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INTRODUCTION

During the last few years there has been much interest shown in

the problems connected with the fluctuation of the sums of independent

and identically distributed random variables. Basically these prob-

lems consist in finding the distribution of various functions which

are definable in terms of the sums and which give a measure (in some

sense) of the amount of oscillation which the sums undergo.

Thus if {X,, is a sequence of independent and identically dia-

tributed random variables and ISn} the sequence of their successive

partial sums (i.e. for each positive integer n, Sn = X + X2 +"" + X)

then typical quantities investigated in fluctuation theory are:

(a) the number % of non-negative sums among the first n sums.

(No = 0.)

(b) the value n of the maximn and of the minimu , of thefirat

n sums

() the position Ln where the maximum um occurs for the last tine

amongst the first n sum. 1

(d) the value Rnk of the sum which falls kt" from the bottom when

the sums Sol S19...S n are arranged in increasing order.2

One of the first definitive steps in the solution of fluctuation

problem was taken by E. S. Andersen [1,2,3) when, among other things,

he proved that for Itl < 1

(a1) Tt"P(L =n) = e'xpF1 P(Sk 0)) (L 0 )

'See Chapter 1 for exact description of L. The reason for the
notation will be made clear in Chapter 4.

2Here and in the following So = 0.



I

2

(.2) E tnP(L =0) = ex~p( (k <0)
n=O k=1k

A short time later Spitzer [114] proved that for ItI < 1, Re(y)= 0,

- ex;,( F (.AO)k Sk 0))
(.3) t , E(

In this formula we have introduced a notational convention which will

be used throughout this paper. Namely, if A is any event then we shall

denote

6Ax dP(Sn  x) as E(e "n ;A).

Implicit in (.3) is the following generalization of (.1) and (.2):

(.4) Z tn E(e = n) = exp( e '- OSk <
n=O k k

for Itl < 1 and Re(A) 0

(.) E tEe ~L =0) =exp(Z E e S 0
n %F ~k1l k S )

for ItI < 1 and Re(A) 0.o2

A final result to be mentioned at this time is the following

identity due to Wendel [18]

(.6) Z t Z vnk E(eVflk+'Pn)=n=O k=O
OD CO k

exp( E oIk E(e(YFPkS ) E L e < 0))

r- 1 (ek ~ ; 3k < 0)) OPzp :4'(eP~k; Skg 0))

for It1 < 1, iv e 1, Re(y) = Re(1) = 0.

3Actually, (./) and (.) am equivalent to (.3).
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We now can make the following observation. In each of the six

identities given above the right hand side consists of products of the

functions g+(,,x) and g_(,,x) for suitable ff and x where

(.7) g4 ( ,z) = exp( ZOO k E(evSk; Sk 0))

(.8) g_(n,x) = exp( l k E(e"Sk Sk <0)).
-- k 9

[As they stand here g+ certainly makes sense for Re(v) < 0 and Ix lI 1

and g_ is valid at least for Re(r) Z 0 and lxI < 1, but itmay be when

used in formulas like (.1) to (.6) that the corresponding left hand

side may only be valid for Re(w) = 0.]

Identities which can be written in terms of the functions g+ and

g. like the six identities (.1) to (.6) will be called exponential

identities. These exponential identities completely solve the problem

of finding the distribution of the Mnt Nn etc. in a very curious wy.

For example, in the case of in they show that knowledge of the

JjAa distributions of Sl, S2 1...'Sn is enough to determine com-

pletely the distribution of k. This, of course, is not what o

would expect since the Sk' 1 k n, are dependent. One would sus-

pect that one would have to know the distribtion of the n-dimensional

vector (S1, S29 9,n ) to find N. Similarly we will see that the

other quantities Rnk Nn, etc. share in this property of being

stochastically determined by means of the individual distributions

of the S

Another class of identities related to exponential identities is

the socalled extremal factorizations. In fact we will see that these

identities can be used to prove certain exponential identities and
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conversely can be derived from others. As examples m have

(.9) P(N =ik) P(Nk = k)P(Nn k = 0) Andersen []

(.I0) P(Lm M k) = P(I = k)P(Ln_k,n_k = 0) Andrsen 1

(._ LAn] j9itj. Wendel [1$

(.9) shows, for example, that knowledge of the two sequences of jom

structure of JNJ completely. (.1) shows that if we know the distri-
bution of the extreme values kn and H. individually for all n then we

know the distribution of any order statistic R nk.

Let us briefly consider the methods used up till now to establish

identities of the type under discussion here. In the main these fall

into two classes, combinatorial and analytic.

The combinatorial method was initiated in fluctuation studies by

Andersen [1,2,3). It was extended and formalized into a definite prin-

ciple by Spitzer [14] and used by his to prove (.3). Feller [9) also

uses ombinatorial argiments and proves (.1) and (.2), (.4) and (.5)

by their use. This method will be illustrated in Chapter 1 when we use

it to prove a theorem which plays a central role in our aproach to

fluctuation studies. This theorem was discovered by Andersen [1) and

is called the equivalence principle by Feller [9]. A full discussion

of it will be found in Chapter 1 and it will suffice here to say that

the theorem asserts the fact that Nn and L are stochastically

equivalent.

The analytic method was developed by several people independently

of each other and takes different forms according to each of these in-

dividual authorts developient. It turns out that these various methods
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are all equivalent and one such method is presented for illustrative

pqrposes in Chapter 6. This nethodg based on Liouville's theorem of

analytic function theory, seem to have first been used in fluctnation

problew by D. Ray [13) but was developed independently by Ray and

Kempernan. Kemperman [11] discusses the method in detail. The method

came to m attention by way of M. Dwass (who used it to preve the

special case of (.3) with y = 0). Other people who develop analytic

approaches are Wendel [17,40] and Baxter [4,5,6).

Wendel's approach is to formulate the problem in terms of solving

certain equations on a Banach algebra and then showing that these equa-

tions have solutions which result in the identity in question. For

details we must refer the reader to Wendel's papers.

Baxter's approach is similar and amounts to shoving that certain

operator equations on a function-Banach space have as their unique

solutions the respective right band side of the identity in question.

Here too we must refer the reader to Baxter's papers for details

(see especially [6)).

Our approach to these identities will be to show that all known

identities are derivable fron (.4) and (.5) by means of simple and

copletbly elementary considerations with use of the equivalence prin-

ciple to change from certain assertions about Lnn to Nn and conversely.

In fact we will show that all known identities are actually special

cases of one large identity (see (.28) for this identity).

We also will demonstrate that (.4) and (.5) can be derived by a

simple completely elementary probabilistic argmment (having its basis

in recurrent event theory) with the aid of the equivalence principle.

In fact, one purpose of this paper is to show that the salient facts
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of these fluctuation studies are contained in

(I) the Equivalence Principle

(2) the fact that "ladder indices" are recurrent events.
4

Let us be a bit more specific. An index n is called a ladder Ine

for the sums {Skj (or just a ladder index, (respec. point)) if Sn k Sit

O a j < k. In other words n is a ladder point if Sn is at least as

great as the previous sums. It is easy to verify that ladder indices

are recurrent events (see Chapter 2). Let {Wkl be the associated se-

quence of waiting times (i.e. WI + W2 +...+ Wk = tme of kth occurrence

of the recurrent event).

For an arbitrary recurrent event E, let y = 0 and for n > 0 let

Y. denote the time at n of the last occurrence of e. In other words

if 0 - k n then yn = k if C occurs at k it does not recur until

after time n. Observe in particular that if e does not occur during

the first n steps then Yn = 0. On the other hand if s occurs at time

n then Yn = n. As a recurrent event "starts from scratch" at each

occurrence we have that

(.2) P[yn= ] = P[yk = k]P(yn- = 0)

also

(P[WU > n] = P[Yn = 0]

(.14) P[e at n] = P[yn =n].

5
The two basic relations of recurrent event theory are

(.15) X t.(yn =n) = = P(t) Itl <1

/These will be defined below. They were first used by Blackwell
[7]. Feller [9] uses them in Fluctuation Studies. Their use was sug-
gested to me by M. Dwass (see Chapter 2).

