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- ABSTRACT

‘A unique decomposition of active RC driving-point impedance
functions is presented, which has been obtained by considering the
driving-point synthesis problem in terms of the reflection coefficient.
Application of the decomposition has been shown to guarantee the
realization of the driving-point impedance in Kinariwala's cascade
configurations and Sandberg's special configurations, each contain-

ing one negative impedance converter. The method imposes no

-restriction on the impedance function, except that it has only to be

a real rational function, The decomposition technique can be easily

programmed on a digital computer.
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I. INTRODUCTION

Synthesis of active RC networks has received considerable
attention in recent years because of the advantages these networks
possess compared to other types of networks. A one-port active RC
network can be considered to consist of a three-port passive RC net-

work (the so-called a.ssociated1 RC network) to two ports of which

is connected an active device, Usually, the three-port RC network is
a combination of several one-port and/or two-port RC networks. In
general, the steps followed in most of the existing synthesis techniques
are:

Step 1 - Decomposition and partitioning of the given function,

Step 2 - Identification of the associated RC network (or networks)

parameters,

Step 3 ~ Synthesis of the associated network,

Although several active RC configurations will be found in the literature,
there exists no straightforward decomposition and partitioning method
which would result in unique functions characterizing the associated RC
network,

The purpose of this paper is twofold. First it presents a unique
decomposition of active RC driving-point impedance functions, Secqnd,
it shows that the suggested decomposition can be used to realize im-
pedance functions in existing active RC configurations, where the
associated networks are now easily obtained. In a sense, this paper
proves in a very simple and straightforward way the following:
Theorem: Any real rational function of s, the complex frequency
variable, can always be synthesized as the driving-point impedance of
an active RC transformerless network containing a single negative
impedance converter and associated RC networks which are character-
ized by unique functions,

The basgic idea behind it is to obtain an equivalent active LC
driving-point impedance from the given function by an RC-LC trans-

formation. Then the reflection coefficient corresponding to this
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equivalent LC impedance is obtained. It is shown that the reflection
coefficient can be expressed as a product of two reflection coefficients,
one corresponding to the passive portion and the other representing

the active portion. Following Kelly's a,pproa.ch,4 the desired decom-
position is obtained upon inverse LC-RC transformation. The suggested

decomposition can be programmed on a digital computer,

II. DEVELOPMENT OF THE DECOMPOSITION

A, The Concept of Reflection Coefficient

Consider an active RC driving-point impedance Z(s) = K N(s)/D(s)
where Z(s) is restricted to be a real rational function of s and the leading
coefficients of N(s) and D(s) are assumed to be unity. Using the RC-LC
t‘.ransformation,5 we can obtain an equivalent active L.C driving-point im-
pedance Q(s) , which is defined as

s N(s?) .

Ny =s 2(s)) = K >
D(s™)

(1)

N
The reflection coefficient f)\(s) corresponding to Z(s) is given as

E (s)
1;‘ - E_(s) 1 - ﬁ\(s)/Rin

A
p(s) =
Ein(s)

. (2)
1+ é\(s)/Rin

according to the notations of Fig. 1. Substituting (1) in (2), we obtain

D(sz) -8 N(sz) - Q(s)
D(s2) + s N(s2) Q-8)

where the 1mpeda.nce level has been normalized with respect to R

Bs) = (3)

equal to K Now, D(s ) is an even function and s N(s ) is an odd
function. As a result, it is clear from (3) that to each zero of ﬁ\(s)
in the left-half s-plane there corresponds a pole of /p\(s) in the right-
half plane symmetrically situated with respect to the jw-axis and vice

versa. We also assume here that if D(sz) has any zero at origin, it is

A
*Henceforth we will consider only normalized Z(s) and Z(s).
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not cancelled with the factor s in the numerator of i\s). Moreover,

since the algebraic sum of an even and an odd polynomial with real co-
efficients cannot have any zeros on the jw-axis unless each of them have
the same jw-axis zeros, it follows that ’;}(s) will not have any jw-axis poles
and zeros except possibly at the origin. Thus we can wri.te*

l-n1 m2+n

m1+n1

s) = (4)

