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ABSTRACT

In the theory of the electronic structure of rrystals, the fundamental
features of the band theory, the valence bond method, and the tight-bind’ing
approximation are reviewed. The band theory is studied on the basis of the
Hartreé-Fock scheme, and the Bloch functions are formed by a projection
technique. The main methods for calculating Hartree-Fock functions in a
solid are briefly discussed. The advantages and disadvantages of the band
theory and the valence bond method are emphasized, and special attention is
paid to the correlation error.

In connection with the tight-binding approximation, the importance of
the continuum part and of the approximate linear dependencies is stressed.
It is shown that a complete orthonormal set of tranllationa,ll'y connected
atomic orbitals may be constructed as a convenient baiil for this approach.
The implication of the virial theorem in interpreting the cohesive properties
of the ionic crystals is further emphasized.

Some recent refinements of band theory are then discussed. It is
shown that a large part of the correlation error can be removed by permitting
"different orbitals for different spins®. This leads to a scheme intermediate
between band theory and valence bond method and, by means of a single
parameter, one can obtain an essential lowering of the energi curve and the
correct asymptotic behaviour for separated atoms or constituents. This
approach may be generalized to an extension of the Hartree-Fock scheme,
where the total wave function is defined as a projection of a Slater determinant.

The band theory can be further refined and connected to the exact
solution of the many-electron Schrédinger equation of the crystal by means of
an extension of the self-consistent-field scheme, utilizing the so-called reac-
tion operator here exactly defined by means of a simple partitioning technique.
The various types of self-consistent field theories are finally compared.
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1. INTRODUCTION

The quantum theory of the electronic structure of crystals has
historically been developed essentially along two main lines based on band
theory and valence bond method, respectively. Both approaches are to a
certain extent approximate, and the former seems to be more appropriate
for describing conductors and semi-conductors, whereas the latter seems
particularly convenient for studying insulators. Actually, both methods are
needed in order to understand the general propeitie_s of crystals and their
electric, magnetic, optical, cohesive, elastic, and thermal behaviour, and
the fundamental problem is then how they could be combined and refined to
give any accuracy desired.

In this survey, the recent progress in this field will be briefly
reviewed. The advantages and disadvantages of band theory and valence bond
method will be discussed, and the nature of the approximations and errors
involved will be investigated. Special attention is given the so-called tight-
-binding approximation, and the importance of the virial theorem in inter-
preting energy results in crystal theory will be emphasized.

A simple generalization of band theory to include correlation effects
will be described. It will be shown that the main advantages of band theory
and valence bond method may be further enhanced and the disadvantages and
errors partly removed by a synthesis of the two ideas, which may be charac-
terized as a band theory with different orbitals for different spins.

The relation between band theory and the exact many-electron theory
of a crystal will be further studied. It will be shown that, in connection with

- the exact description, there exists a one-electron model based on a general

self-consistent-field scheme whiqh may be considered as an extension of
Brueckner's generalization of the Hartree-Fock approximation. This result
is obtained by means of the exact reaction operator which is here derived
by a partitioning technique offering a simple and forceful alternative to the
otherwise used infinite~order perturbation theory.

In conclusion, the various approaches will be compared and discussed.

By means of density matrices, it will be shown that, independent of the way
one is solving the Schrbdinger equation, certain aspects of the one-electron
band theory will be preserved also in the exact many-electron theory, for
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instance the concepts of reduced wave vector k » effective mass, etc.

Since we are here mainly interested in the elecfrqnic structure of
crystals, we will throughout the entire paper assume that the nuclei are
fixed in the positions characteristic for tie lattice under gonsideration, and
that the nuclear coordinates may be treated as parameters in the electronic
wave function (Born-Oppenheimer approximation).

2. FUNDAMENTS OF BAND THEORY
(a) Hartree-Fock Approximation

' The band theory of crystals is physically built on the independent-
-particle-model, according to which each electron in a many-electron
system moves under the influence of the outer field and the "average" field
of all the other electrons 1). For each electron, there exists an effective

¥ N. Bohr, Proc. London Phys. Soc. 35, 296 (1923).

Hamiltonian Heff and a Schrédinger equation of the form

Ay 030 - €, S0 e

where wk( Xfl) is a spin-orbital, x:, - ("q,f-‘) is the space-spin coordinate
of electron 1, and E’h the corresponding one-electron energy. In the Hartree-
«Fock scheme Z), the total electronic wave function Y is .approximg.ted by a.

2) D.R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928); V. Fock,

. Physik 61, 126 (1930); J.C, Slater, Phys. Rev. 35, 210 (1930); |
P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930); 27, 240
(1931). ' '

single Slater determinant:

£-wlugb, 6] @

)
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where q;l,'wz', i .wN are the occupied spin-orbitals, which are assumed to
form an orthonormal set. The effective Hamiltonian is représented by the ex-
preuiofx

| . | -‘—'z.'\“’fu..' ,
3(.% -&—’L““‘ fiz““ e’ 5}: —)%%/_ * @2\./%. g(‘&g’%!(},,,g(" . y (3

where the first term is the kinetic energy, the second the attraction potential
between electron 1 and the nuclei g, whereas the last term is the above-
-mentioned "average potentxal from all the other electrons. The guantity p
is the Fock-Dirac densxty matrxx. '

3(";‘1) - RZ=; ?&("') 25:("2.) - | (4)

which satisfies the basic relations gz = g ) FFL (g)’N The operator P-12
is an exchange operator with respect to the electronic coordinates X; and

X, , and the corresponding exchange potential has hence a non-local charac-
ter 3). The spin-orbital energies ¢ ,x have a physical meaning in connection
with the first ionization potentials 4) and, to a certain extent, they may be used
also in studying the excitation energies 5).

3) For the approximation of the exchange potential by a local potential,
see J.C. Slater, Phys. Rev. 81, 385 (1951); V.W. Maslen, Proc.
Phys. Soc. A69, 734 (1956); P.O. Léwdin, Phyl Rev 97, 1474
(1955); p. 1487 f.

1) T. Koopmans, Physica 1, 104(1933)

5) See e.g. P.O. Léwdin, Phys. Rev. 97, 1490 (1955), and references
there.

The Hartree-Fock equations (1) are a system of non-linear intejro;
-differential equations connected with an eigenvalue problem which are solved
by the "self-consistent-field" (SCF) procedure. This may be indicated by the
diagram '
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—-)3( —> { P ——-—-> (5)
37 oy e

and, after being started by an‘,in'itia'l‘ estimate of p or {npk} ,» the cycle is
repeated until the procedure becomes "self-consistent”, i.e. no further changes
‘occur in the significant figures when the cycle is repeated. The eigenva.lue
problem (1) has in the atomic case ' been solved by numerical integrat:on, and
this approach has also been applied to crystals in the cellular method ) and

in the augmented plane wave method 8), Thé expansion method by Ritz %) \Qas
first applied to the SCF -procedure in connection with molecules 10). but later
this technique hal proven to be very useful also in the cases of atoms and
crystala :

‘6)‘ For a survey of the atomic SCF -calculations, see D.R. Hartree,
Repts. Prog. Phys. 11, 113 (1948); "Calculation of Atomic Structures"”
(John Wiley and Sons, New York 1957); R.S. Knox, Solid-State Physics
4, 413 (Academic Press, New York 1957); P.O. Ldwdin, Proc. R.A.
Welch Found. Conf. Chem. Res. II. Atomic Structure, 5 (1958).

7) E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509 (1934).

8) J.C. Slater, Phys. Rev. 846 (1937); 92, 603 (1953).

9 W. Ritz, J. reine ;xi(ew.’Math. 135, 1 (1909).

_10) . C.A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 (1938).

The methods of molecular theory may, in principle, be applied also to
crystals, since the latter are nothing but molecules of an immense size
characterized by translditional symmetry. If one chooses atomic orbitals
(AO's) as a basis in Ritz's method, the molecilar orbitals (MO's) associated
with a specific Hamiltonian may be found by linear combinations of atomic
orbitals (LCAO) “)., In solid-state theory this approach was introduced by

1) p, Hund, Z. Physik 51, 759 (1928); 73, 1 (1931); R.S. Mulliken,
Phys. Rev. 32, 186 (1928); 41, 49 (1932); J.E. Lennard-Jones, Trans.
Faraday Soc. 25, 668 (1929). For a lui'vcy.' see R.S. Mulliken, J.
chim. phys. 46, 497, 675 (1949).
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Bloch 12), and it goes under the name of "tight-binding approximation”. The
coefficients in the MO-LCAO exi)ansions' may be determined so that the
molecular orbitals become Hartree-Fock functions by an iteration procedure 13)
analogoiu to (5) and, since the total wave function is approximated by a

single Slater determinant or antisymmetrized product (ASP), the entire
approach is often denoted by the symbol ASP-MO-LCAO-SCF introduced

by Mulliken. Even direct methods for eva.luating S without the use of
{\pk} have been developed. “’) ' oo S

12)  F. Bloch, Z. Physik 52, 555 (1929); 57, 545 (1929). . . .-
13) C:C.J. Roothaan, Revs. Modern Phys. 23, 69 (1951).
14) . R. McWeeny, Proc. Roy. So¢. (Lbn'dox’a) A235, 496 (1956); A237, 355

* (1956); Technical Néte 61, Uppsala Quantum ‘Chemistry Group (1961)
(unpublished).

The Hartree-Fock scheme may be considered as an 'approximate. nieth-

wy-=f @

od. for solving the many-electron Schrédinger equation

where Y=Y (x‘, X5, xN) is the many -electron wave function subject to .
the antisymmetry requirement PY = (- 1) 4 correlponding to Pauli's
exclusion principle.- For a crystal with fixed i uclei, the total Hmﬂtonian has

- the form:

g-erih e enky sl @
T b b Hu vy 2™ D n"j 2N .714‘,3 2 | )

where the first term represents the nuclear repulsion, the second the kinetic
energy of the electrons, the third the attraction between the electrons and the
nuclei, and the fourth the mutual electronic repulsion. Spin-coupling terms
are ealily a.dded

One mey solve the eigenvalue problem (6) by irieana of the 'varhtion '
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principle 6<H . If the total wave function is approximated by a

single Slater de‘:le)rnﬁ‘x;ant. this leads to the Hartree-Fock equations (1) with
an effective Hamiltonian given by (3). For the ground state, the corresponding
total energy EHF =<H op Av is an upper bound to the true eigenvalue E ,
and the energy error (E - E F) or "correlation energy" may be used as a
measure of the accuracy of the entire approach. It is hardly necessary to
émphasize that the Hartre?—Fock energy is not identical with the sum of the .

spin-orbital‘ energies
‘ R v N | i
SO ) w3,

For the Hartree-Fock energy, one may use anyone of the following three
formulas:

En=¢ I E%Zk ez'm “/P‘ ) 3(’"'" LTS e ‘,fz SIS+

<h n, ny
i ™

& /gnm) gl k) — gl kgl x)
-+ ‘lJ \_/7 v nu. ' &”‘ML

- e __;@_. + €_ — ) -
cazi i—sn—‘ ‘ a ()

o2 @ (%, %) g(x,.,x,_) — (%, ;) §lxe, 1) -
Y / o by, =

- e ,_-1%_“ +-§‘-§i€k + /f g(z,,z’.)&.,.._Zzy\/M

D "

where the last form is simply the artithmetic mean of the two first relations.
We note that, for crystals, one has to include the nuclear repulsion term in
the calculations, since otherwise Eur w151‘1 become divergent, i.e. no longer
proportional to the volume of the crystal )

15) P.O. L8wdin, Advances in Physics 5, 1 (1956), p. 11 f.

o e o n vwe s =
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(b) Translational Symmetry

An ideal crystal is characterized by the translational symmetry which

is basic for the understanding of its fundamental properties. Let d., , 0 2, (1
be the primitive translations of the ordinary lattice and 101 ) ”.z., %_, of the
reciprocal lattice, so that @, 54_ = Slzt, . The vectors M = K Q,+/‘a.°9."’}l.s Q,,
where (""l' Koo "3) is a triple of integers, connect equivalent points in the
_ordinary lattice, whereas the vector K = &,5,4'4‘,26,'#383 for integer (il, ip, i,)
connect equivalent points in the reciprocal lattice. Let further T, s T 3
be the translational operators connected with the prhnitive tranllations

Q,aQ,, 0, respectively, and defined by the relation’

rT-' ZS 21(71‘*&))) (12)

For the operator T( “‘l) connected with the general translation ™ one
has 'T'('m) = 'T"/" Tz/“i— 'T;/‘-* _

The treatment of the translational symmetry is greatly simplified, if
one introduces the Born-v. Kirmén * 6) boundary condition:

16)

M. Born and T. von K{rmén, Physik. Z. 13, 297 (1912).

&g(’l*G%) = 26(") : | '(13)

where G is a very large integer, which defines the periodically repeated
microcrystal. Each microcrystal contains G3 lattice points characterized

by the triple “"1' Bor p.3). and the inequality 0< g < G-1 defines a con-
venient "ground domain" (G). It follows from (13) that T, G, 1, i.e. the three
translations will now be cyclic operatore of order G having the eigenvalues-

exp(2 wi.'lcv /G) where K ., 18 an integer. The associated eigenvalue problem

is now easily solved by a simple projection technique 17). which does not

require any use of group theory. It is shown that one may conveniently label

7) P.O. L8wdin, Phys. Rev. 97, 1509 (1955); p. 1512; Advances in

Physics 5, 1(1956), p. 55 {.
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the simultaneous eigenfunctxons to Tl’ TZ’ T3 either by the triple of Mtegerl
(xl. Ko K ) or by the reduced wave vector: :

A o= 00h b b)) G (14)
=G/ & X < +Gfh (15)

where the inequality (15) defines a ground domain (G) containing c3 points in
k-space. The eigenvalue relation may now be written in the form:

mk.n. , :
T(m) (%, ’t) z,fk nem) = e e ) e

For M} equal to the primitive translations, this gives the famous Bloch con-

dition. The corresponding eigenfunctions may be fé\md by means of the projec-

tion operators 17) :

@ avilem . : '
O =G T ¢ Tem)y -
oy .

which fulfil the following basic relations:

(0:. =0, '

)
J.Tch oy

'T'(m)O 0, . (9)

One has further the "resolution of the identity® =3 O, which irnpliel
that every trial function ® (v ) satisfying the period}(city condition (13) may
be resolved into Bloch components, i.e.

(<) ' () . ,
D (r) = Z. 0,&M = Z B (k,n) , (20)

Ov.= 0, , 0,0,-0 (x+n o
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. which are not only orthogonal but also non-interacting with respect to every
operator Q which commutes with the translations: Ti' Ty, T3 according to
the general formulas

0,0,=0, 0100, -0 4

for different reduced wave vectors ( R ¥} ). The fundamental relations (17)-
-(21) are easily verified directly.

Band Structure; Brillouin Zones. - If the integer G characteristic for the
microcrystal is very large, the density of points (14) becomes g0 large that

the set may be considered as quasi-continuous. It bécomes then}pdui'ble to
replace a summation over ] -space with a corresponding integral

VD) = SAww e

where V is the volume of the microcrystal. This quantity enters the formula,
since each discrete point in 3 ~-space is associated with the volume 5,' “;" ".;) / G«s"

= 1/03q, (a,x03) = '/v

We will now consider the spin-orbital energxes _ = €(k) as func-
tions of the quasi-continuous variable R overthe ground ‘domain. The,
name "band theory" comes actually from the fact, that the eigenvalues
show a band structure with the levels sxtua.ted in certain allowed ranges or
"bands" separated by forbidden regions or energy gap-" The ground domain
has here been fixed by he inequality (15), but even other choices are pouible
and may physically be more convenient

In order to study the X -space as a whole, we will now introduce the
plane waves Yl(k n) = v p (s k-n) , where R is a wave vector
defined by (14) but wigh no restriction on the integera (IC Ko xs). Each

Rk -value is equivalent to one and only one point kc. within the ground
domain and, since 'T:, ((k,n) - eJ{f (-ﬂ'y (,-;q' Q),) )‘((k’n) , equivalent

k -values are associated with the same translational eigenvalue. All points
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in A -space can he'nce be divided into G3 sets of equivalent points, and
the points within each set may further be arranged linearly after some _
physical quantity, say Ik I Each k -value would then have its umque
place within each series, and ambiguities could occur only when two equivalent

points, R and k’ , would have the same absolute value:
’ _ 2 212 .
R'—k =K~ el®=|k[* @

These are the equations for the boundaries between the so-called B'xii.llouin .
zones 18) : the first zone contains apparently all ribn-équivalent points having

18) L. Brillouin, Comp. rend. 191, 198, 292 (1930); -J. phys. radium (7),
1, 377 (1930). '
the smallest value of | k | the second zone contains all non-equwalent

points having the second smallest value of | k |z , etc.. If the points on the
boundaries are asbigned to the zones ina proper way, each zone contains
exactly G3 points with one and only one representative for every set of
equivalent points. All zones have the same volume and may be "mapped" on the
first Brillouin zone or on the ground domain defined by (15).

The relations (23) are in crystal physxcs known as the Laue conditions
for X-ray diffraction in latticea. The zone structure was introduced by
Brillouin in a study of the energy splxtting of plane waves by means of a weak.
periodic potential, which he found caused diacontinultiel or. "energy gapa"
at the zone boundarles. These have hence a simple physical mcanmg.

