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An avpproximate method in signal detection*
by
\lalter F, Freiberger

Abstraeci;. A theorem from the theory of Toeplitz
forms (rsfe 1) is applied to the problem of esti=
mating the best test statistic for the detection
of Gaussian signals in Gaussian noise.

Let x(t) be a stationary Gaussian process, mean zero,
sampled at successive time points to provide an observer with
a finite sample

X = (xl, X2,ooo, Xn)o (l)

The time points are to be closely spaced to produce almost
unit correlation. It is known to the observer that (1) is
either a sample from a Gaussian ensemble Qo with mean zero
and power-density spectrum fo(h) or a sample from a Gaussian
ensemble Ql with mean zero and poicr-density spectrum fl(K),
and he is to decide whether (1) ceme from Q, or Q;« Ve take

QD to be noise alone and Ql signal plus noise and write

fo(x) = fn(x) (2)
£1(\) = fn(x) + fs(x) (3

vhere fn(x) and fs(h) are the pover spectral densities of noise
and signaly respectively; the noise and signal processes are
here assumed independent and their spectial densities thus

additive.

* Research supported by the U, S, irmy Signal Rescarch and
Development Laboratories, Fort lionmouth, uncer Contract
DA 36=~039 SC=-78130
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Let H, denote the hypothesis that noise only is present
and Hl that we observe signal plus noise. If Q= {w} = QO L ‘Ql
denotes the sample space of all possible realizations of the
process x(t) in a finite interval of time, so that w is a
function of t £(0,T), then we define a critical region

WeQ (%)
in the sense that
iIf weW Ho is rejected;
if w¢w ) Ho is accepted.

The probability that Ho be rejected though true is denoted by
PO(W), that it be accepted though false by Pl(W*), and the
pover of the testy, l1.e. the probability of rejection of Ho,
consequently by
D=1 %
Pl(W) 1 Pl(W e (5)

It 1s well known that although perfect detection is not
possible in the case we are considering, the most poverful

critical region WMP is given by the Neyman-Pearson test
W = &IL&) > o} (6)

where the likelihood function L(x) is given by

P (Xq 9XryeeseX, )
L(x) = SAta 2 (7)

po xl,x2, XX ,xn) ¢

Here, p (%) and p;(x), the probability densities induced cu
Q by H, and Hl’ respectively are given by



= L o & gep-l
po(x) RSy T exp(~ 5 X*R %) (8)
(x) = <& x*R;l ;
p1 (%) (2n)n/% AT R, exp(- 5 x*R{7K); (9)

R, is the covariance matrix of the nolse, R, that of the signal
plus noise; these are given by

.o o -
R = ”zl‘if g1 (Vi) £,(MaN; YyH=1,2y0 00,0} (10)

o
-
and similarly for Rq. Hence

L{x) = K exp[% x?(Rgl - Ril)z]. (11)

The likelihood function is thus a monotonically inereasing

function of the quadratie form

x*(R7L 2 RIDZ = x40g ,  says (12)
hence

e = Eler @ -r7hx > o} . (13)

For practical purposes (12) is not a convenient expression
since 1its use requires the inversion of large matrices. We
siall now show how a theorem from the theorw of Toeplitz forms
(ref., 1) can be applied here to obtain a corputationally
feasible procedure. A similar aprnroximation has previously
(ref. 2) been found effective for the estimation of the spectral
density of a random process.

The probability density of the guadratic form (12) can
be looked on as being completely determined

(i) under hypothesis Ho’ by the eigenvalues of the matrix

@R, = I =R{R; (14)



(11) uncder hypothesis Hyy by the eigenvalues of the

matrix

R, = R;lRl - I, (15)

Approxiriations to the distribution of quadratic forms
such as (12) are considered: in.ref., 1. It is shown that the
distribution is asymptotically normal, but since the matrices
are nearly of Toeplitz character, closer approximations are
suggested by Toeplitz theory. It can be shown that, if P
denotes the trace of QRO and B the trace of QRl’

