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DUALITY IN SEMI-INFINITE PROGRAMS
AND SOME WORKS OF HAAR AND CARATHEODORY
by

A, Charnes, W, W, Cooper and K, Kortanek™

Foreword

The following paper was stimulated by a paper of the Hungarian mathe-
matician, A. Haar (possibly onc of the all-time great mathematicians),
Becauge it was published in a rclatively obscure journal, it has only recently
becn made generally available through the posthumous publication of his
collected works. Since the thcoremis to be established rest heavily on this
work, and Haar's paper is published in German, wc present it for ease of

access in frce translation in the appendix.

Introduction

Conjectured by vonNeumann and proved by Gale, Kuhn and Tucker [1],
the dual thcorem of linear prugramming has bcen unique among dual extremal
(or variational) principles (scc, for example, K. Friedrichs [2] for classical
mathematical physics principles, and J. Dennis [3] and /. S. Dorn [4] for
more recent use of Legendre transformations to establish dual ""quadratic"
programming principles) applying to gencral systems of constraints involving
a finitc number of variablcs in that ncither principle contains the variables
associated with the othcr. The thcorem has also been shown to be as funda-
mental for the theory of lincar inequalities (sce particularly Charnes and
Cooper [ 5] for this approach) as the classic Farkas-Minkowski lemma.

* The research of A. Charnes and K. Kortanck at Northwestern University
has been supported by O, N. R, contract Nonr-1228(10); that of W. W. Cooper
at Carncgic Institute of Tcchnology has been supported by O, N. R. contract
Nonr-760(01). Keproduction in whole or in part is permitted for any purpose
of the United States Government,
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Generalizations to lincar mappings between lincar topological spaces
were forthcoming from S. Karlin and H, F. Bohnenblust [6] (also L. Hurwicz
[7]) for the Farkas-Minkowski lemma, and from D, Bratton (also recently
K. Kretschmer [8]) for the dual theorem in a brilliant, unpublished but well-
known paper [9]. As expected, these generalizations are not nearly as

strong or precise as the original finite dimensional thcorems.

The Farkas-Minkowski lemma has been extended in another direction
in finite dimensional spaces by the Kuhn-Tucker thcorem [10] which gives
a necessary and sufficient condition for the existence of a minimum to a
convex diffcrentiable function over a convex set defined by a finite number of
diffcrentiable inequalities subject to certain additional differential-gecometric
constraint qualifications. This extension is made in terms of an equivalent
saddle-point formulation involving additional Lagrangcan variables. In

general, however, these arc no longer related to any dual problem.

Dual thcorems for nonlincar functionals and constraints in finite
dimensional spaccs have been established by V!, Fenchel [11] in terms of
contact transformations, but the rclated problems and domains of definition
are presented only in highly implicit forms. The most explicit result to date
involving non-lincarity and with scparation of the variables of the dual problems
has been achieved by E, Eisenberg [12] in the form of maximization of a con-
cave function homogencous of the first degree subject to a finite system of
incqualitics rclated to the convex homogencous function to be minimized in
the dual problem. The triple is subjcct to additional quclifications and

somcwhat implicitly defined dual constraint scts.

Starting from a little-known v.ork of A. Haar [13]. we define a notion
of dual "Haar" (or "scmi-infinite') programs which associate minimization
of a lincar function of finitely many variables over a convex set defined by an
infinite (arbitrary cardinal) system of lincar inequalitiecs with maximization
of a lincar function of infinitcly many variables subject to a finite system of
lincar incqualities. V/e introducc the notion of "general finite sequence"
spacc for the latter problem and cstablish that Charncs? theorem (associating

lincar indcpendence and extreme points) [5] continues to hold and that the
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Opposite Sign Property of Charnes and Cooper [14] characterizes, algebrai-
cally, convex solution sets spanncd by cxtreme points. (Note: These sets

necd no longer be bounded.)

V7c study further, applying thc notions of '"regularization' to these
systems, the straightforward duality reclations between these programs,
obtaining (1) an extended dual thcorem precisely paralleling that of the finite
system casc, (2) a general dual theorem for the most gencral case of (finite)
conve:x programs by expressing them in our (infinite) form, and (3) the study
of any (recal) semi-infinite program is reduced to that of a '"Haar' program.

It should be further noted that our dual structurc appcars to be particu-
larly adapted to probing the borderline between propertics vhich are purely
algebraic and those which require topology. Also it appcars to offer new
possibilitics for numerical analysis and effective solution of problems of
optimization over convex scts with an infinite number of extreme points since
it substitutes direct algebraic manipulation and minimal topology for

differential-gcometric requirericents or qualifications.

Generalized Finite Sequence Spaces as Solutions Spaces

By a generalized finite sequence space, S, with respect to an index
set I, we mcan the vector space of all{possibly infinite) vcctars[ki: iel] over
an orderced ficld F with only finitely many non-zero entries. Let V be a
vector space over F and consider a collection of vectors: P, {Pi:i 1} in V.
Ve call the subspace R apanned by thcse vectors the ''requirements space,
and we call S the '"'solutions space' bccause it is in S that the solution
set A appears, where

A= {ktS:.E MP=P o, A2 0} .

iel

Clearly A\ is a convex set in S,



Theorem 1 (Linear Independence by Association with Extreme Points)

M#0 is an extreme point of A in S if and only if the non-zero coordi-

nates of N\ correspond to coefficients of lincarly indcpendent vectors in R.

