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ABSTRACT

In the theory of the electronic structure of crystals, the fundamental

features of the band theory, the valence bond method, and the tight-binding

approximation are reviewed. The band theory is studied on the basis of the

Hartree-Fock scheme, and the Bloch functions are formed by a projection

technique, The main methods for calculating Hartree-Fock functions in a

solid are briefly discussed. The advantages and disadvantages of the band

theory and the valence bond method are emphasized, and special attention is

paid to the correlation error.

In connection with the tight-binding approximation, the importance of

the continuum part and of the approximate linear dependencies is stressed.

It is shown that a complete orthonormal set of translationally connected

atomic orbitals may be constructed as a convenient basis for this approach.

The implication of the virial theorem in interpreting the cohesive properties

of the ionic crystals is further emphasized.

Some recent refinements of band theory are then discussed. It is

shown that a large part of the correlation error can be removed by permitting

"different orbitals for different spins". This leads to a scheme intermediate

between band theory and valence bond method and, by means of a single

parameter, one can obtain an essential lowering of the energy curve and the

correct asymptotic behaviour for separated atoms or constituents. This

approach may be generalized to an extension of the Hartree-Fock scheme,

where the total wave function is defined as a projection of a Slater determinant.

The band theory can be further refined and connected to the exact

solution of the many-electron SchrOdinger equation of the crystal by means of

an extension of the self-consistent-field scheme, utilizing the so-called reac-

tion operator here exactly defined by means of a simple partitioning technique.

The various types of self-consistent field theories are finally compared.
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I. INTRODUCTION

The quantum theory of the electronic structure of crystals has

historically been developed essentially along two main lines based on band

theory and valence bond method, respectively. Both approaches are to a

certain extent approximate, and the former seems to be more appropriate

for describing conductors and semi-conductors, whereas the latter seems

particularly convenient for studying insulators. Actually, both methods are

needed in order to understand the general properties of crystals and their

electric, magnetic, optical, cohesive, elastic, and thermal behaviour, and

the fundamental problem is then how they could be combined and refined to

give any accuracy desired.

In this survey, the recent progress in this field will be briefly

reviewed. The advantages and disadvantages of band theory and valence bond

method will be discussed, and the nature of the approximations and errors

involved will be investigated. Special attention is given the so-called tight-

-binding approximation, and the importance of the virial theorem in inter-

preting energy results in crystal theory will be emphasized.

A simple generalization of band theory to include correlation effects

will be described. It will be shown that the main advantages of band theory

and valence bond method may be further enhanced and the disadvantages and

errors partly removed by a synthesis of the two ideas, which may be charac-

terized as a band theory with different orbitals for different spins.

The relation between band theory and the exact many-electron theory

of a crystal will be further studied.. It will be shown that, in connection with
the exact description, there exists a one-electron model based on a general

self-consistent-field scheme which may be considered as an extension of

Brueckner's generalization of the Hartree-Fock approximation. This result

is obtained by means of the exact reaction operator which is here derived

by a partitioning technique offering a simple and forceful alternative to the

otherwise used W~inite-order perturbation theory.

In conclusion, the various approaches will be compared and discussed.

By means of density matrices, it will be shown that, independent of the way

one is solving the Schr~dinger equation, certain aspects of the one-electron

band theory will be preserved also in the exact many-electron theory, for
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instance the concepts of reduced wave vector , effective mass, etc.

Since we are here mainly interested in the electronic structure of

crystals, we will throughout the entire paper assume that the nuclei are

fixed in the positions characteristic for tne lattice under consideration, and

that the nuclear coordinates may be treated as parameters in the electronic

wave function (Born-Oppenheimer approximation).

2. FUNDAMENTS OF BAND THEORY

(a) Hartree-Fock Approximation

The band theory of crystals is physically built on the independent-

-particle-model, according to which each electron in a many-electron

system moves under the influence of the outer field and the "average" field

of all the other electrons 1). For each electron, there exists an effective

1) N. Bohr, Proc. London Phys. Soc. 35, 296 (1923).

Hamiltonian Heff and a Schr~dinger equation of the form

where 40k( X 1 ) is a spin-orbital, X. ()X4, ,) is the space-spin coordinate

of electron 1. and C the corresponding one-electron energy. In the Hartree-

-Fock scheme 2) the total electronic wave function Y is approximated by a.

2) D.R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928); V. Fock,

Z. Physik 61, 126 (1930); J.C. Slater, Phys. Rev. 35, 210 (1930);

P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930); 27, 240

(1931).

single Slater determinant:

-U)
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where - 4s, are the occupied spin-orbitals, whkh are assumed to

form an orthonormal set. The effective Hamiltonian is represented by the ex-

pression

where the first term is the kinetic energy, the second the attraction potential

between electron 1 and the nuclei g , whereas the last term is the above-
-mentioned "average" potential from all the other electrons. The quantity p

is the Fock-Dirac density matrix:

which satisfies the basic relations ( ) The operator P1 2

is an exchange operator with respect to the electronic coordinates X: and
x jand the corresponding exchange potential has hence a non-local charac-

ter 3). The spin-orbital energies 4( have a physical meaning in connection

with the first ionization potentials 4) and, to a .certain extent, they may be used

also in studying the excitation energies

3) For the approximation of the exchange potential by a local potential,

see.J.C. Slater, Phys. Rev.. 81, 385 (1951); V.W. Maslen, 'Pr0c.

Phys. Soc. A69, 734 (1956); P.O. LOwdin, Phys. Rev. 97, 1474

(1955); p. 1487 f.

4) T. Koopmans, Physica 1, 104 (1933).

5) See e.g. P.O. L$wdin, Phys. Rev. 97, 1490 (1955), and references

there.

The Hartree-Fock equations (1) are a system of non-linear integro-
-differential equations connected with an eigenvalue problem which are solved

by the "self-consistent-field" (SCF) procedure. This may be indicated by the

diagram
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and, after being started by an initial estimate of p or { ,k" the cycle is

repeated until the procedure becomes "self-consistent", i.e. no further changes

occur in the significant figures when the cycle is repeated. The eigenvalue

problem (1) has in the atomic case 6) been solved by numerical integration, and

this approach has also been applied to crystals in the cellular method 7) and

in the augmented plane wave method The expansion method by Ritz 9) was

first applied to the SCF-procedure in connection with molecules 10), but later

this technique has proven to be very useful also in the cases Of atoms and

crystals.

6) For a survey of the atomic SCF-calculations. see D.R. Hartree,

Repts. Prog. Phys. 1A,. 113 (1948); "Calculation of Atomic Structures"

(John Wiley and Sons, New York 1957); R.S. Knox, Solid-State Physics

4, 413 (Academic Press, New York 1957); P.O. Ldwdin, Proc. R.A.

Welch Found. Conf. Chem. Res. II. Atomic Structure, 5 (1958).

7) E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509 (1934).

8) J.C. Slater, Phys. Rev. 846 (1937); 92, 603 (1953).

9) W. Ritz, 3. reine angew. Math. 135, 1 (1909).

10) C.A. Coulson, Proc. Cambridge Phil.' Soc. 34, 204 (1938).

The methods of molecular theory may, in principle, be applied also to

crystals, since the latter are nothing but molecules of an immense size

characterized by translational symmetry. If one chooses atomic orbitals

(AO's) as a basis in Ritz's method, the molecuilar orbitals (MO's) associated

with a specific Hamiltonian may be found by linear combinations of atomic

orbitals (LCAO) i 1), In solid-state theory this approach was introduced by

ii) F. Hund, Z. Physik 51, 759 (1928); 73, 1 (1931); R.S. Mulliken,

Phys. Rev. 32, 186 (1928); 41, 49 (1932); J.E. Lennard-Jones. Trans.

Faraday Soc. 25, 668 (1929). For a survey, see R. S. Mulliken, J.

iuim. phys. 46, 497, 675 (1949).
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Bloch 12), and it goes under the name of "tight-binding approximation". The

coefficients in the MO-LCAO expansions may be determined so that the

molecular orbitals become Hartree-Fock functions by an iteration procedure 13)

analogous to (5) and, since the total wave function is approximated by a

single Slater determinant or antisymmetrized product (ASP), the entire

approach is often denoted by the symbol ASP-MO-LCAO-SCF introduced

by Mulliken. Even direct methods for evaluating without the use 6f

{ *k1 have been developed 14).

1Z) F. Bloch, Z. Physik 52, 555(1929); 57, 545 (1929)..,

13) C.C.3. Roothaan, Revs. Modern Phys. 23, 69 (1951).

R. McWeeny, Proc. Roy. Soc. (London) A,235, 496 (1956); A937. 355

(1956); Technical Nte"61, Uppsala Quantum"Chemistry Group (1961),

(unpublished).

The Hartree-Fock scheme may be considered as an approximate meth-

od for solving the many-electron Schrdinger equation

I (6)

where T = (x I , xZ, .. xN) is the many-electron wave function subject to

the antisymmetry requirement PY =(-I)Pf corresponding to Pauli's

exclusion principle.- For a crystal with-fixed i.uclei, the total Hamiltonian has

the form:

where the first term represents the nuclear repulsion, the second the kinetic

energy of the electrons, the third the attraction between the electrons and the

nuclei, and the fourth the mutual electronic repulsion. Spin-coupling terms

are easily, added.

One may solve the eigenvalue problem (6) by means of the variation
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principle 6< H > = 0 . If the total wave function is approximated by aopA
single Slater determinant, this leads to the Hartree-Fock equations (1) with

an effective Hamiltonian given by (3). For the ground state, the corresponding

total energy EH = < Hop> Av is an upper bound to the true eigenvalue E

and the energy error (E - EHF) or "correlation energy" may be used as a

measure of the accuracy of the entire approach. It is hardly necessary to

emphasize that the Hartree-Fock energy is not identical with the sum of the

spin-orbital energies

0 '4l /X, 4 (8)
luxi

For the Hartree-Fock energy, one may use anyone of the following three

formulas:

-,,Y 41 4 +,:- ,.
+

(Xjj (Ib)Y

where the last form is simply the artithmetic mean of the two first relations.

We note that, for crystals, one has to include the nuclear repulsion term in

the calculations, since otherwise EI will become divergent, i. e. no longer

proportional to the volume of the crystal 15).

15) P.O. Lbwdin, Advances in Physics 5, 1 (1956), p. 11 f.
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(b) Translational Symmetry

An ideal crystal is characterized by the translational symmetry which

is basic for the understanding of its fundamental properties. Let Q O., O'
be the primitive translations of the ordinary lattice and 4t ) ., of the

reciprocal lattice, so that )6J, 4 8 kt" The vectors M =-

where (010, 2 IL) is a-triple of integers, connect equivalent points in the

ordinary lattice, whereas the vector K +!, A , for integer (ip i2 , i3)

connect equivalent points in the reciprocal lattice. Let further TV, T 2 , T 3

be the translational operators connected with the primitive translations

OL. ) CL respectively, and defined by the relation

For the operator T ( mi) connected with the general translation 0 one

has T r A T/ - T~
The treatment of the translational symmetry is greatly simplified, if

one introduces the Born-v. Kgrmin 16) boundary condition:

.16) M. Born and T. von Kirmin, Physik. Z. 13, 297 (1912).

CL ) (13)

where G is a very large integer, which defines the periodically repeated

microcrystal. Each microcrystal contains G 3 lattice points characterized

by the triple 4Lj# 02 1&3)' and theinequality 0 < ILV < G-I defines a con-

venient *ground domain" (G), It follows from ,(13) that TG = 1, i.e. the three

translations will now be cyclic operators of order G having the eigenvalues.

exp(2wix v /G) where K "V is an integer. The associated eigenvalue problem

is now easily solved by a simple projection technique 17) wch does not

require any use of group theory. It is shown that one may conveniently label

17) P.O. L~wdin, Phys. Rev. 97, 1509 (1955); p. 1512; Advances in

Physics S, 1 (1956). p. 56 f.
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the simultaneous eigenfunctions to T 1 , T , T 3 either by the triple of integers

(' 20 3) or by the reduced wave vector:

- , + (14)

where the inequality (15) defines a ground domain (G) containing G 3 points in

k-space. The eigenvalue relation may now be written in the form:

7(m),} , = ,,,fA= + $(, 7t

For r1M equal to the primitive translations, this gives the famous Bloch con-

dition. The corresponding eilgenfunctions may be found by means of the projec-

tion operators 17

NO vr J8'"n

which fulfil the following basic relations:

2. t

• ,T h., (19)T(",) Olt 0,

One has further the "resolution of the identityw I = 0, which implies.

that every trial function 0 ()t) satisfying the periodIcity condition. (13) may

be resolved into Bloch components, i.e.

, = _. , (') = 7 (20)
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which are not only orthogonal but also non-interactng with respect to every

operator 0i which commutes with the translations: T, T2 , T 3 according to

the general formulas

-0 , -O (2l)

for different reduced wave vectors ( x * 4 ). The fundamental relations (17)-
-(21) are easily verified directly.

Band Structure; Brillouin Zones. - If the integer G characteristic for the
microcrystal is very large, the density of points (14) becomes so large that

the set may be considered as quasi-continuous. It becomes then ipossible to
replace a summation over At'-space with a corresponding integral

V-. (2,

o1 Z j( ) , :(,..'k) ) (22)

where V is the volume of the microcrystal. This quantity enters the formula,

since each discrete point in 49 -space is associated with the volume 44'kxl
4 "O ) =

We will now consider the spin-orbital energies C as func-

tions of the quasi-continuous variable 14 over tie ground domain. The
name "band theory" comes actually from the fact, that the eigenvalues
show a band structure with the levels situated in certain allowed ranges or
"bandsw " parated by forbidden regions or energy "gaps". The ground domain

has here been fixed byihe inequality (15), but even other choices are possible

and may physically be more convenient.

In order to study the 9 -space as a whole, we will now introduce the

Rliane wave s  ut ff ----- no rest . where a is a wave vector
defined by ('14) but with no restriction on the integers (- 1' 1C:2 /.3) " Each

k -value is equivalent to one and only' one'ploint It within the ground

domain and, sinc te wih esae t ai "I f9e ue nt

)-values are associated with the same 'translational eigenvalue. AUl points



-10-

in -space can hence be divided into G 3 sets of equivalent points, and

the points within each set may further be arranged linearly after some

physical. quantity, say I * 2 Each k -value would then have its unique

place within each series, and ambiguities could occur only when two equivalent

points, .9 and * would have the same absolute value:

-- - K I 14Iz(3

These are the equations for the boundaries between the so-called Bri llouin

zones 18): the first zone contains apparently all non-equivalent points having

18) L. Brillouin, Comp. rend. 191, 198, 292 (1930); J. phys. radium (7),

1, 377 (1930).

the smallest value of h 1 2, the second zone contains all non-equivalent

points having the second smallest value of I f I , etc.. If the points on the

boundaries are asbigned to the zones in a proper way, each zone contains

exactly G3 points with one and only one representative for every set of

equivalent points. All zones have the same volume and may be "mapped" on the

first Brillouin zone or on the ground domain defined by (15).

The relations (23) are in crystal physics known as the Laue conditions

for X-ray diffraction in lattices. The zone structure was introduced by

Brillouin in a study ?f the energy splitting of plane waves by means of a weak.

periodic potential, which he found caused discontinuities or. "energy gapa"

at the zone boundaries. These have hence a simple physical meaning.

The band splitting through various types of periodic potentials have

been investigated in great detail in a series of special examples chosen so that

the corresponding eigenvalue problem could be exactly solved 19).

