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Introduction

This report is a summary of the results of the research carried on
during the year under contract No. N140(7002L)70754B. The purpose of this
work was to attempt the development of mathematical techniques for the
determination of pressure maxima in acoustic transducer arrays. In general
two different methods of attack were suggested:

(1) the study of the problem using the techniques of generalized
harmonic analysis, moment generating functions, and expansions in terms of
special functions, and

(2) the development of an analog technique for evaluating the integral
representation of the solution,

The report is divided as follows:

Part 1 The techniques of integral transforms are used to develop an
integral representation of the velocity potential for pistons
of arbitrary shapes. Specific attention is given to the
circular piston with the result that the expression for the
velocity potential is simplified. The result is then compared
with that obtained by Louis V. King as published in the Canadian
Journal of Research.

Part II The methods of Part I are applied to a rectangular piston and
a tentative solution for the velocity potential is obtained
wvhich is analogous to King's result for the circular disk.

Part IIX A brief discussion of an alternative formulation of the problem
is presented and an expression is derived which relates the
velocity potential at a given fixed point to the potential at
its projection on the (xy) plane.

Part IV The possibility of analog computations with the maximum use of
standard analog equipment is investigated. Here the problem
is restricted to an arbitrary array in an infinite plane baffle
and to pressures on the surface of this plane. Included are
numerous graphs and pressure contours obtained by digital compu-
tation. These results are compared with the computations of
Sherman and Kass as found in U, 8. L. Report No. 495 and will also
serve later as a check for the new analog approaches.

-1-
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Part I
The Basic Equations

We start with the fact that the velocity potential resulting from any
source distribution on an infinite, rigid plane 8, is given by Rayleigh, J.W.S.,
The Theory of Sound, Vol. II, MacMillan and Co., London, 1940, p.107.

_&‘r
(1) we-'[\r)L o € S ds

Y .=. velocity potential
S .=, {ntegration of entire plane 8
Y .=, distance, source point to field point

(2) we "’/3» .=, boundary condition, i.,e., normal velocity distribution
on the plane

(3) pe-ipuwy .=. acoustic pressure
-ike
(< /'. .=, Green's Function for scalar Helmholtz equation

for the plane.

To avoid carrying along excess symbolic baggage we shall discuss the nature
of Y on the plane S.
Equation (1) becomes

gt R
) ¢, 52)= - b [fwony € Jr dudg

~ where
(5) e -E)e(y-0) +3”

¥x,6.=. field points
XA, % .=. source points

% wle = a7

C .=, wvelocity of sound in the medium.

Points on the plane are characterized by 5 = 0,
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Integral Transforms of the Pressure Distribution

Confining ourselves, for the moment, to the velocity potential ¢/, on

the plane % . 0, we have
W, 2)apEy,0,#2)

The first step is to take its Fourier Transform

- ~aw (A emy)
(6) & O, B)= JJ U, ) e 5 &

By the Fourier Inversion Theorem we have an integral representation of ¥,
-
ani (AE 2an)
(1) Gy %) -_Qg(x,,‘,. &)e g

Applying this idea to equation (4) gives

—an.(Afemy) e_“:” G-37%+0y-%)

dxd Jth
VO (-0 d

(8) hu8) = - %oy futng)e
which reduces to
(9) (A %) ’)}‘&“ﬁ; xg: k) wixy) dx J}

when we define

Vo, PRI/ T B 1 (< 7RI CRVE
(10) K. (h s g %)= = 4y Je < 25 dy
a\h A i i ﬁx—f)";-(,-)!)'“

The evalua‘ion of the integral defining K2 dépends on a theorem due to
Bochner and is the subject of the next section. For the moment continue

with more physical considerativns and introduce

GEx &)< le) =g (B %) g, (5o %)

for the square of the magnitude of the velocity potential which is proportional
to the square of the magnitude of the pressure. Because our interest is in
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limitations in maximum driving power due to the onset of cavitation, it is
only the magnitude of P or § that is of interest. The introduction of

Fa is the crucial step in the_analysis. Continuing with a substitution of
the integral representation of ¥4 we have

ar Z)E + Geon’) ]
G0 k)= S]] 8) 4 cxu #) e EA I

- o

J) J/CJA.J’I.

Let ' - ’ ' . [] »
x=A~-X‘ /4'2/4”-/4'. A“= XOXI /l 3/1{/0,. JA =JX ) J/c 34/«. ;
then
1‘-(‘; /‘!) N .
F (fn. ‘fl) ”_H'ﬁ (A:/‘Ii)¢& (A-A, p -/v 5)4 dA J,«d,\ da

- ﬁc"‘.“ Eep ’)JA.J/‘. J}JAJ/ & (A %) *; (-, W, ).

- o0

We then define

B3y #) - J/¢(x,,4 2)el O 4 e, % A

and are able to write
Y

RSy, 4) =’)’}§§,(x:,.:.i) e

Finally by substitution
L

(s 8) = JIITTH O g naps IB] b g 1y 6wy Wy byl did

s (VS ) .
™ ;*/QJA'J/«-

the Fourier transform of the absolute pressure in terms of the velocity

distribution and K2 function.

A similar analysis will yield the corresponding expressions for

r3(§,,¢; 4 ) and f(x,,.,» %)

Evaluation of the Transforms by Bochner's Theorem

As before define
_awe (A epy #¥5)

(11)¢,('\,/v,v,.i)=jffw,(}:n,5;‘)¢ S & d3.
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Then we have the integral representation
T ovi (AR epy #95)
(12) V’a(rﬂ, ;it)' ijﬁ “»/',”Ji)e

Again spplication of this idea to equation (4) gives

- awi (AT emy +#93) < RV(-3)%4(y-4) 4 8% .y
(13) &, (hp, 9 %)== "ow ) [] Jwixg)e e dxdy 454y 5.
] l‘ a f[ﬂf ‘* V(x'f)t*(,.k)"*3"

It then becomes convenient to define

RVCx-£)% (y-1) +3*

o cUSepy+»%)
B KAy ke &)= - ” = dIdyds,
() RfA w2 2, ) Ar!{jﬁ Var-£)% (g-n)*+ 3*

Both K2(X,;ol. x,y,% ) and K3(X,,.'1)'. x,}l- 4 ) may be evaluated by a

Theorem due to Bochner, e.g., S. Bochner: '"Lectures on Fourier Integrals”,
Annals of Mathematics Studies No. U2, Princeton University Press, 1959;
especially § 43, "Trigonometric Integrals in Several Variables". The
reference just given is a translation of S. Bochner; *"Vorlesungen uber
Fouriersche Integrale"; Akad., Verlag., Leipzig, 1932, reprinted by Chelses,
N. Y. 1948,

We begin by stating
Bochner's Theorem (Ref. "Fouriersche Integral”, pp. 186-187).

