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ABSTRACT .

I magnetic and auroral effects are neglected and the absorption of
a redio wave in the lower ionosphere is assumed to Be only a function of
the sun's zenith angle, the attenuation due to aﬁsorption of a high-

frequency signal propagated in & great'circle around the world is a mini-
mum when the signal path misses the subsolar point by the greatest possible
margin, It follows that to a first order of approximation, and cohsidering
absorption loss only, the optimum azimuth of round-the-world (RTW)'propa-
gation from a specified point on the earth's surface would Be expected to
vary uniformly with time of day, always being normal to the direction from -
the transmitter to the subsolar point. ' e
Measurements made at Stanford, California between August 1961 and

January 1962 have confirmed that the optimum RTW azimuth is a function of
time, and that this azimuth is closely approximated by the normal to the
azimuth of the subsolar point vs time. Differences between the experi-
mental and predicted curves are found to exist. 1In one exaﬁplé,.it was.
possible to show that this was primarily due to lower F2-layer critical .
frequencies in the predicted azimuths, thus resulting ;n sféﬁal loss in
the predicted directions due td penetration éf the iohosphere. If this
circumstance is taken into account,'thé average optimum azimuth of RTW )
propagation appears to be readily predictable for any point_on the earth

with good accuracy. .

.

.
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. I. INTRODUCTION AND THEORY

It has long been known that the "optimum™ direction for propagating
round-the-world (RTW) high-frequency signals (i.e., the transmission
azimuth résulting in greatest signal strepgth) varies with time of day
and season [Ref. 1]. However, the precise explanation for this, and the

. de%ailed manner in which this azimuth varies with time, seems not to have
been explored in detail. Measurements at Stanford, California, reported .,
earlier [Ref. 2], showed that the normal diurnal variation was approxi-
mately the same as the variation of the azimuth of the "sun's wave fronts"
at the point of observation. Iater observation has corroborated this
conclusion, and the way of specifying the azimuth has been made less
awkward. '
* If the absorption due to the lower layers of the ionosphere is
assumed to vary in a simple manner proportional to (cos x')n, where ¥
. is the sun's zenith angle and n 1is determined from data [Ref. 3], and

if magnétic-field effects are neglected, the attenuation due to absorption

of a high-frequency signal propagated around the world is a minimum when
the signal ‘'path "misses" the subsolar point by the greatest distance.

iet us say, for illustration, that the sun stands above the equator
as shown in Fig. 1. There exists only one path which virtually avoidé
abs?rptibn, and that is the path on the twilight line which, in this
instance,'passes through the poles.

Consider transmitting from a point P somewhere on the sunlit‘hemis-
phere as shown in Fig. 1. Minimum absorption occurs when the RTW path ~_.
trangverses as little of the densely absorbing region as possible. ‘ ‘.
This is satisfied when the ray path is at right angles to the directtoh..A"
from the transmitter to the subsolar point, as shown. Figure 1 shoﬁs |
qualitatively that this conclusion is reasonable. Paths through points -
P and Q with azimuths other than those shown will enter éircﬁlar
regions of higher absorption (nearer the subsolar point) and will accord-

. ingly suffer greater attenuation. i
A proof of this assertion is as follows, referring to the coordinate
. system and designations in Figs. 2 and 3. h '

-1 SEL.62-034



FIG. 1. EXAMPLES OF MINIMUM-ABSORPTION GREAT-CIRCLE PATHS ASSUMING THAT
ABSORPTION IS A FUNCTION ONLY OF SUN'S ZENITH ANGLE.

FIG. 2. GEOMETRY USED IN DETERMINATION OF THE MINIMUM-ABSORPTION GREAT- CIRCLE ‘
PATH THROUGH POINT T.

-2 : ~ SEL-62-03k .




FIG. 3. THEORETICAL*CIRCULAR AP-°
PROXIMATIONS TO GLOBAL CONSTANT- .