5See Feller (i0.
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(.16) X t1P(y o)( - -( ) It < 1
n=o

and so from (.12) and (.15) and (.16) we have for Ixi 1 and Itl < 1

that

n=(

Differentiate (.17) with respect o x at x = 1. This results in

Pt- ]n-I PO
('18) = TE[Yn yn-I1 t P(O)

having as its unique solution
(.19) P(t) = exp( 0 E -

(.19) ~k k XI [k_ k lJ.6

This curious "exponential representation" was shoum to the author by

M. Dwass. It shows that P(t) (and hence Et1 ) is cozplete3y determined

by the sequence JEyn . Its use is dependent on how easy 14'is to find

Eyk, for all k.

For the particular event "ladder indez' a little reflection will

show that y for this event is just L , and so we need find EL .

But this is just where the equivalence principle is of use, for it

tells us that
n

EL = ENn A P(s k 2 o)

and thus use of this fact in (.19) results in (.1), (i.e. Andersent'

lea). From (.1), (.2) can de dedued, for

-= e -(t) = OXP( OD1-1t = : k )
(.20)

.P(Z 1: P(S2 Z 0))exp(Z eP(Si < 0))

63seChater2 for analytic details.
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and by (.15) and (.16)

(.21) 1Z tnp(yn=0] t=(Y n  -n)] -- 7
.nn~n) n Din .- '

Let us now briefly suumarie the contents of this paper.

Chapter 1 states a permutation version of the equivalence prin-

ciple and given its proof, then uses the Spitzer method to prove the

earresponding probabilistic version.

Chapter 2 is devoted to the extension of the recurrent event

facts presented in the introduction roughly along the lines of incor-

porating the quantity ASn* 8 These extended recurrent event relations

are used to prove (.4) and (.5) by an argment which is completely

analogous to the argument used to derive (.1) and (.2). A second

proof is given of (.4) and (.5) which will show that (.4) and (.5)

and (.1) and (.2) are equivalent. The chapter ends with the following

theorem

(.22) -T! tnE(en M n -1.Z
1 - ty() 1- Y(e" l(xt)" L)

where Tn denotes the umber of ladder points at time n (see Chapter 2

for definition).

Chapter 3 is devoted to the systematic deduction of theorem which

follow more or less directly from the basic identity. Some of the

more important of these are

(.23) 9(e tW1) k1 k (,k >

(Baxter C4], Spitzer [16])

7This observation is due to DeSS.

8 For the precise nature of these extensions, see Chapter 2,
Theorem 2.4.
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('24) ,' o e ASO, =e 4( ).;xt)g(A;t) - H(A:,t)

(Anderen [3), Baxter [6], Wendel [21)

(.25) tnZ(.a -f+ l IM) = g(+ ;t)g-_(At)

(oe x = 1, Spitser [31, Wendel [173, Baxter [,46), Dwaso [private

a srepondenos])
(.26) Z t E(. z ! Sn O) = {1 - [1- typ(A)]"(Ajzt) "

n1l

(Ander.n [13], Baxter [6])

(G27) E t(0'. n+l'fl xf)

= 1.~AP)H(A +P; z,t) [I [1W(P+ P)JR(P + Mt).

In Chapter 4 i introduce the notion of order. We order the

partial am So$ Sl,..oO by the following order relation < vhere

s= bat k < .

With this ordering there can be no ties; each sm stands In a uniq

position in relation to increasing -< order. Lot L the Index

of the am which stands kth from the bottom in the -< order and lot

Rk be that am. The man theor of Chapter 4 is theorem 4.3 which

n=O k=O

(.28) {1-9(+)tM t(A p:yuth~(~~~

- l .(1.t(+ Y+ P)g+(P + T+pfutTrg(p + r+P;ut)

*gpt m~t)
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This theorem is flew but many special cases of it have been derived by

other people. Many of these will be derived in Chapter 4o

Chapter 5 starts ith an alternate proof of the important special

case of (G28) with A p0. This proof has at its basis the follow-

Ing factorization:

[the speial case of u = 1 in duo to Wendell.

From (*29) w prove a corresponding permtation identity and conclude

the chapter with an example of this permtation identity.,

Chapter 6 presents an alternate derivation of the basic identity

and (.4) by using complex variable argumnts.* We then ohmy that the

combintorial identity equivalence principle can be derived from thoseI

two theorems.



Chapter 1

Equivalence Principle and the Combinatorial Method

Lot y -(ylqy2...Tn) be an arbitrary n-tuple of real numbers.

The numbers

So(Y) = O,

Sk(y) = y+ y2 +  yk' 1 k . n,

are called the partial ssm of y, Sk(y) being the kth partial sum.

Among the n sum o(y),... Sn(Y) let

(1.1) Nn(y) = the number which are non-negative,

(1.2) Nn() + = the number which are positive,

(1.3) 1n(y)" = the number which are negative,

(1.4) jn(y) = the number which are non-positive.

A word about notation: in the future, if f(y) is a function whose

argument is an n-tuple y we will omit y and write just f if no confusion

is possible about what the argument of f is. Thus in the above we

would write Sk instead of Sk(y), %n in place of Nn(y), e.

The partial sum So, SI ... 9Sn are said to have a Lirs t m

apst iok, (O k n), if

sk >j, 0 j kand Skk, k<I.<n.

Similarly, the sms are said to have a I"& I at ALM k

(o k ) if

SkkSj, O J j<k and Sk>S, k<lln.

We say that the partial s SO, S1,...,Sn have a t1= (respec. Iul)

k k if the partial sums of (-yl,-y,. have a first

3-1
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(respee. last) maxim=m at position k. In the sequel we shall denote by
(1.5) L the position of the last zamdLm%9

(1.6) Ln, the position of the first msimm,

(1.7) Lne, the position of the first mni4u,

(1.8) L , the position of the last minimm.

Let 0 denote the per=tation ( .l C12 of (l,2,...,n).

For each such per=utation and eaoh n-tuple y - (yly2...,yn) define

a new n-tuple dy as dy=

Consider a fixed n-tuple y and let A denote the set of all n1

imges of y as 0 runs over the n1 permutations of (1,2,...,,). le can

make A into a probability space by assigning to each I point subset of

A the probability I/nl. Each n t dy of y can then be thought

of as a value of a random vector = (1 1 ,...,1X) which is defined on

A andthe partial sues of dya avale of the partial sums of X.

Ikewvis, the valuesj Nn(dy), Ln(cq) 9 etc. can, be thought of as par-

tiOUlar values of the randm variables In(X), L(1), etc.

It is Clear that, for example, P(in(X) = k)nI is just the muobe

of permtations d which have the effect that among the partial umpq

S (d),.. . ,S(dy) there are exactly k which are non-negative. Sm-
II

what more formally we my write that

P( (1) =k) = I(Ly

where I (1) = if among the partial sms of dy there are

[In -kJ k non-ngative ones,
0 otherwise.

(I.1) THEORU (EQUIVALENCE PRINCIPIE)

Let y be a given n-tuple of real numbers (y1 ,y2 t,...,Yn). Ten



(1.9) P(Nn = k) = P(L=k = k)

(1.1) P(N =k) = P(L n k)

(i.11) P(N -=- k) = P(L = k)

(1.1.2) P(i nk ( k

(i.1) P(L - k) - P(= n-k)

(1.-4) P(L~n=k) = P(Lno = n-k).

Before proving this theorem us shall illustrate it by means of

1.2 E_2mma: y = (-2,7,-8,i).

There are 24 rearrangements of y.

