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ABSTRACT

• The problem off electrome~petic wave propagation along a dielectric

rod of elliptical cross section is considered. The field components and

the dispersion relations of the principal modes are obtained. The prin-

cipal modes degenerate to the well known HE modes of the circular

dielectric rod as the eccentricity of the elliptical rod approaches

zero. It is found that there are two non-degenerate principal modes

which possess no cut off frequencies. They are called the dominant

principal modes.

In contrast to the case of a circular dielectric rod, the boundary

conditions for the elliptical rod cannot be satisfied by using a single

product term consisting of a radial and a periodic Mathieu function of

a specific order to describe the field components in both regions (the

region inside the rod and the region outside the rod). It is generally

believed that an infinite series of such product terms must be used to

describe the field components in both regions. In the present investi-

gation, it is shown that the boundary conditions may be fulfilled if the

field components in one of the two regions are represented by a single

product term consisting of a radial and a periodic Mathieu function of

a specific order. The field components in the other region are then

represented by an infinite series of such product terms. The problem

is therefore sufficiently simplified to permit analysis.

The propagation characteristics (the propagation constant, the field

distribution and the attenuation constant) of the dominant principal

modes are given theoretically and experimentally. It is found that the

analytic and experimental results are in very good agreement. The Q's

of a dielectric rod cavity resonator supporting the dominant principal

modes are also given.
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CHAPTER I - INTRODUCTION

* The concept of guiding electromagnetic waves either along a

"single conducting wire with finite surface impedance or along a dielec-

tric rod is not new. As early as 1899, Sommerfeld (1) conceived the

idea of guiding a circularly symmetric TM wave along a conducting wire

with small surface resistivity. In 1910, Hondros and Debye (2) demon-

strated theoretically that it is possible to propagate a TM wave along

a lossless dielectric cylinder. However, due to the large field extent

outside the wire and the relatively high attenuation of this surface

wave, the "open-wire" line remained a novelty for almost half a century.

Recent developments in the generation and application of millimeter and

sub-millimeter electromagnetic waves, the availability of very low loss

dielectrics, and the development of fiber optics, have renewed interest

in the surface waveguides. There have appeared numerous papers and

reports concerning various forms of surface waveguides and the feasibi-

lity of these guides as practical transmission lines.

Before discussing the purpose and the scope of the present inves-

tigations, a survey of previous work on surface waveguides is in order.

1.1 Survey of the Literature

The surface wave guiding structures are capable of supporting waves

intimately bounded to the surface of the structure. These waves have

exponential decay characteristics in regions away from the surface and

are governed by the usual propagation function eipz along the axis of

the structure, where z is the axial coordinate and 0 is the propaga-

tion constant. For real values of P such waves persist at arbitrarily



large distances from the source. The• steady state solutions with

-int
harmonic time dependence e qre the only ones considered here.

Of primary interest..are the values of 0 as a! function of the fre-

quency and of the properties of tie guiding system.

The surface wave guiding system can take many forms. The one

intensively studied in the past was a surface wave structure of

infinite extent imbedded in an infi-nite uniform medium. The problem

then consisted of finding the s6lution that satisfied the homogeneous

field equations and the boundarl conditions with the source at infinity.

Typical surface wave structures may be classified into three

types. The first type is the dielectric coated con.ductor, such as

dielectric coated conductinj plane and wire. The second type is the

interface of two dielectri'c meQia, such at dielectric rods. dielectric

tubes, or dielectric strips. The third type consists of various open

periodic structures, such as uxibounded helix, corrugated plane or cylin-

der. Sketches of these three types of surface wave structures are shown

in Figure I-1.

Among the various structures meationed above; only those intimately

related to the propagation of surface waves along an elliptical dielec-

tric cylinder will be discussed further, nameiy,, the Sommerfeld-Goubau

wire, the circular dielectric rod, the-dcielectric tube, and the ellip-

tical dielectric rod. Related topics such 8s the interaction of two

surface waveguides and the :roblem cf. excitation oof surface waves will

also be mentioned briefly.

(a) The Sommerfeld-Goubau Wire .

The possibility of propagating a surface electromagnetic wave along

a circular conducting wire wae.fir. JoD4st~rated .theoretically by
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e

(a) dielectric coated (b) dielectric coated
conducting plane conducting wire

(c) dielectric slabs (d) dielectric rod

(e) corrugated (f) unbounded helix
plane

Fig. I-1. Typical surface wave guiding structures.
Type 1, the dielectric coated conductor, (a),(b);
Type 2, the interface of two dielectric media, (c),(d);
Type 3, the open periodic structure, (e),(f).



Sommerfeld (1) in 1899. The wave was a circularly symmetric TM mode

with components HQ, Er, Ez and was loosely bound to the surface of

the wire. In a numerical example he showed that the damping at high

frequency for this type of wave was too pronounced to use as a com-

munication wave. Consequently the practical uses of this type of

transmission line were very limited. In 1909 Hondros (3), a student

of Sommerfeld, showed that an asymmetric field distribution was also

possible. But the wave was so strongly attenuated that it could not

be observed experimentally.

Recently in 1950 Goubau (4) reinvestigated the properties of

the Sommerfeld line and studied its suitability as a practical com-

munication line. His investigation showed that a circularly symmetric

surface wave might be guided by a conducting wire of small diameter

with the same low attenuation as that of the conventional coaxial con-

ductor guide. However, the field extended radially to a considerable

distance outside the wire before its strength decayed to a negligible

value; so that any small imperfection of the surface or any small cur-

vature along the wire would cause radiation loss. The practical use of

this surface waveguide was therefore limited. In an effort to reduce

the radial extension of the field, Goubau (5) proposed the coating of

the conductor with a thin sheath of dielectric, or corrugating the wire.

This reduction of radial field extent was achieved with the penalty of

higher attenuation due to dielectric loss or corrugation. This

increased attenuation due to dielectric loss together with the original

attenuation 4ue to loss in the conductor has been calculated by

Goubau (5). It should be noted, however, that the first theoretical
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analysis of electromagnetic wave propagation along a conducting wire

with a cylindrical insulating sheath was given by Harms (5) in 1907.

Since Goubau's report, numerous papers concerning this type of

single wire line have been published. Among thele are the papers by

Barlow and Karbowiak (6) in 1953 on the measurement of radial field

distribution; Sheibe, King and Van Zieland (7) in 1954 on the measured

losses of the "Goubau Line"; and Roberts (8) on the excitation of the

single wire line. Kiely (9) also reported on the effect of fog and

rain drops on the attenuation characteristics of the wave propagating

along a long single wire line.

(b) Circular Dielectric Rod

Hondros and Debye (2) in 1910 analyzed theoretically the'guiding

of a circularly symmetric TM wave along a solid lossless dielectric

cylinder and thereby removed the cause of the strong attenuation due

to the conductor (1). In 1915 Zahn (10) and his two students, Rgxter

and Schriever (11,12), confirmed the existence of such a TM wave experi-

mentally. Carson, Mead and Schelkunoff (13) noted in their paper that

Southworth in 1920 also accidentally observed such a wave in a trough

of water. When the generation of high frequency electromagnetic waves

(about 10 cm) became feasible, Southworth (14) described some experi-

mental work dealing with phase velocity and attenuation of the circu-

larly symmetric TM wave on the circular dielectric guide.

Not until 1936 were the propagation properties of asymmetric

waves on a round dielectric rod considered. A rather complete mathe-

matical analysis of this problem was given by Carson, Mead and Schel-

kunoff (13). It was noted in their paper that in order to satisfy the



'boundary conditions, a ybrid wave (i.e., the-coexistence of longitu-

* dipal electric and anetic. fields) must be assumed. In other words,

"yaym ric TE and Tt moes, were inextricably coupled to each other
"A.1"ac do. They lso s.ed that, 1) pure TE

""A ad. T M waves could only exist in the circularly symmetric casee nd

"2)"there existed one end only one mode, namely the lowest order hybrid

w•ve called the HBl mode, which possessed no cutoff frequency* and

. could propagate atat].l frequencies. All other circularly symmetric or

S""....'::non:.• • m•mtric modes, -ad cuetoff frequencies. The dispersion relations

" of"the"e modes were also obtained in their paper, talt no numerical

results were given.

Since then the 'development of metal tube waveguides as transmis-

- sion systems completely over-shadowed the development of dielectric

Swaveguides. This Is largely'due-to'the fact that the field is con-

'ained.entirely within themetal tube guide.' For the dielectric guide,

"" hoiever. the field isnot entirely contained 'which leads to greater

*transmission loss due to radiation when bends and -discontinuities are

. . present. A large number of papers have been published on the subject

Sofpropagation of electromagnetic waves in a hollow metal tube. Borgnis

and Papas (15) gave a very comprehensive treatment on this subject.

In 19145 Maliach (16) published his 'results on the use of the

"dielectric rod as a directive:eradiator. He showed experimentally that

..the radiation pattern obtainedAby the use of the asymmetric HE mode

produced only one lobe in the prihcipal direction of radiation.

"This cutoff frequency does not hive the conventional definition as
". that for the metal Vaveguide modes (see p.295 of reference 15). It is

.e . hre defined that the cutoff frequency for the surface waveguide mode
is the frequency belov which the dielectric rod ceases to act as a

.'binding medium and the wavehis no longer guided by this surface wave
structure.
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Immediately after Mallach's paper, Wegener (17) presented a dissertation

in which the asymmetric HE mode, together with the lowest order cir-

cularly symmetric TE and TM modes were analyzed in detail. Not only

were the numerical results of the propagation constants for these

waves obtained, but also their attenuation characteristics. Apparently

he was not aware of Carson, Mead and Schelkunoff's work. A few experi-

mental points were also included in his work to substantiate his

theoretical results. Elsasser (18) in 1949, independent of Wegener's

work, published his computation on the attenuation properties of these

three lowest order waves by the perturbation method (15). In a com-

panion paper, Chandler (19) verified experimentally Elsasser's results

considering the dominant HE1 1 mode. He found that the guiding effect

was retained even when the rod was only a fraction of a wavelength in

diameter. Since the greater part of the guided energy was outside the

dielectric, very little loss was observed. For the first time the

cavity resonator technique was introduced to measure the attenuation

constant of the HE1 1 mode. The resonator technique was very suitable

for investigating -very low loss uniform waveguides. It should be noted,

however, that the formula relating the Q of the resonator and the

attenuation constant a in Chandler's paper is only applicable for

very small 2a/%0 , where a is the radius of the rod and X is the

free space wavelength (see Chapter V).

King (20) in 1952 proposed the so-called "dielectric image line"

as a practical surface wave guiding device. The "dielectric image line"

was made up of a semicircular dielectric rod mounted on a conducting

sheet and was designed specifically for the dominant HEll mode. He

indicated that the conducting sheet not only could act as a supporting
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device, but also as a polarization anchor for this dominant mode. A

detailed study on the attenuation and the radial field decay charac-

teristics of the HEll mode guided by this image line was reported by

Schlesinger and King (21) in 1953. Again the cavity resonator method,

used by Chandler, was used for the attenuation constant measurement.

As of now the "dielectric image line" is still the best and the most

practical device for supporting the dominant dielectric mode.

(c) Circular Dielectric Tube

A natural generalization of the analysis of the propagation of

electromagnetic waves on a dielectric rod would be that for the circu-

lar dielectric tube. The earliest theoretical analysis was carried out

by Zachoval (22) in 1932. He considered the propagation of a circularly

symmetric M4 wave along a lossless circular dielectric tube. Two years

later Liska (23) verified Zachoval's work experimentally. A more com-

plete treatment on the theory of dielectric tube waveguides was given

*by Astraham, (24) in 194.9, in which both symmetric and asymmetric propa-

gating waves were considered. He also substantiated his theoretical

results by experimental data. Independently, Unger (25) in 1959

reported his investigation on the same subject and showed that a dielec-

tric tube with a thin wall could support the dominant mode with very

little loss. But the radial field extent was rather large. One of the

most promising applications of dielectric tube waveguides may be found

in the field of millimeter wave cavity resonator and beam coupling struc-

ture (26).
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(d) Elliptical Dielectric Cylinder

The first attempt to find the dispersion relation of: an~ ledtro-

magnetic wave guided by an'elliptical cylinder structure. was made by

Karbowiak (27) in 1954. He considered the ellipti'cal cross-section

Sommerfeld line and the elliptical cross-section Geubau line. .The wave

equation was formulated in elliptical coordinates and solutions were,

obtained. However, he matched the boundary condition& only at one

point on the boundary surface; therefore bis results can, at best, be

considered an approximation for very small eccentricity. Another

attempt to solve the problem of surface wave propagation along an .ellip-

tical dielectric rod was made by King and Wiltse (28). Again they for-

mulated the problem in elliptical coordinates and obtained sOl"utions .of

Maxwell's equations in this coordinate system.. But in matV.hing the

fields on the boundary, similar over-simplifi'cati6as'of the bpoda*.

conditions were made. The "approximation" of these twoiappro..aches :can

be best illustrated by the following example." 'For th6esake of.clarity,

only the matching of the axial electric field on th~e boundary will:be

considered. .

Karbowiak's method. The expression'for the ax'ial electrtic field

in region 1 which is the region inside the dieleotric" rod is..

Ez1  An Cen(g,rl) cen(T, (1)

where A is an arbitrary constant. The e xprdsslon'for the axial elec-

tric field in the surrounding medium is

=z Ln Fekcn(g,T2) ce*(r1,T2 (2)

where L is an arbitrary constant. It shotild be'noted that all these
n

*The notations of the Mathieu or the modified Mathieau functions are

defined in Chapter II.
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Mathieu functions and modified Mathieu functions are functions of the

characteristics of the medium. The boundary condition dictates the

continuity of the axial electric field, i.e., at ) - o Ez Ez

we have

A C ce (n,2) = L Fek ( -r,2)ce*(Yjr 2 ) (3)
n no 011 n 1 n no0 2 n '2

It should be noted that cen (TI,r 2 ) and ce*n(n,y 2 ) are functions of
1 n 2

The only way that equation 3 can be satisfied is by assuming

e )= Cen(T,) , which is not true except when the eccentricity

is zero. This was the assumption made by Karboviak.

King and Wiltse's method. King and Wiltse realized the invali-

* Jdity of Karbowiak's assumption and proposed to attack the problem in a

slightly different way. They assumed that the expression for the axial

electric field in the dielectric rod is

E n= AnCen(t,rl) cenT2) (4)
1 n= 0

where the A are the arbitrary constants; and the expression for then

axial electric field in the surrounding medium is

Ez =LFek( 2T) ce*(T, -r-2)(5Ez n n T

0

where L is an arbitrary constant. Satisfying the boundary conditionn

at = o ,we have

02 222
SAnCen(o ) Ce n('l) = L n Fe n(oT2) ce(,T) (6)

n= 0

They then multiply both sides of the equation by ce 2 (r•,jT 2 and
@1
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integrate with respect to • from 0 to 2x , obtaining

AnCen( ,yl)N = L Fek (t, 2 )M (7)
n n n 2 o

2n 21

where N =1 ce2 ( n,l2)d and M = cen(vr,2) ce*(ny 2 )djnhr nNn n f n 1,n2)d

0 0

This was how they eliminated the summation sign. It can be seen that

an identical result, i.e., equation 7, can be obtained by the use of

2
equations 1 and 2 . Multiplying both qides of equation 3 by cen (•r,)

and integrating from 0 to 2n , one obtains equation 7.

Therefore the validity of King and Wiltse's solution is also ques-

tionable.

(e) Related Topics

Unlike the waves in the metal tube waveguides, there are no

evanescent modes on an open surface waveguide. It is not possible to

express any arbitrary field distribution in terms of the propagating

modes alone. Hence, there must exist a different type of wave, namely

the radiated wave (29) if any source is present in a finite region.

As a matter of fact, it should be noted here that the presence

of the surface wave was actually first postulated by Sommerfeld (30)

in 1909 when he was considering the now classical problem* which bears

his name. He found theoretically that there existed not only a radiated

wave due to the oscillating dipole, but also a surface wave which

traveled along the interface of the two dielectrics. Since then, a

great number of papers and reports have been published concerning varia-

tions of this problem. The most recent investigations have been reported

•The Sommerfeld problem is discussed very clearly and thoroughly in

Stratton (31).
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by Roe (29), Whitmer (32), Tai (33), Brick (34), Wait (35), Cullen (36),

and Brown (37), to mention only a few.

The problem of interaction between two parallel uniform surface

waveguides is also an interesting one. Since the wave equation is not

separable in the bipolar coordinates, approximate methods must be

employed. Quite a few authors used the electrostatic approximation* in

the earlier years. However this approximation was not satisfactory at

very high frequencies. Most recently Armand (38) and Marcuse (39)

treated the problem of interaction between two parallel Goubau wires

without resorting to the electrostatic approximation. They formulated

the problem by assuming the interaction of only one single mode on each

wire, namely the circularly symmetric TM mode. They indicated the

presence of space beats and the energy exchange phenomenon. Numerical

examples were also given.

1.2 Purpose and Scope of the Present Investigation

In order that the dielectric rod may be a low loss surface wave

device, one must choose a small value of ka where k is the free

space wave number and a is the radius of the dielectric cylinder. In

the millimeter wavelength range, the radius of the dielectric cylinder

becomes inconveniently small. Fortunately it has been found experimen-

tally (41) that if the circular rod is flattened, (i.e., if the circular

rod is rendered to an elliptical rod of the same area), the attenuation

of the dominant mode may be reduced considerably, provided that the

*The electrostatic approximation is as follows: In calculating the
structure of the field one would neglect quantities of the order of
O(d ViTi7), where d is the distance between the wires, ko is the
wave number for free space, and k is the propagation constant of
the wave.
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'electric field .of the dominant mode is parallel at the center of the

rod to the minor axis of the elliptical rod. The use of very thin

fibers of various cross-section as optical waveguides or as mode selec-

"tors in optical masers has also received considerable attention. [For

* exainple, see reference (40)]. Furthermore, it is noted that so far

there exists no satisfactory way of analyzing the problem of surface

wave propagation .along a dielectric ..,rod of elliptical cross-section.

It is therefore the purpose of the..present investigation to develop a

* method to analyze..this problem theoretically, to examine in particular

the propagation .characteristics of the dominant modes, and to perform

'. experiments to .verify the. analytic results.

• . " The investigation is divided into six parts, and the results are

co~rrespondingly"presented in Chapters II, III, IV, V, VI and VII. In

'"Chapte'r II the fundamental theory of wave propagation along an ellipti-

cal dielectric rod is given. A method is developed to assure that the

solutions .of the wave equation satisfy all the boundary conditions on

the surface of the dielectric rod. The characteristic equations for

the principal modes are given so that the variation of guide wavelength

with frequency, the dielectric constant, and the physical dimensions of

the guide may be obtainedý It is shown analytically that there exist

two non-degenerate modes which pos.sess no cutoff frequency. They are

called the dominant .mOdes, .and it is the propagation characteristics of

these that w.ll be considered in detail in the subsequent chapters. It

is also shown that all the principal modes on an elliptical dielectric

rod degenerate smoothly to the well known modes on the circular dielec-

tric guide, as the eccentricity of the elliptical rod approaches

zero.



Numerical results of the characteristic equations for the

dominant modes are obtained and discussed in Chapter III. Sketches

of the field configurations are also given. The decay characteristic

of the axial electric field is computed.

In Chapter IV the attenuation properties and the power distribu-

tion characteristics of the dominant modes are analyzed theoretically

with the assumption that the dielectric loss is small. Numerical

results are computed. It is found that the attenuation constant of

the dominant BE( mode* propagating along an elliptical dielectric
e 11

rod is much less than that of the dominant HE mode along a circular

dielectric rod having the same cross-sectional area. Physical inter-

pretation of these rezults is also presented.

The Q's of an elliptical dielectric rod cavity supporting the

dominant modes are given in Chapter V. It is shown that very high Q

cavity may be constructed using thin elliptical dielectric rod. Also

derived is a formula relating the Q of a cavity and the attenuation

constant of a transmission line supporting the same mode. This for-

mula is more general than the one given by Davidson and Simmonds (41)

in that it is also valid for the hybrid modes. This relation is very

important whenever the cavity resonator method (19) is used to measure

the attenuation constant.

To verify the theoretical results a systematic experimental

investigation on the propagation characteristics of the two dominant

modes was performed. A detailed description of the measuring apparatus

and technique is presented in Chapter VI. Experimental data are then

*The meaning of this symbol is given in Chapter II.
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compared with theoretical results, and they are in very good agreement.

Summary and conclusions are given in Chapter VII. The advantages

* of using a flat elliptical dielectric rod instead of a circular dielec-

tric rod 8s a microwave guide are pointed out. It is also indicated

that the analytic method used here may be applied to other similar prob-

lems. The problem with source present is also discussed briefly.
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CHAPTER II - THEORY OF ELLIPTICAL DIELECTRIC WAVEGUIDES

The problem is formulated in terms of the elliptical cylinder

coordinates; the appropriate solutions of the wave equation in this

coordinate system are then obtained. The difficulties of satisfying

the boundary conditions on the elliptical surface are pointed out. A

method to overcome such difficulties is introduced. Various notations

and classifications of the principal propagating modes are defined.

Upon matching the boundary conditions by the indicated method, a set of

characteristic equations and explicit forms for all field components

corresponding to various modes are obtained. The existence of the

dominant modes having no cutoff frequency is demonstrated. Finally, it

will be shown that as the eccentricity approaches zero, all principal

propagating modes degenerate to the well known circular modes.

2.1 Formulation of the Problem

The surface wave propagation along an infinitely long, straight,

isotropic, and homogeneous dielectric cylinder of elliptical cross sec-

tion imbedded in an infinite dielectric medium of dielectric constant-

Co and magnetic permeability p 0 is considered. The dielectric

cylinder has a dielectric constant E1 and a magnetic permeability

ýi" ' We assume that ýI = Po , the free space magnetic permeability;-

C 1 >o , and that the conductivity in both media is zero. We further.

assume that the exciting source is so far away that, in the region of

interest, the surface waves dominate the radiated waves from the source..*'.':

To analyze the source-free dielectric surface waveguide of ellip-

tical cross section, the elliptical cylinder coordinates (tqz), as

shown in Figure II-1, are introduced. The elliptical cylinder coordinates'""

0
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-/.2qI Semi-major axis = q cosh 0
2Semi-minor axis= q sinh 0

Eccentricity, e = i/cosh t0
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F 0 FI
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Fig.II-l (a) Cross-section of elliptical surface waveguide.
F and F2 are the foci of the ellipse. The distance

between foci is the focal distance, 2q

(b) Degenerate form of ellipse when e = 1. As e - I

semi-minor axis - Q , and semi-major axis - q

(c) Degenerate form of ellipse when e = 0. As e - 0
q Oto oo, semi-major axis - semi-minor axis-- r
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are related to the rectangular coordinates (x',y' ,zt) through the

following,

X' = q cosh • cos

y = q sinh • sin I

zi = Z

(0- 4 < a), O-0 -2x)

where q is the semifocal length of the ellipse. The contour surfaces

of constant t are confocal elliptic cylinders, and those of constant

Sare confocal hyperbolic cylinders. The elliptic cylinders and hyper-

bolic cylinders have foci at x'= q, y'= 0 and x'= -q , y'= 0 . The

semi-minor axis is equal to q sinh to . The eccentricity e, defined

as the ratio of the semifocal distance to the semi-major axis, is given

by e = i/cosh to

One of the confocal elliptic cylinders with 0 = o is assumed to

coincide with the boundary of the solid dielectric cylinder, and the

z-axis coincides with its longitudinal axis.

