Usage dictates.the use of the word
variable instead of function as would be more appropriate.} The

- nth order cumulative probability distribution-function of the set

U L Or S O cpup e g Y ST IS C ol 113 s e e
e —
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of random variables xu(ti)’ xa(tz), ey, xa(tn) is ¢2noted Pnf .and

defircd as
pnx(xi’ xZ' Yy xn; ti' tZ' vy tn)

= Prob [{alxg(,ti),; xppte s X (8) % xn}}
where the second expression should be read as the probability that
~xa(t) evaluated at time t:i will be less than or equal to the valve
X, and simultaneously xn(tz)— is less than-or equal to X5 .and" so
on to xa(tn) < X An equivalent interpretation is that the set of
points a which.correspond to those member functions of the
ensemble that meet the condition )[xn(ti) € X, xn(tn) < X ]
has a measure given by P The function Pt has the usual
properties associated with probability; for example, 0 < an <1
and P« is monotonic nondecreasing:; In spectral analysis-the

second order probability distribution-function, PZx’ will-be of

central interest,
The probability density function, an, is defined
as the mixed partial derivative of an when this derivative exists.

Thus

wnx(xi’ X “n’ ti’ t2' tn)"ﬁxi- . Exn pnx(xi' Xa Xni "1' t2’ tn)'




T B G B

IR

i

PPN S

i e A o o o e, T kT e SIS T ey - - ceo-

“45a

The joint cumulative probability distribution function of order (nx,

1uy) for the random processes xa(t) and Yo.(t) is given by

pnx.my(x'l“'“xn:’ Yirt T e Yh b T ety Tt )

= ,Prob[ {al xd(ti)s VEE °"u(tn)s‘xn; yu(‘ri)s Yy 'yq(fm)sym}]"

Two random processes ars called independent to order (nx, my) if

an'my(xi, i .yn; yi' ceey, ym; ti' .o .’tn; 71' BN 1 )
= an(xl, .. o.*n; ti’ .o otn) Pmy(yi' P .ym; 71' oo /rm)

or, in words, thé joint distribution of x and y is equal to the

-product of the individual distributjons.

In view of the fact that the averages that are important
in spectral thecry can generally be obtained using first and s .ond
order distributions, hencefcrth higher erdered distributions will
not be employed in-the development to follow. This does not
represent any real Joss in generality, however, since the exteasion

to higher -order statistics is straightforward.

One last definition pertaining to distribution functions
and al=o density functions is the notion of stationarity. A distribu-
tion is said-to be stationary to second order if the distribution

function, PZ‘(, corresponding to xa(‘»), is cqual-to the distril: tjon
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corresponding to xu(t+'r) where r is a.fixed parameter. That is,

PodXpXptaty) = Py lxy x5 ty 47 ty + 1)

This reduces the number of variablés by one since 7 can be taken
¢y .al to -t1 and thus PZx is a function of Xpr Xps and *:z- ti' A
similar definition applies for n’th order distributions. Also first

order stationary distributi..s are independent of time.

B. STATISTICAL AVERAGES

Since the random process is characterized as a function
of two variables, it is apparent that two-distinct types of averages
are possible. These are: (1) averages over the.ensemble variable,
a, .at a fixed time, tys and (2) averages over time for a given

member function .of the ensemble.

1. Ensemble Averages

The ensembleaver'ag_g, or eercted value.. of the

fanddlom variable x is defined as

E(x) = J‘xnd,pix

o
where E is the expected value operator. Various mornents of the

random variable x are given by E(x"). of principle importaunce
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are the first moment E(x}, also called the mean valuc of ~Ld

. 2 . 2 .
ti:e second moment E(x”)., The variance, denoted as ¢ , is given

by

0'2 = E [(x-E(x))Z]

On expanding and carrying out the indicated ensemble averaging

this expression reduces to

o® = Ex’) - [E(x)]°
Frequently, in order to obtain a less cumbersome notation, a bar
will be used to-denote an ensemble average, that is,
E(xn) z x .
If the average value of a reasonably well-behaved functionz, f, of
the random variable- x is desired, the average of { can be formu-
lated in terms of the distribution-function-of x instead of ‘the
distribution function of f,and
r 0
ELf(xu)] = I f(x,)d P,
-

For a justification of this procedure sce Davenport and Root (2).

2. . . e ps
For example, f is single valued and of bounded variation.

e @ e e e e P
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Finally it should be noted that the expecicd value
intezral reduces from a Stieltjes integral to an ordinary Riemann

integral if pix has a continuous derivative. That is,

Qo - QO
E[f(xi)] = ,j'-oo fx,)d B, = f-m f(x,) Wy %, t)) dxy

Jump discontinuities in the monotonically nondecreasing distribution
function P, can usually be accounted for by using delta functions
with the density function, Wi If g is a function of the two vari-

ables Xy and x, then the average of g becomes

B © ,©
E[g(xi.rxz)] 2 I j g(xi,xz) sz(x1,'x2; ti' tz) d:vcv1 dxz .
-00 ~00
‘Note that, in general E[f(xi)] is.a function of ti and E[g(xi.xz)]
is a function of t1 and- tz; however, if-the distributions wix and
sz are stationary, E[f(xi)] is time independent and E[g(xi,xz)]

depends only on the time difference ty -ty

An averagc of considerable .importance in probability

theory is the characteristic function, which, for the second order

case, is defined-as

r . N
E Lepr(jvix{ + JVZXZ)] = MZx(Vi’vé' ti'tz)
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B et

If sz exists then the characterisiic function becomes

o o
sz(vi. Vi ti’ tz) = I J‘ exp (jv1x1 +jy2x2) wa(xl"xz;ti' tz) dx1 dxz.
-00 -~

Thus the characteristic function is the Fourier transform of the

density function Wou {except for the sign of the exponent of e).

The characteristic function-has great utility in
-computing the density function of the sum of two random variables
when the individual density functions are-known. Consider the
first order case of the sum of Xy and ¥4 with Wix(x1) and
wiy(yi) given. The subscripts-wili be dropped for convenience
(a standard practice) and stationarity of wix and W1y will be
assumed. Let z = x4+ y and the problem is to find W1 . The

%

characteristic function of z is.

Miz = Elexp (jvz)] = E[exp {jvx + jvy)],
If x and y are independent then

Miz = My Miy

The density function-of z, W1z can now be computed from

@
wiz(Z) = ’Zi?f- J_w M1z(v) exp (~jvz}.dv.
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2. Time Averages.

The average over time that is performed on members

of the ensemble is defined as

T
: 0 2
; _  Yim 1 lim 1.
Alg] = g T | x0T oy [ xtoree
-'I'1 0

where the time average operator is denotéd by A. The two integrals

usually reduce to the single *<izgral formula
; . T
: 7. lm 4
Arl_xo.(t)J," T+ 2T X,(t) dt

in view of the fact that, when the two integral-expression exists,
the single integral expression also exists and they are equal. It

is possible that the single integra) expression may exist when-the
two integral expression does not for certain functions, and in order
to abtain the desired property of time.invariance for the linear
operator A, the two integral formulation of time average must be

used,

The time average of a rnember function xu(t) of a
randorn process will, in general, depend on the.ensemble variable
a. When the time averages of the member functions are independent
of a, the random process is said to be uniform. Actually ‘the
character-of the integral used for ensemble averaging iz such that

the results-obtained are not changed if at most.a . ountable infimty
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of member functions do not have the property-of uniformity. If

the notion of a random process is to be used in tue formulation of

a mathematical model for a physical system, the assumption of
uniformity ‘'must generally be made, in that only the member function

of the random process is zvailable for experimental observation.

3. Equivalence of Time and Ensemble Averages.

Supposre ensemble and time averaging are -performed

on-the function g(xi, xz) with reversed order as follows:
AE [g(xi. xz):] = EA Lg(xi, x~2] .