1112 X3 S3.~ S2 S3 St N4 Lo 14 L

-2 7-8 1 -2 5-3 .2 1 2 3 1 2
-2 71 -8 -2 56 -2 2 3 4 2 3
-2 1-8 7 -2 -1 -9-2 0 0 3 0 0
-2 -8 71 -2 -10 -3 -2 0 0 2 0 0
-2 -8 1 7 -2 -10 -9 -2 0 0 2 0 0
-2 17 -8 -2-16 -2 1 3 1 1 3

7 -2 -81 7 5-3 -2 2 1 3 2 1
7 -21 -8 7 5 6 2 3 1 4 3 1
7 1-2 -8 7 86-2 3 2 4 3 2
7 1-8 -2 7 80 -2 3 2 4 2 2
7 -8 1-2 7 -10 -2 2 1 4 1 1
7 -8-2 1 7 -1 -3-2 1 1 3 1 1

-8 71 -2 -8 -10-2 1 3 1 0 0
-8 7-2 1 -8 -1 -3-2 0 0 1 0 0
-8-2 71 -8-10 -3 -2 0 0 2 0 0
-8 -2 1 7 -8-10 -9 -2 0 0 2 0 0
81 -2 7 -8 -7 -9-2 0 0 3 0 0

- 17-2 -8-7 0-2 1 3 1 0 0

1 74- 1 80 -2 3 2 4 2 2
1 7-2 -8 1 86 -2 3 2 4 3 2
1 -2 -87 1 -1 -9-2 1 1 3 1 1
1 -2 7-8 1 -16 -2 2 3 4 2 3
1 87 -2 1 -7 0 2 2 1 2 1 1
1 8-2 7 1 -7 -9-2 1 1 3 1 1

Now count the =ber of permutations which yield values 0,1,2,3,4

for the quantities involved and divide by 24. This gives
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P(4 = °) = 7/24 P(L4 =o) = 7/24 P(Lo,=O) = 0

P(N 4 = 1) = 7/24 P(L44 = 1) = 7/24 P(Lo4 = 1) = 5/24

P(N4 = 2) = 5/24 P(L4 = 2) = 5/24 P(L04 = 2) = 5/24

P(N3 = 3) = 5/24 P(L41 = 3) = 5/24 P(Lo4 = 3) = 7/24

P(N4 =4 = 04) = 0 ) ( 0 =)= 7/24

P(4+= 0) = 9/24 P(L4 = 0) = 9/24

P(N4+= 1) = 7/24 P(L 4 = I) = 7/24

P(N4+=- 2) = 5/24 P(L4 = 2) = 5/24

P(N/4+= 3) = 3/24 P(L4 = 3) = 3/24

P(4+-- 4) = 0 P(L4 = 4) = o

from which, in this case, we see the assertions of the theorem are

valid.

Proof of theorem:

First we establish (1.13) and (1.14). Let U be the permutation

n T = (2XnIxlI jx) and

(1.15) '(X) = n- 1(,x)
n

(1.16) L (x) = n-Lo(ivx)

from which (1.13) and (1.14) are evident. To prove the assertias

(1.9) to (1.12) we proceed by induction on n. For n = I these asser-

tiona are obvious, so suppose that we have established these relations

for all n-l-tuples of real numbers. To show that they hold for all

n-tuples we must consider three cases.

Casej : I+ 2 + ... + <0.

In this case it is impossible for the quantities n, N ,n ,,
a +ndNnnd to asum the value n, and so for 0 Ic n-i we have by
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hypothesis

P(n = kjXn = yj) = P(L = kx = yj),

P(N+ =kJX = yj) = P(L - kjX n = ).

Hence as P(Xn = yud I/n, I e e n, we hai shows that (1.9) and

(110) hold in this tase.

To establish (1,11) and (1.12) we use the eqitson

(1,17) P(N n" = k) =P(N = n-k) = P(L n = n-k) = P(L o = k),

(1.18) p( ,o= k) = (n = ,,-k) = P(Lj = n,- k) = P(% = k).

The last equations in(in17) and (1.18) follow from (1.13) and (i.14).

Case ii: Yl + Y2 + ' "+ Yn > O'

The argument used in case i shows the validity of (1.13) and (1.14)

in this case and (1.9) and (1.1) now etblses (1.1) in tia8)

(frot the outside in in this case).

Case iii: Yl + "" + yn = O.

The argument used in case i to establish (.0) is valid in this

case as well, and applying (1.18) establishes (112) in this ease too.

Similarly the correspondi in tn case ii is valid in this

case to establish (qui) and (117) now establishes (1.10) in this owe.
Hence relations (1.9) to (1.12) are valid for all n-tuples and

the theoe is proved.

This theorem was first proved by E. S. Andersen in [1]. Tre

present forzulation is due to Feller and the proof is essentially the

proof presented by him in [9] with minor corrections.

We now extend the equivalence principle to a certain class of

random variables called interchangeable which have the property of

being invariant under permatations. In precise terms we have



16
1.3 D n . n random variables XIX2,...,X are called inter-

changeable (symmetrically dependent) if the joint probability distribu-

tion of X1 X2 .. n is a symetric function of X, X 2...X n .

1.4 Axw . If X = (XlX2,...,Xn) are the nt rearrangements of a

fixed n-tuple y of real numbers then the XlX2,**.X are inter-

changeable.

1.5 D. A sequence {Xn) , n Z 1, of random variables is

called interchangeable if for any n > 0 the random variables

X l1X2t... in are interchangeable.

1.6 E . If iXnj n Z 1 are independent and identically dis-

tributed random variables then fXnl is interchangeable.

1.7 THEOREM

Let X = (Xl1X2...Xn) be interchangeable and let fn(X) be a

symetric function of XX2,...Xn . Then for any k, 0 k. nj

(1.19) E[fn; Nn = k] = E[fn L = Q,

(1.20) E[f; N-= k] = Elf; L = k])

(1.21) EIf ; N k] = [fn; L no kt

(1.22) E[fn; 1n = k] = E[f ; Q

(1.23) Elfnj In = k] = Ef; n -k,

(1.24) E[f,; L =k] = E[f L no = n-k .

Proof:

As the proofs of all of these assertions are very similar w

shall prove only (1.19).

(1.25) Elf; Nn = k] = 1- 1Sfn(x) I (Csx) dp(x)
n n ( n n N = Q]
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where p(x) is the distribution of X. By (1.9),

ZI(ax) = z I (dx)
[Nn Q 'LL-7k]

and so the right hand side of (2.25) can be written as

11 1 f (X O)CRX = Jt (x) I W, dip(x) =E~f ;L =k].

o This mode of argument from a permutation identity to an identity

on interchangeable random variables is due to Spitzer, and was ex-

plicitly formulated in [J,4j.

The particular case of fn = eASn will be of constant use and we

list here those formulas which we will need in the future.

(1.26) E(e ; N = k) = E(e ; L = 07

(1.27) [e i n += k] = E[e L = k],

(1.28) E[,e'Sn N- Q = E~An k],nno

(1.29) E[e'S; L==o] = E[eA Lo = n],

(1.30) [e L,=n] = E[e A ;L = 0],

to

where these are certainly valid for A complex and Re(A) = 0.

& . The method used to deduce theorem 1.7 (i.e. by a direct use of

the permtation identity 1.1) is typical of the cumbinatorial method.

What one does, in general, is to find a permutation identity which when

used in an argument similar to that used in the proof of teorea 1.7

results in a desired probability identity. The difficulty with this

approach is that there is not a systematic method which enables one to

find these permutation identities and that the proofs of these permu-

tation identities may not be easy. [For other permutation identities

see Spitzer [14], equation (2.24) of Chapter 2, and theorem 5.2 of
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Chapter 5.)

As will be seen in the sequel the various permutation identities

can be derived from their corresponding probability identities and

thus the combinatorial method is equivalent to the various methods

which have been developed.



Chapter 2

The Basic Identity

Let {XJ be a sequence of random variables and let their successive
partial um be denoted by {Snl. As usual we define So = 0.

2.1 Definition. A positive integer n is called a ladder point (index)

of the swis {S if

(2.1) Sn Z sP 0 J < n,

that is, if the sum S is at least as great as the previous ones. Ifn

WIW2, ... are the successive waiting times for ladder points then it

is easy to see that the {fWj are just the waiting times for new partial

am which are at least as great as their predecessors. Let {I be

the successive differences between these "world record" sius.

More precisely let .0 be the probability space of the -fl and

define

A, = [w En :3 n > 0 such that n is a ladder point of {Sk(w).

For w C A, define

W1(W) = inf[n > 0: n is a ladder point of {Sk(w)$
z 1(W) = IJ(W) (W).