19) P.M. Morse, Phys. Rev. 35, 1310 (1930); R. de L. Kronig and

W.G. Penney, Proc. Roy, Soc. (London)A130, 499 (1931);

H.A. Kramers, Physica 2, 483 (1935); J.C. Slater,, Phys. Rev. 87,

807 (1952); F.L. Scarf, Phys. Rev. 112, 1137 (1958); and others.
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In the following, we will concentrate our interest on the consequences

of the translational symmetry in the Hartree-Fock scheme, and it is then

convenient to consider - (1) as a multi-valued function of the

reduced wave vector 1 over the first Brillouin zone or over the ground

domain (G)

Translations as Conistants of Motion. - It in important to observe the

difference between a crystal problem based on the assumption of a fixed

periodic potential like the previously mentioned models 19) and the Hartree-

-Fock scheme, where the potential in the effective Hamiltonian (3) depends

on the solutions to the eigenvalue problem (I). The latter problem is of a non-

-linear nature and considerably more complicated. It can be approached by

considering the N-electron operator (Y = 1, 2, 3)

T W )TAO...'~w (24)

which corresponds to a primitive translation Cp of all electronic coordinates,

i.e. to a translation of the electronic cloud as a whole. Since

for the many-electron Hamiltonian (7), the total translation is a normal

constant of motion to the many-electron system. This theorem may seem

trivial, but it is actually of fundamental importance in both the one-electron-

-approximation and the exact theory.

It is easily shown that a) is another cyclic operator of order G

and its eigenvalues "d eigenfunctions may hence be derived in the same way

as before; ske equations (12)-(2 1). The eigenfunctions may be labelled by

means of a total reduced wave vector It of type (14), restricted to G 3

different values by the inequality (15). These eigenfunctions fulfil the general-

ized Bloch condition

- (26)
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where means a translation of all electronic
coordinates a vector rV _, A I / The associated projec-

tion operators

(27)

satisfying the identity I = , may be used to resolve any arbitrary
many-electron function ... % into components

Vt (28)

which are eigenfunctions to the total translations Because of the gen-

eral relations

t t

these components are orthogonal and non-interacting with respect to the total

Hamiltonian H.

In the following, we can. concentrate our interest to a study of the
simultaneous eigenfunctions to H and . From the Schr8dinger equation
HT = EY follows that t ) = £. and, for a non-degenerate energy
level, it is then evident that (.) = const. ! , i.e. T is also an eigenfunc-
tion to • For a degenerate level, we consider instead the resolution
of an arbitrary eigenfunction into Bloch-components according to (28), and it
follows directly that each non-vanishing .component is a simultaneous eigen-
function to H and Z. Since < is symmetric in all coordinates, the
antisymmetry properties of the wave function will not be influenced by the

projection (27).

In the Hartree-Fock approximation. we will now require that the total
wave function represented by the single Slater determinant (2) should be an
exact eigenfunction to the total translations ( (v = 2, 2, 3). This is simply
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accomplished by choosing the one-electron functions as eigenfunctions

S(4, ) i ) to the one-electron translations T v , and one obtains

= + (30)

where the index G means that one should take the reduced wave vector within

the ground domain. The question is now whether such a choice always can be

made, i. e. whether it follows from the requirement that the determinant (2)

should be an eigenfunction to the total translations that, exceptfor an

arbitrary unitary transformation, it is necessary that the basic spin-orbitals

*1' ' ' " N are Bloch functions satisfying the relation (16). A careful

analysis of the problem shows that this is actually the case.

It seems rather natural to assume that the requirement that the basic

spin-orbitals are Bloch functions also should be self-consistent in the sense

of the Hartree-Fock scheme. From (4) and (16), it follows that

3X (x- CL P +c L..,XiYa) (31)

where (X +..,) denotes the electronic coordinate Ot+ Q-, t) , and this

relation implies that the electronic density has the periodicity of the lattice.

Equation (31) is easily derived from the condition that the total wavefunction

should be an eigenfunction to the total translations and is valid for. the first-"

.- order density matrix in general. The density matrix is. the crucial

quantity in the.effective Hamiltonian (3) and by means of (31), one -can now

prove the relation

The first terms in Heff are easily handled, and only the exchange. potential

with its non-local character requires v, more careful treatment. However, "if

(p,) is an arbitrary function of X! one obtains
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- ~ 3(7~a~;c0) T(j(Xi)

which proves that also the exchange term commutes with the primitive transla-

tions. Hence, the entire effective Hamiltonian Hef commutes with T, T 2 ,

T 3 # and the solutions to the eigenvalue problem (1) may then be chosen as

simultaneous eigenfunctions to all these operators. For a crystal, the basic

requirement that the Hartree-Fock functions s, O "N should be Bloch

functions is thus self-consistent.

Each one of the G 3 points in the P-T -space defined by (14) is

independent in the sense that the associated Bloch functions are not only

orthogonal but also non-interacting with respect to the effective Hamiltonlan

Heff , as soon as p satisfies (31). In forming p according to (4),: one

should sum over all occupied spin-orbitals which are then associated with a

certain distribution of points in - -space. The boundary of these occupied

points defines the Fermi-surface asociated with the system and state under

consideration.

Crystal Symmetry in General. - The translational symmetry has here been
17)

treated by a simple projection operator technique , which requires only the

knowledge of the translational eigenvalues following fror the Born- v. Kgrm~n

boundary condition (13), whereas no group theoretical information about the

system is needed. It is evident, however, ti-t a still richer understanding of

this problem can be cbtained by utilizing group theory to a full extent 20)

20) F. Seitz, Ann. Math. 37, 17 (1936$); L.P. Bouckaert,... Schmoluchow-

ski, and E. Wigner, Phys. ltav. 50. 58 (1936); C. Herring, Phys. Rev.

52, 361, 365 (1937); and others.
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In addition to the translational symmetry, there are also other sym-

metry properties of the different crystallographic point groups which may be

used for dividing the various symmetry functions into non-combining

classes 2 ). Even in this connection, the use of projection operator technique

has proven to be simple and forceful 22).

21) H.A; Bethe, Ann. Physik 3, 133 (1929); Bouckaert et. aL, Phys.

Rev. 50, 58 (1936); F. Seitz, Phys. Rev. 47, 400 (1935); Z. Krist.

94, 100 (1936); C. Herring, J. Franklin Inst. 233, 525 (1942);

J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954); and others.

22) M.A. Melvin, Revs. Modern Phys. 28, 18 (1956); H. McIntosh,

Technical Note 21, Uppsala Quantum Chemistry Group 1958; J. Mol.

Spectroscopy S, 269 (1960).

(c) Calculations of Band Structures

The main problem in the one-electron theory of crystals is the solu-

tion of the Hartree-Fock equations (1), which gives the spin-orbital energies

E= E (i ) as a multi-valued function over the first Brillouin zone or

over the ground domain in the space of the reduced wave vector A , and

hence also the band structure. Since this is one of the key problems in the

current solid-state theory, it is frequently reviewed, and for a detailed

discussion of the progress in this field, we will refer to a series of survey

articles 23). The recent papers by Herman 24) and by Pincherle 25) are

particularly complete, and there is no reason to repeat the material contained

in these articles. Here only a few additional remarks will be made, certain

problems will be discussed from slightly different points of view, and some

recently published papers will be listed and commented upon.

23) G.V. Raynor, Repts. Prog. Phys. 15, 173 (1952); J.R. Reit,

Solid State Physics I, i (Academic Press, New York 1955);

P.O. LSwdin, Advances in Physics 5, 1 (1956); J.C. Slater,

Encyclopedia of Physics 19, 1 (Springer, Berlin 19S6).

24) F. Herman, Revs. Modern Phys. .30, 102 (1958).

25) L. Pincherle, Repts. Prog. Phys. 23, 355 (1960).
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The essential difficulty in the one-electron theory of crystals seems

to be connected with the fact that the wave functions haveatomic nature

within the ion cores, whereas they behave as free Waves,- in the regions between

the atoms, and these properties are apparently hard to combine - at least

practically.

In Ritz's method 9), one expands the wave function 4k in terms of a

complete set if , .

(34)

where the problem is to determine the coefficients. It is convenient to

introduce the energy matrix N with respect to the basis and the associated

metric matrix A having the elements:

< " > •(35)

and the Schr~dinger equation HeffIk(1) = 6 k~k(1) is then equivalent with the

folowing system of linear equations:

-6 =3 * ... o. .(.36),

with the secular equation ( W , - 0.

The matrix problem (36) can be essentially simplified if one utilizes

the existence of the translational symmetry. Since the wave functions " ik

should be Bloch functions (*Al X) they are invariant, against the
corresponding Bloch projection (17), so that = "k By applying the

operator Ok to both sides of (34), one obtains . .

which means that each Bloch function may be expanded in the associated Bloch
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projection of any complete set. The functions within the subset I Okf{, ) are

usually not linearly independent, and an essential problem is to eliminate the

redundancies in expansion (37) and replace it with a rapidly convergent series.

This can, for instance, be done by an orthonormalization procedure 26)but

26) P.O. L~wdin, Adv. Chem. Phys. Z, 207 (Interscience, New York

1959), p. 288 f.

even other possibilities exist. Here we note that, by replacing the complete

set {f , by the G subsets

{O~jA5(38)

which are mutually orthogonal and non-interacting with respect to Heff, one
obtains automatically a splitting of the secular equation (36) into 3

independent parts, each one corresponding to a specific point -k in the space

of the reduced wave vector. This is an essential simplification of the problem

which it is always possible to carry out.

The main problem in the application of the expansion method to crystal

theory seems to be the choice of the subsets { Of } so that the convergency

of the series (37) becomes as fast as possible 27. If the basic set {ff ) is

chosen to consist of plane waves 18) (PW), the convergency will usually be

very slow, since many waves will be needed to describe the inner atomic

properties of the constituents of the crystal. In the method of orthogonalized

plane waves (OPW) devised by Herring 28) the convergency is essentially

27) We note that, sincethe subsets are entirely independent, one may

use different complete sets {ft, I , {f ' }, {.I I, .. .. or various

adjustable parameters for different values of 4g which may often

improve the convergency.

28) C. Hrring, Phys. Rev. 57, 1169 (1940).

improved by choosing a basis which consists of the Bloch projections of the

inner-core atomic orbitals and the plane waves orthogonalized towards these



-18-

functions. In applying this method to a practical problem, one has to remem-

ber that the inner-core Bloch functions and the OPW's are usually interacting

with respect to the effective Hamiltonian, i, e. the corresponding matrix

elements are not necessarily vanishing even if they may be small 29). As a

practical tool, the method has been very forceful, and many important applica-

tions have been carried out; see Herman 24) and Pincherle 25)

29) For critical studies of the method, see J. Callaway, Phys. Rev..

97, 933 (1955); V. Heine, Proc. Roy. Soc. (London) A240, 340,

354, 361 (1957); T. 0. Woodruff, Solid State Physics 4, 367

(Academic Press, New York 1957).

From studies of the Knight shift, it has recently been observed that

an OPW-calculation which gives good results e.g. -with respect to cohesive

and elastic properties or the band structure may not describe the regions

around the nucei very well, and particularly for the beryllium metal there

seems to be a large discrepancy between theory and experiment in this

respect 3O). Of course, this is a consequence of the fact that the basic sets

30) L. Jansen (private communication).

are truncated in all applications, and that the "remainder problem" has not

been investigated. If the inner-core Bloch functions chosen are not particularly

adapted for describing the nuclear region, one has certainly to introduce a

much larger number of OPW's than used in studying other properties of less

local type.

A modification of the OPW-method has recently been suggested by

Phillips and Kleinman 31) who start out from symmetrized combinatiotis of

plane waves instead of single waves; the method seems to.work very well'in

the applications 32). In the OPW-approach, it may sometimes also be

31) J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

3Z) L. Kleinman and J.C. Phillips, Phys, Rev. 116, 880 (1959),

diamond; 117, 460 (1960), BN; 118, 1153 (1960), Si.
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worthwhile to use flexible auxiliary functions instead of the fixed inner-core
33)

orbitals to speed up the convergency

33) E. Brown and J.A. Krumhanul, Phys. Rev., 109, 31 (1958).

In Slater's 34) method of augmented plane waves (APW), the space

34) J.C. Slater, Phys. Rev. 51, 846 (1937); 92, 603(1953);

M.M. Saffren and J.C. Slater, Phys. Rev. 92, 1126 (1953);

R. S. Leigh, Proc. Phys. Soc. (London)A69, 388 (1956).

around each atomic nucleus is divided into an inner sphere approximately

corresponding to the ion core and an outer region, where plane waves are con-

veniently used. The Schr8dinger equation (1) is solved in both regions with

solutions of different character which are then joined smoothly on the boundary

spheres. The method shows very good convergency properties, and a series

of important applications to the problem of the band structure of various crystal

has been carried out; see Herman 24) and Pincherle 25)

It has previously been mentioned here that the tight-binding method

introduced by Bloch 12) in crystal theory in its most refined form corresponds

to the ASP-MO-LCAO-SCF -method in molecular theory 11, 13). In the first

applications, the method did not give any good results, since one neglected

the overlap integrals between atomic orbitals on neighboring atoms. It turned

later out that these overlap integrals were key quantities of essential importance

for the entire theory. The non-orthogonality problem may be handled by starting

from orthono-malized atomic orbitals 35, 36) or from Wannier functions 37). A

35) R. Landshoff, Z. Physik 102, 201 (1936).

36) P.O. L~wdin, Arkiv Mat., Fys., Astr. 35A, No. 9 (1947); "A theo-

retical Investigation Into some Properties of Ionic Crystals"w (Thesis,

Almqvist and Wikiell, Upsala 1948); 3. Chem. Phys. 18, 365 (1950).

37) G.H. Wannier, Phys. Rev. 52, 191 (1937).
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more complete discussion of the tight-binding approach will be given in Sec. 4.

The Wannier functions 37) are the Fourier transforms of the Bloch

functions, and they form a complete set of mutually orthogonal functions

localized around the lattice points and connected by translational symmetry.

They form an excellent basis for investigating crystal properties, and one has

tried to find direct methods for determining them; for references, see Herman 24)

and Pincherle 25). Some important new results concerning the localization of the

Wannier functions have recently been obtained 38). Functions intermediate

between Bloch waves and Wannier functions have also been introduced 39).

38) W. Kohn and S. Michaelson, Proc. Phys. Soc. (London) 72, 301

(1958); W. Kohn, Phys. Rev. 115, 809 (1959).

39) E.C. Mclryine and A.W. Overhauser, Phys. Rev. 115, 1531 (1959).

In the Hartree-Fock scheme, the total wave function (Z) and'the

density matrix (4) are invariant with respect to unitary transformation. of the

basic spin-orbitals 41v *-' ° " " It was pointed out by Lennard-Jones 40)

40) J. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1, 14 (1949),

and a series of papers by Lennard-Jones, Hall, and Poplo during the

years 1950-52; for detailed references, see G.G. Hall, Proc. Roy.

Soc. (London) 213, 113 (1952).

that, instead of molecular okbitals and Bloch functions, it may sometimes be

convenient to introduce a localized set of orbitals which are all equivalent to

the atoms of the system. This equivalent orbital method has now been applied

by Hall 41) for investigating the electronic structure of certain crystals of

diamond type. The problem of the solution of the Hartree-Fock equations (1) in

terms of localized orbitals has recently been studied also by Adams 42).

41) G.G. Hall, Phil. Mag. (7) 43, 338 (1952), diamond; Phil. Mag. (8)

3, 429 (1958), Si, Ge, and diamond,

42) W.H. Adams, J. Chem. Phys. 34, 89 (1961).



Let us now return to the Bloch functions X As

previously shown, theme functions are associated with G 3 points in the space

of the reduced wave vector a , nd they are orthogonal an4 on-interacting

with respect to the effective Hamiltonian. Since the number of independent points

is so enormously large, one has to treat only a selection of k-values which are

usually chosen to correspond to symmetry points in the reciprocal lattice 43).

In each such point, one tries to find the Bloch function, the energy 6 - .

and its first and second derivatives, and an essential problem is then the

interpolati on to intermediate h -values. This problem has been attacked by a

simplified LCAO-method 44) and by a method based on the use of a pseudo-

-potential 45); in all events, a great deal of care isnecessary to get reliable

results.

43) F. C. vonder Lag. and H.A. Bethe, Phys. Rev. 65, 255 (194);

71, 612 (1947).

J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954); M. Miasek,

Phys. Rev. 108, 92 (A957).

45) j.C. Phillips, Phys. Rev. 112, 685 (1958).

