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INTRODUCTION
During the last few years there has been much interest shown in

the problems connected with the fluctuation of the sums of independent
and ident:lca.liy distributed random variables, Basically these prob-
lems consist in finding the distribution of various functions which

are definable in terms of the sums and which give a measure (in some

sense) of the amount of oscillation which the sums undergo.

Thus if {In} 18 a sequence of independent and identically dis-
tributed random variables and {Sn} the sequence of their successive
partial sums (i.e. for each positive integer n, Sy =Xy Xy teces In)
then typical quantities investigated in fluctuation theory are:

(a) the mumber N, of non-negative sums among the first n sums.
(N, =0.)

(b) the value M_ of the maximm and M of the minimm of the first
n sums.

(o) the position L o vhere the maximm sum occurs for the last time

amongst the first n suma.t

(d) the value R of the sun which falls e

the sums So’ S]_,...,S’on are arranged in increasing order.z_

from the bottom when

One of the first definitive steps in the solution of fluctuation

problems was taken by E. S. Andersen [1,2,3] vwhen, among other things,
he proved that for |t| <1

00

(e 2] (o]
(.1) ngo tnP(Lnn=n) = exp(kgl 1":—‘ (s, 2 0)) (L_=0)

lSee Chapter 1 for exact description of Ly,,. The reason for the
notation will be made clear in Chapter 4.

“Here and in the following s, = 0.




x
(o2) ng t”r(Lnn =0) = exp(kg T; P(s, < 0)).

A short time later Spitzer [14] proved that for |t| < 1, Re(y)=0,
Re(A) € O,

®© gk o (A+y)sy,
(3) £ ¢ E(e"sn+ Aﬁn) - exp(k§1 i B j S, 20))
~ °‘p(k§; % 2", s, <0)).

In this formla we have introduced a notational convention which will
be used throughout this paper. Namely, if A is any event then we shall

denote

J;ei“x dP(S < x) as E(e/\sn; A).

Implicit in (.3) is the following generalization of (.1) and (,2):
AS
(e4) ng) " E(eAsn; L ,=n) = exp(kgi % E(e k; 8, 2 0))
for |t] <1 and Re(A) < O
©® n_. ASp —ay - ® y_, Ay
(.5) It E(e 3L =0)= exp(kzl ji_E(e j S, <0))

for |t| <1 and Re(A) > 0.3
A final result to be mentioned at this time is the following
identity due to Wendel [18]

(+6) e ¥ E(eTuk'Pn) =
20 k=0
x | x
cxp(kg“f)- 5o TP)%; 8, 20))exp( kg; -(-'hl?— E(oPK; s, <0)
exp( ki-‘; £ 2o ™% 5 <ONexp( £ £ r(ePx; 52 0)

for |t] <1, |v] <1, Re(y) = Re(p) = 0.

3aotually, (.4) and (.5) are equivalent to (.3).




We now can make the following observation. In each of the six
identities given above the right hand side consists of products of the
functions g, (m,x) and g_(m,x) for suitable n and x where

(o7) g (nyx) = exp(kg % E(eﬂsk; S, 20))

k
(.8) g_(nyx) = exp(kgl L 5(e™%; 5, < 0)).

[As they stand here g, certainly makes sense for Re(rm) < 0 and Iil <1
and g_ 1s valid at least for Re(w) 2 0 and Ix| < 1, but itmay be when
used in formulas like (.1) to (.6) that the coﬁesponding left hand
side may only be valid for Re(w) = 0,]

Identities which can be written in terms of the functions g, and
g_ like the six identities (.1) to (.6) will be called exponential
identities. These expomential identities completely solve the problem
of finding the distribution of the M, N , etc. in a very curious way.
For example, in the case of in they show that knowledge of the
individual distributions of S, S,y...,5, is enough to determine com-
pletely the distribution of in This, of course, is not what one
would expect since the Sk, 1 {k { n, are dependent. One would sus-
pect that ome would have to kmow the distribution of the n-dimensional
vectar (Syy SpyeeesS ) to £ind M . Sinilarly we will see that the

other quantities R nk? Nn, etc. share in this property of being
stochastically determined by means of the individual distributions
of the Sn'

Another class of identities related to exponential identities is
the socalled extremal factorizations. In fact we will see that these
identities can be used to prove certain expomential identities and
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conversely can be derived from others. As examples we have
(.9) P(N, = x) = P(N_ = k)P(N__, = 0) Andersen [1]
(.10) ML, = k) = ML, = X)P( n-k,nk = 0) Andersen [1]
(1) EleMPuk] = E[eMNRpme Bk Wendel [16]

(49) shows, for example, that knowledge of the two sequences of exiwme
values {P(N =0)} and {P(N =n)} 1s enough to deternine the stochastic
structure of {Nn} completely. (.11) shows that if we know the distri-
bution of the extreme values M and M individuslly for all n ther we
know the distribution of any order statistic R ok

Let us briefly consider the methods used up till mow to establish
identities of the type under discussion here. In the main these fall
into two classes, combinatorial and anmalytic.

The ocombinatorial method was initiated in fluctuation studies by
Andersen [1,2,3], It was extended and formalized into a definite prin-
ciple by Spitzer [14] and used by him to prove (.3). Feller [9] also
uses combinatorial arguments and proves (.1) and (.2), (.4) and (.5)
by their use. This method will be illustrated in Chapter 1 when we use

it to prove a theorem, which plays a central role in our l?pioach to

fluctuation studies. This theorem was discovered by Anders;n (1] and
is called the equivalence principle by Feller [9]. A full discussion
of it will be found in Chapter 1 and it will suffice here to say that |
" the theorem asserts the fact that N,and L  are stochastically
equivalent,
The analytic method was developed by several people independently
of each other and takes different forms according to each of these in-
dividual author#! development. It tuwrns out that these various methods



are all equivalent and one such method is presented for illustrative
purposes in Chapter 6, This method, based on Liocuville's theorem of
analytic function theory, seems to have first been used in fluctuation
problems by D. Ray [13] but was developed independently by Ray and
Kemperman. Kemperman [11] discusses the method in detail.. The method
cams to my attention by way of M. Dwass (who used it to preve the
special case of (.3) with vy = 0). Other people who develop amalytic
approaches are Wendel [17,18] and Baxter [4,5,6].

Wendel's approach is to formulate the problem in terms of solving
certain equations on a Banach algebra and then showing that these equa-
tions have solutions which result in the idemtity in question. For
details we must refer the reader to Wendel's papers.

Baxter's approach is similar and amounts to showing that certain
operator equations on a function-Banach space have as their unique
solutions the respective right hand side of the identity in question.
Here too we must refer the reader to Baxter's papers for details
(see especially [6]).

Our approach to these identities will be to show that all kmown
1dentities are derivable from (.4) and (.5) by means of simple and
cupht?ly elementary considerations with use of the equivalence prin-
ciple to change from certain assertions about L ' to ln and conversely.
In fact we will show that all known identities are actually special
cases of one large identity (see (.28) for this identity).

We also will demonstrate that (.4) and (.5) can be derived by a
simple cdnpletoly elementary probabilistic argument (having its basis
in recurrent event theory) with the aid of the equivalence primciple.
In fact, one purpose of this paper is to show that the salient facts



of these fluctuation studies are containad in
(1) the Equivalence Prineiple
(2) the fact that "ladder indices" are recurrent events.*

Let us be a bit more specific. An index n is called a ladder index
for the sums {Sk} (or just a ladder index, (respec. poimt)) if S, 2 Sj’
0 £ j<k. In other words n is a ladder point if Sn is at least as
great as the previous sums. It is easy to verify that ladder indices
are recurrent events (see Chapter 2). ILet {W} be the associated se-
quence of waiting times (i.e. Wy + Wy +...* W = time of kth oecurrence
of the recurrent event).

For an arbitrary recurrent event €, let y = O and for n > 0 let
Tn denote the time at n of the last occurrence of €. In other words
ingkSnthenyn=kif€ occurs at k but dosg not recur until
after time n. Observe in particular that if € does not occur during
the first n steps then Tp = 0. On the other hand if € occurs at time
n then Y, = Be As a recurrent event "starts from scrateh" at each

occurrence we have that

(o12) Ply, = x] = Ply = kIP(y,, = 0) \

also

(.13) PU, >n] = Ply =0] )

(o14) - Ple at n] = P[yn =n].
The two basic relations of recurrent event theory are’ {

(1) I g =w = kg = k0 <1

LThese will be defined below. They were first used by Blackwell
[7]. Feller [9] uses them in Fluctuation Studies. Their use was sug- ‘
gested to me by M. Dwass (see Chapter 2).

|
53¢e Fcller (10]. o
i
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(16) 2 PRy =0) = Lebis s mhomy <l

and so from (.12) and (.15) and (.16) we have for |x| <1 and |t] < 1
that

. ® In _

Differentiate (.17) with respect to x at x = 1. This results in

(1) Il = £y, -5, Ho=2

having as its unique solution
@ X 6
(19)  P) = expl T % Elyy - 4]

This curious "exponmential representation" was shown to the author by
M. Dvass. It shows that P(t) (and hence Etwl) is completely determined
by the sequence {Eyn}. Its use is dependent on how easy it is to find
Eyk, for all k.