The band splitting through various types of periodic potenthl- have
been mvestigated in great detail in a series of special examples chouen so that
the corresponding eigenvalue problem could be exactly solved 9)

19) P.M. Morse, Phys. Rev. 35, 1310 (1930); R. de L. Kronig and

W.G. Penney, Proc. Roy. Soc. (London) A130, 499 (1931); !
H.A. Kramers, Physica 2, 483 (1935); J.C. Slater,  Phys. Rev. 87,
807 (1952); F.L. Scarf, Phys. Rev. 112, 1137 (1958); and others.
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In the following, we will concentrate our interest on the consequences
of the translational symmetry in the Hartree-Fock scheme, and it is then
convenient to consider € =€ (k) as a multi-valued function of the
reduced wave vector & over the first Brillouin zone or over the ground
domain (G) . ' '

Translations as Constants of Motion. - It is important to observe the
difference between a crystal problem based on the assumption of a fixed
periodic potential like the previously mentioned models 19) and the Hartree-
-Fock scheme, where the potential in the effective Hamiltonian (3) depends

on the solutions to the eigenvalue problem (1). The latter problem is of a non-

-linear nature and considerably more complicated. It can be approached by
considering the N-electron operator (v = 1, 2, 3):

T, =T TE=ToTw. . TE ,; e

45

which corresponds to a primitive translation G, of all electronic coordinates,
i.e. to a translation of the electronic cloud as a whole. Since

N R, - A, g, (25)

for the many-electron Hamiltonian (7), the total translation 8:) is a normal
constant of motion to the many-electron system. This theorem may seem
trivial, but it is aétually of fundamental importance in both the one-electron-
-approximation and the exact theory.

It is easily shown that SS} is another cyclic operator of order G,
and its eigenv;luel and eigenfunctions may hence be derived in the same way
as before; ‘Bée equations (12)-(21). The efgenfunctions may be labelled by
means of a total reduced wave vector R of type (14), restricted to G3

different values by the inequality (15). These eigenfunctions fulfil the general-
ized Bloch condition S

& e
S(““)ﬁ(ﬁ;x.,a,.-w)-c m§(fe,z.,x;,...x.:), (26)
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where S(““) = 8:}"3!'2' 8_’3}"3 means a translation of all electronic
coordinates a vector nm =/t, Q, +/ul0.,.+/43 Q,, - The associated projec-
tion operators

a @ R
©g -G I e I (—m) (27)

\

satisfying the identity 1| = Z& @Q » may be used to resolve any arbitrary
many-electron function @( X, Xz, .Xy) into components

(<)

@(1.,!;,...,\1‘») = ; @ké@(!ﬂxz,“.x“> =
= ¥.®(&, XX Xy)

(28)

which are eigenfunctions to the ‘togal translations 8' » - Because of the gen-
eral relations

0,0, 0, 0/%0,=0 (kst) oo

t s ' - . [
these components are orthogonal and non-interacting with respect to the total
Hamiltonian H.

In the following, we can concentrate our interest to a study of the
simultaneous eigepfuncﬁonu to H and S'y - From the Schr8dinger equation
HY = EY follows that <X (8}2{) = E(S;,LS) and, for a non-degenerate energy
level, it is then evident that gp = const. ¥, i.e. ¥ {s also an eigenfunc-
tion to < , + For a degenerate level, we consider instead the resolution
of an arbitrary eigenfunction into Bloch-components according to (28), and it
follows directly that each nori-vanishing .component is a simultaneous eigen-
functionto H and <& ) - Since 8, is symmetric in all coordinates, the
antisymmetry properties of the wave function will not be influenced by the
projection (27).

In the Hartree-Fock approximation, we will now require that the total i
wave function represented by the single Slater determinant (2) should be an
exact eigenfunction to the total translations 81) (v =1, 2, 3). This is simply
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accomplished by chdosing the one-electron functions as eigenfunctions
28(‘7&, n,) to the one-electron translations T, » and one obtains

R o= (Rordo v by )

where the index G means that one should take the reduced wave vector within

.the ground domain. The question is now whether such a choice always can be

made, i.e. whether it follows from the requirement that the determinant (2)
should be an eigenfunction to the total translations S:) that, exceptfor an
arbitrary unitary transformation, it is necessary that the basic spin-orbitals
Yy» Wy, .. Yy are Bloch functions satisfying the relation (16). A careful
analysis of the problem shows tiat this is actually the case.

It seems rather natural to assume that the requirement that the basic
spin-orbitals are Bloch functions also should be self-consistent in the sense
of the Hartree-Fock scheme. From (4) and (16), it follows that

gm0y, k+a,) = §lx, X)) (31)

where (x +0.,;) denotes the electronic coordinate (5!+Q v, f-’:) , and this
relation implies that the electronic density has the periodicity of the lattice.
Equation (31) is easily derived from the condition that the total wave funiction
should be an eigenfunction to the total translations and is valid for the first-

.~order density matrix in general. The density matrix Q@ : is the crucial

quantity in the effective Hamiltonian (3) and by means of (31), one can now.

. prove the relation

'7:',58‘“ =”5€%T) - (32)

The first terms in Heff are easily handled, and only the exchange. potential
with its non-local character requires = more careful treatment. However, if
‘%(”i) is an arbitrary function of ¥; , one obtains
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’T:,b)\/dm, 3(":.";1;@& ‘5(‘1) =

ey gtmmw)itm /M §(rty v o) ) o

“In+a, =, | I—n, {7

"‘_\/“\"L gw;:‘) b ']',',(1\,' '46("'1)

2,

which prbves that also the exchange term commutes with the primitive transla-
tions. Hence, the entire effective Hamiltonian Heﬁ' commutes with '1‘1, T,
T, » and the solutions to the eigenvalue problem (1) may then be chosen as
simultaneous eigenfunctions to all these operators. For a crystal, the basic
requirement that the Hartree-Fock functions ¢ 1 ¢Z, v ¢N ghould be Bloch

functions is thus self-consistent.

Each one of the G pcints inthe ‘7 -space defined by (14) is

" independent in the sense that the associated Bloch functions are not only

orthogonal but also non-interacting with respect to the effective Hamiltonian
H, e » as soOn a8 p satisfies (31). Informing p according to (4),:one
should sum over all occupied spin-orbitals which are then associated with o
certain distribution of points in ) -space. The boundary of these oécupied, .
points defines the Fermi-surface associated with the system and state under

consideration.

Crystal Symmetry in Gencral. -~ The trarnslational symmetry has here been
treated by a simple projection operator technique 17), which requires only the
knowledge of the translational eigenvalues following frora the Born- v. Kirmén

boundary condition (13), whereas no group tkeoretical information about the

system is needed. It is evident, however, thet a still ricker understanding of
this problem can be cbtained by utilizing group theory to a full extent 26)

20) F. Seitz, Ann. Math. 2_1_ 17 (1930) L.P. Bouckaert, R. S3chmoluchow-
ski, and E. Wigner, Pkys. Rev. 50, 58 (1936); C. Herring, Phys. Pev.
52, 3£1, 365 (1937); and others. '
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In addition to the translational symmetry, there are also other sym-
metry properties of the different crystallographic point groups which may be
used for dividing the various symmetry functions into non-combining
classes 21) . Even in this connection, the use of projection operator technique

has proven to be simple and forceful 22).

21) H.A. Bethe, Ann. Phyiik 3, 133 (1929); Bouckaert et. al, Phys.

Rev. 50, 58 (1936); F. Seitz, Phys. Rev. 47, 400 (1935); Z. Krist.
94, 100 (1936); C. Herring, J. Franklin Inst. 233, 525 (1942);
J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954); and others.

22)  M.A. Melvin, Revs. Modern Phys. 28, 18 (1956); H. McIntosh,

Technical Note 21, Uppsala Quantum Chemistry Group 1958; J. Mol.
Spectroscopy 5, 269 (1960).

28)

(c) Calculations of Band Structures

The main problem in the one-electron theory of crystals is the solu~
tion of the Hartree-Fock equations (1), which gives the spin-orbital energies
€ =¢€ U&) as a multi-valued function over the first Brillouin zone or
over the ground domain in the space of the reduced wave vector R , and
hence also the band structureé. Since this is one of the key problems in the

current solid-state theory, it is frequently reviewed, and for a detailed
discussion of the progress in this field, we will refer to a series of survey

23) . The recent papers by Herman 24) and by Pincherle 25) are

articles
particularly complete, and there is no reason to repeat the material contained
in these articles. -Here only a few additional remarks will be made, 'éerfain
problems will be discussed from slightly different points of view, and some '

recently published papers will be listed and commented upon.

23)  G.V. Raynor, Repts. Prog. Phys. 15, 173 (1952); J.R. Reits,
Solid State Physics 1, | (Academic Press, New York 1955);
P.O. L8wdin, Advances in Physics 5, 1(1956); J.C. Slater,
Encyclopedia of Physics 19, 1 (Springer, Berlin 1956).

24) F. Herman, Revs. Modern Phys. 30, 102 (1958).

L. Pincherle, Repts. Prog. Phys. 23, 355 (1960).
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The essential difficulty in the one-electron theory of crystals seems
to be connected with the fact that the wave functions have. atormnic nature
within the ion cores, whereas they behave as freé waves: in the regions between
the atoms, and these properties are apparently hard to combine - at least -

practically.

In Ritz's method 9), one expands the wave func:.tion ""k in terms of a

complete set {f, } :

where the problem is to determine the coefficients. It is convenient to

introduce the energy matrix H with respect to the basis and the associated

metric matrix A having the elements:

G

R A S S I

and the Schr8dinger equation Heff\bk(l) =€ x V(1) is then equivalent with the
following system of linear equations: S

2 (A = € A )G =0,

o (36).

with the secular equation dud (S{m'm - éAmm > =0. . o

The matrix problem (36) can be essentially simplified if one utilizes
the existence of the translational symmetry. Since the,\gavg,iunctig.nl lllk
should be Bloch functions 25(‘3 ) x) » they are invariant against the
corrglponding.Bloch projection (17), so that Ok»lak = ¢k . By g.p;‘)zlhyi,pg“the
operator O to both sides of (34), one obtains .

rees

?

25& = }_{_. (G‘!jz,)cb | S )

which means that each Bloch function may be expanded in the associated Eioch

B N I TR
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projection of any complete set. The functions within the subset { Ouft } are
usually not linearly independent, and an essential problem is to eliminate the
redundancies in expansion (37) and replace it with a rapidly convergent series.
This can, for instance, be donée by an orthonormalization procedure 26).. but

26) - - P.O. L8wdin, Adv. Chem. Phys. 2, 207 (Interscience, New York

1959), p. 288 f.

even other possibilities exist. Here we note that, by replacing the complete
set {f, }, by the G subsets ‘

{ 05 ful ' (38)

which are mutually orthogonal and non-interacting with respect to H off * OR€
obtains automatically a splitting of the secular equation (36) into G3
independent parts, each one corresponding to a specific point R in the space
of the reduced wave vector. This is an essential simplification of the problem
which it is always posgible teo carry out.

The main problem in the application of the expansion method to crystal
theory seems to be the choice of the subsets { O, f, } so that the convergency
of the series (37) becomes as fast as possible 27 1f the basic set {f, } s
chosen to consist of plane waves 18) (PW), the convergency will usually be
very slow, since many waves will be needed to describe the inner atomic

properties of the constituents of the crystal. In the method of orthogonalized

plane waves (OPW) devised by Herring 8), the convergency is essentially’

21) We note that, since the subsets are entirely ind‘ependent, one may
use different complete sets {f, } , {fL }, {f }, ... or various
adjustable parameters for different values of h which may often
improve the convergency. '

28)

C. Harring, Phys. Rev. 57, 1169 (1940).

improved by choosing a basis which consists of the Bloch projections of the

inner-core atomic orbitals and the plane waves orthogonalized towards these

e st
EEETR PR
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functions. In applying this method to a practical problem, one has to remem- ‘
ber that the inner-core Bloch functions and the OPW's are usually interactiig
with respect to the effective Hamiltonian, i.e. the corresponding matrix
elements are not neceasaz;ily vanishing even if they may be small 29)‘. As a
practical tool, the method has been very forceful, and manf important applica-

24)

tions have been carried out; see Herman and Pincherle

For critical studies of the method, see J. Callaway, Phys. Rev.
97, 933 (1955); V. Heine, Proc. Roy. Soc. (London) A240, 340,
. 354, 361 (1957); T. O- Woodruff, Solid State Physics 4, 367
(Academic Press, New York 1957).

~ From studies of the Knight shift, it has recently been observed that
an OPW-calculation which gives good results e.g. with respect to cohesive
and elastic properties or the band structure may not describe the regions

~ around the nuclei very well, and particularly for the beryllium metal there

seems to be a large discrepancy between theory and experiment in this
respect 30). Of course, this is a consequence of the fact that the basic sets

30) L..Jangen {private communication).

are truncated in all applications, and that the "remainder problem" has not
been investigated. If the inner-core Bloch functions chosen are not ﬁarticularly
adapted for deacrii:ing the nuclear region, one has certainly to ihtrodt;ce a
much larger number of OPW's than used in stud.ying other properties of less
Iocal type

.A modification of the OPW-method has recently been suggested by
Phillips and Kleinman 31) who start out from symmetrized combinations of
plane waves instead of single waves; the method seems to work very well'in
the applications 32). In the OPW -approach, it may sometimes also be -

31)
32)

J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

L. Kleinman and J.C. Phillips, Phys. Rev. 116, 880 (1959),
diamond; 117, 460 (1960), BN; 118, 1153 (1960), Si.
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worthwhile to use flexible auxiliary functions instead of the fixed inner-core

orbitals to speed up the convergency 33)

33) E. Brown and J.A. Krumhansl, Phys. Rev. 109, 31 (1958). .-
In Slater's 34) meihod of augmented plane waves (APW), the space
) J.C. Slater, Phys. Rev. 51, 846 (1937); 92, 603 (1953);

M.M. Saffren and J.C. Slater, Phys. Rev. 92, 1126 (1953);
R.S. Leigh, Proc. Phys. Soc. (London) A69, 388 (1956).

around each atornic nucleus is divided into an inner sphere approximately
corresponding to the ion core and an outer region, where plane waves are con-
veniently used. The Schr8dinger equation (1) is solved in both regions with
solutions of different character which are then joined smoothly on the boundary
spheres. The method shows very good convergency properties, and a series

of important apphcations to the problem of the band structure of various crystal
has been carried out; see Herman 24) and Pincherle

It has previously been mentmned here that the tight-binding method
introduced by Bloch 12) in crystal theory in its most refined form corresponds
to the ASP-MO-LCAO-SCF -method in molecular theory 11 13). In the first
applications, the method did not give any good results, since one neglected
the overlap integrals between atomic orbitals on neighboring atoms. It turned
later out that these overlap integrals were key quantities of esseritial importance
for the entire theory. The non-orthogonality problem may be handled by starting

from orthonormalized atomic orbitals 35, 36) or from Wannier functions 37). A

35)  R. Landehoff, Z. Physik 102, 201 (1936).

36) P.O. LBwdin, Arkiv Mat., Fys., Astr. 35A, No. 9 (1947); "A theo-
retical Investigation Into some Properties of Ionic Crystals™ (Thesis,
Almgqvist and Wiksell, Upsala 1948); J. Chem. Phys. 18, 365 (1950).

37)

G.H. Wannier, Phys. Rev. 52, 191 (1937).
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more complete discussion of the tight-binding approach will be given in Sec. 4.

37)

The Wanmer functions are the Fourier transforme of the Bloch

functions, and they form a complete set of mutually orthogonal functions
localized around the lattice points and connected by tr‘anslatmnal.symmetry'.

They form an excellent basis for investigating crystal properties, and one has

tried to find direct methods for determining them; _for references, see Herman .24)
and Pincherle 25) Some important new results concerning the localization of the

Wannier functions have recently been obtained 38 . Functions intermediate

between Bloch waves and Wannier functions have also been introduced 39)

38) W. Kohn and S. Michaelson, Proc. Phys. Soc. (London) 72, 301
(1958); W. Kohn, Phys. Rev. 115, 809 (1959).
39) E.C. MclIrvine and A. W. Overhauser, Phyu. Rev. 115. 1531 (1959)

In the Hartree-Fock scheme, the total wave function (2) and the

density matrix (4) are invariant with respect to unitary transformations of the

basic spin-orbitals q;vl, q;z. reve ch » It was pointed out by Lennard-Jones 40)

40) J. Lennard-Jones, Proc. Roy. Soc. (Liondon) A198, 1, 14 (1949),

and a series of papers by Lennard-Jones, Hall, and Pople during thé-
years 1950-52; for detailed references, see G.G. Hall, Proc. Roy.
Soc. (L.ondon) 213, 113 (1952). '

that, instead of molecular otbitals and Bloch functions, it may sometimes be
convenient to introduce a localized set of orbxtall which are all equxvalent to
the atoms of the system. ’I'his equxvalent orbztal method hae now. been a.pphed

by Hall 4) for inveatxgating the electronic structure of certain crystals of
diamond type. The problem of the eolu.txon of the Hartree-Fock equations (1) in
terms of localized orbitals has recently been studied a.llo by Adams

4) G.G. Hall, Phil. Mag. (7) 43, 338 (1952), diamond; Phil. Mag. (8)
3, 429 (1958), Si, Ge, and diamond.
42)

W.H. Adams, J. Chem. Phys. 34, 89 (1961).
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Let us now return to the Bloch functions 6(‘& n) . As
previously shown, these functions are associated with G pointe in the space
of the reduced wave vector R, and they are orthogonal m& non-interacting
with re lpect to the effective Hamiltonian. Since the number of independent points
is so enormouely large, one has to treat only a eelection of k-values which are
usually chosen to correspond to syrametry points in the reciprocal lattiee 43)
In each such point, one triee to find the Bloch function. the energy 6 = 6 (k)
and its first and second derivativee, and an essential problem is then the
intergolation to intermediate R -values. This problem has been attacked by a

simplified LCAO-method 44) and by a method based on the use of a pseudo-

~potential 45); in all events, a great deal of care is.necessary to get reliable
results. ’
43) "F.C. vonder Lage and H.A. Bethe, Phys. Rev. 65, 255 (1944);

71, 612 (1947).
4“) J.C. Slater and G.F. Koster, Pliy:g‘;.v., Rev. 94, 1498 (1954); M. Miasek,
45) -

J.C. Phillips, Phys. Rev. 112, 685 (1958).

