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ABSTRACT

The polarization rotation is studied for radio signals received
from an artificial satellite in the ionosphere. A first-order analysis
is used which leads to values for the integrated electron density in
the ionosphere. These values are compared with those calculated by
other means and with those obtained by other investigators: A new
parameter, the rate of polarization null position, is introduced as a
method for obtaining the electron density at satellite altitudes. The
methods employed in the analysis are outlined and additional means
of improving the analysis are discussed.
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NH = electron content in a column of height hy and ! square meter

L
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LIST OF SYMBOLS

(All units rationalized MKS where not specified)

in area

frequency in cycles per second

height of the satellite in meters

velocity in meters per second

Faraday rotation null period in seconds, T =?§'§
electric field of an electromagnetic wave
electronic charge

magnetic field density in webers per meter’
permeability of free space

magnetic field intensity in amperes per meter
force in Newtons

masgs of an electron

time in seconds

instantaneous distance from the satellite to the point of

observation, i.e., range

2wf

angular gyromagnetic resonance frequency, 2 fij
angular plasma frequency, 2% f,

number density of electrons in electrons per meter?

permittivity of free space

iid
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,ev‘

0

e gy €

dr

dh

e ———— oo o

- propagation constant (appendix 6nly) :
polarization rotationn due to the Faraday effect in radians

length of the mean propagation path in meters

angle subtended at the earth's centér by r

electric flux density |

angle between the magnetic field vector and the direction
of propagation

element of actual propagation path length
element of optical path length
element of height normal to the earth's surface

angle between the direction of propagation and the zenith
at the satellite

_ =2 o
constant equal to 2.97 X 10 ; rationalized MKS units
constant equal to 2.39, rationalized MKS units

zenith angle of the propagation path at the éarth
observation point

H cos ¢ sec § for a flat earth; H cos ¢ sin(i- §)/(sin i - #in §)
for a spherical earth

value of M at the satellite

velocity of light in a vacuum

critical frequency at hy,

height of the maximum of the F, layer = hmax

mean value of M (see Appendix V)

time rate of change of the Faraday polarization rotation

iv
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Z,
H

number density of electrons at the satellite height

£
[}

* magnitude of the magnetic field at the satellite height

i of
[}
([

scale height (usually in kilometers)

rz:
-]
il

Hmax = electron density at the maximum of the F; layer

= angle between the magnetic field and the direction of
propagation at the satellite

¥ = correction factor for neglecting higher order terms in the
binomial expansion for 8 {(main body of the report only)

= £ /8

Lo
I

SHynax = S: N dh; integrated electron density to hp,

NI—IP = integrated electron density to hy computed from satellite
positions a minute apart assuming the dN/dh X 0

NTH = theoretical value of the integrated electron density to h, based

on an assumed distribution N(h)

~
!

= Na/Np = ratio of ionization above F; max to that below

]
1

2 height of the equidensity column having density Nmax and
total content NH & SHmax .
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is rela edl to the dens,lty lof the ‘elec\tro»nxs‘ at s‘ate 111te altitudes. It is,
,re, of mtere»at to\ study the xelec]tronv content in the 3
i S‘tmc value 8 to th

Many melthod%s‘ have been uged to measure the number density of
‘ : m of the F, layer: radio star
rotation of lunar r ’

evments,

nd satel,_, S A rather
rly "W’O\r‘k is »gmve'n ‘by Evans, 16 who

observat:uo;n mne\thodus . —All the above

‘ the 1on0xsphere, a virt
be treatedl as a "quiet" xspherlcally

. 1))

sea of vmaowng partxues ’ mus«t ug'ua.
‘stranﬁed re.gmon in order to i
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howeve r, are contmually bein ng improved;
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assumed to be spherically stratified. If the further assumption is
made that the frequency f is high enough that the higher order terms
in Eq: (L) can be neglected; then the polarization rotation is given
simply by

5 S
= ‘@' NH cos ¢ ds
= ‘3’\@)

An alternative form of Eq. (2) which is usefi il m@tantde:@wsxly is

((‘4)» ‘dlg\ = th;‘
‘U“ﬁn Eq (4 ) a first order form ¥ the )spherm: al earth is

(5) L dh.