For the particular event "ladder index" a 1little reflectiom will
show that y, for this event is just Lnn’ and so we need find EL an®
But this is just where the equivalence principle is of use, for it
tells us that

n
EL = EN = k‘;:lp(skzo)

and thus use of this fact in (.19) results in (.1), (i.e. Andersen's
lemma), From (.1), (.2) can de deduced, for

- ~In(1-t) _ X
o - = (£ 5

(+20) k k
exp(z % P(8, 2 0))exp(z &= p(s, < 0))

6See Chapter 2 for analytic details.



and by (.15) and (.16)

(@) [T 4y, =0l T R, =m)] = gy

Let us now briefly summarise the contents of this paper,

Chapter 1 states a permutation version of the equivalemoe prin-
ciple and gives its proof, then uses the Spitzer method to prove the
corresponding probabilistic version.

Chapter 2 is devoted to the extension of the recurrent event -
facts presented in the introduction roughly along the lines of incor—
porating the quantity e;ts”.8 These extended recurrent event relatioms
are used to prove (.4) and (.5) by an argument which is completely
apalogous to the argument used to derive (.1) and (.2). A second
proof is given of (.4) and (o5) which will show that (.4) and (.5)
and (.1) and (+2) are equivalent. The chapter ends with the following
theorem

oy B My Lo In PSy =l:£(.ﬁgzlig.1.).
(o22) ng.tnE(e‘“nx Te ) 1 - tglp) l_yE(.TT'F 1(:5'5

where T denotes the mmber of ladder points at time n (see Chapter 2
for definition).

Chapter 3 is devoted to the systematic deduction of theorems which
follow more or less directly from the basic identity. Some of the

more important of these are
(23)  E(M1 1) =1 - expl(- kg'; 1';:5 E(*K; 8, 20))

(Baxter [4], Spitzer [16])

Tthis observation is due to Dwass.

8F'or the precise nature of these extensions, see Chapter 2,
Theorem 2.4.




() £ g Fym o e (gt = Ext)
(Andersen [3], Baxter [6], Wendel [18])
(.25) ng:') *l'.“B(«;\s""'}%l me) = g, (A+nxt)g_(A;¢)

(case x = 1, Spitzer [14], Wendel [17], Baxter [4,6], Dwass [private

correspondence ])

(+26) ;'.: (o2 x“‘; s, 20) = 73 {1-M1- t9(A) JH(Ajx, t)}

(Andersen [3], Baxter [6])
(27) % e(en ' Pt B T
270

= [RozwAteligp xt) - 7E= [1-tg(p+ B)IA(R+ Byzyt).

In Chapter 4 we introduce the notion of order. We order the

partial sums S, Sy,e.ey3, by the following order relation < where
Sk < 83 or
% <8y {sk=s but k < 3.

J
With this ordering there can be no ties; each sum stands in a unique
position in relation to increasing < order. Let L denote the index
of the sum which stands k'B from the bottom in the < order and let
R‘kbo that sum. The main theorem of Chapter 4 is theorem 4.3 which
says

- +
Z & 2 (e +%+M*F"Jﬁ)
n=0 k=0

() = L= a2y g (A+ g yutvig (A+pt vput)

- I:';[l- ute(p+ v+ p)lg, (p+ v+ Bjute)g_(p+ v+ p;nt)}
°8+(F,t)g.(’1,t7) .
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This theorem is new but many special cases of it have been derived by
other people. Many of these will be derived in Chapter 4.
Chapter 5 starts with an alternate proof of the important special
oase of (o28) with A = § = 0. This proof has at its basis the follow-
ing factorisation:

(29) E(e™ak* Pon Toky _ g Rt P Iy g Phoek,0 P 2 2k50)

(the speeial case of u = 1 1is due to Wendel].
From (429) we prove a corresponding permutation identity and comclude
the chapter with an example of this permutation identity.

Chapter 6 presents an alternmate derivation of the basic identity
and (+24) by using complex variable arguments. We then show that the

combinatorial identity equivalence principle can be derived from these
two theorems.
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Chapter 1

Equivalence Principle and the Combinatorial Method

Let y = (y3,755+++y7,) be an arbitrary n-tuple of real mumbers.
The munmbers
8.(y) =0,
S =ttty 1gkgn,
are called the partial sums of y, S,(y) being the k*h partial sum.
Among the n suns so(y),...,sn(y) let

(1.1) Nn(y) = the mmber which are non-negative,
(1.2) N (3)* = the mmber which are positive,
(1.3) B (y)
(1.4) in(y) = the mmber which are non-positive.

the mmber which are negative,

A word about notation: in the future, if £(y) is a function whose
argument is an n-tuple y we will omit y and write just £ if ne confusion
is possible about what the argument of £ is. Thus in the above we
vould write S, instead of Sk(y), N, in place of l!n(y), etc.

Thepu-tids\mso, 81,...,8naresaidtohaveamm
at position k, (0 < kx  n), if

sk>sj, 0 J<kand 8 28,k<2<n,
Similarly, the sums are said to have a lagt maximm at positiom X
(0<x¢<n) 1 .

Sy 285y 0<J<k and S, >8,, k<2gnm.

We say that the partial sums Sy SqyeeeyS, bave a firat (respec. last)
Ainimm at k if the partial sums of (-yl,-yz,...,-'yn) have a first

1

o
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(respec. last) maximm at position k. In the sequel we shall denote by
(1.5) L n» the position of the last maximum,

(1,6) L, the position of the first maximm,
(1.7) L,y the position of the first minimm,
(1.8) in, the position of the last minimm.

2 [ X N J n

Let O denote the permutation (él O ... °n

Of (1,2,...,n)o
For each such permutation and each n-tuple y = (y;,7p9e¢-s7,) define
a nevw n—tuplo dy as dy = (ydl,ydz,.oo’yon)c

Consider a fixed n-tuple y and let A denote the set of all n!

images of y as G runs over the n! permutations of (1,2,...,n). We can
make A into a probability space by assigning to each 1 point subset of
A the probability 1/nl. Each rearrangement Oy of y can then be thought
of as a valué of a random vector X = “1”"":;) vhich is defined on
A and the partial sums of Gy as a value of the partial sums of X,
Likewise the values, N (oy), L (0y), etc. can be thought of ss par-
ticular values of the random variables nn(x), x.n(x), etc.

It is clear that, for example, P(nn(x) = k)nl is just the number

of permtations ¢ which have the effect that among the partial sums,
Sl(dy),...,sn(dy) there are exactly k which are non-negative. Scme-—
vhat more formally we may write that

PL(D) =) = & Z I, (@), ‘ *
n

k non-negative ones,

>mrQI (ey) = [1 if among the partial sums of Oy there are
[ln=k] {

i 0 otherwise. |

(1.,1) THEOREM (EQUIVALENCE PRINCIPLE)
Let y be a given n-tuple of real rumbers (yl,yz,...,yn). Then



= x)

P(L

P(Nn =k) =

(1.9)

P(H *=%) = P(L =)

(1410)
(1.11)
(1.12)
(1.13)
(1.14)

=k) = P(Lno = k)

P(N

k)

n

I =
L

P(in =x) = P

=nek)

P(L
P(L

n

P(L_ = Xk)
P(L

n~Xk).

=k)

Before proving this theorem we shall illustrate it by means of

1.2 Example: v = (-2,7,-8,1).

There are 24 rearrangements of y.