It follows from the condition (16) that each' Bloch function may be

written in the form

39.

where u is a function with the periodicity of the lattice, so that At (0 L 0)
= .7 •Insteadof determining the Bloch function within the entire micro-

crystal, it is now sufficient to evaluate AJ(At, yL) within a unit cell or an

equivlent region. It is convenient to introduce the "cellular polyhedron" con-

sisting of all non-equivalent points in the ordinary lattice having the-smallest

value of 14 12 its boundaries are defined' by the relations

( = (40).

analogous to (23), and the "cellular polyhedron" in the ordinary lattice corresponds
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apparently to the first .Brillouin zone in the reciprocal lattice. It follows from

(40) that the boundaries are the planes bisecting perpendicularly the lines

between the origin and the nearest neighbours among its equivalent points.

In the cellular method developed by Wigner and Seitz 46), one tries

to determine the function AL(hp )0 by numerical integration in analogy
withHarrees teatmnt f aoms6)with Hartree's treatment of atoms . Wigner and Seitz assumed that it was

possible to approximate ..(I, )L) by an s-function independent of

but later the importance of the higher spherical harmonics was emphasized 47),

46) E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 460 509 (1934).

47) 3. C. Slater, Phys. Rev. 45, 794 (1934); Revs. Modern Phys. 6,

209 (1934).

and u should actually be expanded in the form:

A~eO'vts.LT(~e') 71 (')(41)

where the radial functions should, in principle,, be determined by numerical

integration. The difficulty of the method is to get the periodicity condition

U(At 1 + ) --= AL ( It It) satisfied on the boundary planes of the cellular

polyhedron or at least in a selected set of symmetry points 48) when the series

48) W. Shockley, Phys. Rev. 52, 866 (1937); F.C. von der Lage and

H.A. Bethe, Phys. Rev. 71, 612 (1947); W. Kohn, Phys. Rev. 87,

472 (1952).

(41) is truncated. It shou.c1 be observed that, if the resulting function

e c(2'( . () L(h)) is not a true Bloch function, it can always be resolved

into Bloch components by using the projection technique and formula (20). The

cellular method has been applied to the problem of band structure for a series

of crystals of various types; for references, see Herman 24) and Pincherle z5).

The cellular method was actually deviced for a study of the cohesive
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properties of the alkali metals ' 4 9 ) , but in this field it has to a certain extent been

replaced by the semi-empirical quantum defect method introduced by Kuhn and

Van Vleck 50) and developed by Brooks 51); for a survey, see Ham

49) See e.g. the survey by E. Wigner, Proc. Int. Conf. Theor. Phys.

Japan, 649 (Tokyo 1954).

50) T.S. Kuhn an1J.H. van Vleck, Phys. Rev. 79,-382 (1950); T.S. Kuhn,

Phys. Rev. 79, 515 (1950); Quart. Appl. Math. 9, 1 (1951); Proc. Int.

Conf. Theor. Phys. Japan, 640 (Tokyo 1954).

51) H. Brooks, Phys. Rev. 91, 102T (1953).

52) F.S. Ham, Solid-State Physics, 1, 127 (Academic Press, NewYork

1955).

It is a characteristic feature of most of the present calculations within

the one-electron scheme for crystals that the potential in the effective Hamiltonian

is assumed to be a crystal potential of the periodicity of the lattice which is

derived from semi-empirical arguments or theoretical considerations. In the

Hartree-Fock scheme, the potential in (3) contains a conventionally periodic

part and an exchange term of a non-local character. The evaluation of the

effective Hamiltonian requires the knowledge of all functions Y t)L
with k-values within the Fermi surface, which means that a good solution to the

inte,'polation problem is usually necessary. It is apparently very cumbersome

to carry through a single Hartree-Fock cycle (5), not to spealt of a series of

iterations of this cycle, and it is hence extremely important, that one is able to

start from a good estimate of the crystal potential including exchange. Of course,

one hopes that the band structure and other physical results should not be too

dependent on the specific choice of potential, but the work by Howarth 53) on

53) D.J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953); Phys.

Rev. 99, 469 (19SS).

copper shows that this is not always the case. It seems hence important to try

to reach the goal of self-consistency for a real cyrstal, but we nbte that, even

if one obtains the exact Hartree-Fock functions, the corresponding Slater

determinant (2) is still rather far from the true many-electron function.
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The one-electron scheme has up till now been used to determine the

spin- orbital energies and the corresponding band structure

for a large number of crystals. It has been of essential importance as the

underlying theoretical tool. for interpreting experiments 5i and'it is of great

54) B. Lax, Revs. Modern Phys. 30, 122 (1958).

value for understanding the electric, magnetic, optical, thermal, and elastic

properties of solids. At the same time, the present band theory is certainly

not sufficient to explain such phenomena as refer to .the solid as a whole as,

for instance, the cohesive properties, the relative stability of various lattice

types, the criterion for ferromagnetism, etc. The background for this failure.,.

will now be discussed.

(d) ShortcomiAgs of Band Theory; Correlation Error

The one-particle model is based on the idea that the particles move

independently of each other. This happens, for instance, if the total Hamiltonian

Hop is separable in the form H = Z Hi , and the total wave function is then ai
product of one-particle functions or spin-orbitals. In reality, the total Hamiltonian

(7) has the form

+ 7+ (42)
4~I f

where Hs is a two-electron operator: His = e •r Because of this Coulomb

repulsion, two electrons try always to avoid each other to keep the energy as

low as possible, and this leads to a certain "correlation" between their move-

ments. Since the two electrons have actually to perform a more complicated

motion than in the independent-particle model, there will be an increase in the

kinetic energy which is compensated by a still larger decrease in the Coulomb

energy; the balance is regulated by the virial theorem < T> = -<V> . One

can say that each electron is surrounded ;hy a "Coulomb hole w with respect to

all other electrons, and the omission of this phenomenon leads to the correlation

error characteristic for the independent-particle-model.
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The correlation effect is most easily discussed by means of the second-

-order density matrix 55)

55) P.O. Ldwdin, Phys. Rev. 97, 1474 (1955); R. McWeeny, Proc. Roy.

Soc. (London) A32Z, 114 (1955); see also K. Husimi, Proc. Phys. -

Math. Soc. Japan 22, 264 (1940).

4' , X X (43)

where one should sum over the N(N-i)/Z possibilities of exchanging the

coordinates XI and X.. - as well as C' and 4 - with the

coordinates X, and , respectively, in the total wave function Y . The

diagonal element T7 (XI 
2  X. I x.L' gives the probability density to find

an electron pair in the points X, - ()l, i) and Xl ( Ft.) in

configuration space. The coulomb energy of the electron is given by the expression

(44)

and the existence of a 'Coulomb hole" means that the quantity t (.,XI. IXI z)
should be small when ta- - I ' -l1z.I tends to zero.

A study of the second-order density matrix shows that, if the total wave

function is approximated by a Hartree-product, there will be no correlation

whatsoever between the electrons I and 2. The situation is changed by the anti-

symmetrization and, if the total wave function is approximated by a single

Slater determinant, the density matrix r(Xjj*/a) wil .become antisym-

metric in each s.et of its indices. This implies that T'(i.X kI ', ) will

vanish of at least second order for X, , i.e. ri=0 and =

This is the "Fermi hole" for electrons with parallel spins and, since this

56) E. Wigner, and F. Seitz, Phys. Rev. 43, 804 (1933); J.C. Slater,

Phys. Rev. 81, 385 (1951); V.W. Maslen, Proc. Phys. Soc. (London)

A69, 734 (1956).



-26-

hole to a certain extent replaces the Coulomb hole, the rnain.part of the

correlation error for electrons with parallel spins is remoyed. In the Hartree-

-Fock scheme, the essential correlation error is hence associated with elec-

trons having antiparallel spins.

In order to get a measure of the order of magnitude of the correla-

tion error in the Hartree-Fock scheme, it is convenient to introduce the con-

cept of "correlation energy 57), as the difference:

Ecorr = Eexact - F(4)

57) E. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday Soc. 34,

678 (1938); F. Seitz, "Modern Theory of Solids" (McGraw Hill, New

York 1940) p. 698 f; J.C. Slater, Revs. Modern Phys. 25, 199 (1953);

E.P. Wohlfarth,-Revs. Modern Phys. 25, 211 (1953); D. Pines,

"Solid State Physics" 1. 368 (Academic Press, New York 1955);

P.O. L8wdin, Adv. Chem. Phys. 2, 207 (Interscience, New York'

1959).

where Eexact is the true eigenvalue of the Hamiltonian for the state under con-

sideration and EI the corresponding Hartree-Fock energy. We note that the

correlation energy is not a physical quantity but a measure of the error in a

certain appro0imation. Two aspects of the correlation problem will be of

particular importance:

a) the correlation error for the equilibrium state (R = * 0 )

b) the correlation error for separated atoms (R -cc)

where R is a parameter indicating the internuclear distances.

Let us start the discussion by reviewing some data from atomic and

molecular theory 26). For the series of helium-like ions (H He, Li+. ....
4+ 2

C ) in their (Is) ground state, the correlation energy is remarkably

constant 58, 59) and varies between -1. 1 and -1. 2 eV, whereas for the ground

58) H. Shull and P.O. L8wdin, J. Chem. Phys. 24, 1035 (1956); 30,

617 (1959).

59) A. Fr8man, Phys. Rev. 112, 870 (1958).
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state of the Ne-like ions 59). it lies around - 11 eV. For atoms. and ions without

closed shells 60), the correlation energy varies approximately linearly with

60) J. Linderberg and H. Shull, 3. Mol. Spectroscopy 5, 1 (1960).

the atomic number Z . For the hydrogen molecule, the correlation energy is

-1.06 eV, and we note that, according to the virial theorem, this quantity con-

sists of two parts, namely the correlation error in the kinetic energy and the

corresponding error in the potential energy:

Tcorr = +1.06ev , Vcorr = -2. 12 eV. (46)

Since I eV = 23.07 kcal/mole, these quantities are large from the chemical

point of view.

The problem of the error in the molecular-orbital theory for separated

atoms was first investigated, in a classical paper by Slater 61), where he studied

the connection between the molecular-orbital approach and the valence-bond.

61) J.C. Slater, Phys. Rev. 35, 509 (1930).

method by using the hydrogen molecule as an example. If a and b are the

atomic orbitals, the total wave function in the MO-LCAO method takes the form

(qA + O.J.+(47)

which implies that, for separated atoms, there is a fifty per cent chance that

the molecule will dissociate into the ions H" and H , and'an equal chance

that it will dissociate into two H atoms. The energy of the former, is, considerably

higher than the energy of the latter, and the resulting error is of the order. 8 *V.

The weakness of the molecular-orbital theory and of the band theory
of solids is apparently that the total wave function is such that it does not prevent

electrons of different spins to accumulate on the same atom and give rise to

negative and positive ions 62) with higher energy than the ordinary dissociation
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62) J.H. Van Vleck and A. Sherman, Revs. Modern Phys. 7, 167 (1935).

products. In nature, the strong Coulomb repulsion between the electrons

prevents the formation of negative ions with too many electrons, but apparently

this correlation effect has been neglected in the Hartree-Fock scheme. The

error is so large that one can speak of a complete breakdown of the independent-

-particle model and the molecular-orbital theory for separated atoms 63).

63) C.A. Coulson, and I. Fischer, Phil. Mag. 40, 386 (1949).

Slater 64) has emphasized that the wrong asymptotic behaviour of

the singlet energy curve for R = oo has a very serious consequence with respect

to the study of magnetic properties. In a state where the electrons have parallel

spins, the Pauli-principle will prevent the formation of negative ions, and the

energy will approach the correct value for R = 0 . The general shape of the

energy curves is indicated in Fig. 1 Since the t4 -curve has a wrong

asymptotic behaviour for R = co , there will always be an artificial crossing

point with the tf -curve, which may lead to wrong conclusions about the general

magnetic properties of the system. This may cause difficulties in a theory of

ferromagnetism based essentially on band theory 65). Apparently the difficulty

comes from the fact that the Hartree-Fock scheme treats electrons with

parallel spins fairly well, whereas the study of electrons having antiparallel

spins shows a large correlation error 66) which has to be removed.

64) J.C. Slater, Phys. Rev. 82, 538 (1951); Revs. Modern Phys. 25,

199 (1953); Encyclopedia of Physics 19, 1 (Springer, Berlin 1956).

65) For a review, see e.g. E.C. Stoner, Repts. Prog. Phys. It, 43

(1948); J. phys. radium 12, 37.2 (1951); E.P. Wohlfarth, Revs.

Modern Phys. 25, 211'(-1953).

66) D. Pines, Proc. 10th Solvay Conference, 9 (1954).

The correlation error does not always show up in a calculation, which

depends on the fact that we are often interested in energy differences, and it

may happen that the correlation errors associated with each term to a large
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artificial

crossi g poin HF (band theory)

1. 06 eV

Fig. I.- Energy curves for state of lowest and highest
multiplicities as functions of internuclear

distance R; numerical data refer to H.- mole-

cule.
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extent cancel. This happens, for instance, in studying the cohesive energy of

an ionic crystal of the type of the alkali halides, since the electronic structure

of the constituents and of the free ions are similar, and the correlation energy

of the crystal is then approximately equal to the correlation energy of the free

ions.

On the other hand, there is certainly no such cancellation in an

investigation of the cohesive energy of the alkali metals. The correlation error

for this case has been studied in great detail by Wigner who derived the

correlation energy formula

0. (46)

where all quantities are expressed in atomic units. For the alkali metals Li,

Na, K, one obtains the following values for the correlation energy per doubly

filled orbital, namely - 1. 89, -1.73, -1. 58 eV, respectively.

According to Wigner, the correlation energy should essentially be

a function of the electron density. Of particular importance is Wigner's study

of the low density limit which is based on the plasma model, in which the elec-

trons in a crystal are approximated by an electron gas moving in a "uniform

positive background". For sufficiently low density, the electrons will form a

body-centered cubic lattice with interesting properties 67).

67) W.J. Carr Jr., Phys. Rev. 112, 1437 (1961).

68)
The plasma model has later been strictly treated by Bohm and Pines

using field-theoretical methods. According to classical discharge theory, such

68) For a survey, see D. Pines, Phys. Rev. 92, 626 (1953) and reference

66.

a plasma shows a collective oscillatory behaviour with the fnndamental frequency

W .(4w ne 2 /m)I , where m is the average electron density. The field-
p

-theoretical study of the electronic correlation showed a long-range effect

corresponding to the plasma oscillations and a short-range effect giving raise

to an efficient electronic screening, which later has become of large importance

in the so-called "dielectric approximation".
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Since in the simple plasma model there are no discrete nuclei, such"

aspects of the correlation problem as are concerned with the atomic con-

stituents of a crystal will not be treated whatsoever. The problemof the

asymptotic behaviour of the energy for separated atoms so strongly emphasized

by Slater 64) cannot be treated at all within the framework of this model. In. ,

the atomic approach, the correlation energy is certainly not a function of the

electronic density only and, as an example, we would consider the series of

helium-like ions which all have the same correlation energy, but which goes

from the extremely extended H ion to the highly concentrated positive ions,
4+like C . Even if the simple plasma model has given very interesting and

important results concerning the behaviour of the mobile electrons in metals,

it has so far not given the ultimate answer to the problem of the correlation

error in the band theory of ordinary crystals with discrete atomic nuclei. This

question will be further discussed below.

3. VALENCE BOND METHOD

(a) Covalent Bond; Valence Bond Functions

Crystal physics can be approached from an entirely different point

of view than band theory. In connection with e.g. cohesive properties, it seems

natural to start from the chemists' ideas of bonding between atoms to describe

the binding of the constituents of a crystal, and this leads to the valence bond

method. According to Lewis, each covalent bond is associated with an electron

pair which causes the binding, but the real nature of the bond was not revealed

until the establishment of modern quantum mechanics. In connection with the

problem of the helium atom, Heisenberg 69) had discovered the exchange

phenomenon and the' identity principle which says that it is physically impossible

to distinguish between the individual electrons. In modern terminology,'it

means that the permutation operator P 1 2 is a constant of motion, so that

P 1 2 H =.HP 1 2 * In investigating the hydrogen molecule, Heitler and London To)
found that the bonding of the atoms depended on this exchange effect and had

hence essentially a quantum mechanical character.

