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PREFACE 

An infinite-dimensional linear-programming problem pro- 

posed by W. Prager is solved in this Memorandum, which involves 

basic mathematical research.  The problem arose in an elastico- 

plastic structural^iesign context.  It is hoped that the solu- 

tion of this problem will provide insight into the solution 

of many others of the same general character. 
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SUMMARY 

For the problem of minimizing the Integral /  f(x)dx 

subject to the constraints 

- f(x) < xg(y) < f(x) if 0 < x < y < 1, 

- f(x) < xg(y) - x + y < f(x)      lf 0 1 y 1 x 1 1> 

the author exhibits solutions and proves both that they satisfy 

the constraints and that they have the extremizing property. 

The problem, proposed by W. Prager, arose in an elastico- 

plastic, structural-design context. 
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A LINEAR PROGRAM OF PRÄGER"S 

1.  STATEMENT OF THE PROBLEM AMD OF ITS SOLUTION 

In a recent letter to R. Bellman, W. Prager proposed the 

following problem: 

It is required to find real-valued, nonnegative integrable 

functions f, g, on [0, l] so as to minimize 

/1f(x)dx, 
i/o /o 

subject to the constraints 

if 0 < x < y i 1, - f(x) < xg(y) < f(x) 

- f(x) < xg(y) - x + y < f(x)        if 0 < y < x < 1. 

The foregoing problem arose in a structural-design context 

of elastico-plastic type.  Although the writer is not familiar 

with the details of the model, it is hoped that the solution 

of the present problem will provide insight toward the solution 

of an entire class of problems of the same general character. 

The solution (f0, g0) given below is not the only solution 

to the problem, as the subsequent analysis indicates.  It turns 

out that g0 can be perturbed slightly in its tail (beyond 75/2) 

without altering feasibility.  Moreover, since the other 

component (f0) is defined only in terms of the values of g0 

on the interval [0,75/2], integrability of g0 beyond 7^/2 is 

inessential.  It Is thus seen that there are 2C solutions of 

the problem, where c Is the cardinality of the continuum. 
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Flnally we remark that, corresponding to an optimal (f, g) 

pair, if r > f .1 with equality holding almost everywhere, then 

(T, g) Is an optimal feasible solution to the problem. 

Having dispensed with this digression, we now contend 

that the following (f0, g0) is a solution to Präger's problem: 

g0(x) = max 0, Ä ~ log x +, /x2 + 0 
where 

X = 1 + loi C^i *>]■ 
and 

xg0(x) 
fo(x) "   - ^0 (y^Tl) 

4- 
+ x - yx2 - | 

if o < x < 

if ^| < x < 1 

In Sec. 2 we shall show that (f.., g0) satisfies the constraints 

Imposed.  In the final Sec. 3 we shall then show that (f,-,. g,-,) 

minimizes the objective integral over all pairs (f, g) satis- 

fying the constraints. 

2.  VERIFICATION OF FEASIBILITY OF SOLUTION 

It is clear that the given constraints can be rewritten 

as follows: 

g(x) > 0, (A) 

f(x) > 0, (B) 

f(x) > xg(y)              if 0 < x < y, (C) 

f(x) >  xg(y) ~ x + y       If 0 < y < x, (D) 

r(x) > - xg(y) + x - y    if 0 < y < x. (E) 
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We remark that the given constraint 

- f (x) < xg(y) if 0 < x < y 

is a trivial consequence of the nonnegativity conditionSj (A) 

and (B). 

Before we show that the given pair (f0, gfj satisfies the 

constraints (A) ... (E), a few preliminary remarks are in order. 

Remark 1.  g0 is decreasing and convex. 

To see this it is sufficient to show that on the set where 

gn > 0, its derivative is negative and increasing.  But on 

this set, we have 

(1)     SOU) = -  ^— • 'cr 
/2  i 
'X  + 75 

It is Immediate that the right-hand member of (l) has the 

requisite properties. 

Remark 2.  SQ^0^ < 1* 

A numerical calculation gives 

g0(o) % .9^07 < 1. 

Remark 3«  go(x) "* 1* 

This is an immediate consequence of the two preceding 

remarks. 