NMNOOQOOM

NN

00000

NN~

NOOO M

NN~

QOO00O00

NN N~

AN N

T B & S

NN~

St~ om

RO OOMm

HeeN N~

MNMOOOOM

NN~

%)

34 HNOOOH NAMNMANH HOO0OO0OH MMNHNNM
A FVIIFY FFTFEY FFIFIY FIFIHS
A TOTPFe qevecq oqqgqe owvqeog
£ CN2gR weeoqq GqoeRy weqggy
Al FFVYRY SEEEET PPPRRY HAAAAH
| RS APRYY GONESY g
R poggng Ageoge qegeeq
Y S A qaerHge g 774488
Sl ATIYYY TS 9RRPRR A

Now count the mmber of permutations which yield values 0,1,2,3,4

This gives

for the quantities involved and divide by 24.

b



p(N4=0) = /24 P(LM=0) = 24 P(L, =0) = 0
PN, =1) = 7/24 P(L,=1) = 72, P, =1) = 5/24
PN, =2) = 5/24 P(L,, =2) = 5/24 PL, =2) = 5/24
p(n3=3) = 5/24 P(LM=3) = 5/2, P(L°4=3) = /24
P(N4=/+) =0 P(LM=4) =0 P(L°4=4) = /24
P(N4+= 0) = 9/24 P(L, =0) = 9/24

B(N,"=1) = 7/24 P(L, =1) = 7/2

P(N,"=2) = 5/24 P(L, =2) = 5/2

p(N4*= 3) = 3/24 P(L4=3) = 3/2,

P(NI:-‘- 4) =0 P(L, =4) = 0

from which, in this case, we see the assertions of the theorem are
valid.
Proof of theorem:

First we establish (1.13) and (1.14). Let T be the permtation

1 2 ese N
D on-l ... 1)' Then

Tx = (xn,xn_l,...,xl) and

(1.15) . Ln(x)
(1.16) L,(x) = n-1L (vx)

n - fn("rx)

from which (1.13) and (1.,14) are evident. To prove the assertions
(149) to (1,12) we proceed by induction on n. For n = 1 these asser—
tions are obvious, so suppose that we have established these relations
for all n-l-tuples of real nmumbers. To show that they hold for all
n~-tuples we must consider three cases.
Case 1: yl*y2+ coe +yn<0.

In this case it is impossible for the quantities N, L , L ,
and N; to assume the value n, and so for 0 { k { n-1 we have by
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hypothesis

PN, =k|X, =y,) = PO =x|x, =y,),

).

+
P(N = klxn = yj)

n P(Ln = k|xn =y

§
Hence as P(xn = yj) =1/n, 1< J<n, we have shown that (1.9) and
(1.10) hold in this case.

To establish (1,11) and (1.12) we use the equations
(217) PN~ =%) = P(N =nk) = P(L_=n-k)= PL =k,

(1.18) P(F,-=x) = P(nn+ =nk) = P(L =n-X)

i
g
~—~
-
|
J
~

.

The last equations in.(1.17) and (1.18) follow from (1.13) and (1.14).
Case 1i: R CYRSTT L A >0,

The argument used in case i shows the validity of (1.13) and (1.14)
in this case and (1,9) and (1.10) follow by use of (1.17) and (1.18)
(from the outside in, in this case).

Case iii: Ty teeety, T 0.

The argument used in case i to establish (1.10) is valid in this
case as well, and applying (1.18) establishes (1.12) in this case too.
Similarly the corresponding argument used in case ii is wvalid in this
case to establish (1.11) and (1.17) now establishes (1.10) in this case.

Hence relations (1.9) to (1.12) are valid for all n-tuples and
the theorem is proved.

This theorem was first proved by E. S. Andersen in [1]. The
present formulation is due to Feller and the proof is essentially the
proof presented by him in [9] with minor corrections.

We now extend the equivalence principle to & certain class of
random variables called interchangeable which have the property of

being invariant under permutations. In precise terms we have
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I.3 Definition. n random variables xl,xz,...,xn are called inter-
changeable (symetrically dependent) if the joint probability distribu-

tion of 11,12,...,In is a symmetric function of Xy, xz,...,xn.

1.4 Example. If X = (11,12,...,In) are the n! rearrangements of a
fixed n-tuple y of real mumbers then the xl,xz,...,xn are inter-
changeable,

I.5 Definition. A sequence {In} sy 1 2 1, of random variables is
called interchangeable if for any n > O the random variables
11,12,...,In are interchangeable.

1.6 Ezample. If {X |, n 21, are independent and identically dis-
tributed random variables then {X} 1s interchangeable.
I.7 THEOREM

Let X = (11,12,...,xn) be interchangeable and let fn(X) be a
symmetric function of 11’12"“’111' Then for any k, 0 { k £ n,

(119) E[f; N =x] = Elf ;L =k,

(1.20) E[g 5N =x] = E(f; L =x],
(1.22) Ele; No=k] = E[£; L, =kl
(1.22) Elf; N =x] = E[£; N =x],
(1.23) Elf ;1 =x] = El£; L =n-xk],

(1e24) E[f ;L =k] = Elz; L =n-x].

no
Proof: ,
As the proofs of all of these assertions are very similar we

shall prove only (1.19).

(L25) Ele;m =x] = 2L [f (o) T, )




“

rmpge

e

17
where p(x) is the distribution of X. By (1.9),

I (ox) =
g [Nn: x] 2 I[Li?)k]

and so the right hand side of (2+25) can be written as

1 _ | ) )
Fard B L L!(;g)k]dn(x) = [1,( I[Ll(;l.k]d}l(x) = Ele 51 =x].

Note. This mode of argument from a permutation identity to an identity

on interchangeable random variables is due to Spitzer, and was ex-

plicitly formlated in [14].

The particular case of f n eml1 will be of constant use and we ;

1ist here those formulas which we will need in the future.

(1.26) E(e'\sn; N = k) = E(eASn; Lnn = k),
(L.27)  Ele®®; 5 "=x] = oM 1 =],
(1.28) E[eAsn; N;= k] = E[eASn; L,= k],

(1.29) E[e"; 1 =0] = [’ 1 =n],

E[eAsn; L = 0],

no

<)
—
o
F
(o
]
=]
—
i

(1.30)

where these are certainly valid for A complex and Re(A) = O,

Remarks. The method used to deduce theorem I.7 (1.e. by a direct use of
the permutation identity I.1) is typical of the combinatorial method.
What one does, in general, is to find a permutation identity which when j
used in an argument similar to that used in the proof of theorem I.7 |
results in a desired probability identity. The difficulty with this

approach is that there is not a systematic method which enabies one to

find these permutation identities and that the proofs of these permu-

tation identities may not be easy. [For other permutation identities |
see Spitzer [14], equation (2.24) of Chapter 2, and theorem 5,2 of 5
\



Chapter 5.]
As will be seen in the sequel the various permutation identities
can be derived from their corresponding probability identities and

thus the combinatorial method is equivalent to the variocus methods
which have been developed.
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Chapter 2
The Basic Identity

Let {Xn} be a sequence of random variables and let their successive
partial sums be denoted by {S,}. As usual we define S = 0.
2.1 Definition. A positive integer n is called a ladder point (index)
of the sums {Sn} ir
(2.1) snzsj, 0<3<n,

that 18, if the sum Sn is at least as great as the previous ones. If
Wl,Uz,... are the successive waiting times for ladder points then it
is easy to see that the {W.} are just the waiting times for new pertial
sums which are at least as great as their predecessors. Let { Zk} be
the successive differences between these "world record" sums.
More precisely let £2 be the probability space of the {In} and

define

4 = [weQ :3n> 0 such that n 1s a ladder point of {s, ().
For w e 4 define

¥;(uw) = 1nf[n > 0: n 18 & ladder point of {Sk(u)}]

Zl(u) = Swl(u)(u) .

Forwef) - A, ve define Ul(u) =  and do not define Z,. Suppose now
that we have already defined events Al,Az,...,An, and random variables
wl,...’wn,zl’...,zn tmn defm
Ay =lue d:3n>W (w) +:-e+ ¥ (u) such that S () 18 a ladder
point of {8 (w)}].

If we . define

1
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W1 (0) = 4nf[n > Wy(w) +ee+ W (w): » 4 & ladder point of {3, (w)f

0 Zg() = 8, () g () = Eyle) et 2000).

fwedl -4, define W ,,(uw) = o and do not define Z ,, on this
set. We have consequently

(9} :Al:‘zD coe DAnD oo
ZJ_,...,Zn are defined on 4 and Wy,...,W are finite on A .

2,2 Defipition. The sequence {Hk} are called the succeesive waiting
times for ladder points; W1+ Wz +o.0t Wk being the waiting time for
the kth ladder point. For convenience define W, =2 =0.