2.2 Maxwell's Equations and Their Solutions in Elliptical Cylindrical

Coordinates

It is well known that the harmonic form of Maxwell's equations in

a source-free medium characterized by E and ý± are given by

VxE iw.LH (la)

V x H -iweE (ib)

V H 0 0 (lc)

V •E 0 0 (ld)

where E and H are the electric field vector and the magnetic field

vector respectively. The harmonic time dependence of e for all
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field quantities is assumed. The rationalized MKS system is used

"throughout this work. We shall now confine our treatment to waves

propagating along the positive z-axis. In complex representation

these assumptions result in a multiplication of all wave functions by

-iLt ijze e , i.e.,

E(gTr1,zt) = E (tT) + e E1E n(,) + e Ez( ,v)1 e-i4Ot eiPZ (2)

H(Ej,z,t) = (e• H (, 1 ) + e H (E,TI) + e H _(,')) e-iwt e iz )

where e and e are unit vectors in the ETiz directions res-

pectively, and P , the propagation constant of the wave in the z direc-

tion, is to be determined from the boundary conditions.

In elliptical cylinder coordinates, equations la and lb become

- iWE p2Ez = (p Hn) - y (p Ht) (4)

- iwE p E (H) - i~pH (5)

MiWepE = -(Hz) (6)
9 M z

iw pH • )-~ (p E•) (7)iwý P-- z = L[ (p E () E-7

ýPH(Ez -P p E (8)
iw~pH• = (8)1

iLpH PE (Ez (9)
i )pH = i 9pE• - E

where p = q(sinh 2 + sin)2 Y , k 2 (024,E( 2 and X isthe

wavelength of a uniform plane wave in the medium. The above equations

4 through 9 can be combined to give the field components E•, En, Ht, Hn

in terms of Ez and Hz only; we have,
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.1 6E 6H• E (k-_-ip_7 + i - z (0o)• •.• (kt-2)p -C

.1 )E - , .6H• ,p 6- -k2 B .wl p . •T . T1_
. ' (k.•p. . .-. H+Z) ..• (12)

=---~-- 6. E + 6H

T) -1 .i (

"Taking the derivative of equation 12. with respect to n and the deri-

vative of equation 13 With respect to •". and substituting these

expressions into equation .4.,one obtains the equation

*2 2
2E 2E

+-z 2- + (k-'.q )(sinh t + sin ,')] EA 0 (14)

Similarly, taking the derivative of equation 10 with respect to n and

the derivative of equdtion 11 with respect to t and substituting

these expressions into equation.7, one gets

2 2
.zH 6Hz •2"2 2 2 2

--. + -- 7 - )(sinh + sin )] . (15)

Equations 14 and 15 are the wave equations. -It should be noted that

these'two wave equations are of the same form, therefore it is. only

necessary. to solve one of them. If H 0 z aTM wave results- if

E = 0 a TE wave results. The most general expressions. for'the elec-.

tromagnetic fields consist of a linear combination- of the.-solutions of

TE and TM wavesb

Consider• the :following partial differential equa.tion

.•:•.

L - "9

2 "" 20
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~2A 2A( snr]
I- a + r q 2 )k2 02(sinh 2 + si A =0o (16)

in which A may be H or E • In order to obtain the solutions ofz Z

equation 16 one sets

S= R( t) (17)

and substitutes equation 17 into equation 16. Applying the usual

separation of variables procedure, one may separate equation 16 into

the following two ordinary differential equations

"0 "+ ( (c- 2r2cos 2l)O(i) = 0 (18)

and

2 - (c - 2r 2cosk2g) R(g) = 0 (19)

where c is the separation constant and 2 = (k 2 0 )q 2/4 . Equation

18 is the Mathieu differential equation; equation 19, which follows

from 18 by the transformation i t = + i , is the modified Mathieu

differential equation (42).

For physically admissible single-valued electromagnetic fields,

A( ,ý) must be a periodic function of q , of period v or 2v ,
2

and the separation constant c, in this case a function of y , takes

2 2on an infinite set of characteristic values for every T . When T

is real the characteristic values are all real; since we are considering

2
solutions in a lossless medium, only real values of c and y are of

2interest. Corresponding to y = 0 there are two independent periodic

solutions, namely sin nj and cos nj with the separation constant

2 w2c = n where n is an integer. It can be shown (43) that when
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differs from zero, a characteristic value c determines one and only

one periodic solution which is either even or odd in i . The charac-

teristic values c , giving rise to even and odd solutions are denoted

hire by an(r 2 ) and bn (r 2 ) respectively. The subscript n identi-
2 T2

fies those sets of characteristic values which approach n as r

approaches zero. It is known from the Sturmian theory of second order

linear differential equations that solutions associated with an(T2 )

and b ( 2) have n zeros in the interval 0_ q 1 v (44) .
n2

For arbitrary positive real values of T , the periodic solutions

of Matheiu's equation 18 are*(42,45)

2 2 (0
- Cen(r,2)" (even) anr (•2

e= Sn( )2 (odd) bn(r 2 )

and the corresponding so,! 'tions for the modified Mathieu's equation 19

are*

a Ce n(,r 2) + a2Feyn(,T )2 (even) an(rY)

R( 1 2 (21)
b1 Se n(,lr2 + b 2Geyn(E,T2 ) (odd) bn(T 2).

For arbitrary negative real values of y2 the periodic solutions of

Mathieu's equation 18 are*

(ce*(1,1 2) (even) (a n(I 2 ) when n even)

('eTn T ) (vn (b(n1y 2 ) when n odd)

= *(l.I21) (odd) (bnIr 2 1) when n even) (22)

n (a n }( I (r 21) when n odd)

and the corresponding solutions for the modified Mathieu's equation 19

*See Appendix A for the definitions and series expansions of these

Mathieu and modified Mathieu functions.
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are* Ce*(Ir 2I + cFek( r2I (even) (an(f y2 ) when n even)

R(g) = :
i21) 21+ eI(bn(nr 2i) when n even)

n n (an (IT() when(n odd)
(23)

an(y 2 ) and bn(- 2 ) are the characteristic values and n is the order

of the function. a,, a2 , bl, b 2, Cl, c2, dl and d2  are the arbitrary

constants.

The proper choice of the above solutions to represedt the electro-

magnetic field of an elliptical dielectric cylinder depends upon the..

boundary conditions. For region 1, which is the space inside the dielec-

tric rod, all field components must be finite. For region 0, which is"

the space outside the dielectric cylinder, in order that energy flow only

along the axis of the cylinder, all field components, must approach zero

as the radial argument approaches infinity. Consequently we must discard

the functions Feyn(g,T ) and GeYn(tT) , since they are infinite. at

the origin, i.e., at t = 0 . The functions Ce ( yIr2 I and Se*( y:2I)
A

must also be discarded since they become infinite at infinity. Therefore

the solutions of the wave equations 14 and 15 are as follows:**

ODAen 2 2 -tif~Zz
H (,TI'z't) E= A n Ce (g.rl) cen(ql)' e- e

1 n=0
0o 2 2 -loot i13iz

+ A'Sen(,T1) sen (Trl)ei "e , (e e 10) (24)
n=l

H (1,iq,z,t) E L' Fek( )~ce*(I, -ro I 'to nO0

+ 00 L'Gek (g,i 2 1)se*(IIy21)e-!)(t eij~0 Z o(5, e , (co-- *- 0 ) (25)

*We follow the notation adopted by McLachlan (47) and Meixner (44).
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E z ( e , ' ) ,z 't ) = 0Z B n C e n 2 ) c n ( ' "I ) e1 ' e

+ 0BSe 9r2oe(I 2 e-•Ut eihz0 26
.BnSe(•,y) Sen( 1 •) e , (o- • -O0) (26)

n=l

E 00 
2  2 -iWt ipoz

Ez (P, t ' = PFek ce*nr, II) e e

n n n n no n

0 . 0=

20nd 12 2 22t 2 2

+ P Gek (9,Irol) se*(ql, l Ie eo2-

Gek n repctvn 0k1  1  )q - e~ andlt to). )

=n n
(27)

Ai A, Bn B2 a Lnd L1 P 2 and P are coefficients which are related

n n n n n n

by the boundary conditions and are functions of nt, , srr , and

the nature of the exciting sources, but independent of the coordinates.

10 thouh13usn eqais 24 thog 27 Ini 2naly t2 Het

vecTo n r' and T are respectively (kt-h E and H my b(koe 1o )qa

with kI = w n ite and kwo = W •Iot h is the dielectric constant of

the cylinder and a is the dielectric constant of the surrounding0

medium. o is the surface of the dielectric cylinder. All trans-

verse field components for both regions can be derived from equations

s0 through 13, using equations 24 through 27. Incidentally, the Hertz

vectors ir'z and X" (15) rather than E and H may be used as the
"" Z Z Z

scalar quantities fromi which the other field components may be derived.

2.3 "The -Boundary Conditions

The task of solving an electromagnetic wave boundary value prob-

lem, is to find finite and single-valued solutions which satisfy the

source-free Maxwell's equations and the boundary conditions. The boun-

dary conditions are, that the tangential components of the electric and

.magnetic fields must, in general, be continuous through any surface. If
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the region of interest is infinite, then the radiation condition (46)

must also be satisfied. The above conditions are necessary and suffi-

cient. In the present problem, the continuity conditions in the

elliptical cylindrical coordinates are

E - E (i)zI zo

H z =H (2)

E %-E (3)

and H =H1 (4)ql lo

for 21o , 2 ) - - 0 and +oo>z>-co

In order to illustrate the difficulties encountered in satisfying

the above boundary conditions for the elliptical dielectric cylinder,

we shall first consider the case of the surface wave propagation along

a circular dielectric cylinder. The required axial electromagnetic

fields both inside and outside the circular dielectric cylinder are (13)

S0Ai ( ikz -(rtE E J(Cr) cos n@ e e (0 - r - a) (5)
z n n

0 00 o o ikz -iwt
Eo r) cos nQ e e (a _ r < co) (6)Z n=O

H' Z B= n Jn r) sin n eikz e (0 _ r _ a) (7)

n=1

00 0nn eikz eIt (a - r < co) (8)
z Z1 B nK nftr) snn

1n =1

i F2 . 2 2 2 2
t'- 0 k 2•€ = wnd k2 4o

where jk =V -ik and 0= Jk ý with ki= and

Ei is the dielectric constant of the cylinder, eo is the dielectric
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constant of the surrounding medium, and e > co . Ain, Af, Bn, and

B are the arbitrary constants and a is the radius of the cylinder.
n

The boundary conditions are

E = (9)i 0
E.= (9o)z

H>HEP (10)z Z

H 1 (12)

at r =a, 0 4 9 4 2x and -oo z _oo . Substituting equations 5 and

6 into equation 9, one obtains

( ia ikz oo 0 n•O o ikz

__ Ai J (t)cos neoe = K no e • (13)n=O n 0

Multiplying both sides of equation 13 by cos no and integrating with

respect to 9 from 0 to 2v we have, due to the orthogonality of the

trigonometric functions,

.Ai Jn(tia) = A° K (t°a) . (14)
n nna n

It should be noted that for each mode (in this case for each n ) there

should be only one propagation constant. Equation 14 shows that the

boundary conditions may be satisfied for each n separately, due to the

orthogonality in 9 of the fundamental solutions and the fact that the

angular function (cos no or sin no) is independent of the character-

istics of the medium. Similar procedures and conclusions can be applied

to the boundary conditions, equations 10, 11 and 12.

Consider the boundary condition, equation 1, for the elliptical

dielectric cylinder. Substituting equations 2.2-26 and 2.2-27 into 1
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-one gets

e0 2 2 O 0 ijz

BI 0er)T ce prj) 'e + B BSe -r2.T) sen(IT2,T)e
n=O n= 1

00 _22 i
= Z PrFek ('eo, (l)Cer(,ro¶ ) e 0

*rOr r 0o0 r or=0

+ r PE. Gek(t Ij<2)Ser(' -r)ei
r =(15)

Equation 15 may be written as two separate equations, one corresponding

to the even type modes, the other to the odd type modes. These equations

are

E BCecen r) e
n=0

o 2 2 iozZ PrFekr(yoIr 2 l} cer•j( yro) e (16)
r=O

and

BS BnSe(•oT21 Se(ry) e

n=

0D ifo z
Gek e 0 (17)

Suppose one multiplies both sides-of 17 by sem(,Irl) and integrates

with respedt* o:. q from 0 to 2n . Due to the orthogonality of the

" "Mathieu functions (.see Appendix A), equation 17 becomes

.Be~ 2 i 1 z 00. ipoz'S -. )yrGek r o, ) e
Z P...r.. r " )

". r J

S•el n, lr21} 2e~~qa
mm m 

-r 

rni
0
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where is the normalization constant, f 2(.qT°)dq . Assuming

=0 one gets 
0

2w

NB Sem(t,' P Gek (ti~l se(21)s(Ir)T

mm mo '-.~rro0

r~l I r o m l (18)

Equation 18 involves the arbitrary constant B (m = 1, or 2, or 3, orm

a I .) and an infinite number of arbitrary constants P', P 2 , P3  ... P0 0.

Similar procedures may be applied to the remaining boundary conditions,

equations 2, 3 and 4, and each of them contributes an arbitrary constant

on the left hand side of the equation and an infinite number of arbi-

trary constants on the right hand side of the equation. For example,

using 2, an algebraic equation involving A (m = 1, or 2, or 3, or . . .

and Ll, L2 , L3 • * * L res'lts; using 3, an algebraic equation involv-

ing Am and Bm (m =, or 2, or 3, or . . .), and PI P1 , P 3' " "" P o

and l, L2 , L3 * * L results; using 4, another algebraic equation
involving Am and Bm (m = 1, or 2, or 3, or • • -), and P1' P2' P3'

* • • P and Ll, L2 , L3 . . . L results. Since these equations

involve an infinite number of arbitrary constants, an infinite set of

linear algebraic equations is required. This means m must be equal

to 0, then 1, then 2, * •., then co . It can therefore be seen by the

method outlined above that in matching the boundary conditions, an in-

finite order of Mathieu functions must be used to describe the fields

in both media, i.e., both inside and outside the elliptical dielectric

rod.

To overcome the above difficulties one assumes that only one term

of the Mathieu function could represent the field configurations in one

medium, while an infinite series of Mathieu functions in the other.
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Equation 17 can be written as

2 iplz 0o 2 if z
BSe (9o,T1)sen(1),l)e 1 r=Z PrGekr(o, To)Se*(TI I)e 0n n o1 n 1r= 1i

(19)

or

Go2 2 p1zy2 iL B Se (k 1,2.)se ( r2,r)e 1 PGek o I)se*(, Io)eO
Cj n n o n i1r r0Tnl

(20)

In equation 19 one term of the Mathieu function has been used to repre-

sent the field configuration inside the dielectric rod, and in equation

20 one term of the Mathieu function has been used to represent the field

configuration outside the dielectric rod. Consider equation 19. Setting

Pi = Po and multiplying both sides of 19 by sem(,r'T) and integrating

with respect to n from 0 to 2% , one obtains

No n ot I =rZbo 2fo1) arm (m l0,1,2,. .) (21)

2 2
where N nm= f se2(9oT12)d- , when n = m

0

= 0 when n# m

and 23

- r se*(g ).-r2 l) se 2~ 2d~rm =- J r 0 M 01
0

For each value of n there exists an infinite set of linear algebraic

equations which may be combined and simplified to give an equation in-

volving only two arbitrary constants, B and P n i.e.,

n 2NanBnnS n (t or 1) =P.ek n (§o,j-Vol) F n(Prm) (22)

where Fn( (m ) is afunction of Pr
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As an example, suppose n = 1, equation 21 becomes

2 D
N,•BSe ( yo,) P I Gekr(Eo,1)2 , (M 0 o,J'.,2..,) (23)

r=l
2%

with Nlm-= fre (,qir')di, T d m ,

0

=0 m#l.

The infinite set of linear algebraic equations from equation 23 are

N11 seCl =T Pek ,i(0To1 -U P13 1ek 3 (1, 'o2 +

+ P Gek (t iTI•21)0 + . (2.a)

5 5 o o 51

o PIGek1 ( oIFo )1 L3+ P Gek (9 ITr2 1)0 +
ToI)P 3+ 3 0 o 33

0 21)0 + (24b)
+ P 5Gek(5VTOI +3

0= PcGek.(,l•'o)1  5 + P2,3 Gk 3 (e ,It 2 I)%3 +

+ P Gek5(t ,•21)1 + . (24c)

5 5010' 55

Combining the above set of equations one obtains

"NlB1 Sel(t ,rT) = PjGek.(tIroi) F.(Pm) (25)

where 133

•35 •55

F P.*) 131, P (26)

AI •31 •51

P13 33 •53

15 .35 55 5

..
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SP3 Y P5  " P can all be expressed in terms of P1 ; for example,

013 P53

P15 "55 S... .. ... Qe (% 0 To~l
P. i. (-P) (27)P* P* Gek (t I 2 1) 1

= •33 53 Gek 3(o 0 To

035 P55

and

B33 13

35 15 "'"

3 • (-P 1 ) . (28)

-3 53 3 0

P35 155

The above infinite determinants may be solved by the method of suces-

sive approximations (47). It may be shown that P, > P3> P5 > .. >%o

in this example.

The method described above will be used in a later section to

satisfy the boundary conditions and to obtain the characteristic equa-

tions of the principal propagating modes. As one may anticipate, the

mode classifications are much more involved in the case of the ellip-

tical dielectric cylinder than the circular dielectric cylinder. This

will be discussed in the next section.
6

2.4 The Notations and Classifications of the Propagating Modes

For a circular dielectric waveguide it is well known that the

pure TE and TM waves can exist only if the fields are independent of the
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angular coordinates. These circularly symmetric waves are designated

by H for the pure TE waves and E for the pure TM waves. Theon on

subscript o signifies the angular variations and n signifies the

nth root of the characteristic equation. The coexistence of E and

H waves is required to satisfy the boundary conditions if the field

is a function of the angular coordinate .* These asymmetric waves are

then designated by HE if the cross-sectional field pattern resem-

bles that of an H wave and by EHmn if the cross-sectional field

pattern resembles that of an E wave. The subscripts m and n denote

respectively the number of cyclic variations with @ and the nth root

of the characteristic equation. These hybrid asymetric modes discus-

sed above are doubly degenerate since an equally valid solution

results if sin mg is replaced by cos mg , and cos nm by -sin mg

As pointed out in the preceding section, no pure TE or TM waves

can exist on an elliptical dielectric rod. All modes must be hybrid.

In contrast to the case of a circular rod, the fields in one of the

regions of an elliptical rod must be represented by a set of infinite

series of Mathieu and modified Mathieu functions; while in the other

region by a single product term of Mathieu and modified Mathieu func-

tions. We shall be concerned only with the modes hereafter denoted as

the principal modes, which will degenerate to the well-known hybrid

HE modes when the eccentricity of the ellipse is zero. The principal
mn

*Physically speaking, the presence of Ez in a predominantly H wave
(i.e., the HE wave) or vice versa (i.e., the EH wave) assures the
return path for the electric or magnetic lines of force; in other
words, the electric and magnetic field lines must form closed loops
in the case of the surface wave propagation along a dielectric rod.
The existence of a circularly symmetric pure E or H wave along the
dielectric rod is a special case; since the electric and magnetic
lines of force of the E or H wave have already formed closed loops.
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modes wili be denoted by HE(I'0) or HE(0)ore ~ depending upone Mn 0 DEn

whether the modes are even or odd. The axial magnetic and electric

fields of an even mode are represented by an even and odd Mathieu

function respectively, and those of an odd mode by an odd and even

Mathieu function respectively. The subscript m is the order of

the Mathieu function used for the single product term, and n is the

nth root of the characteristic equation. The superscript 1 or 0

indicates the region inside or outside in which a single product term

was used to represent the field configuration. The symbol HE means

that the cross-sectional field pattern of this dielectric rod mode

resembles that of an H wave in the metal guide. The symbol EH is

used if the cross-sectional field pattern of the dielectric rod mode

is similar to that of an E wave in the metal guide.

2.5 The Field Components and the Determinantal Equations of the

Principal Modes

Having properly classified the modes we are now in a position to

describe the field components of the principal modes and to apply the

boundary conditions in order to obtain the characteristic equations

from which the propagation constants may be determined.

In order to simplify the notations for the Mathieu and modified

Mathieu functions without any ambiguities, the following abbreviations

are used:

CeM = mem( ,rt ) cem( 00 = cem( h, r)

Sem(•} = Sem(,1s) Sem(,q) = sem(q)ýF)

Fek Fek r(0, rl) ce*(i)= ce , =r

Gekr(I) = Gekr( olo~I) se*(i1) = se(GI,Ir 2 )
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The principal modes ave separated into four major types, the

HEW mode, the REM mode, the HE(1) mode, and the (o) mode.e mn e Mn 0 mn 1ý

(a) The E(1) Mode
e in

Appropriate solutions of Maxwell's equations for both regions of

the elliptical dielectric rod have been given in section 2.2. According

to the definition of the HE(B ) mode, specified in section 2.4, thee inn

axial components of the magnetic and electric fields are for region 1

(0 K- •_ o

113 z
H =A Ce (m ce e

z
El B Se(•) ser(1) e (2)

and for region 0 0 < C).

H = LrFekr() ce*(i) e -..(3)
Zo r. r r r

00 ipoZ

E z r PrGekr(g) se*(TI) e . (4)

Am, Bin L, and P are the arbitrary constants. The harmonic timeM r r
-imt

dependence e has been implied in these expressions as well as in

the subsequent expressions for the ifield intensities. Substituting .

and 2 into 2.2-10 through 2.2-13, and carrying out the differentiation,

one obtains the transverse field components for region . (0 t- _ ),

H = AmCe'( e )- •€-I B Se (g) sem(n) ee (5)
I k~ 2_ 2 m 3

r U(k 1 P i)p

H =(- 1  A) Ce (g) ce;,q) + we BSe'(g) sem(Jl) e (6)

TP
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E 2  ~2 ) A Ce M m(g) ce'(n) + B MSdJeml ?IJJ'n) (7)

E A 2~2 {.~ Ce'(O)cem(j B Sem(t)Be'(T1) e- (8)
r~ (k1- P )pm m m

where and p q (sin h2  + sin2  The abbreviationswhr I= • an q(iI~)/

Cel(t) d Cem), Se(g) e(e) = d c() and
n dc e() ds m , e( .,

WOO -A se= (n) have been used. Substituting equations 3 and 4

into 2.2-10 through 2.2-13, and carrying out the differentiation, one

obtains the transverse field components for region 0 (to _ t < CO)

H COiP LrFek'(t) ce*(n) +- 2 Praek (t)se*(n) e

0(k2 -0 2 )p r =r (9)

%H k2_1 2 ) _ r e r
0 (10)

E ( 2 [0 LFek (t)ce*"(n) + PrGekr()se*(,)] ei±oz

(k- P )p rl(1)

E = Z [2 Eo2LFek'(
Eo (ko0 _- 2 p r=0 " r r r rkr e (12)

2 2
where = w pc . The prime denotes differentiation with respect to

Sor n as the case may be.