It follows from the condition (16) that each Bloch function may be
written in the form : ‘

-m.k n ' :
Z,l (&) all,m) -9y

e
N

where u is a function with the periodicity of the lattice, so that Al (‘k 7L+ Q,))

h 7'!) Instead of determining the Bloch function within the entire micro-
cryetal, it is now sufﬁcxent to evaluate M(k 71») within a unit cell or an '
equivalent region. Itis convenient to introduce the "cellular polyhedron" con- .
sisting of all non-equivalent points in thé ordinary lattice having the" emnlleet
value of |7¢l ; its boundaries are defined by the relations

Ri-r-m ol )t o)

analogous to (23), and the "cellular polyhedron" in the ordinary lattice corresponds
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apparently to the first Brillouin zone in the reciprocal lattice. It follows from
(40) that the boundaries are the planes bisecting perpendicularly the lines
between the origin and the nearest neighbours among its equivalent points.

46)

In the cellular method developed by Wigner and Seitz » One tries

to determine the function %Uﬁ, ) by numerical integration in analogy

with Hartree's treatment of atoms /. Wigner and Seitz assumed that it was

possible to approximate AL("! ) ’b> by an s-function independent of k

but later the importance of the higher spherical harmonics was emphasized 47).

46) E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509 (1934).
47) J.C. Slater, Phys. Rev. 45, 794 (1934); Revs. Modern Phys. 6,
209 (1934).

and u should actually be expanded in the form:

o 48

Lk, ) = S35 R (em) X, (99) (1)

4=0 ma-l

where the radial functions should, in principle,. be determined by numerical
integration. The difficulty of the method is to get the periodicity condition

sk e,y = u(R, M)  satisfied on the boundary planes of the cellular
polyhedron or at least in a selected set of symmetry points 48); when the series

48) W. Shockley, Phys. Rev. 52, 866 (1937); F.C. von der Lage and
H.A. Bethe, Phys. Rev. 71, 612 (1947); W. Kohn, Phys. Rev. 87,
472 (1952). :

(41) is truncated. It should be observed that, if the resulting function

(&7 n ) (R, n) is not a true Bloch function, it can always be resolved

into Bloch components by using the projection technique and formula (20). The
cellular method has been applied to the problemn of band structure for a series

of crystals of various types; for references, see Herman 24) and Pincherle 25).

The cellular method was actually deviced for a study of the cohesive

B PR
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properties of the alkal,i metals’ 49). but in this field it has to a certain extent been
replaced by the semi-empirical quantum defect method introduced by Kuhn and
Van Vieck 59 52)

and developed by Brooks >1) : for a survey, see Ham

49) See e.g. the survey by E. Wigner, Proc. Int. Conf. Theor. Phys.

Japan, 649 (Tokyo 1954).

50) T.S. Kubn anl J.H. van Vieck, Phys. Rev. 79, 382 (1950); T.S. Kuhn,
Phys. Rev. 79, 515 (1950); Quart. Appl. Math. 9, 1 (1951); Proc. Int.
Conf. Theor. Phys. Japan, 640 (Tokyo 1954). .

- 51) H. Brooks, Phys. Rev. 91, 1027 (1953).
52) F.S. Ham, Solid-State Physics, i, 127 (Academic Press, New York
1955).

It is a characteristic feature of most of the present calculations within
the one-electron scheme for crystals that the potential in the effective Hamiltonian
is assumed to be a crystal potential of the periodicity of the lattice which is

" derived from semi-empirical arguments or theoretical considerations. In the

Hartree-Fock scheme, the potential in (3) contains a conventionally periodic
part and an exchange term of a non-local character. The evaluation of the
effective Hamiltonian requires the knowledge of all functions 25(4! U )

with k-values within the Fermi surface, which means that a good solution to the
inteypolation problem is usually necessary. It is apparently very cumbersome

to carry through a single Hartree-Fock cycle (5), not to speak of a series of
iterations of this cycle, and it is hence extremely important that one is able to
start from a good estimate of the crystal potential including exchange. Of course,
one hopes that the band structure and other physical results should not be too
dependent on the specific choice of potential, but the work by Howarth 53) on

53) D.J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953); Phys.
Rev. 99, 469 (1955). '

copper shows that this is not always the case. It seems hence important to try
to reach the goal of self-consistency for a real cyrstal, but we note that, even
if one obtains the exact Hartree-Fock functiony, the corresponding Slater
determinant (2) is still rather far from the true many-electron function.
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The one-electron scheme has up till now been used to determine the
spin- orbital energies €= 6(!!) and the corresponding band structure

for a large number of crystals. It has been of essential im;»ortance as the
underlying theoretical tool for interpreting experiments 54 , and it is of great

%) B. Lax, Revs. Modern Phys. 30, 122 (1958).

value for understanding the electric, magnetic, optical, thermal, and elastic
properties of solids. At the same time, the present band theory is certainly
not sufficient to explain such phenomena as refer to.the solid as a whole as,

for instance, the cohesive pfoperties. the relative stability of various lattice
types, the criterion for ferromagnetism, etc. The background for this failure -
will now be discussed.

i

(d) Shortcomiigs of Band Theory; Correlation Error

The one-particle model is based on the idea that the particles move
independently of each other. This happens, for instance, if the total Hamiltonian
H op is separable in the form H = ZHi ’ and the total wave function is then a
product of one-particle functions or spin-orbitals. In reality, the total Hamiltonian

(7) has the form

M =, R, - Zb T ' (42)

where Hij is a two-electron 6perat.or: Hij = ez/ rij . 'Becauge of this Coulomb
repulsion, two electrons try always to avoid each other to keep the energy as
low as possible, and this leads to a certain "correlation™ between their move-
ments. Since the two electrons have actually to perform a more complicated
motion than in the independent-particle model, there will be an increase in the
kinetic energy which is compensated by a still larger decrease in the Coulomb
energy; the balance is regulated by the virial theorem < T> = -3<V>. One
can say that each electron is surrounded by a "Coulomb hole" with respect to

all other electrons, and the omission of this phenomenon leads to the correlation
error characteristic for the independent-particle-model.
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The correlation effect is most easily discussed by means of the second-

-order density matrix 55)

55) P.O. Lowdin, Fhys. Rev. 97, 1474 (1955); R. McWeeny, Proc. Roy.

Soc. (London) A232, 114 (1955); see also K. Huumx, Proc. Phys. -
Math. Soc. Japan 22, 264 (1940).

77 (0|00l ) = Z‘_/‘é:(x Xy Ky ) &‘(xg&...x{..xg.. ) desdu - dey (43)

b(x

where one should sum over the N(N-1)/2 possibilities of exchanging the
coordinates Xy and X, - as well as !: and X;_ - with the
coordinates X and A, , respectively, in the total wave function ¥ . The
diagonal element /7~ (x, X, ‘X. ,l;) gives the probability density to find

an slectron pair in the points X = (’11‘, 1) and X, = (e, &) in
configuration space. The coulomb energy of the electron is ;ivén by the expression

| | 7_’ [ Xar M x‘xz. |
W/ ;.,;‘ L dyh, (44)

and the existence of a "Coulomb hole" means that the quantity T’ (%1%, Ix X2 )
should be small when T, = | 74‘—711‘ tends to zero.

A study of the second-order density matrix shows that, if the total ‘wave
function is approximated by a Hartree-product, there will be no correlation
whatsoever between the electrons 1 and 2. The situation is changed by the anti-
symmetrization and, if the total wave function is approximated by a lingl?‘
Slater determinant, the density matrix r’(l,llll/.llg_) will become antisym-
metric in each set of its indices. This implies that 7 (M'zj.,l X)) will
vanish of at least second order for X, = X,;, , i.e. r1§= 0 and §, =¢,.
This is the "Fermi hole" for electrons with parallel spins and, since this

56) E. Wigner, and F. Seitz, Phys. Rev. 43, 804 (1933); J.C. Slater,

Phys. Rev. 81, 385 (1951); V.W. Maslen, Proc. Phys. Soc. (London.)
A69, 734 (1956).




-26-

hole to a certain extent replaces.the Coulomb hole, the main part of the . *
correlation error for electrons with pﬁrafl}_e} spins is remq_yed.' In the Hartree-
-Fock scheme, the essential correlation error is hence associated with elec-
trons having antiparallel spins. ‘

In order to get a measure of the order of magnitudé of the correla- -
tion error in the Hartree-Fock scheme, it is convenient to introduce the con-
cept of "correlation energy" 57). as the difference:

Ecorr = Eexact - Bur A h (45?

57) E. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday Soc. 34,

678 (1938); F. Seitz, "Modern Theory of Solids" (McGraw Hill, New
York 1940) p. 698 £; J.C. Slater, Revs. Modern Phys. 25, 199 (1953);
E.P. Wohlfarth, Revs. Modern Phys. 25, 211 (1953); D. Pines,
"Solid State Physics® 1, 368 (Academic Press, New York 1955);

. P.O. L8wdin, Adv. Chem. Phys. 2, 207 (Interscience, New York'
1959).

where Eoxact is the true eigenvalue of the Hamiltonian for the state under con-
sideration and E the corresponding Hartree-Fock energy. We note that the
correlation energy is not a physical quantity but a measure of the error in a
certain approximatmn. Two aspects of the correlation problem will be of

particular importance:

a) the correlation error for the equilibrium state (R = RS)

b) the correlation error for separated atoms (R = o)

where R is a parameter indicating the internuclear distances.

Let us start the discussion by reviewing some data from atomic and
molecul'a.r theory 26). For the series of helium-like ions (H™, He, Li+, coene :
4+) in their (1!)z ground state, the corrslation energy is remarkably x
constant 58, 59) and varies between -1.1 and -1.2 eV, whereas for the ground :

58)  'H. Shull and P.O. L8wdin, J. Chem. Phys. 24, 1035 (1956); 30, ?

617 (1959).

9)  A. Fr8man, Phys. Rev. 112, 870 (1958).
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state of the Ne-like ions 59) s it lies around -11 eV. For atoms and ions without

closed shells 60)‘. the correlation enérgy varies approximately linearly with

60) J. Linderberg and H. Shull, J. Mol. Spectroscopy 5, 1 (1960).

the atomic number Z . For the hydrogen molecule, the correlation energy is
-1.06 eV, and we note that, according to the virial theorem, this quantity con-
sists of two parts, namely the correlation error in the kinetic energy and the

Vcorrelpondm‘ error in the potential energy:

T = +1- 06 eV » v = "2- 12 ev' (46)

corr corr
Since 1 eV = 23.07 kcal/mole, these quantifiel are large from th'e chemical
point of view. '

‘The problem of the error in the molecular-orbital theory for separated
atoms was first investigated in a classical paper by Slater 61 ), where he studied
the connection between the molecular-orbital approach and the valence-bond

61) J.C. Slater, Phys. Rev. 35, 509 (1930).

method by using the hydrogen molecule as an example. If a and b are the
atomic orbitals, the total wave function in the MO-LCAO metﬁod takes the form

§ = gaﬁk;)(a,,«»h) («,/s,,—%/& ) )

which implies that, for separated atoms, there is a fifty per cent chance that
the molecule will dissociate into the fons H~ and H', and an equal chance

that it will dissociate into two H atoms. The energy of the former.is considerably
higher than the energy of the latter, and the resulting error is of the order. 8 eV.

The weakness of the molecular-orbital theory and of the band theory
of solids is apparently that the total wave function is such that it does not prevent
electrons of different spins to accumulate on the same atom and give rise to
negative and positive ions 62) with higher energy than the ordinary dissociation
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62) J.H. Van Vleck and A. Sherman, Revs. Modern Phys. 7, 167 (1935).

products. In nature, the strong Coulomb repulsion between the electrons
prevents the formation of negative ions with too many electrons, but apparently
this correlation effect has been neglected in the Hartree-Fock scheme. The
error is so large that one can speak of a complete breakdown of the independent-

63)

-particle model and the molecular-orbital theory for separated atoms .

63) C.A. Coulson, and I. Fischer, Phil. Mag. 40, 386 (1949).

Slater 64) has emphasized that the wrong asymptotic behaviour of
the singlet eneigy curve for R = « has a very serious consequence with respect
to the study of madgnetic properties. In a state where the electrons have parallel
spins, the Pauli-principle will prevent the formation of negative ions, and the
energy will approach the correct value for R = 0 . The general shépe of the .
energy curves is indicated in Fig. 1. Since the N/ ~curve has a wrong
asymptotic behaviour for R = « , there will always be an artificial crossing
point with the $# -curve, which may lead to wrong conclusions about the gencral
magnetic properties of the system. This may cause difficulties in a theory of
ferromagnetism based essentially on band theory 65). Apparently the difficulty
comes from the fact that the Hartree-Fock scheme treats electrons with
parallel spins fairly well, whereas the study of electrons having antiparallel

spins shows a large correlation error 66), which has to be removed.

64) J.C. Slater, Phys. Rev. 82, 538 (1951); Revs. Modern Phys. 25,
199 (1953); Encyclopedia of Physics 19, 1 (Springer, Berlin 1956).

65) For a review, see e.g. E.C. Stoner, Repts. Prog. Phys. 11, 43
(1948); J. phys. radium 12, 372 (1951); E.P. Wohlfarth, Revs.
Modern Phys. 25, 211 (1953).

66) D. Pines, Proc. 10th Solvay Conference, 9 (1954).

The correlation error does not always show up in a calculaticn, which
depends on the fact that we are often interested in energy differences, and it

may happen that the correlation errors associated with each term to a large
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cule.
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extent cancel. This happens, for instance, in studying the cohesive energy of

an ionic crystal of the type of the alkali halides, since the electronic structure
of the constituents and of the free ions are similar, and the correlation energy
of the crystal is then approximately equal to the correlation energy of the free

ions.

On the other hand, there is certainly no such cancellation in an

investigation of the cohesive energy of the alkali métals. The correlation error

57, 48)

for this case has been studied in great detail by Wigner , who derived the

correlation energy formula

GL ' (46)

— (. ass .
Ny +-5.1

where all quantities are expressed in atomic units. For thé alkali metals Li,
Na, K, one obtains the following values for the correlation energy per doubly
filled orbital, namely -1.89, -1.73, -1.58 eV, respectively.

According to Wigner, the correlation energy should essentxally be
a functmn of the electron density. Of particular importance is Wigner's study

of the low density limit which is based on the plasma model, in which the elec-

trons in a crystal are approximated by an electron gas moving in a "uniform

positive background". For sufficiently low density, the electrons will form a

67),

body-centered cubic lattice with interesting properties

67) W.J. Carr Jr., Phys. Rev. 112, 1437 (1961).

The plasma r;nodel has later been strictly treated by Bohm and Pines 68)

using field-theoretical methods. According to classical discharge theory, such

68) For a sufvey, see D. Pines, Phys. Rev. 92, 626 (1953) and reference

66.

a plasma shows a collective oscillatory behaviour with the fxndamental frequency
wp = (41m°ez/m)% » where m = is the average electron density. The field-
~-theoretical study of the electronic correlation showed a long-range effect
corresponding to the plasma oscillations and a short-rahge effect giving raise
to an efficient electronic screening, which later has become of large importance

in the so-called "dielectric approximation”.
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Since in the simple plasma model there are no discréte nuclei, such -
aspects of the correlation problem as are concerned with the atomic con-
stituents of a crystal will not be treated whatsoever. The problem of the
a'symptétic behaviour of the energy for separated atoms so strongly emphasized
by Slater 64) cannot be treated at all within the framework of this model. In- .-
the atomic approach, the correlation energy is certainly not a function of the
.electronic density only and, as an example, we would consider the series of
helium-1like ions which all have the same correlation energy, but which gécs
from the extremely extended H~ ion to the highly concentrated positive ions,
like C4+ . Even if the simple plasma model has given very interesting and
important results concerning the behaviour of the mobile electrons in metals,
it has so far not given the ultimate answer to the problem of the correlation
error in the band theory of ordinary crystals with discrete atomic nuclei. This

question will be further discussed below.

3. VALENCE BOND METHOD

(a) Covalent Bond; Valence Bond Functions

CryitaI physic‘s" can be approached from an enfirely different point
of view than band theory. In connection with e.g. cohesive properties, it seems
natural to start fr_'pm"t'he chemists' ideas of bonding between atoms to describe
the binding of the constituents of a crystal, and this leads to the valence bond
method. According to Lewis, each covalent bond is associated with an electron
pair which causes the binding, but the real nature of the bond was not revealed
until the establishment of modern quantum mechanics. In connection with the
problem of the helium atom, Heisenberg 69) had discovered the exchange
phenomenéxi é.nd the' idenfity principle which says that it is physiéally impossible
to distinguish between the individual electrons. In modern terminology, it
means that the permutation operator P12 is a constant of motion, so that
P 12H =._HP12 - In investigating the hydrogen molecule, Heitler and London 70)
found that the bonding of the atoms depended on this exchange effect and had

hence essentially a quanturn mechanical character.

69) W. Heisenberg, Z. Physik 38, 411 (1926); 39, 499 (1926). .