From now on unless otherwise specified, we will take the {In} to
be independent and identically distributed. On the sums of sich a
sequence we have that
2,3 THEOREM

If A are as defined above and if the {Xn} are independent and
identically distributed then {(Zk,wk)} are independent and identically
distributed on their domains of definition.
Proof:

Suppose we have established the assertion in the theorem for
m = 1y24000yn. Then if kyyesesk 45 @re guy n+ 1 finite positive in-
tegers, B any borel set, we have

l:’(wn"’l = Epe1 Zpeg € Blwl = kpyeee ¥y =k, Zl""’zn)

ooy x

€ B]

= p[Xx .
Lhe °¥5Y

<0 .aox teoet X <0 Osx
L AR | Yk 't

= P(xl < 0,...,xkn+l_l<0, o s H Fteoot xkn+1 € B)

o =



i

Mttt vy

o cinaw.x o

I
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Thus

P(W

ntl -k

nt1? Tpey € BIA) = P(W, =X

w1 21 € B)
Likevwise we have

P(W

he1 = ®l4) =P, =),

1
Thus we have for any m, {(W,,2,) ... (Un,zn)} are independent where
defined and on A, (W ,,,2 ,,) has the same distribution as (W,,2,) does
on 2,
In the sequel when we write E[¢M(Z1%+-+¥ Zn)g¥atee ¥y o Ly
+...+
mean E[OA(Z]_"'...*-Z,,) 1 Vn |An]. The above theorem then says that
A ARG YR A PR R R TIE
vhere |t| < 1 and Re(A) = 0,
In particular the sequence {Wk} are a sequence of "waiting times"
for a recurrent event in the sense of Feller, which of course shows that

ladder points are themselves.a recurrent event. [See [10] for details

on recurrent events. ]

By definition of the quantities involved we have that
(2,2) [W >n]=1[5; <0,000y8 < 0] =1 (X),.0.,X) =0]
(2.3) [ (X,e08) =n] = [8 2 S45 0<§<n]

[n is a ladder point].

2,/ THEOREM

Let A,t be complex mmbers such that Re(A) = 0, || < 1 and let
¢(A) = BeM1, Then
ASp

= z e = n =
(244) m = 5 Ele 5 L =n)t (Lo =0)
W AS
(2.5) 15" Y - n’; E(e” 7 Ly =0)¢%, (L =0),

1 - tp(A)




Proof:
AZ]_ w1
We first prove (2.4). As Ele | < 1 and the {(W ,Zk)}
independent and identically distributed (by theorem 2.3) we have that

' Wyt 40,
(2.6) — v = e E(e/\zl gk kg) AN VAR

Now as . ‘
A(zl"oo-"'zk) wl*..o"'wk - @© M1+ooo+zk) _
E(e t )= 2 t"E[e i +. . o = 1]
and Zl *ooot Zk = Sn ir “1 tooot "k =n we have that the right hand

side of (2,6) can be written as

- _ 9 a® Asn
(207) Z {nw tnE(e ooo"' “k - n)} - nzw t k% E(Q 1 ..."’V —n)
where the exchange in the order of summation is valid sinoce

B p(eSn, =
E i 1617 |B(e™; W) +eet W, =1n) < oo
i but
" (2.8) kg.on("sn Wy +eeet Wo=n) =BT L =)
é since a last maximm must occur at some ladder point. Combining (2.6),
(2.7) and (2.8) ylelds (2.4).

To prove (2.,5) observe that

[1- (0] T K 1 = 0

= I {0 1, =0) - SR Ly =00}
since g(A) = Be™™*1 and X ,, 1s independent of X;,...,X . But
(L ,=0] = [¥ >n]
and so the last expression can be written as

W
n=1

This establishes (2.5).
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If equations (2.4) and (2.5) are compared with equations (.15) and
(416) we see that they oontain these (for the ladder point recurrent
event) as a special case (for A = 0). What we have shown is that in
this case we can extend these relations of recurrent events to include
the term 6B, Now equations (.4) and (.5) are just equations (.1) and
(42) with the terms "B put in (at least on the left hand side). As
vas shown in the introduction (.1) and (.2) are consequences of (.15)
and (.16) and since (2.4) and (2.5) are extensions of these equations
we would suspect that (.4) and (.5) could be derived from (2.4) and
| (2.5) by an argument similar to the one used to derive (.1) and (.2)
from (.15) and (.16). This suspicion will now be verified and this
will constitute our first proof of (.4) and (.5) which from now on
will be called the basic identity. But, as indicated in the introduc-
tion, we shall also glve a second proof which will show that (+4) and
(+5) are direct comsequences of (.1) and (.2) and thereby will show
that (.1) and (.2) are equivalent to (.4) and (.5).

At the heart of the matter of why we may extend the recurrent
event relations as we do here is the following trivial fact:

For the case of ladder points equation (.12) holds because of a

stronger sample space factorization
(2.9) [ (X,eeesX)=k] = [0, (X),...,0)=k]N

(g neac Ry oo o9%g) = O]
and this is true by definition of L = and the fact that the {Xn} are

independent and identically distributed. The importance of this
sample space factorization will become apparent as we proceed. As its
first use we derive an extemsion (.12).




N\ =
'
‘

H 24

2,5 THEOREM
| Let
(2.20) P(a;6) = £ E(6™%5 L =n)t®, 1t] <1, Re(a) <0 |
: ' S-S , ,
| |
a (2.11) Q(A,t) = ng E(e’\sn; Lnn = 0), It < 1, Re(A) 2 o, [

then for |x| < 1, It| < 1, Re(A) =0 we have

(2.2) I E(Mm ™) = (A, t0Q(A,t).
n=0

Proof:

From (2.9) we have that

B8 =x]
(2.13)

B[ 5K eA(Sn-Sk); L=k

oML = kElMm X | = o],

Multiply both sides of (2.13) by x°t* and sum over range 0<k<n < co.
This gives (2.12). We note that by equations (2.4) and (2.5), equa-
tion (2.12) can be written as

(2.14) n;;': % (o0 me) = rf'_g%tﬁ}ﬂm .

We now prove
2.6 THEOREM (Basic Identity)
For Re(A) < 0, Jt| <1

k

(2.15) P(A,t) = exp(kgl %— E(e™k; 8, 2 0)).

For Re(A) 2 0, |t]| < 1,

(2.16) ah,0) = oxpl £ (K 8, < o).
Proof:

First we show (just as for (.1) and (.2)) that (2.15) and (2.16)
are equivalent.
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For Re(A) = O we have

]
1
™M

T tp(A =1 kK )
(2.17)

A TR 2 0)exp(,Z) B(o"ys, <O)).
In (2,12) set x equal to 1 and obtain

(2.18) ITJ';(X)'= n_% t%(A)® = P(A,t)Q(A,t).

(2.17) and (2.18) prove the above assertion and so to establish (2.15)
and (2,16) we need only prove (2.15). We give two proofs.

Proof one of (2.15):

Differentiate (2.12) with respect to x at x =1 to obtain®

(2.19) ng t%5(MSn L) = r—‘gliﬁs‘zl-w';\ P(A, %)

and so we have
Pr(At) - 2 ASp+,n~1 -
(2020) P A,t n§1 E[(Lnn - Ln-l,n-l)e ]t ] P(A,O) - lo
Hence
= X orASn 3
(2021) P(A’t) - exp(ngl E[e (Lnn - Ln-l,n—l)]n )'

But the equivalence principle says

(2.22) E(*0[1_ - 1) = BN _-§__ 1) = E(s*;8_ > 0)

I'11-1,n-].
= {fn1 if 5p <0
since Nn {R

n-1+1 1£ S 2 0.

1 ASn Lnny = » ASn.r  —p) K =
As E(e""2 x 1) 2o E(e" L =k)x =f (x) we have that
l£,"(x)] <EL g nfor x| <1, and so Z, £, '(x)t" 1s uniformly
convergent in x, |x| < 1, and as I E(eASn zI"m)'I:n converges for |x| £ 1
?
we have 3= I E(e’n £mm)y? = Zpmo B(L Sn)t at x =1, Also
P(A,xt) is differentiable with respect to x at x = 1.

