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Anpp oximate_ method inp iaal&etection*

by

Walter F. Freibere~r

Abstract, A theorem from the theory of Toeplitz
forms--(ef. 1) is applied to the problem of esti-
mating the best test statistic for the detection
of Gaussian signals in Gaussian noise.

Let x(t) be a stationary Gaussian process, mean zero,

sampled at successive time points to provide an observer with

a finite sample

Z = (Xl, x2,...l Xn). (1)

The time points are to be closely spaced to produce almost

unit correlation. It is known to the observer that (1) is

either a sample from a Gaussian ensemble 90 with mean zero

and power-density spectrum f£ O) or a sample from a Gaussian

ensemble 0l with mean zero and porcr-density spectrum fl(),

and he is to decide whether (1) came from 9o or gl" We take

ao to be noise alone and 91 signal plus noise and write

fo(%) = fn(%) (2)

fl(%) = fn(%) + fs(%) (3)

wthere fn() and f (%) are the power spectral densities of noise

and signal$ respectively; the noise and signal processes are

here assumed independent and their spectial densities thus

additive.

Research supported by the U. S* Army Signal Rescarch and
Development Laboratories, Fort Tionmouth, under Contract
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Let H. denote the hypothesis that noise only is present

and H1 that we observe signal plus noise. If 9 = [W] = Lo 0 U9

denotes the sample space of all possible realizations of the

process x(t) in a finite interval of timet so that w is a

function of t e(OT), then we define a critical region

W (4)

in the sense that

if W -W H0 is rejected;

if W9W , H0 is accepted.

The probability that H. be rejected though true is denoted by

P(01)) that it be accepted though false by Pl(W*), and the

power of the test, i.e. the probability of rejection of Ho,

consequently by

PI(w) = 1 - P1 (W*). (5)

It is well known that although perfect detection is not

possible in the case we are considering) the most powerful

critical region W, is given by the Neyman-Pearson test

W = [xlL(Z) > c) (6)

where the likelihood function L(x) is given by

pI(x 7x ,."",xn)
L(x) = PO(X ese x n ) a (7)

Here, p,(X) and pl(X)$ the probability densities induced cz

Q by Ho and H1, respectively a'e given by
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PO (x) (27)n/2 de2 2*Ro exp) (8)

0

P ) I exp(- R (9)(2(.))n/ (2d:en/2,,d2 t
1RZ

R is the covariance matrix of the noise, R1 that of the signal

plus noise; these are given by

R f (X)aX (0o =2J e l (10)

and similarly for R1 . Hence

L(x) = K exp[ r*(Rl I - RI 1 )x]. (ii)

The likelihood function is thus a monotonically increasing

function of the quadratic form

-(Rl - RII)X = 2.:4QZ say; (12)0(11

hence

= xlM ;(RW1 - R 1 )x >c . (13)

For practical purposes (12) is not a convenient expression

since its use requires the inversion of large matrices, We

shall now show how a theorem from the theory of Toeplitz forms

(ref. 1) can be applied here to obtain a conputationally

feasible procedure. A similar approximation has previously

(ref. 2) been found effective for the estiwation of the spectral

density of a random process.

The probability density of the quadratic form (12) can

be looked on as being completely determined

(i) under hypothesis Ho, by the eigenvalues of the matrix

QRo = - IRo (14)



(ii) under hypothesis HI, by the eigenvalues of the

matrix -1

Approximations to the distribution of quadratic forms

such as (12) are considered in.ref, 1. It is shown that the

distribution is asymptotically normal, but since the matrices

are nearly of Toeplitz character, closer approximations are

suggested by Toeplitz theory. It can be shown that, if Vo

denotes the trace of QR0 and l the trace of QRI,

S fl()fo() d, (16)

,= .L I E f IX x 0.Wd%(7)
Il 2 :r f()

This suggests that we should use for our computations the quad-

ratic form
X*Qa x

where
7E

Qa fJei( i)X()d%; (18)
a, 21 1,2-7..7n

It o v,p.

and construct what we might call the "approximately most powerful

test"

W : = L*QaX > c) (19)

where, with (2) and (3)1

7a = n xvei(v-)x 
_ fs(_)_A,(20)

n a = x e~ f fn(%)Lfn(%) +-f(X)J dX. (20)

-ilt v 1=1



But we know (cf. ref. 3, p. 91) that

n 2

Elm x ei V IW) (21)

the periodogram) which is an unbiased and inconsistent estimate

of the spectral density f(%) of the process x(t). Thus,

~fsWk

n X*QaX = I I(X) nj , dX

it
= an estimate of f(X) £(fr( ()+fs(X)Jn ndX . (22)

Hence, the approximately best test statistic is a weighted

periodogram. The resulting signal detection method could there-

fore be represented schematically as follows:

x(t) e-1 >c -. signal present

t --power mete poer c -- signal absent

The filter will have to have the relevant characteristic, viz

JfnXY) fn~k+ x

the power meter is a quadratic integrator. Usually, shapes of

the spectral densities will be somewhat as follows:

\ -fs(X) fs()
-n(%)[fn(x)+fs(X)]

fn W

0
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With this procedure, then, we do not have to invert large

matrices but can construct simple physical devicesi it is also

suitable for high-speed computation.

To test the accuracy of this method, the frequency

functions corresponding to the most powerful test based on

x*Qx

and the approximately most powerful test based on

X*Qax

were computed and compared numerically for a simple case.

We chose for the covariance matrix of the noise the unit

matrix

R0=N=I

and for the covariance matrix of the signal

R- R S = vsf; l j, = 2,,n

with

2
VL = - lP1o ei( l p -el 

The spectral density of the noise is, hence) fn(%) 1 i and

that of the signal

f ' o . ) 
. 2

II-peixi2

is the Poisson kernel whicht for values of p fairly close to l,

is narrow-band. The parameters chosen were

n=20 , p= o7 •

If we denote the eigenvalues of S by X, those of
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Q = N- - (N+S) - = I - (I+S)Y

will be
1

+v

We denote by g (x) the frequency function corresponding to the

eigenvalues

and by gl(x) that corresponding to the eigenvalues Xv. These

are then the "exact" frequency functions.

For the approximate theory, we define the matrix Qa with

elements

I fs ( k  e i (v-0) X k

vV = £n(n)[Lfn(%)+fs(X) d

1- P2

-1E

2vJ IlpeiX12 + . 2 d

By choosing the constant r as the solution of the equation

r[(l-p 2) + (1+ 2)] = p(1+r 2)

such that 0 < r < l1vi can be brought to the form
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7E

S-- 1-a. 2 ±( -1%dVL 27tPj ll~re±I12 e(i)a

i_ -- e'r i (V')d%

-p(lp 2 ) 2 I lrei2 e

T r . rV-
p~l-p 2 ) r

since r(v'11) is the Fourier transform of r 2 The eigen-

values of

Qa = (t Vlt = l,...,n}, n = 20, P = .7

are computed to give the frequency function Yo(X) which is to be

an approximation to go(x) as defined above.

Similarly, the eigenvalues of

QaRI = Qa(Ro + S) = 0a(I + M)

are found and used to determine the frequency function Y1 (x)

which serves as an approximation to gl(x) as defined above.

Figures 1 and 2 show the curves g(x) , Yo(X) and gl(x),

Y1(x)g and agreement is seen to be very good.

Acl .nowledgment. Thanks are due to Professor Ulf Grenander on
wihose work and suggestions this paper is based.
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