Procf: Assume that N\ is an extrerie point of A, and let J = {iel: A > 0}.
Assume on the contrary that the sct {Pi: ieJ} is lincarly dependent. Then

therec cxist pi for i¢J, not all zero, such that

=z pPR=0.

jeg * 1
Define B ¢S by placing zcros in other coordinate positions. Since J is finite
and xJ. > 0 for all jeJ, therc exists k> 0 such that )\j+ kpj, )‘j' k% >0
for all jeJ. Sect X(n: N - kp and k(2)= A+ kp. Then )\(l)f x‘-’-) since some
%# 0. Moreover MU, A e A ana = lz)\(l)+-1£ A2 implics A\ is not an
extremec point, which is a contradiction. Hence the sct {Pj :jeJ} is linearly
independcnt.

On thc other hand if A ¢ A is such that the set {F:i :j €J} is lincarly

independent, then N is an extremec point. For if it were not we could write A\

as a convex combination of two distinct points of A,
A= My @ wien £,

Now X )\gl) Pi= P th)Pi = T )‘i Pi= Po i but the non-zcro coordinate positions
iel icl iel

of X(l) appear among those of N\, and thercfore the only Pi vectors with non-aero

cocfficients in T kgl) P, arc among {PJ :jeJ}, alincarly indcpendent sct which
iel

mecans that the expression for P0 is unique. Therefore x}l) = xj for all jeJ
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and thercfore X(l) =N, Similarly ,\(Z)___ N ; This is a contradiction and we

conclude that A\ is an extreme point.

Definition: A set K in S is bounded if therc cxists M e F such that for any

\EK, “’i' <M foralli I (or alternatively, if Z lxil < M allheK).,
ieP

Thus if \, a€A, the ray K={\+pa:p > 0} is not a bounded set.

Theorem 2 (Opposite Sign Theorem)!

Ais generated by its extremc points if and only if for any a€¢S, a # 0,

Z a,P. =0 implics some a, and some @, are of opposite signs.
iel

Proof: Supposc that A is gencrated by its extreme points, and that there exists
at0, o 29 such that .Zla. P,=0, Ve will show a contradiction., For any

ie
p20, A+ paeA and therefore is a convex combination of extreme points
of A. The only possible extreme points that could occur in such an expressicn
arc those with non-zero coordinate positions among those of \ + pa for all
i 2 0. For every such positioning of non-zcro entrics there corresponds

at most one cxtreme point; otherwisc we could express Po in two diffcrent

ways with respect to the same lincarly independent set. Now if, say, N\ + pa

n
has N non~zero entries, then there are at most X N such extreme
m=l m

points, i.c., finitc in number. But we saw above that A + pa, for all p2>0,
is in the convex hull of thesc extreme points, which is impossible since the
convex hull of a finite number of points is bounded. Hence there exists no

such a¢S5 as above, and the opposite sign property must hold,
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Supposc now that the oppositc sign property holds., Given MeA, we
must show that it is a convex combination of a {finite number of extreme
points in A, Suppose N has N non-zcro coordinates and is not an extreme
point. 1/e will show that N\ is a strictly convex combination of )\(1), )‘(2)‘ A,
each of which has at least one fewer positive component than A . The same
construction can be applied to h(l) and X(z) and so on, until an extreme point
is encountered., This is a finite process because we will at most encounter
?..N-1 points with only one non-zcro coordinate, each of which is extreme
becausc its associated vector is surcly linearly independent, Thus after all
extreme points necessary to stop the process arc met, we can reverse the

steps to express the original A as a convex combination of these,

It suffices to carry out the first construction, Thus = )\j PJ = Po
jeJ

and Z aj P, =0, since the Pj‘s arc lincarly dependent. Therefore by the
jeJ
opposite sign assumption some a. > 0 and some as< 0.

Let Py = min - and Py = min —a—l, so that pl,pz> 0.

Set )\(l)r- )\j- plaj for jeJ and 0 in other components. Similarly

(2 - M oy - Then AW and AP ea ama

P. P
= —--—+”' x(l) + ——-: x(?.).
TPy M7Py

Now the above minimums will be assumed for some jl.jzt J, and therefore

Xu)and k(z) have at least one morc zcro than does \.
Q.E.D.
The following example shows that A although generated by its extreme points

need no longer be bounded.
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Fxample: A=\ ® 7k kk= 1, \>0} ecvidently has the
k=l

opposite sign property and therefore is zpanned by its cxztreme poings,
Since the extreme points are of the form X(k) =(0,...,0, Zk. 0,...), where

Zk occurs in the kth position, A iz unbounded.

The Extended Dual Theorem

ile call the following pair of problems formed from the same data

"dual semi-infinite" programs,

)
-t
-t

min uTP max X c.\,
o . i™i
iel
subject to W B > c, subjectto T P\ =P
i i . i "o
iel
NeS, A>0.

V/hen F is the real field, then uTe Rm for some m . If in addition the

set M = {(P?, Ci) tiel} is a “"canonically closed" sct in Rm+1' we call these
problems dual "Haar'" programs. Dy '"canonically closed" is meant that
in an cquivalent incquality system (for minimization) in which the (PiT, ci)
form a bounded sct, this set is closed.

In most of his thcorems on lincar incqualitics IHaar only includes
closurc of M as a basic assumption. However, we can sce rcadily (by
counter-cxample) that he rcally mcant a little more than this, that is, that
the sct M bc canonically closcd. Haar's theorem on inhomogencous in-

equalitics is stated as follows.