For w cZl - A w define Wl(w) = c and do not define Z1 . Suppose now

that we have already defined events ,A2 ,...,An, and rand a variables

W1,...,WnZ el,...Zn then define

An+i = [w e A 3n > Wl(w) +...+ W( ) such that S () is a ladder
n 1n n

point of {Sk(w)y].

Ifw CA+1 define

19
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(W) infn > l~w) Wn~w: n s aladder point of S(

ndz ZIC w) = S (W) +n - -(Z()+.. z n(w)).

If W F- 11 - A+ define M+(W = and do not define Z n thi s

set. We have consequently

ZI,... , n are defined on An and W, ,Wn are finite on An

2.2 D. The sequence {V are called the sucoessive waiting

times for ladder points; W1+W 2 +...+ Wk being the waiting time for

the kth ladder point. For convenience define 0 = Z = 0.0 0

From now on unless otherwise specified, we will take the {In} to

be ]R&Roa]gnt and ll tributed. On the sums of such a

sequence e have that

2.3 TIHORM

If A are as defined above and if the {X are independent and

identically distributed then J(ZWk)T are independent and identically

distributed on their dcains of definition.

Proof:

Suppose we have established the assertion in the theorem for

a = 1,2,...,n. Then if k1,...,kn+I are jM n+ 1 finite positive in-

tegers, B any bore. set we have

P(Wn+ l= kn+" Z ,B1  k1 ...,W =kng Z1,'"9,Z )
= [x < + G01 ,x + -+Xnk < 0, o 0e x t 1+...+ x e B]
: tx < o,...,"+i 4  *+Xk, 1  O 1

= ~1  7.... (O ~ 'e+ B B)
P(I < 0,... + l +I B

= P(Wl = l, Z, e B), where . = k, + kn."+ %

k2}



IM

21

Tus

=( k111  Z e BI 1(W k+ 19ZZ B).
n*1 IAN) =~ pn =I

IdJwwie w have

P(nl= CD A) P(Wlco)0

Thts we have for any n2 {(W1,Z1) ... (W%Z~ are Independent whfre

defined and on A n, (Wn+1,Zn+1 ) bas the same distribtton as (Wg,) does

In the sequel when me write EEOA(Z1.+ Zn~tl+...+Wuj we will

mea E[eA(Zl+...+Zn) t ...--Wn JA ]. The above theorem then says that

Z31A;(Z+...+Zn) t~ji***+n] = {i[OA~l t~Ij}n

where It I <1I and Re(00 = 0.

In particular the sequence {Wk} are a sequence of "waiting time"

for a recurrent event in the sense of Feller, which of course sheis thst

ladder points are themselves a recurrent event. LSee [1a) for -details

Bdefinition of tequantities involved we have that

(2,2) [W1 >fnJ= [8 <0,... IS < 0] =Ln (I,... $i) = 0)

(2.3) [L y(,2 ... I) =n] = [S aSp 0o j < n]

= [n is a ladder point).

2.4+ TIEOB

Let Alt be complex numbers such that Re(A) = 0, Itt < 1 and let

y()= BAll. Th

(2.__+_ CD Asn L 0
(2.) = Z E(e Ln t 00=0

1- E(61 itul) Dli

Az WL AU ~ t(2.5) lm.E(2~ t) I E(e 3Lnu~ (L0  =0).
l-tyan 0
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Proof:

We first prove (2.4). As k z t'l < 1 and te {iA, )l ar

independent and identically distributed (by theorem 2.3) we have that

(2.)0 AZ1 W1 k oo A%(Zl...+Zk) Wl+* *+Wk(2.6) - E Ve tc. E E ' ,.tc ''- "
1 _E(e t1 e) = t ) =

Now as

€,'(zl+..+Zk) ..+0tEe) = OD t 1Z [ ' " ..4ik=n

and Z1 +..*.+ = Sn if W1 +...+ Wk 
= n we have that the right hand

side of (2.6) can be written as
o I(ASnw. .+ + nj= o o

(2.7) Z'o tnE( too Wk ) E = , t ¢E ....;W+ +Wk= )k=0 A = =

where the exchange in the order of sunmation is valid sino

X Z lt It(o U ... + Uk = n) <0
kn

but

(2.8) X .(Aen U1  ... k-)E(e f -;Ln)

si c a last axma muit occur at some ladder point. Cmbining (2.6),

(2.7) and (2.8) yields (2.4).

To prove (2,5) observe that

[z- t~pA)] Z *An; L = o)t

- ,,,ftnz( n; I =0) - -.( e '" i =o)} ,"

sino. V(A) = esA I& and In+ 1 1s independent of Il"'An" But

[L =0 ] = [W, > n]

and so the last expression can be written as

co Ah3 nV
1 - WZ E(e1U n)t = E(o Z t w).

This establishes (2.5).
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If equations (2.4) and (2.5) are compared with equations (.15) and

(.16) we see that they contain these (for the ladder point recurrent

event) as a special case (for A = 0). What we have shown is that in

this case we can extend these relations of recurrent events to include

the term eAS n . Now equations (.4) and (.5) are just equations (.1) and

(.2) with the terms e n put in (at least on the left hand side). As

was shown in the introduction (.1) and (.2) are consequences of (.15)

and (.16) and since (2.4) and (2.5) are extensions of these equations

we would suspect that (.4) and (.5) could be derived from (2.4) and

(2.5) by an argument similar to the one used to derive (.1) and (.2)

from (.15) and (.16). This suspicion will now be verified and this

will constitute our first proof of (.4) and (.5) which from now on

will be called the basic identity. But, as indicated in the introduc-

tion, we shall also give a second proof which will show that (.4) and

(.5) are direct consequences of (.1) and (.2) and thereby will show

that (.1) and (.2) are equivalent to (.4) and (.5).

At the heart of the matter of why we may extend the recurrent

event relations as we do here is the following trivial fact:

For the case of ladder points equation (.12) holds because of a

stronger sample space factorization

(2.9) [-(Xiles*OXn)=k) [Lk(Xl,...,Ik)=k1(

[Ln-k,n-k("k+l,...,X) = 0]

and this is true by definition of Lnn and the fact that the Xnjf a

independent and identically distributed. The importance of this

sample space factorization will become apparent as we proceed. As its

first use we derive an extension (.12).
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2.5 THEOREM

Let

(2.10) P(At) C E(eO B( Ln = n)tn'  it I < 1, Re(A) . 0,
n=O

then for IxI 1, ItI <1, Re(A) = Owe have
00

(2.12) z E(oAS xn)tn = P(A,tx)Q(A,t).
n=O

Proof:

From (2.9) we have that

E[e ;Ln =k] = Z[eASk ek(SnSk);L  = k]

(2.13) = EASkLk = k)E[efSn°k;Lk - 01.

Multiply both sides of (2.13) by xktn and sum over range 0jkSn < co.

This gives (2.12). We note that by equations (2.4) and (2.5), equa-

tion (2.12) can be written as

(2.4) Z tnE(. n L-m) p(9)P

We now prove

2.6 THEOREM (Basic Identity)

For Re(A) e 0, ItI < I

(2.15) P(At) =e rp( x L (eA Sk 0)).
I ~ k=1 k k 0)

For Re(A) r 0, 0 tI < 1,

(2.16) Q(A,t) = exp( jk E(ek; Sk <0))5.

Proof:

First we show (Just as for (.1) and (.2)) that (2.15) and (2.16)

are equivalent.
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For Re(A) = 0 we have

1 ( o tk (A) )1- tC(A) E :~kl k )
k71

(2.17)

= k--1 k E(e k;Sk j O)ep k L (e Sk <o))'

In (2.12) set x equal to I and obtain

(2.18) = n tq(A), = P(A,t)Q(A,t)

(2.17) and (2.18) prove the above assertion and so to establish (2.15)

and (2.16) we need only prove (2.15). We give two proofs.

Proof one of (2.15):

Differentiate (2.12) with respect to x at x = 1 ,to obtai I

00Ao tP'(a~t)

(2.19) z tO(e n n L) Ll - q( ]P(;,t)
n=O

and so we have
P ( ) L) AStl) 0

(2.20) E= E[(L= - L. P(A,o) = 1.