If the absolutely integrable function f(x,,..., X, ) depends only on

the quantity Y= X #x’eecrat | e,,
$ (ks Xy ) 2 ) = @ (WETT 7 2 )
then the function .
3‘(,,”_“,.'*),5.;[;(.,,... , Ay ) exp (- ;Z*"‘“) dx

in a similar manner depends only on the quantity,

d-"vd,‘* LK 4 d“
Furthermore, one can replace the original * -fold integral for J(g ) by the

b
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simpler expression -
LV b
ARCOWA DR T, 40) dr

vhere J, (t) is the Bessel function of the ,u“ order. If one further introduces
&
the quantity s -“"=d,.'+d:*“' + dg one discovers that

" L J
1.) For B=amsa J(a)=« (—o)"1r"'",z‘”'" J/J_,"' ):¢(.P)f :L(V'S'f)'!f

2.) For PB:amys J(‘)'(-')"‘!T' 2™ J"/anl o (p)css (Ge)dp .

From eq. (14) we have

[ . _‘* ﬂ'—"‘*!,_‘ ,",F'
.;ns(“f/qr’}) e
X,‘)’«,}‘b =—l < JJJQJ5
K’( o/‘ A X "’ ) /‘”-jlj Jéx_f)a'(,_l).'* I.'

To apply Bochner's Theorem to this we make the following substitutions:
aWAe £, §= x4x,
JT‘ = d‘. 1 = ?* "

awD =y ¥ =2
- AT AT
NYCXRY XY e AT
(15) K (0 p.95 19, 8) = = Yor € JfJe
- o

Gn v n rgy) e"“ dy d1 dx
) & é

L Y [Y [
AR AT

By Bochner's Theorem, -.:‘7
‘s'(lux',n-, Y‘)c¢(f¥"#-..o-x;"___ ¢(")= e r
where

¥ =VXTr XF 7 X,°

=32 ames S M/ -

-ikp
TW) = - 5w s, Z e /f cos(Vs, p)de.

Our expression becomes
b

-avi * ) “"*f
(16) Ky(h o, g5 )= g€ " M 7Py, j N/ cas (15, o)
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2 [ 8 3 3 | N
where 8- d,"+ o+ = (a2) (Mru' s )

The problem that remains is to evaluate

e[ oW wsmald

Let

o
e
e cos (5 @ )dp -
I(‘s,s.:) = J}Js_, 5‘ 4 S
The integral expression may be written in the following form:

[ .
JE s () do - -—}“-‘(* [i-cos Vel de s
o

+5 cos(*f)/f J_,P _ ""J‘ 34‘»(‘,)//’ cos(ﬁ:f) J_P .

From Oberhettinger, Fritz: "Tabellen zur Fourier Transformation",
Springer-Verlag, Berlin 1957, p. 20

s li-esvgelfp 4o = o duli- S/t

Thus

T(h,s) = dhis, |- oo 1= %/ \] + [, g;;";ﬁ;f] ¢ Yhs js‘»“’rf) cos (i p)dp.

- ~ sin (hp) . ]
JIAS} tlb(f,)/’ as(ﬁr) Jf: -): s_'_’Lf_;.af- Sr»(ﬁ:f) -’[vﬁ; GLP_

3 Y

= - /r- J sm(‘&f) sin(5 e) J.P

From the Vorwort of the preceding reference, the function
-
4(4) = J $(x) sim (xy) Ix
[ )
after a Fourier-Sine Transformation is

$(x) e 2/ J:pa,(v,) sin (xy) 4‘-
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Th - = .
= £ = -‘!/,,-J. sin (x,) J,_ I{-(x')ti»(x',) dx

= 5;4-(!') Jdx' “/7r£ sin (xy) "”("'7) dy

< (g o-x) s00dx’, xzo.
By definition ,
-‘l/”.): Jih(xa) S;h(x';) J} = S‘ (X—x').
Applying this to our integral
[ ]
- %E J. sin(p) 8in (15 p) dp = —1%-73‘; & (%-Vs; ).
Therefore

/ e
Ihs) - mesy * s (R-v)

Equation (16) becomes

~ave (A% 4 ) - 7 _v—
7K, (), ﬁ;"q;’c)ge” Xepy [m + e s (% s_,))

vhere S, = Gm)* ( X‘*/l +» ").

Returning now to equation (10) and applying Bochner's theorem using
the same substitutions as before

i x sy (R g ) de.

(18) K‘(),/d,. l,,;‘) = -e

From Oberhettinger, Fritz; "Tabellen zur Fourier Transformation", Springer-
Verlag, Berlin, 1957, p. 61

»w (s‘--ﬁ‘)-i oL'ﬁ‘ﬁ;
S: T, (V5, p) cos (%p) dp =

° ®> Vs,
Also from 1: 165 o » *‘ﬁ;
5° To(rs:_f) sin (“f) Jf = {‘(ﬂ‘- s, )_% %5 v_s—’.
Therefore
a7 (Ax ¢ny)
(19) K, (o, w9, %) = = 2 e } s

5 -#°
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where S, = (-‘Hr)z'( X.‘«o—/t").

Compatability Check between K2 and K3

K2 and 1(3 are related and this relation furnishes a valuable check

on some rather tricky integration techniques used to obtain them. The

relation between them is
[ 4
KJ('\//‘/' X ‘) = jK,;()‘//";‘)/‘ xl‘]i e )J’
-ob
To prove this, begin with

KJ(XI";‘ X,’;ﬁ) = — —E_'_i—l- e

\&,(x,,.,v,x,.,,.&)=[,,_.‘f.,’ + % 5, (&-ﬁ;)]c

Since the exp [-awd (X’”/J ';) ] factor does not contain )’) let

~anr (Mw-/l;)

aw (Ax r)a’.)