-



-
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Theorem 3 (Haar's Theorem on Inhomogeneous Inequalities)

Let Dk(ul.uz, . ‘“n) = aklul-l-. oot akn“n+akn+1 for all kel, with
(“1’ Uppeee ,un) viewed as in Rn' i D(ul, Ugpees .un) =a, u1+. . .+a,nun+:«.»,“+1 20
is a consequence of the canonically closed system Dk > 0 (kel), then there
exist )‘kz 0, )‘oz 0, with at most n+1 non-zero such that

D(ul"“0un) = i: kak(“looau.un) + )\o .

The proof of this theorem along with other results of Haar appear in the

appendix.

Thcorem 4 (Extended Dual Theorem)

For any pair of dual Haar programs prccisely onc of the following

occurs:
(i) sup = cixi = 0 and I is inconsistent
iel
(ii) inf uTPo = .00 and II is inconsistent

(iii) I and I1 are both inconsistent

(iv) inf WP = sup T c; )‘i = £ ¢, \¥ for some \Fe A,
° iel iel
Before we turn to the proof, let us consider some cxamples of the above

situations,

Examples: LetI =1{1,2,,..}
1 I
. . k
(i) Min u Max X (-1)
k M

k

subject to Z'ku_>_ (-1)k "k=l,2,000 subject to E r M = 1

0-u_>_0 ) H‘Zo .



Clearly I is inconsistent. However, for Il take k largc and even to see that

A =(0,.00,0,250,...) is a feasible point which means that the maximum is

larger than Zk. Hence since k can be arbitrarily large Max =+,

1 u
(41) Min u Max  E (-1)
subject to u(-Z'k) > -1 subjectto = (-Z'k) A=l
kel
Ou>>0 sz 0

Clearly II is inconsistent, and fcasible u consistof ug 0, i.e., Min = -0,

(iii) 1 11
Min u Max E )'k
. -k) . =k, .
subject to u(-2 21 subject to (-2 )Lk =1
k
O.u>0 7\.k2 0

Both I and Il are inconsistent.

(iv) Consider as the constraint sct the points under the curve y=ta.n-1(x),

with x > 0 and above the x-axis.



V7e observe that the cquation of the tangent line at the point (x, tan'lx)
-1
uz- tan 'x 1 ) ) .
= and therefore our constraint set is given by
by Bl 1+x2

is given by
the following system of inequalities

Y (1+x2)'1- u, 2 -tan x + x(1+x2)'1 =c,

2

Let the direct problem, I, be min (-uz) subject to the above constraints.

In this example the set of coeificient points is

1

{(p,xz)‘l’ -1, -tan x+x(1+xz)"1) : x>0} in addition to

the points (0,1,0) and (0,-1,- 1-27) . Clearly this set is compact, since the limit
point (0, .1.-12') as x—~ o is added. Note that min -u, = -max u, = -% is
never attaincd because feasible points must lie on or under the curve.

For this example, the dual II is as follows.

eyt 0 0\
If we let Px= 0 J? Pa= | ’ Pl3= " ). then we have

= . -
max .cxkx+0 Xa+( z)kp

0

). all \'s>0,
1

j p 1° = =
subject to % kax+ Laka-i- Pp )‘B P, (

We sce that if A, =1 and all other \'s =0, then the maximum - l-; is attained.

p
Lemma l If both I and II arc consistent, then
inf uTP =gup Z uTP.k. = Zc ¥ for some \¥e A,
o iel i i i
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Proof: \Ve observe that

u'P = ZuTP.X._?_ % c;N, « Thus inf u'P 2 8up Zc.\,.
e i 4 o ii

Let 2% % inf u'P_.  Then u'I > 2* whenever W' > e, alli.

By Haar's inhomogeneous extension of the Farkas-Minkowski lemma

it follows that for all u..i , uTPO- 2%= T (uTPi- ci) v’.:+ u: , where v’.:, Ys 20

iel
and v¥isin$S.
- % 0%
Thus Po- ‘2 1"‘i Vi so vie A
iel
» * 4 L ”
and 2 —.2 CiVi= Vyr OF z_si.lcivi.
iel i
Hence Te,vi> 2¥= inf WP > sup Z c,\
i ii= o= i iti?
so that Te,vi= sup Zc, A\ =in.£uTP .
i i’i i i o

Q.E.D.
This may be strengthencd to
Thcorem 5
The results of the lemma hold if {(P'ir, ci) :iel} has the Farkas-
Minkowski property, that is, if for any inequality D > 0 which is a consequence

of the system D, 2 0 , there cxist xk_>_ 0, )‘o 20 {ouly finitely many non-
zero) such that D=2Z )‘ka + N_ . Inthe appendix it is shown that
K o

canonically closcd systems have the Farkas-Minkowski property.

Proof of the Extended Dual Theorem

Adjoining artificial variables and bounding constraints to the given

problems, we obtain the following regularized version.l-

1/ Compare this formulation with the finite problem regularization given in

Management Models and Industrial Applications of Lincar Programming,
A. Charnes and /. W, Cooper, pp. 189-190, Vol. 1.
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1 11

R R
T T, +, =
min qu +u Po min 1221 cixi Uem(v +v )
T
<M
subject to uo+ u Pi 2¢ subject to ko+ i?l xi <
T T + .
wil >-Ue .ZPiXi+Im(v -v)=F
iel
T >-Uel  where A ,\,20,icl, and v, 2 0
m m o' i 33
u, >0

Clearly I, is consistent, for take u'= 0 and u 2 sup {ci}, since {ciz iel}

is a compact sct. As for Il , take \; = 0 (iel) and vio v = P, with A\ = M.