Hence

(2.21) P(Alt) =exp( E Ee(L~ - L]C

But the equivalence principle says

(2.22) F,(,'[L=- _ , ]) = E(eA[ N - 1) = E(e ;S 0)

since {n_I if Sn < 0
- n-l+l 3. if n 0.

'A. E,(.'9 xzn) = , Z E(eA;L =k)Z k = f (X) me have that

Ifn'(x)I e. EL M n for IxI _< 1, and so Tn f n'We~t is uniformly
convergent in x, IxjI I, and as Z E(eAs n x Lnn)e converges for lxj 1

we have r Z E(e A  ln)te Z E(Ln, eAn)t at x = 1. Also

P(Agxt) is differentiable with respect to x at x = 1.
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Substituting (2.22) into (2.21) yields (2.15).

Proof two of (2.15):

Start with (.1) (Andersents Lemma). Take logs of both sides of

(.1) and equate coefficients of tn in the resulting equation. This

gives:

(2.23) P(Sn Z 0) = E I 1 P(W +W2 +...+ Wk = n).
n k-- 1

Let al, a2, ... ,an be any n real numbers and consider the special case

of (2.23) that results when the random variables {Xny Just take thesen

n values with probabilities pl, P2,'"09n (rk = pk = 1, but otherwise

arbitrary). Each side of (2.23) then becomes a polynomial in

plp2,...p n . On the left hand side the coefficient of PlP2...pn is

In
[S.o0

while on the right hand side it is

IWlJ + w2 +...+ Wk = ,,]

where for 1 k e& n and each permutation

1 I 2 n' I (al,... ,an) denotes the function which

[Wl+W 2 +...+ Wk=n]

1 if the partial sme al, ad1+ a,2 ,..., adl +... ad have their
is k h ladder point at n,

0 otherwise.

l if the partial sum a,,--n 0,Similarly I ( s)a,...a " = 1 f ot

[S 0] Oif not.

And so we obtain the following identity

(2.24) Ed I o I (ad,.+ w )

[Sn k 0- 1 +*O+k n]
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For any x 2 0w have that

(2.25) ILEZ I (so ,...,a1 I~a 1 =l .. a,,n l dd 1 ac,,) E
LSn o] [S n X] C1 k1- Lw1+000+ k= n]

Consequently if =(X1,X2,...,If) are any n ineab e~l randda

variables me have from (2.25) by an argument simila to that used to

Prove theorem 1.7 that

(2.26) P(O Sn (x) = k S,( +w x) 9
ni kik 1 2 .W-; )

and so

(2.27) n~'1 k 0 ) E (,~ ;l ..

nk--l1k e WWe+kn

Multiply both sides by t'j sum and apply equation (2.7). This results

in
.tfE(,ASn, Sn k )(2.28) X' n 1) = 2E(eA(Zl+4 - +Zk) t(W1+h.-+wk)).

n71 nk

This is a version of (2.15) valid for interchangeable random variables*

If the I are independent as wllthen the right hand sid. of (2.24)

can be written as

kCD AZ E 1tWl)k =-nl-E(eAZ1ti)

and so taking exponentiails of both sides of (2.28) we recover (2.15).

This completes the second proof of the "Basic Identity."

We now establish analogues of (2.15) and (2.16) which will be

needed later.

(2.29) 2 E(eA11;L =n)tn exp( OD LE(e~k. <0)
n no k=1 k ,< )

by (216) nd (.29)
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(2.30) E' E(eA"n;L E O~n ep E(eNSk.S )
n-O kk

by (2.15) and (1.30).

Next observe that for the sequence {-Xn} e have
= o¢_,., = - , ..- = L=( l ... , ,

no(I1700*9X) and %rm3. &I-x I**Xl~ n' and so me have

n n n n

(2.o3) E tDE(ejn; = n) exp( 2_ 2 E(e n"S > 0))

Snnln
(2.34) Z tPE(eAl1;IE = 0) =exp( 20 E( e~sn >S~ 0)).

Let!3 denote the number of ladder points at ti> n (i.e. n =n n

up lk: W1 +...+ Wk = n). Our purpose here wil be to show thatby

sizilar arguments used to prove the basic identity we may establish

that

2.7 THEOREM

For Re(y) 0, Re(p) = 0, ItI <1, lIx I 1, 19 ' 1 1, me have

(2.36) A' tnE (s~ x ~ n* a1 1 U1 - t-(p) lYE(e(+P)Zl(t)vl)

Proof:

By remarks made in the introduction we have that L is the "timenn

of last occurrence" of the recurrent event "ladder point" and so if

L =k then Yn = Yk

and consequentlv

(2.37) E(eA'x fM y ep kLk k)

k E(ek y k Sk Ik =)e' n-nk,n-k =0]
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since knowing that the last occurrence takes place at time k makes a

function of X X. 2,1.j*~

We have now that

(2.38) E(e (YP) Sk Yk;: = k) = E E(e('r1)skW1 W2  . .. w = k)y

= +..+)(z+...+Z =k).

J=l 'ij

Substitute (2.38) into (2.37), multiply each side of the resulting

equation by t n and sum over 0 1 j < k< n < co. This results in

(2.39) EO E(oe y/)

= LE t (e ;L = 0)][M E(e(P+Y)Zl (7)Wl) n 
7 )

nn n

from which the theorem follows by (2.5).

Various corollaries follow from theorem 2.7 by suitably choosing

the parameters in equation (2.36).

2.8

(2.40) E E(,' 2" e ) = +
n=O

2.9 C
U1

(2.41) E(e y )t = 1
1 - t l i)(e It

2.10 orlar

(2.42) Z (e 1%)t - En 1 1- t I - E(eyZItWI1)"

The idea of studying the sequence of bivectors {(ZkWk)} is &

to Dwass who used them to prove (2.42) by an argument similar to the

argument used here to prove theorem 2.7. In fact Dwass shows that if
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I(ZkWk) axe independent and identically distributed bivectors with

the {W sitive integer valued, then if we define Yn as above and

Z1 + Z2 +'"+ Zn (which it is in the special case above) then
n 1 2

(2.37) holds. [In this regard we may say that for arbitrary {( Z,Wk)

of the type mentioned above, the special case of theorem 2.7 with p =0

is valid.] Dwass uses equation (2.37) to prove (3) (with y = 0) by

complex variable arguments.

The idea of look&Uig at random variables taking values ala2,...,an

to prove permutation identities is due to Wendel who uses it to prove

permutation identities in [17] and [18). In Chapter 5 we will use it

again to prove another permutation identity.

The permutation identity (2.24) is due to Feller and was estab-

lished by him by a direct argument in [9]. He uses it to prove the

basic identity as we do here.

The basic identity and Spitzer's identity (.3) are equivalent, as

is easy to verify from equation (2.40). Our second proof of the basic

identity shows that it and Andersen's identity (.1) and (.2) are

equivalent.

Finally let us remark that the basic identity shows that

2: tnE(eAn;L~ = n) =g.1 (Xlt) ~-y
n=O nn 1l- E(el 't )

nP tnE(e"SiL~ = 0) = g(A~t) 1 - VeI tw1

and so In the future g+ and g. can be replaced by the right hand side

of the above. In particular the exponential identities show that we

may express generating functions of the various quantities of interest

in fluctuation theou in terms of E(e Z tl).
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Chapter 3

Direct Consequences of the Fundamental Identity

The following notation will be used throughout the remainder of

this paper.

(3.1) P(Agt) = E(eASnn = n)t n

n=O

[Note by (1.26) this agrees with the original definition in (2.10)]

00
(3.2) Q(Ait) = Z E(emn;N = O)tn

(3.3) g+(A~t) = exp( E :n E(e's';S 0))
n71 n n

(3.4) g_(t) = exp( E= 2 E(e;o, < o))

(3.5) H(A;x,t) = Z tnE e xnx ].

In the above and in the following, Greek letters A, a) 0 y, IT, etc*

will denote complex numbers whose real parts are zero. [Sometimes as

in (3.4) for example, the range of A can be greater but this will not

concern us here.] t will always be a complex number such that Itj <1

while letters u, v, w, x will denote complex numbers such that their

absolute values are 1.