L, = -t , 5 = GTT(A e ut)

ﬂ."' t 3 E 3 L 9
L,:[if'_s’ * v-;’- 86(&_v-§;), 5,:('717)1(!\ +tp +3 )

Therefore the relation that must be shown is

L, = J7L, d».

- o0
The right side of the equation is equal to

-

‘ .
2 Te
_dy _
_L[:k‘- GE) (At 4 +_£;"_VT—‘_:—/-__*__+T & (k- am VT oy )dw.

An analysis of the first integral yields
- o0
2 dJ 2
= < Y
Il .5; [i""’(‘”)l(J f/l‘f") 3’2[“'_(.1)‘()&*").1_‘(‘7)&,], J”

o
7 a a
=f P d» where a =F - S, -
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Let X=aWy, dx a av 4. Substitution gives
oD -
dx - dx
'H S ot~ x© - /7 4 at. x %
Let X/a* S’ -—- ,JS 'l‘herefore

/1'& T-¢¥% ,/Wl—\ b5 H.‘ '

From Ryshik, I. M. and Gradstein, I. 8., "Summen; Produkt und Integral
Tafeln™, Veb, Deutscher Verlag der Wiuenschaften, Berlin, 1957, No. 1.513.2
- 1+ ¥
L:::', I"”/_.?— = “'Z (.m-,);a{-: = O.

Therefore the first integral has the value zero.

Since the second integral involves an even function

5——,;_?_ S 8 (* ﬂVW)J”g.Z ". ‘4}'4»‘ SJ(‘-er”ﬂ
¢/¢ sV ﬂ\

With the following substitutions:

) JWV'\:*/“‘*”"-, _(a') () —pm *vt) 2= L‘- (‘:3;'(/\‘} '$ 44%)

dy= GT)9dy
TVA oot

I =t ('& K) J
* Vs, Jx‘ am)* (A%4u®

In the previous section the function &; was defined as
[~

8;(""' ")= o/r f&m(i’) Sin (x,) J} .

s Xdx = (&“)"9 d» s dd =« % %):ﬂ

(% ]

We shall show later in the Appendix that I‘ can be evaluated by the
direct substitution of this quantity into the integral. Here we shall

treat & as the Dirac delta function and because of the limits involved

° % < I,
Ia'.‘ ’: .&)V_s;'
‘."- .
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>
The integral S L, d? P then, has the value —_ or o /

2 — "
vhen %> VS, and thus is equal to L,.

Comparison with King's Results for a Circular Piston

Louis V. King wrote an excellent paper "On the Acoustic Radiation
Field of the Piezo-Electric Oscillator and the Rffect of Viscosity on
Transmission", Canadian Jour. of Research II, 135-155 (1934). He obtains
the expression:

o
b= ae[c""a;(a,) T (he) 24

for the velocity potential due to the disc of radius "a" oscillating with
simple harmonic motion and maximum velocity x. These symbols need
translating for comparison with our work and this will be done after
obtaining the same result by our method.

For the King case .
W, S ¥yt e
V(X,,)= o otherwise ’

Then ™ =

¢l (AI,‘I,'I ‘) ‘}J‘W(x,’) K.(x‘}l'f} ,.’} ‘) Jx J!a. .

But

~awd (A )
K, ('\: 7 "n‘)ii)-‘- e weiiTy Ls

vhere L, -[ & + 1‘-;- 8,(“--V§; )]

*°. 55 Vs,

Since L3 does not contain x and y then by substitution

~awi() )
&0 @) = L) ™ gL

’ .
[x,y;x%y'ca’ ¢

* Read [ P; condition on P] .=. “the set of poiats P such that the
condition on P is satisfied®™.

-10-
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This expreasion has the correct symmetry for an application of Bochner's

Theorem where .
I when x*»+3‘<a
(T )= {
o

With the proper substitutions and application of the theorem

other wise

4?'('\,;4,1’; f) = \\I.LJ[*T.);J,J‘ (V?;_f) Jf]
The expression
ﬂjfﬂ 2 p) dp = 2Ty S(V”fﬁ( VS, dp.

which is evaluated by No. 335.1 from "Tables of Integrals and Other Mathe-
matic:' Data", Dwight, Herbert Bristol, MacMillan Co. New York to be

J(V—'f) = ""‘/r J(T’ a) .

Thus
2, Om %)= Wb, 22 T05 ).
r_..
From Equation (12)

a7 (A§ puy +95)

¢ (§x,3,%)= fﬂw(,\,«,vi) dydv.
Substitution yields -

o oTa [ I. 8 (* v—;-) ane ag'/"l *vt)JxJ J
w’(s'ﬁ'sli)lu'jjj ‘IS‘,_ 3-1(0-5:, 6-) [i‘-_ 5.’ T—- JJ /o 1)
where 5, - (am" (A% 7

S, = (‘1)1(1\.'4-/0‘ ).
The first step in the evaluation of cf,(f,n,S,- ﬁ) is to consider the
integral oo . 3
2 b T 5k -VE ) 4y,
—od - s V?;

-11-
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& & t 3
Since 8= (6M) () # (%) F'c 5+ (a7) 3™ ye have

2Tl 59
(4

01‘59
S, (f-VSsamys )e  d»

}‘V P QT)Epr

where we will denote the first integral by A and the second by B.

Je= T gy 2 (amg) dv
z s_,2 = 2 - Cos (47 ‘
A-dt'—..g -7 'z);_g_(-ﬂ »* 5

2
j 2 s, (27"

~e

Let Aw QWD
X*= (am)y*
dn = a7 dx
o' - %" s,
Then

A= %rj:a, cos (a3) d%.

From "Tabellen zur Fourier Transformation", p.3

j(a - X ) cos (K?) dx = TT/aq, Sin (4’)
Then A= sin VR s when % > o.

V% -s,

ry TS

5 (&-V35 7 emrys e d» -

j S, f(a!)“)”-

e
= 8,(“ -Vs ~(aw)iyr ) cos (#7Sw) dy.
‘ZJ\‘-& Her) - :

K= J's > (am)* Y™

JK = (017)“9 J\’
Vs, + (am)ty =

Let

xdx = GO dy

‘t - s.,
W

P =

-12-
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Then 0
Buif 2 IOER g1k dx.
MRS
Treating §,(%-x) as we did in the previous section
PPRY: o ralP
vV #% s,
B=t
0 * < Vs,

The integral under consideration then is

A+B = Sim ‘J*‘—L + L E ;J*‘-s.. s ‘E )E:

V&<_ S, V£ L
e
A+B= *‘ 5 —, > VS,

Therefore

aTo : -‘5 R AT IT)
%(h,s $)=\, ‘”. I(r") ﬁ—___-_s-:— < di J)d
Again S = (at) (A, P ) and we have

SV _R< .
. 'y . owe (A rpup)

V’;(g,'!,s:*) - \‘J:S..Jﬁ;—;;-;— J-(‘“"‘A\tfp )T_——_*—‘_—_ e dA J).

which is suitable for the application of Bochner's Theorem.