If m is odd, r must also be odd due to the orthogonality of the

Mathieu functions. In other words, when m is odd the series are

summed over all odd values of r ; and when m. is even the series are

summed over all even values of r . The problem with m odd will be

analyzed in detail.
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Equating the tangential electric and magnetic fields H z,E ZH

and E 1 at the boundary surface 0 = o we arrive at the following

equations

ACem( %o)e ('i) e1~ = e 0(13
A e(t~emZe = LrFekr(•)oce*(I) e (M m ~~r=l1r r

odd

)seZ '(q ipz 0 ( 1 z
BmSe(1ose (il e = Z PrGekr( ose*(I) e 0 (14)

r= 1
odd

odd (15)
01 elB Sý g ) e( ) e
1 7TI A.~Ce.(to )ceml(T) +B m(os() e

o 0 i[Lr'• Fekr(g°)ce(,) +( PrGekr(t°)se*(Ui)] e oi°z

odd (16)

Setting 6 • = •iand eliminating ce•!( •) and se•( i) by equa-

tions 13 and 14, we obtain

A Ce57 [ o )Ce ( ,1) = c Lrekr (S seeI(TI) (17)

2 m om 0r=1

odd

BLSe(T°se (g) = Ze=l Pr+ekr( °lseP) , (181

I r 1

odd (odd
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1 2 2

Ata~~i) Ce (t )ce(,01) + .B Se;(9, )se (ii)
0 0

(k1- •1 r ° * PrGekr(t°)se*(1)) (19)

0 odd

r k2  •2i

A 2 Ce'(~ 9)ce TO~ -B Il[ l )] Se.(k0 )se'(in)m0 m m k 2

00k2 B2 r r(+•-&-2 Z • L.Fek'(%)e ,) . (20)
ko- -1 r=l 1

odd

The method discussed in section 2.3 will now be used to eliminate the

Sdependence in the above equations. Multiplying equations 17 and 20

by ces(1) and equations 18 and 19 by Ses() , and integrating with

respect to n from 0 to 2% results in

0D

AmCem( oo emsCm Z E LrFekr(to) ars (21)
r=l
odd

00

Bm Se m(g) E ms = E PrGekr(t)3r (22)
r=l r r

odd

2 2 E r'l

k2- 2 'l r r okr( (23)
o" odd

Am Ce'(t) =c C-B [ ( 1 1e (t ) 8ip mo mi *m 0 nis

00

ko2  p2  r=j__ r rk o)rs (2r)
0; odd
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and s = l,3,5,7,9,'" • o Cm' 8 ' are' 1rs' p 5 and are

defined as

E =1 when m= sms
0 when m s;

0
2w

Sm = f se2 (I)dyl (25)M0

r = rce*(,) ces(rI)dI (26)

0

Ors = se*(n) aes(Tj)dT (27)
0
2x

m = f see(ii) ce(TI))dnj (28)

jms cei(TI) ses ( rij)dT (29)

0

These integrals have been evaluated in Appendix A.4. For each value

of m there exists four infinite sets of linear algebraic equations

which may be combined to give the following:

AMCm(go) = LMFek M ( a )MM(rs) (30)

BmSe(o) = P Gek(t )N (Ors) (31)

Am [1 1 J) Ce Co) (t rY ) + -B Se'( ) =

k2 .2 IU2

2) Po Pt=ek•(to)m(Ors) ,(32)
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2 2

A Eýe'(t)-B )]Sem(to) Rm(a,8) b1z•
k2 m o

k-. p? Lm Fek'(t )M (acs) . (33)
k 2 2 m om ra

0

m(aCr), N"(3rs)' ( m(rs', ), and R (a , 8) are obtidned according
m rs m r m s m rs ma

to the technique developed in section 2.3. As an example, we choose the

m = 1 mode. These constants are then given by

a 33 53

M1 (as) C a- a 1 ' (34)

a. a a1 "'"

a13 a33 a53

a.15  a35  a55

133  53

p35  P5 5

N(Ors) oi 31 (35)

P1 3  p33  P5 3

P15 P35  P55
... ... ... ...
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%(•~rsO) "~~e

•35 •55 "33 153 "".
.37 I57

+ 3 15 S (36)
1 33 553 "'" X 33 P53

035 p55 , "'" 035 155
.. . ....... ...

1 re sls)

*31 '51 a 31 a 51

a 3 5  0 5 5 . . -
a a

37 a57

5- + + (37)
333 '53 ... 1 33 a53 "'

35 55 "'" a 5  55 "'"

.... ... ... . . .

2x 2x

where C1 =f cel(TI)dn and S1 = sel(q)dil . These infinite deter-

0 0mants may be solved by the method of successive approximations (47).

Equations 30 through 33 are a set of four homogeneous linear

algebraic equations in coefficients A m, Bn, Lm and P from.whichm

only the ratios of these coefficients can be determined. These ratios

provide the coupling factors between the different coefficients. For a

nontrivial solution the determinant of this set of equations must vanish.

Therefore we have



0

AA

ca '

o 0 0

:0 0{u1

C\J~r~ICl V~

0
"A c

N COj
0 4)N q

4LA4

4C.

r- I0
00

0 c 0

(D 1 ) 10JrIal

C-"

C-0
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Putting

2 2 2 22cosh to(kl- p2) (39)
2 = -q 2 cosh2 t •(ko2 - 32) (40)

0 0

after some extensive algebraic manipulation equation 38 finally yields

the transcendental characteristic equation for the HE(M) mode
e mn

Ce'(O) ? Fek'(O) 1 Sem(to) y Gek'( 1
m 0 + m 0) + ,ym 0

L x2 Cem(tY 7 Fek m( ) I ILx2Se ) +~o 2 Gek (t )]i

2 2 2 Co 2(x* +y)(x -+y)
+ E1 R (a8 ( , )= (41)4 m rsCs' k•S) = 0.(xy

The propagation constant 1 of the HEW wave can be calculated from
e mn

the above characteristic equation, together with the fact that 0o= 0l

or

2 2 2c2 2 1o o 1x +y =kq oh(•--1z) , (~42)
o ~ oE

0

in terms of the frequency, the size of the guide , the eccentricity of

the guide and the electromagnetic constants of both regions and, of

course, the order of the mode.

The ratios between the different arbitrary constants are important

because they indicate the coupling between the amplitude and phase of

the different field components. From equations 30 through 33, expres-

sing all arbitrary constants in tterms of A , we obtain

Lm Cem() 
(43)

m Fek m ()Mm(ars)
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2 L

and
m I Se ) (to) B

A 2 =I , (45)
A m Gk M t 0 )F rsrsmI

m m o m

mo- m ors

HEM(O) may be analyzed in a similar manner as outlined above; only

their principal results will be given here.

(b) The HE(0) Mode

e on

The axial field components for the e M mode are, for region

i (0 g to) I

Hz= • A Cer() cer(T) e)

odd

E = T, B* Ser(t) e (47)

odd

and for region 0 (t 0 t < co) ,

0

Hz =LP*Fek (t) se*(,q) e 0lo (49)
n m M m
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where Ap B*, L* and P* are arbitrary constants. All transverser m M,

field components can be obtained from equations 2.2-10 through 2.2-13

using equations 46 through 49.

The two determining equations for the propagation constant are

SCe() Fk(t ) Se + _ Gek'(t

Lx Cm(go) ' y2 Fek m (o) [ .2Se 7 y 2  ýek to)

E

(x + y )(x q- + y )
1 -R~(a* ,&* ) Q*M(P* ,X* )=0 (50)

4 4m rB sma mr me
xy

and
E2o2 2 co2 2 (( 1

x + y = k q - (51)
0

2 2
where x and y possess the same definition as those in equations 39

and 40 and
21(

r= f Cer() ce*(n)d¶j (52)

0

21

r, se>) se*(1n)dTIj()

0

e = f se*'(TI) se*(n) dj . (55)

0

These integrals are evaluated in Appendix A.4. R*(acs,s,* )o•( r* )

m rs mse'm m

can be obtained in the same way as outlined for Rm(ars 6ms)Qm(Prs)YMs)

in section 2.5a.
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* (c) The (W) Modeo ma

The field components for region 1 (0 0 o are

H Z = aMSem(9) sem(q) eijz (56)

Ez = bmCem(g) cem(1) eijz (57)

H --p fu. Se I'(g) se(T)- -- b Ce (l)ce'(j) eijz (58)
p(k2_02) Lm m ie•n)+ mm Mc c J

Hm Sem(eg))se(+beý( 9)( eioz (59)2~c- 22 a~e~ se'(m )+ m m

= i ( am eSe ()Bem'())+ bCe'(9)cee(1) e iz .  (60)(2_ 2 m m mmm

*E q, P(22 a 'Se;(E)se m(TI) + b mCe M(g)ce '(11d ei (61)' Ei p(i.O2 ) % m m ~ ~ 1

The field components for region 0 (to g • oo) are

00 i~
H - grGekr(g) ser(-q) e (62)

o r=l

odd

00

z o o hrFekr(E)ce*(71) (63)
0 r-=1r r r

odd

S 0  P(k2_132 ) r= i[ • rr r

0 odd (64)

HI = 2-2) r2l2jE r r)se+'(nP---a r r (r11)

odd (65)
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"E O .()se*(•j÷ hFekI(t)ce*(i)} e if (66)
odd

E 0) r " Gekr(t)se*(q) + hFekr(t)ce*'(n)O ei3z (63)
E~ W % $.e'()e(~p(k 2-13 ) r 1L1. r r rr

odd

aM, b m gr' and hr are the arbitrary constants. Upon matching the

boundary conditions, one obtains the dispersion relations for the propa-

gation constant

E lSe(o)+ 1 Gek(o) Ce'(to) +1 C Fek'(Fto)

Se7(t (+ ye1 ( t L 2Ct07 2T Fe]Em(e

2 2 2 E 2
(X + ) +1 y 0

4 (rs ~ms)m, rs ms
xy (68)

and

2 2 2 2 2 i
x + y =k q cos ( - 1), (69)

00

where 2 2 h, ,(e ,, ) and R(asb) he

me y m errs, ersm

been defined in section 2.5A.

Expressing all arbitrary constants in terms of am , we have

- - Sen(t) (70)
am M Gek(t) N (Ors)

2
(-)cek;,(1o) N,,(13s) ( m)+ semlto)

-E = (71)-am F0
v.ce(o)LI- + ," ]m " s'•:,s)

S:'(-)[
2 + Y ,)(x

2  + y2

and
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h m Ce M(ob) , (72)

3 Fek M(Io )Mm (crs) am

where NM (rs) and M (a rs) have been defined in section 2.5a

C) The HE(o) Mode

The axial field components for region 1 (0 4 0 ) are

H = 0 a* Se()e (T) eioz (73)
1 r1

E = 0 b* Cer(t) cer() e (74)

And the axial field components for region 0 (t 0 • < ao) are

Hz = gm*mGek (t) se*(n) eifz (75)
0

E =h* Fek () ce*( eiz (76)
z m ms cm~r

0

al, b•, g and h are the arbitrary constants.
r h

The dispersion relations for the propagation constant are

Se'(•o) 1 Gekm(to) 1 Ce(t°) 1 c Fek'(°)

x2 Sere(t) y2 G J (0)11 X2 Ce 2 y Fek (t)3

2 2 260 2(x +•)(x + y)

+ R)*( '• 0=0 (77)
x4y 4 Q:Pre ms m rs ms

and

x2 +Y 2 y k q cosh -1) (78)
w x 20

where x P y c * ~%* P8* sR*(cx~b *) and sjXp* s) arex yIrs' r ms as m rs a
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given in section 2.5b.

Some interesting observations concerning thesj dispersion relations

for the principal modes can be made:

The presence of the factor Rm(aCrsbms) Qm(Pr,)Yms) or

R*(drs, ) K ';(C*s ) in the dispersion relations is the

result of using an infinite series to represent the field com-

ponents in one of the two regions. According to Karbowiak's

approximations (27), i.e., cem(T) = ce*(•), sem(n) = se*(n),

ce'(q) = -sem(w1)m, and se'(rI) = cem(r)m' one obtains for these

principal modes the dispersion relations that are the same as

those given above except that the factor Rm(arsSm) Qm(Prs, ms)

or R*(cE* ,P* ) K*(O* ,ý* ) is replaced by-m
m, ls ma rs ms

The differences between the dispersion relations for the

HE(l) mode and the HE(O) mode or the HEM mode and the
e Mn e mn 0 mn

HEM mode are the factors Rm(a rsP -Q(r, ) ando un sms ( BM

%(ctrsbms) K(3sY) . Numerically speaking, these factors

are in general not identical except when to = 00

It is therefore expected that these modes are not degenerate

modes, in general. However, it was found numerically in the

next chapter that when m = 1 and n = 1 within a certain

arbitrary region in the x-y plane* Rl(ars,8 1 s) Ql(arsis)Marbitrarys regionp l

R Q(aj 5s• . Thus the HEIIM mode and-the
11s- 5s 1 HE(O mod ea 11e 11sdee

mode, or the BE mode and the o mode may be considered

degenerate within this region. One may generalize the above

*Here x and y are not the components in the rectangular coordinates.

x2 and y2 are defined by equations 2.5a-39 and 2.5a-40 respectively.



0

x

Fig. 11-3. The mode and the HE(O) mode, or the HEW
e(0) e nO 0E

mode and the 0 HEM mode are almost degenerate

within the shaded region. The boundary of the shaded

region is quite arbitrary. It is determined accord-

ing to the aflowab:ýe differences of R (are,8 )Q(1 81
and *d .b :P IY- r s r m
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observation by stating that in the x-y plane there exists a certain
region (shaded in Figure 11-2) in which the HE (1) and the E() m

e ma e mn

or the HE l) and the HE(0) mode may be considered degenerate. The
O mn O mn

boundary of this certain region is determined according to the allowable

differences between the factor R(crbm) (a(B rs ) and the factor

me r

2.6 Cutoff Frequencies of the Principal Dominant Modes

It is known that x and y are the roots of the dispersion rela-

tions. Combining equations 2.5-39 and 2.5-40 we arrive at the propagation

constant

1 qr2 cosh 2 t k 2 - x 21 1/2 1 r 2 22 21

q cosh Eo 0 cs2o " 0 1 q cosh o cash g y
2 El y2 1/2

qc s y c j 12(1)q cosh t - -ll 1

2 2

In order to have a guided wave, 0 , x and y must all be real

and positive*. One recalls that the positive and real values of y2

indicate that the field intensities outside the dielectric rod decay

with increasing distance from the surface of the guide. If y 2  is

negative and real, the expressions for the field components will indicate

the presence of an outgoing radial wave at a large distance from the sur-

face of the dielectric rod, which can only come from an infinitely long

2 2
*The fact that x and y must all be real and positive offers a way

to determine the upper and lower bounds of the p opagatio§ constant P.
According to equations 2.5-39 and 2.5-40, p2 g k, and -N k2.

0Thus ko k-,L
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(in the z direction) line type source located at some finite •

Such sources have not been postulated in the assumptions. In fact,
2

the concern here is with the source-free problem. Thus y must be

positive real for all surface guided waves and consequently the lowest

permissible value of y2 is zero. The propagation constant and the
2

frequency corresponding to this value of y are

3(y2=°) 1 (2)

q cosh ° ( -)

and

(y 2 o) 6(3

q cosh g ( - I)/o

respectively. x corresponds to the root of the characteristic equation

2
with y = 0 . The frequency defined by equation 3 is called the cutoff

frequency of the wave, since below such frequency the mode can no longer

exist on tne dielectric guide. Physically it means that below this

cutoff frequency the structure can no longer support such a wave and

thereby ceases to be a binding medium.

The approximate expressions of the modified Mathieu functions for

small x and y are derived in Appendix A.2. For small values of y

we have

Fekm(g •o). 2 2to 0 4
1 .e 0 m) Y e ((m+l) +(m-l)e"0 +OQy4

[fo • 1 ((m) 2d 2_ 2
Fe - 8(m -1) cosh t

[for m 3 (m odd)] (4+)
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1 F e k i ( t o) 1 + 2 e2 t n a y o ( - e - t 01 + ~ 5
1 1ek 1 " Ye 20 2

"y Fek() +8 cosho)[2e t+0(Y)c (t)

and

Gek'(tO) e -in-- t12 e [(+l) +(m-1)e 01+O(y ,
y 2 Gekm(to) 2 8(m2-1) cosh2o 0

(for mr- 3 (m odd)] (6)

1Gekl(to) P 2g% 2t0
L 1-1 + In(eLe ) [3+2e 0 +O(y (7)

y Gekl(to) y 2 8cosh2to 4 cosh to

where a is the Euler's constant. For small values of x , we have

1Ce'(t ) 1 htG 2 1()
_2 Cem(o) = - GI+ O(x) , [for m 1 1 (m odd)] (8)

and

1Se'(t) ir2

x2 Sem(to) 2 Lcoth G2 + O(x )j [for m - 1 (m odd)] (9)

where

2 + r)! (cosh go2r

(_,,)r 2 0o

ro r)' (- -r)
4 (2r)!

M1= rn-i r i 2r

2 ( - + r). (csh 0)

r=-O (.-1 - r)! r)
4 (2r+l):

and
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m-1 M12
"r 2 + r)! (sinh 0o)2r

r=0 r)! (E- r)

G 24 (2r)

ZG(.f 2 
o

-=- (I-- - r) (shr)
24 (2r+l)

It can be shown that for small values of x and y to the first

order approximation,

R~a ,8 ) %)~R(a,~ )o*(* r*~-M 2  (10)Rm(arsBms) Qm(Prsinms) m Rm(s.m .s .ms

Substituting the aboveapproximations into the characteristic

equation 2.5-41 or 2.5-50, one obtains for the even principal waves

E E 2 _
i(l + --2) + (-2 tanh t + coth o G)] 4(m2 1)

x , (ii)

e (rn0 -) t 01e.- [(m+l) + (mlC

cosh o [for m - 3(m odd)]

and

Eo Eo

[(1 + )+ ( tanh t + coth 8
2 E1 10 0

C e 0 geo -2t (12)
o £n (ecx X e )[3-2e o

1 cosh 20 2 cosh to

[for m = 1].

Upon inspection of equation 11 we may immediately conclude that

the right hand side of the equation is always positive and non-zero and

is not necessarily small for all values of t and co/el , thus x

is not zero and is not necessarily small. In other words, the imposed
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small x approximation is not valid and x must be determined from

the original characteristic equation 2.5-41 or 2.5-50 with y = 0

T,.e same cncr-clusion may be reached for m - 2 (m even) even princi-

pal modes.

From equation 12 it is noted that as y apprcaches zero

yeto
n 2(e cosh_ approaches -oo , thus the right hand side of this

2 s

cqation approaches +0 . In other words, as y approaches zero, x

also approaches zero and the imposed small x approximation is valid.

Therefore the cutoff frequency of the HEW-( mode or the HE() mode is
e 11 e 1-1

zero (refer to equation 3). It should further be noted that the
HE1 mode and the EI(0O) mode are degenerate at zero frequency.emode a d t e HE1

Substituting the above approximate expressions 4, 5, 6, 7, 8, 9

and 13 into the characteristic equation 2.5-68 or 2.5-77, we arrive at

the following expressions for the odd principal waves:

2_C 0 C
.4(m--1) [m(1 + -) + (tanh t G + -. coth t G2)]

El ol1 E o 2 -<e2•O 4•o](l•)
e o [(m+l) +(m-l) e- t

cosh [for mr- 3 (m odd)],

and

C €o

o[(I + 2) + (tanh k + - coth o)]
x 1E2 t to - Y (for m = 1). (14)

Eo e 0 n(e a y e )[3 - 2e -2o]

I Cosh to 2 cosh

Similar conclusions as those for the even principal waves are

reached. For the m 2? 3 (m odd) odd principal waves, the right hand

side of equation 13 is always positive and non-zero, thus x is also
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positive and non-zero. It can be shown that the same conclusion

applies for the m -• 2 (m even) odd principal waves. However, for

the m - 1 odd principal wave, according to equation 14, as y

approaches zero x must also approach zero. There exists no cutoff

(i) T_(O)
frequency for the HE or o•11 mode (refer t(ý equation 3). And

at zero frequency the modes are degenerate.
0 11 0 11

The results of the analysis in this section are summarized as

follows.

i. Along an elliptical dielectric rod there are only two non-

degenerate modes, namely the HEl mode and the BE(l)e 11 0 11
mode, which possess no cutoff frequencies.

ii. It caan be observed from equations 12 and 14 that as the

elliptical cross section of the dielectric rod gets flat-

ter, x approaches zero more slowly since coth t is

very large if to is very small. This fact has been

verified in the next chapter (see Figures III-I and 111-6).

iii.The cutoff frequencies of all the other modes are higher

for flatter elliptical cross section rod.

2.7 Transition to Circular Cross Section

As an ellipse degenerates to a circle its semifocal length q

tends to zero while to approaches infinity so that the product

q cosh to or q sinh to or qe tends to a constant r which is

the radius of the degenerated circle. The degenerate forms of the

Mathieu and modified Mathieu functions are given in Appendix A.-.

Using these degenerate expressions one obtains the following de-

generate forms for the factors appearing in the characteristic equations:



-56-

Ce'( o x JI(x)m

Ce( 0 ) MWx)

Se( o x j, Wx
Se (t -

(2)

Fek'(to y KI(Y)
Fek (ýo T K(Y) ,(3)
Fem 0 m

Gek'(g yo Y•(y)()

Gekm(to) K(Y) 

(

r s Zrs r s - 1 when r =s (5)•rs rs rs r

-•0 when r• S

6 6 - m when ms (6)
mS ms )ma ms

S0 when mr s

R(ars••.•(rts R*(d*m, r :s)rs't • (Pr,•s..* -2 (7)
rs:ý ) R*(-m

rs"),') Qm~prs' ms m r 2 (7

with x = r (k 2 2 ) and y = r (32- k) . Putting these degenerate

expressions into any one of the characteristic equations for the four

types of principal modes yields

Jt(x) K(y) 1 J6(x) 2. K'(y)
o 1 o

(x2+ y2)(x2 -o + y2)m 4 4(8
x y

which is the characteristic equation for the hybrid HErn mode on a circu-

lar dielectric rod. (Compare with equation 111-40 in reference (13)).
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One can easily show that only one term of the infinite product

series used to represent the field configurations in one of the two

regions remains. The order of this remaining term corresponds to the

order of the single product term representing the field configurations

in the other region. In other words,

Lr - L when r =m (9)
-. 0 when r m,

P P when r =m (10)

0 when r m

A* A* when r =m (11)r m
-. 0 when r m,

B* B* when r =m (12)r m

0 when r m

gr M when r =m (13)

0 when r m,

h h h when r= m (14)r m

0 when r m P

a* a* when r =m (15)
r 0 when r m,

b* -. b* when r =m (16)r m

-0 when r m.

It thus appears that the HE () HE o HE() and odes are

e ma e md 0 M n 0 M t

degenerate when the elliptical cross section degenerates to the
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circular cross section.
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CHAPTER III - NUMERICAL ANALYSIS OF THE DOMINANT MODES

It is the purpose of this chapter to investigate in detail the

propagation characteristics of the dominant modes on a lossless ellip-

tical dielectric rod.