™22

where m; +1n; is the unique Hurwitz polynomial Hl(s) formed by factoring
the left-half plane poles of f:o\(s) and m, + n, is the unique Hurwitz poly-
nomial HZ(S) obtained by factoring the left-half plane zeros of ’p\(s) in-
cluding that at origin, if any. The reflection coefficient of an active
driving-point impedance can be thought to consist of two factors, one
representing completely a passive network and the other including the

active portion. Thus following Kelly'rs4 approach, we can factor ’p\(s) as

B(s) = E(s) - B,(s) (5)
where
) ml-n1
E(s) = -r;l—lrrq s (6)
+n
- 2 72
/‘}l(s) - m,-n, (7)

Because of the construction procedure outlined above, we note that E(s)

satisfies the properties of the reflection coefficient of a passive L.C driving-

6

point impedance, i.e., E(p), where p = (1 - 8)/(1 + 8), is a "unit function" ",

*The even part of the polynomials are denoted by the symbol m and
the odd part by the symbol n,



From (5) and (2) we obtain 4

1 + /p‘(s)
= 1 + = 1
) 2 (s8) + ! Q(s) + 1
X S ®
where
A 1 - E(8)
2.(s) = T+ E(s) (9)

2 (o) - 1- fy(s)
1 1+ (s)
Pl

Substituting the expressions for E(s) from (6) and ﬁ\'l(s) from (7) in (9)

we obtain
A n1
25 = my (10)
n
Ql(s):-. —_Z._
m2
Q 1 7A) 1
- Z.(8), - , + Z (s8) and + are guaranteed to be
' 2,(s) r Z (s)

in the form of passive LC driving-point impedances because of the properties
of the Hurwitz polynomials. 7 The corresponding circuit representation of

(8) as proposed by Kelly 4 is as shown in Fig. 2.



By making an inverse LC-RC transformation, we obtain a real-
ization for Z(s) using two unic'st as the active devices, as show;x\in
Fig. 3. Za(s), Zb(s), Zc(s) and Zd(s) of Fig. 3 are related to Zl(s)

and Qr(s) by the following relations: ;

1 A

z (s) = — z (/7 8)
Zb(B) = —1—- . 1 = —-1————

e 2,/ = 2,(s)

o1

2 (s) = 7 Ql (S 8) (1)
Zd(s) = --—1——-—— . 1 = .———1——-_-—

Js §1 (/&) 8 Z_(s)

It is clear that Za(s), Zb(s), Zc(s) and Zd(s) are in the form of passive
RC driving-point impedances.

B. Special Case -

We will now show that if the given driving-point impedance Z(s)
is a passive RC impedance function, then no active elementswill be
present in the structure of Fig. 3. In this case Q(s), obtained by the
RC-LC transformation of (1), is of the form of passive LC driving-point
impedance. Furthermore, because of the indicated transformatioun
procedure, the numerator of 2(5) will be an odd polynomial. Hence

we can write

A negative impedance converter with a unity conversion ratio will be
designed as an UNIC.



n
é(l) = 'r—x'];'
1

(12)
and the corresponding reflection coefficient is
m.-n
171
ANe) = o (13)
mtny
Comparing (13)with (4) we note that (13) is a special case of (4) when
n, = 0. This implies, in this special case, Fig. 2 and consequently
Fig. 3 are modified to that of Fig. 4a and Fig. 4b, respectively, each
of which, as can be seen, do not contain any UNIC.
C. The Decomposition
From (4) and (8) we obtain
Bis) = R
m, My =yt (14)
m,, m, are even polynomials and n;, n, are odd polynomials, Hence
we can express them as
2
ml = al(s )
2
m, = az(s )
2
n, =8 bl(s )
2 (15)
n, =8 bz(s )