Let X «amh dh = “" faeo o NaTral o V570
Xy 4T J)~=;—; -« veaVatex --?Vﬁ_‘:;-‘s\fs:
and we obtain by substitution
aw, .’a I( ) -3V (X -a X )
d L/ e L2 el T aa
w‘“,t,;;i): — H Iy 3.(ta = dx, dx, -
Application of Bochner's Theorem yields
e a3 e
ng8)e av, < T (VS e v)dr,
¥, Vv
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If we let J:‘:JS.'H[‘ , M= Jr"_ > A
ao

- %
q‘a(sl\‘);i *)' av, 5. '57'——- J,(V'd-) I.(V'f) dv

which is comparable to King's results.

Part II

The next case to be considered is the investigation of the velocity
potential for a rectangular piston, centered at the origin with half-sides

Js

We start again with the_fquations derived in the previous section:

(1) ,(Ap9,%) = ”wu“)\(’(h‘,y; vyie) dndy

"a", "b" as shown in the figure.

' ~awi (M )
(2) K\ pw, 9,0y, %)= ¢ amc xRy L

3

() L= g2 + T 8-

For he pressure boundary condition v:2 take

1 for points (x, y) inside the rectangle
wix, y) =
Substitution in equation (1) yields

_ami(Axepy)

. g
(4) 4’;‘\#.\’;*\-'[—;&: s, + E Ss(i-ﬁ:Uj5¢ drdy .
-¢-b

-1h-

0 for points (x, y) outside the rectangle.
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After integration the expression becomes

§, (ﬁ—rs;)J sim (axu V) Sin (37 a) .

2 X
(5) ¢,(A,»"|),i)-[?f_'—s:' + ‘.?J 17'}4)

The general integral representation for the velocity potential was

" found to be
arl (A ¢ p +95)

‘4’,(5,’(,55 '5”4’. M) e drdu 4.

Substitution of equatioﬁ (5) into this expression gives us the velocity
potential for the rectangle

-
im { ) Sim(awha) 0% (AE+n +¥5) .
(6) q’,(g"l's}ﬁ) = -5£ SHl I:.”..:x n(sw e
[t R du i
or

(7 \P,“ 3, 1‘.) st.w(ll’gb)sm(ar)c) o (AS +py) JXJF .

awivy

f[—"é?w -}‘?i.s,(&-q;)]e dv,
¢ ]

The evaluation of the second integral was carried out in detail in Part I

and found to be equal to the following expression when f& > ow VA* ¢+ 4

BV RS MO )
Le
NETA O (A pt)

-15-
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After substitution and separation of variables our expression is of

the form

< ¢ -
Sin(aTad) C” '\fJ)\ j‘ i e (awby)

. @Tyu-3 KB Guaf - Gy
(8)%(5'"1536)‘1[. A AV{ﬁt_(’.‘.»L} _(an"\‘ [

4,4,

-

Let 4>
* c(ompp — BVERE amay L - (A )t
- 2 Si»(ﬂl’bﬁL e ! 5 ¢ F) J}A
o pVTRT- G - Gampt
Then
o
~Jmh (AT p - VLR - (ana) P T-(anp )
I-% SL F e du -
- P ViR - Gy - (amp)®
os _am "f‘ ;_(“r,”. ~6Vie*- (.nru)ts -La‘l'»)t
_ ll se - & J}a.
AV e~ am)] - (awp)t
Let o caﬂ.’.,c(bﬂ\) . ~g ViR (avu)'-} - (avu) >
A= 5 = du.
") P\[{ﬁ"_(am\)"} ~Gwu)>
Introduce g
bew= <, a’ e ¥~ Gm).
Then o _gVaTt-G@ua~ .
A= 5 ; _ e dp.

e MV az. (amu)a
Taking the derivative of A with respect to ¢ yields

-oe_dsm AT me
JIAC. (ﬁ\‘: '""'5 — e s J)A
A Y a* —(amu)*
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or
o®
Lm0 7o LR
cpC
1 (A) = 2w - e dp-

—eo (Y (ia)b~ (aTip)t

From Campbell and FPoster, Fourier Integrals for Practical Applications,
1942 printing, p. 111, pair No. 868

Hi

-
Fi§)= ¢

(- 6(1)' ‘/‘IT K, [f(tt*r‘)*:,

vhere 4o/ = an. 5 5 P and 4 are complex numbers, not infinite and the real
parts are not less than O.
Applying this to our expression O =-3, gosie

. W = oK [ —arnr o).
Therefore C=ben

A= .:,J K, [l’.l’i"-(aw,\)s Vc‘fjt]e‘c.

Similarly let

@ gwip (y-b) -< 5”&"-(3«.\)‘}-(@)1
€ - €

=\ = - - du .
B _.S. }‘\, al_(..“.“)l. }‘
Introduce c=l-\a, ate &z__ (“A)t-
Then 2 avipe - iBVEE

yen/a e tﬁ"WJ‘-

Bl mVar- Gaaye ok
Applying the same met.téod‘ a: before
sRe

B= -?.j. K,D-\/'ﬁ—(an)"lcl. T ]Jc.

- ol
The expression I = ‘A A = '3 B then, becomes

R+b b
I=S K.YL‘T‘E"-(aﬂ'A)‘ Ycre 3T dec - S K,[&f‘i‘-("'d)‘ Vet ;‘]Jc.
'l‘here-fore b e
I.‘ S K.['t-rtf- (awr)r \fC‘#“] de.
-

-17-
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Substitution into equation (8) yields

< (alle cag b
(9)%($;'b;j'k)"js_:r£l;_>)_cm S K.[W‘l‘-(ﬂl’&)‘ VeFe 3t de.