70) W. Heitler and F. London, Z. Physik 44, 466 (1927).
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Let q-:) = @ (’51, ?Ll\ be a space function which describes the
physical situation of an electron pair. By means of the identity

1 = () » - (1-6) (a1)

where each term in the right-hand member is a projection operator, one can
resolve this function into its symmetric and antisymmetric components with
respect to P, , which are orthogonal and non-interacting with respect to H .,
The symmetric space component is associated with the singlet state, and the
antisymmetric space component with the triplet state and, for thé corresponding
energies, one obtains

- (DY +AP | 2> :
(B+r PlIES ] (48)
(B|R —API<E)

(BEI1-P &) ' (49)

‘3

E =

which quantities should be compared with the expectation value

(&R |§>/ {FE|¥€£). , which always lies between them. In this connection,
it is convenient to introduce the exchange integral: )

& = (‘E-~—°E> " (s0)

which may then be used as a criterion for the spin alinement. If J > 0 one has

xlL‘ > 3E and parallel spins in the ground state, whereas, for J > 0, one has

1E < 3E and antiparallel spins in the ground state. According to this simple
model, the exchange integral would then give the criterion for ferromagnetism
versus antiferromagnetism, if the concept could be generalized to crystals.

Substitution of (48) and (49) into (50) gives the expression:

_ S2APIEH)—(BRIE)EICIBY (1)
} (BIEY* — (2P| 2)*
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- Originally, the valence bond theory was based on the one-électron
approximation according to which one has & (1,2) = a(i) b(2) where a and '’
b are two atomic orbitals (AO's) associated with the two constituents. 1he
quantity. S ab = < al‘b> is known as the "bverlap integral® and plays an impor-

tant role in the theory. We note that one cannot start out from two orthogonalized
AO's, a and b since the singlet would then not show any bonding 74 ) the
exchange integral J would further be positive, so that the triplet would be the

ground state. The overlap problem is hence very essential.

") j.c. Stater, J. Chem. Phys. 19, 220 (1951).

A careful analysis of the connection between the band theory or MO-
-method and the valence bond (VB) scheme was made by Slater 61) » who used
the Hz-molecule as a typical example. He showed that the VB-method including
polar states, a(1) a(2) and b(1) b(2), would give the same result as the MO-
-method including configurational interaction between the bonding orbital (a + b)
and the anti-bonding orbital (a'- b). However, in their original and naive forms,
the two approaches are.certainly not equi'valent. For the equilibrium state
(R=R o)’ they lead to rather similar results, whereas for separated atoms
(R = ), the naive VB-method is superior to the naive MO-method, since the
former gives a correct asymptotic behaviour of fhé'singiét énergy curvé. In
this respect, there is-less correlation error in the naive valence bond method

‘than in the ordinary band theory.

The total wave function for a valence bond singlet associated with an

orbital pair (a,b) ma..y be written in the form Aa ll>2(c1 182 - pluz) where. A

is the antisymmetrization operator. This construction is easily generalized 72'73)

72) - W. Heitler and G. Rumer, GBttinger Nachr. 1930, 277.
73) G. Rumer, G8ttinger Nachr. 1932, 337. o ' ' L

to a many-electron system having the orbital-pairs (ab), (cd), (ef), ... etc.,
and the total valence-bond singlet is given by the expression :

1 é = <f a, %,.,C\;drq e.sjt-.. (daf’»—/’aquz)(%/&,'/&auu)'(0(5/@4;'.'/350(6)..)‘52)
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where there is one spin singlet (ap - fa) for each orbital pair. The collection
of orbitals a, b, ¢, d, e, f, ... may, of course, be paired in many different
ways, and each one gives rise toa valence bond singlet. The correct number

of linearly independent valence bond singlets may be found by meéans of Rumer's
non-crossing rule 73,74) for the valence bonds. There is a close parallelism
between the quantum-mechanical wave function and the corresponding chemical
formula for the compound, which has been further developed in the theory of

chemical reoonance 75)

74) L. Pauling, J. Chem. Phys. 1, 280 (1933).
75) J.C. Slater, Phys. Rev. 37, 481 (1931); particularly p. 489,

L. Pauling, J. Chem. Phys. 1, 280 (1933), and a series of papers
in J. Chem. Phys. and J. Am. Chem. Soc.

In the case when the overlap integrals between the orbitals a, b, c, d,
+e. are neglected. the expectation value of the total energy and its matrix
elements with respect to the valence bond singlets are fairly easily evaluated
However, this approach will not describe chemical bonding unless the overlap

integrals are included, and it turns then out to be extremely cumbersome to
calculate the elements of the energy matrix ) The best way to. solve this
problem systematically seems to be to resolve the valence bond einglets into
epm-projectxonl of Slater determinants 7) The valence bond einglets are hence
physically exmple but, with reepect to the energy, mathematically complicated.

76) See e.g. J.C. Slater, Quarterly Progress Report of Solid-State
and Molecular Theory Group, M.I.T., p. 3, October 15, 1953
(unpublished). '

77) - P.O, L8wdin, Technical Note 2, Uppsala Quantum Chemistry Group

(1957); Coll. Int. Centre Nat. Rech. Sci. 82, 23, Paris 1958

If the overlap problem is difficult for a molecule, it becomes almost
prohibitive for a crystal. It was pointed out by Slater 61) that the inclusion of
the .overlap integrals in the applicaticn of the VB-method to crystals would
lead to divergency difficulties of such a severe type that one has later called

. 78),

it 2 "non-orthogonality catastrophe Actually, each matrix element of

D.R. Inglis, Phys. Rev. 46, 135 (1934).

14)
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the energy is of the form o/w but, in the denomlnal:or and the numerator,

there is a common infinite factor, and the remaining quotient is well-behaved. ‘
This problem is still not completely solved in all details, and we will comment
more about it below.

Another problem in the VB-theory for treating Cry's‘t'é.levie that
apparently the polar states are of fundamental importance , 'ﬁaiticularly in
connection with conductivity phenomena. The basic theory shows many .

interesting aspects 79) but is rather complicated in the applications. A simplifi-
cation of this approach could be obtained, if one could in principle, include

all polar states, since one could then use orthogona.lized atomic orbitals

or Wannier functions as a basis 80).

79) S. Schubin, and S. Wonssowsky, Proc. Roy. Soc. 145, 159 (1934); .
Physik. Z. Sowjetunion 7, 292, (1935); 10, 348 (1936);
S. Wonssowsky, Fortschritte der Physik 1, 239 (1954).

80) For a study of the molecular case, see R. McWeeny. Proc. Roy. Soc-

(London) A223, 63, 306 (1954). -

Starting from the chemists' point of view, Pauling _‘) has developed :
a resonating-valence-bond theory of metals, which seems to be remarkably
successful as a semi-empirical device. A valence-bond treatment based on
the use of bond orbitals instead of atomic orbitals 82) should also be mentioned.

81) L. Pa.u.ling. Nature 161, 1019 (1948); Proc. Roy. Soc. A196, 343

(1949); Physica 15, 23 (1949)
82) C.A. Coulson, Proc. Int. Conf. Theor. Phys. Japan 629. (Tokyo
1953).

It has been pointed out above that valence-bond method including
polar states and molecular-orbital method including configurational interac-
tion lead to identical results 61) , that the methods in their simple original
form are rather different, and that the naive VB-method seems superio? to
the naive MO-method in treating correlation effects. In order to explain the
peculiar behaviour of crystals like NiO, which are insulators but still have
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incompletely filled bands, Mott 83
bond method is particularly well suited for certain classes of crystals (insulators)
and the band theory for other classes (conductors). One could think that correla-
tion effécts would be more important in insulators than in conductors, but these

) raised the questibn,whether the simple valence

. effects are probably just as essential in all types of crystals. This problem will

be further discussed in Sec. 5

.83) N.F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949).

(b) Dirac-Van Vleck Vector Model

In the study of the magnetic properties of crystals, the valence-bond
method has been used in a particular form known as the Dirac-Van Vleck vector

model 84) . In this approach, the spin-degeneracy problem of a many-electron
84)- P.A.M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929);

J.H. Van Vleck, "Theory of Electric and Magnetic Susceptibilities"
(Oxford University Press, London 1932); Phys. Rev. 45, 405 (1934).

system is investigated under the assumption that the space part is characterized
by a set of orbitals a, b, ¢, d, ... and that one has integrated over the space
coordinates. The splitting of the energy levels is then given by the eigenvalues
to the spin Hamiltonian:

<
T L<8
which works in the spin-space only; here E ° is an average energy, and the -

coefficients J.. are the exchange integrals. This formalism has been success-
85) : 86)
and in the theory of superexchange .

éj A“"A:X. ) (83)

fully utilized in the spin-wave model

The original derivation was based on the assumption that the orbitals
a, b, c, d, ... were all orthogonal and the entire approach has been critized
by Slater 87) on this ground. The simple éxample of two electfonl shows that,
if the orbitals a and b are assumed to be orthogonal, one could neither discuss

Pl o e

e e A a2
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85) H.A. Bethe, Z. Physik 71, 205 (1931); L. Hulthén, Arkiv f. mat.,
‘astr., fysik 264, 11(1938); P.W. Anderson, Phys. Rev. 86, 694
(1952); R. Kubo, Phys. Rev. 87, 568 (1952); F. Dyson, Phys. Rev..
102, 1217 (1956); J. van Kranendonk and J.H. Vdn Vleck, Revs.
Modern Phys. 30, 1(1958); F. Bopp and E. Werner, Z. Physik 151,
10 (1958); and others.

86) H.A. Kramers, Physica 1, 182 (1934); P.W. Anderson, Phys. Rev.
19, 350 (1950); for further references, see e.g. P. W. Anderson,
Phys. Rev. 115, 2 (1959).

87) J.C. Slater, Revs. Modern Phys. 25, 199 (1953).

magnetic alinement nor bonding. The remedy iQ to use overlapping orbitals or

to include polar states 88). The "non-ori:hog,onality catastrophe™ in connection
with the overlap integrals in crystal theory has previously‘ been mentioned 61, 78),
and a long series of papers has now been written on this subject 89 . |

88) R. Serber, J. Chem. Phys. 2, 697 (1934); Phys. Rev. 45, 461 (1934).
89 J.H. Van Vleck, Phys. Rev. 49, 232 (1936); P.O. Lowdin, J. Chem.

Phys. 18, 365 (1950); W.J. Carr Jr., Phys. Rev. 92, 28 (1953);
Y. Mizuno and T. Izuyama, Progr. Theoret. Phys. Japan 22, 344
(1959); F. Takano, J. Phys. Soc. Japan 14, 348 (1959); T. Arai
(unpublished). :

It should be observed that it may be quite possible to incorporate non-
-orthogonality, polar states, correlation effects, etc. in the vector model in a
simple way 90). For a two-particle system, one has a singlet and a triplet state

90) P.O. Ldwdin, Technical Note 46, Uppsala Quantum Chemistry Group;
Revs. Modern Phys. 34, 1 (1962).

and the identity
E =3 (‘B+°E) 3 (B-°E) =

: ' (54)
=z (B+8) =x ]
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where g and 3E could be the true energies, J is the exchange integral
defined by (50) and (51), and Kk = -{ for the singlet state (S =0) and k = +!
for the triplet state (S = 1). The quantity X may be considered as a spin
operatoi’ which has the samie eigenvalues and eigenfunctions as the operator

( 3',' +2 4,4, ) and, according to (54), one obtains

R - E, -“o'ééféz,}f , (55)

T

“which is the spin Hamiltonian desired. The question whether this approach

could be generalized to more electrons is now being investigated. If this is the
case, the vector model would certainly form a good basis for a semi-empirical

theory fully in line with the applications carried out so far 83, 86),. ‘

(¢) Extension of Valence-Bond Method

In chemistry, the concept of the covalent bond is of such a fundamental
importance that it seems highly desirable to try to obtain a simple and useful
formulation of the VB-method free of the previously mentioned mathematical
difficulties connected with the overlap. As indicated in the discussion in connec-
tion with equations (48)-(51), the basic space function P=3> (71‘, 7Z;) in the
VB -method is essentially a two-electron function, and there is no necessity
of using the orbital approximation. The corresponding valence bond singlet would
then have the form <R é(’lv "z)(uu /61’- /640(2,) . For a many-electron system
having the bonds (ab), (cd), (ef), ... with the space functions ¢ b Pcd? egr <00
one would instead of (52) get the more general valence bond singlet

415 =< §ac(”»”z) Pt (%, %) Dot (7%, 7c) ... (56)
(d! ;.‘/51“1\(0‘3/6?,—/630(4)(0(5 (— 6‘0(6>~' ,

where, in each bond function, one could include the overlap, the polar states,
and the full correlation effects in each bond.

Such a two-electron extension of the valence-Lond method has been
worked out by Hurley, Lennard-Jones; and Pople 91) . The overlap associated

91) A.C. Hurley, J. Lennard-Jones, and J. Pople, Proc. Roy. Soc. London

A220, 446 (1953).
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with a specific bond does not cause any difficulties, but there is an overlap be-
tween the functions associated with different bonds which leads again to consid-
erable mathematical complications. In order to simplify the theory, one has
sometimes introduced the assumption of strong orthogonality between the bonds:

\h/@“ (7"1,",:.\ @d();f, nu) dQ\ = 0 (57)

/

which means that the bonds to a certain extent are independent of each other.

The implications of this condition have recently been studied in detail 92).

92) T. Arai, J. Chem. Phys. 33, 95 (1960); P.O. L8wdin, J. Chem. Phys.

35, 78 (1961).

The extended VB-method has been successfully applied to crystals: to
a study of diamond by Schmid 7%
Tomishina 94)

name of "perfect-pairing approximatio

and to an investigation of ZnS by Asano and

. In molecular theory, this apl:;roach has become known under the
95
n" .

93) L.A. Schmid, Phys. Rev. 92, 1373 (1953); Am. J. Phys. 22, 255 (1954).
94) S. Asano and Y. Tomishina, J. Phys. Soc. Japan 11, 644 (1956).
95)

See e.g. R.G. Parr, F.O. Ellison, and P.G. Lykos, J. Chem. Phys.
24, 1106 (1956); J.M. Parks and R.G. Parr, J. Chem. Phys. 28,
335 (1958); R. McWeeny and K. A. Ohno, Proc. Roy. Soc. (London)
A225, 367 (1960); R. McWeeny, Revs. Modern Phys. 32, 335 (1960).
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4. TIGHT-BINDING APPROXIMATION ‘ ‘

(a) Basic Problems

The tight-binding approximation introduced in crystal theory by Bloch 2)
is a band theory using the atomic orbitals of the constituents as a basis, and it
corresponds in its most refined form to the ASP-MO-LCAO-SCF method in
molecular theory i, 13). The nature of the tight-binding scheme in general has
been briefly discussed previously in this review and, in this section, we will .
concentrate our interest on some basic ﬁroblems of particular importance con-
nected with this approach. Since the valence-bond method is often based on

' atomic orbitals, some of the problems are common to both approaches.

Approximate linear dependencies. - The fundament of Ritz's method 9 for

solving eigenvalue problems was discussed in Sec. 2c. If {fb } is a set of
functions forming a complete basis, the Schr8dinger equation is equivalent to a

system of linear equations (36) with the secular determinant

'

At (Rom =€ Omn) = 0 . © (58)

We note that, if some of the functions in the set {f, } would be linearly
dependent so that % f, a, =0 for some non-vanishing coefficients ay the
rows and columns in this determinant would also be linearly dependent, which

implies that the secular determinant would be identically vanishing for all values

of the parameter & . In order to be able to use the secular equation for
determining the eigenvalues € , one has thus to be sure that the functions in

the basis {fb } are linearly independent.

In this connection, it is convenient to introduce a certdain measure p

for the degree of linear independence defined by the minimum of the quantity

d= /15 o, 1 (8 e

where the coefficients a, are subject to the auxiliary condition % lab |2= 1
which means that they cannot all simultaneously be vanishing. For 4 one has

the alternative form

d _afaa , _(60)
afo

S
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with the auxiliary condition removed, and we can hence draw the conclusion that

p is the smallest eigenvalue of the metric matrix A which is positive
definite. If p = 0, the set {fb } is linearly dependent, whereas, if p # 0, the
set is linearly independent and everything is in order, at least in the sense of

ordinary mathematics.

However, in any numerical application of Ritz's method, one can use
only a finite number of figures. This means that, if M  is smaller than the

rounding-off error, the basic set is approximately linearly dependent, and the

corresponding secular equation (58) will be identically vanishing within the
accuracy used. If the quantity p is small but not necessarily vanishing, one
has often a corresponding loss of significant figures in the calculation of €.
_The occurrence of approximate linear dependencies is hence a very serious
problex;n from 'praétical points of view. "

This broblem is n(;t limited to the tight-binding appioximation but is
96 '

of a very general nature + An investigation of some of the standard radial

96) P.O. L8wdin, Ann. Rev. i—"hys. Chem. 11, 107 (1960).

sets {r"” 1} , {rn-‘le-r}, {e™ ™7}, {e™PF }, etc. for n=1, 2, 3, ..., shows
that the corresponding measures p quickly become exceedingly small, and that
the sets are actually to a high extent approximately lihearly dependent.

As another typical example, we will consider the set of powers
1, x, xz, x7, ... for -1 £ x% + 1, which is often used in studying e.g.
angular behaviour with x = cos@. From mathematics, we know that this set
is complete and linearly independet, but an investigation of p reveals that the
set quickly becomes approximately linearly dependent. Since the even powers
1, x°, x4 .+. are orthogonal to the odd powérs x, x°, x5, «++, there are
actually two orthogonal subsets which can be treated independently. The smallest
eigenvalue p of the metric matrix A is given in Table I as a function of the
number of functions in the subset, and the resultis perhaps somewhat surprising.
It tells us that one has to be extremely careful in using a non-orthogonal basis
{f.!/ } in applying Ritz's method in molecular and crystal theory. Since it
seems as if the remedy would be a transformation of the basis to an orthonormal

set, we will continue with a brief study of such procedures.