69) W. Heisenberg, Z. Physik 38, 411 (1926); '39, 499 (1926)i

70) W. Heitler and F. London, Z. Physik 44, 466 (1927).
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Let q ptjlltz be a space function which describes the

physical situation of an electron pair. By means of the identity

1 = tCI+' - - , (7

where each term in the right-hand member is a projection operator, one can

resolve this function into its symmetric and antisymmetric components with

respect to Pi 2 I which are orthogonal and non-interacting with respect to H

The symmetric space component is associated with the singlet state, and the

antisymmetric space component with the triplet state and, for the corresponding

energies, one obtains

(~I~~itP~'>(48)

(49)

which quantities should be compared with the expectation value

4?I .1 / 412' >> , which always lies between them. In this connection,

it is convenient to introduce the exchange integral:

*3 F1 (50)

which may then be used as a criterion for the spin alinement. If J > 0 one has
AE > 3E and parallel spins in the ground state, whereas, for J > 0 , one has
1E < 3E and antiparallel spins in the ground state. According to this simple

model, the exchange integral would then give the criterion for ferromagnetism

versus antiferromagnetism, if the concept could be generalized to crystals.

Substitution of (48) and (49) into (50) gives the expression:

<4 Ila_____________ (1
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Originally, the valence bond theory was based on the one-electron

approximation according to which one has 0 (1,2) = a(1) b(2)' where a' aand

b are two atomic orbitals (AO's) associated with the two constituents. The

quantity Sab = < a Ib> is known as the "overlap integral" and plays an impor-

tant role in the theory. We note that one cannot start out from two orthogonalized

AO's , i and b since the singlet would then not show any bonding 71); the

exchange integral J would further be positive, so that the triplet would be the'

ground state. The overlap problem is hence very essential.

71)i 3C. Slater, . Chem. Phys. 19, 220 (1951).

A careful analysis of the connection between the band theory or MO-

-method and the valence bond (VB) scheme was made by Slater 61), who used

the H -molecule as a typical example. He showed that the VB-method including

polar states, a(1) a(2) and b(1) b(2), would give the same result as the MO-

-method including configurational interaction between the bonding orbital (a + b)

and the anti-bonding orbital (a' - b). However, in their original and naive forms,

the two approaches are certainly not equivalent. For the equilibrium state

(R = R0 ), they lead to rather similar results, whereas for separated atoms

(R c0), the naive VB-method is superior to the naive MO-method, since the

former gives a correct asymptotic behaviour of the 'singlet energy curve. In

this respect, there is less correlation error in the naive valence bond method

than in the ordinary band theory.

The total wave function for a valence bond singlet associated with an

orbital pair (a,b) may be written in the form Aa 1 b2 ( 1 P2 - PI' 2 ) where. A

is the antisymmetrization operator. This construction is easily generalized 7Z; 73)

72) W. Heitler and G. Rumor, G8ttinger Nachr. 1930, 277.

73) G. Rumor, G8ttnger Nachr. 1932, 337.

to a many-electron system having the orbital-pairs (ab). (c d), .(e), ,,. etc.,

and the total valence-bond singlet is given by the eipression • '

4 a,--
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where there is one spin singlet (ap - Pa) for each orbital pair., The collection

of orbitals a, b, c, d, e, f, ... may, of course, be paired in many different

ways, and each one gives rise toavalence bond singlet. The correct number

of linearly independent valence bond singlets may be found by means of Rumer's

non-crossing rule 73,74) for the valence bonds. There is a close'parallelism

between the quantum-mechanical wave function and the corresponding chemical

formula for the compound, which has been further developed in the theory of

chemical resonance

74) L. Pauling, J. Chem. Phys. 1, 280 (1933).

75) 3. C. Slater, Phys. Rev. 37, 481 (1931)i particularly p. 489,

L. Pauling, J. Chem. Phys. 1, 280 (1933), and a series of papers

in J. Chem. Phys. and J. Am. Chem. Soc.

In the case when the overlap integrals between the orbitals a, b, c, d,

are neglected, the expectation value of the total energy.and its matrix

elements with respect to 'the valence bond singlets are fairly easily evaluated 74)

However, this approach will not describe chemical bonding unless the overlap

integrals are included, and it turns then out to be extremely cumbersome to

calculate the elements of the energy matrix 76). The best way to. solve this

problem systematically seems to be to resolve the valence bond singlets into

spin-projections of Slater determinants 77). The valence bond singlets are hence

physically simple but, with respect to the energy, mathematically complicated.

76) See e.g. J.C. Slater, Quarterly Progress Report of Solid-State

and Molecular Theory Group, M.I.T., p. 3, October 15, 1953
(unpublished).

77) P.O. L8wdin, Technical Note 2, Uppsala Quantum Chemistry Group

(1957); Coll. Int. Centre Nat.. Rech. Sci. 82, 23, Paris 1958

If the overlap problem is difficult for a molecule, it becomes almost

prohibitive for a crystal. It was pointed out by Slater 61) that the inclusion of

the overlap integrals in the application of the VB-method to crystals would

lead to divergency difficulties of such a severe type that one has later called

it a "non-orthogonality catastrophe" 78), Actually, each matrix element of

78) D.R. Inglis, Phys. Rev. 46, 135 (1934).
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the energy is of the form ao/bo but, in the denominator and the numerator,

there is a common infinite factor, and the remaining quotient is well-behaved.

This problem is still not completely solved in all details, and wVe w.ill omment

more about it below.

Another problem in the VB-theory for treating crystals is that

apparently the polar states are of fundamental importance, particularly in

connection with conductivity phenomena. The basic theory shows many

interesting aspects 79) but is rather complicated in the applications. A simplifi-

cation of this approach could be obtained, if one could, in principle, include

all polar states, since one could then use orthogonalied atomic orbitals

or Wannier functions as a basis 80)

79) S. Schubin, and S. Wonssowsky, Proc. Roy. Soc. 145, 159 (1934);

Physik. Z. Sowjetunion 7, 292.(1935); 10, 348 (1936);

S. Wonssowsky, Fortschritte der Physik 1, 239 (1954).

80) For a study of the molcul.r case, see R. McWeeny, Proc. Roy. Soc.

(London) A223, 63, 306 (1954).

Starting from the chemists' point of view, Pauling 81)has developed

a resonating-valence-bond theory of metals, which seems to be remarkably

successful as a semi-empirical device. A valence-bond treatment based on

the use of bond orbitals instead of atomic orbitals 82) should also be mentioned.

81) L. Pauling, Nature 161, 1019 (1948); Proc. Roy. Soc. A196, 343

(1949); Physica 15, 23 (1949).

82) C.A. Coulson, Proc. Int. Conf. Theor. Phys. Japan.629, (Tokyo

1953).

It has been pointed out above that valenceibond method including

polar states and molecular-orbital method including configurational interac-

tion lead to identical results 61), that the methods in their simple original

form are. rather different, and that the naive VB-method seems superiol to

the naive MO-method in treating correlatin effects. In order to explain the

peculiar behaviour of crystals like NiO, which are insulators but still have
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incompletely filled bands, Mott 83) raised the questionwhether the simple valence

bond method is particularly well suited for certain classes of crystals (insulators)

and the band theory for other classes (conductors). One could think that correla-

tion effects would be more important in Insulators than in conductors, but these

effects are probably just as essential in all types of crystals. This problem will

be further discussed in Sec. 5

83) N.F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949).

(b) Dirac-Van Vleck Vector Model

In the study of the magnetic properties of crystals, the valence-bond

method has been used in a particular form known as the Dirac-Van Vleck vector

model 84). In this approach, the spin-degeneracy problem of a many-electron

P.A.M. Dirac, Proc. Roy. Soc. (London) A,1.3, 714(1929);

J.H. Van Vleck, "Theory of Electric and Magnetic Susceptibilities"

(Oxford University Press, London 1932); Phys. Rev. 45, 405 (1934).

system is investigated under the assumption that the space part is characterized

by a set of orbitals a, b, c, d, ... and that one has integrated over the space

coordinates. The splitting of the energy levels is then given by the eigenvalues

to the spin HAmiltonian:

1
~L 44,(53)

which works in the spin-space only; here E is an average energy, and the

coefficients Ji. are the exchange integrals. This formalism has been success-1.5 86)
fully utilized in the spin-wave model 85) and in the theory of superexchange

The original derivation was based on the assumption that the orbitals

a, b, c, d, •.. were all orthogonal and the entire approach has been criti-ed

by Slater 87) on this ground. The simple example of two electrons shows that,

if the orbitals a and b are assumed to be orthogonal, one could neither discuss
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85) H.A. Bethe, Z. Physik 71, 205 (1931); L. Hulth~n, Arkiv f. mat.,

astr., fysik 26A, 11 (1938); P.W. Anderson, Phys. Rev. 86, 694

(195Z); R. Kubo, Phys. Rev. 87, 568 (1952); F. Dyson, Phys. Rev.

102, 1217 (1956); J. van Kranendonk and J.H. Van Vleck, Revs.

Modern Phys. 30, 1 (1958); F. Bopp and E. Werner, Z. Physik 151,

10 (1958); and others.

86) H.A. Kramers, Physica 1, 182 (1934); P.W. Anderson, Phys. Rev.

79, 350 (1950); for further references, see e.g. P.W. Anderson,

Phys. Rev. 115, 2 (1959).

87) J.C. Slater, Revs. Modern Phys. 25, 199 (1953).

magnetic alinement nor bonding. The remedy is to use overlapping orbitals or

to include polar states 88). The "non-orthogonality catastrophe" in connection

*ith the overlap integrals in crystal-theory has previously been mentioned 61,78),

and a long series of papers has now been written on. this subject 89).

88) R. Serber, J. Chem. Phys. Z, 697 (1934); Phys. Rev. 45, 461 (1934).

89) J.H. Van Vleck, Phys. Rev. 49, 232 (1936); P.O. Ldwdin, J. Chem.

Phys. 18, 365 (1950); W.J. Carr Jr., Phys. Rev. 92, 28 (1953);

Y. MizunO and T. Izuyama, Progr. Theoret. Phys. Japan 22, 344

(1959); F. Takano, J. Phys. Soc. Japan 14, 348 (1959); T. Arai

(unpublished).

It should be observed that it may be quite possible to incorporate non-

-orthogonality, polar states, correlation effects, etc. in the vector model in a

simple way 90). For a two-particle system, one has a singlet and a triplet state

90) P.O. Lwdin, Technical Note 46, Uppsala Quantum Chemistry Group;

Revs. Modern Phys. 34, 1 (1962).

and the identity

(54)
N 4
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where E and 3E could be the true energies, 3 is the exchange integral

defined by (50) and (51), and K = -I for the singlet state (S = 0) and K = +1

for the triplet state (S = 1). The quantity .c may be considered as a spin

operator which has the same eigenvalues and eigednfunctions as the operator

( .Q, &1. ) and, according to (54), one obtains

which is the spin Hamiltonian desired. The question whether this approach

could be generalized to more electrons i's now being investigated. If this is the

case, the vector model would certainly form a good basis for a semi-empirical

theory fully in line with the applications carried out so far 85, 86)

(c) Extension of Valence-Bond Method

In chemistry, the concept of the covalent bond is of such a fundamental

importance that it seems highly desirable to try to obtain a simple and useful

formulation of the VB-method free of the previously mentioned mathematical

difficulties connected with the overlap. As indicated in the discussion in connec-

tion with equations (48)-(51), the basic space function in the

VB-method is essentially a two-electron function, and there is no necessity

of using the orbital approximation. The corresponding valence bond singlet would

then have the form C S5 L) - - . For a many-electron system

having the bonds (ab), (cd), (ef), ,.. with the space functionn ab' 0 cd' ef"

one would instead of (52) get the more general valence bond singlet

4~ * g(Y',' Y) < d('lJ, (13) e P ~~t)Z . (56)

where, in each bond function, one could include the overlap, the polar states,

and the full correlation effects in each bond.

Such a two-electron extension of the valence-bond method has been

worked out by Hurley, Lennard-3onesi and Pople 91). The overlap associated

91) A.C. Hurley, J. Lennard-Jones, and J. Pople, Proc. Roy. Soc. London

AZZO, 446 (1953).
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with a specific bond does not cause any difficulties, but there is an overlap be-

tween the functions associated with different bonds which leads again to consid-

erable mathematical complications. In order to simplify the theory, one has

sometimes introduced the assumption of strong orthogonality between the bonds:

which means that the bonds to a certain extent are independent of each other.

The implications of this condition have recently been studied in detail 92)

92) T. Arai, J. Chem. Phys. 33, 95 (1960); P.O. L~wdin, J. Chem. Phys.

35, 78 (1961).

The extended VB-method has been successfully applied to crystals: to

a study of diamond by Schmid 93) and to an investigation of Zn S by Asano and

Tomishina 94). In molecular theory, this approach has become known under the

name of "perfect-pairing approximation"

93) L.A. Schmid, Phys. Rev. 92, 1373 (1953); Am. J. Phys. Z2, 255 (1954).

94) S. Asano and Y. Tomishina, J. Phys. Soc. Japan 11, 644 (1956).

95) See e.g. R.G. Parr, F.O. Ellison, and P.G. Lykos, J. Chem. Phys.

24, 1106 (1956); J.M. Parks and R.G. Parr, J. Chem. Phys. 28,

335 (1958); R. McWeeny and K.A. Ohno, Proc. Roy. Soc. (London)

AZ25, 367 (1960); R. McWeeny, Revs. Modern Phys. 32, 335 (1960).
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4. TIGHT-BINDING APPROXIMATION

(a) Basic Problems

The tight-binding approximation introduced in crystal theory by Bloch 12)

is a band theory using the atomic orbitals of the constituents as a basis, and it

corresponds in its most refined form to the ASP-MO-LCAO-SCF method in

molecular theory 11' 13). The nature of the tight-binding scheme in general has

been briefly discussed previously in this review and, in this section, we will

concentrate our interest on some basic problems of particular importance con-

nected with this approach. Since the valence-bond, method is often based on

atomic orbitals, some of the problems are common to both approaches.

Approximate linear dependencies. - The fundament of Ritz's method 9) for

solving eigenvalue problems was discussed in Sec. Zc. If {fL } is a set of

functions forming a complete basis, the Schr8dinger equation is equivalent to a

system of linear equations (36) with the secular determinant

We note that, if some of the functions in the set ifv } would be linearly

dependent so that Z f, a. = 0 for some non-vanishing coefficients at, , the

rows and columns in this determinant would also be linearly dependent, which

implies that the secular determinant would be identically vanishing for all values

of the parameter E . In order to be able to use the secular equation for

determining the eigenvalues . , one has thus to be sure. that the functions in

the basis. { f I are linearly independent.

In this connection, it is convenient to introduce a certain measure pt

for the degree of linear independence defined by the minimum of the quantity

&~% I~~% (~ i / (59)

where the coefficients a, are subject to the auxiliary condition 1 a,, 2 =, i

which means that they cannot all simultaneously be vanishing. For d one has

the alternative form

St'(60)
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with the auxiliary condition removed, and we can hence draw the conclusion that

I is the smallest eigenvalue of the metric matrix A which is positive

definite. If p = 0, the set t f, ) is linearly dependent, whereas, if R / 0, the

set is linearly independent and everything is in order, at least in the sense of

ordinary mathematics.

However, in any numerical application of Ritz's method, one can use

only a finite number of figures. This means that, if /U is smaller than the

rounding-off error, the basic set is approximately linearly dependent, and the

corresponding secular equation (58) will be identically vanishing within the

accuracy used. If the quantity p is small but not necessarily vanishing, one

has often a corresponding loss of significant figures in the calculation of .