R-o

Our final expression, then, for the velocity potential of the rectangle

is given by
= wb

(10)%(s'!;sji)=s S Q%ri::x’:\l Cos amAS - K.[‘.' YRET(emA)>Vci, 52 ]Jc dA.
et T

This 1is only a tentative solution to the problem of the rect-angle which

is analogous to King's solution for the circle. Purther study is necessary
in order to determine whether this double integral can be reduced to a
simpler form.

Part III

In this section we discuss briefly a certain alternative formulation
of the problem. Work on this has not yet progressed to the point where it
is possible to make a definite statement as to its value, but we feel that
it merits further consideration.

Let D be a dowain in the ¥, plane. The basic expression for the
velocity potential for the domain D is, from Part I,

( ~chy
(1) w(f,g,SJ i)-—%f.ffw(x,,) e /r dx J}

in wvhich w(x,‘) is the boundary pressure distribution normal to D,

and Y= V-5 ¢ (3-DF 53
By a change of varisbles, ve may take Y= © , 7« O  s0 that (1) assumes
the form:

- -hr

(2) sp('S,-&)--'/zr ”w(x,’)e % J:J‘,
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in vhich Y= VXTF YT 5™ . Taking, as before, wixy) =/ if

the point (¥,3) 1is in the domain D and W(X,4)= O otherwise, we
have

Ry
(3) w(58) = for ) S dndy

b
where now the double integration is extended over the domain D.

-fv
Let paf X“*,," . Then the function <€ /f is constant on

circles of radius 0 centered at the origin. This means that the integral
(3) may be evaluated by summing up the contributions to it from annular bands,
centered at the origin, in which ‘d‘% is approximately constant. Thus,
referring to the figure, we have that the contribution due to the annular

band ABCD is:

<Br

Pasco = - '/ﬂ' _"?—— 0'/’"/'

where © is the central angle subtended by the domain D at the distance
from the origin. We define the function 5‘,(’) to be that fraction of the
circumference of the circle of radius 0, centered at the origin, which is
intercepted by the domain. It is easy to see that fa(f) = Y% ;, 8o that
the expression for the contribution due to ABCD becomes

<..:io- s J
Yascr =~ Y O(P)/‘ r:
The values 5,(/) are zero for those P such that the circle of radius 4

does not neet the domain D . Summing up the contributions, we have, using
the fact that ,dp = rdp

hr

9’('5,'*)= ‘}*Dg‘)‘
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and then, since JD: VF: - A

- -chr
() q,('g;&) = - S &b(Vrt_;t. ) e c;r.
11

This is the basic expression in our new foruulation. We see that the
problem of evaluating the velocity potential ¢ for a given domain P splits
into two parts:

I) find the function ﬁ,(f) for the given plane domain D- Tuis is
the purely geometric part of the problem;

1I) carry out the integration in (k). This is the analytic side of
the problem, and the more difficult, Without going into toe much detail, we
give here a few brief remarks concerning each of these two parts.

1). If D is a disc of radius a, centered at the origin, it is easy to
see that ¥.( p) =! for 02 % a, and 5'.’90) = O otherwise. In this

case, the integral (4) becomes:

¢ (S;4) = - j"’ o

1
and this may be explicitly evaluated to yield:

g RV T s ar -ets}
e -e )

e";‘r dv

w(5%)= it

This result agrees with that of Stenzel-Brosze, Leitfaden zur Berechnun.

von Schallvorgingen, Springer-Verlag, 1958; Part II, 4a, p. 75.
If D is a rectangle, with "half-sides” @,b, @ = b, as in the figure,

it may be shown that ‘S’,( P) is given
EL

by the following expression:

-20-
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1Y
r

1)

! 0

] 3

11
o

P
lla‘l’ sin”' ‘?’f b2 o

£(c) = '
v f) Yor [sin" blp - sim ”7’#] 2 22 Vatrpt

: o

Again, if D is an annular band, situated as shown, of width d R
central angle & and inmer radius A  then

o oﬁff_'A
S}’g,)= % Az o ZArd
o pP>A+rd .

For certain other domains [) of simple shape, the function s’ (f)
can be given explicitly. Of course, it goes without saying that if D is
irregular it will in general be impossible to give an explicit formula
for ;D(f’) . In this connection, it is worthwhile to mention that the
function 5"(,,) is additive, i.e. if D, D, are two disjoint domains, and
D,V O, their union, then &‘D.\JD‘(P) = S:’.(P) > 5-,1 (f) . In practiee
then, a given domain D of irregular shape may be approximated by the union
of non-overlapping domains, D,,b., v++, D, each of which is of a simple
regular shape. Then 5‘,' (p)+ - + ;;,. (f) is an approximation to 5‘, (/o)
Remark: Another interesting property of ", (f) is the following: If A(D)

denotes the area of the domain D then

AG) = o7 § o5 () 4.

-21-
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II). If D is a circle centered at the origin, we have seen that the
integral ¥ (55‘5) may be explicitly evaluated, In the case of the annular
domain, also, it is possible to carry out the integration in (L), using the
expression given above for ;D( )). However, if D is a rectangle, we slready
run up against a rather formidable analytic problem.

If we substitute in (4) the expression for *b(f’) given above for the
rectangle, and simplify, we obtain expressions involving integrals of the

form
(5) fe3t .
Y < s 1
j‘ Sim W e dr - -

Ny ry

in which CE AcSB.
This type of integral seems very difficult to evaluate. One potentially
successful method of handling it may be the following.
Let T (3,#) denote the integral
ch

’ | 4
I(S,i)-{ s(rrge) e dr

vh'ere § 1s an arbitrary function, subject only to the condition that
)’ $(x) dx exists., If we set S-V r*- 3% we obtain:
‘ L

/8- N AT &

(6) I“;“)*J $(s) —= sds
T \/.s + 3

Prom Campbell and Foster, as above, Part II, we have:

LRV - iy
(1) — - Lfx [srg===]e ”J,.
S ¢4 s -

Substituting this into the expression (6), and formally inverting the two

integrals gives:
g

@8 7T - %jK,(SW)J,—f s*(S)c°"‘ ds.
e L= 2
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Now f.s -F(t)e.‘." ds == J/.l* I(o} ’) as is evident from the

definition of I. Thus (8) becomes:

(9) I(S, “)t - -;’,TJK. [;T’—‘.—ﬁTJJ/J} I(oi ,) J? .

Integrating by parts we obtain: !