Various necessary conditions for the existence of the integral
A[g(xi, xz] are given by theorems on ergodic theory. Now if the

process is uniform, the relation reduces to

AE[g(xi’xz)? = A[g(xi'xz)]

J

since A[g(xi, xz)] ie independent of the ensemble variable and,
therefore, the ensemble average leaves A[g(xi, xz)] unchanged.

Also if sz(xi, x‘z) -is stationary, then

E[g(xi,xz)]: A[g(fxi.xz)] .
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i This relationship provides thg"ink between ensemble averages

; compuied from the random process model of a physical system,
and the measurements that may be made on an actual system
using time-averages. An excellent and thorough treatment of the
general subject of the relationships between ensemble and time
averages, which is reviewed only briefly here, may be found in

a paper by W. M. Brown (3).

C. CORRELATION FUNCTIONS AND POWER SPECTRA

With the material covered in preceeding sections of this
chapter available, a theory for spectral characteristics of random
processes can be given without difficulty. The theory presented
here will be based on ensemble averages; however, equivalence
with the spectral theory obtained for time averages may be quickly

demonstrated with the aid of the results of the previous section.

1. Ensemble Covvelation Functions

The autocorrelation function for xa(t) over the

ensemble. i8 defined as

-0 -(Jo~
J I xlewa(xi’ xz;ti,tz) dx1 dxz .
-m -0

Rt ty)= E[xi,xz]
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If W, is stationary,then Rx is a function of the timc difference

Zx

y Which will be denoted as 7. If a random process has the

-property that its correlation function depends only on the time

difference 7, and if E[xia] = x{z is independent of time; then

the process is called stationary in the wide sense. Cross-

correlation functions are defined for two random processes xn(t)

and’ 'ya(t) as

Rapttyrta) = E["ﬁ'z]

however, we shall not have need of functions of this type; conse-
quently the terms autocorrelation and correlation will be synonymous

for the remainder of this report.

An important property of correlation functions can
be easily derived by observing-that the expected value of a non~

negative quantity is non-negative. Thus

4 *2 :
E (== &~ ) 2 0
X xz
™ 2
or
x12 ‘(Z 2x1x2
El—xw] + E > Bl —— - ’
X X x"ZxZ_
L ™1 2 + *2

s e 2 S e s S e g

—— —
S —
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-thus

-

2 2
X %y = Rt t)
and for stationary random processeeg
R(0) 2 [R (7]
since

2. Power Density Spectra of Random Processes

The power density spectrum, Sx(w), of a random

process xu(t) is defined as the Fourier transform of the correla-
tion function Rx('r) where the transform cxists. Note that xa(t)

is assumed to ljae wide-gense stationary. Since a function is re-
quired to be absolutely integrable to insure existence of its
Fourier transform, unless R{T) goes to zero as 7 goes to infinity,
th. power density spectrum will not exist in the strict sense. Then

the correlation function is related to a cumulative power spectrum.

S (w) by

1. [0 0]
Rf7) = 5= j exp (Jur) d S (w) .

-CO
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This last result, which is essentially the famous Wiener~Khinchin
‘Theorem, provides the basic procedure for computing power
spectra of random waveforms. As in the case of probability dis-
tribution and density functions, it is usually possible to introduce
delta functions to account for jump discontinuities in the cumulative
power spectrum. The appearance of delta functions in power density
spectra accounts for power corresponding to discréte frequencies
including w =-0 {or dc). -it should be noted that there exist correla-
tion functions for which the cumulative power spectrum has the
property that it is continuous everywhere except at a.finite set of
points; however, its derivative there is zero (the 8o called singular
case). In this situation, the delta function cannot-be used; however,

such cases-are, fortunately, not commonly encountered in engineer-

ing practice. The use of power dengity spectra containing delta

functions will be adequate for the power density spectra that will

be computed in this feport.

It remaine to give a justification for the namé power
density spectrum for the function which has been rather arbitrarily

defined-as the Fourier transform of an-ensemble correlation function.

If the inverse Fourier-transform is used to-express Rv(‘r) in terms

of S (w) then
X

oo

Rx(r) = 71%' J ASx(w) exp (jwr) dr

-
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The correlation function evaluated at v = 0 is simply the mean
square value of x“(t); thus

Q0
R (0) = X% = -~ j’ S (u) du

~-00
Also it can be shown (2) that the correlation function of the output,

yu(t) of a linear time invariant systern can be given in terms of

the correlation function'o!"‘-.z, input, ;‘cn(t), by the triple.convolution

Ry(7) = h(t) x h(t) ¥ R(t)

where h(t) is the system impulse response and ‘hc(t) is the complex

conjugate of h(-t). In the frequency domain this becomes

Stu) = |HGW | % s g0

where H{jw) is the system transfer function (Fourier transform of
h(t) ).

If the sysivm -characterized by H(jw) is assumed to
be a narrow band filter with unit response for Wy s Wy and

szero-elsewhere then-

w

-
R(0) = y° = o Iwi 5 (w) do

e o tam PR e
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Now since ;Z is always positive and since W, and w, can be
closely spaced at any point along the frequency axis w, it follows
that Sx(w) must be-a non-negative function of w. Also it can be

seen that Sx(w) is.an even function by observing that

o ™
S (w) = J‘ R (7) exp (~jur) d7 = J‘ R, (7) cos wr dr

-00 -0

since Rk(-r) is a real, even function; and, therefore,

, O (o o]
Sx(-w) = J Rx(f) cos (~wr) dr = j Rx('r) cos wr dr .

-0 -00
Thus, Sx(w) is séen to correspond to the distribution of power with

frequency:

A similar theory can be developed for time averages
by defining the autocorrelation function over time as &x('r) =
A fx(t) x(t+'r)'] for uniform random processes. The time power

density spectrum is

@©
'Jx(w) = ,[ R’x(‘r) exp {-jur) dr
~0C

I xa(f.) is not stationary in the wide sense then Rx(t,‘r) =

E x—a(t) xa(t+‘r)] can be averaged over time to eliminate the t
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! dependence and a power spectrum is computed as

[0 0]
Ao = f exp (-jwr) AE [xn(t) ,xa(t+-r)] dr

-Co

This power density spectrum is also denoted x&(w) since

AE—[xa(t) ,ga(m)] = A [xu(t) xn(t+'r)] .

Now if )gu(t) is wide sense stationary then

E [x,(0) x (t41)] = A[x (8) x (t4m)]
and

EACERA!

D. THE GAUSSIAN RANDOM PROCESS

The Gaussian random process is of particular importan-~
in the analysis of physical sysie:ms because of its frequent
occurrence. For example, .many noise voltages encountered in
electronic systems are characterized by either Gaussian distribu-
tions or nonlinear transformations of Gaussian distributions. The
wide-spread occurrence of phenomena that have Gaussian properties
is predicted by the central limit theorem which states thax distribu-

tion of-the sum of n independent random: variables becomes Gaussian
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as n tende to-infinity. This would serve to explain the fact that
the noise voltage of an ohmic resistor is Gaussian in that it is
made up of the combination of a large number of impulses due to

thermalily induced motion of individual electrons.

The first and second order Gaussian density functions
and the corresponding characteristic functions will be recorded
here for later use. It-will be assumed that the random process

has a zero_mean value, tiut is E[xa(ti)] =0

2 2 2
, ' *y Vi %y
Widxpty) = —=—— exp (- —5) My lvy) = exp (- =)
2 tri vi
1

wzx(xit'xg; ti' tz) S -

-
2 2 . 4
2w Eci T, - Rx(ti,tz)]»

2 2 22"
{ oy %X - ZRx(t'i’tZ{ XX, + oy %y
exp { - — - -

* 2 [aiz 022 - Rx(ti’tz)] j

) _ ! 22 2 2
MZx(vi’vz’ti‘tZ) = exp{--z-[cr1 vy + ZRx(ti"tZ)vi—YZ to, v, ]}
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An important property of Gaussian.distributed quantities

is the fact that if the input to a linear system is Gaussian, then the
output is Gaussian. In other words linear transformations of
Gaussian noise give Gaussian noise. (See Reference 4 for details.)