i = sin §

r;lent to put Eq“\(A3)i anrd Eq (5‘

{6) ®

(1]

s “;:a ‘l‘xé 3,
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1 value for

where © is found experimentally and yields an experimental
Ny under all the assumptions made in developing Eq. (7).

m of | E‘q (('7’) has

o S
oy @8 _ Ki ,
8’) — o m—— N— ,,(\1 ( Tal Lo
(&) at @ HSB COS ¢)\dsx+S\‘ H cos ¢
| ds |
+ NISH@, CO8 ‘CJP‘J :l? H
)
Another form, assuming an optical ray path, is the derivative of

Eq- (6), and is

_ ! s = ~ \“ﬁ (8)N
o £ K Nah#M | ° S dn ¢ BN,
Ad:t f;v ‘;/(@) 84

a m@ne *satral,,g*htforwa rd‘ fo,rm,

e 14



(1) - dh + M Ny cos & =
dlh s 1 %%
Iﬁ the d s (11); the fact was used that N= @

1va.t10n~ of Eq (1[@ ) and Eq
; = 0. us tk 2q- (11) could have been obtained from
Eqr (8) by - dlffe re»ntmtin-g and adding and subtracting the proper terms.

Equation (11) is a desirable form of the fir»slt @fder F“a’r‘ day fate‘
of polarization rotation sine :
to yleld approximate results witl
error. The firs rée m

st three terrms are m
those of Eq: (8) and Eq. (9] becau»s‘e
under the xntegral in tihe f1 sut two teé

re ac

. Ky ’.;‘;‘ S
(12) %? =71 Fve _ (H cos ¢)ds + \ H cos “""‘y ds + NgHg condg-
agt i ' \ \@)
2 la)
N (fH cos ¢)ds # o8¢ —“Ii dg# | N HL
It is important to examine Eq. (12), in order to show when the first

for d8/dt. Al
gented here, and
= 2.02 x 1 'Y (K, /£ )

order expression, Eq. (11}, is a good approximation
the details of this exa.mma«twn, how«eve r, are hot pr

it is sufficient to note th:
at 20 Mc is relatively st "J"
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of the last three terms. On this \b&sls, one ¢an calc"latre the relative
contributmn of the £1r(sxt and f o)t ; of Eg. as a function of
height by ¢a O ; g 2a where the
relectren d‘“ j ; f'_ }Onh w1th- he‘lght is a)susubmed‘ to\ vary as shown in

bution of the

| Fourth term| = 2.02 x 10™? NyO|First term|

where N, is the maximun
an !é'ié&mple for noodn, N

n

| Fourth term| = (2.02 x 107'¥)(i0"2 )(.088)| First term)|

(0176 |First term|

ites 75 km above the F; layer maximum

C. PHYSICAL PARAMETERS AND CORRECTIONS

TO THE THEORY

1. Physical Quantities and Relationships

As discussed by Mitra, ** 'oniiéd laye rs 'resauit f’f’orﬁ th'e fact
lthat abs lorpnon of s@la.r radiatic ¢ ]

phe ric pene\tration and a mg;gym_\wm pomt of ioniza
of layer formation ig ti

T he most

(13) N

it

No GXP% er =2 - eég}
& ]

Assuming
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where

‘Z = h h\m\

Hs‘
h = height from the earth's surface
hyy, = height of maximum ionization

No = maximum number density of electrons at hm

H® = KT,/ mg = scale hieght
k = Boltzmann's constant

(_
\ |
n

Ta = absolute temperature,

3
{1}

= mass of electron, and

8 = acceleration of gravity.

mg [Chapman d1str1but1ons\ Yeh and Swe»nson have reported
' Wright 26 has found '@ol km,, and fGarrmott6 ha,a foundl Hr =

of the Fz layer. The »scale he1,ght, hiow«ever, is not, in gemera.l, a ¢on=
stant with height, but according to recent studies, 2? 22¥ the ionosphere
is appro _1ma.te1y 1s-otherma1 albove the max1m-um tof the Fz layer. This.

te m;pe rature y €rgo, tfhe mtems 1ty of the s«olar act1v1ty

In previous measurements at this Laboratory, 29 it was found that
the ‘Ghapinan distribution and a scale height increasing linearly with
height from the F, layer maximum at a rate of 5 km per 200 km gave
g ood agreement with measured results of intégrated electron density .
This is the electron distribution which is assumed in this report where
such assumptions must be made: A typical noontime variation of the
electron density using this mode! is shown in Fig. 3a.
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are ghewn i,n Fig, 5,