(10) T(5,8) = -4 [k (8r57785) Loy )] _ *

+ -—'ﬁ-[I (o 1.) JA, K.(.;\/?_-T"—) J‘} .

From Higher Transcendental Functions, Bateman Manuscript Project,
Erdelyi et al; Vol, II, p. 79, we have:

J/J’ K.(*) T - K-'(*)-

Using this in (10) yields:

) I3, 4)= - Lk, vg=a0) T ¢ 1’]_.. B

"JI(O,’) K.,(Svl ﬁ‘) 3 J}.
e

-23-
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Since (Higher Transc. Punctions, ibid., p. 23) Ww,( ) e ©, and since
I (o, ,) remains bounded as G -> == we see that

K SVF=27) T o 4)]

= O
and (11) becomes: ==

(12)T(5;4) « 4 [k, (595775 ) T (0;9)]

’.-00

oo

s" t_*l.
‘%’JI"’H)“"( ),

1 .
A Va_as

This last equation i{s our desired result. Its signigicance is that
it relates the evaluation of I (%; i) to that of I (05’).

If for $(v) we take "’(\') for a given domain D, then L (5, %)
is just ¢(3fﬁ) and (12) specializes to:

(13) w(%;%) = ;’—‘-[K.Ws‘-*‘)""°“)]3.-..

3
e y (0;9

- o0

) alsln et g,
Vo -%r 7

Thus the velocity potential at the field point (o,0,%) with
propagation constant + may be expressed, by this last relation, in terms of
the potential for f«o.

If for $(v) we take sin”' /v , as in (5), we see that the

evaluation of (5) reduces to the evaluation of the integral
]
chr

-1

A

=2l
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which is the form (5) takes for § = o. This latter may be transformed
(we do not give the details here) into an integral of the form
A .
S&(}) H(}) A]’ where ? is the Fourier transform of sin-ls, and H
is the kernel function for an integral transform of the type of the Bessel
transform.
Evidently, these formal manipulations need to be supplemented by much

more careful analysis in order to reach a satisfactory end-result.

Part IV
The Basic Equations

The starting point is again the basic integral representation of the

velocity potential y due to a source distribution on an infinite rigid
plane S: -chr

(1) ¢ =~ Z,,rg’“/a»‘ir—— ds

P .=. velocity potential
S .=, integration extends over the entire plane

¥ .=, distance, source point to field point
(2) W= 24*/3” .=, normal velocity distribution on the plane.

(3) P<x-ipw® .= acoustic pressure.
c".*'
——— .=, Green's Function for scalar Helmholtz equation,
r for the plane.

For a sound radiation field having a single frequency component w, ¥

is proportional to acoustic pressure. It will be convenient to deal with
w('P, ‘h), the velocity potential. This is a function of position P of

the field point and the propagation constant “ta""f- = "r/h . We thus avoid

-25-
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carrying along some constants that add nothing to the discussion at hand.
If W(x9) is the velocity at every point in the plane of a baffle and
pistons and if (i' N ) are the coordinates of an arbitrary field point P

on the plane then

- =
(&) ‘P(s;’t;") a - -ﬁ.—r— 5[\0(!.1) ——;—-—' dx J\d_

vhere

(5) 1ra(x-§) ¢ (y-)"# 5

Here we take 5 =0, considering only points on the plane 2= 0. In this
special case it {s convenient to introduce polar coordinates

XerCs8, “erSnd

and consider Y at the origin }'-o) y=o. We may then write,
QW o e
(6) w(®)= y(o,0, f-):-;’—;} fw(r,o)e“ dv 48
[ ] o

Here, we have expressed the piston velocity distribution w(v,8) in
polar coordinates with the field point of interest as origin. This
entails no real loss in generality.
If we wish to get the position of the field point back into the
picture we may v’ .«,
W o .
M plinb)=-L4 ): [“' 0,800 & % dy 46

where,

V(V,O,f,r() .=, velocity distribution in polar coordinates
with the field point ( §,x ) as origin.

However, for the moment we do not carry the excess notational baggage of
equation (7) and use equation (6) instead. Finally let us split equation
(6) into two equations:

-26-
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oT

(8) v(r) = = fwir,8) 46

and

These equations are basic to what follows. In general W(V,O) is complex

and the modules of W is the magnitude of the piston velocity. The argument
of w is the phase.

Suvme General Considerations.

Before continuing it is important to observe that the area of any
single baffled piston may be idealized to be an area over which w(r, 6)

is a constant. Thus one may write
N

(10) W(Y, 9) = Z a; ¢ (v, o)
iz

where

@; .=. complex number giving phase and velocity
amplitude of piston ¢

c.(r, 8).=. characteristic function of piston ¢

1 on piston ¢

S o) - 0 everywhere else.

This leads to the consideration of the triple of equations
o7

]

(11) V;(v) -.-;;J ¢; (re) 40

o
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and

N
(13) ) =3 oV ().
ba|
The study of an analog technique can now be broken down into the
problem of generating c;tv,e) and calculating each of the expressions
Vily) %&)' @ () and finally the modulus of ¢(#) which is propor-
)
tional to the magnitude of the sound pressure.

A Punction Generator for c¢;(¢8)

The simple form of the function c¢;(r,8) permits it to be generated
by an optical device as follows. In front of a cathode ray tube screen is
placed a mask which is scaled to represent the plane baffle in the neighbor-
hood of the array. The mask is transparent in the region corresponding to

piston ( and is opaque everywhere else.

Z ' N
’ [ \
4 \
|
| (atheds Ray
Transpacent | Tube Seveen
ﬂe‘ioﬂ
-\ T T - “sewmnd \°|T T
{ Ci:;::‘
0-*‘3%‘
ot i
Praten / Opaque
| Redion ,
\ | J/
\\\ 1 /1 P

Figuee |
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The null-deflection point of the CRT (cathode ray tube) is set at a
point on the screen which corresponds to the field point (§ ,n ) on the mask.
The blip of the CRT is set to scan in concentric circles about this point.
If the blip on the CRT screen is started at the null point and circles

about it in circles of gradually increasing radius the entire mask will be
covered in a relatively "dense'" fashion. See Figure 1.