It is true, however, that a linear transformation may well result in

Gausgsian distributions that aré non-stationary.
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111, FORMULATION OF THE RANDOM MODULATED WAVE
PROBLEM
A. THE ENSEMBLE CORRELATION FUNCTION OF A
GENERAL RANDOM MODULATED WAVE

A general expression for the random time function whose

spectral properties will be investigated is as follows:
v(t) = G(t) cos [wct + ) + 0] .

Here, specifically, v(t) represents the instantaneous voltage out-
put of a-sinurcidal oscillator, of radian frequency w. whose
amplitude is modulated by C(t) and whose instantane;)us radian
frequency is given by w_ + d(t) with 0 being a fixed arbitary
phase-augle. Now if C(t) and §{t) are random variables, then
v(t) is a random variable. The ensemble paramecter, a, will not
be indicated explicitly; however, ‘it ig to understood that v(t),

C(t), and ¢(t) represent rnember functions of random processes.

The correlatics; function of.-v(t) will now be formulated;

‘however, the question.as to-ide sense stationarity of v(t) will be

1=t open for the moment, and Rv will be indicated as a function

of both ty and t,, or equivalently t =rt1 and T=t,-t,.
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w

R (t,7) = E [v(t) v(t+'r)]

n

E {C(t) Clt#r) cor [ thlt}+6] cos [og+ o rrateen +o ]} .

Using the trigonometric identity for the product of two cosine
functions along with the linearity property of the expected value

operator E giveés
R (t;7) = E{i Clt) Clt+7) cos [ 2w t + w7 +lter) + &(t) + ze] !
v Zz c ¢ T : 4

+ E{-;_- C(t) G(t+7) cos [u.cf—+ d(t+7) - ¢(t)] } .

The arbitrary phase angle 0-is assumed to be uniformly distributed

over the interval 0 ¢ 0 £ 2w, that is

'ZiF 0 60 ¢ 2w

W, .(6) =
10 for all other ©

The required joint -probability density function for the expected
value integral would have the form wZC Wz¢ Wie on the assump-
tion that the random variables C, ¢, and 6 are independent. In
carrying out the-indicated expected value operations to obtain the

correlation function Rv(t.‘r,). -the term which involves the phase
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angle 8 will vanish. This can be seen by noting that the expression

E{% C(t) C(t+7) cos,[?.wct T+ fueT) +t) + ze]}

takes the form

£ 1717 ot e fotmn] wygnan vy
“® -0 -0 -0 0
,dC‘ dcz dq’i d¢2

and

1 27
- J' cos-(B + 20) d6 = 0
0

Thus the correlation function of v(t} reduces to

Rv“"» T) = E{% C(t) G(t+7) cos [wc‘r + $(t+7) - ¢(t)]} .

In order to.proceed further the functions C(t) and $(t) must e

specified. The following cases will be considered in detail in the

chapters to-follow:

(1) Casel. FMby band-pass noise only. C(t) is a
constant CO' and ¢(t) is obtained by integrating band-pass noise,

that is
t
&(t) = D j v (t) dtr

%]
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where D is the frequency sensitivity of the sinusoidal oscillator
in radians/volt and vn(t) is a stationary Gaussian noise voltage

with zero mean.

Y A S kR it e i s o e,

3 (2) Casell. M by band-pass noise combined with a

sine wave. Thisis thé same as Cage I except that ¢(t) is now

t
#t) = D J‘ [vn(t') - E_, sin (u_t' +—a)1~dt' ,
)
where Em and ‘@, are the peak value and radian frequency of a
sine wave respectively, and q is a uniformly distributed random
phase angle. The band-pass noise spectrum.will be centered at
(A)m.
(3) Caselll. FM by band-pass noise with simultaneous
AM by low-pass noise. The function ¢(t) is the same as in Case |
but C(t) is now C(t) = Co + va(t) where va(t) is-a stationary
Gaussian noise voltage with zero mean and having a low-pass ‘power
density spectrum. Also vn(t) and Ya(t) are assumed to be-

indenendent.
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IV. FM BY BAND-PASS NOISE

The development of this chapter for the case of FM by
band-pass-noise repreésents the principal contribution of this
Y report. A method of approximation with which useful informa-
tion-concerning the shape of the power density spectrum as a
function of the essential modulation parameters wili Le explored

in detail.

A. SPECIFICATION OF THE CORRELATION FUNCTION
IN TERMS OF THE MODULATING NOISE SPECTRUM

The correlation function for FM by band-pass noise.

. was derived in Chapter III as

2
- Co

R (t,7) = ——E {cos [wgt’+ d{t+T) - Mt)] } ,
with
t
#t) = D _[ v () det

-

If the power density spectriin Sv {w), of the modulating noise is
specified, then-the.correlation fg;ction can be evaluated.as will
be -shown subsequently. Also the issue as to-the wide sense
stationarity of v(t), or equivalently the question of tim;:' indepen-

dependence of Rv' will be settled.
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The correlation function, Rv(t' 7),.can be written in the

following form where the equivalent time variables, t;'1 =t and

2u0 IV SR W R Mo

ty = ti7, kave been used in place of t and 7, so that ¢(t+7) = ¢(t2) =

4’2 and ¢4 & ¢(t1) = ¢{t).

i 2

' Co .
R(t7) = 5 Re {exp(ju.r) E[exp 0, - 19,)]}

The symbol ‘Re denotes "real part-of". From the definition of the
second order-characteristic tunction of ¢, this is seen to.be

. Sy |

R (t,,t,) = —~ Re [exp (J67) My l-1, 1 ti,tz)] .

Since ¢ is a linear transformation of a Gaussian process, -it too

will be Gaussian, but not necessarily stationary; therefore
) _ 1, 2 , 2
Myl -idityty) = exp{-,z[q,1 - 2yftyity) 4 8, ]} .

The terms 4)1 , 4)2 , and Rd)(ti'tz) = $i $2 will now be compute:
from the defining relatiou {or -¢, that is

ot
) =D | v tnar

=00-
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R e ]

The mean square value of ¢ can be written as

[

PRSI

t. t
: ol = ={[p Il vy(x) dx] [n J‘i vain dy] }
; -00 =00
| tot
= Dz J‘ J‘ E [vn(x) vn(yj] dy dx
-0 -~
for i=1, 2.
a;
F Thus
, bt
;?e p® [ ] ®, (r-xay ax
° -00 -00 n

since A is-stationary. Similarly

A o b
Ryftir) = $,%, =D I f Rvn(véX) dy dx

-~ -

net y-x=u and y = v. This change of variables maps the x, y

plane into the u,v plane.as shown in Figure 1.
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X
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FIGURE 4 MAPPING OF x,y TO u,v PLANE

The integral for R¢(t.'r) is obtained for T =+ . In terms of the

new variables u and v, the integral becomes

B 0
9, = Dz{j R, (u)[j'
-0 n -

[0 8]
|
T

n(u)[ |

RV

u+tt

-00

t

-Q0

1 T
dv}du + JRV (u)[
0 n

au+t

J‘ idv]‘du

J-m

)
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Similarly ;1'2' and ':4;'2' become

u+t t
$,° =D {f R (u)[ d]du+ R (u)[ dv]du}
1 iw Vo ~j,.;,o v J; Vo J;wY
and
utt ot
A 2 (% 2 , O 2 )
¢, = D {J RYn(u)A[J‘ ~dv]du+ | Rvn(u)“ dv] du};
“00 - 0 )

The quantity [ 4)1 + ¢2 =2 $1$2 ] ¢an now be evaluaied.