The phenomenon of the almost identically vanishing secular equation
was first observed in crystal theory by Parmenter 97) in a tight-binding study
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TABLE L. Lowe-t eigenvalue p of matrix qu = <xP|x%> for the interval
-1< x<€+ 1 ; n = number of membersh each set. Unit= 10 9

Even set . Odd eet

n ® n m

2 79 316 688 2 33 154 158
3 3 275 556 3 1 254 936
4 117 839 : 4 43 655
5 4002 s 1 451
6 131 6 45
7 5 7 . ‘1
8 1 -8 1

The author is indebted to F.K. Klaus Appel and F.K. Einar
Lundqvist for carrying out the numerical calculations involved.
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-~ 97) R.H. Parmenter, Phys. Rev. 86, 552 (1952).

of the lithium metal using Gaussian functions as atomic orbitals.

Orthonormalization procedures. - Starting from the basis {f, } having a

metric matrix /A  with the elements A mn =<fm|fn> » we will now study the
general linear transformation A  which transforms this basis to another .

{9} whichis orthonormal, so that <o_ lcp >=§_ . Using matrix notations,

we will write the transformatmn in the form @ = Jﬂ »or @ Zf A

Since qﬂ’q = and J f A i one obtains directly the éonditmn
J\*Aﬂ =1 .« Substituting A=A ,B » one is lead to the equation

nte =1 and, since the transformation should be non-singular, B is
a unitary matrix. The general orthonormalization procedure has hence the form

9 -~fA A*B (69

where B is an arbitrary unitary matrix. If f\ is chosen triangular, one

36)

obtains Schmidt's classical procedure of successive orthogonalization which is

more simply derived directly. If B is chosen equal to 14 one obtains,

35, 36) ’

the symmetric orthonormalization , in which all functions in the basis

{f v } are treated in an equivalent way. In this case, it is essential to evaluate
. the matrix A % .Putting A = 1+S , where S isthe overlap matrix

of the basis, one has the formal expansion
-4 | 3 & o3 :
= (1+8) = -3 S + T8-S +- ()

which is convergent, if the overlap is sufficiently small, for instance
).'.‘JSW1 |<] . For many crystals, the series (62) is divergent, and one has then
a

to use more forceful methods to evaluate A.}&' .

The metric matrix A is hermitean and positive definite, and we
willlet U  be the unitary matrix which brings it to diagonal form d s 80O
that

UTAU =J ) | ' (63_)
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where all the eigenvalues d, are positive and the smallest one gives the

measure p of linear mdependence The matrix A»Q’ may now be defined
A%=ﬁdﬂu

by the relation ‘ , where one can choose e.g. the positive

square roots in d ® . With this definition of A one can prove some

interesting theorems 98) about the set <P *J A 72 LIt has further been

99)

shown that;' if the basis {f ¢ } undergoes a unitary transformation R

then the set {wb} undergoes the same transformation.

98)  G.W. Pratt Jr., and S.F. Neustadter, Dhys. Rev. 101, 1248 (1956);
B.C. Carlson and J.M. Keller, Phys. Rev. 105, 102 (1957);
P.G. Lykos and H.N. Schmeising, J. Chem. Phys. 35, 288 (1961).

99) "J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).

It is clear that, unlessy the series (62) is rapidly convergent; the

_calculation of the matrix A™ isa cumbersome procedure, particularly © '

for a crystal. Using the Chebyshev polynomials, one has recently obtained a

considerable aimphfication of this problem by deriving a closed expression 100)

for the elements of A "2 for an infinite (periodic) chain and, by using per-

turbation technique, the sarne method can be extended to three dimensions.

100)  p 0. L#wdin, R. Pauncz, and J. de Heer, J. Math. Phys. 1, 461"

(1960).

In discussing the symmetric orthonormalization, we have assumed
that the basis {f_b '} is linearly independent, so that u # 0 and A & exists.
In order to treat also the case of exact and approximate lirear dependencies,
it is convenient to choose -B =V in (61), which leads to the canonical

orthogonalization 101) P - j .‘U' d""/z) or

e "
" Z Juate @

101) P.O. LBwdin, Advances in Physics 5, 1 (1956), p. 49-56.
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which formula is valid for all dy # 0. It may be convenient to arrange this

set according to decreasing values of d; ; the sum of the absolute squareés of
the coefficients in (64) equals dk'1 , and the set (64) has an optimum property
in this connection. ;

This means that, even if one goes over to an orthonormal set, the
approximate linear dependencies will still show up in the calculations: the sum
of the absolute squares of the coefficients in the last function will be p.-l » loe.
the coefficients will usually be very large at the same time as they have a small
number of significant figures. However, formula (64) gives us at least a
possibility of refining the calculations within a certain accuracy by striking
away those functions 9, as corre spond to tooc small eigenvalues .dk , but the
completeness of the basis is then gone. The finite number of bits of our elecs:
tronic computers (or desk machines, etc.) puts us hence in a dilemma, which

has not yet been solved.

In conclusion, it should be added that, in crystal theory, it is often

highly convenient to use one more method, namely the successive orthonormaliza-

tion of groups of functions. Let fé and “l represent two groups of func >
tions having the metric matrix ‘ R

(1 s

where -s = (gh‘ is a quadratic or rectangular matrix. We will leave the

(65)

first group ,.é unchanged and replace the second group by a linear combina-
tion & = .S A+ "'lB . The orthogonality condition rE-Tﬁ =0 gives

A =—8B , whereas the orthonormality condition ﬁ*ﬁ =1 leads to
at (1—3"'5 YB = 1 with the solution B = (1 - S"S )'J/*' . The result is

hence

k]

A=E S = (‘1",&5)(1*?3)”6‘ , e

which is a generalization of the standard Schmidt procedure to groups of func-
tions. Formula (66) is useful, for instance, in deriving the orthogonalized plane
waves or in handling groups of orthogonalized atomic orbitals.
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Orthonormalization problem in crystal theory. - The orthonormalization

problem takes a very interesting form in crystal tiieory depending on the trans-
lational symmetry of the lattice. Let &(’L ) be an arbitrary atomic orbital,
i.e. alocalized function centered around a certain lattice l;oint which we may
have chosen as the 6rigin, and let i denote the set of all such orbitals
®(n — o )centered around the equivalent points M  in the lattice. This
set has a metric matrix A = éf == with the elements:

Alm,) =J§*(n-m) é(hfm) (d) ) (67)

which is cyclic and which is hence brought to diagonal form by the unitary
transformation
' ~34 25, R - A
Ulm, %) = G e o (68)

The eigenvalues of A are then given by the formula

(&) 2w &g m

d(k)= 3 e A(0,m) (69)
. m

Instead of the original set @ , W& can now intr’od\}/ce aset P of orthono;mal-
ized AO's by the symmetric procedure < = § A’ . Here the matrix A™*
may be evaluated by various methods, of which at the present stage the Chebyshev

100)

expansion method is probably the most forceful.

It is also of interest to consider the canonical orthonormalization
procedure defined by (64). Using (68) and (17), we find that this approach leads
directly to the standard Bloch-functions associated with the set @ ina

properly normalized form.

The Bloch functions can actually be derived from the given atomic
orbital @ (7!) in several ways. According to (20), one can start from a
single orbital £ (n) and resolve this function into its Bloch components

(«)

P(n) = % E (& n)

(70)

Ben) = O, EM =G T e  BE-m o
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where ‘ @(k,n) " is an unnormalized Bloch function of the standard

type 12), of course , one could also think of this Bloch function as being formed
by linear combinations of the atomic orbitals in the various lattice f)dints
(LCAO). The different aspects may be valuable in different connectione.

Bloch functions associated with different &R -values are orthogonal,
whereas they are usually not normalized. The normalization integral for the
function (71) takes the form ' ’

<@l©.‘\é>=q‘3cuk), - (12)

but the best way of normalizing the Bloch functions is probably to take the ,

Bloch projections (multiplied by G+;/ z_ f the orthonormalized AO's, <P =

= é A"/‘z' s where the matrix A2 is evaluated e.g. by Chebyshev

technique. All the 63 Bloch functions will then be normalized at once, whereas

one otherwise has to carry out one normalization for each one of the 63 k-
values. Valuable information may also be obtained by combining the two approaches.

It is remarkable that the LCAO Bloch-functions formed from the
orthogonalized AO's <P excebt for the normalization are completely identi-
cal 102) with those formed from the original AO's &© . Thisisa special case
of a general invariance theorem, saying that the Bloch projection of any linear

combination

(o) S
F'(n) =15 Alm) E-m) (73)

102) P.O. L8wdin, J. Chem. Phys. 18, 365 (1950); Advances in Physics 5,

1 (1956), p. 53; R.G. Parr, J. Chem. Phys. 33, 1184 (1960).

with arbitrary cpeificients q (‘"‘) will, except for a norma;ization factor, be
identical with the corresponding Bloch projection of the function § (’l) )
According to (19), one has

a5 S m

T(m) O, =0, Tim) =¢ Oy . (74)

and applying O, to ¢', we obtain
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. © .
®k @'(’l) = (0& [ 2_—:} H(m)"l"(—m)} @(n) -

(75)

SLgAme T 10,2m),

which proves the theorem. In this connection, the projection technique is hence

very convenierit.

Completeness problem in t'iﬂt-bindhm‘ scheme. - It has been discussed in
various connections, whether the atomic orbitals would form a sufficient basis

for band theory or whether sometlﬁng essential is missing in the tight-binding
method. It is evident that, if one introduces a complete set of AQ's in every
lattice point ™M |, the basis will be highly overcomplete, and the key problem
will be to eliminate the redundancies connected with the linear dependencies.

If, on the other hand, one introduces a truncated set of AO's in each lattice
point, the treatment may be disturbed by approximate linear dependencies at

the same time as some essential element may be missing.

From theoretical point of view, it is sufficient to introduce a complete
set of AO's {fb } in a single lattice point, since we may then use expansion
(34), i.e. Yk =Z f, ¢, . In studying the Bloch functions, we can apply the
projection operator O, and go over from (34) to (37), i.e.

Fa = (0 f0) @, (7¢)

which relation says that it is possible to express every Bloch function associated
with the wave vector &  in terms of the subset (okfb ). From the complete-
ness of {f, } follows hence the completeness of {okfb } with respect to -
the subspace characterized by R . Consequently, nothing can be missing.

However, if one uses a set of hydrogen-like orbitals 1s, 2s, 2p, 3s,
3p, 3d, .... and constructs the corresponding Bloch functions, one will find
a peculiarity in analyzing these functions in terms of plane waves 101): once
the orbitals for neighbouring atoms start having large overlap, the main con-
tribution to the Bloch function will come irom the first Brillouin zone. Except
for the region around the nucleus, the Bloch functions will then become more

and more similar to a free wave associated with the first zone, and little new
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- will be obtained by adding more (n t )-functions. One should remember, how-

ever, that the higher functions contribute to the description of the inner parts
of the atoms, and that a particularly important part comes from the continuum,
which is necessary to make the basis {f; } complete.

If one neglects the continuum in the tight-binding approxiniation, one
is certainly leaving out a very important part of the basis. It is true that the
handling of the contindum functions may cause some mathematical difficulties,
but these are easily circumventéd if one follows Schr8dinger's suggestion 103)

103)  E. Schridinger, Ann. Physik 79, 361 (1926). .

a.nd uses a set which is both entirely discrete and complete, such a set is easily
derived from the hydrogen-like orbitals by omitting the principal quantum num-
ber n in the radial variable g = 2Zr/n . These new functions Ts, Zs, Z-, s,
5p, ... will be more localized within the atomic cell of interest, they will give
more details concerning the ion core and the nuclear region, at the same time as
the higher orbitals will give Bloch functions which are close to free waves. The
set of modified atomlc orbitals has proven to be extremely useful in atomic and
molecular theory 104) » and it will probably be just as valuable in crystal theory.

10) [ Shull and P.O. L8wdin, J. Chem. Phys. 23, 1362 (1955); 25, 1035
(1956); 30, 617 (1959); E. Holgien, Phys. Rev. 104, 1301 (1956); .
Proc. Phys. Soc. AT1, 357 (1958); J.O. Hirschfelder and P.O. L8wdin,
Molecular Physics 2, 229 (1959).

One could ask how an orthonormal set of Block functions should best
be constructed in the tight-binding scheme to give a basis which is in principle
complete and which does not contain any linear dependencies. If {f L } denotes
the set of modified atomic orbitals in a single lattice point, the projected sub-

‘sets {Okf v} associated with different reduced wave vectors R  are cer-

tainly mutually orthogonal and non-interacting with respect to H off’ but the
individual functions within each subset {Okf,,} are neither normalized nor
orthogonal. Since the functions 1s, 2s, fo, s, 33, 3d, ... form a natural
sequence, the functions within each subsget {Ok f,,} are conveniently transformed
by means of successive orthonormalization. If only a limited number of points in

R -space will be studied, this is a procedure which is easily carried out by
considering one R -value at a time.
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However, if it is desirable to derive a comgplete set of Bloch functions
which are orthonormal within all the 03 subsets associated with the reduced
wave vector R , it is simpler to start by d'eriving a complete set of atomic
orbitals orthonormalized over all the lattice points. In such a case, one starts
by considering the functions in all the lattice points and carries out a
symmetric orthogonalization according to (61) with B=1 | proceeds in the

same way with all the functions Zs, with all the functions Zp, ... etc. one
type at a time. This procedure seems physically feasible, since all the lattice
points are treated in an equivalent way. It leads to a sequence of groups of

orthonormalized atomic orbitals, which are then made mutually orthogonal by
means of the successive orthogonalization obtained by repeated use of formula

(66). In each lattice point, one gets in this way, a set of orthonormal atomic
orbitals 1s', Zs', 2p', 39, 3p', ... which are translationally connected and
al‘togef:her complete. Finally, one forms the Bloch projections

*‘/ _ -
&% o, (7 (11)

which constitute the orthonormal, complete set desired. Each Bloch function is
here characterized by the reduced wave vector R and an index corresponding

to the atomic quantum numbers (n L m).

By using the invariance theorem (71), it may be shown that the two
ways of proceeding here described actually lead to identical result. For the
moment, it seems simpler to construct the complete set of translationally con-
nected atomic orbitals 1s', Zs', 2p', 38', ... since one can use the Chebyshev
technique 100) for evaluating the (-3) power of a cyclic matrix in both steps
of the procedure, but, of course, it should be possible to find the corresponding
short-cut also in the other approach. ‘

' By constructing a complete orthonormal set of Bloch functions of the
type (77), one can hence remove two weak points in the tight-binding approxima-
tion, namely the occurrence of approximate linear dependencies and the in-
completeness particularly with respect to the inner region around each lattice
point otherwise arising from the neglect of the continuum.

o o S e+
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(b) Recent Applications

For applications of t.he tight-binding approximation to 'cfystal theory, -
we will again refer to the previously mentioned reviews by LBwdin 23),

Herman 24) , and Pincherle 25) and comment only on some recently published

papers. : ' o K

Tﬁe relation betwee:i fhe MO-LCAO method in molecular theory‘ and
‘the tight-binding scheme in crystal theory can be particu'larlly well etudieci in
connection with the gi-aghite problem, where one can start out from a single -
nx-membered ring as m the benzene molecule. add more and more ringl until
one obtains a graphxte layer. and finally add the layers to a three-dunenlional
crystal. The electronic structure of graphite, its diamagnetiem and other

properties have succeufnlly been studied in this way 105)

3

105) See e.g. C.A. Coulson and R. Taylor, Proc. Phys. Soc. (London)

A65, 815 (1952); D.F. Johnston, Proc. Roy. Soc. (London) A237,
48 (1956); M. Yamasaki, J. Chem. Phys. 26, 930 (1957);

J.W. McClure, Phys. Rev. 108, 612 (1957), R.R. Haering, Can. J.
Phys. 36, 352 (i958); S. Mase, J. Phys. Soc. Japan 13, 563 (1958),
J.C. Slonczewsky and P.R. Weiss, Phys. Rev. 109, 272,(1958)'
T.E. Peacock and R. McWeeny, Proc. Phys. S'oc..(Lond‘on)'_Zi, 385
(1959); H. Sato, J. Phys. Soc. Japan 14, 609 (1959); J. Kontech§ and
M. Tom&sek, Phys. Rev. 120, 1212 (1960). :

In connection with diamond-type crystals, the work by Schmid 93)
using VB-method has previously been mentioned, and here we will only add a

study by Morita 10.6), where he uses a semi-localized. crystal orbital method.

106) A:. Morita, Progr. Theoret. Phys. 19, 534 (1958).

Among the papers on boron crystals, we would like to mention an
extensive investigation of the electronic structure and band properties of the
metal borides of type MB 6 carried out by Flodmark 107)

» and a study of boron

107) 5. Flodmark, Arkivf. Fysik 9, 1357 (1955); 11, 417 (1957); 14, 513

(1959); Svensk Kemisk Tidsk. 70, 12 (1958).
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108). : , -

108) (. Yamasaki, J. Chem. Phys. 27, 746 (1957).

The oxide ionic crystals offer an interesting problem 109) » and

110)

Yamashita has now éxtended his previous work to a study of the oxygen

band in magne'sium oxide, whereas O'Sullivan 111) has treated beryllium oxide.

109) ;. yamashita and M. Kojima, J. Phys. Soc. Japan 7, 261 (1952).
110) ;. yamashita, Phys. Rev. 111, 733 (1958).
1) w. O'Sullivan, J. Chem. Phys. 30, 379 (1959). .