The variation with time of Ny, as previously stated, depends on
the solar activity having certain regular periods of variation: diurnal,
seasonal; and sunspot=cyclical. A typical daily variation is shown in
Fig. 3b whi ~,§rii6ws a t’w’a -mentfh ave 'ra,ge on the integrated electron
density to infir 3 ng
soundings and a 100' kix
seasonal and solar- Agyvgfh

horizontal gradients exist in the ionosphere. These »gra.ch nt;s ofte,n
causs serious error in experimental results®?? gince the E rer VII
velocity relative to the earth's surface is so high that the critl‘cal fre-
quency may change along the lme of sight te the satellite by 30 to 40%
in a few rinutes. Under these conditions a uniform spherical strati=
fics ion ‘of the mnosphere € t tbe aJs,sumed',, and the integral of

in Eqic (l l/))‘,

Mg = Hg cos 4’3 gec ‘é

*here, to reiterate,y H ia the ma.gn

he angle between
1lite . Since the

the directlon of propagatlon and‘ ze>n1th at the 8
magnetic field is assumed to be stationary and 1stant at a point

{see Appendix IV), and since the geometry will always be constant for
a fixed observation point (see Appendix IIl), contours for Mg can be
(drawn. Figure ZZ xahows the value (of M for t“ ee di 'ere»nt satelhte

of M,. as a aa 'mte panses ove¥ the Y g«t on is, for a fixed
velocity, a function of the direction of tr"xvel and the nearness of approach.
0 f course, possible.

An inﬁmte vanexty of Mg—ver's\u o ofe)?
4 and the geometries

ves is, ©

The rate of change of the path length ds/dt, for ghls report is as-
sumed to be the change in the optical path length or the time rate of
change of the actual range. This assum» tion ig valid i f refractmn and

path-splitting may be neglected; thi y holds for geometries
where the zenith angle is small, as shown by <§grgi.e.tp“’ This time
1

rate of change of range, or radial velocity, is always negative on the

[l”
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Equation (2) was derived assuming that the higher order terms
iﬁ Eq (l)\ chuldi be nex'glelcted Gai-i-i‘»ott," iiérwevef i 'hasn outiined' :

~owmg use of {thew ﬁrat order theory of Eq (Z) Thim pr@cedure
) 1y to assume a model fo'r the electron distribution with height,
used by using only one term. The

€O rectmn facto‘r im t'hen tdefitned )

' NH cos ¢ ds

NH cos ¢ da ¥ f‘ . J\ Nz Hcosdds ¥ +++

o

Z,
i

{1

H =75 % .025(h-hy ), the assumed scale height,
2

Xyél = H ic—‘:

No‘ z the electron de »nraity at hyy and

H = magnetic field as given in Appendix IV.

Here, X, is a convenient parameter which adapts the calculation of

Y to arbitrary frequencies. "!Ij‘h cal culat'ed correction value for Y
versus h t was uted us i ng the first five terms of the binomial
expan»sion for 8. The reswults g»- several values of X, are shown in

Fig: 7. n ;ie data, ¥ it is pou ‘ble to f"

negle ctiILS
) b@c Omes

©
"
a |
3
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o
"
5
L J
‘N>

»
]
B
™
5
o
1
¥
&
o
]
v

o
o
-»
[ )
Q'
1

8

where Y 18 correct only for vertical propagation paths.
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Starting with Eq. (16); Eq- (11) can now be written

. cO8 §x ai_

’"{here from the instantan
when N(h) is a.susumed 5 tlhe f

[e—————
] v

p— et

and

Obviously, if it can be shown that
—_—x T
8t ot

and
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chosen as discussed previously: a Chapman distribution with a scale
height of 75 km below hp, and a scale-height gradient of +.025 above
the maximum. It is seen in Fig. 8 that for typical Explorer VII heights
(600 to 1100 km) the error term is much too large to neglect. It is
necessary, therefore; at the»me heights to choose an electron distri=

bution in order to evaluate OM/dt. This procedure introduces an
inherent error since the assurn