PROTO MULTIPLIER
TuRE

I I Q----

CATHORE RAY
Tust

/

F'.§u.v¢ a

Light passing through the transparent region of the mask is focused
by a lens on a photo multiplier tube. The signal from the photo multipler

tube will be a parametric representation of c(r, e) as follows:

(1’4) 8= a‘l')t,

where y .=. frequency of circular scan
(15) raac»t

where AY 1is the increment of radius with eac!
scan cycle, Av <zl

Accuracy of the c;(r.6) Generator.

In order to measure the accuracy of the proposed C;,(",O) generator
a manual calculation was made following the method of the analog genei'.étor
for a nine piston array for which the sound pressure magnitude is available
in the Sherman and Kass report. (Sherman, Charles H. and Kass, Donald F.
"“Near Field Sound Pressure of Arrays of Pistons". U, 8, Navy Underwater
Sound Laboratory, New London, Connecticut, 1961.)
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Calculations of ¢(¥,0) were made for thirteen field points or calcu-
lation stations located along the axis of centers of the middle pistons.

(See Pigure 20). Reference circles were constructed corresponding to the
circular scan of the CRT. The increment of radius was chosen so that the
array was covered in 75 circles.

Since all the pistons were taken to be vibrating at the same frequency,
phase, and amplitude it was unnecessary to calculate Ca(\',e) for each
piston separately. All pistons were considered at once giving clv,8) . The
symmetry of the arrsy permitted the consideration of only the pistons (and
halves of pistons)maneside of the axis of field points.

From the values of C(Vﬁ) thus determined the sound pressure amplitude
was calculated by numerical methods.

Figures (7) to (19) show V(v) in graphical form for each calculation
station Pi . Figure (20) gives the comparison of the two methods of
calculation in the form of a graph of the sound pressure amplitude vs. length
along the axis of field points. The array is characterized by %e =1’I:,'
using the notation of Sherman and Kass, wvhere @ is the piston radius.

It may be seen that the discrepancy is of the order of 1%. Clearly
higher accuracy will be obtained by using a smaller increment of radius and
more field points.

C tation Device for V(v : and
r
Ghede Ray  Lews
Take L ¢ ® ~3
=l .‘ O -
X
Mook S "“;’..'.":” e
Figere 3
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Figure 3 shows the suggested device for computing V;(v), and from
that, Te Witt) gnd Im v (%),

A. Scanning signal
Photo Mu\\"up\ivr Qd-pv.t

|
[
)
!
|
|
'

e - - —

b e - - e o

I

T a7

Actual output with afterglow effects for high speed operation.
e-—w-. Idealized output with no afterglow effects.

B. Photo multiplier signal

C. The switching filter gives a rectangular pulse output which closely
approximates the ideal photo multiplier output (with no afterglow
effects) for a high cut-off threshold. .

D. The integrator D, which is set to dump once each period, gives S‘C.:(V.O)JL
Taking * to be a constant over one period, this is mathematically
equivalent to %ﬂ JO"C; (v,0) d6 by equation (14). This is within
a multiplicative constant of V;(¥) . Thus the output of the integrator
is a sequence of pulses each one of which starts from zero and climbs

to a maximum value proportional to v,(¢¥) . See Figure 5.

Svi\'c\‘mi Filter Ou“vut

Tnte} rater
Oxtput

_— e e e w— —
- - - -




Panxx MaTmRMATIOAL LABORATORINS, INCORPORATED
BEDFYORD ROAD * CARLISLE, MASSACHUSKTTS

E. The low pass filter gives the envelope of the pulse output of the
integrator, i.e. a continuous reading of vi(v) . See Figure 6.

Out’u,f
¥
Inh‘u\:ov .
3t
. . toT 20T
Os*?d'
oy
Low Pss
Fiter
- * >
° oT 20T
Figure ©

In Figure ¢ the time scale is over many periods so that ¥ may not

be considered constant but is related to t by equation (15).

P and Pl. The oscillators F and !1 give sinusoidal outputs as a function
of £v . The phase of F is ahead of the phase of rl by Va.

G and G'. The multipliers G and ¢! give v;(r) Cos for and -Y:(r)Sn &
respectively.

H and H'. The integrators H and ut give jv (v)Cos for dt and -

reapectively. This is equivalent to '/An‘ S V;(r) Cos Br dr and

¢
j V(r) Sin Rr dt

- ars 3 V:tr) sin Brdv ¢ i1l be noted that for Y > Ymax, Yilr)=o

Thus the upper limit of integration is equivalent to e© after r reaches
Ywax + Ihus the outputs of the integrators are signals whose final
values are proportional to Ke ¥i(4)and Im 4'.-(‘) respectively. These

quantities are stored in a recording device.
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Automatizing the Computer.

The system outlined above gives the real and imaginary parts of w:( 4)
evaluated at one field point corresponding to the null-deflec tion point of
the CRT on the mask, The CRT scanning control may be programmed to cease
the circular scan after the radius has increased to a value greater than Y,,.,
relocate the null-deflection point to some poiﬁt neighboring the first, and
start the circular scan at Y = 0 again. The null point advancing device can
be set to cover the entire mask with a lattice of field points,

The final stage integrators (H and g in Figure 3) must be set to dump
at the completion of computation for each field point. The output of these
integrators will then be a sequence of pulses whose maximum ( = cut-off)
value corresponds to Re v, (®; f,’l) and Im P.;(“, S‘,:() for ‘each field point
(5,n) -

It is clear that the recording of ¥, takes place several orders of
magnitude more slowly than the circular sweep of the CRT. Thus the question
arises: How long will the complete ccverage of the mask take?

This préblem has not been studied in detail but a brief inspection
suggests the following estimate. A standard short persistance oscilloscope
coating retains 10% of its initial glow 2 milliseconds after a sharp cutoff
of the beam, and 1% after 3 milliseconds. (Czeck, J. The Cathode Ray
Oscilloscope. Interscience Publishers, Inc., N. Y., 1957, p. 21.) If the
filter which minimizes afterglow effects is well designed it should be possible
to operate the circular scan at up to 200 cps. About 200 cycles should
suffice for an accurate coverage of the piston region so that one field point
can be calculated per second. A lattice of 25 x 25 field points cculd then
be covered in less than eleven minutes. Recent improvements in shortening

afterglow time may permit this figure to be reduced.

Systems for Computing the Sound Pressure Amplitude from Re v, andIwm ¥; Data.