After a brief review of the method for computing the numerical

values of the Mathieu and modified Mathieu functions, the transcenden-

tal characteristic equations derived in the previous chapter for the

HEM mode and the HEW mode are solved. Several graphs showing how

the propagation constants vary with parameters are given. Interpreta-

tions of the results are given. The field configurations and the axial

electric field extent of these waves are also considered.

3.1 Computation of the Mathieu and Modified Mathieu Functions

It is known that the periodic Mathieu functions may be expanded in

terms of an infinite series of trigonometric functions, and that the cor-

responding modified Mathieu functions can be expanded in terms of an

infinite series of products of Bessel functions (see Appendix A.1).

These Bessel function product series converge very rapidly [see

McLachlan (45), p.257). As has been pointed out on page 21, Chapter II,

in order that the solutions of the Mathieu differential equation be

periodic, the characteristic number c or the separation constant of

the wave equation must satisfy a certain transcendental infinite con-

2 *
tinued-fraction equation which is a function of y . Furthermore, the

2
coefficients of these infinite series are functions of T and c (42,

45).
*The infinite continued-fraction equation was first used by Ince (48) in

calculating the characteristic numbers; c and 72  are defined in equa-
tions 2.2-18 and 2.2-19.
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Supposing one is interested in obtaining the numerical value of a

certain modified Mathieu function of order m I he must first determine

the value of the characteristic number which is the root of an infinite

continued-fraction transcendental equation and then find the coefficients

from the three-term recurrence relations which are functions of T2 and

c . Substituting these coefficients into the infinite Bessel function

product series and carrying out the computations, he then finally obtains

the result.

According to the above description, it is quite evident that the task

of computing the numerical values for a great numoer of Mathieu and modi-

fied Mathieu functions is very time consuming and laborious. Fortunately

it is found that the characteristic numbers and the coefficients for a
2

certain finite range of T , which is the range of interest for this

present problem, have been tabulated and published by the National Applied

Mathematics Laboratories of the National Bureau of Standards (49). These

tabulated values are used in our computations.

3.2 Solutions of the Characteristic Equations

The solutions of the characteristic equations for the dominant HE()
e 1.

mode and the E(W) mode will now be considered. It can be seen that all
o 1.1

these transcendental characteristic equations are of the form

E
f(t I Ay, x) = 0 (1)

Knowing t which determines the eccentricity of the elliptical cross-

section and co/c1 which is the relative dielectric constant of the sur-

rounding medium and the medium of the rod, equation 1 reduces to

g(yx) 0= (2)
to/= const.
C/E1=const.
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y and x are related to the major axis of the rod, the frequency,

the propagation constant and the characteristics of the medium by the

relations

2 2 2o2 2
Y =- q cosh O"(k0 - 1

and

x2 = 2 cosh 2 t((k -2) ,
0 1

respectively. In order to have propagating waves on the dielectric rod

x and y must both be positive and real. Furthermore, for these

dominant modes as y varies from 0 to +oo, x varies from 0 to

some finite positive constant which is a function of Lo/F 1  and

Equation 2 can most readily be solved by the "cut and try" method.

Assuming y to be some finite constant, say Yo , the first root of x

can be found by plotting the function gto=COnst" (yo0x) versus x
eo/e1=const.

as x varies from zero and up, and obtaining the first value x0  where

the function is equal to zero. Then by setting y to be another cons-

tant, the above process is repeated.

The above method of solution will now be applied to the character-

istic equations for the even and odd dominant modes.

(a) The Even Dominant Mode, the HE(l) Mode.

From equation 2.5a-41 setting m = 1 and n = 1, the characteristic

equation for the e(i1) mode is
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Cel(to) 1 Fek(t Se( to) 1 oGek'l(t)

1e(~ 1 +e'( 0_1_0

to e1 ~) ~2 -- 1 0  x2 Sel( 0 g 71- ~l o
IX ~ ~ 2 260~i 2 l

(x2 +y2) (x2 0 + Y2)+ 4 Y • 7 R i(ars,5.•) Yo(rsd, ) = 0o (3)
xy

Ri(a rsp1s) and Ql(ors-iXs) are given by (see equations 2.5-36 and

2.5-37 )

Rl(a rs bls =

a 31 a 51 a 31 o51 ...
a35 a 55 a 33 a53

•z"•z •5+ ... ... +4
a33 '53

a 33  a5 a 33  a5
55

and

Qi(•,'x •) =

131 151 s s31 51 ...

0 35 055 p 33 0 53

* . 01 . . . . . . .( 5 )

33 53 " 33 053

035 055 "35 055

where
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B ls = f se{(Y)) ce5 (vl)dtj (6)
0

X S ce=( I) seo(i( •d)( o)

2-n

ars = f ce*(rn) ce.(rI)drn (8)

0

Upon examining the solutions o± equations 6 through 12., the following

deductions can be mde:

00

(1} l5 1l > 15131 > 16151 > ""> IblsI

(ii)ýl} I%1 > I X131 > I1%51 I ' > lys1

1a131( i 33! > or > Ia35! > ... > I•l1I
Ia3lI

Ia531 > or I > 3 > ... > Ia5 1!

Ial Il I1531

(iv) 10 l > I'P31 > IP151 > > IP 181

I1•31
1I33 1 > or > 1I351 > > 10361

1P311
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I151 1351
155 1 > or > or > 10571 > ... > 105-1

IP511 IP53l

It is found that three terms (i.e., s = 1,3,5 and r = 1,3,5)

of the expansion are sufficient to approximate the value Ri(ars )B1s)

Ql(Prs,•is) in the region of interest (0 _ x _t 5 , 0 4 y 4 3). The

validity of the "3-term" approximation can best be illustrated by the

numerical values in the following table:

Exact* 3-Term Approx.t° x y Rz(as .ls)Q (P 1%, l) R(%,ls (rls
o 1 rs lis1rs is r(~s5s)Ql(lrs1)ls)

3.0 1.1 0.1 -0.9999 -0.9999

2.1 2.9 -0.9999 -0.9999

0.7 1.4 o.1 -0.9999 -0,9999

2.7 2.9 -0.8979 -0.8984

0.2 2.8 0.1 -0.9991 -1.0002

4.7 1.7 -0.7533 -0.7781

to = 3.0 corresponds to an ellipse with eccentricity = 0.0932 (or the

ratio of semi-minor to semi-major = 0.995) which is very close to a

circle. The value of R1(a rsb 1s)Ql(ors"),1) for a circular rod is

exactly 1.00000 for all values of x and y . As Eo gets smaller,

i.e., as the'ellipse gets flatter , the dependence of R (C•rs,51s)

Ql(rs,,X s) with x and y becomes more pronounced, and for large

*By the exact value we mean the value obtained by using five terms,

(i.e., s = 1,3,5,7 9 and r = 1,3,5,7,9.) of the expansions (equa-
tions 6 through 115.
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* values of x or y the value of R1(a rs,51)(r gets quite

small. It means that more terms of the expansions (equations 6 through

11) are required to obtain the value of Rl(arsi51s)Ql (P )-- ) and

ri1 rsr is

the field components of the mode, as the ellipse becomes flatter and

approaches a strip. Consequently, the computations become more involved.

However, if we limit our interest to only the region co < g 0 0.2 )

0 -5 x -! 5 and 0 1! y 19 3 , the "three-term approximation" is sufficient

for our computations.

According to the discussion in section 2.5 it is known that the

HEl and HE modes cannot in general be considered degenerate

e 11 e 11

except in A certain region. It can be seen from the following table

that our region of interest is within this region.

3-Term Approx. 3-Term Approx.

x y R(srs, 1)(Q (rs ls rs is (rs s

3.0 1.1 0.1 -0.9999 -0.9999

2.1 2.9 -0.9999 -0.9999

0.7 1.4 o.1 -0.9999 -0.9999

2.7 2.9 -0.8984 -0.8990

0.2 2.8 o.1 -1.0002 -1.0004

4.7 1.7 -0.7781 -0.7805

Since in this region R(a5s,) 1s)Ql(3rs,ls Rl(s 51 sQ(sl

one may assume that the eHE(') and eHEM•) modes are almost degenerate

and only one of the modes, the HE(') mode, needs to be considered.
e 11

Now we are in a position to compute the roots of the characteristic

equation 3 for the HE() mode.e 1
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The computations were carried out on a high speed electronic com-

puter, the IBM 7090*. The coefficients A(m) and B(m) prepared by
r r

NBS (49) were stored in the computer's memory cells. A three-point

Lagrangian interpolation (50) sub-routine was used to interpolate the

coefficients A(M) and B(m) from the stored values. The number ofr r

decimals for the various coefficients obtainable with a maximum error

of 2.5 uni`3 in the last place by this interpolation method have been

tabulated in the NBS Table. It was found that the values of the Mathieu

functions or the modified Mathieu functions obtained using these inter-

polated coefficients were correct at least to the third significant

figure. The roots of the characteristic equation were found according

to the method outlined on page 60 of this chapter. The results are

shown in Figure 11-1 for the case of 1/60 = 2.5 and for various

values of go ranging from go = 3.0 to to = 0.2

It is required that the propagation constant inside the rod be the

same as that outside the rod, i.e., from equations 2.5-39 and 2.5-40 ,

2 2 2q cosh go) 2 2 1 _x +y ( 0 )- .) (12)
0 0

The intersection of the function in Figure III-1 with the circle,

determined by equation 12, gives the values of x and y required.

The propagation constant 0 of the wave is related to x and y by

2 2q cosh __0) 2 [ El o (32])

and

2 2qcosh g0)2 2(- 1 ([h)

*The facilities of IBM 7090 were provided by Western Data Processing
Center at UCLA.
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Fig. 111-2. Normalized guide wavelength X/Xo of the E1) mde

as a function of normalized major axis.



-69-

respectively, where X is the free-space wavelength. Carrying out* 0

* the method outlined above graphically, the results are given in Figure

111-2. The normalized guide wavelength x/%° is plotted against the

normalized major axis 2q cosh t / X0° for various values of t0 in

Figure 111-2. It is noted that the guide wavelength X is related to
the propagation constant P by the relation f = 2v/X and 2q cosh 0

is the major axis of the ellipse. As expected, no cutoff frequency

exists for this dominant 1E1 mode. For small values of 2q cosh /X

(i.e., the size of the major axis zq cosh t compared with the free

space wavelength X is small) the guide wavelength approaches that of0

the free space wavelength; for large values of 2q cosh go/Xo, it

approaches asymptotically to the characteristic wavelength of the rod
x

0

material, 0M - _- For small values of y which correspond to

the small values of 2q cosh t/ X 0 the modified Mathieu functions

describing the field outside the dielectric rod decay very slowly;

physically it means that the field strength of the wave falls off very

slowly away from the rod and only a small part of the energy is trans-

ported within the dielectric cylinder. The guide wavelength of this

hiybrid E1) mode actually becomes that of a transverse electromag-

netic plane wave* as the size of the dielectric rod becomes vanishingly

small. For very large values of y which correspond to very large

values of 2q cosh t0/%o , the modified Mathieu functions describing

the field outside the dielectric rod disappear very quickly, so the field

strength of the wave outside the rod vanishes very fast and almost all

*Although the wave is propagating at the plane-wave velocity of a medium

it does not follow that the wave is entirely transverse. See reference
(51).
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the energy is transported within the dielectric cylinder. The guide

wavelength of the hybride HE 11 mode approaches that of a TEM plane

wave propagating in a uniform medium filled with a dielectric of

dielectric constant cl The above discussion concerning the field

decay properties of the wave will be substantiated later in this chap-

ter with numerical results.

It may be further observed that for a fixed value of 2q cosh to/Xo

as the ellipse becomes flatter, i.e., as to becomes smaller, the

guide wavelength becomc.s closer to the free space wavelength. This

effect can best be illustrated by Figure 111-3 in which X/° is

plotted against g for various fixed values of 2q cosh t0/Xo

The fact that the variation of the curve becomes gentler as

2q cosh to/x gets smaller is expected, since at very low frequencies

most of the energy is outside the dielectric rod thus the geometry of

the cross-section is not important as far as the guide wavelength is

concerned.

It is also noted that for a fixed value of 2q cosh to/% there

is more binding dielectric material in a circular rod (to = co) than

in a flatter elliptical rod, therefore, (X/Xo) is smaller for larger

to " However, this is not the only reason. Supposing we plotted
2qcosh ~

%/x° against the normalized cross-sectional area, (-2q cosh °)2tanh to
0 ob

for various fixed values of t in Figure 111-4. It can be seen for
2q co sh •o)2

very small values of ( ) tanh t 0 say <0.05 , that V/X fl
XO2q cosh to 2

for all values of t 0 As ( co0 ) tanh to gets larger, the

effect of varying to becomes more noticeable. For a fixed value of

2qcosh t)2 tanh t 0 X/Xo is smaller for smaller to . This behavior( X o
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* suggests that the field intensity is more concentrated in a circular

"* rod than in an elliptical rod with the same cross-sectional area, and

that more energy is transmitted inside the circular rod. We conclude

that the circular dielectric rod is a better binding medium for the

iEW mode than an elliptical rod. As (2q cosh 9°)2tanh o becomes
e 11 XO 0

very large, the effect of varying to on %/X0 again becomes quite

small, since most of the energy is carried inside the dielectric rod;

therefore, the geometry of the cross section is not important. When
2nq cosh •o)2

o -.* 0 and ( )2 tanh ci - oo, the problem can best be handled
X

by considering the case of a TM wave propagating along a thin sheet of

dielectric slab in space.. Due to the simple geometry of this equivalent

problem, it can be easily analyzed (52). The results will not be given

here.

It can be seen from the above numerical results that the e 11

mode passes smoothly to the circular HEl mode as to - oo. The

to = 3.0 curve in Figure 111-2 is almost identical with that given by

Wegen'er (17).

The effect of the variation of relative dielectric constant

El/Eo on the propagation constant can be seen readily from Figure 111-5.

As a representative example, to = 0.7 is chosen to illustrate the

effect. For large values of EE•o0 , X approaches to the characteris-

tic wavelength of the rod material, X = Xo/ 7o very quickly; and

for quite small values of El/Eo0  i.e., E l/o -0 1 ' x/x0 varies very
2q cosh to

slowly with respect to 2 c One may therefore deduce that for
0

2q co sh to
constant 2 o0 and constant t° more energy is carried within

a rod with higher relative dielectric constant and that the field out-

side the rod also decays faster for the higher dielectric constant rod.
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It may then seem that the higher dielectric constant rod is more

desirable as a transmission waveguide. Unfortunately the high dielec-

tric constant material usually is associated with a large loss factor

(63).

(b) The Odd Dominant Mode, the HEI Mode
oo n

Similar procedures as those used for the HE mode can be
e 1

applied here to analyze numerically the characteristic equation for

the HE() mode. From equation 2.5c-68, setting m = 1 and n = 1,o 11

the characteristic equation for the HE[1) mode is

Se{(to) + iGek(o) 1 Cel(k°) 1 Eo Fek{(to)

2 e + -2 1  A k(;j - Tl t +-'
Lx e1(to) 2 Gek -0 x y ~2. 1 , Fekl(ý0Eo

(x 2+ y 2)(x2 + y2 )

S4 4 Qlrssrss,1s 1 1 rs 1(s
xy

where R (a r,1) and Q (tr3 ,Ei) have been defined by equations 4

1 rs is 1 rs is

and 5 respectively. The discussion given in section 3.2a concerning

the validity of "3-term" approximation for R (a rs,5s) Ql( rs,'Xs)

also applies here. Furthermore, since R (a '6 ) Q (0 'X ) -
1 rs Is 1 rs ls

R s 5 s* ) QI(pr within the region of interest (i.e., 0 -' x t: 5,
1 s ls rs' ls (e,

0 ! y !_ 3), the HE(W) mode and the oHE1()1 mode are also considered to
0 o

be degenerate.

Equation 15 is now solved according to the method outlined in

section 3.1. Figure 111-6 shows the results of this extensive computa-

tion. Again y is plotted against x for various values of Eo , and

a constant value of E I/E which equals 2.5. Combining the results

shown in Figure III-6 with equations 12, 13 and 14, the guide wavelength
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which is a function of k , w , the size of the guide, and El/ can

be obtained. The normalized guide wavelength X/X versus the nor-

malized major axis 2q cosh t for various values of to , and a
1-0

constant El/°E is given in Figure 111-7. The pattern of the curves

is very similar to that of the HE mode. Again as expected, no cut-
e 11

off frequency is observed. Whcn the frequency is low, i.e., 2q cosh t

XO
is small, the guide wavelength becomes that of the free-space wavelength

and most of the energy is being transported outside the dielectric rod;

a small value of cosh o implies a small value of y , which means
xo

that the field outside the rod decays at a rather low rate. For a large

valu of2q cosh t
value of 2q the guide wavelength approaches asymptotically the

X
0

characteristic wavelength of the rod material XM 0 o/ ý',l/,o , almost

all the energy is being transported inside, and the field outside the

rod decays very rapidly.

By comparing Figure 111-7 with 111-2, it is noted that the dif-
_(1) md n h

ference between the guide wavelength curves for the HE mode and the
o 1

HE) mode is more pronounced as t gets smaller. The normalizedeHE~ll

guide wavelength of the E(11 mode approaches to the limit, X/) =
2 q cosh to

i/ 1 /o I , faster. For example, when t° = 0.2 and = 0.9,

X/X° for the HEW1) mode is 0.895, while O/X° for the eHEW mode is

0.987. We conclude that the HEM mode binds closer to the dielectric
(1) 0 11

rod than the eHE 11 mode. When t is larger than 3, the guide wave-

length for the HEM mode is almost identical with that for the HEMl)
0 11 the 11

mode, since these modes are degenerate on a circular dielectric guide.

To show the effect of the variation of t with respect to X Ao
2q cosh •O

for a fixed value of 2 , Figure 111-8 is introduced. For a
2q cosh to 0 E(1) md ssote

fixed value of2 o the curve for the HE mode is smoother
X0 o 11

than that for the HE) mode. It is again quite evident that whenthan ~ tha mode.h
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2q cosh • Sis very small, x/x is a constant with respect to the
0Xo 2q cosh to

variation of to . For very large values of 2 so the geometry

of the rod is not important as far as x/x0  is concerned.

In Figure 111-9 the normalized guide wavelength is plotted against2qcosh •o)2

the normalized cross-sectional area, (2q o ) 2tanh t for various

values of to . Unlike the case for the HE(1) mode, it seems" that the
el(l

elliptical rod is a better binding geometry for the mode than a

circular rod. These curves for various values of g are quite close

to each other, which means physically that the field lines are quite

uniform for this HEW mode. The slight differences between these
0 11

curves may be explained by the fact that as a circular rod deforms into

an elliptical rod, the electric lines of force are being squeezed

together so that the field density is more concentrated. For a very flat

elliptical rod, the electric lines of force are almost uniform (the field

density is also almost uniform) and any further flattening of the rod

would not change the field density too much. Figure III-10 shows the
2q cosh to

variation of the x/%° versus 2 o (with go = const.) curve with

respect to the various values of El/E_ . The behavior of these curves

for the HE mode is very similar to those for the HEW mode. It
o 11 e 11

is interesting to note that as EI/1° approaches unity, or as el/6o
2q cosh •

approaches infinity, the %/)° versus 2 o curve for the

()0 Xo ()
HE() mode becomes identical with that for the HE mode.

2q cosh •o

ýs 2q cs h and to 0 0 , this problem degenerates to
ýo

the problem of TE wave propagation along a thin sheet of dielectric

slab in space (52).
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3.3 Field Configurations

In practice the field configurations are most quickly found by

inspection of the mode functions. It is found that the patterns of the

electric and magnetic field lines are quite similar to those known in a

hollow metallic guide. However, owing to the absence of the metallic

shield arouiad the dielectric, the field is no longer confined to the

inner space. Furthermore, due to the absence of conducting walls and

therefore the absence of the conduction current, all the electric and

magnetic field lines must form closed loops.

Figures III-11a and III-12a show the transverse cross-sectional

field distributions of the HEM () HEWl o respectively.

e 11 0 11

The longitudinal cross-sectional views of the field distributions of

teHE mode and the BEM mode are given by Figures III-11b andte 11 0ll

III-12b. The traveling wave patterns are shown in these figures. Solid

lines indicate the electric lines of force; dotted lines represent the

magnetic lines of force. Three dimensional sketches of the field con-

figurations for these two dominant modes are shown in Figures 111-13 and

111-14. The field configurations of these modes are quite similar to

the corresponding dominant modes in the metal tube waveguide, as men-

tioned above; a sinple method of excitation is thus available. The
(1) moeadte (1)moewlbed-

method of excitation of the HE mode and the HE mode will be dis-
e 11 0 11

cussed in greater detail in Chapter VI.

3.4 RaLe of Field Decay

The dielectric rod waveguide is an open structure and hence the

field is not confined within the dielectric rod. Therefore, the guide

is susceptible to considerable radiation loss when it is mismatched at
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Fig. III-11. Field configuration of the EI 1 mode.
(a) cross section e 3 oe
(b) longitudinal section
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Fig. 111-12. Field configuration of the HE) mode
(a) cross section
(b) longitudinal section
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input and output ends, when it is curved, or when extraneous objects are

near it. The knowledge of the external field extent and the rate of

field decay outside the rod is very important. It is known from the
discussion in section 3.2 that for small values of 2q cosh to most of

xo

the energy is transported outside the dielectric rod, thereby we may

expect to have a large field extent and a slow rate of field decay. For
large values of most of the energy is being carried inside

xo

the rod so that the field extent is quite moderate and the rate of field

decay is fast. To get an idea of the variation in the rate of field

decay and the field extent with respect to the change in 2q cosh and
xo

to numerical results for the longitudinal electric field will be obtained.

(a) The HE(1) Mode

e

According to section 2.5a, setting m = 1 and n = 1 , the

equation for the external longitudinal electric field of the HE mode
el

is

E 0 P rGekr( ) se*(,q) e±~ s (1)

r=1

where

P13 P53 173

015 P55 P75

P17 057 77 ."'