2.7z utt .t
$, +¢ 0 i 4
i ——1—DZE— = .f Rvn(u)[I dv] du-+ Im Rvn(u)[v[‘ dv]Adu
=00 - 00 0 -0
i utt 1 t
R dvid R, (u) dv |.d
+ J:oo vn(u)[{m vJ u+‘[ nu[.l-m v]u
© “1tt ~utt t t
= I Rv (u)LI dv+j d/+j dv+I dv]du.
n - -00 -00 -0

where use has been made of the fact that Rv {u) is an even function.
n
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9,8,

s ; 172 .
In a similar manner — becomes

W -u+t1 u+t;1
R dvidu + dv|d
R LS ECT
0 -0
t
o 2
{ (u)[ J‘ dv] a
T -0
Thuas
"2, 2 .- ~utt t t
d,+d,-26,¢ 2 2 2
J—-—Z—Z—iﬁ= ¢ (u) U dv - I dv+2—J‘ dv]du
D o
-u+t2 ti -0
t
2
(u)[j uv] du - 2 J‘wav (u)[j‘ dv]du
-0 r " Yoo
t u+tt ;
(v 2 1
=Z;[ Rv (u)[[ ]du-ZJ.R (u)[J. dv]du
C n '—oo ~-00
t2 t2
-2 ImRV (u) r[ dv] dn+ 2 i‘TR (u)[I dv]du
0 n L'--oo '0 “n ~00
r . t:2 u+ti
= 2 R (u) -dv - dv|d
J(; vnuL"[:mv J:w v]
t
T ", 2
=2 ]' R, (u) I dv]du
0 n Lu-l-t
1
4
=2 j' {(r-u) R (u) du
0 n
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At this point thé correlation function Rv (u) is expressed in terms

n
of the corresponding power density spectrum S {w) to get
T n
';2' + ;Z - 29,9 (o) T
1 2 172 _ 14
v z — J S (v J' (r-u) cos wu du dw ,
D n Vn

-0 0

where the Fourier cosine transform expression for SV (w) is used,

n
that is

1 p® ,
Rvn(‘r) = 5= I Svn(w) cos w7 -dw
-0

The integral over u is easily evaluated to get finally

: ; 2
2,2 . Dp* ¥ (1-cos wr)
bty - 288, = 0 | Sy (Wl oy de

[0 0]

Thus the correlation function for v(t} becomes

2
2 0
‘ 0 R -
R(T) = —— coB W T epr[- -%T I Svn(o.\) Q..L:za._“.’f_)- Jw].
-0

Note that Rv has-been shown to be independent of tirne.
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B. THE POWER DENSITY SPECTRUM OF WHITE NOISE
ie PROCESSED BY A SINGLE STAGE LRC FILTER
§ The modulating voltage v, (t) is obtained by filtering
"white" Gaussian noise by a single stage LRC filter such as that

shown in Figure 2.below.

@+ e e

2 L R Vn
: Vin : 1
& .- . >0

FIGURE 2 SINGLE STAGE LRC FILTER

The transfer function of this filter is

gm 8
R S
R L

where B is the transconductance of the tube. Let

w, = 1 and w2= 1
1 RC 0 LC
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The amplitude frequency response squared becomes

B s e L LR i)

H 2 wz g 2
2 0. . 2
lHgw) | & = g with H," = T

(wo - wz) + wizwz c

et

If the power-density spectrum of vih(t) is white, that is, SV (w)= N
’ in
' for all w, -then the power density spectrum of the output vn(t) is

2

sv (w) = ; z ) p
n (o 2-w2)+wz"2'
(I S

The mean square value of vn(;) is given by

Evaluation of the integral3 yields %— . Thus

2
vy = 50l
n 'Zwi

3See Appendix A.
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In applying the modulating voltage, vn(t). we will assume that N
is adjusted in order to maintain- Vo (t) constant whenever wy is

changed. Thus Sv {w) becomes.

n
ZVH-Z.(.)1 wz
Sv’(‘*’)’= - w3 -
n (w Z-w) +uzw2
0 1

w
Plots of this function for values of Q = (—}- of 10 and 20- are given

in Figure 3.

C. THE CORRELATION FUNCTION OF FM BY BAND-

PASS NOISE

The equation, derived in Section IV-A, which gives

Rv('r) in terms of Sv (w) can now.be evaluated by use of the expres-

n
-gion for Sv (w) of Section-IV-B. Thus-
n
Sy” - Divie @ (4 - cos wr) 1
R (1) = ~—5~cos w T exp|- — — - dw !,
v 2 c w -2 '
v 2 2 2 2 ;
- (wo -w) + W, w

A : . . .4 —_ 5 :
Uponr evaluation of the-integral over w the following expression for

Rv('r) is obtained:

w

2 272 2
C0 ) D v, “1|7| 2 @
Rv('r) = 5 CO8 W.T exp { - ——— - 1~exp(--—2-—) Vcos QO-TITI

0
(——2_
+—'——=2.=n_ sin wz;will
T -‘:TZ- '\J 0 TT
2\](}_ 1
(VR

.
e § x .
Gee Apperdix B.
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2 DZ Vn s .
Let m" = ——— . The quantity m is the-modulation index in
W
0

that it is the ratio of the rins frequency deviation to the center

frequency of the modulation. With the use-of the definition of

W,
Q= u_O the correlation function Rv('r) becomizo

1
2

CO‘ 2 uol | r
'Rv('r) = —5— Cu8 wcr-exp C-m {1-exp(- -5 ) [cos‘b wo I‘rl

-+ '2'215'5' sin.b wol ‘rl]}> ’

where

Before attempting to evaluate this expression it will be helpful to
consider-limiting cases -of the-spectrum Sv(w)' as m becomes very

small or very large.

D. LIMITING CASES FOR FM BY BAND-PASS NOISE

1. Small: Modulation Index

Starting with the expression for the correlation
function of v(t) in terms of Sir {w), the power density spectrum
of the modulating noise, we can obtain an expansion of the

spectrum, Sv(w), that is appropriate for small values of .
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2

B S BT s 5 T R e SR a7 R Py AT T

C 2 o
- .0 . D (1-cos wr) .
R,(7) = —— cos w_7 exp [— T3 I Svn(w) -—-—z-——-—-w : dw] .
-~Q0 B
2 "‘o2 2__ 22
Let ¢ =——2-.t;henD =m @ and
¥n
c.2 2 2
_ 0 L. m {1-cos wT)
Rv(fr) = —y= CO8 W T exp [-— = I Svn(w) T" dw]
-
C,? la? (@ Sy ()
= —— CO8 W T exp [- ” j wz‘ ]X
-
. S, (w) cos wr
o mzpz o v, B 4o
Pl 2% J. wZ ’ .
-0 ‘

The second-exponential is now expanded in its power series to give

Coz ma 2 m'zpz © ‘Svn(“’) cos«r mit
= & .m- \ - :
Rv('r) = —5— €08 W .7 exp { ~— v ,{H- T — dw+ T %
~Q0

\—._._J

} ooSV (w) cos wr
[J —-—"—T———-dw] b

~00 w

‘Notice that in order for this expansion to be valid, the-integral
(>4
oo "vn(w)‘
I= I —_— dw must converge. This condition is clearly met
w

-0
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by the Sv (w) under consideration. Sv(w) is now obtained by taking
n
the Fourier transform of RV('r)

C, m2, 21 — A
S, (w) = - exp (- SE=) {Zw [6(«» tw )+ blw ‘-“c’]

5 S, (whe ) S (w-w_)
m?..uZ[ Va “c+ Vo wcA]+'“}
T )t emay)®

+

For small m the higher ordered terms‘(m‘*, m6, etc.) can be
neglected; thus the resulting power density spectrum-of v(t) is-
seen to contain a carrier spike at w_ and sidebands about the
carrier which are simply »elated to the modulating noise power
spectrurwn Svn. The case for small m but with Svl;(w), such that

the integral I does not converge can algo be treated. See

Reference 5.