There are a large number of ways of computing the sound pressure ampli-
tude, Ipl, from the values of Ke ; and Im «&;. Many of these are
now under study for feasibility and practicality. A few of the Re ¥

and Tw ¢, recording devices and computation devices are outlined below,
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1. Recording Re ¢ and Im ¥ as distinct quantities for each field point
with digital calculation of IPl-

2. Recording Re ¢ and Im & as continuous level curves corresponding to
lines of field points with graphical or digital calculation of el

3. Recording Re ¢ and In ¢ as continuous darkening of a photographic
film corresponding to the CRT mask, i.e. corresponding to the region of
the array. The light source which exposes the film cuuld be restricted
so as to expose a small region of the film corresponding to the field
point, and to advance as the field point does. The darliening of the fili.
would then represent the “Re #: or the Im ¢ field in the neighborhood
of the array. Optical devices using these films could perform the
multiplication and summation in equation (13) for the real and imaginary
parts separately and then give the modulus Il by vector addition of
cross-polarized components. Thus l?‘ can be obtained by entirely analog
means. The optical system, however, diminishes rapidly in accuracy as
the number of sets of pistons with the same amplitude, frequency and phase
increase. The optical system should prove to be useful for accurate data
on simple arrays and qualitative data on complex arrays. The latter

should be of sufficient accuracy to identify and locate pressure peaks.

Conclusions and Recommendations

This report has presented analytical ideas and calculations so far
accomplished. It has also presented preliminary ideas for amalog pressure
distribution calculation and display. It i{s felt that both analogs and
mathematical analysis have much to offer in gaining an understanding of various
features of the near sound field of transducers and arrays. The analog approach
should allow a rapid semi-quantitative assessment of the value of various
design ideas, with no limitations on transducer shapes and distribution.
The analytic approach will continue to give the necessary deep insight into
the fine details of array geometries that are sufficiently simple for their
representation in convenient mathematical expressions. The development of
analytic approximation techniques should be continued, the objective being
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useful engineering formulae. Another important phase of future study should
be a study of the applicability of x-ray crystallographic mathematics for

sound array problems. This should teach us tricks and limitations.
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APPENDIX
I. Analysis of §.(ﬁ-x2

In the fourth section of Part I we were concerned with *he

evaluation of

- T d
(1) I,=2 _)Jl':;‘_‘_;'__ §, (R -avV/AeuTrre ) Jd»

where previously (4 - %) was defined as
oo

(2) 8 Ua-x)=hr [ Sin(hy) Snlxp)dy.
°

Substitution of (2) in (1) gives

(NI, - 4 Rt I B AT SE ) 3,4y

\J A putapr
Let  x= oW VAT s 0t 9T X a (“)"(P‘_P\\*‘)L)
dx o LW I Ve K=W’4 )
L LI (am)*
xdx = (am)"» d» s VXTS5, :—:'
xdx_
Gy = 4
(4)
_I = 35/15 S __Mi‘!(“‘l) xdx d
Grvits,
aw

a0 ‘s-.,(q.)A - Smlxg)
T, - #fx ) Sethy ‘S{—"“nr.—e; x



Panxs MATREMATICAL LABORATORIRS, INCORPORATED
SEDFORD ROAD ° CARLISLE, MASSACHUSKTTS

g

P Reference: Grobner Wolfgang und Hofreiter Nikolaus, "Integraltafel-
' Zweiter Teil, Beltimmte Integrale"”, Springer-Verlag, 1950, p. 129, No. TTc.

\S;_L_Jx - ’Wla_ 3, (») 2>0.

VELT
We have
o -
Let S then §=) when 5w V5L

_*‘

= oD Uhel A= o0

AS= Jx R E-"s_&">° $°‘, 7)6.

Then
A= 5 Sim 2% Jf =X = L T(%y).

Substituting this now into Equation (4)

I-oSSm(ﬁl.)T( 7) J"-

From Oberhettinger p. 165 ¢ 15

0 4 < Vs,
Ia= . “>E
YRS, e

This agrees with the results that were obtained by merely treating Ss

as the Dirac delta function between the limits of V?,_ and oo,

II. Summary of Formulas

ani (AS
1 v, (S, %)= )'54,(,\,‘{.) m +’"‘.,l.\.l,‘

2. cp‘(l,}q;‘h)a)'JK‘()m}x,}; £ )wixg) dx J\‘,

- e
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—awi (Axrpy)

3. WA 0y e) s ~ \WIITE' e where  s,= (aM*(A%ut), & % 5,
at F"(s'"'"*')"’ \‘Pl-r‘ %U.N;i)%.(t,n,- %) or
. O atn) L
FGSne) = ”4‘ (,\,}"'. &) » 4
5. .
001, )= I [§90,00m, 13 8 IR0, 55 8 )ty g by o' dy 3
6. s awe () »5)
ws(gl":Sl.i). SSS¢‘ ('\,”,9; ‘)C 4 ‘*}"‘ ' JA J’l dv
7. ™ -
B O, ) e FIK, 09, n0 8 ) wing) dudy _ X
8 - .
' ~awi () 2 L -
Ko p0, &) = €7 vy gt 4 ‘{l‘s’: 8 (R ~V5)]
Where s, = @) (A e puteP").
3.

S,(X-X') = “/‘IT‘); Sin (l’) Sin (x',) Jt’_

10. (For a circular piston)

@, ) - oL, %%f J.(¥5, a)

where
s,= QU (\e )

5,= (AW (A% 4 )
2 ™o
L‘-.-.[F_—s'; + Ts_—’-S,(‘fe-V?;)]

W, = W(X,y) when x*+3%<a”
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11. (For a circular piston)

""3(;)""‘5 ‘) = aw, S. " J, (VJ’) T' (ra) dv

vhere W, = w(xy) when x%ey*2 ol
R AL
Y = Vs,
WS Sy

12. (Por a rectangular piston)

* b ‘ ]
4S5, %)) | &h%&&c.s(ms)- AR o ors S

—* )b

III. Graphs and Pressure Contours

1. Pigures 7-19 show v(v) calculated for the thirteen field points
for the sample nine-piston array used in the study of the accuracy of the
Ca(“,.) generator. The horizontal scale is measured in units of a, the
radius of the pistons, measured with respect to the particular field point

ip)
Peuw
with the Parke and Moran simulation of analog computation. The horizontal

as origin.

2. Figure 20 shows comparing the Sherman and Kass calculation

scale is measured in units of field point separation = '5- a.
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