Note in addition that the system is still a Haar system because addition of a

finite number of cocfficient points cannot destroy compactness of the coefficient

set. Hence we can apply the lemma to the regularized version to conclude that
inf {uo M + uTPo} = i}"."lcikr- U Elv?, where v.i = v;- Vj .

Further, the rclevant set—l-, uo,uT for IR is non-empty and compact since it

is the intersection of closed sets (half-spaces) and by regularization is non-

empty and bounded. Thus by compactness the "i " is actually assumed for

some u: ’ u*T. The following possibilities are therefore mutually exclusive

and collectively exhaustice for u and vT= (v+ » v ). Ve tabulate them with

the correspondingly numbered conclusion of our thcorem.

(i) u*f 0, v¥=0; I nosolution , sup T c, \;,= @
o i i1
(ii) u: =0, v*# o, II no solution , inf uTPo =-®
(iii) uﬁ# 0, v¥#0, neither I nor II has a solution
(iv)  u*=0, v*=0, both fcasible and inf W P_= sup Sc A, = Tc\y
f) o i i1 i il

for some \¥ in A,

1/ only bounded u are relevant .
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Although for some purposes it may be vital to deal with a semi-infinite
program as presented, for most cases the object of primary interest will be
the nature of the solutions to the system v.TPi 2cq iel, Ve have already
pointed out that any such system is equivalent to one in which the {Pi' ci} are
bounded (for each inequality can be separately divided through by the maximum
of the absolute value of its Pi ' S5 entries). With regularization the most

general case is brought under the foregoing by the observation that

Lemma: The canonical closure of a system of linear inequalities has the

same solution set as the original system.

T (n)? ()
Proof: It suffices to show thatif (a~, 2) = lim (a ,an) and 2’ + ang 0,
-_— n

n=l,2,... thenaTu+az_0.

T
Suppose one could have aTu +a=-6< 0 with a(n) te 2 0 for all n.
by T
But then 0< a(n) ta = -6 (aT- a.(n) Ju+ (a-a'n)] < -% for n2 no(b) .

This is a contradiction and therefore we conclude aTu +a20.
Q.E.D.

Thus by reducing them to equivalent Haar programs we have achieved a
duality theory for semi-infinite programs as complete as that in the finite
situation.

To obtain the general convex programming dual theorem, we move the
functional into the constraints and replace it with a linear function as follows.
Suppose the dircct problem is: min C(u) subject to G(u) > 0, where
GT Z (0ee, Gi(u), .+.) is a finite vector of concave functions which defines

the convex set 17 of the u's. Let quiz Cio i¢l be a system of supports

for V/, and =z -uTQaz da' a¢A be a system of supports for z - C{u) > 0,
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Then the direct problem may be rewritten as:

min z

subject to gz - uTQa?_ d,

uTPi 2 ¢ acA, icl, Thus we have

Theorem 5
Assuming the Farkas-Milkowski property for this system, the extended

dual thcorem applies to the following dual programs:

min 2z max Zd 1+ Zc,\,
ae'a iTi
a i
subject to z-uTQ 2d subjectto Z =1
a a x
WP >c -Q p + P, =0
i="i aa TiTi
@ i
Moo xigo .

Since the work of A. Haar utilized above is not availatle in English,
we have prepared a free translation of it which is contained in the following
appendix, togcther with, first, a rendition of the pertincnt remarks and

theorem of Caratheodory's which Haar refers to and employs.
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APPENDIX

A. PRELIMINARY REMARKS BASED ON CARATHEORORY'S (191l) PAPER

In addition to the notion of convexity, Caratheodory's convex sets, K,
are closed. He discusses outer points and boundary points of a convex set,
agreeing with the usual intuitive meaning. A bounding-hyperplane, h, is a

_hyperplane which does not meet K, and does not separate points of K, i.e.,

there can't be points in K for which h > 0 and pointe for which h < 0. This
concept is extended to cases where K is a closed and bounded set, i.e.,
K is compact.

Now given any compact set M CRn. the space of n-tuples of real
aumbers, let K be the collection of all points through which no bounding-
hyperplane can be drawn for M.

Lemma: K is the smallest convex set containing M.

Proof: K is bounded, for let A = maximum distance of M to the origin O.
Then sach plane whose distance from O is > A is a bounding-hyperplane
for M, and hence sach point greater than Adistance from O is not in K.
K is closed: for let a be an accumulation point of K. If a{K, then we can
pass a bounding-hyperplans for M through a, say, s, with distance p from
M. But this means we can pass bounding-hyperplanes through points of
distance less than p from a. Hence a cannot be arbitrarily close to points
of K which is a contradiction. Hence ac¢K, and K is closed in R,-
Nowif a, beK, a#b, and c is any point on ab, them ce¢K. For
if not, pass a bounding-hyperplane s for M through c, then a and b are
not on s, and therefore lie on different sides of s. But depending on which
sideof s M ison we can shift s either through a or b to get a new
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bounding-hyperplane for M. This is impossible since a,be¢ XK. Hence ce¢K,
and K is convex.

If L is any convex set containing M and pd L, then we can pass a
bounding-hyperplane, s, for L through p. But s is also a bounding-
hyperplane for M and therefore p § K by definition. Hence KCL, and K

if the smallest convex set containing M.