2. Large Modulation Index

In the final expression for R (7) in SectionIV-C

let a =2és- and Wyt = t. Thea

Cz wt

v

R (:%') = —g- cos —:B— exp {-‘-mz[i - exp('~a|t’|)(cos bt +% 8in bltl )]}
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It i clear that for large values of m thé correlation function
becomes very small as |t| increases. Therefore a good ap-
proximation. of the correlation function will be obtained if the
terme in the bracket are expanded in their power seriés and only
‘the lower order terms are retained. Let the bracketed term

equal f(t), that is,

f(t) = i « exp(<a]t|) (cos bt + ¢ sinb|t])

Expanding the-exponential and the cosine and sine-in their power

series gives-

2,2 2.2 3.3
(1) 1-*(1-a|t|+-aé-£-,---~)(i-P-’z-t,'—+~~k%blt|:-%’—°‘—4—$—l.+“

1 -'4[1 -‘% (a® - v% %+ ]

n

T EEphH P

2 1 W2 1
But a s — and b =1--———z-; thus
4Q 40 ’

f(ty = 5 t°

when terms Jf higher order than 1:2 are neglected.

‘)
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The correlation function Rv('r) now becomes

C}oz Dzv

- n 14 2 2
Rv(‘r) = —y— CO8 W.T exp(--—w-z-—- 5 w0y 1)
0
or, if (Am)2 =*D2 Vi where Aw is the mean square deviation of
the-carrier \wc,,
c,?
Rv(‘r) = — LOBWT exp‘--

B’ 2 ]

= T )
3 ,
The power density spectrum is now obtained by use of the Fourier
cosine transform

2 -
o oo 2 2
A
Sv(w) = 7(-)- J‘ exp[-(—u—)zj——]cos w,T cos wrdy .
~co

Using the trigonometric identity for the product of cosines gives

CZ

00 -1 2 2
S;,(w); £ —40—- ‘[ exp [-(—A-‘i)-)-zj— ]cos(w +/wc)'r -dr
-0

CZ

@ 2, 2
+ fg— ,dr exp [_19_“’_2)__‘7_}08 {w -~ mc)'r dr

-Q00

= S0 (w) + EMO)

e

4
|ﬂ
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If Aw<< W then there is negligible contribution to the spectrum
S, iw) by S; for w >0, and similarly S‘;(w) is very nearly equal
to $V(w) for w < 0. It suffices, then, to consider only St(w).
‘From Pierce's Table of Integral. No. 508 (6)

2

. 2
Co Vo [_ (w-0) ] ‘

+ :
Sf@) = —— —xg— e*p | Fey

s e g w R A TN T TGRS, U s A P T
[}

The validity of this result is easily checked by noting that

5 (w) = 5¥(w) + 57(w) = 5¥(w) + 5%(-w) and

— 00
visar I 5 (u) do

B n

: -00

: 2 ] 2 2
i - - Co 1 Im e*p [- (N-wc) ] dw = 90

X ERRV W Yo 20w 1T

Thus the power in the carrier, Wer is efféctively redistributed into
a continuous spectrum by the process of frequency modulation.
Notice that the spectrum of the modulated wave v(t) has beco: ¢
Gaussian as the modulaticn index m - co and thus, has the same
forrn as the probability densiiy function of the modulating voltage vn(t).
Middleton {5) has shownthat, under quite general conditions, the power
density spectrum of a frequency modulated wave tends to assume the
shape of the first order probability density function of the modulating

voltage when the modulation index goes to inﬁnitys.

5See also Refcrences 7, 8, and G,
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Now that the cases of both small and large modulation

pd

e o

indices havé been examined, it is clear-that the power density
spectirum of FM by band-pass noise undergoes a rather striking

transition as the modulation index is increased as is shown. in

. et

Figure 4. The question to be cansidered in the remaindet of-this
chapter is the spectral shape-that is obtained for intermediate-
values-of the modulation index, m, as a function-of the bandwidth
of the modulating noise, or eauivalently, the fiiter Q. Ultimately
it is.desired to obtain a measure of the deviation from the limiting

Gauseian spectrum that will result'for-various values of m and Q.

E. DIGITAL COMPUTATION OF FM BY BAND-PASS
NOISE POWZIR DENSITY SPECTRA

In orde:x to providé a basis for comparison with power
density spectra that are.obtained by use of an approximation
technique, the Fourier transform of Rv(f) was performed by
digital computation for -selected values of m arnd Q. Returning

to a-form given previously on page 48,

Cz wtCZ wt

R ( ':_:5 )= —-g-— exp [-mzf(t)]coe T)% = -—g—exp[-mzi(t)] [exp {j —:—O—)

w t

+ exp(-j;,S()—-)]

e e
o crm e e
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S, (w)

.

W~ W, We Wetw, i

a,. LOW MODULATION INDEX

i
Sy (w)

-

—~= Aw
|
we

b. HIGH MODULATION INDEX

FIGURE 4 LIMITING CASES OF FM BY BAND-PASS
NOISE SPECTRA
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where
f(t) = 1 - exp(-alt]) (cos bt + 2 sinb|t]) ,

we have that

j R(f)exp(-m)dnj R(—-)ex (- i—) “Ot

S, () =
-0 -0
2 . 2
C 0 {wtw )t C
= 1&% I exp[—mzf’*)] exp[ _)----C—-J dt + 4-— j
-00 ~00
(w-w "

exp[ m f(t)—l expr - — %5 ] dt

Again if the assumption that w, >> Aw is made it will suffice to

The second integral, which

consider only one of these integrals.
[ATTM)

C
sl

will give the behavior of the spectrum around w = w. and B = -3
0

becomes
2
C oo
+ 0 2 )
S,(B) = -4;% g exp [-m f(t)] exp (~jpt) dt
“ D

Note that this integral daes not oxist in the stoict sense Lecause

t:g cxp[—mzf(t)] = CXp(-mZ) ;
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however exp (-—mz) can be subtracted and added to give an

! expression of the form
| 2 2
C a C o
- 2; 2 . 2
: SB”’@% fewfmim-mjambmw&+z%n[g@pm)
-m -m

exp (-jpt) dt

.2 2
C0 C.w

0 2 29 . 0 2
S o J. exp [-m (t) ~ m’ ];os Bt dt Fooy— exp(~m") &(B) .
0 - 0
0
The delta function term represents residual power at the carrier
frequency. Compnutation of the first integral was periormed for

m = 4, with Q = 10, 20. The results of the computation are plotted

- in Figure 5.