The tight-binding studies of the alkali hydrides and alkali halides are
being continued. The covalent character of lithium bydride has been investigated
by Morita and Takahashi 112)

using semi-localized crystal orbitals, whereas the

112) A. Morita and K. Takahashi, Progr. Theoret. Phys. 19, 257 (1958).

behaviour of this crystal under very high pressure has been treated by . - - .

Behringer 113) . The electronic ‘structure of the alkali halides has been studied

by Grimley 114)

‘with particular attention to lithjum fluoride. Howland 115) has
finally carried through a careful study of the band structure and cohesive proper-
ties of potassium chloride.

113) R.E. Behringer, Phys. Rev. 113, 787 (1959).

114) .T.‘B. Grimley, Proc. Phys. Soc. (London) 70, 123'(1957); 11, 749

(1958).

115)  |.p. Howland, Phys. Rev. 109, 1927 (1958).

The ionic crystals with constituents having completely filled shells are
remarkable from the point of view that the naive MO-method and the naive VB-
method lead to identical results with respect to all properties which may be
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derived from the total wave function. These crysté.ll, are also particularly con-
venient for a study by means of the tight-binding approximation, and a rather
fixed approach seems finally to have been established. In this connection,.we
would like to make some critical comments on the conventional interpretation
of the data obtained in calculating.e‘.‘ g. the cohesive energy.

(¢) Virial Theorem in Theory of Ionic Crystals

The clauicﬂ th'eory of ionic crystals developed by Mad‘elung and Born
was based on the fundamental assumption that the essential constituents of such
a crystal are the positively and negatively charged ions. The system of ions
was auum‘ed to be in equilibﬂum under the influence of two typelc of potentials:
an attractive potential, corresponding to the electrostatic interaction betweéﬁ
the ions as point charges and repre'leﬁted by a Madelung energy, and a repulsive
potential, for which Born and Landé suggested the inverse power C r'® and

later Born and Mayer the exponential C exp(-r/ S ).

A characteristic feature of this model is that the Madelung energy
forms the domﬁxati,ng part of the cohesive energy of the crystal. In a recent in-
vestigation 116 » it has been pointed out, however, that the cohesive energy
actually conaists of several large terms of the same order of magnitude as the
Madelung contribution, and that the kinetic energy plays a very important role
in this connection. '

116) A, Fr8man and P.O. L8wdin, Technical Note 51, Uppsala Quantum
Chemistry Group (1960); J. Phys. Chem. Solids 20, ... (1961).

The ratio between the kinetic energy < T > and the potential energy

<V > is determined by the virial theorem 117) which, for a system with only

coulombic interactions, takes the special form < T>=z= -4 < V>, or <T>=

= -E, < V> = +2E, where E is the total energy, E =< T + V> . For an ionic

crystal, the virial theorem is satisfied in this simple form both for the
equilibrium state (R = Ro) and for the free ions (R = o), here indicated by an
index f (= free).

U7)  E.A. Hylleraas, Z. Physik 54, 347 (1929); V. Fock, Z. Physik 63,

855 (1930). For more complete réferences, see P.O. L3wdin, J. Mol.
Spectroscopy 3, 46 (1959). .
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The cohesive energy Ecoh is defined as the difference between the
total energy E ° of the crystal in its ground state and the energy E; of the free
constituents, sothat E , =E - E.. The change in kinetic energy AT and

the chnige in potential energy AV are further defined by the relations:

AT =Tg- Ty AV=V, -V, (78)

.and, using the virial theorem for both states, we hence obtain

AT=-E_; AV =#2E_ (19)

These relations show that the kinetic energy increases under the formation of a
solid, whereas the potential energy decreases twice as much leaving a balance
equal to the cohesive energy: AT +AV.=E_, . The kinetic energy of a bound

state is hence considerably larger than the kinetic energy of the free constituents,

which to a certain extent are excited or "promoted" 118 in a compound.

118) K. Riidenberg, Revs. Modern Phys. 34, .... (1962); in press.

In Table II, we have gathered the values of the cohesive energy for
some of the alkali halides obtained empirically by means of the Born-Haber
cycle. We have further listed AT accordihg to (79) whereas AV has been
divided into two terms: the Madelung energy vMa a’ and the remaining potentiai
energy V which must necessarily depend on the extension of the ions. The
last term is negative and of the same order as the Madelung energy.

Because of the kinetic energy term, which here contains also a small
contribution from the nuclear motion, the interpretation is certainly strikingly
different from the conventional one. It may be shown 116) that the quantum-
-mechanical calculations of the cohesive energy of the alkah balides carried
out 8o far on the basis of the tight- bmding approxxmatmn. by means of an
adjustable scale factor i 7), may be brought in complete agreement with this
picture. However, the simple Born-Mayer model has certainly also to be

modified to fulfil the requirement of the virial theorem.
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TABLE II. Interpretation of the cohesive energy of some alkali halides
according to Fr8man and L8wdin,-/J. Phys.:Chem. Solids.
.Z—.Q’ veee (1961)/0 ‘
AT = Increase in kinetic energy in formation of solid
AV = Decrease in potential energy in formation of goli'd
Units: kcal/mole
oV = vMad + vext
) Mad ., ext
LiF -244.4 244.4 -291.0 5197.8
NaF -216.3 216.3 -240.6 -192.0
KF -192.1 192. 1 -219.5 -164.7
RbF -184.4 184.4 -208.0 -160.8 |
LiCl ~201.7 1201.7 -228. 1 -175.3
NacCl -184.4 184.4 -208.0 -160.8
KCl -167.9 167.9 -186.3 -149.5
RbCl -162.1 162. 1 -179.4 -144.8
LiBr ’191-3 191-3 -213.0 ‘16906
NaBr -175-9 175-9 "196-8 '155.0
KBr -161.0 161.0 -178.6 -143.4
RbBr <155.8 "155.8 -171.5- -140.1
LiI '179.3 17903 '1950 l -16305
NaI "16505 165-5 ‘181c4 -14906
KI -152.3 152.3 -166.3 -138.3
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5. EXTENSION OF BAND THEORY;
DIFFERENT ORBITALS FOR DIFFERENT SPINS

As mentioned earlier in this review, it has been.pointed out by Slater,
Pauling, Mott, and others that the naive valence bond method is superior tc the
ordinary band theory in treating correlation effects and particularly that the
former leads to a correct asyfnptotic behaviour of the energy curve for
separated atoms; compare Fig. 1. On the other hand, band theory has many
advantages in describing conductivity and similar properties, and the question
is whether it is possible to combine the advantages of the two approaches by a
synthesis of the two ideas. This can be done by a generalization of band theory
which removes part of the correlation error discussed in Sec. 2d.

Extended Hartree-Fock scheme. - The large correlation errors in the con-

ventional Hartree-Fock scheme depend undoubtedly on the fact that pairs of
electrons of opposite spins are forced together in doubly filled orbitals. This
electron pairing goes back partly to the classical formulation of Pauli's exclusion
principle, partly to the fact that this procedure permits a simple construction of
Slater determinants as pure eigenfunctions to the total spin, SZ and Sz . One
can apparently remove a large part of the correlation error by letting electrons
with different spins occupy different orbitals in space, so that they get a

possibility to avoid each other; compare the discussion of the "Coulomb hole”
in Sec. 24.

The idea of this orbital splitting comes originally from Hylleraas 119)

who used it in treating the helium atom, and it was intensely discussed for two-

~electron systems at the Shelter Island Conference 120) in 1951, There is an.

119) E.A. Hylleraas, Z. Physik 54. 347 (1929); C. Eckart, Phys. Rev. 36,

878 (1930).

120) M. Kotani, Proc. Shelter Island Conf., 139 (1951); G.R. Taylor and

R.G. Parr, Proc. Nat. Acad. Sci. U.S. 38, 154 (1952); J.E. Lennard-

-Jones, Phil. Mag. 43, 581 (1952); R.S. Mulliken, Proc. Nat. Acad.
Sci. U.S. 38, 160 (1952).

e e e = e o e e e | e S s =
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obvious difficulty in generalizing the idea to a many-electron system depending
on the fact that, if one permits different orbitals for different gpins,' the

corresponding Slater determinant will no longer be a pure spin state.

" By means of a simple projection operator technique, the Slater deter-
minant D = (N!)~ det {¢,, ¥,, Ygs vene L|.¢N} may uniquely be resolved into
pure spin components (25+1)p , which are orthogonal and non-interacting with
respect to the total Hamiltonian (7), so that '

__D' = % (.2.$+()_D ) (80)

where one should sum over all values of S involved. The compdnent of the
specific multiplicity (25+1) is selected by means of a projection operator of

the form
(a8+1) i‘{]‘:‘s ¥ — de(de+t)
0 - x  S(Se)—kllrt) ’ (81)

which annihilates all components except the one desired, which survives the
operation in an unchanged form. The operator O fulfills the relations O2 = 0,
ot =0, 820 =5(5+ 1) O and its properties have been studied in detail 21,

121) P.O. L8wdin, Phys. Rev. _9_7_, 1509 (1955); Coll. Int. Centre Nat.
Rech. Sci. 82, 23 (Paris, 1958); Technical Note 12, Uppsala Quantum
Chemistry Group (1958).

It is now possible to introduce an extension of the Hartree-Fock
scheme by considering a total wave function which is approximated by the

component of the Slater determinant D which has the pure spin desired, so

that
(2$+1) & ' (zw)@ h) -
: - C (82)

If the basic spin-orbitals ¢1, q.«z, 4{3, cee \|lN in D are subject toa linear
transformation, this wave function is changed only by a constant. This implies
that the Fock-Dirac density matrix Q  defined by (4) will be the fundamental
invariant of the theory, which determines all physical properties. Since the
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projection (81) will affect only the spin functions, it is clear that the total wave

function Y will depend only on the two space density matrices g.,. (™ nz.)
and 3— (7!,) %, ) which are contained in p : :

3.("'""> = 34-(”0;"—2,)6(‘0(2? + 3"("""’°>/3'/3’* . 3

For the expectation value of the Hamiltonian one obtairis

12> a0
Y T TEIES T ooy 0 ™

where one has used the turn-over-rule and the relation O2 = O, The variation
principle 6< H> = 0 leads to the best possible density matrices Py and p_,
or to the corresponding best spin-orbitals. The approach may be characterized

as an extended Hartree-Fock scheme 122) » Which preserves the simple physical

visuality of the one-electron-model but still removes a very large fraction of the

total correlation error.

122) b, 0. LBwdin, Nikko Symp. Mol. Phys., 13 (Maruzen, Tokyo 1954);

Phys. Rev. 97, 1509 (1955); Proc. 10th Solvay Conference, 71 (1955);
Revs. Modern Phys. 32, 328 (1960).

The general treatment of the extended Hartree-Fock theorem is
greatly simplified by the existence of a pairing theorem with respect to the

orbitals in S.,. and - «Letu,u, ...u_ and v, v, ...V be
the orbitals contained in g.,. and Q. , respectively. Each set may be chosen
orthonormal and, in addition, there exists two unitary transformations 11}
and V , 80 that the two transformed sets’ l'- av ) A= WV . fulfil

the relation
Q"':z ' ”2 ) = Au, gkb . (85)

This implies that, without loss of éenerality, the orbitals may be chosen so
that each orbital in S-.. is orthogonal to all orbitals in g- , except possibly
one to which it is paired with an overlap integral L fulfilling the inequality

e hmparmr v B s e e e = -
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0< A < 1. If m>n, the extra orbitals in 8"’ may always be chosen
orthogonal to all orbitals in 9_ . The proof follows simply by considering the
quadratic or rectangular overlap matrix 8 = A& of order mxn and
the unitary transformations VUV ana V bringing the hermitean matrices
SS"’ and S"'$ ‘respectively, to diagonal form. The pairing theorem

introduces far-reaching orthogonality simplifications in the calculations and

' makes it possible to evaluate the energy in (84) in a straight-forward way:

The solution of the oi'dinary Hartree-Fock eqﬁations for a molecular or
crystal system is a very complicated matter, and one can expect that the treat-
ment of the extended equations will be still more difficult. An ab initio calcula~

tionof Q4 and 9- would certainly give valuable information about the ‘
" mutual behaviour of electrons having amtiparallel spins, but, for the moment one

has to be satisfied with highly approximate solutions based on suitable trial
functions and a few adjustable parameters. In choosing the trial functions, one
is to a certain extent guided by the idea that "electrons with different spins do
try to avoid each other", but the justification of the entire approach is the
energy lowering finally obtained. In connection with the orbital splitting, one
speaks of "in-out effect", "right- and left-effect”, "up-and down-effect",
"alternant effect”, etc., but only the last idea will be briefly discussed here.

Alternant Crystal Orbital Method. - In this section, we will consider an exten-

sion of the ordinary band theory which is inspired by certain aspects of the
valence bond method. Again it is convenient to explain the idea by starting

from the hydrogen molecule. If a and b are the atomic orbitals involved, the
molecular orbital wave function and the valence bond wave function are actually
represented by the anti-symmetric singlet components of the Hartree-products -
(::).1 + bl) (az + bz’) a, pz' and a1b2“ (B2 » respectively; see Fig. 2. In a..ddibn;.
we may now consider the antisymmetric singlet component of the Hartree- .
-product u, VZ“‘lﬂz' whgre u and v are unﬂ-localizgd molecular N
orbitals 1Z§) given by the expression

A= 0w +haw? ;L= axmdrbad (86)

C.A. Coulson, and I. Fischer, Phil. Mag. 40, 386 (1949).

When ¥ = 0, one obtains the naive VB-method, whereas for ¥ = 45° one gets
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Fig. 2.

Comparison between the arrangements of orbitals and
spins in the valence bond method 1); the molecular-
-orbital method 2), and the alternant molecular-orbital

" method 3); H,-molecule.
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the naive MO-method. The parameter V) gives us hence a possibility of a con-
tinuous transition from one type of theory to the other; it measures the degree

to which the two electrons would like to avoid each other, and ¥ may hence be
denoted as the "correlation angle". A value of U intermediate between 0 and

45° corresponds to a valence-bond method mcluding polar states, to a molecular-
-orbital method including configuration interaction, or to an extended MO-

-approach along the lines sketched above.

For a valence crystal, one could now think of an extended Hartree-
-Fock scheme in terms of localized orbitals 124),' where g-f- and g- are

124) Compare references 41 and 42, with respect to the ordinary Hartree-~

-Fock method.

such that each pair (uk. vk) would be associated with a speciﬂc valence bond.
Because of the relation (85), there may then be a close connection between the
general pairing theorem in the extended Hartree-Fock scheme and the ortho-
gonality assumption (57) in the extended valence bond method or "perfect-pairing"

approximation discussed in Sec. 3c.

Let us now consider a limple.'cryltal with a half-filled conduction band,
like the alkali metals. The ordinary band theory is here affected by a consider-
able correlation error which is particularly accentuated in the wrong behaviour
of the singlet enei‘gy curve for separated atoms; see Fig. 1 (page 29) and the
discussion in Sec. 2d. In his classical 1930 paper, Slater 1 has studied this
problem in connection with the body-centered cubic sodium metal, and he pointed
out that it seemed desirable to find a modification of the ordinary MO-theory which,
for separated atoinl, would go over into some form of VB-treatment based on the
idea that the electr-ongl with antiparallel spins would separate, so that the elec-
trons with plus spin would occur in the "corners" and the electrons with minus
spin in the "centers" of the lattice; see Fig. 3. The advantage of such a spin
arrangement would be that it would prevent the formation of negative ions, which
is the cause of the wrong asymptotic behaviour of the energy curve. We will now
try to realize and generalize this idea.

The body-centered cubic latticc is a special type of an important class
of crystals which is called alternant systems, and which is characterized by the
fact that all lattice points may be divided into two equivalent, interpenetrating
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Spin arrangement for separated atoms in body-centered
cubic lattice of sodium metal.
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sublattices (I) and (II). The sublattice (II) is supposed to contain the origin and
will be called the even sublattice, whereas (I) will be called the odd sublattice.
In order to obtain an extension of the ordinary band theory, we will now try to
introduée alternant crystal orbitals which are semi-localized on the two sub-
'l'atticel. and let electrons with plus spin tend to be associated with sublattice
(I) and those with minus spin associated with sublattice (II).

For this purpose, wé_ will consider the space of the reduced wave vec-
tor B andall points which are situated within the Fermi-surface of ordinary
band theory. Instead of the single Bloch projection operator O defined by (17):

-3 <) L0 k™ ‘
0,=6 2 e Ttm (o7
AL
It is now convenient to introduce the two partial sums over the two sublattices:

-3 O v, k-

Oxr = G Z ¢ T(-m)

' -3 Cl) AL M- m (88)

-G e T=m)

each one containing 63/2 terms, and the splitting operators:
Quz = (0D Opy + 442041 ) (89)

O ax = VT (4D Opr + D Opy)

These operators will work, for ipitance. on an atomic orbital Cp(n) situated
around the origin and will gi\'re, rise to a set of alternant crystal orbitals with one
pair for each R -value. For ¥ = 45°, there will be no splitting and the func-
tions within each pair will be identical and equal to ordinary Bloch functions. For
v = 0, there will be a complete splitting and delocalization of each pair on the
two sublattices involved, in accordance with Siater'l idea 61

The operators (88) and (89) are all hermitean and satisfy some simple

algebraic rohtxonl which are useful in the applica.tionl. One has 0I = ion ’

= }On , = O O; = 40,, where for simplicity we have omitted the in-
dex h . 'rhll givu further

Q:'= Qy = Oy +4nid O
Q:Qp = Qx Qr= O+ 4429 Of oo
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which relations are used in calculating the normaliza.tion integralp and the over-
lap within the pair.