Substituting (15) in (14) and then applying the inverse LC-RC transformation
we arrive at the following theorem:



Theorem - Any real rational function of 8, Z(s), can always be

decomposed in the following form,

bl(a)az(s) - al(s)bz(s)
al(s)az(s) - B bl(s)bz(i)

Z(s) = (16)
where al(s)/s bl(s), bl(s)/al(s), az(s)/s bz(s) and bz(s)/az(s) are unique
functions satisfying the properties of passive RC driving-point imped-
ances,
Identification procedures for al(s), etc., can be summarized as follows:
1. From the given Z(s) = N(s)/D(s), obtain the polynomial Q(s) =
D(s%) - s N(s?),
2. Find the zeros of the polynomial Q(s). Form the polynomial
m, +n, by factoring the left-half plane zeros of Q(s), including
the zero at origin, if any, and factor out the right-half plane
zeros of Q(s) to form the polynomial m, - n,
3. From m_, + n, and m, - n. obtain the even and odd parts and

2 2 1 1
using (15) obtain al(s), az(s). bl(s) ard bz(s).

D, The Associated Function

Before going into the application of (16) in the synthesis of active
RC networks, we will present an interpretation of (14). Let us define the

function

F(s) = :1:1} (7)
2 2

as the associated function corresponding to Z(s). Though m, +n and

m, + n, are Hurwitz polynomials, F(8) may not be a p.r. function, The

odd and even parts of F(s) are

nm,-mn,

2__2
272

Od F(s) =
m

(18)

mm,-nn,

z 2
my=na

Ev F(s) =



Thus we can write

] Z(sz) = e(s) = %3—{:—5—:—% (19)

The above results can be summarized as:

Theorem - To every real rational function Z(s), there corresponds
a unique associated function F(s) defined as a ratio of two unique Hurwitz
polynomials and related to Z(s) according to (19).
Now D(sz) corresponds to the numerator of the even part of F(s). If D(sz)
is positive on the jw-axis, then F(s) will be a p.r. function, In case of
D(sz) having odd ordered jw-axis zeros, D(-wz) will not be positive for all
w's. In that case we can multiply both the numerator and the denominator
of 8 Z(sz) by the factor I}(s2 + wiz) so that the augmented D(sz) Iil(sZ + m{")
has all even ordered jw-axis zeros and thus stays positive on the jw-axis,
Then we can relate the modified s Z(sz) to a p.r. function G(s) according
to (20}, which is given below,
8 N(sz) rll(sz+wi2)

2

o Z(s2) - _ Od G(s)

D(s%) 1}(32+wi2) Ev Gls)

(20)

Thus we find that there also exists a p,r. function G(s) corresponding to
Z(s).

III. SYNTHESIS PROCEDURES USING ONE ACTIVE ELEMENT

A. The Cascade Method?

The input impedance Z(s) of the cascade structure of Fig. 5 is

given as
1
Y2z “L |
Z(S) = le Tz-—zz (2 )

where Z)p» 2 and Y,, are the two-port parameters of the network N,

22



Rearranging (16) we obtain,

bl(s) bz(s)

a,(s) a8} " a,fs)

s b (s) " ale) 1N 0) (22)
8 b, (5] - aZ(E)

Z(s) =

Comparing (21) and (22) we identify

al(S)
211 T 222" 5 6.(3) AC

1 Byfs)
y—z2 - —'(‘)'al s (23)
b,(s)
Z, ==
L azls)

From (23) we obtain

2 _alz(s) - sblz(s)
12 ~

z

(24)
s2 blz(s)
For the set of parameters {zij} of (23) and (24) to represent a physically
realizable set, the residue condition must be satisfied, Evaluating the

residues of Zpr %22 and z), in a pole at s = S we obtain

a,(s) I
k., = k =
n- 22 b (s) + s b (s)
8 = Sk
(25)
L \/af(s) - s bl(s) . a,(s)
12 bl(s) + 8 f)l(s) bl(s) + s l.)l(s)
s = Sk 8 = Sk



where Bl(s) is the derivative of bl(a). It is seen that the residue condition
is satisfied with an equal sign.