T
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Substituting (2.22) into (2.21) yields (2.15).
Proof two of (2.15):
Start with (.1) (Andersen's Lemma). Take logs of both sides of
(.1) and equate coefficients of t* in the resulting equation., This

gives:

P 0) _ B _
(2.23) __(_s.n_n_Z_l = kgli-r(wlwz ot W =),

Lot a,, a5,...y8, be any n real numbers and consider the special case
of (2.23) that results when the random variables {X } just take these

n
n values with probabilities py, PyyeeesP, (kgl B = 1, but othorwise

arbitrary). Each side of (2.23) then becomes a polynomial in
PysPyyes+sPye On the left hand side the coefficient of pp,--+p, 1is

25T (ag,yeeryng )
"0 s %o B
n

while on the right hand side it is

z 3 i1 )
= R R I
(W) +¥W, +...+ W =n]

where for 1 { k¥ { n and each permutation

g = (35.1 §2 3) I (adl,---,aon) denotes the function which
n [wl+w2 +...+ wkzn]

. 1&1‘ the partial sums a.cl, a.ol*' aoz,..., 8'61 toeut aon have their
# 1 X ladder point at n,

0 otherwise.
1 if the partial sum aol *tooot qgnz 0,

Similarly I (ajy...y8p) = {o 1f not.

[s, 2 0]
And so we obtain the following identity

n
(2024) 2 ZI (agyseeesdg) = Z{ Z T (agyyeeessc.) }.
Sy TRy




| / .

For any x 2 0 we have that
B 1 n
| (2.,25) 2 Z1 (aUl,...,adn) I(a‘:’l""’adn) = cl;. {kil I(agyyesey8g,)
[s, 2 0] (s, <x] [Wy*eeet W =n]
'I(‘ol,ono,adn)}o

[s < x]

Consequently if X = (xl,xz,...,xn) are any n lnterchangeable random
variables we have from (2.25) by an argument similar to that used to

prove theorem 1.7 that

n
(2.26) P08 <0 = 3 e su, +et W =058 <),

n k=1 2
and so
(2.2 M 20) - B LpAsn, -
«27) nn = kglkE(e Uy +eest W =n).

Multiply both sides by t", sum and apply equation (2.7). This results
in

(2.28) 2. w = £ LMottt (it )y
n=1 n k=1 k

This is a version of (2.15) valid for interchangeable random variables.
If the {xn} are independent as well, then the right hand side of (2.24)
can be written as
o)
z

LE(M1 ¢HE = -1n(1 - B(eML 1))
k=1

and so taking exponentials of both sides of (2.,28) we recover (2,15).
This completes the second proof of the "Basic Identity."
We now establish analogues of (2.15) and (2.16) which will be

needed later, !
(2429) §° E(e"snm =n)t® = o (§° IEE(e’\sk-s < 0))
=7 =0 1o RS Pk

by (2.16) and (1.29).




Q0 A - - o k AS .
(2.30) e Smip = oi? = oxpl,Z, i 5(eM%s, 2 0))

by (2.15) and (1.30).
Next observe that for the sequence {-X } we have L (K reeeyX)

Lo(X seeesX ) and I, n(EyseeeyX) =L (X,0000X ) and so ve have

nn

(231) = BT =n) = emp( £ £ B s < 0))
n

(2.32) 2 tnE(eASn. = Q) = exp(ng;. j!'? E(eASn;S > 0))
(2.33) g 't.ni?.(e;\sn;Ln =qn) = GXP(n}g;- j;'n E(eASn;S > 0))
(238 1 801, =0) = el £ L aie™ns, <o),

let T, denote the mmber of ladder points at time n (i.e. ¥ =
sup {k: Wy *e.ot W, =n}). Our purpose here will be to show that by
similer arguments used to prove the basic identity we may establish
that

2,7 THEOREM

For Re(y) < 0, Re(p) =0, It} <1, Ix| <1, |y] <1, wo have

(2.36) ngotnn(e*““ m) = l=Ee WJ_)-(P) 1-yE(e(T"Pl771(xt)"1)°

Proof:
By remarks made in the introduction we have that Lnn is the "time
of last occurrence” of the recurrent event "ladder point" and so if
Lnn=k thenYn=Ik
and consequently

(2.37) E(e'fﬁn £ yIn epSn'L = k)

nn

= xkE.(e;rsk Tk Pk, 3Ly =K)E[e n-k’Ln-k ok 0]

i
i
|
i
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since knowing that the last occurrence takes place at time k makes Ik a
function of X;,Xnyeee,Xye
We have now that

(2,38) E(e(ﬂ"l)sk y!k;ka =) = %1 E(e(m)sk;wl'*wz +...+Uj =k)}'J
j:

= ;él yJE(e(Y"’}l)P(Zl'*. . '+Zj) 5"1+"‘+“3 =Xx).

Substitute (2.38) into (2.37), multiply each side of the resulting

equation by t® and sum over 0 { § <k { n < co. This results in

(2.39) ng B(eMnHon ;I Tnyn

=z t“E(e“sn;Lm = 05][51 B(o{F 2L (g4)"1)® 3P

from which the theorem follows by (2.5).

Various corollaries follow from theorem 2.7 by suitably choosing
the perameters in equation (2.36).
2.8 Corollary

(20) E B(e™ 278 F5) = By + prtx)Qlpst) «

2.9 Corollary
w1

00 M, Y _ l1=E 1
) fyaoPa e e B o

2.10 Corollary
42)  ZEle 1-t 1-E(et?lgn)
Reparks:

The idea of studying the sequence of bivectors {(Zk,ﬂk)} is due
to Dwass who used them to prove (2.42) by an argument similar to the

argument used here to prove theorem 2.7. In fact Dwass shows that ir
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{(zk,wk)} are independent and identically distributed bivectors with
the {Hk’y Positive integer valued, then if we define I as above and
ﬁh = 2,0+ 2, ot Z!n (which it is 4in the special case above) then
(2.37) holds. [In this regard we may say that for arbitrary {(Zk,Wk)}
of the type mentioﬁed above, the special case of theorem 2,7 with p=0
is valid.] Dwass uses equation (2.37) to prove (.3) (with y = 0) by
complex variable arguments.

The idea of locking at random variables teking values 8985500 ey8y
to prove permutation identities is due to Wendel who uses it to prove
permutation identities in [17] and [18]. In Chapter 5 we will use it
again to prove another permutation identity.

The permutation identity (2.24) is due to Feller and was estab-
1ished by him by a direct argument in [9]. He uses it to prove the
basic identity as we do here,

The basic identity and Spitzer's identity (.3) are equivalent, as
is easy to verify from equation (2.40). Our second proof of the basic
identity shows that it and Andersen's identity ((.1) and (.2) are
equivalent,

Finally let us remark that the basic identity shows that

%721 £41)

- E(e

AZy W1
ng 1-."13(97“”!1;1.nn =0) = g_(A,t) = %ﬁ—)’

and so in the future &, and g_ can be replaced by the right hand side

L AS = = =
ngo t"E(e MLm= n) =g (A,t) = 1

of the above. In particular the expomential identities show that we
may express generating functions of the various quantities of interest
in fluctuation theory in terms of E(e21 1),
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Chapter 3
Direct Consequences of the Fundamental Identity

The following notation will be used throughout the remainder of

this paper.

(3f1) P(Ast) = ng;) E(e)'s"‘;Nn = n)t"

[Note by (1.26) this agrees with the original definition in (2.10)]
£3.2) QAst) = ng; E(e"s'n;nn = 0)¢"

(3.3) g, (Ast) = exp(ng; 3;-1 E(eASn;Sn 20))

(3.4) g_(Ast) = exp(n;:;; inf E(e"sn;sn <0))

(3.5) H(A;x,t) = e O xl'm].

n=0
In the above and in the following, Greek letters A, a, B, v, W, etec.

will denote complex numbers whose real parts are zero. L[Scmetimes as
in (3.4) for example, the range of A can be greater but this will not
concern us here.] t will always be a complex number such that |t] <1
while letters u, v, w, x will denote complex numbers such that their
absolute values are £ 1.

For any quantity a, either constant or random,

+ {3 ifag2o
0

ifa<o
(306) - a ifa(O
a = {o if a0
and finally
(3.7) (A) = E’FL,

The following theorem was discovered by Baxter [4] (see also

Spitzer [16]).
31
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3.1 THEOREM

¥
L g(eMkys, 2 0)).

o
(3.8) E(eAzl twl) = 1 - exp(~2
! k=1
‘ Proof:
This is just equation (2.4) turned upside down.

3.2 THEOREM

. E
(3.9) nﬁo (e

x )ttt = g, (Asxt)g (A5¢).

Proof:

(3.9) 1is just (2.14) rewritten using the equivalenmce principle.

[The special case of A = 0 is due to Andersen [3], the theorem as
presented here can be found in Baxter [6].] |
3.2.1 Corollary (Andersen [1], Wendel [18]) ?