2d N(h) w111 purobably not h - the game
form as the actual | N(h) he fii e 1

equation relating the
change of the polarizatic
at low zenith angles is

egrated electron . de nsity ra'.v'n'd t!}i'é' e T
on p‘ane at the point of nearest approa‘ch and

2 ,
w £ ¥
rK_j; ¢ taM// ot

- T

where T is found experimentally and is defined in terms of the rate of
change of polarization rotation as

3. The Tw 0= Pomt ng’h Pa.svs Approximation

Equation (19) will yield a number for Ny which is »sub_)ect to
errors due to small irregularities in the ionosphere: Th: d
vantage if these irregularities are of interest, but the m»aata 1 1S,
value for N may be sharply affected. Therefore, it is often a‘dvan-
tta,geoun to average the data over a period of a minute: This is done

The value of 8 is given at time t, by

Y-8, ==L ] i, N;
2 2 2 H
1116s 'l\6 ig



or on taking the difference

‘QL ‘:,@m* H f2 & Y . ‘Ae)

.y N

'I‘hus Iby Wo‘rkmg wnth th'O\

Fa.raday polanzatxon rotatmon
the data are used near the

D: EXPERIMENTAL RESULTS

L.

re-cewed' by two (orthogonal d1pole»s
of 11(91 9904 Mc.

(’wmee Appe;n s 07
The pe rde \bewtwee\n reac!h n\ull 1;5*

mental data, and they may be found as a function o
Fi*gg 1(0‘)9‘

1959 Iota I, the mtegrated] eleotron de> ‘szlty, NH,, was fouﬂ,
The results are shown in Fig. 11 along w1t
Fort Monmouth, New Jersey. SHp,,, is
to the maximum of the F, laye¥. Fo#t Mon T out,,- f" apr yatel
the same latitude as Columbus, Ohic, but Fort Monmouth ig at 74° w

*llongitude whlle Colwmbus is at 83°W lonngnude t!hms To thly means that

‘ollar pomitmn. Thls fact m\ust be allowed for in . examnmlng the Ft.
Monmouth ionosounding data, these corrected data, ‘however, will n
g\ 'nerally y*~eld' the same data tfhat would‘ have been found at Colun
however, is q
fact, a cross- lcorrelatxon of +0 86 ig obtained between &

and these data are presented again in Table I.

\ rll i6- 6‘ ,2‘(®J

ol pomend Prmand

- [~ )

romm—y — [} [



mmad el | . o o . ! et f— —— ——



$£G590 OE

S90 S2590
- ]O

S S == S e =S

I I

$BG90 08590 G2G90 OJE90 G960 09690 GSG90 (SS90 SHS90  0%S90
I |
|

|

o
|

|

I |

| In66 awmeves |
,7 1961 Yor L
e f

| ,,M
]

N I

SPU0JIG U| SPOIIdY HOH

e

22

111616



[

P—

1116-16

Meter

quare

ity Per S

nsl:

)

ectron Number De

;| Sept 1960 = Feb 196}

I

8
Order Of

(),Vi:,]\

curence During 5 Mo. Period

Nij ve SHmax -

ity
w0



A L T

Another method of presenting the results is to show the values
obtained for the columnar electron density to the satellite, Ny, and
the corresponding values of the columnar electron density to the Fj
maximum, SHmax, as a function of the time of day of the occurrence.
These plots are shown in Fig. 12. The smooth curves drawn through

re ‘Meter
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Fig. 12. Ny, SHmax as a function of time of day.

the results in Fig. 12 show practically an iden

and S’Hmax' In this small sample, them,
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The columnar or integrated electron density calculated using
Eq. (20) is plotted in Fig. 15a as NHP . A_Ls p otted are the instan-
taneous values of N jatr 1 and a theoretical value NTH.-
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where
= hg = hmax
and

B
Al

75 + .025(hg - hpmax) -

SHmaxs» Nmax and hmax are derlvexdl fremw the mmomoumnmng data
Figure 15a shows a max 1 discr ¥ wof a fa.ct
of three . In~ ,genera.l, it i