P3 Gek 1(o) ... .. ...
-- ).-,(2)

P3 Gek3(t0) P33 P53 ""

P3%5 P55
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f33 '13 '73

S13
35  01l5 075

P Gek ...o ).
P5 1 0 __ _ _ _

P 1 Gek 5 (t) 133 053 "" (3)

I335 055 "'"

The above infinite determinants may be solved by the method of suc-

cessive approximations (47). It is found that

S> P3 >> P 5 >> P.7 (4)

Therefore the external E may be approximated by only considering a

z

few terms of the expansion. The normalized external longitudinal

electric field is given by

P
E Gek_(t) se* (1) + L Gek (W) se*6 ) +

p = 
(5)E- P3

Zo Gekl(to) se•(') +- + Gek (t ) se*C() +
1L 0 1l 3 0 3

where E is the axial electric field intensity at t and E isz z0

the intensity of the axial electric field at t = go . Equation 5 is
2q cosh •o

computed for various values of o and 2 o with E1 /co = 2.5

and Tj = x/2 . The results are shown in Figures 111-15, 16, 17, 18 and

19 for go = 3.0, 1.0, 0.75, 0.5 and 0.3 respectively. A family of
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2q cosh to
' curves for various values of are shown in each figure.*
* 0

These figures possess similar characteristics as far as the variation

of q o is concerned. The axial electric field decays (not

exponentially) much slower and extends much farther for smaller values
2q cosh to 2q cosh to

of . For large values of the field decays

exponentially quite rapidly and its extent is quite small. Physically

it means more energy is being carried outside the guide for smaller
2q cosh to

values of - c . The same conclusion was reached in the discus-
0sion in section 3.2

To observe the effect of axial electric field extent as a function

of frequency for various values of eccentricities, we introduce Figure

111-20. The field extent, B/B , at which point (Ez/Ez) 0.1 is

2q cosh to 2
plotted against the normalized frequency (- co ) tanh t for

various to . It is quite evident that B/B0 is larger for the flatter

elliptical cross-section rod. As frequency becomes very high the nor-

malized field extent B/B approaches to unity and for low frequencies

B/B can get very large. Since B is a function of t0 , it is

somewhat difficult to compare the absolute axial electric field extent

of a circular rod and that of an elliptical rod having the same cross-

sectional area using Figure 111-20. Thus Figure 111-21 is introduced.

B/X , the normalized absolute field extent, is plotted against the2qcosh •°)2tn ofrvius o

normalized cross-sectional area, ( ) tanh for various
0

*In each figure (Ez/Ezo) 2 is plotted against B/B 0  for various values

of 2q cosh g and for a fixed value of to . B is the distance

from the axis to the point of observation; Bo is the semi-minor axis.

(See the sketch in Figure 111-15). Ez is the axial electric field
strength at the point of observation.
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Some very interesting features are noted in this figure. For the
2q cosh to 2

region 0.05 = ( -, ) tanh 0 .5 and 0.2 < <D, the
0 0

variation of B/X is quite small; it varies between 0.35 and 0.55.

As (2q cosh_ 0) 2 tanh to approaches infinity so does B/% 0 ; at
0very low frequencies, B/X approaches zero. As the cross section of

the rod gets flatter, i.e., as to gets smaller, the peaks and the

valleys of the curves become more pronounced. The fact that within a

certain frequency range the absolute axial electric field extent of a

flatter elliptical rod is actually smaller than that of a circular rod

of the same cross-sectional area is worth mentioning. As a typical

numerical example, we choose X = 3 cm . According to Figure 111-21
o2

the absolute field extent B for (Ez/Ez,) = 0.1 is 1.37 cm for a

circular rod with a 1.5 cm diameter, while it is 1.28 cm for = 0.5

elliptical rod with the same cross-sectional area.

Similar curves for smaller values of (Ez/Ezo)2 may be plotted.

The general shapes of these curves remain the same, only the peaks and

valleys of these curves are more pronounced.

Figures 111-15 through 111-19 also offer a convenient way of

verifying the purity of the mode on the dielectric guide. (Experiments

(1)
on the field decay properties of the eiE 1 ode have been carried out

and the results are reported in Chapter VI.)

Although only the Ez field is discussed above, it may be shown

that the other electric field components also possess similar though not

identical behaviors.
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(b) The (') Mode

0 11

Setting m = 1 and n = 1 in equation 2.5-63, one obtains the

expression representing the external axial electric field for the

H () mode:
oo i3o

E = hrFek (1) ce*(ij) e 0 (6)
r=l

odd

where

a 1 3  a5 3  '7 3

a1 5  a5 a

h3 Fekl(t ) ... ... ...3 ho ____ ____(7)

h Fek3(to) a33 a a 5 3

a 3 5  a 55

*a3 3  '13  a73

*35 a15 a75

a3 7  a17  a77

h5  Fekl( to) ... ... ... ... (8)

h~l =Feks5to) 
a33 a53

a35 a5 5

The above infinite determinants may be solved by the method of succes-

sive approximation. It can be shown that hl < h 3 << h 5 << h7 ""(h 0.

Therefore the value of the external axial electric field can be approxi-

mated by using only a few terms of the expansion, 6. The normalized

external axial electric field is
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SFek 1 (.) ce*(j) + Fek 3 (t) ce*(Y) +

Ez Fekl(t)cel(q) + hI Fek()ce*(,I) + (9)

Numerical computations are carried out assuming i = 0 The results

are shown in Figures 111-22 through III-25.for to ranging from

to = 3.0 to to = 0.2 . In each of these figures (Ez/Ezo)2 is plotted
2q cosh to

against A/A for various values of X 2A is the major
0

axis of the ellipse while A is the distance measured from the origin

to the point of observation in the I = 0 plane (see the sketch in

Figure 111-22). The decay characteristics are as expected. At lower

frequencies the field decays slower since a larger portion of the

energy is carried outside the rod, and at higher frequencies the field

decays faster and the field extent is less, since more energy is car-

ried inside the rod.

Figure 111-26 which is similar to Figure 111-21 is introduced. In

this figure the normalized absolute axial electric field extent 2A/X 0
2q cosh to 2

is plotted against the normalized cross-sectional area
0

tanh t 0 for various values of 0 ; the point of observation is taken

to be the point where (Ez/Ezo) 2 = 0.1 . Again as w - 0 , 2A/X°

approaches to zero; and as ( 2q cosh to) 2 tanh to-, a, so does 2A/°

However, it is interesting to note the variation of these curves with

respect to the change in eccentricity. Unlike the HE1 mode, 2A/X

is always larger for flatter elliptical cross section rod. This is

because the major axis of a flatter ellipse is always longer than a

rounder one having the same area.

Figures 111-22 through 111-25 may also be used to check the purity
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of the HE(1) mode on the elliptical dielectric rod.

3.5 Summary

The numerical results of the characteristic equations for the two

dominant modes are obtained. It is found that for the HE mode the
e U1

guide wavelength becomes longer as the elliptical cross-section becomes

flatter, and for the E(1) mode the opposite is true, although not as
011

pronounced. As expected, there is no cutoff frequency for these two

dominant modes. The fact that these two modes are degenerate when

to - co is also demonstrated numerically.

Sketches of the field configurations for these modes are obtained.

It is observed that the cross-sectional views of these modes are similar

to the cross-sectional field pattern of the dominant mode in the metal

waveguide. The possibility of launching these dominant dielectric rod

modes by means of the metal waveguide is also discussed.

The field extent of these modes outside the dielectric rod is

considered. It is found that the electric field extent of the HEWl
o U1

mode is much greater than that of the HE( mode, and the flatter the
e 11

cross section, the larger the contrast.

9
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CHAPTER IV - AMEUATION AND POWER FLOW CHARACTERISTICS OF THE DOHINANT

MODES

Having obtained the guide wavelength from the transcendental

equation and investigated the field decay characteristics, it would

seem appropriate to consider the attenuation and power flow properties

of these dominant modes. Attenuation is caused by imperfection of the

dielectric material. It is possible to include the iossy characteristics

of the dielectric material by assuming a complex dielectric constant to

represent the permittivity of the material. The effective complex

dielectric constant is given by

£= F +iE 1
e le le

Replacing the lossless dielectric constant El (as used in Chapters II

and III) by the effective complex dielectric constant e and substitut-

ing Ee into the equations in Chapters II and III where applicable, one

notes that since the arguments of the Mathieu and modified Mathieu func-

tions are complex, the roots of the characteristic equations can no

longer be real and must be complex. Therefore the propagation constant

P is also complex and must be represented by

0 = 0' + ic (2)

where 0' is the new real propagation constant of the wave on the lossy

dielectric guide and a is the attenuation factor of the wave. Of

course the new real propagation constant P' does not necessarily equal

the propagation constant of the wave along the lossless dielectric guide.

The numerical solutions of these complex characteristic equations are

extremely complicated and involved. Even the analytic properties of the
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Mathieu and modified Mathieu functions with complex argument have not

been well investigated and understood (45,49).

However, when the conductivity of the imperfect dielectric is

very low, in other words, when the imaginary part of the effective

dielectric constant given by equation 1 is very small, i.e., le < le

it can be assumed (15) that to the first order approximation the dissi-

pation has no effect on the field configuration of the wave, which

simply remains the same as that of the lossless case. Thus the propa-

gation constant P is unchanged by the presence of small dielectric

loss and therefore the analyses carried out in the previous chapters

still apply. The mode functions in the case of small dielectric loss

differ from those of the lossless case only by a multiplicative attenua-
-cx z

t.on factor e , where a is the attenuation constant and can be

calculated by a perturbation method which will be described later.

The approximate formula for the attenuation constant a will

be derived by the Poynting's vector theorem. The problem of attenuation

of the eHE(I) mode along a slightly lossy dielectric rod will then beofte 11l

analyzed analytically and numerically. The results will be-exhibited

graphically. Similar considerations concerning the problem of attenua-

tion of the HE(1) mode along a slightly lossy dielectric rod will also
0 11

be made. The results on the attenuation properties of these two domi-

nant modes will be discussed and compared in detail. The power flow

characteristics of these modes will be calculated.
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'4.1 The Attenuation Constant

The attenuation constant a can be calculated by a perturbation

method, provided that the power loss per wavelength along the rod is

small compared to the power flowing along the rod. Since there is no

radiation perpendicular to the rod at large distances, the power flow

is only in the z-direction, i.e., only along the axis of the rod. It

has been pointed out earlier that the fields are damped exponentially as

they propagate along the rod, and if their attenuation factor is a ,

that of the Poynting's vector is 2az . Therefore the attenuation

constant can be calculated from the following relation:

2a= • z (1)
P az

6P
where P is the time average transmitted power and tz is the time

average power loss per unit length. According to Poynting's theorem

(15) we have*

z Vt. .St J .* + iw (4 H H*- E -E*) (2)

where S is the longitudinal component of the Poynting's vector SZ

and St is the transverse part of S . Integrating this expression over

a cross-section A of the guide (this A includes the cross-section Ai of

the dielectric guide and the cross-section A. outside the dielectric rod)

we get

ap r an (ExH*)di rd E _ E* A + 4m [W - eT -- I I W W -- e

c Ai

* E* or H* signifies the complex conjugate of E or H respectively.
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whcre P is the time-average power loss per unit length; W and
m

W are the time-average magnetic energy and electric energy per unite

length of the guide respectively. It has been assumed that ad = 0

outside the rod and J = a E inside the rod. The value of the second

integral on the left hand side of equation 3 is zero, since power flows

along the rod only. For the undisturbed field, W = W , thus we have
m e

SP Ecdf EE*dA. (4)

Ai

The time-average transmitted power is given by

P= fez (Et x e) dA . (5)
A

Et and H are the transverse components of the electric and magnetic

field of the mode under consideration, and A is the total cross-sec-

tional area of the guide. Substituting equations 4 and 5 into 1 we get

the expression for the attenuation factor

a dfE - E* dA

2ai (6)

f2z- (Et •xE) dA

A

where the unit of a is nepers/meter. Changing into practical units we

have

fJ EE* dA
cc =. •.686 • ad • Ai lb/meter)

2 FLIEO 0 f e- .(E~tx Et*) dAI

0 A (7)

where ad = w Clod E 1 and Od are respectively the dielectric
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constant and the loss tangent of the rod. It may be noted that for a

plane wave propagating in an infinite homogeneous medium of conducti-

vity ad I the expression within the absolute value signs becomes

1/ FIj7,7 where E is the dielectric constant of the surrounding

medium.

Let us now consider the integrals within the absolute value signs.

In elliptic cylinder coordinates these integrals can be expressed as

follows:

E. E* d.A (EEjl+ E l E+ E E* )q 2(sinh 2 + sin 2j )dndt (8)
f~ ~~~~z fofE 1n izlAi 0 0

and

2~z (Ex1*~d f fF H) dA + f z. (Et0 xHt )dA
f- z. 1 x f _ 0. x
A A0

j(E~ H* E 11* )q 2(sinh 2 + sin 2 I) d' d t
0o 0

co 2x

+f f (EtH* - H* )q (sinh 2 + sin 2 )djdt, (9)

t 0 010 00t•o0

where the subscript . and the subscript 0 represent the inside and outside

regions of the dielectric rod respectively, and q is the semifocal

length of the ellipse. to is the boundary surface of the elliptical rod.

4.2 The Attenuation Factor and the Power Distribution Characteristics of

the HE(M) Modee 11

The field components of the HEIM) mode can be obtained from sec-Thee fie1

tion 2.5a by setting m = 1 and n = 1. They are, for region 1,

(0 9 to)
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H Z= AlCe(•1) ce 1 (q) e (1)
1

Ez1 = BlSel(.) se1( ) eiz(

H1= (k2B )pI AiCe'(•) cel(r) -°WE.. Bl el( TI)se J) ei•Z (3)

H k2 fAICeI( ) cel +-) B1 Se£({) se(i7)1 ei'z (4)
'~.(k -2 2)p.

1 (ip ic E'vre BISe{ () sel( I o z

E t 2 2 A1 Cel(k) cel(q) +BISe 1 (t) sel(])3 e iz (6)

1b (k 1 -B )p

and for region 0 (t 0 t < 00)

SZ Lr Fekr(t) ce*(TI) eiSZ (7)
Zo r= 1

odd
OO
0z= Z Pr Gekr(t) se*(q) ei~z (8)

0 r =
odd

H 2p 2 0 L Fek'(0)ce*(TI) -WE PGe 3eý e z

o (ko_ )p r ek )c2) PGek(•)se*(r)] e (9)
odd

ip r01 +e WEPr W1•s;) e ipZ (10)

H= (k 2 _•2 )p [LrFekr(t)ce'() Gek'()se*

0odd

E _ 22 EZ
Eo (ko 13 )p r =_l[ •L~k()e*•+P~k()e() iz(

odd

o (-)p 0 [" -LrFekr()ce()+ Gekr(t)se*(i)] eioz (12)

odd

2 2 2 2 2 2 1/2
where k 0 =WE0 k1 i=WE1 , and p = q(sinh + sin) . AI, Bl, r

and Pr are the arbitrary constants which are related by the boundary
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conditions and are given by (see section 2.5a, equations 43 through 45)

L C1 eel(to) 1T::FekI (t) M:-7Tr (13)
1 0 1 s

'13 '53 '73

a1 5  55 a7 5

a17 a5 7  0'7 7

L3 L3 L Fek1 (to) ... .... (1)A1  L1 A1 Fek3(to) a 53• 3 3  3

a 35  a 55

a ~aa3 3 t13 73
a35  0[5 a 75

L L L Fek() 37 •17 a77  L,5 5 1 1- , (15)A L, A, Feks5(E°d I 3 %x 3 ... • .. .

2~ L12

B1  • xFeki(o) -l((as) Ce{(to)y,A,2)22 El)] 1/2 , (16)4/o Se k t)[(x + y )(X + y Eo Rl(asb 1s)

P1 P1 B1 Sel(to) 1 B1

A, B1 AlGk 1 ~ 1 rs ~ ) A(7
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•13 153

P15 %55
P 3 . Pi Gek ()to ... ... ... P1
A1  P1  A1  Gek (to) *A 33 (18)A

P35 P55

P 33 fi3 ...

035 P15 ...

P5 P5 P1 Gekl(to) .. P1A1 P 1  Gek5(t°) 33 A 53 ""19

P35 P55

and . . . . . . . . . . . . . . . . . . . . . . .

The symbols used in the above expressions have all been defined in

Chapter II.

Upon examining the second integral in equation 4.1-9, it can be

seen that it would be extremely laborious to carry out this integral if

many terms of the expansions representing the field components outside

the guide are required. Fortunately it is found that, within the region

of our interest, i.e., for t - 0.2 , x _i 5 , and 0.1 ty -y

Ll LL >> ... >>I LO >> • >> • >>P.P.
A I A, AA ,a 1, A l

P
>> I, so that the expressions representing the field components

outside the guide can be approximated by only two terms of the infinite

series expansion. In other words, the infinite series, representing the
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field components in region 0, converge rather rapidly, providing that

to is not too small. For instance, it is found numerically that when

to N 1.0, the value of Hz (see equation 7) computed from the first two
0

terms of the infinite series, is accurate to the fifth significant figure

at the worst; when 1.0 to -• 0.5, it is accurate to the fourth signi-

ficant figure at the worst; and when 0.5 -t to -• 0.2, it is accurate to

the second significant figure at the worst. It can be seen that the

accuracy gets better as to gets larger, assuming that the same number

of terms is used.

We are now in a position to consider the integrals in equations

4.1-8 and 4.1-9. Substituting equations 2, 5 and 6 into 4.1-8, one

obtains

J j2 (EIE*I+ E E* + E E* )q 2 (sinh2 t + sin2ri)dq dO

f P 2 2 2 (Cel ()ce-(2) +Ce 2 (E)ce 2 (TO) +
f y f k12 - 2 [) L 42 E 1 1

1 (Se )lTI Se'(t) sei (q(rh)+E 1 22 w 0VFB

A,-) 1.

(Celt)Sj~t~ej(q~se(ý)- Cej(t)Sej(t)cei(rj)sej(rO)

E o B 1 2 2 ( )2 
1+ - ) SeE)se (s nh + sin2T) dTidt (20)

Separating the angular and radial integrals and simplifying, one gets
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S(E 1 . _EIj)
Ai B 2

c~sh2  2 2 __ C1  C2 (, 8,1 + 1912) + ( )2 ) 1 + 1I
cosh q A1  

(A),(110 3+ 11)

1B) -2 (1 1316)+ B2 1 IA(I"
2 Al [124 13+ o.

(21)

2 2 2 2x +y T-• x + Y 2 2 2•

where C 0 2__2_2___21 4 , 2 2 El 2'x =qcosh t0(kl-n
x(~o-) x +- 2' an d

0 
Y

y = -q 2cosh2 o(ko 2). ii through I are the angular integrals which

can be integrated analytically and are given in Appendix B.1; I1 through

1 are the radial integrals which must be evaluated numerically and are

defined in Appendix B.2.

Substituting equations 3 through 6 into the first integral in equa-

tion 4.1-9 gives

(E H* - E H* )q 2(sinh 2 + sin 2)drdt•l r ll l

2A2 t o 21t/

2 2 Il 1

0 1

B ý.B 2

+ B L 1+ 2 LI (e(Sjgc(jsl()
-2

-Cej(t)Sel(klCel(TI) sei(n))] dj dt (22)
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. Simplifying this expression we have

f 2z. (Eft xH it)dA

AiC [F. (I+II E E B 2

222 c8 (1•891+ 2)+ E X- 2 ( )(11oI3+ Il 4 )
cosh t 0 q A1  q

--1 ( + 2) I (23)

iA 1, E 2''1251 6j

where C1 , C2 , x and y have been defined earlier. The angular inte-

grals I1 through 16 and the radial integrals 18 through I13 are

all given in Appendix B.1 and Appendix B.2 respectively. The above ex-

pression 23 also represents the portion of the total transmitted power

being carried inside the dielectric rod. The other part of the trans-

mitted power which is carried outside the rod is represented by the

second integral in equation 4.1-9. Substituting the "two-term-approxi-

mation" of equations 9 through 12 into the second integral in equation

4.1-9, one gets

f (E H* - E * )q 2(sinh 2t + sin 2 )dn dtto 0% 4k to•o 6

t0 0
0 2~

+ PILl(1 + - .-2 )(B dTI dt , (24)

in whic,
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(B1 2 2e1 ~ce'(I L () 2 2( L 3) FeFe)ek ~ e~( 1

(Bl)Fek( 0Ce* (T + Fek3 (t)ceS'(T,)+ 2(- ()Fe k (tc*( c*(I

+Fk
2(t) ce*jjr)+ (3 WFk,( ce*2r) 2L 3)FekI(t)Fek'(t)ce*(n)ce*(Tj)

+F1()2ek 3 ~ 2( 3L1
1 1

2ek(2t)se*' 2(,+ (P3 2  2 *2 )Gk( Ge (ts*B2)= Gek Gek (t~e' ()ý+ 2(- Wse*)Ge(n))
1 1 P1 3 i133

and

(B3)= Fe tGk~~c*(js*q - Fek{(t)Gekl(t)ce*(T ) se*/( TO

* L3 rFek(t)Gek' (tce*'(r)se*(ra) -Fek'(ý)Gekl(ý)se*'(n)ce*Ol)
LlFek 3  1 3 1 3 11 3

*+! IrFek (t)e'(~e*7 -*j Fek{(g)CGek (t)ce*(jT)se*y(Tlj

Simplifying equation 24 results in

22 -.4 1, V/ (BI)+(_ C~2 (BII)

cosh 2tq A 2 Y A,

0 [EL P1

+xý( +¾c (BIIK (25)

where

L 2 L

121 2 22 1l(iý+IJ 2L4 2I55i 2ý66

(BII) = I7; 21)+ 1Iý 3010) P1  3111 3212+

Pi 1 '2Ii2
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(BII) (i3313- 34I4)+ (-3)(I' -i51 Il6.J)+ 1 (818)

P L
+ (LI)) MI~9 ~jqq 0Jq -

P11L

and C1 , C2 , x and y have been defined earlier. Again the angular

integrals I{ through I2O which can be integrated analytically, and

the radial integrals I i through I'0 which must be evaluated numeri-

cally, are tabulated in Appendix B.1 and Appendix B.2. It should be

noted that the numerical values of the higher order terms, neglected in

the above expressions (BI), (BII), and(BIII) are of the order of

P5/PI or L5 /L 1 ' Expression 25 represents the portion of the power

being transmitted outside the rod.

Substituting equations 21, 23, and 25 into the expression within

the absolute value signs of equation 4.1-7, we get

f (11 . _Ef) d-

R fA f (26)

j r (Ex.H)_) - Ae d 2 +3
A +A 0t_Ai+

where

B 1 2 B
f~ C c(I I + II)+((_) E ( 11L22 8 1 9 2 A, (I3+ I ,+ 2V()

1 1 0 10 + 114 3 A,

+- Ij (ý)2I( I (I-2 1 3
1j 12 5 13 6 A, 1413 cash 2

(B 1200 Bo (1) Tl4

+ (F +A --o c2 ) (I12I5" 11316)]

and
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4 L P1 2 C E' L P

f~ ClL~ (BI) + [C) c2 -2 (BI) + ~ X (+ (II

R is related to the attenuation constant a in db/meter by the follow-

ing relation

8.686 R2
2 VE (27)

where ad is the conductivity of the dielectric rod.

Using the results given in Chapter III regarding the relationship

between x and y for various values of to and nul/mo e nuurical

comp-utation of R can now be carried out. All radial integrals, I8

through I and I'l through I., are evaluated numerically using Simp-

son's rlule (50). Results of this very lengthy computation are shown in

Figure IV-!*. In this figure the value R , which is directly propor-

tional to the attenuation constant (see equation 27) is plotted against

the normalized major axis (NMA), cosh , for various values of kx ' 0
0ranging from = 3.0 to ! 0.2. It is assumed that /o= 2.5

For sufficiently large values of NMA, R tends toward the plane-wave

value l/Fje/ for all values of t ; for small enough values of NMA

R can be chosen as small as desired. This behavior is attributed to

the fact that, when NMA is sufficiently large, almost all of the energy

of the wave is transmitted inside the rod**; and for small values of

NMA almost all of the energy is outside the rod. (It has been assumed

that the dielectric surrounding the rod is perfect.) It is also clear

*It takes almost 2u minutes of continuous computation by the IBM7090
computer to obtain each curve.