ABSORPTION CURVES, DETERMINING
MININUM- ABSORPTION GREAT- CIRCLE
PATHS THROUGH T (ATB), T, (ATB),
AND E (CED). ‘

Let the subso'lar'point ':)e at point S8, coordinates (R, 6y 0). Let
point P (R, 6, n/2) be a point on the earth's surface, and in the yz -
plane, for which the sun's zenith angle X 1 i8 d,c.esired. R is the
earth's radius. Let point T be the transmission point and, for simpli-
city, let R = 1. Then: :

Rl'R2=1112+m1m2+nlng=cos.X=nln2=c059100862 (1)

Hence, for any poin.t P1 on the great circle through T which is -

normal to the great circle through 7T and SS,

e S

cos X = cos 6, cos 8, v (2)

Now, consider Fig. 3. The great circle through T for which the
sun's zenith angle is described'by Eq. (2) is ATB. If absorption along »°

a path is given by: o .

-3- : 8EL.62-034
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' absorption, of path AT B is greater than the absorption of ATB.

.a-aoS cos xds cos’y >0

path . :
then x/2. .
. ° aATB = aao g cos 91 cos 92 d 62 .
: Oymp = 2(10 cos el (3).

Equat:.ion (3) shows that the total absorption of any path normal to

line $S-N at T in Fig. 3 is proportional to cos 6, vhere 0, is the

angle subtended at the center of the earth by 53 and T. Hence, the
Now consider a great-circle path CTD through T° making some angle
B with ATB. This path ‘enters the circle cos X=¢
to some other circle cos Y= ¢, at E By symmetry, <, oED = aATlB aATB“
and the assertion is proved. .

1 and is tangent

The azimputh normal to the direction of the subsolar point from a
specified transmission point T 1is given by: e .

-1 ,tan b cos & . y
A=90 - cot” (= - sin g cot h) (k)
where & 1s the sun's declination . .

g 1is the latitude of the point T .

h d4s the sun's hour angle relative to the point T
This azimuth is plotted in Fig. U4 for® 6 = +23°26" and 6= 0°, for .
Stanford, California (2 = + 37°25).

The curves of Fig 4 would be ekpected to be an accurate estimate °

.

of the variation of optimum RTW-signal azimuth with Jdocal time provided
that: :
: (1) D- and E-layer absorption is important in RTW propagation, and
(2) the azimuth of highest mean F2-layer critica.l frequency does
not vary in a greatly different manner with time than does the ‘minimum-
absorption azimuth. * .

*
. . .
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FIG. 4. PREDICTED VARIATION OF RTW-SIGNAL OPTIMUM AZIMUTH VS TIME FOR 37°25’
N, BASED ON MINIMUM ABSORPTION.

In an earlier report [Ref. 2], evidence was ‘presented which indicated
that RTW propagation in sunlit portions of the earth not near ‘the poles
was principally via ionosphere-ground-io‘nosphefé hop modes. Hence, _
lower-ionospheric-layer absorption should be very important 1in deter-
mining the optimum azimuth of transmission. Further, . it was . shown' from
vorld maps of f F2 that the "twilight zone" a.zimuth should be preferred
for RTW propagation since the minimum F2 1ayer critical frequencies on
those paths were usually higher than the minimum F2-layer critical fre-
quencies on other paths. (The twilight-zone é.zimuth for any point may '
be logically defined by Eq. (4)). However, it was also indicated that
propagation in regions of minimum f F2 was via 1onosphere-ionosphere tilt
modes. For this reason, detemination of optimum RTW azimuth from maps
of f F2 becomes more difficult, since the degree of tiit of t;.he F2 layer
at a.mr point in the world at a given time 1s not accurately known.

-5- szx..sa.o3u




II. EXPERIMENTAL RESULTS

During the period 31 December 1961 to 8 January 1962 measurements
of optimum RIW azimuth vs time of day were made at Stanford, Califoxnia
at 15.1 Mc. The period was quiet magnetically, and thus the results
should beltypical of normal conditions. In the experiment, l-msec, 50-kw
pulses were transmitted from a rotatable log-periodic antenna having a
3-db beamwidth of 64 deg. Receiving was performed by the same antenna.
Hence, to the extent that the RIW propagation took place along great
circles, the received RTW pulses were attepuated by the front-to-back
ratio of the antenna (approximately 20 db).