The results of Fig. 15b tend :
in Fig. 15a. RTH and RH ag; e wit
surprisingly, RHP tends to a T
with RTH than Ry does wi h RT‘H-
n satellite position lead to more err
permd is longer becausxe the lar(ge err

ate tfhat errors

when the obgervation

Ry = 4-16,

Ry =555, and
Ryp =6-.39.
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6. First Order Deter

nation of Ng

When one looks at the fir ion for the time rau‘.e

st-order equ

of sight, r, as the propag
neglecting the term in 6N/dt:

((VZ,‘].))) a-;-t— NH ¥ NS" ig cos 3 pry

Since we can only

o [ |2 | B e v —m

] ,1‘s< rde\t\e rmmed !by a, i

'@‘t and’ d‘r/ dt The‘
e dr/dt is always nega b

ime rate of change of ive on the appro:

the satellite and posit:

newgatwe the 'I de/ dt‘l null wi
When 8 M/t changes sign during
not readily obvious and the
will depend on when M/ot ch
positive to negative or negat

ur during the dej
the pass; the Il 36/
er of nullzsi ane }

1 position is
n of the nulls
r it changes from

The result of studying this dl de /dt [l null position is that it yields orde
of magmtude information on he ratio of Ng te Ny. In Fig. 16, three
es i at different cases are shown. It is seen that if
osition occurs essentially at the closest
t is ratio becomes less, however, the
null can occur elther € derably before the CPA, or after; depending
on the sign of aM/ot. us, under the assumptiong involved, Np/Ng
may be found from the lde/dtl null posgition, and if Ny can be determined,
then Ng is given directly, again, with many assumptions involved.

F igure 1’? sihmvs ‘tihc égreement one obtains in using Eq. (19) te
: ¢ hen comparing the theoretical

a. F -rg‘ ‘1‘77? however, shows

orating path-splitting and

‘C(om.putatmon w1th the \expe ri

poor agreement. Future work incory
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refraction errors should provide much téﬁpxé{é\f agreement betweén the
3 ental and theoretical curve for |d0/dt| at the times away from

the null point.

E. CONCLUSIONS AND RECOMMENDATIONS

1, to the satellite

. ‘The accuracy
ethod by (1) using an
yn value of the time

Values for the mte»gmaxtxe:d electron wdexn)s1tyr. N
may be found from: si :
of these values is imp:
improved geomagnetic

osition at its of tirme, and (f6)‘
der rtJerm-s 1gnored in the analysis.

The valur § of NrH dentepmined a.wt C;ommbue Ohw, correlate ’ell 3

Experimental values of the electron ¢ontent above the F, layer

maximum to tha.t below sfhow that la.rge ratm»s (N

Nb = 6 to 11) caf

‘ rglly h;gher than thegke @btg.iged iby 'othé r
or other methods .

es of the integrated electron
magnetic disturbances:

Values of integrated elec
longer observation period of 6
ended teo give more erratic result

itmon as a function of wt,,mxe often
tre -

COT

l 8 . Ip, faot, ,erro,rg in thre satell,ltﬁ,
showed up in these values as
The neéed for more accurate time

tﬂ

(0 "'a

tions wére made obvious by this caleulation
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Values for the electron density; Ng, at the height of the satellite,
can be found approximately by studying the point in time where the
magnitude of the time rate of change of the Faraday rotation, [d®/dt|;
goes to zero. Ratiog of Ng/Ny > 107 s yield a null position in “ de/dt ‘h
at near approach. Lower values of this ratio retard or advance the
position of the null depending on the geormetry of the satellite pass.

The accuracy of finding Ng depends upon the accuracy of finding NK
and accounting for variations in the ray path from the satellite to the
ground as a function of the satellites position.

This report constitutes an improved look at the analysis of the
Faraday effect as applied to satellite er ons: Yet, the complete
analysis of these satellite signals over long periods of observation is
80 complicated that this report is intended only as a preliminary
examination of the overall problem of obtaining electron density
information in the ionosphere from the satellite signals. Specific
improvements that must be made concern (1) a more accurate deter=
mination of the satellite location with time; perhaps by using inter-
ferometric technigues, (2) a better physical picture of the refracted
ray peths normally encountered as a function of ionospheric conditions
and the geometry of the satellite pass; {(3) a correction for path-splitting
of the ordinary and éxtraordinary rays, and (4) more diverse raw data
representing various geographical locations and different satellite
{fire;q;»uene‘ire,s‘ since these introduce new known parameters into the
analysis and obviate a knowledge of the satellite antenna position.