Remark 4.  gjS^-J > 0. 

A  numerical  calculation gives 

g0(^|) = -0593  > 0. 

We now proceed with the proof of  feasibility  of   (f0,   g0). 
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That g0 satisfies the constraint (A) is obvious from the 

definition of gQ. 

Moreover, it follows from (A) and the definition of f0 

that (B) is satisfied by f0 on the interval [0, /2/2),  To 

see that f^ is nonnegative on the remaining interval, it suf- 

fices to show that 

f0(x) = - xg0 Vyx
2 - lj  + x -/x2 - ^ >  0       ifx>^J. 

But, at x = y^/2,   the right—hand member of the above equation 

has the value 

_^| g0(o) +^|-^ (i-g0(o?) > 0, 

by virtue of remark 2.  Consequently (B) will be established 

if we can show that f is increasing on the interval [yS/S, l] . 

But, since the function v/x — 1/2  maps the interval { y2/2,   l) 

into the interval (0, v/2/2), and g0 satisfies g0 > 0 on this 

latter interval by virtue of remarks 1 through 4, we may 

differentiate .f(-)(x) using 

g0(x) = X - log \x +yx    + 

Thus, we have 

But, from (l) we see that 
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,2        \\ 1 
'o yx - ?y = _ x 

Substituting this value in the above formula for f0 gives 

f;(x) = i-g0 KJ*2-\j>o, 

by virtue of remark 3.  This establishes the desired monoton- 

icity of f0.  Hence the constraint (B) is satisfied by (f0, g0)• 

To see that (C) is satisfied by the proposed solution, we 

must prove that 

f0(x) > xg0(y) if 0 < x < y. 

But, by remark 1, g0 is decreasing.  Hence the right-hand 

member of the desired relation will be maximal at y = x, and 

thus it is sufficient to establish that 

(2)  f0(x) > xg0(x) for all x e [0, l] . 

But this last relation holds with equality on the interval 

[0, /5/2), by the definition of f0 on this interval.  Con- 

sequently, we need to show only that the relation holds on 

the interval [75/2, l], i.e., from the definition of f0 there, 

that 

f0(x)=-Xg0   (^T^. X-y^T^>Xg0(x)    if4lX<l, 

On the set on which g0(x) » 0, this last relation holds auto- 

matically since by (B) we have f0(x) > 0.  Consequently, we 

ed verify the above only for points for which g0(x) > 0 ne 
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and s/2/2 < x <  1.     But at  x = J2/2,   we  have 

^o (4)=-4^°)+4 

^ ü i? 
1 + log W^  I 1 ̂\ iog (4 

Upon simplification, using well—known properties of the loga- 

rithm and a little algebraj we obtain 

fo (4)= 4-4 iog (/2 +1) • 

On the other hand, the right-hand member of the desired 

inequality yields, at x = J2/2, 

= 4-4 ios(/2 +1 

log1 + 1 

Thus, the desired inequality Is sharp at x = y2/2.     To 

establish it beyond this point on the set on which g0 > 0, 

It suffices to show that the function 

f0(x) - xg0(x) = - xg0 Vyx
2 - *ry)+ x -,/c - | - xg0(x) 

Is increasing on this set. 

Upon differentiating, we obtain 



-7- 

f0(x)   - xg0(x) 

Ac ' / 2       Id/2        1-,        d/2       1 
xg0    yx     -?;^A     -?+1-d7>    "2 

- xg0(x)  - g0(x)     . 

By  the   previous  relation, 

A 
(   /C2 _ i /o 30 42 - i/2 ;= -- i/x, 

fn(x) - xgn(x))    = ll-g0(x)]  - xgl(x) 

this reduces to 

/ v      / 
Q(X) — XgQ(x)l      =  IA — CQVA/I   — A&Q 

But by remark 3> we have 1 — g0(x) > 0, and by remark 1, we 

have — xg(-)(x) > Ü, whence 

|f0(x) - xg0(x)j' > 0. 

Thus (C) is established, and we have moreover also shown 

that 

(2)   f0(x) > xg0(x) for all x e   [0, l]  . 