Some of the records obtained on 31 December 1961 are shown in Fig.
5. The usual A-scope displays show log-detector output (35-pulse film

integrations) vs time delay. Receiver bandwidth was 3 kc. Several inter-

esting and characteristic features are apparent on these records. These
include:
1, Optimum RTW azimuth varied from 270 deg to about 330 deg in the 5
hours shown.

2. The amplitude of the RTW signal increased as the time approached
local sunset. (This is shown by the change of signal-to-noise
ratio.)

3. The disappearance of the RIW signal was very rapid after sunset
(compare 1736 PST records with 1810 PST records).

4. Disappearance of the RTW signal was accompanied by an increase in
range and a decrease in amplitude of ground-backscatter in the
optimum direction.

5. Since one major vertical division on the records represents about
10 db, the record of 1626 PST suggests that the azimuthal interval
in which RTW propagation was possible had a width of approximately
26 deg, since the 6-.db down points were nearly 90 deg apart, and the
6-db antenna beamwidth was 64 deg (assuming 6ki-deg, 3-db beamwidth
transmitting, and 6k-deg, 3-db beamwidth receiving from the back of
the antenna).
The results of 6 days of such measurements (Fig. 5) are shown in
Fig. 6. The broken line with a slope of 12 deg/hr appears to be a good
estimate of the experimental data. The solid line is a theoretical curve
obtained from Eq. (4). The theoretical curve is an excellent estimate of
the experimental results dufing the morning hours, but becomes & poorer
estimate in the afternoon (though still very good for many purposes).

-6- SEL-62-034
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“FIG. 6. * EXPERIMENTAL POINTS AND PREDICTED CURVE FOR OP TIMUM RTW AZIMUTH VS TIME

AT STANFORD, CALIFORNIA, JANUARY 1962, 15.1 Mec. *

The National Bureau of Standards world maps of f°F2 [Ref. L] provide
an insight into the difference between the experimental &nd theoretical
curves. Figure .7 shows the map for 0800 PST in December, RASSN 50 (Run-
ning Average Sunspot Number). At this time, the two curves of Fig. 6
give optimum azimuths of approximately 33 deg (:_ 180 deg). Figure 7
shows great circles for 30-, 37-, and 5l-deg (3—_ 180 deg) azimuths, ali
passing through the point 37°25' N, 120° W. (Note that Stanford,
California is actually at 123° W, but that the common point at 120° W
is marked "Stanford," for simplicity.) The calibration marks on the
curve appear at 1000-km intervals.

It has been shown [Ref. 2] that the variation of round-the-world
MUF in the several hours following sunrise correlates closély with the
variation of £ F2 at the "control points," that is, the points 2000 km
‘on either side of the observation point in the optimum azimuth. The
control-point critical frequencies are listed in Table 1.

-8 . SEL-62.034
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. Table 1. Predicted Control Point £ F2 for December, RASSN 50, for
Verying Azimuth from Stanford, California, 0800 PST.

.

Azimuth NE Control Point SW Control Point Minimum Control Point

(deg) £ _F2 (Mc) £ F2 (Mc) £ _F2 (Mc)

30 6.1 6.7 6.1

37 6.5 6.3 6.3 '
51 7.1 5.7 5.7

: It is seen from Table 1 that the highest minimum-control-point f°F2

§ occurs for a transmission azimuth between 30 and 37 deg. This is the

; azimuth observed experimentally and predicted theoretically on the basis
of minimum absorption.

! The theoretical .and experimentally observed values of optimum RTW

’ azimuth at 1600 PST, from Fig. 6, are 321 deg and 307 deg, respectively.
The world map of Fig. 8 shows predictions of world-wide f°F2 for 1600 PST
(December, RASSN 50) and shows the great circles for 309-deg and 323-deg
azimuths. Analogous to Table 1, Table 2 shows f°F2 at the control points
on the paths.

i Table 2. Predicted Control Point f F2 for December, RASSN 50, for
Varying Azimuth, 1600 PST.