**It is noted that when NMA is very large the attenuation factor R is
numerically identical with the attenuation factor of a certain wave-
guide mode propagating in a Ierfect_ conducting metal tube waveguide
filled with the same dielectric material as that of the dielectric rod
under consideration.
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1 i1 2.5
-- Limit R 0 I o

J1 t= 3.0

to= 1.0

90=0.5

0.- -- 9 =0.3

R

o .. , ___ l / --
0.01-

0.001

0 0.2 0.4 0.6 0.8 1.0 1.2

2q cash 1o

)-o
Fig. IV-1. Attenuation factor R for the eBE,., mode as a function of

normalized major axis.
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that R tends to the limit i/ ý'E/E° much slower as t0 gets smaller

and that flatter elliptical dielectric guide possesses lower loss char-

acteristics. This may be explained by the fact that, according to

Figure IV-l, for a constant value of NMA, smaller to rod has less

volume of dielectric material and therefore lower dielectric loss. How-

ever, this is not the only reason. If we plot R against the normalized
2q cosh to 2

cross-sectional area (NCSA), ( ' ) tanh to , for various values of

to with E I/ = 2.5 , as in Figure IV-2, the same effect (i.e., lower

loss for smaller 0) of a lesser degree can still be observed. As the

elliptical cross-section gets flatter, the field of the HE) wave

spreads out more so that the total integrated effect on the attenuation

indicates that this type of field distribution offers less loss. The

shape of these curves in Figure IV-2 shows that the attenuation factor

can be made extremely small if a very flat strip is used. For example,

when NCSA = 0.15 the attenuation constant a of the HE(1) mode ca be
e e c

made ten times smaller if to = 0.3 elliptical rod is used rather than

a circular rod, and a may be almost 90 times smaller if to = 0.2

elliptical rod is used. It is interesting to compare the axial electric

field extent of these rods corresponding to the above example. According

to Figure 111-21, when NCSA = 0.15 the axial electric field extent B/%°

-where (Ez/Ez ) 2= 0.1 for t° = 0.3 elliptical rod, is 0.47, and for
0

to = 3.0 elliptical rod it is 0.435.

The fact that the variation of slopes with respect to NCSA in

Figure IV-2 is smaller for flatter rods in the low loss region, is quite

significant. It means that a small imperfection in the dimensions of a

flatter rod would induce a smaller change in the attenuation factor R
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1.0-
0..5

0.0Limit R 0633 0o

to=2.3'

R

O.O1- a 27.3 -- -- R (ado/=)
0

Ad is the loss tangent of the
dielectric

x is the free space wavelength
in meters

0.001

"°1°5 l 0.1 0.2 0.3 0.4 0.5 0.6

(2q cosh o/)2 tan j0  (1)

Fig. IV-2. Attenuation factor R for the e HEl de as a function of
normalized cross sectional area.
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It is interesting to note the distribution of the transmitted

power. There is a very close correlation between the percentage of

power carried inside the rod and the loss factor of the wave. With

the help of Poynting's vector theorem, one can easily calculate the

percentage of power transmitted inside the dielectric rod. It is

Pi f2
, (28)

Pt f2+ f3

where f2 and f are given in equation 26. Numerical results of

equation 28 are given in Figure IV-3 in which Pi/Pt is plotted

against NMA for various values of to ; El/ is ass umee to be constant

and is equal to 2.5 • It is observed from Figures IV-2 and IV-3 that

"a higher percentage of power transmitted inside the rod corresponds to

"a higher attenuation factor and more power is carried inside the circu-

lar rod than an elliptical rod of identical cross-sectional area.

Figure IV-3 also confirms the fact that more power is carried inside

the rod as the frequency gets higher.

The to = 3.0 curve in Figure IV-1 corresponds very well with the

published results for the circular dielectric rod (18). The analytic

expression of the loss factor R for the degenerate circular dielec-

tric rod can easily be derived from equation 26. Noting that as

to ý oo, q - 0 , q cosh to + a and qet/2 - P , where a is the

radius of the circule and p is the radial component in the polar

coordinates, one gets,

L3 L 5 7 L0

A, A 1 AA



V4

0 H0

ar4 4.4

(D C

o00,

*L 0

0

0 C0

4,-4



-120-

P3 P P P
S_ .z1.. -- Go 0

A1  A 1A, A1

2 L1

B1 X j-+y2) x + xJy2
yy

A, V 0 X0

L1 Jl(x) P1  J 1 (x) B1
A1  1(y / 1 A(1

v - K ()j 7 1(Y) A 1

and

2 2 2) 2 2(2k f 2)x= a (kI-a k

since a2 = 0 when r srs

= 1 when r s

Prs = 0 when r/ s

= 1 when r s

R(a rs,1b) - 1
rs is

Q(f X ) .
rs is

Equations 21, 23 and 25 degenerate to the k-nown expressions associated

with the loss factor of the dominant mode propagating along a circular

dielectric rod (21); they are, respectively,

f(_E" _-)d

A, B1 2 Eo

22 C1 C2 (I8 + I9+ (ii) ( Io
a Aj 1 0i

"1rB
0

- 2 -AB!- (,12+ 113+
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A(Ei a 9 do A _ c1E /2(I8+ I 9 )+ •o .2 1 •) I Ill)

-B1+ €l 11
S(L ÷oc2)(112+ 13)

and

f(ExH) ed-

-to-to -z[ L12 P1 2 6

o T a c,2(±2+122) 28)

22 2 (1

E B

L0 1 l + c, )(I + i)I
2 12 1

o xo+
x x

0 0

112~~~ -j '(jp 14=J( )

I2, I I K2(n) ,)-(n

212 7 j 1 A F20IL L28
a y0Y

and. 133 134 J

y

in which p =x D_ and n =y . The attenuation constant of the HEll
a a

wave on a circular dielectric rod can easily be obtaidned by substituting

the above expressions into equation 4.1-7.
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4.3 The Attenuation Factor and Power Distribution Characteristics

of the BE(1) Mode
0 11

The case of the HEW wave can be analyzed in a similar manner
o 11

to that of the HE wave. From section 2.5c one obtains the field
e 11e ( )

components of the HE mode. They are, for region 1 (0 o),

H0z= aiSe1(g)se1(q)eipz (1)

E z= b1 CeeI(t)cee1 ()eipz (2)

Hi )alSej(t)sel( blCel( (3)l P(k2. 2. 2

(p WE o

H = - [a Se S()sel(i))+ blCe'(t)cel(•) e (4)

E1 2. {al Se (t)sel()+ blCel(t)ce() eiz (5)
t=p(k1-2_se() bP' ' 2 1

2 2 1 'l 1e( 'i) slT+ b~l )clT e (6)

and for region 0 (to 0 ft < c0)

H = g Gek (t)se*(fl)e iz (7)

Zor=1 r r r

odd

E•= 0 hFek (t)ce*(rI)e iz (8)
o r= r r

odd

H = ip CO Gekt(g)se*(,iO - h... Fek (t)ce* I( i)J e±pzHto Pko2- 2) =1 g'r r r) r) B re rtle(

0 p(k(9
odd (9)
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PN- r r r
%•op(•B2) -- r~k(1)e•(• h - rFek'(•)ce*(•) e' (10)

odd

E~ ~ = p O ek s*(I h Fekr'( ce* (TI) e z (1
to p= 2 _0 2 r r r r r' iz ()

odd

Eeo'o- r " °r Ti)+ hrFer(tlce'n) ez (2

odd

2 2 2 2 2 2
where k0 = w o'E 1 and p = q(sinh t + sin q) 1/ a bl,

gr and hr are arbitrary constants which are related by the boundary

conditions and are given by (see section 2.5c equations 70, 71 and 72,)

9 1 S e 1 ( t o ) ( 1 3 )

a 1 ek1(to )N 1(rs)

313 p 53
P15 p55

93 _ g3  g1  _ Gek 1(t 0 ) ... .. . .. g

a1  g1  a1  Gek3( to) • a3 • a 1
B33 B53

35 B55 "'"

B33 13

135 •15

g 5 - gl Gekl(to) .. . 9l

al 9l a1  Gek 5(t°) 33 53 "" a 1 (15)

035 55
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b2 Gekl(t°)Nl( ) -• + Sei(t°)1 o (16)

81 E0r (x2+y2ý)-(xý2+y2 #
Cee1 (to) y2 0 C r (s'xs)

h - Cej(g°) b1 (17)
al Fek (t)M (a-)*

1 0 1 rs

13 '53

h15 55 ""
h3 h hl Fekl (o)I hl

aI Fek3(to) a33 O53 a

a35 '55

33 13
a a

35 '15
h -5 h5 hI Fek(•o) (k... hl

a =_ (19)aI h I Fek 3( to) la cc
33 a ..3 5

a 5 ' 5 5 " '

and

The attenuation factor of the HEW mode can be calculated in a
0 11

similar manner as that of the HE(M) mode. It can be shown that
e 11

gl/ / >> g3 /a, » g5/a, » * > gO /a1 , and h,/al > h3/a >> h5/a, >>

h/a 1  , provided that t 0.2, 0 _ x -! 5 , and Y ! 3.0 •

The first two terms of the infinite series are sufficient to represent
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the field components in region 0

Substituting the appropriate field expressions . through 12 into

4.1-7 one finds after some manipulation that

.a 66 R' , (db/m) (20)

in which R' F1/ F2 +F 3

where

f(E1 - dA

Fi C (b,)2 e
F1 C1 [ 2 (II4+ IloI3)+ -(a I1 i)

2 22E 1b 1
cosh oq ag-

O

(21)

H*i -t)' e zdA-ti -z I i1
A EF b 2 E

F 2  i =e C (.l 1 1+ C2( I) _R(..2..iI+I)
.2 22 •°'cosh 2 q a1 2

0 b 0

1 0 22

and

S(Eto x Hto)- e A
A 4  F g ( hI 2

F 0 x C 1 12 F2B)'+ (:2) 2-0 C,.ABII)'

cosh 2  q2 a .
01,

0~n 1

c2 (BIII)']23
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(BI)', (BII)', and (Bill)' are respectively

+ 2(i13 g3 ,

(g4Il7+ I 3IIý) 3 +2 (9oo •(I l +il I32l2)'

h32 h
('jiY L+ I,22)+ ( h (I'Iý3+ I4I4) + 2( h (tý51ý+ Iý6,1),

and

tg 3') 3 (1 l i (+' h 3' 2 ' 7

" -36 16 I35115) + ( F)+ (I3811 I37117)

g 3

91 1 4 I2C) iq1j)

where I1 through 16 ' 18 through 113 , Ii through Io , 17c and

I4N are given in Appendix B • The loss factor R' for the HEW
S o lI

mode as a function of NMA is computed for various values of to

ranging from to = 0.2 to to = 3.0. The relative dielectric constant

El/c° is assumed to be constant and equals 2.5. The results are plotted

iFi) HEW mode variesin Figure IV- The attenuati0on factor R' for the HE m

with frequency in a similar way as that for the HEl mode, viz., the
e 11

attenuation factor R' approaches l/ F1!] as frequency approaches

infinity and R' can be made arbitrarily small by lowering the frequency.

It should be noted that the slope of the curve 'for the elliptical rod in

the low loss region is quite steep, i.e., a small variation in NMA would

cause a rather significant fluctuation in R'. It is quite obvious that

the H1 mode is more suitable than the 1HE mode as a transmission
e 11 o

mode.

The distribution of the transmitted power as a function of frequency

can easily be computed. The percentage of power carried inside the dielec-

tric rod is
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.01-
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Fig. IV-4. The attenuation factor R' for the oHE 3.1 mode as a function of
the normalized major axis.
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•P'. F2
•, 2 (24)

t F2 + F3

where F2  and F3 are given by equations 22 and 23 respectively.

Figure IV-5 shows the variation of P'/P' as a function of NMA for

various values of t° ; E 1 /Co equals 2.5 The behavior of these curves

is as expected. More power is carried inside the rod as the frequency

gets higher. Again there is a very close correlation between the

amount of power carried inside the rod and the value of the attenuation

factor.

4.4 Summary

A detailed analysis on the attenuation characteristics of the

HE) mode and the (i) mode propagating along an elliptical dielec-
e11 o0 11

tric rod are carried out in this chapter. Numerical results are obtained.

It is found that a thin elliptical dielectric rod operating in the

dominant HEW mode is a better guiding structure than a circular
e 11eH1)

dielectric rod operating in the dominant HE11 mode, because the e(HE1)

mode has much lower loss on a flat elliptical rod than on a circular rod

of identical cross-sectional area.

It would be interesting to compare the attenuation constant of the

H() mode with the attenuation constan.ts of some well known metallic
eI11

waveguide modes in the millimeter wavelength region. The values of the

attenuation constants for various kinds of waves are tabulated in the

following table.
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CHAPTER V - ELLIPTICAL DIELECTRIC ROD RESONATOR

To conclude the theoretical analysis of surface wave propagation

along an elliptical dielectric rod, we include here the analysis of the

Q factor of the elliptical dielectric rod cavity. The earliest work

on dielectric resonators was carried out by Richtmyer (53) in 1939. He

developed the theory of operation for several interesting dielectric

resonators of simple shapes, such as the spherical dielectric cavity

and the "doughnut" shape dielectric cavity. The dielectric tube resona-

tor was first used by the group in the Northwestern University (54).

Later in 1959 Becker and Coleman (26) made use of the dielectric tube

resonator to generate millimeter and submillimeter waves and to operate

as a frequency meter. Most recently Snitzer (40) proposed the use of

dielectric rod cavity as a mode selector in laser operation.

In the present problem the dielectric rod cavity consists of an

elliptical dielectric rod suitably terminated at its ends by suffici-

ently large flat metal plates which are perpendicular to the axis of the

rod (see Figure V-l). At resonance, the length of the cavity L must

reflecting

Al dielectric rod plate

L _____

Figure V-l. The Elliptical Dielectric Rod Resonator
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be n k (n, an integer), where X is the guide wavelength of the

particular mode under consideration and is a function of X° I E/

and the size and shape of the dielectric rod. The relations between

X and the mentioned physical ( nstants are determined by the bolmnd-g

ary ( and the HEW modes of the dielec-
e lln o lln

tric rod resonator will be considered in this chapter.

The Q factor of a resonator is indicative of the energy

storage capability of a structure relative to the associated energy

dissipation arising from various loss mechanisms, such as those due to

the imperfection of the dielectric material and the finite conductivity

of the end plates. The common definition for Q is applicable to the

dielectric rod resonator, and is given by (15)

total time-average
= energy stored W (1)0 = - (1)•

average power loss 0

where w is the frequency of oscillation. The above approximate ex-

pression is valid when Q >> 1 .

In our case the time-average power dissipation P consists of

two parts, the power loss due to the dielectric rod and that due to

the metal end walls

= P-dielectric + Pwall (2)

The power dissipation due to the dielectric rod is given by (15)

L

P-dielectric "dff (E1' E*1)dAdz (3)

0 Ai

while the loss due to the end wall is (15)
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- H H* dA, (4)

wall 2 f~ A twall -twall

Aend
wall

where f•2 is the surface resistance, R . The total time-average

V±er 2qM th ufc essLe

energy stored is given by (15)

=2wm =2We = f. .H*dV E -f E. *dV (5)

Vi+o Vi+o

where V i+ is the total volume of the cavity.

5.1 Q of a Cavity Supporting the HE Mode
e lln

By a linear superposition of the mode functions 4.2-1 through

4.2-12 for the HE wave traveling in the positive and negative z-
e 11

direction, the normal modes of the cavity may be constructed. The re-
(1)

sultant axial fields of an HEW wave traveling in the positive z-
e 11

direction and a superposed HEW wave of the same amplitude traveling
e ll

in the opposite direction are as follows for region 1 (0 _ )

H z A Ce1 (t)ce( 1)sin Oz (1)

Ez - B Se 1 (g)se1 (n) cos Pz (2)

and for region 0 (to 0 g < O)

00

H 1] L rFek (E)ce*(q) sin Pz (3)zo r = 1r r

odd

E z- P Gekr(k)se*(-q) cos Pz (4)

odd



-134-

All the symbols in the above expressions have the same meaning as those

defined in the previous chapters. The arbitrary constants A,, BI, Lr

and Pr which are related by the boundary conditions are given by

equations 4.2-13 through 4.2-19. Expressions I through 4 satisfy the

boundary conditions on the surface of the dielectric rod and at the end

z = 0 . To make them also satisfy the boundary conditions at the other

end, z = L, we restrict P in such a way that PL = nv where n is

an integer, (i.e., L = nX /2).

Substituting the proper field expressions into 5-5 , carrying out

the integrations where possible and retaining enough terms of the expan-

sion to give the same order of approximation as obtained in Chapter IV,

one finally arrives at (after some rather lengthy algebraic manipula-

tions) the expression for the energy stored in the cavity for the HE1)e lln,

mode,

E r
(E1 E*)dV + Jf(E -E*) dV

1E -0-

Vi V0

2 2 2 LEO
cosh2t q A 1 - CT (5)

0

E1 B 1 I7)1 Eo1where C I +2 21(3 + C1T o A, L 1413+ 2 cosh2 1 0 C2 (I 8 1i+ 1912)

- ,B1, fo

+-+ + 2 8 a ( 2 I,2I' + 22(10I)0 2 cosho 4 2cosh t0

+I F , + +1 - I) 4 r2 L1 2

I 2 (o)--)L 1  P1 4 r

62J(BI( + 2Jj) .2 (BIII)
A l 'I'
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2 2

C C1, C2I BI, BII, BIII, x and y are given in Chapter IV. The inte-

grals, i.e., I's or I' 's, are defined in Appendix B.

The power dissipation due to the dielectric loss is

S2,A
P °dL f (_l" )p 2dyidt

dielectric 2 0 0

= Ad q2csh 2 L (6)

~O
0

where

I1(1 3 1 )1 F IIA)(" )(,0 1432 + C 1912)
d Al 14 2 cosh 2  J + C2(18I1+

0

1, o ) l 0 (+ (_ + 1 2+ 2 (- (I125-
A1  "o 10 3 1 1 4 ) ~~ 1, F-0 1 5 1

Again the integrals are defined in Appendix B.

Another source of power loss in this cavity is caused by the

finite surface conductivity of the reflecting end plates. This loss may

be computed from equation 5-4,

Fl r1 2 2 2
P1 2all= 1 Rjs (t HE ) dA] = R Ajcosh toq C (7)

A at z=O s 0 w
Ai+o

where
E 1 B1 2ECw = C1I (i8+1+ i91)+ (C 1 )10 1 [ 1 (91103+ 1114)

1l 1960 2()~

B, :E FC2E 1 25 13

2 1 o (+ 12 l)+2() (1) O

R r a i 4 p s i 5 -1C , Co we 2( A A1  2

Rearranging expression 5-1, we get
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1 P dielectric Twall 1 1- - -- + -- (8)
Q W -'d Z

Qd is the Q factor of the cavity if the end plates are perfectly con-

ducting, and Qw is the Q factor of the cavity if the dielectric is

perfect. According to equation 8 we have

= W V _ 1 CT (9)
d~ dielectric 20d Ej Cd

0

and
S W L CT

% L (10)

Pwall 26 Cw

where Od is the loss tangent of the dielectric rod and 5 is the

skin depth of the end plates.

The expressions CT/Cd and CT/Cw are evaluated numerically and

the results are shown in Figure V-2 in which CT/Cd and C/Cw are

plotted against the normalized cross-sectional area (NCSA) for various

values of k° with E /E = 2.5. For small values of NCSA, C Cd can

be very large, thus Qd can also be very large. This is because most

of the energy is outside the rod. As NCSA approaches infinity, CT/Cd

approaches EI/iE and Qd approaches 1/20 d* Again one notes that

the flatter the elliptical cross section, the higher the Qd factor.

It is worthwhile to take notice of the behavior of C T/C as a

function of NCSA. For an ordinary cylindrical metallic waveguide of

simple cross-sectional shape, terminated at both ends by short-circuiting

*Incidentally, the Q of a section of perfectly conducting metallic wave-

guide., terminated at both ends by perfectly conducting end walls and
filled with a dielectric material with a loss factor of 0 d is also
1/2d.
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plates, the Q factor resulting from the imperfection of the end plates

is L/28 . L is the length of the guide and 5 is the skin depth of

the end plates. This Q factor is independent of the type and order of

the mode under consideration as long as the mode is either of TE, TM or

TEM type and not of a hybrid type. It means that for this type of

cavity, CT/Cw is always unity. However, C T/C w is no longer a cons-

tant (see Figure V-2) if a hybrid wave is present. This characteristic

is probably due to the fact that the TE and T4 waves are inextricably

coupled to each other on a dielectric rod except for the circularly sym-

metric waves.

It is also noted that Qd is independent of the length of the

cavity and Q is directly proportional to the length of the cavity.

The total Q of the cavity can be computed from the knowledge of

and Qd using equation 8. For a very long cavity, QON Qd ' therefore

Qtotal d

5.2 The Q of a Cavity Supporting the HEW Mode

For the sake of completeness, we include here the analysis of the

HEW mode. The geometry of the cavity is the same as the one shown
o lln

in Figure V-1. The analysis in this section follows very closely that

in the previous section, therefore only the results will be given here.

The power dissipations due to the dielectric loss and the end

walls loss are respectively,

, OdL to 2x

Pdielectric= -2 f f _

0 0

'dL 2 2 2
= "�- 2 q cosh2 0o d (:)

0OF
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and

-a 2 Rs f (,H _-• dA
wall 2 Ai+0  at zo

= RA cosh2 oq2 C'w (2)

where

B2or I2(I2- 7c)
Co + C 12+ C• (I-A 0 14N2 2 coshB Lo ( +

+ I (1 1 + 1 1 2I)1A,- o 8 1 9 2 )+2 2 • 1

and

wr wB 
2 E

CI vo(11+11)=+ 10c3 11q4 2A 1  2

+ +2 (B) Eo F'l(1,5 1215)J

[ L 2P2 L PE
4~~7 cFC()(B)'+c()-

All th.e symbols in the above expressions ha-ve been def~ined either in

Chapter IV or in Appendix B. The total time average energy stored in

the cavity is given by

Tý =2E =2H 2EE)V+1cof( :d
= 2W 'E 2W

V 1  V0

2 2 2

where
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B12 E oB Ec

A -2(18o+s)+2f ( ) (o 1115)J

P2 E r I4 I~i(IL- P 2 F iI ,-(I
+ (k-) - I I44,L 2 + (T--+

4o 0 2 cosh t 0 1 Iý5 2 cosh to

P 3r 1T5(Iý- ICI)
+ 2(e V I'6 --ý--

4616 2 cosh'to
x4 1 (LI2 PI2 E L1P1 Eo,

+ (B I(BI')'' + 1 2 C )I (BIII)
x ~~~F C2 -A,(BI -A,•(o

1 , 2 L)-)c3II)+

Pd' P and WT are related to the Q factor by the following relation

1 P Pdielectric Pwall 1 1= -- = _ , + -- _ --T- + -- T ('•

T wT w wT T w

where

wT 1 T

Pdielectric 2d Cd

0

and

WT L T

wall w

Od is the loss tangent of the dielectric and b is the skin depth

of the reflecting end plates.