The rate of Faraday polarization rotation of gatellite signals
provides a sensitive tool for studying the ionosphete, especially if the
frequencies of em:is sixon Iie jusst a\bove thé m»aximuvmz \é'ritical' fféqu@néy
of the ionosphere .

and types of raw data are suita improved:
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APPENDIX 1- DERIVATION OF THE PROPAGATION

CONSTANT FOR AN IONIZED MEDIUM

This Appendix follows the previous work of Hame and Stuart A
In the derivation, the medium is considered to be collision-free and
spherically stratified with respect to the earth:

y

Fig: 18. Coordinates system.



direction of ptf‘épagatmon T of the elec ctromagnetic wave chosen to lie in
the %=z plane.

'Il

Jwt
‘o€ n

\til* 1
1]

ws'umi’n'g that E and V are of the form E.e and

i1}

£ o dwm
Eyx V B = e Vx

((\’24‘/)) < ‘E' L -

ﬁ
=
N

(25) <

as the

values of the earth s ma)gneitlc fleld, at fH
and at fyy = 1.4 mcs for electrons. Thus, at hl1g‘
only the effect of electrons needstohe considered.
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Maxwell's first curl equation in a region containing moving
electrons may be written as

27y vx

o |
0

By substituting Eqs. (25) and (26) into Eq. (27) =r
| L |
() |

o f
oLl

§
<
X

(0] Ey

(0] (6] g@(

i

whe re
! ( €11 =j€ 12

’ J (o} 0}

Equation a:(r?‘« )
'dyadl«c whlch re

{ K gne\tnc f
permittivity reduc

,,,,,, duc
" [‘( £ ]
{31y € = €y = € o

whe pe f@ ld"gxﬁ\@teg, the plgug,m@ f rwe‘qmremcy .
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Maxwell's second curl equation for the given time dependence is:
(32) VX E= =jupH -
On substituting Eq. (32) into Eq. (29) the following equation is obtained

(0]

(5[]

(33) vxwx

]

o el ——
s @M I\H! t@'lejuk E‘

where E, for our purposes, has the form
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‘ Fl‘g' 18, the pi‘?\'@@a.‘)gaxﬁj@?ﬁ congtanit Y has components

= i D@ D A i D el
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‘e‘llz E n l@? ‘
L@ (0] €. J]

IN\
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Y gin ¢ cos ¢ ‘H 1 Ey
|
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L Y2 sind cosd o (¥ eint brutp g€ss) | l\

N

[G.” =€ lz = €51 €35 sin? b+2€y €35 + Y€1, lz -‘€u< ‘€33 )’ sin™ ¢ l‘

2
+4e €3, cos’ ¢”

116 2 o 233 lzC 8 J

(390 Vi=-wip, ‘l 7 ~ 7 )

35 < w ; €1 ~ €33 and Eq. (39) reduces to

| D B ,
2 = ) 4€ i i |
1 ¢'+ "Il‘ 18‘i‘ﬁ‘“¢’* 77- ) = \Cwolsz ¢]| :

tromaghetic

which is the expreés :
‘ | ed in the

waves in an ion

\dg riva‘ti@ﬂ .
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(Qém») ¥ o= -t i @(_((‘6@@ ¥ €p3 cos ¢ ¥

here is lossless; the propagation
se constant:

1; cos ¢)

i

(43) B

When ¢ = 0@, B gep»re‘s«em}
itﬁ t!he r dire@ti«, ]

: ttw'o c1r'0ularly polarized waves f
19 On as

wthe pol.anza.t;@n p*lgne p.er umt vdl‘stan-c,te,

As‘ il] k;’»\s‘tga« ed in Fig. 19, 91 = Bydr and @, =

d 2 represent the two solutions
\be\twe:emr the abgolute nugul‘ar rotations peé1
‘vil,wenaw ¥

(44)

represen
polarization over a

s the angular imc rement of the rotation of the plane of

Equat (44) can also be written as

(45) 0= L2
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where on substitution for €11 and €, in Eq. (43) the propaga

constants are given by

(46) By,p = .; B oo

Now letting

Pe
=

1. xalxy, -1y
L 2 8
1

\ —

™
o]

the expansion of 81 and B; in a binomial series yields

tion



obtained

(50) do=

n pat ath of le/mgth R; the total

(5)