The occurrence of approximate linear dependencies is hence a very serious

problem from practical points of view.,

This problem is not limited to the tight-binding approximation but is

of a very general nature 96). An investigation of some of the standard radial

96) P.O. L8wdin, Ann. Rev. Phys. Chem. 11, 107 (1960).

sets {r n -  , {r n- e - r , {e'nr}, {e'nr }, etc. for n = 1, 2, 3, .... shows

that the corresponding measures I quickly become exceedingly small, and that

the sets are actually to a high extent approximately linearly dependent.

As another typical example, we will consider the set of powers
2 31, x, x , x , ... for - x + I, which is often used in studying e.g.

angular behaviour with x = cos 9. From mathematics, we know that this set

is complete and linearly independet, but an investigation of R reveals that the

set quickly becomes approximately linearly dependent. Since the even powersS2 4 3 5
1, x , x ... areorthogonal to the odd powers x, x , x , ... , there are

actually two orthogonal subsets which can be treated independently. The smallest

eigenvalue p of the metric matrix A is given in Table I as a function of the

number of functions in the subset, and the result is perhaps somewhat surprising.

It tells us that one has to be extremely careful in using a non-orthogonal basis

{(., ) in applying Ritz's method in molecular and crystal theory.' Since it

seems as if the remedy would be a transformation of the basis to an orthonormal

set, we will continue with a brief study of such procedures.

The phenomenon of the almost identically vanishing secular equation

was first observed in crystal theory by Parmenter 97) in a tight-binding study
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TABLE I. Lowest eigenvalue of matrix A = <xPlxq> for the intervalpq

1. x S + I; n = number of membersIn each set. Unit= 10- 9

Even set Odd set

.I n l

2 79 316 688 2 33 154 158

3 3 275 556 3 1 254 936

4 117 839 4 43 655

5 4002 5 1.451

6 131 6 45

7 5 7 1

8 1 .8 1

The author is indebted to F.K. Klaus Appel and F.K. Einar

Lundqvist for carrying out the numerical calculations involved.
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97) R.H. Parmenter, Phys. Rev. 86, 552 (1952).

of the lithium metal using Gaussian functions as atomic orbitals.

Orthonormalization procedures. - Starting from the basis {f } having a

metric matrix A with the elements Amn =<fmIfn> , we will now study the

general linear transformation 41 which transforms this basis. to another

•{pm} Iwhich is orthonormal, so that < mI pn> = 6rn. Using matrix notations,

we will write the transformation in the form c =j ,or (p = f A

Since 4t' If and jtj A , one obtains directly the condition

J tA 4 = . Substituting A A 4J. B , one is lead to the equation

- I and, since the transformation should be non-singular, _13 is

a unitary matrix. The general orthonormaliz.ation procedure has hence the form36 )

Cr'u JA (61)

where . is an arbitrary unitary matrix. If A is chosen triangular, one

obtains Schmidt's classical procedure of successive orthogonalization which is

more simply derived directly. If B is chosen equal to I , one obtains,

the symmetric orthonormalization 35 , in wlich all functions in the basis

Y } are treated in an equivalent way. In this case, it is essential to evaluate

the matrix AS 4  .Putting A = I +$ ,where S is the overlap matrix

of the basis, one has the formal expansion

Y4, (6Z)At

which is convergent, if the overlap is sufficiently small, for instance

L IS 1<1 . Foi! many crystals, the series (62) is divergent, and one has then

to use more forceful methods to evaluate NY

The metric matrix A is hermitean and positive definite, and we

will let Uj be the unitary matrix which brings it to diagonal form d , so

that

W~AIJ 4 (63)
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* where all the elgenvalues dk are positive and the smallest one gives the

measure 1± of linear independence. The matrix A' may now be defined

by the relation AJ , where one can choose e.g. the positive

square roots in . With this definition of one can prove some

interesting theorems 98) about the set 0 =d /j - .A It has further been

shown 99) that, if the basis {fA, ) undergoes a unitary transformation

then the set {q ) undergoes the same transformation.

98) G.W. Pratt Jr., and S.F. Neustadter, Phys. Rev. 101, 1248 (1956);

B.C. Carlson and J.M. Keller, Phys. Rev. 105, 102 (1957);

P.G. Lykos and H.N. Schmeising, J. Chem. Phys. 35, 288 (1961).

99) J..C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).

It is clear that, unless the series (62) is rapidly convergent the

calculation of the matrix A is a cumbersome procedure, particularly

for a crystal. Using the Chebyshev polynomials, one has recently obtained a

considerable simplification of this problem by deriving a closed expression t00)
for the elements of A " for an infinite (periodic) chain and, by using per-

turbatiori technique, the same method can be extended to three dimensions.

100) P.O. L8wdin, R. Pauncz, and J. do Heer, J. Math. Phys. 1, 461

(1960).

In discussing the symmetric orthonormalization, we have assumed

that the basis f ) is linearly independent, so that ji / 0 and S-'A exists.

In order to treat also the case of exact and approximate linear dependencies,

it is convenient to choose 13 in (61), which leads to the canonical

orthogonalization 101) V j d,-' or

101) P.O. L8wdin, Advances in Physics 5, 1 (1956), p. 49-56.
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which formula is valid for all dk 0. It may be convenient to arrange this

set according to decreasing values of dk ; the sum of the absolute squares of

the coefficients in (64) equals dk " , and the set (64) has an optimum property

in this connection.

This means that, even if one goes over to an orthonormal set, the

approximate linear dependencies will still show up in the calculations: the sum

of the absolute squares of the coefficients in the last function will be L , i.e.

the coefficients will usually be very large at the same time, as they have a small

number of significant figures. However, formula (64) gives us at least a

possibility of refining the calculations within a certain accuracy by striking

away those functions 9pk as correspond to too small eigenvalues dk , but the

completeness of the basis is then gone. The finite number of bits of our elec-

tronic computers (or desk machines, etc..) puts us hence in a dilemma, which

has not yet been solved.

In conclusion, it should be added that, in crystal theory, it is often

h~h/ convenient to use one more method, namely the successive orthOnormkliza-

tion o group. of functions. Let and represent two iroups of func-4

tions having the metric matrix

4 (65)

where = is a quadratic or rectangular matrix. We will leave the

first group 4 unchanged and replace the second group by a linear combina-

tion ,-d I . The orthogonality condition I0 gives

* - , whereas the orthonormality condition , = I leads to

V with the solution (1- . The result is

hence

('~h ~ p )(66)

which is a generalization of the standard Schmidt procedure to groups of func-

tions. Formula (66) is useful, for instance, in deriving the orthogonalized plane

waves or in handling groups of orthogonalized atomic orbitals.
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Orthonormalization problem in crystal theory. - The orthonormalization

problem takes a very interesting form in crystal tiaeory depending on the trans-

lational symmetry of the lattice. Let D( ML ) be an arbitrary atomic orbital,

i.e. a localized function centered around a certain lattice point which we may

have chosen as the origin, and let ? denote the set of all such orbitals

0 ( m.' - t ) centered around the equivalent points r14 in the lattice. This

set has a metric matrix A = P t 5 with the elements:

which i-s cyclic and which is hence brought to diagonal form by the unitary

transformation

u(IM;) q (68)

The eigenvalues of A are then given by the formula

e (. (69)

Instead of the original set 4 , we can now introduce a set Cj of orthonormal-

ized AO's by the symmetric procedure C) =  A' . Here the matrix Sy

may be evaluated by various methods, of which at the present stage the Chebyshev

expansion method 100) is probably the most forceful.

It is also of interest to consider the canonical orthonormalizatiori

procedure defined by (64). Using (68) and (17), we find that this approach leads

directly to the standard Bloch-functions associated with the set 4 in a

properly normalized form.

The Bloch functions can actually be derived from the given atomic

orbital ! (A) in several ways. According to (20), one can start from a

single orbital ! 1) and resolve this function into its Bloch components

()(70

-, I = e

!P ~ ~ ~ 34 Ok 79 OC-1 (0 71
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where "45y,) " is an unnormalized Bloch function of the standard

type 12). Of course, one could also think of this Bloch function as being formed

by linear combinations of the atomic orbitals in the various lattice points

(LCAO). The different aspects may be valuable in different connections.

Bloch functions associated with different It -values are orthogonal,

whereas they are usually not normalized. The normalization integral for the

function (7 1) takes the form

but the best way of normalizing the Bloch functions is probably to take the

Bloch projections (multiplied by G +3/2) of the orthonormalized AO' s, CP

= -4  , where the matrix S- is evaluated e.g. by Chebyshev

technique. All the G Bloch functions will then be normalized at once, whereas

one otherwise has to carry out one normalization for each one of the G3  4, -

values. Valuable information may also be obtained by combining the two approaches.

It is remarkable that the LCAO Bloch-functions formed from the

orthogonalized AOI s C except for the normalization are completely identi-

cal 102) with those formed from the original AOts T . This is a special case

of a general invariance theorem, saying that the Bloch projection of any linear

combination

lO(")

102) P.O. L8wdin, J. Chem. Phys. 18, 365 (1950); Advances in PhysicJs5,

1 (1956), p. 53; R.G. Parr, 3. Chem. Phys. 33, 1184 (1960).

with arbitrary coefficients (') will, except for a normalization factor, be,

identical with the corresponding Bloch projection of the function C (4

According to (19), one has

= T(~) (C (74)

and applying 0 k to 0', we obtain
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((75)

which proves the theorem. In this connection, the projection technique is hence

very convenient.

Completeness problem in tisht-binding scheme. - It has been discussed in

various connections, whether the atomic orbitals would form a sufficient basis

for band theory or whether something essential is missing in the tight-binding

method. It is evident that, if one introduces a complete set of AO's in every

lattice point M , the basis will be highly overcomplete, and the key problem

will be to eliminate the redundancies connected with the linear dependencies.

If, on the other hand, one introckces a truncated set of AO's in each lattice

point, the treatment may be disturbed by approximate linear dependencies at

the same time as some essential element may be missing.

From theoretical point of view, it is sufficient to introduce a complete

set of AO's {av } in a single lattice point, since we may then use expansion

(34), 1.e. Yk = Z fZ c . In studying the Bloch functions, we can apply the

projection operator Ok and go over from (34) to (37), i.e.

~ ~O1 j~,) ,~ ~(76)

which relation says that it is possible to express every Bloch function associated

with the wave vector 4 in terms of the subset (OkfL ). From the complete-

ness of {f } follows hence the completeness of ( 0 kf f with respect to

the subspace characterized by .4 , Consequently, nothing can be missing.

However, if one uses a set of hydrogen-like orbitals Is, 2s, 2p, 39,

3p, 3d. ..... and constructs the corresponding Bloch functions, one will find

a peculiarity in analyzing these functions in terms of plane waves once

the orbitals for neighbouring atoms start having large overlap, the main con-

tribution to the Bloch function will come from the first Brillouin zone. Except

for the region around the nucleus, the Bloch functions will then become more

and more similar to a free wave associated with the first zone, and little new
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will be obtained by adding more (n & )-functions. One should remember, how-

ever, that the higher functions contribute to the description of the inner parts

of the atoms, and that a particularly important part comes from the continuum,

which is necessary to make the basis { ft } complete.

If one neglects the continuum in the tight-binding approximation, one

is certainly leaving out a very important part of the basis. It is true that the

handling of the continuum functions may cause some mathematical difficulties,

but these are easily circumvented if one follows Schr8dinger's suggestion 103)

103) E. Schr8dinger, Ann. Physik 79, 361 (1926).

and uses a set which is both entirely discrete and complete; such a set is easily

derived from the hydrogen-like orbitals by omitting the principal quantum num-

ber n in the radial variable p = 2Zr/n • These new function, i, rts, $, ro,

3p, . will be more localized within the atomic cell of interest, they will give

more details concerning the ion core and the nuclear region, at the same time as

the higher orbitals will give Bloch functions which are close to free waves. The

set of modified atomic orbitals has proven to be extremely useful in atomic and
moecular theo 104) and it Will probably be just as valuable in crystal theory.

104) H. Shull and P.O. L8wdin, 3. Chem. Phys. 23, 1362 (1955); 25, 1035

(1956); 30, 617 (1959); E. Hol~ien, Phys. Rev. 104, 1301 (1956);

Proc. Phys. Soc. A71, 357 (1958); 3.O. Hirschfelder and P.O. L8wdin,

Molecular Physics 2, 229 (1959).

One could ask how an orthonormal set of Block functions should best

be constructed in the tight-binding scheme to give a basis which is in principle

complete and which does not contain any linear dependencies. If {ft ) denotes

the set of modified atomic orbitals in a single lattice point, the projected sub-

-sets {Ok11' ) associated with different reduced wave vectors At are cer-

tainly mutually orthogonal and non-interacting with respect to He,, . but the

individual functions within each subset { 0 kra) are neither normalized nor

orthogonal. Since the functions ro, No, Np, Nst Sp, 3a, .. form a natural

sequence, the functions within each subset {O ft, ) are conveniently transformed

by means of successive orthonormalization. If only a limited number of points in

-space will be studied, this is a procedure which is easily carried out by

considering one 4 -value at a time.



-50-

However, if it is desirable to derive a complete set of Bloch functions

which are orthonormal within all the G 3 subsets associated with the reduced

wave vector t, it is simpler to start by deriig a complete set of atomic

orbitals orthonormalized over all the lattice points. In such a case, one starts

by considering the functions in all the lattice points and carries out a

symmetric orthogonalization according to (61) with . , proceeds in the

same -way with all the functions s , with all the functions S, .... etc. one

type at a time. This procedure seems physically feasible, since all the lattice

points are treated in an equivalent way. It leads to a sequence of groups of

orthonormalized atomic orbitals, which are then made mutually orthogonal by

means of the successive orthogonalization obtained by repeated use of formula

(66). In each lattice point, one gets in this way, a set of orthonormal atomic

orbitals ie's, Ns, 5', No', p', ... which are translationally connected and

altogether complete. Finally, one forms the Bloch projections

+14 (77)

which constitute the orthonormal, complete set desired. Each Bloch function is

here characterized by the reduced wave vector, and an index corresponding

to the atomic quantum numbers (n t m).

By using the invariance theorem (7 1), it may be shown that the two

ways of proceeding here described actually lead to identical result. For the

moment, it seems simpler to construct the complete set of translationally con-

nected atomic orbitals T', 28', 2', T', ... since one can use the Chebyshev

technique 100) for evaluating the (-f) power of a cyclic matrix in both steps

of the procedure, but, of course, it should be possible to find the corresponding

short-cut also in the other approach;

By constructing a complete orthonormal set of Bloch functions of the

type (77), one can hence remove two weak points in the tight-binding approxima-

tion, namely the, occurrence of approximate linear dependencies and the in-

completeness particularly with respect to the inner region around each lattice

point otherwise arising from the neglect of the continuum.
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(b) Recent Applications

For applications of the tight-binding approximation to crystal theory,

we will again refer to the prev0iusly mentioned reviews by Lbwdin 23)

Herman 24), and Pncherle 25) and comment only on some recently published

papers.

The relation between the MO-LCAO method in molecular theory and
the tight-binding scheme in crystal theory can be particularly well studied in

connection with the graphite problem, where one can start out from a single

six-membered ring as in the benzene molecule, add more and more rings until

one obtains a graphite layer, and finally add the layers to a three-dimensional

crystal. The electronic structure of graphite, its dibiriagnetism and other
105)properties have successfully been studied in this way

105) See e.g. C.A. Coulson and R. Taylor, Proc. Phys. Soc. (London)

A65, 815 (1952); D.F. Johnston, Proc. Roy. Soc. (London)A237,

48 (1956); M. Yamasaki, J. Chem. Phys. 26, 930 (1957);

J.W. McClure, Phys. Rev. 108, 612 (1957); R.R. Haering, Can. J.

Phys. 36, 352 ('1958); S. Mase, J. Phys. Soc. Japan 13, 563 (1958);
J.C. Slonczewsky and P.R., Weiss, Phys. Rev. 109, 272 (1958);

T. E. Peacock and R. McWeeny, Proc. Phys. Soc. (London) 74, 385

(1959); H. Sato, J. Phys. Soc. Japan 14, 609 (1959); J. Kontechf and

M. Tomisek, Phys. Rev. 120, 1212 (1960).

In connection with diamond-type crystals, the work by Schmid 93)

using VB-method has previously been mentioned, and here we will only add.a

study by Morita 106)p where he uses a semi-localized. crystal orbital method.