The expressions Ci/CA and C ./Cw are evaluated numerically.

Results are given in Figure V-3 in which Cý/CA and qT''/' are plot-

ted against the normalized major axis (NMA) for various values of to

with El/ = 2.5 . The characteristics are similar to those of the
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HEM mode. C0Ck can be made as large as desired by choosing suitablee ulln

values of NMA. As NMA approaches Infinity, C/C• approaches e for

all . In the region where is large, the slopes of these

curves are very large; in other words, a small variation in NMA can

cause a rather larger variation in Ce/Cd , thus a large variation in

Q" The behavior of C/C is similar to that of the HEWln mode.
Th beair'f T e lln

Similar deductions as those given in section 5.1 can be made and will

not be repeated here.

5.3 Relation between q and

In 1944 Davidson and Simnonds (41) derived a relation between the

Q of a cavity composed of a uniform transmission line with short-

circuiting ends and the attenuation constant a of such a transmission

line. Later in 1950, Barlow and Cullen (55) rederived this relation.

These authors showed that this relation is quite general and is appli-

cable to arbitrary cross-section, uniform metal tube waveguides. Since

then one of the standard techniques for the measurement of the attenua-

tion constant a is the use of the cavity method*. This method offers

an excellent way of measuring the attenuation constant of the guide when

the loss is quite small. Later on this method is generalized and applied

to open waveguides, such as the single wire line, the dielectric cylinder

guide and associated guides, by various authors (6,7,19,21).

However, it should be remembered that the formula by Davidson,

Simmnonds and Barlow is derived under the assumption that there exists a

single equivalent transmission line for the mode under consideration.

*The procedures of this method in general are the following. Short the

uniform transmission line under consideration at both ends and measure
the Q of such a resonator. From the knowledge of the measured Q and
other constants such as the cut-off frequency of the guide, the frequency
of oscillation, etc., it is an easy matter to obtain a from the formula
derived by these authors.
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This assumption is true for a pure TE, TM or TEM mode, but it is not

"clear that such a single equivalent transmission line exists for the

hybrid waves. This suspicion originates from the fact that a) the TE

and T14 waves are intimately coupled to each other, and b) the charac-

teristic impedance defined by Schelkunoff (56) is not constant with

respect to the transverse coordinates. It is, therefore, very difficult

to conceive. the possibility that there exists a single equivalent trans-

mission line for this hybrid mode; at best the hybrid wave may be repre-

sented by a set of transmission lines coupled tightly with one another.

Hence the formula by Davidson, Simmonds and Barlow is not applicable to

the hybrid wave.*

A more general relation between Q and Cz can De obtained

without using the transmission line equivalent circuit, provided that

a is very small compared with ý (57). The propagation constant of a

guided wave with small attenuation constant at w is

p(W ) = a(W ) + ip(w . (1)

At resonance**, the following relation is true

(wo) + LE Zi(mo) " (2)

Combining equations 1 and 2 we have

cf(wo) 6-r = - Oi (3)

According to the definition of group velocity vg which is 6 and

the definition of the Q factor which is wo/2(•) , we finally arrive

*But several investigators (19,21) apparently unaware of this restric-
tion, used this formula in their investigations of the hybrid wave.

**The resonant cavity is made by shorting both ends of the guide under
consideration.
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at the relation

CI)v
a 0 _ p 13 (4)

2Qv 9 v 92Q(4•g Vg

This is the general relation that we are seeking. Substituting the

values of v p/V * for TE, TM or TEM into equation 4, one gets the

relations derived by Davidson, etc. For the TM or TE mode,

v P _ 11
v ,. Cj and for the TEM mode,S - X 2 X- 22

C C

vp/v = 1 , • • . = P/2Q X c is the cut-off wavelength.
pg

The group and phase velocity of the dominant modes can be

obtained easily from the w-P diagram. A sketch of the w-P diagram

for the dominant modes is shown in Figure V-4. It can be seen that

at low frequencies or small P's, vph ý vg and again at very high fre-

quencies or large P's, vph• vp . Therefore, the relation a /2Q

is applicable only at very low frequencies or at very high frequencies.

* v = v = the phase velocity of the wave.
p ph
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i1

slope =

[q cosh goJ

Fig. V-4. A sketch of the w-• diagram for the dominant dielectric
rod mode.
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CHAPTER VI - EXPERIMENTAL INVESTIGATIONS

It is the purpose of this chapter to investigate and verify the

analytic results experimentally. The properties of a certain propagating

mode along an infinitely long uniform waveguide are usually specified by

three characteristics*, (a) the guide wavelength which is directly re-

lated to the propagation constant of the wave, (b) the field configu-

rations or the field distributions, (c) the power loss or the attenuation

*In order that a good matching condition may be obtained so that in
coupling energy into and out of a dielectric rod guide without the
presence of high standing-wave ratio which is a measure of the relative
intensities of reflected and incident waves, the knowledge of the charac-
teristic impedance or the wave impedance is very important. As we' have
pointed out earlier the characteristic impedance defined in the usual
manner (i.e., the Schelkunoffidefinition) is not meaningful, since it is
a function of the transverse coordinate system. A mean value impedance,
which takes into account the energy distribution over a cross-section of
the rod was first suggested by Wegener. He divided the (circular) dielec-
tric rod into four sections and in each of these four sections he assume-d
the field to be independent of 0, the angular variation, so that in
regions I and III, 0 is assumed to be zero and in regions II and IV, 0
is assumed to be n/2. [See Figure 9, ref. (17)]. The approximate
expression for mean impedance is therefore

f 4 (E xH*)" e IdA + (E) (ExH*) e d.A
1 1 + III P 0=0 II + IV 0= r/2

(E x H*) e dA

He showed that Z/Z°0 ; - X . Similar approximate mean impedance as
defined above may be obtained for the elliptical dielectric rod.

The fact that the characteristic impedance of the hybrid waveguide is
not well defined shows that the single transmission line analog is at
best an approximation. Any measurements assuming the single transmission
analog of this guide are therefore approximate, and should not be consi-
dered as precision measurements.

Since at present we are only concerned with the problems of wave propa-
gation along an infinitely long uniform dielectric rod, the "characteris-
tic impedance" or the equivalent circuit network of this guide will not
be considered.
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constant of the wave. Experiments will therefore be specifically

designed to measure these three quantities.

After a detailed description of the experimental apparatus, the

methods of measurement for these various quantities are discussed. The

experimental results are then compared with the theoretical results. A

discussion will be given.

6.1 Experimental Apparatus

Figure VI-1 is a photograph of the general physical appearance of

the experimental set-up. A block diagram is shown in Figure VI-2. For

the sake of convenience and simplicity, measurements were performed in

the X-band frequency range. The microwave X-band power was obtained

from an X-13 Varian reflex klystron which offered a maximum power output

of five milliwatts and was powered by the Hewlett-Packard power supply.

The microwave signal was modulated with a 1000 cps square wave. The

output of the klystron was connected to an isolator followed by an

attenuator, a cavity resonator, a slotted line section, and a section

of standard X-band rectangular me~tallic waveguide. These were standard

X-band components. The other end of the rectangular metallic waveguide

was connected to the special apparatus specifically designed for the

present experimental investigation; see Figure VI-2.

The following sections are devoted to a detailed description of

the special apparatus.

A. The Launching Device

The method of transferring microwave energy from an ordinary metal-

lic waveguide into a dielectric rod was not very difficult or complicated.

Since a rectangular metal guide operating in the dominant TE1 0 mode had
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an electric field whose configuration was roughly similar to the trans-

verse component of the electric field of the (E1 or the HEii

mode on the dielectric guide, the transfer could be made simply by

inserting the dielectric rod longitudinally into the metal guide for a

short distance. The orientation of the cross-section depended upon

whether the H mode or the HE() mode was desired. To improve the
e U- 0 U.

matching and to minimize reflection the dielectric rod was tapered to a

point within the guide and after emerging from the metal guide the rod

was tapered to whatever size was required for a given test. Furthermore

a flare pyramidal horn whose flare angle was adjusted for best energy

transfer was connected to the rectangular metal guide. (See Figure VI-3).

rectangular

metal waveguide horn elliptical dielectric rod

Figure VI-3. The Launching Device.
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B. The Elliptical Dielectric Rod

Since dielectric rods of elliptical cross-section were not com-

mercially available, they were machined from available rectangular

lucite strips which were at least five and half feet long. A total

of twelve rods of different sizes and ellipticities were made, in

order that the experimental data would cover a wide range of 2q cosh X

and to values. A picture of these rods is shown in Figure VI- 2 . One

end of each rod was machined very flat while the other end was tapered

as described in section 6.1A to fit into the metal guide. A small chunk

of lucite was taken from each rod in order to measure the electrical

properties of each rod individually by Von Hippel's method (58). It was

found that the dielectric constant of these rods varied between C = 2.5

to e = 2.6 and the loss tangent varied from tan 5 = 0.005 to

tan B = 0.003. It should be noted that due to the resilient property

of lucite it was very difficult to machine such a required length uni-

formly. A special and rather expensive technique was developed and used.

Although extreme care was taken in making these rods, some small non-

uniformities which might attribute to experimental errors were unavoid-

able. The major axis and t of these elliptical rods ranged from

2A=1.5in. to 2A=0 Sin. and to = oo to to =0.37.

C. The Shorting Plate

In order that the plate could be a good shorting device, its sur-

face had to be very flat and large enough to intercept practically all

of the energy outside the dielectric rod and the plate had to be made

of good conducting material. A 1/ 4"1 x36"x36" aluminum plate was used.

One side of the aluminum plate was machined flat and its surface was
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II k.

Fig. VI-JL. Elliptical Dielectric Rods

F . Pj

Fig. VI-5. Probe and Its Carriage
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* cleaned and polished in order to assure maximum conductivity. The

plate and its support can be seen clearly in Figure VI-1.

D. The Probe and Its Carriage

To detect and measure the electromagnetic field on the dielectric

rod, a small electric probe was designed and used. The probe con-

sisted of a section of rigid coaxial cable whose outside diameter was

about 1/8" and whose length was about 1'3". An inch from one end of

the cable was formed into a gradual 900 bend and the center conductor

protruded about 1/8". The other end was connected to a crystal detec-

tor which was calibrated, and the output of this detector was connected

to the HP standing wave indicator. The L bend was introduced to

reduce the amount of metal conductors parallel to the electric field

indicator. The probe and the detector were supported by a stand which

was fastened to a HP carriage. A picture of the probe and its support

is shown in Figure VI-5. The whole instrument was so designed that the

probe might be moved up and down radially with respect to the center

axis of the dielectric rod and longitudinally along the center axis of

the rod. Furthermore, the probe could be adjusted to detect either

E or Ez field. The longitudinal movement of the probe could be

measured from a scale on the carriage; and a dial indicator was used

to obtain accurate measurements of small longitudinal movements of the

probe. The radial movement of the probe was measured by a level tele-

scope whose movement had been calibrated.

With the help of a transit and a level this whole experimental

set-up was aligned carefully. The dielectric rod had to be very straight
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and its axis perpendicular to the shorting plate. To insure a good con-

tact between the polished shorting plate and the flat end of the

dielectric rod, a slight pressure was asserted on both ends of the system.

To minimize sagging of some small or flat rods, very thin nylon threads

were used along the rod to provide support. Although disturbances due

to these threads were unavoidable, because of the sizes of the rods used

at this frequency range very little perturbation was observed.

6.2 Method of Mdeasurement

In general there are two most commonly used methods for measuring

the propagation characteristics of a certain mode along a uniform low

loss waveguide. The first one is the so-called resonator technique. The

guide under consideration is placed between two parallel plates with

proper coupling holes. Resonance occurs when the length of the cavity is

n 2 where n is an integer and X is the guide wavelength of the mode2 g

on the guide. X can be measured easily either by counting the numberg

of minima within the cavity length with a small probe or by moving one

of the reflector plates and measuring the displacement of the plate for

each resonant peak. By measuring the Q of this cavity, the attenuation

constant a can readily be calculated*. This method is particularly

useful and accurate for very low loss transmission lines**. The second

method is the standing wave measurement technique. The guide is terminated

by a perfectly reflecting plate acting as a short-circuit device. The

propagating wave is perfectly reflected by the termination and a standing

*See equations 5.3-4
**This method was first used by Chandler (19) on the measurement of attenua-

tion factor for the HEll mode on a very small circular dielectric rod.
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wave pattern is formed along the guide. A probe, such as the one des-

cribed earlier in section 6.1iD, can be used to detect the microwave

signal along an open waveguide. By measuring the distance between two

adjacent minima of the standing wave pattern, and the standing wave

ratio, it is an easy matter to calculate the guide wavelength and the

attenuation factor of the mode on the guide*.

*The formula relating the attenuation factor a with the standing wave
ratio can be derived as follows: It is well known that

A = 5 loglo db

where P1  and P3 are respectively the input and reflected power of
the guide; and PI r-i2

p-• = (•--) where r is the standing wave ratioP3  0 +r1 
2

at the probe. Therefore, we have a = LO logl(o - ) db/m in which A

is the length of the guide as indicated in Figure VI-6.

elliptical dielectric rod
/reflecting plate

b

a

Figure VI-6.

To take into account the loss due to imperfection of the shorting plate
one notes that the attenuation measured at point a is Aa = a a + D ,
and similarly the measured attenuation at point b is
Ab = aAb + D where D ib -he loss of the cfltctiL•g plate. Combining
these two equations and eliminating D one gets

a (Aa ) (db/meter)(a "d%
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The latter method was used for our measurements since it presented

a simple and expedient way of measuring the desired quantities with

reasonably good accuracy. To avoid perturbation by the launching device

or by end effects, measurements were made in the middle section of the

rod. It should also be mentioned that throughout this whole experiment

the coupling between the probe and the field was kept at a minimum in

order to avoid interference with the propagating wave.

6.3 Comparison of the Theoretical and Experimental Results

The results are separated into three general categories.

A. Guide Wavelength

Guide wavelength was measured according to the procedures described

earlier. The distance between adjacent minima of the standing wave pat-

tern was measured at several sections along the guide and the average

value was calculated and recorded as the measured Vg2 . The maximum

difference between these measurements was about 3%. Wavelength measure-

ments were taken from nine different sizes of elliptical dielectric rod

f teHHEM mode. Normalized experimentalfrte e 1 0l1

results, together with their corresponding theoretical results, are

given in Figures VI-7 through VI-15. The physical size of each dielec-

tric rod used and its measured dielectric constant are indicated in each

figure. Excellent agreement was obtained.

To illustrate the agreement between the analytic and experimental

results, we introduce the following table:
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Mode of Size 2q cosh to X
Operation (2Axo) to X s ( (A) c. 00o meas. Xo alc. o

HEW 0.770"xO.6 4 5" 1.22 0.55 0.845 0.853 2.55
e 31

0.63 0.80 0.804

HEW 0.770"xO.6 4 5" 1.22 0.555 0.83 0.833 2.55o 11
0.635 0.784 0.787

HE(1) 0.769"x0.505" 0.775 0.56 0.925 0.925 2.5
ei11

0.785 0.80 0.802

HEM 0.769"xO.505" 0.775 0.55 0.875 0.882 2.5

0.695 O.80 O.80

HE() .005"xO.361" 0.376 0.725 0.962 0.964 2.5
e 11

1.00 0.862 0.862

HE( 1.005"xO.361" 0.376 0.72 0.87 0.873 2.5
o0 1

0.93 0.79 0.792

It was found that the wavelength measurements were rather insensi-

tive to small non-uniformity of the rods and to the variation of

humidity and temperature in the laboratory. Incidentally, the above

experiment also suggested a rather convenient way of measuring the

dielectric constant of a certain low loss dielectric material.

B. The Field Distributions

In order to establish the degree of field purity an examination of

the radial field decay at a fixed axial position was carried out. The

decay of the axial electric field was measured since it can most easily

be detected by a probe pointed in the axial direction. For maximum sig-

nal strength, the probe was aligned in the q = x/2 plane for the eHEW

Mode and q a 0 for the 0 HE mode. The general method of meaaurement
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has been outlined in section 6.2.

* Experimental results, together with their theoretical results

.for the mode are shown in Figures VI-16 through VI-18. Six
ote e3

different rods ranging from g 0 = oo to go = 0.376 were used. It_

can be seen that the experimental results corresponded rather well

with the analytical results. The largest differences were found among

thin rods. This effect may be explained by the fact that for small

values of NMA, a large percentage of energy was carried outside the

dielectric rod, thus a small amount of curvature or sagging may have

caused some errors in the field decay measurements. These measurements,

together with the wavelength measurements verified the existence of

* (1)the eHE .1 mode along an elliptical dielectric rod.

Similar measurements were performed for the HEol1) mode. Four

rods ranging from to = 0o to to = 0.376 were used. Results are

shown in Figures VI-19 through VI-20. Again, good agreement with

theoretical results were observed. These measurements also confirmed
(1) oe

the existence of the HE mode.
oil1

The above discussion show-, clearly the necessity of having a

structure which may support the dielectric rod and at the same time

will not interfere with the desired propagating mode. One of the best

ideas, which was first proposed by D. D. King (20), is the use of the

image plane. He took advantage of the symmetrical property of the

HEll mode and mounted a half-round dielectric rod on an image plane.

It can be seen that his idea can very well be extended to the ellipti-

cal dielectric rod. This image plane can not only serve as a support

without disturbing the fields, but also may serve as a polarization

anchor.
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* C. Attenuation Constants

Attenuation measurements were made by probe, using the standard

standing wave technique (59). For each experimental point two mea-

surements at two different locations were carried out in order that

the loss due to the imperfections of the terminating reflecting plate

could be eliminated, (See the footnote on p. 155). The percentage

variations of the loss factor of these dielectric rods were found to

be quite large. The loss factors for various rods were found to vary

from tanb = 0.005 to tanb = 0.003 . Both theoretical and experi-H(1) adthe •(I1) wvsaesoni

mental results for the E and waves are shown in
e U1 o U

Figures VI-21 through VI-27. In general, the agreement is quite good,

and it is better at higher frequencies than at lower frequencies. One

of the reasons for this is that at lower frequencies, more energy is

distributed outside the rod; thus, more energy is radiated due to the

slight curvature of this open guide. Furthermore, the disturbance of

the field caused by the presence of the supporting threads and the

probe is more pronounced at lower frequencies. Since the attenuation

is lower at lower frequency, the standing wave ratio is higher and the

percentage error in thee measurements of this high standing wave ratio

is therefore larger. Because the attenuation constant is a measure of

the power loss as compared with the power transmitted, it is quite

understandable that the above mentioned factors would affect the ac-

curacy of our measurements more at lower frequencies. It is for this

reason that the resonator method is superior for low attenuation mea-

surements. At higher frequencies most of the energy is carried inside

the guide; very little disturbance will result from the supporting

threads, the probe, and the small curvatures of the rod. The accuracy
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of the experimental measurements is thus greatly improved. Another

source of error is probably due to the approximations used in computing

the numerical results from the analytical equations. It was mentioned

earlier in Chapter IV that as the elliptical cross sections become

flatter, i.e., go gets smaller, more terms of the expansions are

required to obtain more accurate numerical results. However, suffi-

ciently close agreement between the analytical and experimental results

is observed to warrant the verification of the theoretical predictions.

It is noted that a dielectric ribbon having the same cross sec-

tional area as a circular dielectric rod and operating in the dominant

(E) mode does indeed offer much less attenuation than the circular
e 11

dielectric cylinder.

6.4 Conclusions

Special experimental apparatus was designed to measure the propa-

gation characteristics of the two principal dominant modes, namely the

M and the (E) modes. Despite the mentioned sources of experi-
ei o 11

mental errors, measured results were found to be in good agreement with

the calculated results. Particularly good agreement was observed in

the guide wevelength category. The existence of these two dominant

modes was verified.

It was noted experimentally that the next higher order mode occurs

at a higher frequency for the flatter elliptical cross-section rod.

Therefore, the flatter rod possessed not only a lower attenuation factor

but also a wider bandwidth.
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* CHAPTER VII - SUMMARY AND CONCLUSIONS
0

The problem of electromagnetic wave propagation along an elliptical

dielectric rod was considered. It was shown that, in general, no pure

TE or TM wave might exist on such a waveguide except when the eccentricity

of the rod was zero. In order to satisfy the boundary conditions, an

infinite series of product terms of Mathieu and modified Mathieu func-

tions were used to represent the field configurations in one of the two

regions. The field components Rnd the characteristic equations of four

principal types of waves were obtained. They were classified as the

eHEM mode, the HEM mode, the HEM mode, and the HEM mode. These

modes were degenerate and became the well known HErma mode when the eccen-

tricity was zero. The modes with m = 1 and n = 1, called the dominant

modes, possessed no cut-off frequency. The propagation characteristics

of the dominant modes were considered in detail both analytically and

experimentally. Extensive numerical computations on the properties of

the guide wavelength, the rate of field decay, and the attenuation charac-

teristics of the dominant modes were carried out.

Experiments were designed and performed using various sizes of ellip-

tical lucite rod to verify the analytic results of the dominant modes.

Measured data were compared with theoretical results and it was shown

that very good agreement was obtained.

The Q of a dielectric cavity resonator operating in either one of

the dominant modes was also computed. It was found that a very high Q

cavity could be made using proper size dielectric strip.

It was demonstrated analytically and experimentally that a thin

elliptical rod operating in the HEMI) mode typically had considerably
e 11
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lower loss than did a circular rod, operating in the HE mode, having

the same cross-sectional area.

Other advantages are listed below:

a. A flat elliptical dielectric rod has larger surface area,

thus it mould be easier to handle at very high frequencies,

such as in the mm wavelength range.

b. The mode possesses greater bandwidth, since the cut-b.Te s11l

off frequency of the next higher order mode is higher for

flatter elliptical cross sections.

c. Depolarization effects are minimized because the guide wave-

lengths differ for the even and odd modes. It is known that

internal strain, non-uniform dimensions, and bends of the

circular rod cause the HE mode to change polarization.

d. A flat elliptical dielectric rod which may be approximated

by a strip is easier to fabricate since wider dimensional

tolerances are permitted. This is because the guide wave-

length and the attenuation constant are slower varying

functions of the dimensions for the strip than for the

c;.i ' r 'od.

It should also be.noted that the eHEI mode can be launched as easily

as the HE3- mode.

The advantages and disadvantages of using the dielectric tape line

as a transmission line in comparison with the conventional metal tube

waveguide (at frequencies above 50 kmc) are discussed below.

a. Keeping the spread of the field outside the dielectric tape

within a reasonable distance from the surface of the dielec-

tric guide, the loss factor of the eHEll mode on a dielectric

tape line'can be made smaller than that of the dominant mode

in a rectangular metal tube guide, but still somewhat larger

than that of the TE mode in a circular metal tube guide.
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* b. In order to avoid mode conversion the surface of the cir-

cular metal waveguide must meet very close tolerances.

* These kind of tolerances are not required for the elliptical

dielectric rod; thus, it is easier to fabricate.

c. Unlike the metal tube waveguide, the field of a dielectric

tape is not entirely confined within the strip. Consequently,

it can be subjected to interference due to nearby foreign

objects or foreign signals. The presence of curvature or

discontinuity of the strip will also cause energy loss by

radiation. It is rather difficult to support the dielectric

rod without disturbing the field. The use of image plane,

as proposed by King, as a supporting device appears to be

quite suitable.