For any quantity a, either constant or random,

+ {a if' a Z 0
= 0 ifa<O

(3.6) a = a < 0

and finally0.7) 00 .=  I,

The following theorem was discovered by Baxter [4] (see also

stzer [16)).
31
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3.1 THEOREM

(3.8) E(eAZl tWi) 1 - exp(-Z ° t E(e~k;Sk 0)).
k=1

Proof:

This is just equation (2.4) turned upside down.

3.2 THEOREM

(3.9) (e~ x)t = g+(A;xt)g(Xkt).n=O

Proof:

(3.9) is Just (2.14) rewritten using the equivalence principle.

[The special case of A = 0 is due to Andersen [3], the theorem as

presented here can be found in Baxter [6].]

3.2.1 C (Andersen [i], Wendel [18])

(3.10) E(eA N n k) = E(eA k = k)E(e Nk-k = 0).

Proof:

(3.10) is just equation (2.13) rewritten using the equivalence

principle.

Let n= Max(Soy S2""S n)

= Min(So, SI,...,Sn).

3.3 THEOREM

(3.11) £ tN(e ASn+n a ) = g+(A+ ptx)g_(A;t).n=o

Proof:

Lnn = k if and only if Mn = Sk and so by factorization (2.9) we

have

E[e 'nS+)n;Ln = k] = E[e(A+P)Sk+ A(Sn-Sk).L = k]

(312 r(+)Sk;hk = k][e ,n Lk,nk = 0.
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k n

Multiply both sides of (3.12) byx t and sum over 0 k n < o to

obtain

(3.13) X = P(A +Pxt)Q(,t).
n0O

The theorem now follows from the basic identity.

This theorem has a long history. The special case of x = 1 is

the basic theorem of Spitzer [14]. The case of A = 0 was proved in-

dependently by Pollaczek 112]. Proofs for x = 1 were also given by

Baxter [4,6], Wendel [17], Kemperman [i] and Dwass [private commmi-

cation].

3.3.1 C (Spitzer [11])

(314 1 2 [e'(Sn'n) + PukjtP = e( Z E e' +- AIt O n n

Proof:

Set x = 1 and write = -A in (3.11). This gives

(3.15) CD thE( + n)tn = g+¢(pt)g.(A,t).

Multiply both sides by i/(i-t) and use (.20).

3.3.2 Coro (Spitzer [1])

(3.16) E EeP(nlt n= g+(0t)g (Ot) = exp( E 1- S ep) )).nFO

Proof:

Set x = 1 and A = 0 in (3.11).

3.3.3 Cor (Andersen [2], Spitzer [1612 Remlperman [111)

Proof:

Set x = 1 in (3.11) to get

(3.18) I° t"E~eASn+Pn) = g+(+p;t)g_(A;t).
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Observe that since M 0 this formula is valid for all complex p such

that Re(p). Taking the limit as Re(p) 4 -co on both sides of

(3.18) to obtain

(3.19) tnf(eAn=O) = g_(At)exp( Z "  P(Sn=0)).
n=0  n=:l n

Now (3.19) is valid for all complex A such that Re(A) Z 0. So taking

the limit as Re(A) -> co on both sides of (3.19) yields (3.17). [Note

the order of taking limits here is essential.]

Let

(3.20) f+(ALt) = exp( EO L E[eAk;S > o1).
k--k

The following theorem is due to Kemperman [11].

3.4 TEOREM

n=O
(3.21) O

f+(A p;ty)g_(kt)exp( nEZ 1 P(SnO0)).
n=1 n n

Proof:

The proof is based on the decomposition shown below:

I
I .1

I I
zz""'x I I z"x+ j',
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For,

(3.22) [L a , L=-L= k = [N + (X , 1,...,xl) = J] n

[SJ+k- s = 0 k(Xlj+l- sj,..,XJ+k- Si) = o1

IN n__JI J+k+l,...,zn) = 0)

and thus

E(eAfl+Pl(Z;L=j, Lw -Ln k)
(3.23)

S[e(A+I)SJi + = j]EOeAflikN n-j -k'

P( = 0, = 0).

Multiply byyjxktn and sum over 0 < j _ n < cD, 0 k ,n < o to ob-

tain the result

n=0
(3.24)

E I (yt)NE(e(A+P)Sn;Nn=n)][- t0[eA'3n;N-=n-

zoo P(S 0 O =O)(tx)nIj.
n=0  1

Use of (1.27) and (2.34) in the first, (1.28), (1.29) and the basic

identity in the second and (3.17) in the last of the bracketed terms

of (3.24) yields the desired result.

3.5 THM04 [Andersen [3), Baxter [6]]

(3.25) ED EEOe n XnSn otn = fI- C i- w(A) I3H(A;xt).
n=l

Alternately we ma write the right hand side of the above as

(3.26) ....p -g+(A;tz)
Proof:

We have
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(3.27) [N n Sn >0o= [N n m - [N 1 m]

A simple calculation gives that

:~ n)"
-=O n 1 - x

Consequenty we have from (3.27) and (3.28) that

M tnE(eA~ Nn S 0) E tn x (f)- ~ 2nl nml 1-
(3.29) -

)l(

n71 x-

Using (2.17) and (3.9) on the right hand side of the above we obtain (3.26).

[Remark: It is convenient to take E[eASO x° N o  > 0] = 0 here and conse-

quently we mist take E[eo x ° < 0 = 1 in order to be consistent with

the fact that E(e ASO °) = 0 .)

3.6 THWOER

(3.30) OD tE(esn+ n n xn)

F= [it..P(A +~ H(A + l;x~t) - X tp(1+ P)]H(+ P,x,t).

In the future we will denote the left hand side of (3.30) by

G(A~pp;3ct).

Proof:

G(A,}z,0;xt) EM tE(e )  O n 2 0)n=O

(3.31) + 1P tn (e(A +4) n xNn;Sn < 0)

1 tf(-p -+ P )]H(f+ xt) + H(A+ px,t)

+ 1 'x I -S itp(+ p)]H(A+ pixt) 0

by theoe (3.5). Simple rearrangement now gives (3.30).
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3.6.1 Corj.=l
r g_(;L +i t) g.(P + Nxt)1

(3. ) t(,e,'Ip1 ,t) '2 = 1. ". 4(Pit)j.

Proof:

This follows fro the theorem by use of theorem 32

00 SI n)(4 t) i (p,=]
(lt. ) tgeln n g(,#z)"z+(1pit).

Proof:

Set =0 and A = in (3.32).



Chapter 4

Order Statistics of Sums

In the previous chapter we dealt with the quantity Nm which is

the number of non-negative sums among the first n sums . In this chap-

ter we will investigate the quantity Tn(.x) which is the number of sum

among . l. *2S n which are less than or equal to x. This study will

lead us to investigate the order statistics R of

the first n sums, which in turn' will lead to the study of certain re-

lated quantities {Lnk. to be defined shortly.

Whenever one has to deal with order statistics one runs into dif-

ficulty in determining which object stapds kth from the bottom (or

top). This is due to the possibility of ties. One way of avoiding

these difficulties is to eliminate them by use of certain conventions.

In our case this may be accomplished by use of the following order

relation.

4.1 R aia

Say Si- <j (read "is smaller than") if Si < S or Si Sj bt

i < i.

With this ordering of the sums every sum has a unique position

and we may define

4.2 _o1± ±U

For each k, 0 k - nj let Lnk denote that sum which is kth from

the bottom according to the - ordering.

The - ordered sums will bedenoted by R no-< ...- <Rn

38
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Note that R R R and thatR = if and only if
no n zinnk =jS

Lnk =Jand thatR is the Lira& ULUnM and R is the last as .
nkno Mi

ThusL ois the index of the Wrt and L is the index of the

as ±,Dij . These agree with the definition of L 0 L given pre-

viously and explain why the notation Lno) Ln was used before for these

quantities.

The relation between the function Tn(x) and the {RnAl will now be

established.

We have

and so SOO ekxc n(x) n An k
(4.2)1 _eA i =-(1- v) E e

In this way we are led to study t he function Z Re v

In an analogous manner if we investigate the functionOD A, Tn(x) n AR+
eo Is dx v we will be led to study the function Z AM

by the relation

0) T(x) - ) k +
( o_ Ov k.