106) A, Morita, Progr. Theoret. Phys. 19, 534 (1958).

Among the papers on boron crystals, we would like to mention an

extensive investigation of the electronic structure and band properties of the

metal borides of type MB 6 carried out by Flodmark 107), and a study of boron

107) S. Flodmark, Arkiv f. Fysik 9, 1357 (1955); 11, 417 (1957); 14, 513

(1959); Svensk Kemisk Tidsk. 70, 12 (1958).
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carbide by Yamasaki 108).

108) M. Yamasaki, 3. Chem. Phys. 27, 746 (1957).

The oxide ionic crystals offer an interesting problem 109), and

Yamashita 110) has now extended his previous work to a study of the oxygen

band in magnesium oxide, whereas O'Sullivan iii) has treated beryllium oxide.

109) J. Yamashita and M. Koima, 3. Phys. Soc. Japan7, 261 (1952).

110) 3. Yamashita, Phys. Rev. 1.11, 733 (1958).

.) W. O'Sullivan, 3. Chem. Phys. 30, 379 (1959).

The tight-bining studies of the alkali hydrides and alkali halides are

being continued. The covalent character of lithium hydride has been investigated

by Morita and Takahashi 112)using semi-localized crystal orbitals, whereas the

112) A. Morita and K. Takahashi, Progr. Theoret. Phys. 19, 257 (1958).

behaviour of this crystal under very high pressure has been treated by:.

Behringer .). The electronic 'structure of the alkali halides has been studied
114).

by Grimley with particular attention to lithium fluoride. Howland 115) has

finally carried through a careful study of the band structure and cohesive proper-

ties of potassium chloride,

113) R.E. Behringer, Phys. Rev. 113, 787 (1959).

114) T.B. Grimley, Proc. Phys. Soc. (London) 70, 123(1957); 71, 749

(1958).
115) L.P. Howland, Phys. Rev. 109, 1927 (1958).

The ionic crystals with constituents having completely filled shells are

remarkable from the point of, view that the naive MO-method and. the naive VB-

method lead to identical results with respect to all properties which may be
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derived from the total wave function. These crystals are also particularly con-

venient for a study by means of the tight-binding approximation, and a rather

fixed approach seems finally to have been established. In this connection, we

would like to make some critical comments on the conventional interpretation

of the data obtained in calculating e.g. the cohesive energy.

(c) Virial Theorem in Theory of Ionic Crystals

The classical theory of ionic crystals developed by Madelung and Born

was based on the fundamental assumption that the essential constituents of such

a crystal are the positively and negatively charged ions. The system of ions

was assumed to be in equilibrium under the influence of two types of potentials:

an attractive potential, corresponding to the electrostatic interaction between

the ions as point charges and representedbyaMidelmng energy, and a repulsive

potential, for which Born and Landg suggested the inverse power C r-n and

later Born and Mayer the exponential C exp(-r/$ ).

A characteristic feature of this model is that the Madelung energy

forms the dominating part of the cohesive energy of the crystal. In a recent in-
116) i avestigation , it has been pointed out, however, that the cohesive energy

actually conssts of several large terms of the same order of magnitude as the

Madelung contribution, and that the kinetic energy plays a very important role

in this connection.

116) A. Fr8man and P.O. L8wdin, Technical Note 51, Uppsala Quantum

Chemistry Group (1960); J. Phys. Chem. Solids 20, ... (1961)..

The ratio between the kinetic energy < T > and the potential energy

< V > is determined by the virial theorem 117) which, for a system with, only

coulombic interactions, takes the special form < T > = - < V >, or <T > =

= -E, < V> = +2E, where E is the total energy, E z< T + V> . For an ionic

crystal, the viiial theorem is satisfied in this simple form both for the

equilibrium state (R = Re) and for the free ions (R - co), here indicated by. an

index f (= free).

11?) E.A. Hylieraas, Z. Physik 54, 347 (1929); V. Fock, Z. Physik 63,

855 (1930). For more complete references, see P.O. LUwdin, J. Mol.

Spectroscopy 3, 46 (1959).'
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The cohesive energy Ecoh is defined as the difference between the

total energy Eo of the crystal in its ground state and the energy Ef of the free

constituents, so that Ecoh = E 0 - Ef The change in kinetic energy A T and

the change in potential energy AV are further defined by the relations:

AT= T o - Tf , AV = Vo - Vf (78)

and, using the virial theorem for both states, we hence obtain

AT= -Ecoh , #V=f2Ecoh (79)

These relations show that the kinetic energy increases under the formation of a

solid, whereas the potential energy decreases twice as much leaving a balance

equal to the cohesive energy: AT + AV. = Ecoh * The kinetic energy of a bound

state is hence considerably larger than the kinetic energy of the free constituents,

which to a certain extent are excited or "promoted in a compound.

118) K. Rfidenberg, Revs. Modern Phys. 34, .... (1962); in press.

In Table II, we have gathered the values of the cohesive energy for

some of the alkali halides obtained empirically by means of the Born-Haber

cycle. We have further listed AT according to (79) whereas AV has been

divided into two terms: the Madelung energy VMad, and the remaining potential

energy Vex which must necessarily depend on the extension of the ions. The

last term is negative and of the same order as the Madelung energy.

Because of the kinetic energy term, which here contains also a small

contribution from the nuclear motion, the interpretation is certainly strikingly

different from the conventional one. It may be shown 116) that the quantum-

-mechanical calculations of the cohesive energy of the alkali halides carried

out so far on the basis of the tight-binding approximation, by means of an
117)

adjustable scale factor , may be brought in complete agreemeat with this

picture. However, the simple Born-Mayer model has certainly also to be

modified to fulfil the requirement of the virial theorem.



TABLE II. Interpretation of the cohesive energy of some alkali halides

according to Fr8man and L8wdin, /J. Phys. 'Chem. Soli4S.

20.... (1961)/.

AT = Increase in kinetic energy in formation of solid

AV = Decrease in potential energy in formation of solid

Units: kcal/mole

AV = VMad+ Vex t

Crystal Ecoh AT
_ VMad V ext

LiF -244.4 244.4 -291.0 -197.8

NaF -216.3 216.3 -240.6 -192.0

KF -192.1 192.1 -219.5 -164.7

RbF -184.4 184.4 -208.0 -160.8

LiCl 420i.7 201.7 -228.1 -175.3

NaCl -184.4 184.4 -208.0 -160.8

KC1 -167.9 167.9 -186.3 -149.5

RbCl -162.1 162.1 -179.4 -144.8

LiBr -191.3 191.3 -213.0 -169.6

NaBr -175.9 175.9 -196.8 -155.0

KBr -161.0 161.0 -178.6 -143.4

RbBr -155.8 155.8 -171.5 -140.1

Lil -179.3 179.3 -195.1 -163.5

NaI -165.5 165.5 -181.4 -149.6

KI -152.3 152.3 -166.3 -138.3
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5. EXTENSION OF BAND THEORY;

DIFFERENT ORBITALS FOR DIFFERENT SPINS

As mentioned earlier in this review, it has been pointed out by Slater,

Pauling, Mott, and others that the naive valence bond method is superior to the

ordinary band theory in treating correlation effects and particularly that the

former leads to a correct asymptotic behaviour of the energy curve for

separated atoms; compare Fig. 1. On the other hand, band theory has niany

advantages in describing conductivity and similar properties, and the question

is whether it is possible to combine the advantages of the two approaches by a

synthesis of the two ideas. This can be done by a generalization of band theory

which removes part of the correlation error discussed in Sec. 2d.

Extended Hartree-Fock scheme. - The large correlation errors in the con-

ventional Hartree-Fock scheme depend undoubtedly on the fact that pairs of

electrons of opposite spins are forced together in doubly filled orbitals. This

electron pairing goes back partly to the classical formulation of Pauli's exclusion

principle, partly to the fact that this procedure permits a simple construction of

Slater determinants as pure eigenfunctions to the total spin, SZ and Sz . One

can apparently remove a large part of the correlation error by letting electrons

with different spins occupy different orbitals in space, so that they get a

possibility to avoid each other; compare the discussion of the "Coulomb hole"

in Sec. 2d.

The idea of this orbital splitting comes originally from Hylleraas 119)

who used it in treating the helium atom, and it was intensely discussed for two-

-electron systems at the ShelterIsland Conference 1a0) in 1951. There is an.

119) E.A. Hyleraas, Z. Physik 54, 347 (1929); C. Eckart, Phys. Rev. 36,

878 (1.930).
120) M. Kotani, Proc. Shelter Island Conf., 139 (.1951); G.R. Taylor and

R.G. Parr, Proc. Nat. Acad. Sci. U.S. 38, 154 (1952); J.E. Lennard-

-Jones, Phil. Mag. 43, 581 (1952); R.S. Mulliken, Proc. Nat. Acad.

Sci. U.S. 38, 160 (1952).



-57-

obvious difficulty in generalizing the idea to a many-electron system depending

on the fact that, if one permits different orbitals for different spins, the

corresponding Slater determinant will no longer be a pure spin state.

By means of a simple projection operator technique, the Slater deter-

minant D = (N.)'1 det {4, , 4' -..... .N may uniquely be resolved into

pure spin components (2S+ I) D, which are orthogonal and non-nteractng with

respect to the total Hamiltonian (7), so that

.= I ( )(80)

where one should sum over all values of S involved. The component of the

specific multiplicity (2S+1) is selected by means of a projection operator of

the form

which annihilates all components except the one desired, which survives the
2

operation in an unchanged form. The operator 0 fulfills the relations 0 = 0,

Ot = O, S20 = S(S + 1) 0 and its properties have been studied in detail 121)

12-) P.O. L~wdin, Phys. Rev. 97, 1509 (1955); Coll. Int. Centre Nat.

Rech. Sci. 82, 23 (Paris, 1958); Technical Note 12, Uppsala Quantum

Chemistry Group (1958).

It is now possible to introduce an extension of the Hartree-Fock

scheme by considering .a total wave function which is approximated by the

component of the Slater determinant D which has the pure spin desired, so

that

'1 + -+') (82)

If the basic spin-orbitals *' *-3 ' 4 in D are subject to a linear

transformation, this wave function is changed only by a constant. This implies

that the Fock-Dirac density matrix defined by (4) will be the fundamental

invariant of the theory, which determines' all physical properties. Since the
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projection (81) will affect only the spin functions, it is clear that the total wave

function Y will depend only on the two space density matrices 4+ Zi I. )

and - ( 1 #) ) which are contained in p

=j 3d,)2.) ez t. I- +~ 1Z 1)I- (83)

For the expectation value of the Hamiltonian one obtains

< atHDI or (84)

where one has used the turn-over-rule and the relation 0 = 0. The variation

principle 6< H > = 0 leads; to the best possible density matrices p+ and p_ ,

or to the corresponding beat spin-orbitals. The approach may be characterized

as an extended Hartree-Fock scheme 12) which preserves the simple physical

visuality of the one-electron-model but still removes a very large fraction of the

total correlation error.

122) P.O. L8wdin, Nikko Symp. Mol. Phys., 13 (Maruzen, Tokyo 1954);

Phys. Rev. 97, 1509 (1955); Proc. 10th Solvay Conference, 71 (1955);

Revs. Modern Phys. 32, 328 (1960).

The general treatment of the extended Hartree-Fock theorem is

greatly simplified by the existence of a pairing theorem with respect to the

orbitals in I... and s_ . Let ul, u 2 , ... ur and v,, Y.' vn be

the orbitals contained in +. and , respectively. Each set may be chosen

orthonormal and, in addition, there exists two unitary transformations U
and V , so that the two transformed sets -A ITf I' VV fulfil

the relation

< L Jt (85)

This implies that, without loss of generality, the orbitals may be chosen so

that each orbital in +. is orthogonal to all orbitals in ._ , except possibly

one to which it is paired with an overlap integral )k fulfilling the inequality
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0< Xk < I . If m> n, the extra orbitals in + may always be chosen

orthogonal to all orbitals in 3- . The proof follows simply by considering the

quadratic or rectangular overlap matrix A = ALtVT of order m x n and

the unitary transformations 11 and V bringing the hermitean matrices

- and $ respectively, to diagonal form. The pairing theorem

introduces far-reaching orthogonality simplifications in the calculations and

makes it possible to evaluate the energy in (84) in a straight-forward way;

The solution of the ordinary Hartree-Fock equations for a molecular or

crystal system is a very complicated matter, and one can expect that the treat-

ment of the extended equations will be still more difficult. An ab initio calcula-

tion of and would certainly give valuable information about the

mutual behaviour of electrons having antiparallel spins, but, for the moment one

has to be satisfied with highly approximate solutions based on suitable trial

functions and a few adjustable parameters. In choosing the trial functions, one

is to a certain extent guided by the idea that "electrons with different spins do

try to avoid each other", but the justification of the entire approach is the

energy lowering finally obtained. In connection with the orbital splitting, one

speaks of "in-out effect", "right- and left-effect", "up-and down-effect",

"alternant effect", etc., but only the last idea will be briefly discussed here.

Alternant Crystal Orbital Method. - In this section, we will consider an exten-

sion of the ordinary band theory which is inspired by certain aspects of the

valence bond method. Again it is convenient to explain the idea by starting

from the hydrogen molecule. If a and b are the atomic orbitals involved, the

molecular orbital wave function and the valence bond wave function are actually

represented by the anti-symmetric singlet components of the Hartree-products

(a, + b,)(a 2 + b2 ) ap 2 and alb2  P2 , respectively; see Fig. 2. In additon,

we may now consider the antisymmetric singlet component of the Hartree-

-product uv 1l 2 , where u and v are semi-localized molecular

orbitals given by the expression

0. Cs b+ AJ(86)

123) C.A. Goulson, and l. Fischer, Phil. Mag. 40, 386 (1949).

When Y = 0, one obtains the naive VB-method, whereas for 0 = 450 one gets
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a b +b U V

1V 2,MO I AMO

Fig. 2. Comparison between, the arrangements of orbitals and

spins in the valence bond method I), the molecular-

-orbital method 2), 'and the alternant molecular-orbital

method 3); Hz-molecule.
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the naive MO-method. The parameter 0 gives us hence a possibility of a con-

tinuous transition from one type of theory to the other; it measures the degree

to which the two electrons would like to avoid each other, and 0 may hence be

denoted as the "correlation angle". A value of 0 intermediate between 0 and

450 corresponds to a valence-bond method including polar states, to a molecular-

-orbital method including configuration interaction, or to an extended MO-

-approach along the lines sketched above.

For a valence crystal, one could now think of an extended Hartree-

-Fock scheme in terms of localized orbitals 124). where 14- and , are

124) Compare references 41 and 42, with respect to the ordinary Hartree-

-Fock method.

such that each pair (uk, vk) would be associated with a specific valence bond.

Because of the relation (85). there may then be a close connection between the

general pairing theorem in the extended Hartree-Fock scheme and the ortho-

gonality assumption (57) in the extended valence bond method or Operfect-pairing"

approximation discussed in Sec. 3c.

Let us now consider a simple crystal with a half-filled conduction band,

like the alkali metals. The ordinary band theory is here affected by a consider-

able correlation error which is particularly accentuated in the wrong behaviour

of the singlet energy curve for separated atoms; see Fig. I (page 29) and the

discussion in Sec. Zd. In his classical 1930 paper, Slater 61) has studied this

problem in connection with the body-centered cubic sodium metal, and he pointed

out that it seemed desirable to find a modification of the ordinary MO-theory which,

for separated atoms, would go over into some form of VB-treatment based on the

idea that the electrons with antiparallel spins would separate, so that the elec-

trons with plus. spin would occur in the "corners" and the electrons with minus

spin in the "centers" of the lattice; see Fig. 3. The advantage of such a spin

arrangement would be that it woikl prevent the formation of negative ions, which

is the cause of the wrong asymptotic behaviour of the energy curve. We will now

try to realize and generalize this idea.