"We note that the splitting operators' Q are not eigenfunctions to.all:.
three primitive translations but that they always fulfil thé relation: -

gty em

T) Qry = ¢ Qi)i’ o (o)

where M  isa general translation from one point in a sublattice to an equiv-
| alent' point within the same sublattice. From this property follows also the

general orthogonality relation:

Qrl®) - Qre(®) = 0, . %+t , o

which says that the splitting operators applied to a function CD("') will render
us a set of alternant crystal orbitals satisfying the pairing theorem (85). For
each point k » there is hence an overlapping pair which is orthogonal towards
all other pairs. This property greatly simplifies the applications of the theory.

The basic Slater determinant D is now constructed by assigning a -spin
to orbitals of type I and p-spin to orbit_a.ls’ of type II for all points ) ‘within the
Fermi surface, so that the electro s are permitted to avoid each other. One
takes the projection (82) and evaluates the energy expectation value according to
- (84), and the best value of the "correlation angle" ¥ and the best form of CP(’C)
are then determined by means of the variation principle 6 <H>=0.

It is evident that an important generalization of this approach is possible
by letting the correlation angle ¥ be a function of the reduced wave vector & :

Q = V(%) ) o | (93)

where the form of the function could again be determined by the variation

pr'ihciple 125).

125) In comparison to some earlier work, references 121 and 122, a change
of notation ¥ = 45° - 0 should be observed. Even 0 was previously

‘characterized as "correlation angle".




" proper choice of CP(’I) they can be made strictly orthogonal. In this case

" odd alternant hydrocarbon radicals
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It is remarkable, however, that a large inmprovement can be obtained
by using a single parameter U and particularly that a correct asymptotic
behaviour of the singlet energy curve for separated atoms can be achieved by
observing that O approaches 0°.' For ¥ = 0° s one gets ,pufely alternant
orbitals which are completely delocalized on the two sublattices and, by a 121)

’

the energy (84) takes the simple form:

.<éfe.‘,>,‘v =YD () — M }: G4 S lkx {1y o9

where the latter term goes to zero for separated atoms and, since there is no
accumulation of negative ions, the energy curve gets the correct asymptotic
behaviour. Of still larger impovrtance are probably the improvements which can

be obtained for the equilibrium state (R =R_) .

This approach'ha.s 80 far been essentially tested only for molecules,
where actually the difficulties connei:ted with forming the projection (80) are
particularly accentuated. In an mvestxgatxon of the benzene molecule. Itoh and

Yoshizumi 126) obtained ¥ = 22° and could show that about 85 o/o of the

' previously known correlation energy could be removed, and this Fesult has

recently been improved by de Heer &Z?)

has further proven to be valuable in a s)tud‘y of the alternating spin densities in
128

‘using two parameters ¥ . The approach

. It has been used successfully for in-
vestigating the correlation properties in the finite and infinite linear chain 129)
with the idea of making applications to conjugated systems; studies of three-
-dimensional crystals are now in progress.

126) T. Itoh and H. Yoshizumi, J. Phys. Soc. Jap 10, 201 (1955);
J. Chem. Phys. 23, 412 (1955); Busseiron Kenkyu 83, 13 (1955).
127) J. de Heer (private communication).
128) R. Léfebvre, H.H. Dearman, and H. M. Mc'Connellt.‘ J. Chem. Phys.
32, 176 (1960).
129)

R. Pauncz, J. de Heer, and P.O. L3wdin, Technical Notes 55 and
56, Uppsala Quantum Chemistry Group (1960); J. Chem. Phys. ...
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Actually, it seems easier to use the alternant orbital method for
treating crystals and very large molecules rather than small molecules. The
reason is that the effect of the projection S,Z)‘ becomes simpler for large N.

0 :

By using some of the previous results , one can easily show that, for a

130) ' See particularly equations (15)-(24) in P.O. L8wdin, Phys. Rev. _2:(_,
1509 (1955).

finite value of S and ¥ = (2s+ l)D one obtains

K i (S8 R IEIhY,
N 00 <5QT>W = oo <§|Z§_> = 3oy ) (.95)

i. e. the energy of the spin component (ZS“)D is the same as the energy of the

determinant D itself. It is clear that, for a very large N, a single spin flip
or a finite number of flips cannot influence the total energy, so that the singlet,
triplet, quinteét,... etc. all have the same energy in this case. The determinant
D contains also higher spin states with S/N finite, but it follows from (94)
that they occur in such a small portion that they do not contribute to the average
energy of the mixture for N = ©. A detailed study of the spin componénté in

D is now being carried out in Uppsala. '

Formula (95) indicates that, for large N, the variation with respect
to the starting function ¢ () and the correlation parameter (93) may be

" carried out as if the total wave function would simply be the Slater determinant

D. However, the singlet wave function is, of course, still represented by the
singlet projection of D, which ensures that the wave function is invariant under
the transformation a«>f and that the spin density is identically zero every-

where in space.

It should be mentioned that there are some similarities between this
approach and the unrestricted Hartree-Fock scheme developed by Slater and
his collabora.tors'-ﬂl) . It was pointed out by Slater that, in a system with un-

131)  ;.c. Slater, Phys. Rev. 81, 85 (1951); 82, 538 (1951); Revs. Modern
Phys. 25, 199 (1953); R.K. Nesbet, Proc. Roy. Soc. A230, 312 (1955);
G.W. Pratt Jr., Phys. Rev. 102, 1303 (1956); J.H. Wood and
G.W. Pratt Jr., Phys. Rev. 107, 995 (1957); R.K. Nesbet and
R.E. Watson, Ann. Phys. 9, 260 (1960); L.M. Sachs, Phys. Rev. 117,
1504 (1960); R.E. Watson and A.J. Freeman, Phys. Rev. 120, 1125
(1960); Phys. Rev. 120, 1134 (1960).

e e e s ——— o T e i
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balanced cpinl having s, # 0, the electrons with plus spin and those with

negative lpin would be inﬂuenced by different exchange potentials. One could
hence expect that electrons with different spins would have different orbitals,
and this effect was called excha.ngi polarization. In order to study this effect,

Slater approximated the total wave function by a single determinant with

different orbitals for different spins. Many important results have been obtained

so far by this approach, particularly with respect to magnetic behaviour 131)

For a detailed comparison between the unrestricted and the extended Hartree-

~Fock schemes, we will refer to a recent paper !32)

132) P.O. L8wdin, Ann. Acad. Reg. Sci. Upsaliensis 2, 127 (1958).

The main result of this section is that one can obtain an essential
lowering of the total energy of a Slater determinant D by permitting "different
orbitals for different spins". For S, =0, there will be a considerable orbital
splitting due to correlation and, for S5, # 0 there may be an additional exchange
polarization. The basic equations are the same as in the original Hartree-Fock
scheme characterized by (1)-(5), but no symmetry restrictions are imposed on
the spin-orbitals involved. Instead the symmetry properties are handled by a

component analysis of the determinant 133) .

133) If this component analysis is omitted, one may obtain results which

look paradoxical. Compare the giant spin waves in A.W. Overhauser,
Phys. Rev. Letters 4, 415, 462 (1960), and the criticism by W. Kohn
and S.J. Nettel, Phys. Rev. Letters 5, 8 (1960); K. Sawada and.

N. Fukuda, Progr. Theoret. Phys. 25, 653 (1961); T. Arai, Argonne
Report 1961 (unpubliahed).

- In this way, it seems possible to obtain an extension of band theory
which preserves the physical simplicity of the conventionil method but has an
essential part of the correlation error removed. For a schematic survey of the
advantages and disadvantages of the ordinary band theory, the valence bond
method, and the combined approach outlined here in the form of a table, we

will refer to another paper 90).
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6. GENERAL SELF-CONSISTEN T-FIELD THEORY AND
EXACT SOLUTION TO MANY-ELECTRON PROBLEM

For a long time, the Hartree-Fock scheme was considered as the
essential and ultimate theoretical tool for understanding the indépendent-particle-
-model from the. point of view of many-particle theory. The scheme was suc-
cessfully applied to the electronic clouds of the atoms and their shell structure,

_to the mobile m-electrons of the conjugated compounds in organic chemistry,
and to the band structure of crystals. One believed that the qualitative and to
a certain extent also quantitative success of the scheme depended on the fact
that the interactions between the electrons were comparatively weak, and that
the correlation effects could be considered as a small perturbation.

The picture was completely changed with the discovery that the
independent-particle-model seemed to work extremely well also for the atomic
nuclei in the so-called nuclear shell-model. Here the explanation could hardly
be that the forces were weak, and it seemed necessary to find an extension
of the independent-particle-model which would work also for strong interactions
between the particle. Such an extension has been developed by Brueckner. 134)

134) K.A. Brueckner, C.A. Levinson, and H. M. Mahmoud, Phys. Rev.

95, 217 (1954); K.A. Brueckner, Phys. Rev. 96, 508 (1954); 97,

1353 (1955); 100, 36 (1955); K.A. Brueckner and C.A. Levinson,
Phys. Rev. 97, 1344 (1955); H.A. Bethe, Phys. Rev. 103, 1353 (1956);
J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957); H.A. Bethe
and J. Goldstone, Proc. Roy. Soc. (London) A238, 551 (1957);

L.S. Rodberg, Ann. Phys. 2, 199 (1957); to mention only a selection
of the rich literature on this subject. '

and his collaborators. The new scheme is based on the use of a scattering or
reaction operator, where the correlation between any two particles is exactly
included, whereas the correlation between three and more particles is neglected.

This so-called Brueckner approximation works very well for nuclear matter,

‘since the forces are of such a short-range nature.

For an electronic system, the situation is a little bit different, since
the Coulomb forces are of such a long-~ range nature that it may be hecésaary
to include also the correlation between three and more electrons. This is

" ultimately a question of order of magnitude and depends also on the accuracy
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desired. Here we will briefly show that it is possible to extend the line of
development which goes from Hartree-Fock to Brueckner still further and re-
late the exact formal solution of the many~-electron Schr8dinger equation to the
independent-particle-model through a self-consistent-field scheme containing

"average” potentials ! 35)

135) P.O. L38wdin, Technical Notes 47 and 48, Upplala Quantum Chemistry
Group (1960)

i ' Partitioning Technique for Solving Schr&dinser Equation. - One of the strongest
tools for solving the Schr8dinger equation HY = EY in one-electron or many-
-electron theory is rendered by the partitioning technique, since it contains many
136) 1he technigue is also con-

of the conventional methods as special cases
venient to explain the projection operator formalism that we are actually going
to use to solve the many-electron problem.

136) For references, see P.O. L8wdin, Technical Note 11, Uppsala Quan-
tum Chemutry Group (1958) /unpublished/

In applying Ritz's expansion method discussed in Sec. 2¢, we will
introduce a complete orthonormal basis {f L } and write the eigenfunction in
the form ¥ =. }f £, o where the coefficients {cb } form a column vector

€ . The system (36) may then be written in the condensed matrix form

He =Ec - (96)

)

which is simply the transform of the original Schr8dinger equation in the
discrete representation introduced. Let us now divide or "partition” the com-
plete basis {f, } intotwo subsets (a) and (b), so that the set (a) contains a
finite number of functions. The matrix H and the vector € may then be
written in the form

w-lheme) o esE)
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and equation (96) may be written as two equations:

Hm,ca, ¥ H“.C‘ = Rc‘w,

' - . (98)°
Hm_.co, + HyC = E ¢
Solving C£ . {rom the last equation, one obtains

. BRI R L
C, = (£~ e - H;,c) H:_.a,('w ) (%9)

and substitution of this expression into the first equation gives
. = o (100

= . (101)

H, = H,+H (=1,-HJ'H,

W%

Equation (100) has exactly the same form as the original equation (96), but the
total matrix H is now condensed into a finite matrix H:ua. defined by
(101). This technique enables us to concentrate our interest on a certain subset
(a), whereas the influence of the other subset (b) may be considered as a "per-’
turbation” represented by the second term in (101). The partitioning technique
may be used in many different theoretical connections, and it is also an excellent
tool for the numerical solution of secular equations of very high orders 137) . It
is then often convenient to choose the subset (a) as consisting of a single element,
and the method will still render both discrete and degenerate eigenvalues with-

out any difficulty.

137) P.O. L8wdin, Adv. Chem. Phys. 2, 207 (Interscience, New York
1959), p. 270 f. : :

e e e A o i o i S 4 o+
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Projection Operator Formalism. - In thigs section, we will rewrite the parti-
tioning technique in a slightly more abstract form. Let © be the projection
operator which selects the subspace (a) of order g so that

0= 0, 00 ) )

The operator P =1 - © satisfies the relations P =P, P =P and OP = PO =
= O, and it is apparently the projection operator for the subspace (b), which

we will characterize as the "orthogonal complement"' to the subspace (a).

Let us start by considering a non-degenerate level E a.nd choose
g= = 1. Let further & be an arbitrary trial function with a non-vamshmg projec-
tion O = ¢, which we will normalize so that <¢. le>=1, ive. <O|O]|®>=
=1 . For the eigenfunction ¥ , sa.tufying (H - E)Y, one has the identity

¥ = (0+m 8 - o+ PR
@ PR K+ PE-E)(O+PI] § - 109
@+ PUPHg + P (K- (mayrl§

H't

H'erq K ‘isan arbitrary non-singular operator which will now be chosen so that
we get rid of the last term in (103). We will introduce the definitions

K=PE-a)Pp . T=PK'P = w09

in fatrix notation, we would say that K represents the (bb)-"corner" of the
matrix (K 1-H) | andthit T is the "inverse of the corner" ; see "
Fig. 4. In the followmg, we will often, instead of the fuil: deﬁnition T =
=P[PE -H)P] 1P use the symbolic notation

T-5g »

but we have to remember its full meaning. It is clear that T satisfies the
relations ‘

OT=TO=0 ) PEXT =7 (106)
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Partitioning of energy matrix.
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which we will often use in the following. From (103), we obtain
E =9+ TAe - (O+TROYS (o
which relation is analogous to (99). Of special interest is now the operator
0 =0+TX0, (108)

since this operator applied to any trial function & will give an exact solution
Y =Qd , provided that ©® # 0. This result indicates that 2 is an eigen-

operatorto H, i.e. that
80 -0 C (109)

and it is further easily seen that ﬂz =Q . It should be observed that @ , which
consists of an idempotent term © and a nil-potent term THO does not commute
with its adjoint operator ot anditis hence not a normal operator. It may

be characterized as a non-normal projection operator, and its importance comes

from its connection with w-order perturbation theory.

From (109) follows further O(H - E)2 = OHO + OHTHO - OE© = O
and the energy relation: ’

OFRO = 0(5{‘*‘5@73@)@ . (110)

Multiplying to the left.and right by ¢ and integrating, we obtain

E-<elavalraley

which relation corresponds to the well-known Schrddinger-Brillouin formula 138)

138) L. Brillouin, J. Phys. radium (7) 33, 373 (1932); E. Wigner, Math.
naturw. Anz. ungar. Akad. Wiss. 53, 477 (1935).
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" variational expression in quantum mechanics. It is easily shown that this
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in perturbation theory; the latter may be deriveci from (111) by expanding the
inverse T by means of a power-series expansion. The corresponding ‘wa',\.re
function is given by (107) and fulfills the normalization <¢ | ¥> = 1. Because
of this connection, the projection operator formalism based on 2 1is equivas
lent to w-order perturbation theory

In (111) the eigenvtlue problem is given in an unplimt form ‘E=
= f(E) , where ' ’

| %D(K>

.4{ (E)

It is natural to try to solve this problem by a ﬁrat-order iteration procedure
based on the formula E(k+ 1), f {E(k)} -and which leads to a series of values '
E(o) E“) E(Z) .+ » Putting E( ) = E+.€ (k )M and using the mean-value
theorem f{E+ e )} =f(g)+ €® p(p4oelk) with 0< 0< 1, one
obtains v .n ¥

I

@l g Aled

-<c4>tese

i

(E_st)l:;{‘q)?:-{'rghp( ”&€q>> (113)' |

e e“‘uo fE+0e®} e
Since f{' is always negative, the errors - € (k) will alternate. in sign, which
implies that the successive values E(k) will alternately be upper and lower
bounds to E . Hence we have the bracketing theorem that between two con-
secutive values in the series E(O) ETU E 7 «+ there will always be at
least one eigenvalue. The procedure will be convergent if lf’['< 1 and diver-

gentif [f'| > 1.

A much faster convergence can be, obtajned by going .aver to a lecorid-,.. . (
-order iteration procedure, e.g. by solving the equation y = E-F(E)=
by the Newton-Raphson process:

E(o)__E(‘) N n
-y

T

®

E.é“ O ?'_«) = E“

It should be observed that the right-hand member is identical with the lhndard

process is always convergent.
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Connection with Schr8dinger Perturbation Theory. -~ Let us now consider the

‘terized by P may be obtained by orthogonalizing any complete set towards ¢

case, when H= H, + V where V is an arbitrary weak or strong perturba-
tion. We will assume that ©  is now the eigenoperator to H, associated

with the level Eo under consigerati‘on, so that HOQ = OHO = EOO . In other
words, . © will project out the unperturbed eigenfunction 9, - We note that

we need here only one single eigenfunction to H and not the complete spectrum,
which is an essential simplification; the orthogonal complement to ¢ o charac-

o o’
From (106), (108), and (110) follows directly

2 =="(j +TV) G))
OEO = O(E,+V+VTV)0 .