Main Theorem: LetM and K be as above. For any c ¢ K, there exist a
finite number of points of rn.Pi and masses m, with mi_?_ 0 and

n ‘n
Zmill such that c = Zmipi.
{=l i=]l .'

Proof: Dimension M=z1: let a arnxl b be the extreme points of M. Then
every point of K is of the form c =zta +(1-t)b, 0 <t<1,

M —
a b

Assume that the statement is true for (n-1)-dimensional space (or equivalently
for (n-1)-dimensional subspaces in Rn) .

Let K and M be in R . Given c¢K, let m be any point in M, and
form ™c and. b the intersection with the boundary of K. If ¢ is interior
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to K, then we can find b # m. Now pass a 'supporting-plane,” s, through b °
having properties (1) beS; (2) all points of K lie on only one side of s ;
s necessarily intersects M, otherwise it would be a bounding-hyperplane
for M. Let M! be this intorscction. It has at least 1 lower dimension
than M and by assumption there are points Py M! with masses m, such that
n
b -‘flm‘p‘. Now we know that c =tm + (1-t)b for somet, 0 < t< 1,

n
z mi(l.-t) =1, Hence we have proved
i=)

the assertion for dimension n, and by induction the assertion holds for all

n
Hence c=tm + Z m(l-t)p, and t+
{nl 1 i

a2l.

B. SYSTENS OF LINEAR INEQUALITIES (THE HAAR PAPER)
1. Homogeneous ualities

Let Dk(“l' Ugseee '“n) = ayu tag,u, et ag u o whore k ranges over
some indexing set 1 and a0y aTe real numbers. Let D(ul.uz.....u‘) =
= aqu + a5u, bt av, and view the Dk'o and D as lincar functionals on R‘.
Consider ’k"‘u"hz"”"h)' for all ke¢l, as points in Ruuul let
M= bk: kel}. We say that the system of inequalities D, 20 is closed
if M is a closed set in R, . Inmost of the theorems Haar includes closure
of M as a basic assumption. However, we can see that he really meant a
little more than this, that is, that the set M be '"canonically closed" in the
sense that there exist positive constants {ckzkd} such that the set
M= {pklck:lul} is not only closed but bounded (compact). In this case we
call the system Dk 20 canonically closed. In addition we say that the



inequality D > 0 is a consequence of the system Dkz_ 0 if every solution of
the system fulfills D> 0, ‘

Theorem 1: If D > 0 is a consequence of the canonically closed system
D, 20, then there exist non-negative numbers )\, with at most n of them

non-zero such that

D= Z D, .
kdkk

Proof: Let D= Dk/ck where c, > 0 are such that pk/ck: kel is compact.
If the theorem is true for Bk' then it is also true for Dk; for in that case we
have

D= 2 Kka = ZI(N.I‘Ic:k)Dk 80 we can set ,'k ).klck

Thus we can assume that M = ipk:kc 1} is compact. \7ithout loss of generality
we can assume that there is a vector U= (il.ﬂz. ces .'\'in) in R, such that
-1 3
(@) > 0 for all kel. Otherwise we have qD x:x>0}= [ D;'(0)

but the subspace on the right hand side has dimension < n-1 so that we don't
need n variables.

Let P (Au Akz""'Akn) g:—(‘ld"n"“"h) for kel.

Then P, all lie in the hyperplans E given by z: U x =1, since
isl

n
u‘Au (“l )llbkﬁ) =1, Consider now the equivalent system

klnkﬁ) = Ald“l + Auuz-!- ceet Akn“n?- 0 where now the coefficient points

P, lison E.

k
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Lemma 1: The set 2 -{ B kc!i is compact in R .

Proof: For every P " (‘u"kz' . 'akn) «M define 13 ('pk) =D, {a) .

Since Dkﬁ» 0 for all kel, fu >0onM. Clearly £- io continuous on M ,

and therefore assumes its absolute minimum and maximum on M, {,e. we

can write 0 < m;<f, <m, on M. Now we observe that ] -{—-"—- :xcM}.

£ (x)

Immediately we can see ﬂut'ﬁ is bounded since Mis, s closed ;

for let _’:_m_ -—> yasm-—>%, Then §xm\ + as an infinite sequence in
{.(xm)

M, has a limit point x in M, and hence a subsequence xmié xXag fi—=—>oo

x
Hence —_ 5 X 4ince (n(x) #0. Since every subsequence of a
f=(x g f= (%)

convergent sequence converges to that limit of the sequence, we conclude

x A A
tu(x) =y, L,e, yeM, and M is closed.

To give this new system a geometric interpretation, let u = Ul"' \';l

uz-Uz+Gz.....un:Uu+ﬁnboacolutioaofthia system and let
.k(UloUz.... .Un) = Dk(Uli' \.lloooo .Un"' \-Iu) ,Dk(a) =

n
T agUg+a)

. A = ZA, U+l forallkel,
Dk(u) i=]l

The system Ul.Uz.....U‘ is then a solution of the inequalities

0, (UpUseene,U) 20 (keD) .

Let us look for intersection points of the hyperplane
Uyx, + Upkotoeoot Uyx 4120 with the vectors Oﬁ » where O is the origin,
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Either there is no intersection with the line (-)-;k at all in which case
AMU1 +ooot Aann- 0, or the intersection point has the forra .