The greatest attraction of a surface wave dielectric tape line as a

millimeter wave transmission line is in its simplicity of construction,

its low cost and ease of manufacture, and its flexibility.

The analytic method of solving this elliptical dielectric wave-

guide problem should prove applicable to others involving the use of

the elliptical coordinate system and the Mathieu functions. For

instance, one may apply this technique to the problemsoef

a. the propagation of electromagnetic waves along an ellip-

tical dielectric tube, or

b. the surface wave propagation along an elliptical Sommer-

feld or Goubau wire, or

c. the scattering of electromagnetic wave by an elliptical

. dielectric cylinder.

Other analogous mechanical problems can also be solved in a similar

manner.

We did not consider the source-present problem. However, it is

emphasized here that it is not possible to express any arbitrary field
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distribution in terms of the propagating modes alone for any open

boundary problems. The problem with source present must then be for-

mulated in terms of Green's function in the form of a contour integral.

The residues at the poles of the integrand will give rise to modal

type waves which are also called guided waves. The contribution of

the integral around the branch cut will give rise to a radiated wave.
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APPENDIX A

Mathematical Relations

Many of the formulas and expressions which are used throughout

this report are given in the following sections for convenient refer-

ence. Those relationships which are considered well known are stated

with only a reference to their origin. Others, which are considered not

so well known are discussed in more detail. Some relations which are

given "here for the first time are derived.

A.1 Series Representations of Mathieu and Modified Mathieu Functions

The Mathieu differential equation may be written in the form

d2e
d7) + (c - 2r cos 21:)6 (A.l-0)

2

where y is a constant which may be positive or negative, and c is

the separation constant or the characteristic number. The periodic

solutions of A.l-1 which may be expanded in terms of trigonometric

functions are given below (42,45):

For y2 1 0

Cen(2) = Z A2r cos 2rn (A.1-2)
r= 0

ce2n+l(q 2 ) = 0 A"2r+il) cos(2r+l)l (A.1-3)
r =0

rs('r ) = 00 B(2n+1 ) sin(2r+l)n (A.1-4)

anf0

and for T 2- 0,
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2 0 r+n (2n)
ce&(n, IT 1) Z (-l) A 2r cos 2" (A.1-6)

r= 0

ce* (21 )r1n B2rRB(i+l) cos(er~l) (A.1-7)
= . A2r+1

r =0

~(nI 2  ='0LrnA(nl sin(2r+l)r (A.1-8)
r =0 2~

eoo (-1 )r+n (2n+2)
0n+2( T 2: B=r+2  sin(2r+2)1 (A.1-9)

r=O

.(2n), .(2+), _(+l) B(2a+2)
The expansion coefficients, A2rF _Ar+l ,2r+l 0 and B2r+2 are

functions of I 21 and have been tabulated by NBS (49) for various

values ofIT' 21r up to 1T21 = 25

The modified Mathieu differential equation may be written in the

form

A• -(c - 2!ycosh 2E)R = 0 (A.1-10)
dt2

2
where r is a constant which may be positive or negative and c is

the separation constant or the characteristic number. The stable solu-

tions of A.l-10 which correspond to the periodic solutions of A.l-1 can

be expressed in terms of Bessel function product series. Comparing this

with other ways of expressing the solutions of A.l-10, the Bessel func- -t

tion product series converge the fastest and therefore are best suited

for computational purposes (45).

Let u : I e9 and v = iTI et ; the set of stable solutions

of A.l-l0 with T2 0 is (45),

Ce =,2 P2n (-i) r 2n) Jr(U)Jr(v) (A.1-lI)

0



2 ,P2ri+1 00 r (2a 1
Ce •2,+ 1,• 42nl rZ ()l)

Sr(A.1-12)

Se2nl (n.l E (l)1 2+1 [ r (u)JT r 1 (v)-J~l(u)i ~~
(A.l-13)

a 00
Se+ 2 (n r2 ) B (2n+2) r (_0 )r B2r Jr(u)Jr+2 (v)-Jr+2 (u)Jr(v)]

2 (A.1-14)

And, the set of stable solutions of A.l-10 with 0 is (45),

Fek((tl 2 1) (-1) p = 00 A(2n) It(u) (A-1-15)
2nk(2(n, ZT 2r r r(

it 0 r=0
('l)nS

Fek qI( T 21) = 00 B (+l [Ir(u)Krl(v)- Ir 1 (u)Kr(v)]
i B r =0 (A.1-16)

Ge T 21( ) ('l)np+l rp(,l) (1
2e+k 1 1l= ZA•1 [1(u)K+ (v)+ Ir+l(U)Kr(v)

iAi r= 0  (A.l-17)
Gek~n,2(•,(-1) (' ~sn+1 0 (2+2

Gek2( I- 2 1) = 2n.2 0 B(2n+2) Ir (u)K (v) -I (u)K+ (2  F 0 2r+2 I r r+2 r+2 r(v)J
(A.I1l8)

The expansion coefficients A () (2+l) B•-2r+l) B 2+2) and the

2r; ' 2r+l I 2r+l '2r+2

connecting coefficients p2nI p2n+lI B S2n+l-' S2n+2 are functions of

T 21 and have all been tabulated in a table prepared by NBS (49). The

above series are absolutely and uniformly convergent. The analytic expres-

sions for the connecting coefficients are

P e = Ce2n(0,r 2 ) Cen(I ITr2)/A(2n) (A.1-19)

p_2n+l = Ce~n+l(0'T 2 )ce+(( TCe/ 2n+l( (.120
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22 2ii e2~s / ry (A.1-21)(,2n+1 2n+1 2n) 2en)+l 2 1

. (0 2)s It T •,2) / (2•-+21 (A.1-22)
S2n+2 = se*n+2(, LS~+2(12

The prime signifies the derivative of the function with respect to 1j

The normalizations introduced by Goldstein (60) will be used.

They are

2 [A 2 n2 + 1 (A.1-23)

[A Znll2[(al [B~+ j2-2 1 (A-1-24f)
2r+1 J 0+2r+2Jr =0 r=0 r =0

2
It is also defined that when T = 0

(0 1n ~~ 2 ( 4rn+l)] 2 = B2~)2 ( 2n+2)
0 F2 r-1 ' 2r+1 2r+2 =I

when ro= n

= 0
when r # n.

(A.1-25)

A.2 Approximate Expressions for the Modified Mathieu Functions Suitable

for Small Values of I r2j

Mathieu (61) first derived the expressions for the expansion coeffi-

cients (2'n A(2+l) B ) B22) when r 2 1 is small. They are
Aý; 2r1 2r+12r2

B 2 A~m)+ -1) r m Or 2 r (A.2-1)Bml+2r ~ ~('lrr)

(r Op, m >0)
and m-2r A m-2r r(-l)! ( 0) (A.2-2)

zn-2r in-2
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where-a means approximate equality.

a. Approximate Expressions for Fek 2n+l(,IT21) and Gek,,,+l(t,lr'I)

when r 21- 0 . The approximate expression for Fek 2+ l (OI,l 2 ) from

A.1-16 is

X Fek t, I 21.. + B (2+l)
(-:i) 72- (2+1)-2

S U)K (v) - I.(u)K M + B 1) [n(u)Kn i(v)

I ni(u)K ( v) + B (2a~l} 2[I 1 ()K (v) -In+(u)K MI+i)J **

(a - 1 ) (A.2-3)

where (+) 
4 

(A.2-)B 2n 1 + 0()

B (2+l) 1 + 0 (-r) (A.2-5)
2n+l

and B 12n+3 - 1 ) 2 + O(4 . (A.2-6)
2n+3 T-l

(4) 4
0(r ) means that the next term in the expansion is of the order of r 4

The value of 0(4 ) in A.2-5 can easily be obtained from the normaliza-

tion 00O[ (BI)] 2 =- 1 • Thus

B(2n+l) -T 4 [ 2a(n+l)+ i] + O( 8) (A.2-7)2n+1 .126 L 2 (n+l) 2

The following approximations for the modified Bessel functions (62)

will be used, when u and v are small:
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M(U)= 1 + + () (A.2-8)
2(2m+2)

and

( ). 2•3(-2); 1 1+1 cv
%(= ', m-2 + 0(--4)+ (-) i(v) Jn(T) (A.2-9)
v v v

(m • 1)
Svi

Ko(v) "--2 (A.2-10)

where a is Euler's constant, a = 0.5772

Substituting these expressions, A.2-4 and A.2-6 through A.2-10

into equation A.2+3 and remembering that u = ye"f , v = ye , after

considerable algebraic manipulations one obtains the approximate expres-

sion

Fek 2n'l ,f I) [ (~ e.~~~~(-)ns2+l B1 3 1 T

- () (l ((n+)+ 2e-2 - ne' 4 t) + O(r 3)

(A.2-11)

Putting the approximate expression for B (2n+l) into A.2-11, one
1

finally arrives at the equation

""___2 =i2 2n (2n) T '2Ce2t [22 +1)
(.l)ns2nlFek1 I) 2n+le(2n+l) n(n+l)

+ 2e 2 • - ne"•] + 0(y41) . (n 1 1) (A.2-12)

For the special case, n = 0

, ek.C=,l T 21) 1 -e a e [_2,] yr--3+
.+ - *n¢T [e.- ye +o( .

(A.2-13)
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The approximate expression for the Gekn+l (i,r 2 1) can be obtained

in a similar manner. Carrying out the tedious algebraic steps, one

arrives at the equation for n -• 1

( _,) n, G ek ~( gpiT 2 1) 22 ( . ! L 1 2t [(n+ l) -2e -2 t -ne -4 1]2n+l 8n(n+l)

+ 0(T4 (A.2-14)

and for n = 0

I Gek, I ! 2 i = 91.1Y + 1 n..-e + eO([ 2-e3
P re 2 2 ( (A.2-i5)

b. Approximate Expressions for Ce2+l(,y2) and Se2n+l(,y)

as Iy21_o . It is possible to expand Ce2n+(l ,r 2 ) and Se2n+l(ty2

in a series of Bssel L-uWnctions (45). They are

, 1 2

2 cel+' () (2n+i)
Ce (,r n+) A2r+l J2r+l 2 cosh )

T r=0 (A.2-16)

and

Senl(,2) seL.l(0, T2) 0o (2n~l)• ..

Se (,2n+lT) B• , +l (2y sinh E) . (A.2-17)
-i r=0

These series are absolute]:y and uniformly convergent (45). Substituting

equations A.2-1 and A.2-2 and the small argument approximation of the.

Bessel function into equations A.2-16 and A.2-17, and keeping the first

order approximation, we get

Lc' (IXr, 1) 2n+l a 2r+J

Cen r 2 2n +l) rf " r7 o(._)r ( n 'r ()cosh g)
2n+1 T Ai+l r=0 T-T ,-(r,.

+ O(r2r1n3)3 (A.2-18)

and 
(n o)
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ee e~ (0, r2) az~ 2r+3.
2e+ 1 ( (2n1 + rEO ?n-r 4n'r(2r+))

+ 0(y2+3)}, (n k, 0) . (A.2-19)

Fek" (.t) T21) Gek÷l('t,l1 T21)
c. Approximate Expressions for Fek ekIr 21

Fe22n+1kt *l) ' ekn2+ ,Cel e' ( ..T )£ -
2n and - 1 as I S l21 -_,0

Taking the derivative of equations A.2-12 through A.2-15 with res-

pect, to • , combining these derivatives with the required functions,

and keeping only the second order term in the approximation, we arrive

at the following expressions:

Fek+(•" 2I) -2n()n+,)

2n+ r((A.2-20)

Fek ( , I r2 1) 2e ea yet 2
F k 1  2 2j 2 1 ) - 2 [+2e ~ ,~ ( n 2 * 1

(A.2-21)

Gek' 2n+1( ti Tý (2a)'1n 2 e " 2n(n+l)t e { ne"t 0(y)4 (n 1)
Gek ,I21r 7n ý )(A.2-22)

and
Gek ('I , I -r2 2 t ea _et- t + 0 ) ( t1- = + - In 2e ( -

(A.2-23)

Taking the derivative of equations A.2-18 and A.2-19 with respect to t

combining these derivatives with the required functions, and keeping only

the first order term in the approximation, we arrive at the following

r
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expressions:

n 2r

*e'2 ( _ r (n4n)r(cosh2
• Ce ' 2, ) taoh )r n+r (cosh,+,(2n+l =E tsnh -- n -Or

4nrr(2r+l).'

(n 4 0) (A.2-24)

Bse fc coth e e degenerates + O(y 2
Se 2n+l(,t2)- 2 00 l (r ! (sinh g)2r.

Tn-r(. 4n-r(2.+l);

(_ 0) (A.2-25)

It should be noted that all the approximate expressions derived in

this section reduce to the well known approximate expressions for the

Bessel functions when the ellipse degenerates to a circle.

Similar approximate expressions for the even order modified Mathieu

functions can be obtained in the same manner.

A. 3 Degenerate Forms uf Mathieu and Modified Mathieu Functions

When the ellipse tends to a circle, i.e., as the semifocal lengths

q and • tend to zero and infinity respectively, such that

qe•
q cosh • q sinh g - r ,

where r is the radial component of the circle, all A(m) and B(m) tend
p p

to zero except that A(m) = B~m) -*1 . Therefore the degenerate forms of

the Mathieu functions are (45)

2 (A.3-1)

2
sem(1wr ) *sin mu (A.3-2)
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with m 1,and when m,='O

2 1

ce0 (~r~ .-- (A.3-3)

The degenerate formseof the mo~dified Mathieu functions are.

Ce ( T,2) _ -+ ) p2,J2,,(x A3-

0

(2\,
re(l~ (A.3-5)

SeT2) (l)l. S (X r
2nl 2n+1 2n+1 r) (A-3-6)

0

Se~(, 2 r (-1)f ps( LJ(x ), (A.3-8)
o 0

eLt 2. (_,n p(. Z)J' (x ) , (A.3-8)

Se ~(E,T ) (-l)n (x !-J+(x (A.3-9o)L+ 2+1 r 2n1r

o o

2n+22n+2r 2n+2r
*0 0

Fe 9T2 (_,n1) K (y r*(A.3-12)
0

Fek 2, ( 1 n lK yr ~ (A.3-13)
0

2n+l A 2n+1 2n+l r

*Gek~ 4 (, 2  (-ýI)fnl+ a 2 (y r- (A.3-15)
0

2 (
Fe V~~ (L-) KI(yL (A-3 16')

o r

0 0

0eLlt-T2S,, yrK y(--7
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ekLj(I' , r2 (.) n r 2l (y K .(y r) (A.3-18)
S2n+ " r n+ r

•~ (.1)n+loo
GemkL÷2(gP'T ) x 2 n+2 (y Lr) YL+2(y Er)r (A.3-19)

0 0
h

where p,2n p2n+l' S2n+l' s,2+2 are connecting factors which have been
defined in section A.1, and x 2  2 2 1-2r2 P y 2 = 2ro2 0 ro22 in

0 lo o 2 o
which r is the radius of the circle. The prime on the modified Mathieu0

function represents the derivative of the function With respect to I

while the prime on the Bessel or modified Bessel runction represents the

derivative of the function with respect to its argument.

A.4. Orthogonality Relations of Mathieu Functions

The orthogonality relations of Mathieu functions are (45)

a. For all T21s

21c

f Cem(1],Y2 Cep(-q,r2)dn 0 (m # p) (A.4-1)

0

2,K

f seM(r, 2 ) sep(1Ir 2 )dl = 0 (m # p) (A.4-2)

0

22 (m. # p
f ce(T,r 2 ) sep(TT 2 )d• = 0. or (A.43)

0 m= p)

b. For T2 _0

2ff ce (TI,T 2 )diI 2a [A( E][A(0 nce~n(ir 2)d = r [ 2 (A.4-4).

2x
Of 2 2 CD [(:+I,

Ce 2n+l(710, )d-q = an~)] (A.4-5)

0 r =0
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f se~n~1 (Tj,T)dI• = £r•O 2+J).
2x0

f 2 2 rB (2n+2)l 2 (A.4-6)
e22 r ,0 Ler+2= (A-r+2

0 2g

0

c. For Ir -. 0

2x o

f 2 1 2 2n 2.+I=0e(,I i 2j( [A( n)2 + 4 2n)]2A. -8

00

fce(2 I it 2 (A.4-9)

0 .rr=l

firse+1(<,,Ir2I~dr = it [A<(:+1) 2 (A.4.-9)2 r=O- 2r+lJ

f r=0

0

2 e 2 T21 r 0 A FA(2n+l) 2 (A. 4-10)e2n+lo'. )d = = L 2r+l

0

se2 (A.y24-1 0 B(2+2])
2n+2(,1 1• : " .T, 2r+2

I r=O

0
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APPNDIX B
A

, Tabulation of Integrals Involving Mathieu and Modified Mathieu Functions

Integrals resulting from the attenuation constant and Q factor.

calculations are tabulated in this appendix. Integrals. are integrated

analytically whenever possible, and the results are given. The inte-

grals are divided into tw categories; those involving the Mathieu

functions are called the angle integrals since they correspond to the

trigonometric integrals of the circular guide, and those involving the

modified Mathieu functions are called the radial integrals since they

correspond to the Bessel integrals of the circular guide.

B.1 Angle Integrals InvolvLng Mathieu Functions

* The definite integrals involving Mathieu functions can usually be
.4

integrated analytically. They are

I= f cei 2 (vi)d = x. T A2r+l (2r+l)
r=00

12f ce 2(n)dr . =0 r2 0

0*

00 2
2=1 . (2r+1l

1 .4- f se 2 (TI)dn = ,x B~) 1 (2r+l )
.0 r=0

ce1,i~e1 si ii(1) B(l) 2~

1 5 = cej()sel(q)dq a A2r+l B2r+t2r+l)
r=00 "

6= f cel(q).se (j)d = "

0
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2 1 (12 OD *' i
I7 se (ij) cos 2r)dq x B + E B~l) B 2lL 1r+ 2r+3

0

2
1 7c ce 1(y1) cos.o2d

0e x= Br+ (2r+1)

0 r0 *2r+1

0r0

I =fce*2( di (1)
0 =O 2r+1

0 r

2w

i fce*~ ce(r)d, =. x z B*(3 (2r 1*C)
0 2r+, 2+121

0r=

T f ce*'j(Ti)dyl =' 0 B*( 1

0 r.=0

c 4= e~*2(r)d~ ce (Idr x~3 B(2r') B )2 rl
0

* el 2(tI)d cel(I Z EA*( 1)B*(3

f 0 r=0 2r+1.r~
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2x.

B'= e*'( Be*Udi x= A*(1) At(3)(2rlf *() Li 2r+1 2r+1
0 r=

= i se*( iq) se*( ,q)d) it O- At (1 ) A*(3 .)
12 f 1 3 2r+l 2r+1

0 =00

=1ce* (TI) se*(TI)dn = - A (1 B*(1)(2r+1
131 1 103 r 0 2r+1. 2r+l

21t

'jJ4 =fce*(vi) se*(r1)dq -1

0

0 =00f 3e'.I r 15

116 =.I- ce*(fl)d*l=-I

* 0

=1cel',~ 3e(~- it B*(') A*O)(ýr
07 3e(1 d r r0 2r+l r1

118 =fcel*il) se*'(ij)d¶1  V 1

0

it = ce*'("I) se:*3(i)diq x E-AI )B()
19 3r 0 2r+1 2r+l

1~c =fce*(fl) se'!(q)d~ -1

0

2 CD

ia ~ ~ -e iqfco At(1) + At(' At()~

2 ' . 2~

r Be s* 2n'o (TI w62~q i A( 2+ A (3) A*(3)1
b =J 3'" .2di E r *2r+l *2r+3J

0



= f.se*( )se*(I)cos 2r -- A •_A•0'+ +(A* 2A +A3 A*- (l)=
c j 1  3 2r+l 2r+3 2r+ 2r+3'

r0
.0F.

fce1 (,q)cos BdI X ) c(l) B.(l) B*.()
a=0=1r+l 2r+3

0=

2. F1  (3) *(o **(3). 1•0

c c~1ce* ¶)o 2Ad~ =
4 B l)B *(3)+ 2 (0(i)B*(3)B*(3) B()]

3 n) os) 2-0 2 1 3 2r+- 2r+J

00
0 ..

The prime signifies the derivative of the function with respect to 71

2
The-* indicates that the argument r of the Mathieu functions or the
expansion coefficients is k 0 )q cosh g 2 /4.

B. 2 Radial Integrals Involving Modified Mathieu Functions

"All these radial integrals are integrated numerically by Simpson's

Rule (50). The normalized dimensionless variables

xe• 2 ye.

2cosh2S" "I 2 cosh •:• • 2 cosh" -" '

*2 2 2 2 2 2 2 2 2.2•
where x = q cosh 2 0.(k- 2 ,) and y = q cosh 2 A.(P - k ) are used.

r r
As the ellipse approaches a circle, z -x ;- and = y The

0 0
Slimits of integration instead of being from 0 to o and to o"

_____ xe~will be from to - and ye to ao respec-
2 cosh 2' cosh 2•cosho

00 0
tively. Assuming

= l, a = ,ce , b ye. and b2 =o,
a 2 1.cosh 2 0cosh 1 2 cosh to

we have the followin g, radial integrals

I
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18 f 2 dz'
• " Ce1(z1). z-j-

a1
a2

a2
Ce -1s{(z z dz1a2.

'I 2 Se Zz )z ' ".
a

dz

311 1

a

2 Ce (z1) Sej(z )dz.

aa2

* 1 J Ce{(zl) Se 1(z1 dz1

a 2

a

a2 ,, "-2 '2. 2

4 cosh xZ2  dz

""e J •(z 1 ) 0 1 1
"" 2 2

". = Fek(z) d4o2

b

2

dz
ii, fJ Fek 1(z 2

23 32) z2
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2

125 fFk( 2) Fe 3z2 )-

b

ft Fek (z) Fek (z )
f26 =i 2

dzfGek 2(zz 2)
27 f2 2

= f Gek.~~2(z .~z

b

I' = Gek' (z ) d-±
29b 2 2z

=f Gek'2z z

3 2dz

31 2 3

b

132 = Ge 2 (z )z Gedz 2)~

72 ek1 (z.) Gek (z 2 )z
31f2 2
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I~ f Fe. ki(z2 ) Gek 1(z2 )dz.2 1

b

b

b

3ý6 f Fek' (t2) Gek (Y. 2jzb

1

= Fek (z )Gek I (z )dz

37 1 2 3 2 2

b2

13 Fe e (z )dz
~bFe{( 2) Gk 2  21ý b

b

I:,9 =f2 Fek. (z) Gekl(z ) dz2

b

i= Fekl(z 2 Gek3(z 2 )dz 2
b
1

b2  2 2

421-- Gekiz2 ):(z2bI3. 4 cosh~ z yJ 2

22 2 2
4~ ~ ~ cos tdz 2

:42 G.ek.(z) [ L-oh
3 22 z

b22

2 22 ' 2 2 *Z
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2 2 2.

I Ie z 4 oht - y. d
145 b 32 2 d.

Fek1 ( 2  Fek (z) 0L 2c

The prime on the modified Matbieu'func'tion ~indicates the derLv~at~ive of

the-function with respect to its arxgument.
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