Next, we will have to show that a rational 2, can Le vblalned, In
general, the numerator of zi"z as given in (24) will not be a perfect square.
If it is not, the following augmentation method which is similar to Darlington's
technique 8 can be pursued:

Augment the associated function F(s) by a Hurwitz polynomial

m, + n, to obtain the modified function

] |
SO e B R i (26
2 2 00 2 2
where
i
mi = mlmo + nan

m'2=mm + n_n

20 20
(27)
] —-
n1 —nlmo+nom1
nt =n_m, +n

2 2Mo T Me™;

Recomputing the odd and the even parts of the augmented associated func-
tion we can show that there is no change in the ratio of the odd part to the
even part, both of them being multiplied by the common factor mg - ng.

But after augmentation the two-port parameters and Z. of (23) and (24)

L
will be modified as follows:

al(s)ao(s) + s bl(s)bo(s)
M %227 % bl(s)ao(s) + 8 al(s)bo(s)

_ +J{e{‘<s) - s v2(e) {aZie) - s b2(s)]

127 - ) bl(s)aoli) ¥ s al(s)bo(s)

z

(28)

bz(s)ao(s) + bo(s)az(s)
Z. =
L aZTs)ao(s) + 8 bz(s)bo(E)

-10-



We can choose ag(s) -8 bg(s) equal to that factor of alz(s) -8 bf‘(s) which

is not a perfect square and thus obtain a rational z It can be shown that

the residue condition is still satisfied with an equallzsign.
Furthermore, the decomposition technique guarantees Z)r Zpp
1/y‘zz and ZL to be of the form of passive RC driving-point impedances.
A lattice realization is always possible because of the residues of
the z-parameters being equal in magnitude, Thus any real rational Z(s)
can be realized in the practical Cascade Configuration of Fig. 5 and, in

effect, we have proved the theorem mentioned in the Introduction.

B. Synthesis Using Special Structu.res3

The problem of obtaining a rational z,, associated with the Cascade

12
Method is not encountered in the following method. This method uses only
one-port passive RC networks and a generalized type of impedance converter*

in special configurations, The h-matrix of a GIC is given by

0 1
(29)
2
VA 0
n

where Zm and Zn are passive RC driving-point impedances.
Consider the network of Fig, 6, which we will designate as Type I -

Special Configuration. The input impedance of this network is

Z Z

2(s) = (30)
4.3
2, 24,

Rearranging (16) we obtain

b)(s)  b,(s)
allss - azisi

Z(s) = (31)

s b(s) b,(s)

Lrater C 56

*The Generalized Impedance Converter of this section will be
designated as GIC. For idealized circuits and a transistor realization
of GIC, see Ref, 3.
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Comparing (30) and (31) we identify

bl(s) bz(a)
Z, = H Z, =
4 allsf ! 3 azlsf ‘
(32)
bl(s) al(s)
2., = R Z. =
1 allsi ! 2 s Sllsi
Because of the decomposition technique the set of impedances Zl, ZZ, Z3

and Z4 are in the form of passive RC driving-point impedances.