1
U -T graphically:
n

x (Bhygree s sPAY,) where P = gy

v

i
o) 7 &

i

Now 631‘ is not cut in its interior if and only if p is not in the interval

{o <x< 1} which is equivalent (from the graph) to sz 0 . Hence our hyper-
plane has no interior intersection with the segment Eﬁk if and only if
Ok(Ul.Uz. vor 'Un) 20,

These hyperplanes can be characterized in another way. We have seen
that the points of M, i.e. {B, :kel} all lie in the hyperplans & and that f} ie
compact. In Caratheodory's sense let K be the smallest convex set in E
containing M. Connect all points of K with the origin O to get an
n-dimensional convex set K, f.e. K = {(eil. cee .ein) : (;‘l' coo ';‘n) X,

0<e<if,

Lemma 2: The hyperplane lel+...+ un"n+ 120 does not have an interior

—>
intersection with OIPk for all keI, if and only if it does not separate K.



Proof: <= Asaume the hyperplane does not separate K, i.e.,
U1x1+. . .+ Unxn+ 1 has the same sign on K; but since 0¢K, we have

U1x1+...+U X +1_>_Oon K. Since Pkc K(kcl). we have

0 <A1dU +...+Aan +1= Ok(Ul.....U ) (kel) =>
the hyperplane has no interior intersection with any of the OPk

=> : Assume the hyperplane has no interior intersection with any

(kcI). i.e., 0, (Ul' eeesU ) = 21 AkiUi+ 1> 0. By the main theorem of

Caratheodory, if (xl. ceesX ) ¢« K, we can write x z "'kAki with "‘k >0
kcI

and T Hy = 1 and at most np.k's being non-zero. Hence for each k we have

n
i‘:"lpkAkiUi + "’kz 0 and thereforc 0 < 121(§M“>Ui+ z pk- 2 x Ui +1.

n n
Hence for any ¢, 0 <e <1, we have 0 < Z (°;‘i)ui+ 1= £xU;+1 ; hence
- - T i=l i=l
n
for any(xl....,x )eK Zx,U,+1>0,i.e., the hyperplane does not
n » i=1 i i humd

separate K.

Thus far we have been building machinery for the proof of Theorem l.
Lemma 3 Dk(ﬁ) > 0 for all => D(u)> 0

Proof: e have seen in the proof of lemma 1, that for fﬁ defined on M by

£ (py) =g (aygeee e s8yy) = Dyli)y O < my Sy myon i, deds not hard to
show that given ¢ > 0, if u' is in some 6-neighborhood of u, Na(u) , then
lfu.(pl) -1 (pk)‘ < ¢ for all pch. Choose ¢ = --zm-1 so that for u'e Na(u) R

:-Tl<f (p) £-(p,) < —ml—forallp eM,
2 v l)- k 2 k

ilcnce for any u'e Na(ﬁ) ,

m.
1 1 .
-_2-<f“'(pk)<_i—+m2=> fJ>OOnM.
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Suppose now D(u) = 0. Then since D is a linear functional on R not
identically zero, there exists a u*«¢R n such that D{u*) =1,
t=0.¢8 U
Set u'=u 6“;;“.
Then ule Nb(ﬁ) 80 that Dk(u') > 0 for all kel. Hence since D is a consequence
of the system D, >0, we have D(u') >0. But D(u') =0 "“_u?"[|< 0 which is a

contradiction. Hence D{u)> 0,

a a - n
Thus set Al Z — ""’An s —= , where D(u) = Z a;u;,
D(u) D(u) i=l

n n
sothat £ AG=( Z ai L -1 => the point P = (AypeesrA ) les in E,
i=1 i=l D(u) n

....

Lemma 4 Let (Ul’ oo ,Un)l be a hyperplane not separating K, then

+1>0.

n
O(Ul. cee 'Un) g D(U, + Yprees .Un+ un)/D(ﬁ) = iElAiUi



S st s

Proof: For such a hyperplane we know Ok(Ul. cos ‘Un) 2 0 (ke¢l) because by

lemma 2, this plane has no interior intersection with O?} » oo,
Ok(Ul. «s+sU_) > 0. But this means Dk(ul+ \'11. coa U+ '\'t‘) >0, for all k, hence

D(U, + 4y5004,U +0 ) > 0, honce &(U...,U ) = mg 0, which was to be
proved.

Consequence: For such hyperplancs, O(Ul. eses U n) >0, which means by our
previous geometric interpretation that the hyperplane has no interior inter-

section with C_)?.
Lemma 5: P --(Al.....An) is in K.

Proof: Ve know that P ¢E. Thus it suffices to know P ¢K. Assume on the
contrary that P K. Then since K is closed there exist interior points of
C—D? also not in K. We can pass a bounding-hyperplane, s, through one of
these since a convex set is the set of all points for which this cant be done.
But this contradicts the above conoegluence of lemma 4. Hence P ¢K and
therefore P ¢K.

H‘nc‘\v.cwwriteA = Xz 'o-o.A = X z sl
AL ar e P

with at most n non-gzero My o Hence

WU)=»Z AU +1=Z T U +1=Zp (T
oMY Mehg Uyt 1= Zuy

U,+1) =T pu 0 (U).
2 2l T P

Z 18, (V) o, (U)D, (i
Hence D{u) = D(U +@) =2U). !.‘..___i__ T "k ‘:(U) f(“) -
D@ D@  k D)D)

z .“‘D“(m D,(u) = Z A\, D,(u) and the li ved
vt | D@ Wu klkk kv orem l is proved,

xkg 0, and at most n of them are non-zexo.