- - AS -— As . — ‘
(3.10)  E(™mN = 1) = 8(e™K;n = 0BG PN = 0),
Proof:

(3.10) is just equation (2.13) rewritten using the equivalence 5

principle.
Let M, = Max(S_, Si,...,5 )
M, = Min(S , 5,,...,8 ).
3.3 THEOREM

(3.12) ngl tPE(e o n Pl X TB) = g.(A+ pjtx)g_(Ast).

Proof:

L =k if and only if ﬁn =8, and so by factorization (2.9) we

have _
E[eASnwn;Lm =x] = E[e('\m)sk*' MSp-Sy) L, =¥l
(3.12)

= sl = klele™ M ol.

nk,n-k
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Multiply both sides of (3.12) by xt™ and sum over 0 Sk S n < o to
obtain

(3.13) ng; E(e,\sn% )4 = P(A +pyxt)Q(A,t).

The theorem now follows from the basic identity.

This theorem has a long history. The speclal case of x =1 is
the basic theorem of Spitzer [14]. The case of A = O was proved in-
dependently by Pollacsek [12]. Proofs for x = 1 were also given by
Baxter [4,6], Wendel [17], Kemperman [li] and Dvass [private communi-

cation].
3.3.1 Copollary (Spitzer [14])
® A( - )+ - _ 0 LD as + As -
(3.14) i—};ngo £[¢}Sntn p“n]t"-exp(ngl b(ge" ™ +Ee 2)).
Proof:
Set x = 1 and write p = p-A in (3,11). This gives
(3.15) ng.;) t"E(eMsn'ﬁn) ' '“-’n)tn = g, (Byt)g_(A,t).
Multiply both sides by 1/(1-+t) and use (.20). !
3.3.2 Corollary (Spitzer [14])
(3.16) ng;) E[e%]tn = g (pjt)g_(05t) = exp(n_g:; In_ E[ePR .
Proof:

Set x=1and A =0 in (3.11),
3.3.3 Corollary (Andersen [2], Spitzer [16], Kemperman [11])

(3.17) ni t"P(M,= 0,8 =0) = expl ng) ﬁg P(s = 0)).

Proof:
Set x = 1 in (3.11) to get
(3.18) ng;) tnE(eASn%) = g (A+pst)eg_(Az8).
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Observe that since M 2 O this formila is valid for all complex p such

that Re(p) € 0. Taking the limit as Re(p) = = on both sides of
(3.18) to obtain

(3.29) ng: (MM =0) = g_(Ajt)exp( n‘fl i;n (s =0)).

Now (3.19) is valid for all complex A such that Re(A) 2 0. So taking
the limit as Re(A) => oo on both sides of (3.19) yields (3.17). [Note
the order of taking limits here is essential.]

Let

k
(3420) £, (A58) = exp(kg % E[e)'s]‘;sk > 0]).

The following theorem is due to Kemperman [11].
3.4 THEOREM

z t%g[¢"5n My ann‘In yLn]

n=0
(3.21) © n
= £,G+ pstle_Asdempl £ LR 23 = 0)).
Proof:

The proof is based on the decomposition shown below:

xl’ooo’xj xj+1’.l.’xj+k ﬁ+1+j’...’xn
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For-

(3.22) [L;=j, Lk, =kl = [N (xj, PRTLILY X,) =31N

FSj+k- sj 30; -&(Ij_’l-sj’ooo,xj*k-sj) = 0]0
[Nn-;]-k[xj+k+1’°-0,xn) = 0]
and thus
E(eAann,Ln j, -L k)
(3.23) y
= E[O(A"}l)SJ ;N; = j]E[ n-j-k, Nn-j-k =ne-j -k]

(s =0, ¥ =0).
Multiply by y9x“t" and sum over 0 j <n< @, 0<k {n < o to ob-
taintheresu.lt

® gy SnWn Il Tn o

Tieg

(3.24)
= L2 (70078 M P ngn =) ][ ng +%8[s" 058 ~ = n]]-

[ 2 B(s,= 0,8, =0)(t)"].

Use of (1.27) and (2.34) in the first, (1.28), (1.29) and the basic
identity in the second and (3.17) in the last of the bracketed terms
of (3424) yields the desired result.

3.5 THEOREM [Andersen [3], Baxter [6]]

N
(3.25) ni:; g[en x 58,2 oJt? = Tf'; {1- [1- w(A)]} B(Asx,t).

Alternately we may write the right hand side of the above as

(3.26) =5 - S
Proof':

We have
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(3.27) [N = m3S,, 2 o] =[N 2m] - [N_; 2n].
A simple calculation gives that

(3028) mg)E(e ;Nan)x kmn ﬂ-_. Ixil_).

l-x

Consequently we have from (3.27) and (3.28) that

AS Nn
P Paen Mg yope 5 on BTN -2

ST 42 E(e’3n -m(&l(om” -1 n'h
=1 l-x

-‘-{1 [1- xte(2) JA(A;x,t)} .

Using (2.17) and (3.9) on the right hand side of the above we obtain (3.26).
N
[Remark: It is convenient to take E[e"S0 x °;8 2 0] = 0 here and conse-

quently we mist take E[e ° N°,s < 0] =1 in order to be consistent with
the fact that E(e’° x°) = 1,]

3.6 THEOREM
- +
(3.30) ni% P8(e"n *Pn " Fn x ™) ,
N [1;1&5%:“1] HA+ pix,t) = 7211~ tp(p+ B)JA(R* Byxyt).

In the future we will denote the lef{ hand side of (3.30) by
G(A,p,P3x,t).
Proof':
G(Ayp,Bsx,t) = z PE(e P PSn ¢ S 20)

(3.31) + ng 1-.“":‘.(e(7""*)‘?'n an;Sn < 0)

= 73 {1‘ [1-tp(p+ p)IH(R+Bsx,t)} + H(A+ pjx,t)
+ -1-_1-; {1 - [1-tp(a+ p)JE(A+ pix, t)}

by theorem (3.5). Simple rearrangement mow gives (3.30).
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3.6.1 _lehn |
= __..L_ g (A+p4 8+(}1+ B,xt)
Proof':

- This follows from the theorem by use of theorem 3.2,
3.6.2 Corollary

© piSnl Nn -Byt) g.,(p,tx)
(3.33) z t"E(e x D) = %—'—7 (p,t)]
Proof:

Set p =0 and A = =f in (3.32).
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Chapter 4
Order Statistics of Sums

In the previous chapter we dealt with the quantity Nn which is
the mumber of non-negﬁtive sums among the first n sums. In this chap-

e e R B,

ter we will investigate the q,na.nfbity.'rn(_x) which is the number of sums

among S 5 8;y¢..,8, which are less than or equal to x. This study will
lead us to inves_'gigate the  order gtat;lstics Rn ° <R 0l S *** <R an of
the first n sums, which in turn will lead to the study of certain re-

lated quantities {L,} to be defined shortly.
Whenever one has to deal with order statistics one runs into dif-
| ficulty in determining which object stapds k'R from the bottom (or

top). This is due to the possibili%y of ties. One way of avoiding 1
these difficulties is to eliminate them by use of certain conventions.
In our case this may be accomplished by use of the following order
relation.
4.1 Definition

Say 8; <8, (read "is smaller then') if S, < 8, or 8, = 3 ut
i<ij.

With this ordering of the sums 'every sum has a unique position
and we may define o
4.2 Definition

For each k, 0 S k < n, lot L, denote that sum which is kth from
the bottom according to the ~< ordering. '

4«3 Definition
The ~< ordered sums will be denoted by Rno-<Rnl-<...-<Bm.

38
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Note thatRnOSRnlS...nga.ndthatRnk=Sjife.ndonlyif

Ly =3 and that R, 1s the firet minlmum and R is the last maximm.
Thus L - is the index of the first mindmum and L s the index of the

lagt maximug. These agree with the definition of L o Ly glven pre- |
viously and explain why the notation Ln ) L n Y88 used before for these f
quantities.

The relation between the function T (x) and the {R  } will now be
established.

We have
TRV T P v 3 * oM
and so

(4.2)* f * 4y Bv ) o 1e 2 z B K oK,
n
In this vay we ave led to study the function Z s

In an analogous manner if we investigate the function

T n + |
o- © h dy v n(x) we will be led to study the function kgo I‘.‘»e)‘ﬂnk vk, |
by the relation
+
Ax Tn(!) n x
(43) Jor @ @y BV = (1-v) 2V Ee nk,

An alternate characterization of the R;k is that they are the
order statistics of {8 s1 yeeosSy *J. Similarly the order statistics
of {S.,3, yeees3 }or the funotion f v Pa(%)) et to tre q
study of the function k-‘z‘-O vkE emnk. Also of interest is

n AlRpyl+ Sy
20 vkEe .