An alternate characterization of the R+ is that they are the

order statistics of {Sols1 ).*I . Similarly the order statistics

Of iS 0,S1 ,...,s } or the function .e toT
n

of the function X A eA" TD. Also of interest is

E ,ke Rnk + Sn.
k=O

'he exchange in order of integration is trivial to verify here.
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We will show below that simple considerations of the order indices

Lnk will lead to an exponential identity which contains identities for

all of the variables mentioned above and in fact all known identities

may be derived from it. We will deduce maxy special cases of formulas

involving the order statistics from it. The key to this study is con-

tained in the following sample space factorization:

mi(J,k),;(4.4) [Lnk(X ..,--7 ] ) = . Is .N(x.+,.,n =X k-xl n
( =max(O,j+k-n) n-j jA n

[N (X,...,Xl ) = 1 :].
To prove this (see diagram below) observe that the event [L = J]

7

A. IL1, = 4

(0. k < n),(O < j . n), can happen disjointly as follows: Among the

sums So, 11...9SJ_1 there are x which are less than or equal to S and

among the sums Sj+l.*.' Sn there are k-x which are less than Sj [here

max(O,J +k-n) x - min(jk)]. This first event, [among So,...,j_1

there are x um es] = [Nj ,(...,1l) = x] while the last event,

[among s3 +l,....s' there are k- sum = < LSEN- (1 0004,)=k-x].
D~ i n-j +1 n

Hence (4.4). Frc this sample space factorization we obtain immediately

the following lema.
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4.4 LEHMA

E(eXl I P3k + lp'Pnk + Vn;L

=. E . Is PJ ;NJ X] Ee _i;N_ -k-i).

Define

(4.6) J(A;v,t) -- o (eZn )t
n=o

then we have

4.5 LOIA
D n v[e nf+ i i +uOn+YRni, nk,

n=O A~

(4.7)
= G(,p+ Y,PivtU)J(1v, t).

Proof:

Multiply both sides of (4.5) by t uj vk and sum over the range

0 I . n, 0 k< n, 0 < n < co. This results in the desired left

hand side while the right hand side becomes

n=O+

Theorem 3.6 now gives the result.

Finally we have the big theorem. This theorem is important be-

cause from it all known identities may be ddcoed by a suitable choice

of A, P, Yj p, u and v. Some of these will be derived as corollaries

following the proof of the theorem.

4.6 THEORJ2
OtD n k ART* + +Rnk + Rk + n u'n ]

(4.8) [1- v(,k( + + y)I g(+P+Y;Utv)g(A+P+T;ut)

i -uq(1 ( + Y+ P)g(P++ P;utv) g_( + + P;ut)1-(,tV (p )
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Proof:

This follows directly from Lemna 4.5 and Theorem 3.6 and the fact

that
J(pi,v,t) = g+(Ft)g_(ptv).

This latter fact follows from (1.28), (1.29) and (1.30), and the basic

identity [and is an obvious analogue of Theorem 3.2].

We may rewrite the right hand side of (4.8) as

( ) (A+p+4%ut) _v g+ (p+r+P utv) g+(p;t)g(P;tv)
( ,, + p + Y;tv) g+(P+r 9 ut)1 i-v

4.6.1 Co (Wendel [18])
w~ As- SM2.n

OD n X7tO x( 1( - vnF( n n) v
U.10) . tn] -n n

n = ( - v) L - vtp(p) ]

Proof:

Set Y : r = 0 and u = 1 in Theorem 4.6 and (4.10) follows upon

rearrangement.

4.6.2 Corollarv +
(4 O) t v (er ) = - vexp( V- )E[ Sn +  n])M+ k 4 + F~)n(

n:0 k:O U1 - v)(1 - tf(p))

Proof:

Set A =y = 0, u = 1 in Theorem 4.6 and after a little algebra in

the resulting equation we obtain (4.11).

4.6.3 Co (Baxter [6])

(O.k)
(412) g+( + P utv)g (Y + ut)g(pit)g_(p;vt)•

Proof:

Set p = A = 0 in Theorem 4.6.
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4.6*.4 (Wendel L[e), Baxter [6])

v ey + 8 =[n] = (+¢ vt)_(pvt)(g(t) .(y + t)
n=O k-0 + p-PgpOY '

n~l n

Proof:

Set u = 1 in Corollary 4.3.3.
4.3.5 Co (Wendel [i] 2)

(4.14) =(1- V)exp OD n j"
( (lvex( {Lt1f E(e6n) + Ee

Proof:

Apply Corollary 4.6.4 and (4.1).

Though other identities could be derived from Theorem 4.6, as the

ones above were derived, we shall not derive them here but will conclude

instead with a version of Spitzer's identity which will be needed in

the next chapter.

4.3.6 C [See Theorem 3.3 for references.]
(4.15) OD tN[e6+ On un] = g_( + ut)g+(p;t)"

Proof:

Let v = 0 in Corollary 4.6.3.

Up till now we have always taken So as the constant 0. However

we may easily modify the preceding formulas so that So can be an

arbitrary random variable. In other words we add to the sequence { Xn

2 Wendel studies the function n- Tn(x) and obtains the corresponding

formulas in terms of the descending order statistics.
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n 1, a new random variable X so that S0 = X and in general

S = I + X1*f
k oo

Let SlS 2 ,...,Sn be the sums X1, X1+X2,...X1 +...+ Xn as usual. Then

if we add a term X to each of these sums, the relative order of these

sams is unaffected (see diagram).

0

VI

That is, Rnk is as before and Rnk is the order statistics of

o +SI'"Xo + S then Rnk /\., Rnk)
0 Sn, 0 Rnk. easm fcus

i.e. has the same distribution as X + R We assume of course

that X0 is independent of Xlk,'. and therefore of the {RnI but in

general X0 may have a different distribution than the common distri-

bution of the XnI n _ 1. As an example of the use of this idea we

have the following theorc .

4.4 Ti-MOFi.

E t M v ELenn=O 1 =O

n O +

n= k



Chapter 5

An Extremal. Factorization

All of the identities in the preceding chapters were in a certain

sense comsequences of the factorization

(5.1 E(eSn;L =k) = E(eA ;L k=k) -E(enk; L )k,n.k- )

and its partner under the equivalence principle

(5.2) E(e Sn ;n=k) = E(eASk;N= k)-E(eASn-k;Nk =0).

Another such factorization is

5.1 THsORm

(5.3) E ek += Ec Pn e=E e u k].E[e -kO + -k U -k,O].

Proof:

By Corollary 4.6.3 we have

E t Z11e1L R'nk P' uLnkj'

= g+(T+ putv)g_(xvt)][g_(r 1Uut)g+(Rit)].

But by (4.15) and (3.11) this first term in brackets is

n

while the last bracketed term is

n
and thus e have

k'O

(5.4) k -&(e h+ k u )E(e k + 46k 1-k,o)
k=O

and equating coefficients of vk in (5.4) yields the result.
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5.1.1 C (Wendel LiJ)
(5.5) JG[ n + PSn] = E.[o R + Pkx[o -k + Pn-k I

(5.6) .E[eY ] = E[eo E[e =k].

Proof:

Set u = 1 in the theorem to obtain (5.5) and set p = 0 in (5.5)

to obtain (5.6).

5.1.2 Coro
(5.7) E[u 3k E[ [ ]E[UL-k1'].

Proof:

Set Y =11=0 in the theorem.

An alternate direct approach is possible to the theorem 5.1 which

will be given below. From Theorem 5.1 we may prove Corollary 4.6.3

and this will present a more direct and simpler proof of that important

identity. We start as in Chapter 4 with the identity

(5.8) E[e P k=,J=] E ZE Ye(r+ )SJ-;N r] = '[on-J;n_- =k-x].
x j n-j

Now by (5.2) and an obvious analogue for Nn- we have that the right
n

hand side can be factored as

E .[e (P+)Sx;N = x]e (P+ )Sj-x;Nj-x= 0]S[eP'xk-x = k - x]x

but as
N _x  0<>N _  J-z

J-x

N;_x =  k-x ->Nk x 
= 0

we have combining the first and third bracketed terms together and

the second and fourth bracketed terms together by yet another ap-

plication of (5.2) and the Equivalence Principle that
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(5.9)

D, +. Ph; Lk = x3 e4-k+P]

from which (5.3) is evident.