The body-centered cubic latticc is a special type of an important class

of crystals which ts called alternant systqms, and which is characterized by the

fact that all lattice points may be divided into two equivalent, interpenetrating
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Fig. 3. Spin arrangement for separated atoms in body-centered

cubic lattice of sodium metal.
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sublattices (I) and (II). The sublattice (II) is supposed to contain the origin and

will be called the even sublattice, whereas (1) will be called the odd sublattice.

In order to obtain an extension of the ordinary band theory, we' will now try to

introduce alternant crystal orbitals Which are semi-localized on the two sub-

lattices, and let electrons with plus spin tend to be associated with sublattice

(I) and those with minus spin associated with sublattice (H1).

For this purpose, we. will consider the space of the reduced wave vec-

tor A and all points which are situated within the Fermi- surface of ordinary

band theory. Instead of the single Bloch projection operator Ok defined by (17):

r r

It is now convenient to introduce the two partial sums over the two sublattices:

each one containing G3/2 terms, and the splittin operators:

~~~ + ~)(9

These operators will work, for instance, on an atomic orbital situated

around the origin and will give rise to a set of alternant crystal orbitals with one

pair for each 4 -value. For Y = 450, there will be no splitting and the func-

tions within each pair will be identical and equal to ordinary Bloch functions. For

0 a 0, there will be a complete splitting and delocalization of each pair on the

two sublattices involved, in accordance with Slater's idea 6i)*

The operators (88) and (89) are all hermitean and satisfy some simple

albraic relations which are useful in the applications. One has O =*Oi

OI IZOI.* 01 = 01, 0, = 0 I , where for simplioity we have omitted the in-

dex 4 • This gives further

)(90)
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which relations are used in calculating the normalization integrals and the over-

lap within the pair.

We note that the splitting operators * Q are not eigenfunctions to.a1l

three primitive translations but that they always fulfil the relation:

T('m Q1~r I = x mq~ (91)

where (Tb is a general translation from one point in a sublattice to an equiv-

alent'point within the same sublattice. From this property follows also the

general orthogonality relation:

which say. that the splitting operators applied to a function cP (i) will render
us a set of alternant crystal orbitals satisfying the pairing theorem (85). For

each point ' , there is hence an overlapping pair which is orthogonal towards
all other pairs. This property greatly simplifies the applications of the theory.

The basic Slater determinant D is now constructed by assigning a-spin

to orbitals of type I and f-spin to orbitals of type II for all points At within the

Fermi surface, so that the electro in are permitted to avoid each other. One

takes the projection (82) and evaluates the energy expectation value according to

(84). and the best value of the "correlation angle" 0 and the best form of Cp0%)
are then determined by means of the variation principle 6 < H> = 0.

It is evident that an important generalization of this approach is possible
by letting the correlation angle 0 be a function of the reduced wave vector PR

(93)

where the form of the function could again be determined by the variation

principle 125)

125) In comparison to some earlier work, references 121 and 122, a change

of notation 0 = 450 - Q should be observed. Even 0 was previously

characterized as "correlation angle".
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It is remarkable, however, that a large improvement can be obtained

by using a single parameter i and particularly that a correct asymptotic

behaviour of the singlet energy curve for separated atoms can be achieved by
observing that % approaches 00. For 0 = 00 one getspurely alternant

orbitals which are completely delocalized on the two sublattices and, by a

proper choice of cP()t) they can be made strictly orthogonal. In this case

the energy (84) takes the simple form:

where the latter term goes to zero for separated atoms and, since there is no

accumulation of negative ions, the energy curve gets the correct asymptotic

behaviour. Of still larger importance are probably the improvements which can

be obtained for the equilibrium state (R = Ro)

This approach has so far been essentially tested only for molecules.

where actually'the difficulties connected with forming the projection (80) are

particularly accentuated. In an investigation of the benzene molecule, Itoh and

Yoshizumi 126) obtained 0 = 220 and could show that about 85 o/o of the

previously known cor'eiation energy could be removed, and this result has

recently been improved by de Heer 1Z7)using two parameters 0 . The approach

has further proven to be valuable in a study of the alternating spin densities in

odd alternant hydrocarbon iradicals 128). It has been used successfully for in-

vestigatng the correlation properties in the finite and infinite. linear chain 129)

with the idea of making applications to conjugated systems; studies of three-
-dimensional crystals are now in progress.

126) T. Itoh and H. Yoshizumi, J. Phys. Soc. Jap 10, 201 (1955);

J. Chem. •Phys. 23, 412 (1955); Busseiron Kenkyu 83, 13 (1955).
127) J. de Heer (private communication).

128) R. Lefebvre, H. H. Dearman, and H. M. McConnell, J. Chem. Phys.

32, 176 (1960).
129) R. Pauncz, J. de Heer, and P.O. L8wdin, Technical Notes 55 and

56, Uppsala Quantum Chemi.Ary Group (1960); J. Chem. Phys.
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Actually, it seems easier to use the alternant orbital method for

treating crystals and very large molecules rather than small molecules. The

reason is that the effect of the projection (2) becomes simpler for large N.

By using some of the previous results 130), one can easily show that, for a

130) See particularly equations (15)-(24) in P.O. L8wdin, Phys, Rev. 97,

1509 (1955).

finite value of S and T = ( )S+)D one obtains

=-V co A-p0 (95)

i.e. the energy of the spin component (2S+1)D is the same as the energy of the

determinant D itself. It is clear that, for a very large N , a single spin flip

or a finite number of flips cannot influence the total energy, so that the singlet,

triplet, quintet,... etc. all have the same energy in this case. The determinant

D contains also higher spin states with S/N finite, but it follows from (94)

that they occur in such a small portion that they do not contribute to the average

energy of the mixture for N = co. A detailed study of the spin components in

D is now being carried out in Uppsala.

Formula (95) indicates that, for large N, the variation with respect

to the starting function cp (YI) and the correlation parameter (93) may be

carried out as if the total wave function would simply be the Slater determinant

D . However, the singlet wave function is, of course, still represented by the

singlet projection of D, which ensures that the wave function is invariant under

the transformation ct-* and that the spin density is identically zero every-

where in space.

It should be mentioned that there are some similarities between this

approach and the unrestricted Hartree-Fock scheme developed by Slater and

his collaborators131) . It was pointed out by Slater that, in a system with un-

! 131)
131) J.C. Slater, Phys. Rev. 81, 2 5 (1951); 8Z, 538 (1951); Revs. Modern

Phys. 25, 199 (1953); R.K. Nesbet, Proc. Roy. Soc. A230, 312 (1955);

G.W. Pratt Jr., Phys. Rev. 102, 1303 (1956); J.H. Wood and

G.W. Pratt Jr., Phys. Rev. 107, 995 (1957); R.K. Nesbet and

R.E. Watson, Ann. Phys. 9, 260 (1960); L.M. Sachs, Phys. Rev. 117,

1504 (1960); R.E. Watson and A. J.. Freeman, Phys. Rev. 120, 1125

(1960); Phys. Rev. 120, 1134 (1960).
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balanced spins having S. j 0, the electrons with plus spin and those with

negative spin would be influenced by different exchange potentials. One could

hence expect that electrons with different spins would have different orbitals,

and this effect was called exchange polarization. In order to study this effect,

Slater approximated the total wave function by a single determinant with

different orbitals for different spins. Many important results have been obtained

so far by this approach, particularly with respect to magnetic behaviour 131)

For a detailed comparison between the unrestricted and the extended Hartree-

-Fock schemes, we will refer to a recent paper 132).

132) P.O. L8wdin, Ann. Acad. Reg. Sci. Upsaliensis 2, 127 (1958).

The main result of this secion is that one can obtain an essential

lowering of the total energy of a Slater determinant D by permitting dJfferent

orbitals for different spins". For Sz = 0, there will be a considerable orbital

splitting due to correlation and, 'for Sz 1 0 there may be an additional exchange

polarization. The basic equations' are the same as in the original Hartree-Fock

scheme characterized by (I)-(5), but no symmetry restrictions are imposed on

the spin-orbitals involved. Instead the symmetry properties are handled by a

component analysis of the determinant 133).

133) If this component analysis is omitted, one may obtain results which

look paradoxical. Compare the giant spin waves in A. W. Overhauser,

Phys. Rev. Letters 4, 415, 462 (1960), and the criticism by W. Kohn

and S.J. Nettel, Phys. Rev. Letters 5, 8 (1960); K. Sawada and.

N. Fukuda, Progr. Theoret. Phys. 25, 653 (1961); T. Arai, Argonne

Report 1.961 (unpublished).

In this way, it seems possible to obtain an extension of band theory

which preserves the physical simplicity of the conventional method but has an

essential part of the correlation error removed. For a schematic survey of the

advantages and disadvantages of the ordinary band theory, the valence bond

method, and the combined approach outlined here in the form of a table, we

will refer to another paper 90)
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6. GENERAL SELF-CONSISTENT-FIELD THEORY AND

EXACT SOLUTION TO MANY-ELECTRON PROBLEM

For a long time, the Hartree-Fock scheme was considered as the

essential and ultimate theoretical tool for understanding the idependent-particle-

-model from the. point of view of many-particle theory. The scheme was suc-

cesofully applied to the electronic clouds of the atoms and their shell structure,

to the mobile 7r-electrons of the conjugated compounds in organic chemistry,

and to the band structure of crystals. One believed that the qualitative and to

a certain extent also quantitative success of the scheme depended on the fact

that the interactions between the electrons were comparatively weak, and that

the correlation effects could be considered as a small perturbation.

The picture was completely changed with the discovery that the

independent-particle-model seemed to work extremely well also for the atomic

nuclei in the so-called nuclear shell-model. Here the explanation could hardly

be that the forces were weak, and it seemed necessary to find an extension

of the independent-particle-model which would work also for strong interactions

between the particle. Such an extension has been developed by Brueckner 134)

134) K.A. Brueckner, C.A. Levinson, and H.M. Mahmoud, Phys. Rev.

95, 217 (1954); K.A. Brueckner, Phys. Rev. 96, 508 (1954); 97,

1353 (1955); 100, 36 (1955); K.A. Brueckner and C.A. Levinson,

Phys. Rev. 97, 1344 (1955); H.A. Bethe, Phys. Rev. 103, 1353 (1956);

J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957); H.A. Bethe

and 3. Goldstone, Proc. Roy. Soc. (London) A238, 551 (1957);

L.S. Rodberg, Ann. Phys. 2, 199 (1957); to mention only a selection

of the rich literature on this subject.

and his collaborators. The new scheme is based on the use of a scattering or

reaction operator,. where the correlation between any two particles is exactly

included, whereas the correlation between three and more particles is neglected.

This so-called Brueckner approximation works very well for nuclear matter,

since the forces are of such a short-range nature.

For an electronic system, the situation is a little bit different, since

the Coulomb forces are of such a long- range nature that it may be necessary

to include also the correlation between three and more electrons. This is

ultimately a question of order of magnitude and depends also on the accuracy



-69-

desired. Here we will briefly show that it is possible to extend the line of

development which goes from Hartree-Fock to Brueckner still further and re-

late the exact formal solution of the many-electron Schr~dinger equation to the

independent-particle-model through a self-consistent-field scheme containing

'average" potentials 135).

135) .O.- L8wdin, Technical Notes 47 and 48, Uppsala Quantum Chemistry

Group (1960).

Partitioning Technique for Solving Schr8dlnger Equation. - One of the strongest

tools for solving the Schr5dinger equation HT = ET in one-electron or many-

-electron theory is rendered by the partitioning technique, since it contains many

of the conventional methods as special cases 136) The technique is also con-

venient to explain the projection operator formalism that we are actually going

to use to solve the many-electron problem.

136) For references, see P.O. L8wdin, Technical Note 11, Uppsala Quan-

tum Chemistry Group (1958) /unpublished/.

In applying Ritz's expansion method discussed in Sec. 2c, we will

introduce a complete orthonormal basis { it ) and write the eigenfunction in

the form T=. f ft cl , where the coefficients { c. } form a column vector

£ . The system (36) may then be written in the condensed matrix form

H c = c (96)

which is simply the transform of the original Schr8dlnger equation in the

discrete representation introduced. Let us now divide or "partition" the com-

plete basis { f, ) into two subsets (a) and (b), so that the set (a) contains a

finite number of functions. The matrix H and the vector C may then be

written in the form

H 4 C) (97)
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and equation (96) may be written as two equations:

HuiCLt 0 4.1t4 (98)

Solving Ct  from the last equation, one obtains

and substitution of this expression into the first equation gives

c~E~c~(100)

H. + H.(iE1, II 4 ) -II4X, (10,)

Equation (100) has exactly the same form as the original equation (96), but the

total matrix 14 is now condensed into a finite matrix Al. defined by

(101). This technique enables us to concentrate our interest on a certain subset

(a), whereas the influence of the other subset (b) may be considered as a "per-

turbation" represented by the second term in (101). The partitioning technique

may be used in many different theoretical connections, and it is also an excellent

tool for the numerical solution of secular equations of very high orders 137). It

is then often convenient to choose the subset (a) as consisting of a single .element,

.and the method will still render both discrete and degenerate eigenvalues with-

out any difficulty.

P13.) pO. L8wdin, Adv. Chem.P Phys. 2, 207 (Interscience, New York,

1959), p. 270 f..
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Projection Operator Formalism. - In this section, we will rewrite the parti-

tioning technique in a slightly more abstract form. Let 0 be the projection

operator which selects the subipace (a) of order g so that

% 07 (102) .

The operator P = - 0 satisfies the relations P = P, P= P and OP = PO =

= 0, and it is apparently the projection operator for the subspace (b), which

we will characterize as the "orthogonal complement" to the subspace (a).

Let us start by considering a non-degenerate level E and choose

g = 1. Let further 0 be an arbitrary trial function with a non-vanishing projec-

tion CO= , which we will normalize so that < qi >= , i.e. <'t I )> =

= I • For the eigenfunction T , satisfying (H - E)"Y, one has the identity

cp P ?K P rp -P -

Here K is'an arbitrary non.-singular operator which will now be. chosen so that

we get rid of the last term in (103). We will introduce the definitions -

k P 'e)p ; = PK - 1 P (104)

In matrix notation, we would say that K represents the (bb)-"corner" of the

matrix H. , - ) , and that T is the "inverse of the corner" ; se"

Fig. 4. In the following, we will often, instead of the full definition; T=

= P [P(E - H) P] P use the symbolic notation

A(105)

but we have to remember its full meaning. It is clear that T satisfies the

relations

)T -T®O (106)
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Fig. 4. Partitioning of energy matrix.
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which we will often use in the following. From (103), we obtain

CP± +TI"a90Ta0) (107)

which relation is analogous to (99). Of special interest is now the operator

£2. (108)

since this operator applied to any trial function 0. will give an exact solution

T = 0 0 , provided that 00 J 0. This result indicates that 0 is an eigen-

operator to H, i.e. that

(109)

and it is further easily seen that 0 = Q . It should be observed that 0 , which

consists of an idempotent term 0 and a nil-potent term THO does not commute

with its adjoint operator 0+ and it is hence not a normal operator. It may

be characterized as a non-normal projection operator, and its importance comes

from its connection with w-order perturbation theory.

From (109) follows further 0(H - E)Q= OHO+ OHTHO - CEO- 0
and the energy relation:

oz (110)

Multiplying to the left. and right by 0 and integrating, we obtain

which relation corresponds to the well-known Schr8dinger-Brillouin formula 138)

138) L. Brillouin, J. Phys. radium (7) 33, 373 (1932); E. Wigner, Math.

naturw. Anz. ungar. Akad. Wi-s. 53, 477 (1935).



-74-

in perturbation theory; the latter may be derived from (Ii) by expanding the

inverse T by means of a power-series expansion. The corresponding wave

function is given by (107) and fulfills the normalization <(q I ' > 1 . Because

of this connection, the projection operator formalism based on 0 is equiva-

lent to o-order perturbation thedry.

In (I ll) the eigenvalue probleb is given in an implicit form.' E =

-f(E) , where

(113)

It is natural to try to solve this problem by a first-order iteration procedure

based on the formula E (k+ 1) . f { E~k) ) and which leads to a series of values

E(0), E(l), E(2),.... Putting E = E +... (k),, and using the mean-value

theorem f{E+ E(k)} = f(E)+ 6 (k) f,{E+ a E(k)} with 0<9<, one

obtains

(k))

Since il is always negative, the errors 6 (k) will alternate..in sign, which

implies that the successive values E(k) will alternately be upper and lower

bounds to E Hence we have the bracketing theorem that between two con-

secutive values in the series E 0 ),  . •. there will always be at

least one eigenvalue. The procedure will be convergent if If'I < 1 and diver-

gent if If'I > I.

A much faster convergence can be, obtined by going .over to a: second-..'

-order iteration procedure, e.g. by solving the equation y m E - F(E) = 0

by the Newton-RAphson process:

It should be observed that the right-hand member is identical with. ,.,-Oandard

variational expression in quantum mechanics. It is easily shown that thin

process is always convergent.
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Connection with Schr8dinger Perturbation Theory. - Let us now consider the

case, when H = Ho + V where V is an arbitrary weak or strong perturba-

tion. We will assume that E) is now the eigenoperator to H associated

with the level E0 under consideration, so that H 0 = OH 0 = E 0  . In other

words, 0 will project out the unperturbed eigenfunction (p " We note that

we need here only one single eigenfunction to H and not the complete spectrum,

which is an essential simplification; the orthogonal complement to qo charac-

terized by P may be obtained by orthogonalizing any complete set towards Po.

From (106), (108), and (110) follows directly

O -,+ = .C.=o (L16)

Of particular interest is here the operator

which is called the reaction operator associated with the perturbation V , the

unperturbed Hamiltonian Ho , and the state under consideration. Using (116),

we obtain

showing that the expectation value of the reaction operator 4 with respect to

the unperturbed state gives the true energy shift. Substitution into (117) gives

finally

V +V V (119)

which is the basic formula for the reaction operator in our theory. There is

again an ite rative element, which may be handled in the same way as before.

It would be tempting to comment on the linked-cluster expansion and related

problems on the basis of the formula, but it would take us too far in this connec-

tion, and instead we would like to refer to some forthcoming publications. The
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essential thing for the moment is that the exact reaction operator has been de-

fined.

Self-Consistent-Field Theories. - In order to review some of the common

features of the SCF-theories, we will consider a total many-particle Hamiltonian

of the form

~ + ... (120)+ + +h* 44
4

Here H is a constant, which may be of importance from the point of view of

convergence 15) but which plays no role in the interaction between the particles,

so that it may temporarily be omitted. Let us divide this Hamiltonian into two

parts H= Ho + V where

+ V4: (12 f)

d <1 <I

and u1 are one-.particle potentials at our' disposal. The eigenvalue problem

connected with H° is separable, and we obtain

where

+ (124)

At first, we will leave the antisymmetry" requirement aside. In the so-

called Hartree scheme, the total wave function is actually approximated by the

simple product (123). The best one-particle functions *i are determined by the
variation principle 6 < H > = 0, which leads to Hartree equations of type (124),

with Hartree potentials given by the following expressions:
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7,( Iz (126)(1

where the upper index k indicates the order of the interaction term in the

Hamiltonian, from which the 'effective potential has been derived. For the total

energy, one obtains

in (127

+.

which means that <H > is not identical with E o ; actually the factor

(1/k) connected with ui(k) prevents the k-body interaction to be counted k

times as it would be in E = E"
.0

In addition to qo , we will consider the "singly excited" function

. . which is obtained from io by replacing one (and only one) of the func-

tions 4 ,k by another "k which is assumed to be orthogonal to the former, so

that <;k 14i 0 . Using'(122) and (126), one obtains directly

<KPc, V I CP~O> C)(128)

which is a form of Brillouin's theorL laying that all matrix elements of the

perturbation V between the basic function q and all singly excited func-

tions will vanish identically. Since V = H - H , one gets further
op o

<CA" (~A~J%~ > 0 (129)

We note that this relation does not prevent the singly excited functions to appear

in the expansion of the exact solution, since they may come in through couplings

with terms whichare at least doubly excited.

After this introduction, we will discuss the exact SCF-theory connected

with the product (123). For this purpose, we will assume that we have the

potentials ui at our disposal and introduce the projection operator 0 connected



-78-

with H ° and (p According to (118), the exact energy is now given by the

expression E= E + < qo I t I Po>, where the reaction operator t is defined

by (I19)p It must be possible to write t in the form

4 ,

where we have separated'out the one-particle part iXu and denoted the inter-

action part by r ; the latter consists of a two-particle term, a three-particle

term, etc. The total energy can now be written in the form

< -- P o+ 41C-PO >~ <CP CPO q > (13 1)
4 A

This expression is, in principle, exact and cannot be improved by variation.

However, in order to get a connection with the Hartree-scheme, we will now

remove the coupling between ip and r and consider as a fixed given

operator. The expression (131) is then no longer invariant, and the best function

(Po is determined by equations of type (123) and (124) with potentials ui  given

by the conditions:

S(132)

i.e. exactly the same relations as (126) but with the interaction terms from the

Hamiltonian replaced by the reaction terms from r • This gives finally

~-(133)
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in complete analogy with (127).

The SCF-potentials are here considerably more complicated than in

the Hartree-scheme, but the energy (133) is also the true energy containing all

correlation effects. They may be calculated by a SCF-procedure based on the

following "flow diagram":

A -j+A (134)t ,

Each cycle is here more complicated than the corresponding cycle (5), 'since it

involves the evaluation of the reaction operator t . This step corresponds

actually to an exact solution of the Schr dinger equation, which it. ought to be
sufficient to carry out only once. There exists hence probably a. short-cut,

perhaps by means of the first-order density matrix, and research on this, point

is in progress.

Instead of (128)'in the Hartree scheme, one obtains here directly

KV ", P0>~ (135)

This theorem has the. important consequence that, if the exact wave function

T. is expanded in terms of Hartree products built up from the basic orbitals

o 1 ' "" "*N and their orthogonal complement, the leading term will be
and the expansion will further contain only terms which are at least doubly

excited with respect to qio 135) This theorem is of importance in calculating

expectation values of one-particle operators, and it gives a certain physical

significance also to the "model" function (p0

It is now possible to follow the 'line from Hartree by way of Brueckner

to the exact SCF-theory. Apparently, the degree of accuracy depends on how

one has approximated the interaction part r of the' reaction operator t, and

one has;
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Hartree: +U~ ~ L1 ~l

Brueckner t7, T i , (136)

Exact SCF-theory t + t - T. .

Symmetry Requirements in SCF-Theories. - In discussing correlation effects,

the symmetry requirements are certainly highly important. In the theory of
fermions, ,"the antisymmetry requirement connected with Pauli's exclusion

principle diminishes the original correlation error connected with the Hartree-

-product with about 50 o/o, since it eliminates the main part of the correlation
error connected with particles having parallel spins. In Sec. 5, we have seen

that the proper use of spin projection operators for certain systems may remove

another 85 o/o of the correlation error associated with electrons having anti-
parallel spins, -so that actually only about 1/12 of the original error has to be

accounted for by real many-particle theory. Hence it is highly desirable to

incorporate the symmetry properties in the SCF-theories.

The antisymmetry property for fermions is easily included by means

of the antisymmetry projection operator:

and, instead of the total Hilbert space spanned by the complete set { f/ ,& we

will -now consider only the antisymmetric subspace spanned by the subset

(OAs, } . Instead of s.tarting from the Hartree product (123), we will now

base our study on the corresponding Slater determinant.

The Hartree-Fock scheme is characterized by potentials of the type

(126), but the interaction terms are now multiplied by reduced antisymmetriza-

tion operators' so. that