L1 4 .
¢ £a(N) -~ £_(N)
y-a S i
Bo = 2 -ft‘ fl()\? dh, (16)
T -
fo(N) =« £ (N)
~ 1 1 0
E ACO NI (17)

A

This suggests that we should use for our computations the quad=-

ratic form

x*an

vhere

T
_ 1 (v A 1
qQ, = {-21,;_! Oy - hya; (18)

V,p = l,2,...,n}

and construct what we might call the "approximately most powerful

test"
Woap = &Ela*ez > o} (19)
vhere, with (2) and (3),
To £.(N)
- i(v=p)X s
S E0E = 5 f Lo wve B EOTE, 0+ £,07 e (20)

qnv’p=1



But we know (cf. ref. 3, pe 91) that

n
L]y L i °
zm L x o™ = 1o, (21)

the periodogram, which is an unbiased and inconsistent estimate
of the spectral density £(A) of the process x(t). Thus,

7

n FFQpX "Jz 1N ot oee, o7
timate of ff()\) LoD ax (22)
= an estimate O .
IR eV MV Ao

Hence, the anproximately best test statistic is a welghted
periodogram. The resulting signal detection method could there-

fore be represented schematically as follows:

power meter‘ — >c¢| = signal present

POVET 46| — signal absent

x(t) = |filter| ~»

The filter will have to have the relevant characteristic, viz

/ (%)

T OV, (M (W]

the power meter is a quadratic integrator. Usually, shapes of

the spectral densitlies will be somewhat as follows:

A
,-"‘\r- £, () £,(\)
! fnZUI fnh5+fs o) ]
|
: .’
—~—_ |
W\__\ |
’ /// R
| ==
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With this procedure, then, we do not have to invert large
matrices but can construct simple physical devices; it is also
suitable for high-speed computation.

To test the accuracy of this method, the frequency

functions corresponding to the most powerful test based on
x*Qx

and the approximately most powerful test based on
*
X an

were computed and compared numerically for a simple cases

We chose for the covariance matrix of the noise the unit

matrix

Rl - RO =S = {Svp‘i V,lJ- = 1,2,000’11}
with
T >
_1 [ 1 1Waph s vl
RGN BTN YT H=etT
=TT

The spectral density of the noise is, hence, £ (\) = 1 and
that of the sigral

- 2
£ () = —t=b

is the Poisson kernel which, for values of p fairly close to 1,
is narrow-band., The parameters chosen were

n=20, pP= o7 o
If we denote the eigenvalues of S by A,, those of



Q=N o (ms)t =1 - ()t

will be
1

1 - o
1+7\v ¢

ile denote by go(x) the frequency function corresponding to the

1 - E%K;

and by gl(x) that corresponding to the eigenvalues hv. These

eigenvalues

are then the "exact" frequency functions.

For the approximate theory, we define the matrix Qa with

elements
T
£ (N
i(vep) N
’% _l'fi‘ (n)[f (+E (V)] en VTR M an
___._B___.._ .
N T pei’n oL (VE) g
T 2%
J l-pe 12
-
T
- L= an
o1 |1-peix|2 + 1 .- pa .
219

By choosing the constant r as the solution of the equation
r[(1-p%) + 1+ )] = p(2+r°)

such that 0 < r < l,lwp can be brought to the form



p(1-p2) 27| J1iiret)?
-
R S LT
2
p(1-p%)

since r(v"“) is the Fourier transform of TEL=II§T§ e The eigen~
-re
values of

Q = {qui Vo = lyeeeyn}y; n =20, p= o7
are computed to give the frequency function‘ﬁ}x) which is to be

an approximation to go(x) as defined above,

Similarly, the eigenvalues of

QaRl = Qa(Ro + 8) = Qa(I + 1)

are found and used to determine the frequency function Yi(x)
vhich serves as an approximation to gl(x) as defined above.

Figures 1 and 2 show the curves go(x), Yo(x) and gl(x),
Yi(x), and agreement is seen to be very good.

Acknowledgmente Thanks are due to Professor ULf Grenander on
whose work and suggestions this paper is based.
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