*Mutiply (5.3) by vkt and sum over 0 j k , t < c to obtain

Corollary (4.6.3).

We will now deduce an interesting permutation identity from (5.3)

by the same trick of Wendel used in Chapter 2.

Let a = (ala 2 ,...,an) be any n real numbers. For a fixed integer

k let D be any of the (n) subsets of the set fl,2,...,n} consisting of

k numbers, say {, ,..., . Let d be an arbitrary permutation of

1,2,.o.n and let vDI, Dk, denote arbitrary permutations of D and its

Complement DkI respectively. Define Rbk(da), Ln(da) on the sm of

(ai,...Jaik) and (ajl,...,ejnk) respectively, where fl_,.., 1il p"', n.

{021o..,hle We then have the tollowh theorem:

5.2 THEOR M

There is a 1-1 mapping

°<-> fP 7I ~

of the set of nI permutations 0 of (l,2,.wan) onto the set of triples

{fkDk, "DkI such that the vector (Rnk(da),Lk(a)) is carried onto

the vector sum

Remarks: Of course the theorem holds coordinate wise and for the first

coordinate was proved in Wendel [18], who however attributes the

theorem to Spitzer. One interesting thing of this theorem is the



somewhat surprising fact that the sm permtation works for each

piece of the vector. [Of course, owing to the relation of Rnk and

L this is what one would expect.]
Proof:

Set F = 0 in (5.3) to obtain

( [5.10 un ] = E[e (Xl.-,Xk) + _k(Xk+1,...,X)
(5.10) I(xl,...,Xk) +Ln-kO(Xk+l,.-.-X-I]

If the {Xn take values al,..-,an with probabilities pI """pn then

(as usual) by equating the coefficients of PIP2 9.oPn on each side

we obtain the identity

e~nk(da)uLnk(dla) = k Tr~GD2 1k( jc)

(sk) +k'D'

.uIk(, ,) + 4 .-ko(ff:,).

Since u and T are arbitrary the vector identity follows from (5.11).

E Ma.e, a (1,-1,2)
I = ( XaI3) a rearrangement

1 X2 X3 So S 2 s3 R30  3 1 R3 2 R3 3  '30 L31 L2 L

1-1 2 0 1 0 2 0 0 1 2 0 2 1 3
1 2-1 0 1 3 2 0 1 2 3 0 1 3 2

-1 12 0 -1 0 2 -1 0 0 2 1 0 2 3
-1 2 1 0 -1 1 2 -1 0 1 2 1 0 2 3

2 -1 1 0 2 1 2 0 1 2 2 0 2 1 3

2 1 1 0 2 3 2 0 2 2 3 0 1 3 2

For sets of no elements D and all 3 mmbers D there is nothing to do.1.  s o 3,v, s s ,
'I1 M, _ _ _ _ I 1 D' oS 2 N2 L20

11 0 1 - 2 0 -1 1 -1 1
1 1 10 1 2 1 0 21 0 0

0 0 -1 0 -1 1 2 0 1 3 0 0 D
0 0 -1 0 -1 2 1 0 2 3 0 0
1 2 2 0 -11 0 -10 -1 1
1 2 2 0 2 1 -1 0 1 0 0 0
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L22 2  S2 s3 2 o D2  D, SO S, L3.0

1 2 1 2 0 -1 2 1 0 1 0 0
2 1 1-1 0 2 -1 1 0 1 0 0
2 .3 3 1 0 2 1 -1 0-1 -1 1 D2
2 3 3 2 0 1 1 -1 0 -1 -1 1

1 1 0 1 0 -1 1 2 0 2 0 0
2 0 0 -1 0 1 -1 2 0 2 0 0

____+_L20 ____+__k 3 1 1

a 2 0 0 2 a
b 1 1 1 l b

c 0 0 0 0 c

d 0 0 0 0 d
e 2 1 2 e

f 1 2 2 1 f

Corresponding pairs are marked by letters.

L22__+_L10__2_+___1_ R 32  L32

a 1 2 1 1 e
b 2 1 2 3 c
0 3 2 0 2 f

d 3 2 1 2 b
.1 1 2 1 a

f 2 0 2 3 d

Corresponding pairs are marked by letters.



Chapter 6

An Analytic Method

In this chapter me present an alternate approach to the basic

identity and theorem 3.2 based on complex variable arguments. This

method seems to have first been used in Fluctuation Problems by

D. Ray [13]. Spitzer [14] uses it to prove theorem 3.1. The method

caie to my attention through M. Dwass who used it to prove corollary

3.3.2. The method is expounded in detail in Kemperman [Il] who

proves (as we will here) theorem 3.2 by its use. Our purpose in pre-

senting this method here is illustrative; we wish to illustrate one

of the analytic approaches to the theory. Since the other analytic

methods are equivalent we choose this method since it is the most

elementary of them.

(6.1) Let p(A) = Eell Re(A) = 0
CO

(6.2) P(At) = Z E[eAniL = n]t Re(A) 0 0
ri=-' nn

(6.3) Q(A;t) = c" tE,['e ;L 0] Re(k) 0
A0 nf

(6.4) g+(;t) = exp(Z E(Ok;Sk Z 0)) Re(A) o

(6.5) g_(A,;t) = exp( D2 9(4ASk;Sk < 0)) Re(A) 0.

Now it is easy to verify that P(At) and g+(Alt) are bounded

and continuous for Re(A) e 0 and analytic for Re(A) < 0 and that

Q(A,t) and g_(At) are bounded and continuous for Re(A) ? 0 and

analytic for Re(k) > 0. By (2.18) we have

(6.6) g_(,t)g.(At) = 1 P(A;t)Q(At) for Re(A) - 0

and so 50
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(6.7) g (At) = = f(A) for Re() O.

Hence by Liouville's theorem f(A) must be a constant. To evaluate

this constant observe that

lir g (AIt) _ 1
Re(A)-> w Q(A1t)

and therefore we have the result

P(At)-- g (Alt)
(6.8)

(6.8)Q(,t) = g (A,t).

We next prove

we~ ~ nxprvE[e 
AS n Nnste g+(A~xt)g_( .,t).

n

Of course this follows from (6.8) directly by use of the equivalence

principle but we wish here to prove it directly and then deduce the

equivalence principle from it.

Let

(6.9) H+(A;x,t) = E e Sn xNn S ; OStn
n=0n

(6.10) H.(Ax,t) = 2: E[e" S  xn~s n <x oS n

n-O
and

(6.11) H = H +H_

then theorem 3.5 gives

(6.12) H+ = -fl - [1 - tq](H + H) Re (A) =0

or

(6.13) L1 t ]-; + (1 -ti)H= = 1.

Add -,4(l - tq) to each side and after slight rearrangement we

obtain
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(6.14) 1 I (I -tcp){+j

or
[ ___A ++ ( t) g_(xtx)x

(6.15) [--1 + H. g+( t

It can be seen that H+ is bounded and analytic for Re(A) < 0

and continuous on Re(A) = 0 and that H is bounded and analytic for

Re(A) > 0 and continuous at Re(A) = 0. Hence (6.15) represents a

bounded analytic function of A and therefore is a constant. To

evaluate this constant take limit as Re(A) -O D on the right hand

side of (6.15). This results in 1 + .-*6 1
1- 1-x

Solving for H+ we get

H+= j {1 - [(1 - t)Ig+(A tx)g(A,t)}.

Substitution of this expression in (6.12) and solving for H yields

the result.

We may use these two theorems to deduce the equivalence prin-

ciple. For the two theorems just proved show that

(6.16) Ex n  = x

and so for any k, 0 - k < n)

(6.17) P(L n = k) = P(Nn = k).

If we apply (6.17) to the random variables taking values

alja2j...,a a with probabilities plp...,pn then by equating coef-

ficients of pl)p2 ... p, on each side of (6.17) for this special case

results in

a i (ersio n t i (aOlence ,pr nc
0IL k) Q IN n k)

,which is the permutation version of the equivalence principle.
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