]‘l‘he exchange in order of integration is trivial to verify here.
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We will show below that simple considerations of the order indices

Lnk will lead to an exponential identity which contains identities for
all of the variables mentioned above and in fact all known identities
may be derived from it. We will deduce many special cases of formulas
involving the order statistics from-it. The key to this study is con-

tained in the following sample space factorization:

min(j,k).

(4.1.) ank(xl,...,xn) =j] = m(%,Jm-n)[N;-J(xJ*l"'"xn) = k- x]N

[Nj(xjyooo,xl) = X]o

To prove this (see diagram below) observe that the event [L = J]

11

|
|
7 r L 3 1
ERW [L11,4
~J\__3 -2

(0 <k <n),(0<Jj<n), can happen disjointly as follows: Among the

sums So’sl’"" j-1 there are x which are less than or equal to SJ and

among the sums S l’“"sn there are k- x which are less than Sj {here

j+
wax(0,§ +k=-n)  x  min(jyk)]. This first event, [among Sgree+1841

there are x sums gs] = [N (xj,...,xl) = x] while the last event,

[ among Sy41990 095, there are k-x sums <s] =[N 3 1,

Hence (4.4). From this sample space factorization we obtain immediately

the following lemma.

1,..o,xn)=k-x]o
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- + .,
(e nk PRk " Pk *Pn g oy

- +
(405) =3 E[QASJ + psj + TSJ + st ;Nj =X] E[ellsn-j ;N;_j =k x]
x
Define
N
(46)  T(Agwyt) = ng; B(¢"58 v B)4
then we have

4.5 LEMMA
©® ,n
nEO b k§0
(47)
= GAyp+ vyB5v, )T (psv,t).
Proof:

vkE[em;k+ pR;k "’]an + TR'nk uLnk]

Multiply both sides of (4.5) by t2ud v* and eum over the range
0<Jjg<n, 0 k< n, 0K n< . This results in the desired left
hand side while the right hand side becomes

{ng E[eAss it (r)s; Vnn](tu)n} I(pjv,t).

Theorem 3.6 now gives the result.

Finally we have the big theorem. This theorem is important be-
cause from it all known identities may be deduced by a suitable choice
of Ay By ¥y py u and v. Some of these will be derived as corollaries
following the proof of the theorem.

4.6 THEOREM .
= +BR_, + +
z B ; v]‘E[e}'Rnk PRose * Y psnulhk]
n=0 k=0
(4.8) [1 (A+n+y)]
= {c"“‘?_vn X g.(A+ p+ ysutv)g_(A+p+ yjut)

- ﬁ;[l-utq;(p+ ¥+ B)lg,(p+ v+ Bsutv)g_(p+ v+ pjut)}
g (nyt)g_(pstv).




W2
Proof:
This follows directly from Lemma 4.5 and Theorem 3.6 and the fact
that
I(p,vyt) = g, (pyt)g_(pytv).
This latter fact follows from (1.28), (1.29) and (1.30), and the basic
identity [and is an obvious analogue of Theorem 3.2].

We may rewrite the right hand side of (4.8) as

(4.9) {‘ (A+p+yjut) _ 8+(P+Y+B,utv)} g+ (pit)e(pitv)

g (A +p.+‘f,utv) g+(p+ Y+ Bjut) 1-v
4+6.1 Corollary (Wendel [18]) -
*ps
® pn ARpy + pS exP(Z‘- L(l ME(e R TR)) - v
(4.10) 2 v Vkﬁfe = (1 - V1 - vte(p)]

Proof:
Set p =y =0 and u =1 in Theorem 4.6 and (4.10) follows upon

rearrangement.
4+6.2 Corollary )
(4e11) % o3 vkE(eBR;k+PSn) _ l-veexp(Z j‘nf(vn_ 1)E[e?°n* Pon)) .
=0 k=0 @ - {1 - telp))
Proof:

Set A =y =0, u=1 in Theorem 4.6 and after a little algebra in
the resulting equation we obtain (4.11).
4s6.3 Corollary (Baxter [6])
g’ vkz[e‘fank Pn Lnk]

(4012)
= g, (v+ pjutv)g_(v + pjut)g, (pit)e_(psvt).

Proof':
Set f = A = 0 in Theorem 4.6.
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4,644 Corollary (Wendel [18], Baxter [6])
0
b3
, n=0
(423) = expl( 1 [‘iﬂ)_n E(e‘fs;;")f’n) + = E(eﬁ;+Psn)).
=1 B n

tnkgo vkE[eYRnk ' p.Sn] =g, (v +p,vt)g_(psvt)e, (pst)e_(y + pst)

Proof:
Set u = 1 in Corollary 4.3.3.
4.3.5 Corollary (Wendel [18]2)
T
B ([ e g )

(4.14) n N
= (1-vex( £ {L2- B(e™%) + & o™0}),

Proof:

Apply Corollary 4.6.4 and (4.1).

Though other identities could be derived from Theorem /,,.6, as the
ones above were derived, we shall not derive them here but will conclude
instead with a version of Spitzer's identity which will be needed in
the next chapter.

4e3.6 Corollary [See Theorem 3.3 for references. ]
(415) E Pe[ M P o'o) = o (ye prut)e, (pst).

Proof:

Let v = 0 in Corollary 4.6.3.

Up ti1l now we have always taken So as the constant O, However
we may easily modify the preceding formulas so that So can be an
arbitrary random varisble. In other words we add to the sequence {X}

Wendel studies the function n-T (x) and obtains the corresponding
formulas in terms of the descending order statistics.




b4
n 2 1, a new random variable XO so that So = Xo, and in general
sk= xo +x1 +‘..+ xk.
Let 31,82,...,8 be the sums X,, Lyt Epyeeesky *ount X, as usual. Then

if we add a term X o to each of these sums, the relative order of these |
suns is unaffected (see diagram). ’
|

—— emm— e—

/ Ada X

N /o

—

That is, if R ax 1S as before and ﬁnk is the order statistics of
xo'.'sl’ooo,xo"'sn tbn RnkNxO +Bnk,
i.e. ﬁnk has the same distribution as X +R ok We assume of course
that X, is independent of X,,X,... and therefore of the {R } but in
general X o B8y have a different distribution than the commem distri-
bution of the Xn, n2 1. As an example of the use of this idea we
have the following theorci,
4ol THEOREL

® nd y_ vy k*Pn

Z z E ?

Z t o v Le ]

“E[e(w)%] z 2 vkE[em Psn]
= E[e(m) %Jexp( g){-(m— E(e'fsk P L E(JS Pgn)})




Chapter 5
An Extremal Factorization

Al) of the identities in the preceding chapters were in a certain

Sense consequences of the factorization

(5.1) E(eAsn;Lnn= x) = E(eASk;ka=k) -E(e’\sn'k- 0)

’Ln"'k’n"k =
and its partner under the equivalence principle

ASn

(5.2) E(e ;Nn=k) = E(eAsk;Nkz k) OE(e/\Sn-k;Nn_k = 0).

Another such factorization is
5.1 THEOREM
(5.3) BloTok P JTaicy | gr " Pk Py oy Wk ,0 " Pk B0y

Proof:
By Corollary L.6.3 we have
> n = D ‘Yﬁnk..'lﬁn I'nk"l
ngo t k§-0 vkﬂl;e u’
= Lg,(v+ njutv)g_(psvt) Mg_(y+ psut)e, (pst) 1.
But by (4.15) and (3.11) this first term in brackets is

2 (bv) [P0 P g
while the last bracketed term is
z PE[n* M uL“°]

and thus we have
kgo vkE[eYRnk*PSn uLnk]

(5.4)  _ kgo vkE(eﬂprk uka)E(ePsn-k" o uLn-k,O)

and equating coefficients of v~ in (5.4) yields the result.
45
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5.1.1 Corollary (Wendel [187)
(5.5) BLoTok *Pom) o g " Polge Mot Pt

(5.6) E[eYR"k] = E[eﬁk]E[eYun"k].
Proof':
Set u = 1 in the theorem to obtain (5.5) and set p = 0 in (5,5)
to obtain (5.6).,
5.1.2 Corollaxy
(5.7) Bu) = By SR 0),

u

Proof:

Set ¥ =p = 0 in the theorem.