F. A TECHNIQUE FOR COMPUTING FM BY BAND-PASS
NOISE POWER DENSITY SPECTRA

It was shown in Section 1V -~D-2 that the power density
spectrum of FM by band-prss Gauvssian noise assumes a Gaussian-
like shape as the modulation index becomes very large. In this
section an approximation technique is introduced which will make
possible a determination of the actual value of the modulation index
that is required to produce a power spectrum that will deviate from
the limiting Gaussian spectrum by 2 specified amount. As one would
expect, the required modulation index will be dependent on the bandwidth

of the modulating noise (or equivalently the Q of the modulating noise

filter).
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The starting point in this analysis is again the correlation

function of v(t) which is reproduced below for convenience:

2

] w t
R"(rt:—) S ekp[-mzf(t)] cos ____wc ’
1] Wo [ 0
where
_ ' RN E a _. -
f{t) =1 - exp(-alt])(cos b'tl +Y\' smbltl») ’
with

a=-2%—, b = 1—%2-, and t':wo’r

It %an be readily seen that the envelope of Rv(Bt_ }, that is,
C

;_g_ exp [-mzf(t)], which is.an even function, has successive
maxima at the points | tl = 3%1 and minima at I tI = .(_g_“ﬂ)_'l

b
with n=0,1,2, -+, Attention will be concentrated on the behavior

of exp [-mzf(t)] in the vicinity of the maximum points. The im-
portance of these points in determining the shape of the resulting
power spectrum becomes obvious when one observes that-the
envelope function decreases rapidly on either side of the maximum

points even for relatively modest values of m, for example on the

order of four.
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To determine the behavior of the envelope near the critical points

for ¢ > 0 let x=t-§-g-'{; then

exp[-mzf(t)]_ exp{-mz{ 1 -exp( ﬁi:rra) exp (-a|x|')

[cos (b] x| + 2nm) +-g- sin (b|x| + ?.mr)] }-]>

exp {-m Lx-exp( T2 ) exp(- -a]x|)(cos b|x|+—smb| I)]}

The terms exp (-alx,l), cos blxl » and sin blxl are expanded-in

their power series as in Section IV-D-2 to obtain

exp[-mzf(t)] exp{ -m [1 - exp (~ Zmra ) (4 -—z- + )]}

o

exp { 1 exp(- "a)]}exp[-%f exp(- Zr:)wa } xz]

when higher order terms in the resulting power series in x arc
neglected. Using this approximate expression for the enveiope

function gives

LES
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where

, n12 2nwa 2w, o T m> 2mna 2mn’
g(t) = exp[—T exp(-—bw—)(t-'-T) + expL-—z— exp(r—B—)(t + 5 )]

and

e =41 for n=0 and €¢_=2 for n#£0 .
n n

For cases of:interest b=, /1 -4—61-2- is very nearly equal

to unity since values of Q on the order of tén or more will be con-

sidered. The power density spectrum is found to be6
2
+ 1 7% R nw 2 nm.) i
S,(B) = -z\/;—m— n-zo e, exp(zy) exp {-m [‘l - exp (-ﬁ_)],f
[32 ™
exp’[-——z' exp (=) | cos 2wnp '
2m a ]

w-w
where f§ =

as before. Relatively few terms of this power
serics need be computed to determine the shape of the power
spectrum. For example, the curves shown in Figure 6 were
obtained using only the first three terms. The accuracy of the
approximation is readily apparent when compared with the digitally

computed curves in Figure 5.

6See Appendix C.
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As a smooth spectrum condition is-approached by
) increasing m with Q fixed, the major contribution to the devia-
-tion of the spectrum from the limiting Gaussian spectrum is
caused by the first maximum in the envelope of the correlation
function on each side of 7= 0, that is, for 7 = & %1 . This
0
corresponds to the n = 1 term-in the power series expression
tor S"t(ﬁ). Also the maximum deviation for the Gaussian limiting
iﬁ spectrum occurs at = 0. ‘Thus
H
4
fi AS+([3) = 2exp ‘"’) ex {-mz Ai - exp (-~ Ll )
F viP'max Pizg) exp [ Pl
a
2‘ ] where ASV max 18 the maximum deviation from the Gaussian
; gpectrum.

+ PN . . .
I Asv(p)max is fixed this expression provides a means
of determining the required m for a given Q. Two experimentally
determined power spectra arz shown in Figure 7 illustrating the

appearance of the spectrum before and after smoothing takes place.

L e chma At M o B

The data presented in figure 8 were deterinined by observing the
minimum m required to produce an arbitrarily smooth spectrum
for various values of Q. The solid line was computed by use of

; the relation between m and Q for Asz(ﬁ)max = 1 per cent.
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(a) Power Spectrum Before Smoothing
m=4.0 fo=12.15mc f,20.6mc
‘Horizontal Scale 20mc/division

(b) Power Spectrum After Smoothing

m=6.5 fo=12.0me f,=0;6mc
Horizontal Scale 20mc/division

FIGURE 7 FM BY BAND-PASS NOISE POWER DENSITY
SPECTRA (EXPERIMENTAL)
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V. FM BY BAND-PASS NOISE AND A SINUSOID

In this chapter the approximation technique used to obtain
the power density spectrum of FM by band-pass noise will bz
employed to study the case of FM by a waveform which consists
of the linear- sum of band-pass Gaussian noise and a sinusoid.
We start with the general expression for the FM correiation

function, that is

2
c _
R (7) = — [coé (w7 + (t,) - ¢(t1)]’ .

where the modulation function- ¢({t) is now

t
#(t) = D j [vn(t') - E__ sin (wpt' + a.)] dt
-0
¢ DE
=D J‘ v (thdt + —2 cos(ugt+a) .
0

~00

Thus, the modulation function is seen to consist of a texrm duc to
the noise identical to that employed in the FM by band-pass noise

only case, and a term due to the sinusoid. Let

ft
¢it) = | z-n(t') at!
-0
and
r(t) = m  cos (wot +a) ,

DE
where m = w"l is the modulation index corresponding to the

wt
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sinusoid and a is a random phase angle that is uniformly distributed
over 0 to Zm. Note that m_ is defined in the usual way for FM
by a sinusoid, that is, the ratio of peak deviation and modulating

frequency. The correlation function can now be written
2
S .
R (7 = —g- R, {explju n) E[exp (ir,-jry) exp(it, - #,)] }

. 2
= “o R, {exp(jwé‘r) E exp‘(jrz-jri)] E [éxp (j\liz-,j\l‘i)]}'

with the last step being justified by the fact that the expected value

-of the product of two independent random variables is equal to the

product of the expected values. Note that the shortened notation

r(tz) =15 etc. has been employed.

This expression for the correlation function is the same-as
that obtained for FM by band-pass noise only, except for the addi-
tional expected value term due to the sinusoid. This expected

value will now be evaluated.

E[exp (jr,-Jry) ] = Efexp (jr,) exp (-jry) ]

E {exp[:jms cos (w0t2+ u)] exp[—jm|5 cos (wyt, + o.)]}.
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Thre exponentials can-be expanded by use of the following identity:

©
. N R
exp (jm_ cos 0) = > &3 Jplm,) cos kO,

where Iy is the kth Bessel function of the-first kind. The product

is written as a double sum to obtain
E jir, < j =
[exp @ 2 Jri)]
w k. .4 - - .
: . . R R 2oy .al
E{kg:o,t:zo €y € (-3) Jk(ms”l(ms) cos Lk\wot.2+u)] <:osx|“£(wot1 ‘ a;]}.

If the product of the cosine terms is expanded.to obtain terms con-
sisting of the cosine of the sum of the arguments and the difference
of the arguments, it can be seen that the operation.of carrying out
the cxpected value integration with respect to the random phase a
will eliminate the cosine sum term, with the result that

Elexp (jr2 - jri)] reduces to
R k, .. f
L{k;) Eockckj (-5 3 ke )7 (m ) cos [(k-l)w0t+kw0'r +(k-l)o,:|}.

Further it is secn that this expression yields a non-zero vaine only

when k= f,
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Thus

©
. . 2.k . k.2
E [exp (Jr2 - _]ri)] kgoek 37(-J) Iy (m_) cos kuwyT

°z° 2

= €, J, (m ) cos kw.7

X=0 k"k 8 0
© 2 )

= 3 Jy (m ) exp (jkeyT)
=-00

Using the results obtained for FM by band-pass noise only, we find
that the adding of a sinusoidal modulation causes the resulting power

density spectrum to become
Cy- ® © 2
+.._ 0 'n' 2, _(B-k) _
5,(8) = TJ-'\/'Z— z 2 “n KpJi (m1g) exp[ T&'—] cos[tn(p k)]'
0 ==-00 n=0 n
where the notation of Appendix C has been used.
A relation between the modulation index, m, which corre-

sponds to the noise modulation, and m_, which corresponds to the

sinusoidal modulation, can be ob*ained in terms of the ratio of the

sinusoid to noise average power. Let

DZ E 2
_...._m - .
E_Zsinf(ut+a) E_Z w2 m 2
p = m 0 . m G _ B
- —3— - — - — - 2
v_(t) 2v ZD2 v Zm

n n n
w

0
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The power density spectrum can now be expressed in terms of the

parameters, m g P and Q.