Now let

ther
K:‘ ({ R Kw :R p

(s52) © = "2; S NH cosd dr + —— Nt H cos & dr # -
f *iQ f! o

Thaé‘ wquas1 l\onglt dtmal cond’xtwn
q- (40) to within a few percent
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i ¢ is ne

The region in which this equa
percent is known as ti

es8 Eq: (40) to within a few
region of propagation. In the

‘ tlbﬁ\g with pxr(opa,gation consgtant Vi‘- is known as
the

I the wave propagating with constan
Theus'e two waves are orthogonal ed
i 1e-d‘ waves traveling at different velocities. This is

2101 As the waves p»rlo:g;regus* from a commen
i ce, elliptically, cir ;';
: : +» 'Thus it is seen that the
te for the transverse case.

(560 £ = iim - = 'Nle - 3
' |§ FANe! mw\

. '56)1 \by the binomial expansion and t
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APPENDIX IiI - GEOMETR

A problem
is t‘he lconver

$1 = East longitude of the satellite,

= North latitude of the sateliite;

&
~
i

83 = East longitude of the observation point,

D
N
|

= North latitude of the obgervation point, and

al lines through satellite
Fag: 1 )

The following convenient quantities are defined:

1 l‘ ‘-,' \é)wg T(é ‘52‘




c=08 T, 8in B

T: co8 A cos "Fz 0

the above quantities; the central angle is given by

$59) ¢ = 2 arc tan C;

al angle {or ze

» see Fig. 1)
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a knowledge of the ma ;;vde an dire ction of the
ong the propagation path. Furthermore, when theé

magnetic field alon
rate of Faraday rotation is of interest, the relative magnitudes and

directions between two points must be known quite accurately. The
earth 8 magnetic field, therefore, was expanded in spherical harmonics
ugdr nts which match measured values of the magnetic field at
,a.ce . The for ula.nti»on wof the wexpres«s_‘,,, 8 vusted were

tAQ‘

V = magnetic potential

a =

r = the radial distance from the cénter of the earth
to a field point

radius of the earth

(coe 8) = the associated Legendre Polynomials

@ == geographic co-latitude

16 €7



" and h,, = the constant Gaussian coefficients determined
from surface magnetic data

;s"aeilrd components are found from the magnetic
the northerly component is

= gec A E E (i) GOSN B

a=l m=0

the easterly component is

the downward component is

E i (n+l)H (vg;

n=l m=0

L ~ Pk . ,m !
(65) Hy = - - V cos mé ¢ h, sin md).

Thus, at any point above the earth's surface the magnetic field is
deseribed by three vectors.

The quantity M is defined as

it

M ‘l‘@lf cos ¢ sec §

and

®

16-16 58
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APPENDIX V - DiSCUSSION OF THE MEAN VALUES M, hy,

Given the first order equation
rotation, in the for:

®, the total polarization

66 @ =

i evamating 'M, it has been found necessary that M(h) and N(h) be

known, greatér than 2étro and have continuous derivatives for all positive

vaiues of h. M{h) is khown from App gle IV and the g<eomxe-tr1ca1
quantities of Appendix ¥1I. N(h) which, in general, is a diurnally,

seasona:ly, ahd sunspot-¢yclically varying function must be agsumed

for thie purpose - The assumed noon=time average d1s¢r1bu«t10n 1xs

ehown in [ g it is \h1'=r-d' oh me usaureme
the actual Nk
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'h‘e'l:gh‘t W'hllll : mai aining the same general shape, it may be said the
¥ M are relatively insensitive to the exact N(h) model

,‘h’r and 3(@’
‘are nthe »saxme

é‘&d‘,‘ 3‘@@ b :
from overhead looking north. The values o‘fe
as thoge at some particular hi k ]
regults are more meaningful ;
‘Of the Gt La]. heights as \shnown in F
ion re 'tmn ,sgk“"

the three cases: ove

t
i

Mean Height , By

- ‘é’ o EOO¥7 1000 1200

B e Kilometers

Fig. 23. The mean he ight Ih 4% a function of altitude .
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