The input impedance Z(s) of the Type II - Special Configuration of

Fig. 7 is given as

zZ, .2
g 1%
Z,2, - 2,2 6 Z
8~ “7 1. 07
Zg

Comparing (33) with (31), we obtain

bZ(S) al(s)
2., = H Z. =
7 azlsf ! 8 s Ellss
(34)
b, (s) a,(s)
Z, = ; Z.~=
6 allsi ! 5 =8 Sllsi

It is seen that the impedances given in (34) are all passive RC driving-

point impedance functions,

IV. ILLUSTRATIONS

A, Examgle 1

Consider the realization of an inductance by an active RC network,
Let ‘

Z(s) = s | (35)

-12-



We thus have

N(s) = s
D(s) =1
Factorizing

L

Q(s) = D(sz) -8 N(sz) =1- 93

we obtain

Q(s) = (1 - s)(s2 +s8+41)
Hence we identify

_ .2
m2+n2—s +s5+1

m, - n1 =1-8
that means

m; 1;n, =58

m2=s +1;n,=s8

From this we obtain

a,(s)

1]

1; bl(s) =1

il

(36)
az(s) s +1; bZ(S) =1

The Cascade Realization - Substituting (36) in (24) we find that

2z =+-\/1-S
12 ° 8

is not a rational function, We thus choose

ag(s) -8 bg(s) =1-38

i, e.,

ao(s) = 1; bo(s) =1 (37)
Finally, from (36), (37) and (28) we obtain the modified z-parameters and

ZL as

-13.



l1+s

N %22°"2s
l-8
2,15 (38)
z _8+2
L 28 +1

The complete network considering the positive sign for 2, is as shown in
Fig. 8.

Type I Realization - From (36) and (32) we obtain

Z4=1; 2, =

_ 1. 1
Zl—l, Z—g

and the corresponding network is shown in Fig. 9,

Type Il Realization - Substitution of (36) and (34) results in

and the corresponding network is shown in Fig. 1l.

B. Example 2

Consider the realization of a negative inductance. It should be noted
from (16) that in case of -Z(s), al(s) and az(s), and bl(s) and bz(s), as
obtained for +Z(s), are interchanged, respectively. As a result, we obtain
for this example from (36) the following:

al(s) =s8+1; bl(s) 1

. (39)
az(s) =1 R bz(s)

1

Substituting (39) in (24) we obtain

52
z - ++/8 +8+1

12 -~ s

-14-



Augmenting we obtain a rational 2, and modified zu,‘ 25, and ZL as

given below,

2 1 3 ="
g =g =8 t3s+l =1, 1 | 411
W %2 e+ 'ZTIEFD | T2
: | | I
2 | P
s =B ts8tl i1 + 1 L0 (40)
12° 25 D) |2 Zs+1= 25 |
—————— J——}
_s+2
ZL 2s +1

and the final network obtained considering the plus sign for zZ), is as
shown in Fig. 12.

Instead of realizing the z-parameters in a lattice structure, it is
possible to obtain an unbalanced structure by means of the Fialkow-Gerst
method. ? For the given example, the parameters were partitioned as
showr; by the dotted lines in (40) and the resulting unbalanced structure is
shown in Fig. 12,

This example was presented to illustrate the possibility of obtaining
unbalanced structures and also to point out that the suggested method does
not always lead to active RC networks with the least number of elements
because of the well known fact that a negative inductance can be realized by

terminating a negative impedance inverter by a positive capacitance.

C. Examele 3

As a final example we will realize an impedance function whose

numerator and denominator degrees differ by two, Let

1
2(s) = 50— (41)
s  + 28 + 2

Following the procedure outlined in Example 1, we obtain
al(s) =8 +1; bl(s) =1

. (42)
az(s) =8+ 2; bz(s) =1

-15-



and it can be seen that for a cascade realization augmentation is necessary
to in sure a rational Z) e Finally, we obtain a network realization as shown

in Fig. 13, using the formulas of (28).

V. CONCLUSION

It has been demonstrated that any real rational function of the complex
variable can be always decomposed in a unique form and can be realized as
the driving-point impedance of 2 >ne-port transformerless active RC network
containing only one negative impedance converter. The suggested realization
netw orks are practical and the element values of the associated! RC net-
worklks are easily obtained. Since the main part of the method consists of
solving a linear equation for its real and complex roots, the complete method

can be programmed easily for a digital computer,

-16-
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