To establish (D), we are required to show that 

f0(x) > xg0(y) -x+y     i? 0 1 J 1 *     • 

By remark 1, g0 is convex. Thus, the right—hand member of 

the desired inequality is convex in y and hence is maximal 

at an end point y ■ 0 or y » x.  Hence it suffices to establish 
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the inequality at each of these points.  But at y = 0, the 

right—hand member becomes x g0(0) - 1 < 0, by remark 2.  But 

since f0(x) > 0 we see that the inequality is satisfied at 

the lower end point.  At y = x the inequality reduces to 

f0(x) > xg0(x)  . 

But this last Is the inequality (2) already established.  Thus 

condition (D) is satisfied. 

Finally, to establish (E) we are required to show that 

fo(x) 1 - xS0(y)   +x-y ifO<y<x. 

By remark 1, g0 Is convex; hence the right-hand member of 

the desired inequality is concave in y.  Consequently, if there 

exists an interior point y0 e (0,-x) at which the derivative 

of the right-hand member with respect to y vanishes, this 

member will be maximal at that point.  Upon differentiating 

with respect to y and equating to zero, we obtain 

- xg0(y) -1=0, 

or 

g0(y) = - * • 

But recall that this equation is satisfied by 

y0 = A-2  - ^ < x. 

provided of course that /2/2   < x < 1.  Moreover, y0 is in the 
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range  of  g0 >  0.     Thus  for x  6   [/2/2,   l]   it   is  enough  to  show 

that 

f0(x)   > - xg0l Jy? - | )   +x-/x2-|. 

On this interval, however, equality holds by the definition 

of f^.  Thus it remains to show that the desired inequality 

holds on the interval 0 <_ x < y/2./2.;   i.e., we are required to 

show that 

xg0(x) > - xg0(y) +x-y     if0^y<x<^-|  . 

Now since g0 is strictly convex on the set on which g0 > 0, 

and J*.    —  1/2 is imaginary for x < y2/2,   we see the derivative 

of the right—hand member (with respect to y) cannot vanish at 

a point y0 interior to [b, /5/2).  Thus the right—hand member 

is maximal at an end point y = 0 or y = x.  But at y = 0, this 

member reduces to — xg0(0) + x, and we are required to show 

that 

xg0(x) > - xg0(0) + x if 0 < x < 

Since this inequality holds trivially at x = 0, we can assume 

that x > 0, and this last desired inequality becomes 

g0(x) > - g0(0) + 1 if 0 < x < ^| . 

But since g0 is decreasing and continuous on this interval, 

it suffices to establish the inequality at x = J2/2.. 

Prom a previous calculation, however, we have 
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- g0(0) + 1 = |-| log (/2 + 1) . 

The foregoing Inequality is thus sharp at y . 0.  Finally, at 

the upper end point y = x, the inequality 

Xg0(x) > - Xg0(,y) + x - y 

reduces to the nonnegativity condition on g0 already established, 

Thus, (E) is satisfied and the verification that (f^ go) ls 

in the constraint set is complete. 

1^ PROOF OF OPTIMALITY OF SOLUTION 

The proof of optimallty is not nearly so tedious as the 

rather messy analysis of Sec. 2, which showed that the pro- 

posed solution (f0, go) is in the constraint set>  ^ ^^^ 

for this unbalance of effort is due primarily to the 2^imen- 

sional character of the constraining inequalities and the fact 

(which we do not prove here) that eaualltv of t-n / ^uciu equality of the constraints 

can hold only on a set of (2-dimensional) measure 2ero.  This 

last assertion is an aside, however, and we shall turn our 

attention now to establishing the minimal property of (f0, g ). 

x-/x2-J W. 
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By elementary calculus and a numerical computation, we obtain 

J = ^  1 + log(/2 + l) _y2 J-.1168. 

Moreover, we have 

f0(x)   = xg0(x) if  0 x <q> 

wnence 

ß /I 
(3)      / 2 fo(x)dx -/ 2 ^0^* 

Also,   we  have 

f0(x) = - xg0'v yx2 

whence 

(4)        Z1 f0(x)dx - 

i) / 2       1 + x - yx - TT if ^| < x < 1, 

X 
xg0( v/x  - ^ Idx + J 

Adding equations (3) and (4) together gives 

*£ 
f0(x)dx = / 

2xg0(x)dx - /  Xg0 
'0 "       ^0 

Upon making the change of variable 

/x2 - Ijdx + J . 