An alternate direct approach is possible to the theorem 5.1 which
will be given below., From Theorem 5.1 we may prove Corollary 4.6.3
and this will present a more direct and simpler proof of that important
identity. We start as in Chapter 4 with the identity

(5.8) E[eﬁnk+’£n;Lnk=j] = iE[e(T+F)sﬂ;Nj= x] E[epsn'diﬂl;j =k=-x]:

Now by (5.2) and an obvious analogue for Nn- we have that the right
hand side can be factored as
Z E[e(}l*‘f)sx.n x]E[e(P Y)sj-x.n -O]E[g"sk"xm =k-x]

k=x
. E[el’sn-J-k“'x n-j-k*x]
but as
Ny g =0 Nj'_x =j-x
N _ = k-x=N =

we have combining the first and third bracketed terms together and
the second and fourth bracketed terms together by yet another ap-
plication of (5.2) and the Equivalence Principle that
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. +
(5.9 o1 e -Psnil'nk=:l]
=3 E[J“k*psk;lm e[ o -k * Psn-k T 0 = 3-3]
from which (5.3) is evident.
C Multiply (5.3) by vktn and sum over 0 { Xk { t < ® to obtain
Corollary (4.6.3).
We will now deduce an interesting permutation identity from (5.3)
by the same trick of Wendel used in Chapter 2,
Let a = (s.l,az,...,an) be any n real mumbers. For a fixed integer
k let D be any of the (k) subsets of the set {1,2,...,n} consisting of
k mmbers, say {11.’12"‘""1:}' Let O be an arbitrary permutation of
1,2,,.49n and let ﬂDk, “Dk' denote arbitrary permutations of D, and its
complement D, ' respectively. Define R (d:), L (d-a-) on the sums of
da; ik(ﬂvk), Ifkk("Dk)’ M'n-k("Dk')’ L_ X, ol{™ 4) on the sums of
(ail’""aik) and (ajl,...,aj ) respectively, where {ijee.yiysdyseces dnyt
= {1y2ysceyn}e We then have the following theorem:
52 THEOREM

There is a 1-1 mapping
¢ <> { x? Dk’ Dkl}
of the set of nl permutations ¢ of (1y25evs,n) onto the set of triples
{nk,uDk, nDk,} such that the yecter (R (da),L  (da)) is carried onto
the vector sum '
() oty (o ) + Wy (o )k ol ).
Remarkg: Of course the theorem holds coordinate wise and for the first

coordinate wes proved in Wendel [18], who however attributes the
theorem to Spitzer. One interesting thing of this theorem is the




somewhat surprising fact that the game permutation works for each
piece of the vector. [Of course, owing to the relation of R i and

L, this is what one would expect. ]

Proof':
Set p-= 0 in (5.3) to obtain
5[ , Fonk ;Ihk] = [P (XLyeeT) * Mo (Ber e %)
(5.10) Lac(xy, worXie) * Iy 0(Xjerys oo ,xn)].

If the {X } take values a),...,8 with probabilities pye..,p, then

(as usual) by equating the coefficients of Py 4Pyye.0,P on each side

we obtain the identity

s eTRnk(Oa)‘;Ihk(da) - . eY[ik("Dk) +§n_k(ﬂDkt)]
° Dy s™p a7p 4

(5.11) k
.uI’kk(“]&) + Ln—k,O("Dk' ) .

Since u and ¥ are arbitrary the vector identity follows from (5.11).

Example. a = (1,~1,2)
I= (11,12,13) a rearrangement

Xy X2 X3 |5 Sy 8y S5 [Ryg Ry Ryp Ryg | Igp Dy Dy Dy
1 -1 2 0 1 0 2 0 0 1 2 0] 2 1 3
l1 2 -1 0 1 3 2 0 1l 2 3 0 1 3 2
-1 1 2 0 -1 0 2}-1 0 0 2 1 0 2 3
-1 2 1 0 -1 1 2 |- 0 1 2 1 0 2 3
2 -1 1 0 2 1 2 0 1 2 2 0 2 1 3
2 1 1 0 2 3 2 0 2 2 3 0 1 3 2
For sets of no elements Do and all 3 numbers D3 there is nothing to do.
M '
Tl M 5% S 1% ] P 1% 8 S ¥ | Ry

1 1l 1 O 1|-1 2 0 -1 1|1 1

1l 1 1 O 1l 2 1 0 2 1 0 0

0 0 -1 0 |-1 l1 210 1 3 0 0 D1

0 0 -1 0 |-l 2 1 o 2 3 0 0

1 2 2 0 2 (=1 1 0 -1 0| -1 1

1l 2 2 0 2 l -1 0 1 O 0 0
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wl
1
1l
-1
1
2
2

L32
1l
3
2
2
1
3

(3}
(=]
1_*2211-1
of ©O ©O O ©O O O
s =" ="
~ + N ~ N
31121-.1214 + | O A O O N N - O

L * Lo

Corresponding pairs are marked by letters.

(1

Corresponding pairs are marked by letters.



Chapter 6
An Analytic Method

In this chapter we present an alternate approach to the basic
identity and theorem 3,2 based on complex variable arguments. This
method seems to have first been used in Fluctuation Problems by
D. Ray [13]. Spitzer [14) uses it to prove theorem 3.1. The method
came to ‘nw attention tin-ough M, Dwass who used it to prove corollary
3.3.2. The method is expounded in detail in Kemperman [11] who
proves (as we will here) theorem 3.2 by its use. Our purpose in pre-
senting this method here is illustrative; we wish to illustrate one
of the analytic approaches to the theory. Since the other amalytic
methods are equivalent we choose this method since it is the most
elementary of them.

(6.1) Lot g(A) = Be~L Re(A) = 0

(6.2) P(A;t) E[e"sn;L on = n]t® Re(A) < O

]
g v
o

o

12

(6.3) Qr;t) ;L =0] Re(r) 20

(6.4) g (a58) = exp(kgl L E(eASk;Sk 20)) Re(r) g0

(6.5) g (Ast) = oxpl kg_‘_; £ 2(sMKs, <) Ro() 20.

Now it is easy to verify that P(A,t) and g (A,t) are bounded
and comtimous for Re(A) < O and analytic for Re(A) < 0 and that

Q(A,t) and g_(A,t) are bounded and contimious for Re(A) 2 O and
analytic for Re(A) > 0. By (2.18) we have

(6:6) g (Myt)g,(A%) = TRy = POMUR(A,Y) for Re(A) = 0

and so 50




g (At) _ P - -
(6.7) m = E%:S = £(A) for Re(A) = 0.

Hence by Liouville's theorem, £(A) must be a constant. To evaluate

this constant observe that

14n EAY) o
Re(A)— o ’Qb"t;
and therefore we have the result
P(A,t) = g.(A,t)
(6.8) ’ A
QA,t) = g (A1),

We next prove

z E[MSn 0)4P = g, (Asxt)g_(A;t).

Of course this follows from (6.8) directly by use of the equivalence

principle tut we wish here to prove it directly and then deduce the

equivalence principle from it.

Let
Q0 AS N.
(6.9) E,(Ajxyt) = n§0 Ele %x n;sn > 0]t?
© - AS
(6,10) H_(Asx,t) = Z Ele ®x ;8 < 0]t"
and
(6.11) H = H +H

then theorem 3.5 gives

(6.22) E, = 7E-{1-[1-%l(E +H)} BRe(r)=0

or

(6.13) [1- m]g;- +(1-wH = 1.

Add Tf;(l - t9) to each side and after slight rearrangement we

obtain

B
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(6.14) [1 - o] {725 Ly - (1 - wfE_+ 75}

or

(619) [pho+ B eelhitl & (2, ’“){ e
-x x° g, (A,tx g_ A,

It can be seen that H, is bounded and analytic for Re(A) < O
and continuous on Re(A) = O and that H_ is bounded and analytic for
Re(A) > O and contimious at Re(A) = O, Hence (6.15) represents a
bounded analytic function of A and therefore is a constant. To
evaluate this constant take 1limit as Re(A) —=> o on the right hand
side of (6.15). This results in 1+ &= = —i=.

l-x
Solving for H, we get

H,= 72- {1 - [(1 - )], (Astx)g_(A,t)] .

Substitution of this expression in (6.12) and solving for H yields
the result.
We may use these two theorems to deduce the equivalence prin-

ciple. For the two theorems just proved show that

(6.16) Ex0 = Ean

and so for any k, 0 { k { n,
(6.17) P(L_=k) = P(N =Xx).

If we apply (6,17) to the random variables taking values
8y985900 098y with probabilities PysecesPy then by equating coef-
ficients of pP,,Ppyeeyp, OR each side of (6.17) for this special case
results in

EI (ad oooad) EI (ao 00'30)
d (L }-’k] ’ 9 [y SOl

which is the permtation version of the equivalence principle.
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