(116)

Of particular interest is here the operator
A=V+VTV (147)

which is called the reaction operator as'sociated with the perturbation V , the

unperturbed Hamiltonian H_, and the state under consideration. Using (116),
we obtain B ' ‘

- E,+ (P, H')FPO> )' '--(“-8-"

showing that the expecfation value of the reaction operator “' with respect to
the unperturbed state gives the true energy shift. Substitution into (117) gives
finally

L |
(Eo‘ &o) g (V" <“ >0 > v )

,4 :—.V‘f‘-\r

(119)

which is the basic for.mula for the reaction operator in our theory. There is
again an iterative element, which may be handled in the same way as before.
It would be tempting to comment on the linked-cluster expansion and related

problems on the basis of this formula, but it would take us too far in this connec-

tion, and instead we would like to refer to some forthcoming publications. The
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essential thing for the moment is that the exact reaction operator has been de-
fined. '

Self-Consistent-Field Theories. - In order to review some of the common

features of the SCF -theories, we will consider a total many-particle Hamiltonian

of the form
o=y DA - Dy Sy w20
UT h(a J L<.X<k bx .

Here I—{ o) is ; constant, which may be of importance from the point of view of
convergence / but which plays no role in the interaction between the particles,
so that it may teﬁporarily be omitted. Let us divide this Hamiltonian into two
parts H= Ho + V where

Vv —-—Zu P LIS S Y e

~<3 b 4<1<k.

and u, are one-patticle potentiala at our dispo:al The eigenvalue problem
connected with Ho is lepa.ra.ble, and we obtain

épo = () ilm) . Bl (123)

where

'(%wa)& - €8, ) | (124)

E, = %—-" € | (125)

At first, we will leave the antisymmetry requirement aside. In the so-
called Hartree scheme, the total wave function is actually approximated by the

simple product (123). The best one-particle functions . are determined by the
variation principle 6§ <H> =0, which leads to Hartree equations of type (124),
with Hartree potentia.ll given by the fonowing expressions:
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= 31108, e
l*“

w..- SUCTAEMEE AN

I »

a,k*»

where the upper index k indicates the order of the interaction term in the

Hamiltonian. from wh.i.ch the -effective potential has been derived. For the total
energy, one obtains

( @ { (w)
‘ <ae"r>gv = Z (2}/4‘, ‘&;4-%%.{,2 ‘+‘_'3'u&3)+'~-+'£/’u; \Z§>= L
4

. - ($27).
. @) (2) U}
=y | (g A AR N

which means that < H op > is not identical with E o ¢ actually the factor
(1/k) connected with ui(k) prevents the k-body interaction to be counted k
times as it would bein E_=3 €, '

_ i

In addition to Py » We will consider the "singly excited" function
Py.e. »+ Whichis obtained from 9, by replacing one (and only one) of the func-
tions ¢,k by another J‘k which is assumed to be orthogonal to the former, so

that <1—k | Y>=0. Using (122) and (126), one obtains directly
<q)A.c ]V|°Po > =0 ) _ (128)

which is a form of Brillouin's theor.  jaying that all matrix elements of the
perturbation V between the basic function ?, and all singly excited func-

tions will vanish identically. Since V=z=zH op -H o+ One gets further

<°PA.e,|5€aH°Po>= 0. - (29)

We note that thil‘ relation does not prevent the singly excited functions to appear

.in the cip;nlibn of the exact solution, since they may come in through couplings

with terms which are at least doubly excited.

After this introduction, we will discuss the exact SCF-theory connected
with the product (123). For this purpose, we will assume that we bave the

" potentials u, atour dllpou'l and introduce the projection operator © connected
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with H_  and 9 - Acéording to (118), the exact energy is now given by the

expreuion E= E + <q> It Itp >, where the reaction operator t is defined
by (119). It must be pouible to write t in the form

A =—-.-Z'u;+"6 =
= — D DTy 2 1 Tyt
* '

0<a<l€

(130)

where we have separated out the one-particle part -"T" uy and denoted the inter-
action part by 17 ; the latter consists of a two-particle term, a three-particle i
term, etc. The total energy can now be written in the form

<P, 13'04'1“ Py 7= P | >, +"C\.<Po> C(131)

This expression is, in principle, exact and cannot be improveéd by variation.
However, in order to get a connection with the Hartree-schéme, we will now
remove the coupling between ¢ ° and 1 and consider' 1 as a fixed given
operator. The expression (131) is then no longer invariant, and the best function
9, isdetermined by equations of type (123) and (124) with potentials u; given
by the conditions:

™)

(@) (a) .
M, =ﬂ.;‘ + M, + U, 4-/

<

- (25 1Ty 25

]*

‘,‘f) =3 ""' L_x (ZS éulr~ah‘2§25 >

z,k &

(132)

. B . 2 » »

i.e. exactly the same relations as (126) but with the interaction terms from the
Hamiltonian replaced by the reaction terms from v . This gives finally

-E <°Po|2 (2 + 2 TP 1 )y '“L”M)WJ“”)
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in complete analogy‘with (127).

The SCF-potentials are here considerably more complicated than in
the Hartree-scheme, but the energy (133) is also the true energy containing all
correlation effects. They may be calculated by a SCF-procedure based on the
following "flow diagram":

Vv > A > T

Ay / H;*ﬁ) —

L —— (134)

T .

Each cycle is here more complicated than the corresponding cycle (5), since it
involves the evaluation of the reaction operator t . - This step corresponds
actually to an exact solution of the Schrddinger equation, which it ought to be
sufficient to carry out only once. There exists hence prdbably a .short-cut,
perhapn by means of the first-order density matrix, and research on this point
is in progresas.

Instead of (128) in the Hartree scheme, one obtains here directly

(bye, \4 | %, > =0 (135)

This theorem has the important consequence that, if the exact wave function
Y. is expanded in terms of Ha_rtree products built up from tl;e basic orbitals
Wyo Yps - Yy and their'orthg‘onal complement, the leading term will be ¢ o’

and the expansion will further contain on.l)" terms which are at least doubly

135). This theorem is of importance in calculating

expectation values of one-particle operators, and it gives a certain physical

- significance allo to the "model” function o,

It in now possible to follow the line from Hartree by way of Brueckner
to the exact SCF -theory. Apparently, the degree of accnracy dependl on how
one has approximated the interaction part 7 of the reaction operator t, and
one has: '
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Hartree: T = K Z s{ /

4'<a b<l<k
Brueckner T = Y, Tn , (136)
L<t |
Exact SCF -theory °C = Z T" D \ T&‘k 4+
: 0(0 } ki(k 3 .

" ‘Symmetry Requirements in SCF'-Theories. - In discussing correlation effects,

the symmetry requirements are certainly highly important. In the theory of
fermions, ‘the antisymmetry 'rééuirement connected with Pauli's exclusion
principle diminishes the original correlation error connected with the Hartree-
-product with about 50 o/o0, .since it eliminates the main part of the correlation
error connected with particles having parallel spins. In Sec. 5, we have seen
that the proper use of spin projection operators for certain systems may remove
another 85 o/o of the correlation error associated with electrons having anti- -
parallel spins, . so that actually only about 1/12 of the original error has to be
accounted for by real many-particle theory. Hence it is highly desirable to
incorporate the symmetry properties in the SCF -theories.

The antisymmetry property for fermions is easily included by means
of the antisymmetry projection 6peratqr:

W' f e o

and, instead of the total Hilbert space spanned by the complete set {f, }, we
will now consider only the antisymmetric subspace spanned by the subset

{0 asfy } . Instead of starting from the Hartree product (123), we will now
base our study on the corresponding Slater determinant.

The Hartree-Fock scheme is characterized by potentials of the type

(126), but the interaction terms are now multiplied by reduced antisymmetriza-
tion operators; so that

(138)

e e st b S -
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and this introduces an essential simplification in the definitions of the Hartree-
-Fock potentials u , since one can now take away the restrictions j #£i,
jAk#i, ... in (126) and sum over all indices. This implies that the Hartree-
~Fock potentials will be the same for all particles, and that these potentials are
conveniently expressed in terms of the fundamental invariant S ~defined by (4).

In the exact SCF -theory, we can now confine our interest to the anti-

symmetric subspace alone, and, within this subspace, we can now repeat the
partitioning procedure and evaluate the corresponding reaction operator t .

‘It appears that the previou- reaction terms ij ' ijk ¢ +++ will be modified
‘according to (138), so that one can remove the summation restriction in (132)

and base the entire discussion on the fundamental invariant g . In this
respect, the introduction of the excha.n(e terms limpliﬁe- the ltructure of the
SCF -theory.

In Sec. 2b, we studied the consequences of the translational symmetry
of a crystal, and the same type of discussion can now be repeated here. It
turns out that the basic spin-orbitals should be Bloch-functions, that the funda- '
mental invariant 3 has translational symmetry (31), and that these properties
are self-consistent and lead to an exact wave function which is an eigenfunction

to the total translations '8;, . Thise means that the important concepts connected
with the space of the reduced wave vector k in the one-electron model will

keep a certain meaning also in the exact many-electron theory, and many of the
semi-empirical discussions _a.nd interpretations carried oﬁt with the aid of .
these concepts may hence have a deeper validity than one could expect on the
basis of the Hartree-Fock scheme alone. The aim of this approach is hence to

"give a full justification of band theory within the exact many-electron theory.

In conclusion, let us assume that there exists another normal constant
of motion A, which commutes with H op and with O, ¢ say the total spin
(S S ) By introducing the associated set of projection operator OA of e.g.
type (81). one can now split the antisymmetric basis {OAS fy, } into a series
of subsets :;{OA A AS ib} , one for each eigenvalue to A . We can now confine
our interest to one of these subspaces, which is entirely independent of all the
other uublpacél. being not only orthogonal but also non_-intera'cting with
respect to Hop and A . Within this subspace, we can now carry out our
partitioning procedure, evaluate the reaction operator' t, and construct an
exact SCF -theory based on a fundamental invariant . This is apparently a

generalization of the extended Hartree-Fock scheme discussed in Sec. 5 to an

exact form. It has already been exﬁphalizpd that the main part of the correlation
error affecting the original Hartree scheme is removed by an inclusion of the
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symmetry requirements through the projection operator technique, and 6nly
a comparatively small part of the correlation error has then to be treated by
true many-particle theory, i.e. by a study of the reaction operator.

The relation between the various types of SCF -schemes has been
sketched in Fig. 5.

7. CONCLUDING REMARKS

The goal of the many-electron theory is to express the exact wave
function ixij:a.lhnple form, e.g. in terms of an expansion which is as rapidly"
convergent as pouibi’e and which contains a dominant term which has a simple
physical interpretation. There are particularly four forms which - have been

used so far 139):

139) P.O. L8wdin, Revs. Modern Phys. 32, 328 (1960).

Qg - Z\E"gg‘(cl( ; é = ; (@-é»()cl(/' (139)
Lg_ ""}(; éKCK ;' 2& = }g ((D&‘OCK ' (140)

Here the first form is an expansion in terms of Slater determinants !k based
on one~-electron functions, the second an expansion in terms of projections of
determinants (© '!k) , whereas the two last forms are similar but contain a
"correlation factor” g =g( L, ta, X, e ) which is a symmetric
function of the coordinates. The correlation factor was first introduced by
Hyllei-aal 140) and, in connection with crystal theory, it has been pointed out by

Krisement 141) that the form ¥ =~ gD is closely connected ' both with Wigner's 57)

140) E.A. Hylleraas, Z. Physik 54, 347 (1929).
141), 0. Krisement, Phil. Mag. 2, 245 (1957).

classical theory for the electrons in an alkali metal and Bobm and Pines's 66)

plasma model. In the latter, the correlation factor has the following
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Exact SCF-theory
.Brueckner ——————> based on reaction
‘ operator

Exact SCF -theory .
> based on antisymmetrized
reaction operator

Hartree -—ﬂ-la_rt._r.ee-Foc,k

Extended Hartree-Fock Exact SCF -theory based
(different orbitals for ————» on symmetry reduced
different spins etc.) reaction operator

One-particle cal-
culations (alternant
crystal orbitals etc.)

Several-parameter
calculations ¥=0(k)

Solution of extended ¢
HF -equations :

Fig. 5. Schematic survey of the various SCF-
-schemes which may be utilized in
connection with the developmcnt'of
band theory.

4

band theory

- Ab initio

' calculations
. .

Sen'ﬂ-omplrical
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form. 142)

ATTB 1::;"'n%8 }
)

% wfi k«c**a A wp

(143)

See D. Pines, Solid State Physics I, 368 (Academic Press, New York
1955). p. 391. ‘

and correopondn phyaically to the collective motions of the electrons; kc is
the cut-off vector for the plasma oscillationl and wp is the plasma frequency.
The collective behaviour should, of course, come out as a result of the reaction
operator formlilm, and it should be mentioned that this problem has recently

been studied by Hubbard 143) using inﬁnite order perturbation theory.

143) J. Hubbard, Proc. Roy. Soc. (London) A240 539 (1957); A243, 336

(1957). A244, 199 (1958).

We have here confined our interest to the stationary crystal states
described by the time-independent Schridinger equauon, but the basic probleml
in crystal physics could, of course, also be treated by considermg the time-

Y o
%(T}g =—-% >3 . o (w2)

This equation has a solution of the form ¥{t) = U(t,0)¥ (0) where the "evolu-
tion® operator U is a unitary operator which may be treated by the » -order

-dependont wave equation;

' perturbation theéory systematized by the Feynmann diagram technique 144) . This

144) R.P. Feynman, Phys. Rev. 76, 749, 769 (1949).

approach has not been discussed here at all, but it should be mentioned that
important work on the fundaments of crystal theory has recently been made

along this line. Actually Hubbard's treatment of the collective motions mentioned
above was based on the use of the diagram technique.

e o o i s e
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In connection with the plalma modd. it was also pointed out that there
was a short-range correlation effect in the form of a very efficient screenitig '
which could simplest be described as a dielectric behaviour of the electrons.
This phohomehon and related problems have been particularly studied in the so-.

“5) Lindhard derives the edsential features

145) ;. Lindhard, Kgl. Danske Videnskab. Selskab., Mat.- fys. Medd..

28, 3 (1954); J. Hubbard, Proc. Phys. Soc. (London) A68, 976
(1955); and references 143; P. Noszieres and D. Pines, Phys. Rev.
109, 741, 762 (1958); Nuovo Cimento 9, 470 (1958); J.J. Quinn and
R.A. Ferrell, Phys. Rev. 112, 812 (1958), H. Ehrenreich and
M.H. Cohen, Phys. Rev. 115. 786 (1959); D.F. DuBoil. Ann. Pﬁyl.
1, 174 (1959); 8, 24 (1959); A. Klein, Phys. Rev. us, 1136 (1959),,
‘J. Callaway, Phys. Rev. 116, 1368 (1959), D.S. Falk, Phyo. Rev.

| 118, 105 (1960); G.R. Pratt, Phys. Rev. 118, 462 (1960); F.’ Euxm
and R. Brout, Phys. Rev. 120, 1083 (1960); and others.

of this approach starting out simply from the time-depondent SCF~equations,

* whereas later authors have often utilized the diagram technique and ,tl‘xo full oo~

-order perturbation theory. This method has given particularly important
information as to how the electrons in a crystal beha.ve when a weak outer N
electromagnetic field is applied. '

To an experimentalist, the recent development of the quantum theory
of the electronic structure of crystals may seem rather complicated, and the
question is whether one could find some form of simple connection between the
one-electron-model and the exact many-eloctron theory which could be used
in interpreting experiments and constructing semi-empirical theories. In this
connectioni, we would like to direct the attention to the importance of the natiral
spin orbitals XK (x‘) , which diagonalize the first-order den-ity Thatrix 5‘5)_:.,_

T—7(x‘ I‘x’ = N\/é ”‘)X‘Jn' xd)é x1) 2 va A"u (143)

so that

Fisb) = 3l Y AU L
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It may be shown that, if the total wave function ¥ is an eigenfunction to the
total translations 5-;) , then the natural spin-orbitals are (or may be chosen
as) Bloch functions X (b, x1> . associated with the space of the réduced
wave vector h » where we have:put X-= (48 ,L) . Instead of (144), one .
obtains C R

(@)

ﬁmm-zzmmmmmnd{'Wf

and the number of electrons associated with the potat k may now be defised

by the expression

m(h) -< Z©<~>>-

4=t _ S
ey L (146)

-/ 0.0 rikin), s, = T o)

|

Coge e

Within the frmework of the exact many-electron theory, it is in this way

pol'qiblc to construct a series of concepts which are connected with the 03 points
in ® -space.

For the kinetic energy T(k) " associated with the point R one
obtains for inltuu:c '

T (%) .= Z«w)/)a k r«)f— 76:.(* m)u =
. (147)
- < §

O,,(e)%_ >M'

. * '
and the "effective mass” 146) A (b) for the kinetic energy could then be

" 146)

Compare W. Kohn, Phys. Rev. 105, 509 (1957).

defined by the expression

T(R) = -a—i‘:;—(“'—).m(k) | (148)
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This approach gives hence certain features of the conceptual structure of the
theory.but, of course, one does not obtain any quantitative results, witil one. . .
knows the exact wave function Y or the associated density matrices. From .
the expérimental point of view, it would be particularly important if one in this-
way could construct a semi-empirical theory and avoid the formal solution of
the Schridinger équation. The results obtained so far make it likely that such a
development may be quite possible. Co

For a period of about twentyfive years, band theory and valence bond

"'met_hod,. were applied to the problem of the gléctronic structure of crystals in.

their original form. In this review, we have tried to sketch some of the fast
deyelopment which has occurred in this field during the last decade, the refine-
ment of the conceptual framework and the drive towards higher .ai:curacy in the
solution of the Schr8dinger equation. Many important results have been obtained,

-and it seems safe to predict that, during the next decade, still more fundamental

results of importance for the understanding of the chemical physics of crystals
will be achieved.
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