2. Inhomogeneous Inequalities

Theorem 1 above dealt with the homogeneous cage. For the inhomo-
geneous case let
Dyligreertg) = apqiyteeet ayglin* s
kel with ‘uloooo |un) viewed as in Eno Let M ={pk= (m.ooo.‘h‘):kﬁl}

as before.

Theorem 2

I D(ul. oo .un) =amto..tau ta L, >0 isa consequence of
the canonically closed system D, >0 (keI), then there oxist A, > O0.(kel) with

at most n+l non-zero such that

D(ul.....u ) n(f,kkbk(ul.uz.....un)-f).o

Proof: /e can assume existence of (‘.i' ces .ﬁn) =z u such that Dk(ﬁ)> 0,

otherwise ﬂD (©) = 0 o 4>0) and N D> 0) will be a translate of an
k
(n—l)-dimennion;l eubcpace 80 we can reduce the number of variables.
A"h' ..t ok(ulo o0 .Un) = Dk(Ul"\-‘l. seo .Un+\.‘n) ,Dk(‘.‘l. XX} .\.ln’

n n
= [ z auU“!' (izl‘u:\"" ‘h"‘l’] /Dk(il""".'a)

i=1
n

: T :-”-uu 2 zp.uvn. where A = O
=1 D, (%) sl D, (@)

L‘t (An.ooo.Ah) .pko
Then consider the hyperplane, h, given by leld-.. . +Unxn+ 1=0. Then

Just as in the homogensous case we can provs the property:

A) P, has mo interior intersection withh <m> O, (Up,...,U ) 20.



Let K be smallest convex set containing O and P, . This is the same
K as before, and since M is compact the set {O, P, kel} is again compact
inside K. As before we see that Dﬁ(‘.‘l”"'an) >0Vkel ==>

D(\.ilo cee .ﬁn’ >0 » and th.r.’or‘

- n 3 n
ou,,...,u )= UtW . z L y.zau+130
D@ sl D@ ' 4=

Hence we have the following restatement of lemma 2:

B) D >0 is a consequence of Dk >0 <==> for any hyperplane (Ul.....Un)T
not l.ﬂtlﬁl‘ K we have O(Ul.oooyun)zo.
Let P.‘AI""'AII)'

K
l//,d_ﬁ_’ o
,./
Clain PeK. If not, letd ;diuhnce {from P to K realized from some point
Qe¢K, since K is compact. Pass a hyperplans, s, through an interior point
of 6;; which does not separate K, say lel't. . .+Un:5"+l =z 0, Since 0¢K we know
Uxiteset U x +120 on the whole half-space in which K liss. Since P is
not this half-space, ; U‘Av 1< 0 for P, which is impoesible by
property B). Hence :’.11 K. By Cartheodory's theorem there exist .
Bot P 3 0 with at most n+l non sero (since the dimension of K is n),
such that



zpk“'p.o:l "‘d A1=}L°’0+kz.1|.&kAH. fori=1.2.....n

and z (U ...U)-z {zA U,+1} =
kd’*k 1"k RARRR kd""k d i
n
= A1U+Ep.-2AU+(1-p.)=6(U.....U)-p.
i-l{kclpk Xk k 174 o 1 n

Hence 0(Uy,...,U)® T b, 0(U,..., U ) + 1, . Since D(u) and Dk(ﬁ)> 0
kel

we can make the necessary adjustments to the 0's as before to get

D=2 D +7u with >0, keI, and at most n+1 of the A\, !'s non-zero.
R M2 ' M

3. Parameter Representation of Lincar Inequalities

Since the convex set K is compact, K is bounded by a finite number
of hyperplanes, i.e., K is a polyhedron. The hyperplane E with equation
ﬁlx1+. .ot ﬁnxn= 1 is one of these and we know that for all (x,...,x )¢K,

~uyx - uzxz- tee = unxn+1_>_ 0.

Since all of the remaining hyperplanes go through the origin 0, they have equa-
tiong “{q)’& +...4 us‘q)xn =0 (q=1,2,...,N), where the coefficients

n{‘l)' ‘e .u(q) can be chosen so that for all points of K we have

u x1+ ..+u(q)xn20 (q=1,2,...,N).

Hence the points (xl. son .xn) of K can be characterized as those (and
only those) satisfying thc following N+1 inequalities
{uiq)xl*'...'i'uf‘q)x 20 q=10200000N
™

n
"ulxl" e 'unxn"’l_)_o



Theorem 3:

Ul+ "‘l » Uz'.' azp XY Un+ ﬁn i. a .OI\u‘on Of the imqul‘w .y.“m
Dkz 0 <==> Ul"l*' oot Un"n+ 1> 0 is a consequence of the N+1 inequalities(*).
Proof wm>if D, (U;+4;,...,U +1u)>0,y k, then we have seen that a
(UI.....Un)T-phm does not separate K, i.e., U1x1+...+Unxu+ 1>0 if
(xl.....xu) ek » ‘o.o. “the .y.“m (.) holds for (ﬁ.oocpxn) .

<m= : From this assumption it follows that the hyperplane (Ul. seeosU n)T
does not separate K ==> it does not have an interior intersection with the
'.m‘u. -O-P-k == Dk(Ul'l‘\-ll. vee .Un"‘ \.‘n) Z 0 .

Hence (U, + ‘.‘1' ceesU t ‘.'u’ satisfies D, > 0 for all k if and only if
there exist non-negative numbers k(q’ (q=1,2,...,N), A, and A\ with at

most n+l different from sero such that
Uphoo ot U +1 8 z MDD b, 4ul ) 4K (Typm e Bx 41 + 0
l‘l see q “l x‘ ve :n “lx‘ see

or U, = z MDD 35,y T 9. NG, l=hen.

qel el
This is a consequence of the inhomogeneous case, §2.