Azimuth NW Control Point Sﬁ Control Point Minimum Control Point

(deg) f _F2 (Mc) £ F2 (Mc) £ F2 (Mc)
! 309 8.1 T.3 7.3 .
i 323 7.7 8.0 7.7

If the criteria used at 0800 PST are applied here, it appears that the

323-deg path has the higher MUF. However, note that if the "first hop"
: is constrained to be ground-ionosphere-ground, as appears to be the sit-
g- uation for such peths in daylight {Ref. 2], the f°F2 at other encounters
3 with the ionosphere will determine the maximum RTW frequency and, con-
: sequently, the azimuth width which can propagate. 1In this instance, it

- 10 - SEL.62.034
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is interesting to compare the F2 critical frequencies 6000 km from
Stanford. Table 3 shows the situation at these points.

Table 3. Predicted foF2 at points 6000 km from Stanford, California,
December at RASSN 50, for Varying Azimuth, 1600 E3T.

Azimuth £ F2 6000 km NW of £ F2 6000 km SE of Minimum f F2
(deg) Stanford (Mc) Stanford (Mc) 6000 km from
Stanford (Mc)

309 8.2 10.0 8.2
323 6.5 10.0 6.5

Note that the minimum f F2 6000 km from Stanford is much higher for
the 309-deg azimuth (approximetely the experimentally observed value) than
for the 323-deg azimuth (predicted on the basis of absorption). Further,
note that the 323-deg path lies much nearer to the pre-dawn region of
minimum foF2 and that the 309-deg path encounters much greater gradients
of foFQ. The 309-deg path f6F2 decreases from 8 to 6 Mc in 2500 km in
the region of maximum gradient while the 323-deg path gradients are primar-
ily transverse, with the maximum longitudinal gradient being about 2 Mc
in 6000 km.

Since the m;gnitude of the longitudinal foF2 gradient is a first-order
indication of the ionospheric tilt present which can enable "tilt modes"
to be launched, higher frequencies can be propagated through the region of
greatest longitudinal foFQ gradient, for a given regional f°F2. Also,
in such regions, modes may propagate with a greater range of vertical
angles of incidence on the layer without the layer being penetrated. If
the great-circle path having minimum absorption will not,.support propagation
at a given frequency due to MUF failure, but some other path has sufficient
F2-layer critical frequencies (or greater longitudinal-layer ‘tilts),
clearly the "optimud transmission azimuth for a given frequency cannot cor-
respond to the minimum-absorption path.

Hence, it is concluded that the path lying closer to the East-West
great circle in Fig. 8 is preferred from a critical-frequency standpoint,

-12 - SEL-62-034




and that the added energy that can propagate due to the presence of
parallel ray paths (and possibly paths corresponding to different verti-
cal takeoff angles) more than compensates for the increased absorption
as the ray paths approach 270 deg.

Note that it is further suggested from Fig. 8 that the optimum
azimuth will be a function of frequency, becoming slightly nearer to
270 deg as frequency is increased (up to the point of MUF failure at the
2000-km point SE of Stanford). It has not been attempted experimentally
to verify this hypothesis, but such an effect has been qualitatively ob-
served earlier [Ref. 2].

- 13 - | SEL-62-034



III. CONCLUSION

It has been predicted theoretically and verified experimentally
that the optimum azimuth of RTW propagation is a function of time of day,
and it has been shown experimentally at Stanford University for the
vinter solstice, 1961-62, that this azimuth agrees quite closely with the
azimuth normal to the direction from Stanford to the subsolar point. It
is concluded that it ought to be possible to predict the average optimum
azimuth of RTW propaegation quite closely, possibly to better than 10 deg,
for any point on the earth at any‘frequency by use of the equation:

l(tanﬁcosﬂ

A=930 - cot sin h

- sin @ cot h)

and meking a correction dependent on frequency derived from consideration
of world maps of foF2.
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