Ofpozo ZCJ

2
S 1’1\1
DRI, k(m )exp(z-a)exp{ iy [1-exp( Q’J}X

(8-k)2 . _mn o
exp [- L—-z— exp (-m-)] cos [Z‘rm (@—k)J
m )

8

S ((3)

where, as in Chapter IV, the assumption has béen made that

V/ S
b= /1 - zz- = 1,

This expression, although rather formidable at first glance,
does yield an insight into the spectral shape that is obtained from
FM by band-pass noise and a sinusoid. The spectrum is seen to be
made up of the sum of a set of FM by band-pass noise spectra which
are centered at integer values along the p axis with each having a
peak value corresponding to sz(ms). The degree to which each

component approaches a smooth Gaussian curve will depend on the

modulation index, m, or cguivalently Suppose p is {ixed;

2
then the value of m, required to produce smooth Gaussian shaped
components of the resulting spectrum can be determined from the
results of Chapter IV. In the limit, as m becomes large, the

spectrum assumes a shape given by the probability density function

of the sum of the sinusoid and the band-pass noise.
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VI. SIMULTANEOUS FM BY BAND-PASS NOISE AND AM BY

LOW-PASS NOISE

The waveform to be considered in this chapter consists of

v(t)

C(t) coé.[wct + ¢(t)] )
where

C(t)

C, + va(t)

0
and

t
#t) = D J' v (t') dt"
=00

The voltage vh(t) is band-pass noise-as before, while va(t) consists
of noise which is obtained by passing white noise through a low-pass

RC filter.
The power density spectrum of the low-pass noise, va(t), is

2w v
a a

Sy (@) = ——==-

a w +w
a

1 : .
where w, RS As in the band-pass noise case the spactrum has

becn adjusted so that a constant rms voltage, / Va (t) , is obtained

independent of W, - Note that w, is the conventional 3 db bandwidth

of the noise processing RC {ilter. The correlation function of va(t)
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is easily obtained by taking the inverse Fourier transform of Sv (w)
a
to get

R, (1) = v,7 exp(-w|7])

a

In Chapter III the correlation function of simultaneous FM by

band-pass noise and AM by low-pass noise was found to be
1 e N
Rv(‘r) =5 E{C(ti) Lil,) cos [wc'r + ¢(t2) - (b(ti)]} .
Substituting for the amplitude modulating function yields
R (T)=1E C2+C v.(t)+C v (t,)+v _{t,)v_(t )1
v 3 07 CoValti! T Lo Valtal TVl Valhy ) | X

cos [wc‘r + ¢(t2) - ¢(t1)]} .
Using the fact that va(t) has a zero mean value, and the assumption
that va(t) and vn(t) arc independent gives

R (1) = %{COZ +E[v (t,) v (t, )]} E {cos [wc'r +d(t,) - ol )]}

The second expected value is again identical with that obtained in

Chapter IV, while the term E va(tz) va(ti)] is simply Rva(T)-
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Using the notation of Seciion IV-E, we get

2
c w_|t] Wt
2
Rv(;:,—o) = —-é-)— [1 +p exp (- —2(—)——)]exp [—m f(t)] cos -—w% ,
Z
v
where p =

is a measure of the percentage amplitude modulation.

Co

The power density spectrum of simultaneous ¥M by band-pass
noise and AM by low-pass noise is thus suen to consist of two terms:
one which is identical with that of FM by band-pass noise cniy; and
one which results from a correlation function that is modified by the

wy |t
@ ).

factor pexp (-

The effect of simultaneous amplitude modulation can be

readily estimated by considering the influence of the factor
walt
“o

exp (- ) on the previous derivation of the spectrum of FM
by band-pass noise only. Recall that the correlation {function of
FM by band-pass noisc was approximated by a =et of displaced
Gaussian functions whose amplitudes were adjusted to equal the
maxima of the envelope oi the exact correlation function at the

2mn Wy it
points t = 5 - The major effect of the factor exp (-

is to reduce the peak amplitudes of the approximating functions.
Thus the corresponding effect on the spectrum becomes one of
reducing the magnitude of the degree to which the rower density
spectrum deviates from the limiting Gaussian shape. With these

considerations, the results of Appendix C for FM by band-pass
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noise can be readily extended to the case of simultaneous FM by

band-pass noise and AM by low-pass noise to obtain

2
(o} © W,
St(p) = '27.;'6‘05'\/%'—1120 fn [‘:1 +p exp (*;g- -Z%E)] exP(Egi) X

B i TR zgg;wm e

2

exp {-mz[i - exp (- -E?i)]} exp[- :‘3—2- exp(-‘-'{;—a-) cos 21;n[3 .

W T ameEte g ey 0 s w
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Vil. EXPERIMENTAL INVESTIGATION OF POWER DENSITY
SPECTRA

The system used to gencrate the various random modulated
waveforms discussed in this report is shown in Figure 9. Spectrum
analysis was accomplished using a modified AN/APR-9 receiver,
which is essentially a double IF frequency superheterodyne receiver
with RF preselection employed for image rejection. The local
oscillator klystron frequency is linearly swept between adjustable
frequency limits by a mechanical drive-unit. A display of the power
density spectrum of the receiver input waveform, such as that
shown in Figure 7, was obtained by use of an auxilliary oscilloscope
with a long persistence cathode ray tube. A voltage proportional to
the receiver local oscillator frequency was applied to the oscillo-
scope x-axis input; while the output of the receiver's narrow band
second IF, after suitable detection and integration, was app'ied to
the y-axis input of the oscilloscope. This method of rapid power
spectrum measuremen. makes feasible an investigation of the effect
of the various mocdulation parameters that would be difficult, if not
impossible, if the coniventional point-to-point power density spectrurn

measurement technique were used.

An accurate determination of the frequency sensitivity of the
FM source (BWO) in radians/volt (denoted by D in thys report) was
obtajned by applying a sinusoidal modulating voltage of sufficient

amplitude to cause the center frequency spectral ling tc he zevo.
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Since the center frequency spectral line is given by Joz(ms), the
first null of this spectral line will occur at a value of m_ corre-
sponding to the first zero of ‘Io(ms). The peak magnitude, Em' of
the modulating sinusoid that is required to produce the first null of
the center frequency spectral line is measured, and D is then com-

@g Mg “o
» Where fo = = ir the freguency

puted from the relation D = o >

of the.modulation. A similar technique using other spectral lines
having magnitudes of sz(ms) can be used to determine the value
of D) corresponding to various modulation voltage magnitudes and
thereby determine the modulation linearity of the FM source. Once
D has been determined, the mean square noise voltage ;:F(‘t-). re-

quired to produce a desired noise modvlation index, m, is computed

from the relation

and vn(t) is adjusted to obtain the required va with the aid of a

truc rms meter.
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APPENDIX A
If a band-pass circuit, whose transfcr function is

Hoa
H(s) = v - v ’
8 + “18 + wo

is used to filter white noise, that is, noise having a constant power
density spectrum, -then-the resulting output voltaée. vn(t), has a
power density spectrum given by
HO’Z N wz
SV (w) = V] — ’
n (w 2 wz) +w wz
) 1

where N is the constant powesr density level of the input noise. The

mean square output voltage is

2

2 H0 N o . w,z dw
Ya T TIw Jl Z

n 2 2 2 2
-a)(wo -w’) tww

This integral can be readily evaluated by contour integration.
By analytic continuation the iniegral becomes
22
4[ - 7 dz ,

c (wo?' + zz) + w!d z2

where © is a closed contour along the real line -0 < w < o and

The integrand has tweo poles that
lie within th wy &
ie within the contour, one at z = 7.1 =4 wo - -1

encircling the upper half piane.
“4
+ j T and
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The integral can be written

‘c (z-zi)(z-zii)(z+z1)(z+zi )

z 2
i

g3

+

(-2,

= 27j [Sum*of Residues at Zy and '21*]

= Zﬂj[ 7
(zi-z

*
(z1+zi ) '

1 )(z1+zi)(zi+zf‘)

3.