Therefore svery solution Wolgsese sy of the systeo of inequalities
nkgo (keI) can be put in the following form

(@, (q) (q) (q)
= k + N » s 2 k N geoey
“1 qul Yy “l u, il + uz

u = qz':.l ).“l’ugl’ +A G where ANV, Ag20.



This follows from observing that

N -
% (q) (a) a = a 3

Y,

The converse of the statement is also true simply by reversing the steps

to put things in terms of Ul' oo ’UN again and appealing to Theorem 3.

4. Integral Inequalities

Let al(x), a.z(x). ceesd V(x) and a(x) be continuous functions in the
interval « < x < f. Let u(x) range over all continuous functions defined in

this interval. \7¢c say that the inequality

J al(x) u(x)dx >0 is the consequence of the following inequalities
a
g B g
J al(x) ux)dx>0, [ az(x)u(x) dx >0, ... [ a.v(x) u(x)dx > 0
a a a

if it is satisfied by all continuous u(x) which satisfy the above system. We
assume that the functions al(x). az(x). veera (x) are all linearly independent.

We then assert:

Theorem: In this case we can write a(x) in the following form:

a(x) xlal(x) + xzaz(x) o004 Xvav(x). where )'1’ )‘2' cees N

constants,

Proof: V\/e can solve for )‘1’ Xz, ++ss A\, from the following system of linear

equations:

B p p p
aj al(x) a(x)dx = xlaj al(x)zdx + )\z aj‘ a.l(x) az(x) dx teeot N aj‘ al(x) a.v(x) dx

g p B g
aj' az(?) a(x)dx = "1 aj‘ az(x)al(x)dx + )\ 2 a; ,z(x)z dx +...+ )'v aj‘ az(x) av(x) dx

B - p g g
I av(x) a(x)dx = )’l J av(x) al(x)dx-t- xz J av(x) az(x) dx +...+ kv I as(x) dx
a a a a
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The matrix of this system is positive definite, for let

A = (apq) = ([ a.(x) aq(x) dx) be the lincar transformation,
a

Then we have to show (Axl x) =0=> x=0, But

n n (]
= = = L %X x a (x)a (x)dx =
(Axlx) pasl P APA Lo g Japbaagl

= afp[xlal(") tx,a,(x) +ou. +x 2 (%) 1% ax .

Hence (Ax[x) = 0 implics xlal(x) + xzaz(x) ...t X, av(x) =0 for x¢[a,p]

= = = = = i ' i
=> X =X, Zee. =X 0 since ap(x) 8 arc lincarly independent,

But this means A is non-singular; for if Ax = 0, then from t(Ax,x)l < UAx" #x“
we hzave that (Ax,x) =0 and hence x =0,
Hence there exists a unique solution Xl. )‘2' cees )‘v .
et wix) = a(x) - Xlal(x) - Xz az(x) - hee = XV av(x) .« Then
&

p p
J al(x) v(x)dx =0, [ az(x) wix)dx =0, f av(x)-.v(x) dx=0.
a a a

Similarly for -w(x). Hence as a conscquence wec have
p p
JaIw(x) >0 and -~ [ a(x)w(x)> 0

a -4

B
=> [ a(x)w(x)dx = 0. Now replace a(x) by w(x)+klal(x) L T +kvav(x)
a

B
to get S w(x)zdxr- 0 which implics w(x) 2 0, i.e.,
a

a(x) = klal(x) + Xz az(x) +oe0ot )‘v av(x) .
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We have to show now that )‘i-)- 0 (i=l,2,...,Vv)

Consider the system of equations:

p p p g
af az(x) a.l(x) dx = Ky af az(x)2 dx + Ky aj‘ az(x)a3(x) dx+...F K, aj’ az(x)av(x) dx

g p g
J a.3(x) al(x) dx = Ky J a3(x)a.z(x) dx + Iy fa.3(x)zd:c+ R K, J'a3(x) av(x) dx
a a @ o

B p B, B,
j‘av(x) a.l(x) dx = My J z‘.v(x) az(x) dx + My J a3(x) dx+.. .+ i, J av(x) dx
a a a a

Since az(x).. a3(x). seed av(x) arc linearly independent we sce that the matrix
of this system is non-singular. Hence there is a unique solution YL YRR

Let w(x) = a)(x) - pa,(x) - Baag(x) = oov = poa (x)

so that we can write the above equalities in the form
B - B - P
J az(x) wix)dx=0, [ a3(x) w(x)dx =0,..., [ al(x) vi(x)dx =0 .
a @ a

Furthermore [ a.l(x)\'a'r(x) dx = [ F;(x)zdx > 0 otherwise a.l(x) vould be
a a

a linear combination of the other ai(x)'s .
Hence w(x) is a solution of our integral inequalitics and as a consequence
p -
we have [ a(x)vq{x)dx >0. But
a

g g g
Falx) Wxddx = [ [Ma(x) 428,00 ..ot A a ()] Slx) dx=h [ wixZdx>0.
[- 4 [ 4 " 4

Hence ).1 2 0. Similarly we argue for kz, ceed )‘v by removing the appropriate
al(x) from {a.l(x), az(x). ooy av(x)}. and considering the smaller system of

linear equalities. Hence the assertion is proved.
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