,   / 
x - yx 2   1 

in the second integral of the right-hand member of the above 

equation, we obtain 
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z1        ( JA      0 V 

SI 
;        - -^  ? X.S0(x.)dx' 

2 -il  dx 

Thus, the Integrals involving g0 cancel and we are left with 

(5) /  fn(x)dx = J . 
^O   0 

Next, let (f, g) be any pair of functions in trie constraint 

set.  Then (C) must be satisfied in particular for y = x and 

0 < x < /2./2.     Thus, we have 

(6)       f(x) > xg(x) lf 0 I x 1 ^| . 

whence we obtain 

(7) / '  f(x)dx >/^ xg(x) dx 

Moreover,   if 72/2   < x  <   1,   we  have  0 _ /x2 -  1/2   <  x,   so  that 

(E)   must   be  satisfied   if y  = /x2 - 1/2 and ,/2/2   <  x   <   1; that   is. 

/ A 
(8) fOO  1 - xg     ^c2 - |    j+ x -^2 _  1       ifv| < x 

Integrating this last inequality over the interval on which 

it holds yields 

1. 

(9)  /j  f(x)dx > -^ xg |/x - i ) dx + J, 

Finally, adding (7) and (9) gives 

/^   f(x)dx > y~22 )cg(x)dx -^ xg Uc2 - Jj dx + J. 

But upon making the same change of variable as before, we see 

that the integrals involving g cancel and we are left with 



-13- 

y     f(x)dx > J =J      f,
0(x)dx (from (5)) , 

whence the minimal property of (f , g ) is established. 

A final closing note is in order.  In Prager's original 

statement of the problem it was tacitly assumed that f is 

integrable (via the objective function).  No such restriction 

(as we have made) was assorted about g.  Nevertheless, a proof 

of optimality with this restriction relaxed can be given as 

follows: 

If we replace x in (8) by /x2 + 1/2, then the new variable 

ranges over the interval [O, 75/2] and we obtain in place of 

(8) the equi-alent inequality 

(10)     f  (   /x2  + ^ j >  -A2  + \ g(x)   +/x2
+l-x     if0<x<^| 

Multiplying this last inequality by the nonnegative number 

x/./x  + 1/2 we obtain 

(11) - x  ■ f[ A2 + !)>- xg(x) + x - f if 0 < x < ^1 . 
/ 2   1  \        ' /o   i 
/x + j A2 + ^ 

Adding the inequalities (6) and (ll), which now hold over the 

same range, yields 

/ 2 
f(x) +      x      f(yi2 + I    > x 2—    if 0 ^x <*| , 

//2^  1   V       " / /  

whence 
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/ 2 f(x)dx + "2-   x 

0 /2   1 
4  + 2 

dx 

Upon making the appropriate change of variable in the second 

integral in the left—hand member above, and the same change 

in the right-hand member, we arrive at the desired inequality, 

/ f(x)dx > J . 
SO 

In accordance with an earlier assertion about the multi- 

plicity of solutions to the problem,  we contend that the 

analysis indicates that if (f*, g-*) is any pair of functions 

satisfying the following conditions, then (f*, g*) is a solu- 

tion: 

g0(0) _ g*(0) 1 1 + g0 (^\ 

6*(x) = g0(x)   if 0   x <^| , 

max (o,   g0 (^|)- x + ^|j < g*(x) <  g0 (^   ) if ^ < x < 1, 

f*(x) >_ f (x)  with equality holding for almost all 

x e [0, l] . 

(it is conjectured that these are the only solutions to 

the problem.  It has been the writer's experience in such 

matters, however, that a proof would perhaps be rather long 

and will not, therefore, be attempted in this paper.) 
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Graphs of these solutions showing the allowable variation 

of g* are appended.  Notice that there is a discontinuity in 

the derivative of f* at x = ^-| . 
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+  "30 VT) 

g*(x) 

0.2   - 

f*(x) 

0.1   - 
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