A

L8] - =

. 2j—1£n(z1y =

w

1

Note: The symbol Im denctés "imaginary part of."

(-21*;—z1)(-zi*-zir*)(-9:1*+zi) ]

The integral over the upper half z-planc circle can be easily

shown to be zero in view of the fact that the degree of the denomina-

tor of the integrand is greater, by two, than the degree of the

numerator. Thus

is obtained.

the result




SRy e g e

€8 N, 00y § R

'

ot gy

B s T

~78-
APPENDIX B

In order .to obtain the correlation function of FM by band-pass
noisc an integral of the form
¢® (4-cos wT) dw

{w) = .] 3
-0 ‘(wo - mz) + wi—z wz

must be evaluated. The integral Xw) can be written as the sum of

two integrals, Ii(w) and 'Iz(w), with

Q0

I,(0) = 7dw ]
1 2 2% 2 2
-00 (t»)o-m)-i-m1 w
and
0
~co8 wT dw
L(w) = =5

2 2 2 2
-oo(wo-w) +m1 w

These integrals are evaluated by means of contour integration.

By analytic continuation, the {irst integral, 11((»), becomes

dz

1,(w) =
1 I 2 2° 2.2
C(wo-z)+w1z

where the contour is taken along the real line -co <w < 00 and the
upper half plane with the integral around the upper half plane being
zero as was the case in Appendix A. Note thai the poles of the

integrand are also the same as those of the integral in Appendix A.
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4 Ii(“’) = Zﬂj,[Sum of Residues at zy and -21*]

1,1 . 1 "
} =—21"J—;r(;1‘+7)=“3 D IT' LA
: (22-2) ) 2y 232y (2)-2)) wlz) |7 @y
%
; The integral I,{w) is ¢valuated as follows, where the symbols
3 Re and Im denote "real part of" and "imaginary part of"
£
*'; respectively:
:"E
v 0 ex ('z]-rl)'dz
3 _ cos wr dw _ PUzIT:
“: -Iz(w) = 2 = Re Y
é' -0 (wg'—wz) +wfwz C (wg- zz) + mf,zz
b - Re{ nj [ exp Uz lrl) - exp (-3 2y 7l) ] }
% 2 %y z)
H 1 1

‘ Re {____EJ_._Z— [zréxp(jzilﬂ) + 7y exp(-jzrh!)] }
EARTEEN
| 1 ™

"
Re{ 5
2|21| Re(zi)lm(z1

) exp [(-Im(z1|7l )] [Re(zl)cu.-;Re(Z,ll'rI)

+ Im(z,) sin Re(zi[7|)]}

PRSI,

2 2
: Py W I'rl w w A
. —"“'7 exp(-—iz—)[cos(%g- -;f—]'rl)+ o -~ §in wg--;—l'rl ;].
Wy Wy 2 :

2 (A)i
&/ T
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APPENDIX C

In Chapter IV the correlation function of ¥M by band-pass

noise is apProximated'using the following expression:

2
C wt o
t 0 [ 2 2mna
R (=) & —ve cOB —- £ ex {-I.‘l [1-ex - _]1 t) ,
Ve 4 @ nZ:O n &%P pl '6")_” lt)
where

2

2rna 2mna 27n

2 2 .2
8(6) = exp[- G exp(- 22 (e - 0 ]+ exp[- By exp(- 2002 )0+ 510 .

Let
2 2 2mna

a =m exp(--%n—a‘-)

and
2nn

th T '

then . 2 . 2
2 . 2

g(t) = exp[-—%—(t = tn) ]+ exp[-—%— (t+ tn) ] .
Also let

;= .2 2wna 1"

K, = exp {-m [1 -exp(---s—-)_l} .

Now R.v can be written

t 0 c -
R(——):Tcos—— e K_glt)
v “’(1 (.00 né'() n n g
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The power density spectrum, Sv(w), can now be obtained by taking

the Fourier transform of R (-t-). Thus
v wy

o)
.t wt, dt
S, (w) = R (—) exp (:—) —
v J‘ vy wy ' Wy
~00
wt

Upon writing the cos _mc_ term contained in R (-—-) in exponential
0 “o

form, Sv(w) becomes

2
C © (w-w } {w-w )
=0 T, 1
Sv(w) = o n§) € Kn{‘[ glt) cxp[j -—-—-5- t_] ..+I g(t) expl:j ](u.}

-0

As before (Section IV-E) we assume that W >> Wy which leads to
the conclusion that the power density spectrum appears centered
about the frequencies w, and -0, Since Sv(m) is an even function,
attention need only be focused on the spectral behavior around

w = w_ which is obtained by using only the first integral in the

expression for Sv(w). Thus St(ﬁ), which is Sv(w) expanded about

W-w
w=w_, with = , i8
[+
+ Coz Q g
5,(f) = oy & e K, g(t) exp (-jpt) dt

-0

An asymptotic power series approximation fox the power density

spectrum of FM by band-pass noise is thus obtained upon evaluation

of the integral
0

[ 8t exp (-jpr) at
-
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Substituting for g(t) leads to the two integrals

2 2
Im exp [— fzfl(c +e )P jpt] dt + Imexp [- 32’1 (t -t )2 jpt] at
-00 -

If the first integral is evaluated, the second integral can be readily
obtained by simply changing the sign of t The first integral is

seen to be

foexp on (2t + 55 et %] at
3 n :Z n !
n

-Q0

which upon completion of the square becomes

2

r 2 o o . 2

exp[-ﬁz”tnp] J' exp[-—%—-(t+tn+};%-) ]dt
n n

-Q0

Let

= i
ustht + -J-z— ,
a
n
then this integral becomes

2
Iwex[ “n Z] . 2w
P[-——u |du = -

23
n

-0

This last integral uses the well-known result of the integral of the

Gaussian first order probability density function, where 0'2 = —

a
is the variance. n
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Thus the integral

[0 0]
[ tt) exp (~jpe) at =

-0

V2n

a
n n
2 J2r [52
exp{~-~~~)cost f ,
a < n
n Zan

and the power series approximation for Sz(p) ig

2 2

c B

=

+
she) =

I
314
3
M8

n
n=0 n a
n

O
™~

1)
o.;\lo
N
o~

exp (Ir-g-?‘-)] cos Eg_n_ B

exp [

Notice that the zeroth order term of this expression is

]

c.® 2

0 (3 B
exp (--__ ) .
2B T 5 z

2 ,
exp (- L) [exp (31,1 + exp (~jt, P)] =
2a

€ -a—’l exp(-z—-z-)costnﬁ

o
mna 2

z € exp(-g—-)exp{-m l:i-exp(—

n=0 o

[

2wna

sl

which is the same as that obtained in Section IV~D-2 for the limiting

case as the modulation index m becomes very large. Thus the

higher ordered terms in the expression for Si(ﬂ) represent devia-

tions of the spectrum from the Gaussian limit for intermediate

values of m.
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