+ ~~~= Ci - .. (+

o(138)
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and this introduces an essential simplification in the definitions of the Hartree-

-Fock potentials ui , since one can now take away the restrictions j / i,

j J k J i,... in (126) and sum over all indices. This implies that the Hartree-

-Fock potentials will be the same for all particles, and that these potentials are

conveniently expressed in terms of the fundamental invariant -defined by (4).

In the exact SCF-theory, we can now confine our interest to the anti-

symmetric subspace alone, and, within this subspace, we can now repeat the

partitioning procedure and evaluate the corresponding reaction operator t

'It appears that the previous reaction terms i, ... will be modified

according to (138), so that'one can remove the summation restriction in (132)

and base the entire discussion on the fundamental invariant .In this

respect, the introduction of the exchange terms simplifies the structure of the

SCF-theory.

In Sec. 2b, we studied the consequences of the translational symmetry

of a crystal, and the same type of discussion can now be repeated.here. It

turns out that the basic spin-orbitals should be. Bloch-functions, that the funda-

mental invarianit I has translational symmetry.(31), and that these properties

are self.-consistent and. lead to an exact wave function which is an eigenfunction

to the total translations . This means that the important concepts connected

with the space of the reduced wave vector 4t in the one-electron model will

keep a certain meaning also in the exact many-electron theory, and many of the

semi-empirical discussions and interpretations carried out with the aid of

these concepts may hence have a deeper validity than one could expect on the

basis of the Hartree-Fock scheme alone. The aim of this .approach is hence to

give a full justification of band theory within the exact many-electron theory.

In conclusion, let us assume that there exists another normal constant

of motion A , which commutes with Hop and with OAS say the total spin
2 o(S , Sz) • By introducing the associated set of projection operator 0 A of e.g.

type (81), one can now split the antisymmetric basis t 0AS ft, ) into a series

of subsets O A it, ), one for each eigenvalue to A . We can now confineA AS ~
our interest to one of these subspaces,. which is entirely independent of all the

other subspaces, being not only orthogonal but also non-interacting with

respect to Hop and A • Within this subspacef we can now carry out our

partitioning procedure, evaluate the reaction operator t , and construct an

exact SCF -theory based on a fundamental invariant . This is apparently a

generalization of the extended Hartree-Fock scheme discussed in Sec. 5 to an

exact form. It has already been emphasized that the main part of the correlation

error affecting the original Hartree scheme is removed by an inclusion of the
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symmetry requirements through the projection operator technique, and only

a comparatively small part of the correlation error has then to be treated by

true many-particle theory, i.e. by a study of the reaction operator.

The relation between the various types of SCF-schemes has been

sketched in Fig. 5

7. CONCLUDING REMARKS

The goal of the many-electron theory is to express the exact wave

function in'a simple form., e.g. in terms of an expansion which is as rapidly'

convergent as possible and which contains a dominant term which has a simple

physical interpretation. There are particularly four forms which have been

used so far 139)

139) P.O. L8wdin, Revs. Modern Phys. 32, 328 (1960).

~= Z CK (139)

KK

Here the first fbrm is an expansion in terms of Slater determinants Yk based

on one-electron functions, the second an expansion in terms of projections of

determinants (0)Vk), whereas the two last forms are similar but contain a
"correlation factor* g. = g (. .4'L )l, )I .. ) which is a symmetric

function of the coordinates. The correlation factor was first introduced by

Hylleraas 140) and, in connection with crystal theory, it has been pointed out by

Krisement 141) that the form T = gD is closely connected .both with Wigner's 57)

140) E.A. Hylleraas, Z. Physik 54, 347 (19Z9).

141)l, o. Krisement, Phil. Mag. 2, 245 (1957).

classical theory for the electrons in an alkali metal and Bohm and Pines's 66)
plasma model. In the latter, the correlation.factor has the following
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i

form 14Z).

142) See D. Pines. SoUd State Physics 1, 368 (Academic Press, New York

1955), p. 391.

and crresponds physically to the collective mottons of the electrons; k is
c

the cut-off vector for the plasma oscillations and w is the plasma frequency.

The collective behaviour should, of course, come out as a result of the reaction

operator formalism, and it should be mentioned that this problem has recently

been studied by Hubbard 143)uin finite-order perturbation theory.

143) 3. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957); A243, 336

(1957); A244, 199 (1958).

We have here confined our interest -o the stationary crystal states

described by the time-independent Schr~dinger equation, but the basic problems

in crystal physics could, of course, also be treated by considering the time-

-dependent wave equation:

-~ . (142)

This equation has. a solution of the form !(t) - U (t, 0)? (0) where the "evolu-

tion' operator U is a unitary operator which may be treated by the w -order

perturbation theory systematized by the Feynmann diagram technique 144). This

144) R.P. Feynman, Phys. Rev. 76, 749, 769 (1949).

approach has not been discussed here at all, but It should be mentioned that

important work on the fundaments of cry'stal theory has recently been made

along this line. Actually Hubbard's treatment of the collective motions mentioned

abovewas based on the use of the diagram technique.
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In connection with the plasma mods3r it was also pointed out that there

was a short-range correlation effect in the form of a very efficient screenifil

which could simplest be described as a dielectric behaviour of the electrons.

This phenomenon and related problems have been particularly studied in the so-.

•-called dielectric approximation 145). Lindhard derives the essential features

145) J. Llndhard, Kgl. Danike Videnskab. Selskab., Mat. - fys. Medd..

28, 3 (1954); J. Hubbard, Proc., Phys. Soc. (London)A68, 976

(1955); and references 143; P. Noieres and D. lines, Phys. Rev.

109, 741, 762 (1958); Nuovo Cimento 9, 470 (1958); J.J. Quinn and

R.A. Ferrefl, Phys. Rev. 12, 812 (1958); H. Ehrenreich and

M.1. Cohen, Phys. Rev. I11, 76 (1959); D.F. bujols, Anjin. ys.

7, 174 (1959); 8. 24 (1959); A. Klein, Phys. Rev. 115, 'I136 (195);

3. Callaway, Phym. Rev. 116, 1 r68 (1959); .D.S. Falk, Phys'. Rev.

118, 105 (1960); G.R. Pratt, Phys. Rev. l1, 462 (1960); F."Eagert

and R. Brout, Phys. Rev. i20, l085 (160); ana others.'

of this approach starting out simply from the time-dependent SCF-equations,

whereas later authors have often utilized the diagram technique and the full 9p -

-order perturbation theory. This method has given particularly important

information as to how the electrons in a crystal behave when a weak outer

electromagnetic field is applied.

To an experimentalist, the recent development of the quantum, theory.

of the electronic structure of crystals may seem rather complicated, and the

question is whether one could find some form of simple connection between the

one-electron-model and the exact many-electron theory which could be used

in interpreting experiments and constructing semi-empkical theories. In this

connectioni, we would like todirect the attention to the importance of Ithe natural

spin orbital. (t), which diagonalize the first-order density matrix

so that
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It may be shown that, if the total wave function Y is an eigenfunction to the

total translations , then the natural spin-orbitals are (or 'maiy be chosen

as) Bloch functions * , associated with the space of-the reduced.

wave ve tor It where we haveput I.= (I, •nstead of (144),. on,

obtains

and the number of electroes associated with the point 'r may now be defined

by the expression

, ck .( 4

Within the framework of the exact many-electron theory, it is in this way

possible to construct a series of concepts which are connected with the G 3 points

in 4 -space.

For the kinetic energy T(k) associated with the point i one

obtains for instance

> (147)

and the "effective'massv 146) 'yq (1l) for the kinetic energy could then'be

146) compare W. Kohn, Phys. ReV. 105, 509 (1957).

defined by the expression

T (148)
A rri0(0



-87-

This approach gives hence certain features ,of the conceptual structure of the

theory.but, of course, one does not obtain any quantitative results, until, One_

knows the exact wave function 7 or the associated density matrices. From

the experimental point of view, it would be particularly -important if one in, this,

way could construct a semi-empirical theory and avoid the formal solution of

the. Schr8dinger equation. The results obtained so far make it likely that such a

development may be quite possible.

For a period of about twentyfive years, band theory and valence bond

method were applied to the problem of the electronic structure of crystals in.

their original form. In this, review, we have tried-to sketch some of the fast

development which has occurred in this field during the last decade, the refine-

ment of the conceptual framework and the drive towards higher accuracy in the

solution of the Schrdger equation. Many important results have been obtained,

and it seems safe to predict that., during the next decade, still more fundamental

results of importance for the understanding of the chemicq' physics of crystals

will be achieved.
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