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ABSTRACT

The problem of electromagnetic wave propagation along a dielectric
rod of elliptical cross section is considered. The field components and
the dispersion relations of the principal modes are obtained. The prin-
cipal modes degenerate to the well known HEmn modes of the circular
dielectric rod as the eccentricity of the elliptical rod approaches
zero. It is found that there are two non-degenerate principal modes
which possess no cut off frequencies. They are called the dominant
principal modes.

In contrast to the case of a circular dielectric rod, the boundary
conditions for the elliptical rod cannot be satisfied by using a single
product term consisting of a radial and a periodic Mathieu function of
a specific order to describe the field components in both regions (the
region inside the rod and the region outside the rod). It is generally
believed that an infinite series of such product terms must be used to
describe the field components in both regilons. In the present investi-
gation, it is shown that the boundary conditions may be fulfilled if the
fleld components in one of the two regions are represented by a single
product term consisting of a radial and a periodic Mathieu function of
a specific order. The field components in the other region are then
represented by an infinite series of such product terms. The problem
is therefore sufficiently simplified to permit analysis.

The propagation characteristics (the propagation constant, the field
distribution and the attenuation constant) of the dominant principal
modes are given theoretically and experimentally. It is found that the
analytic and experimental results are in very good agreement. The Q's
of a dielectric rod cavity resonator supporting the dominant principal

modes are also glven.
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CHAPTER I -  INTRODUCTION

The concept of guiding electromagnetic waves either along a
single conducting wire with finite surface impedance or along a dielec-
tric rod is not new. As early as 1899, Sommerfeld (1) conceived the
idea of guiding a circularly symmetric T™ wave along & conducting wire
with small surface resistivity. In 1910, Hondros and Debye (2) demon-
strated theoretically that it is possible to propagate a TM wave along
a lossless dielectric cylinder. However, due to the large field extent
outside the wire and the relatively high attenuatlon of this surface
wave, the "open-wire" line remained a novelty for almost half a century.
Recent developments in the generation and application of millimeter and
sub-millimeter electromagnetic waves, the availability of very low loss
dielectrics, and the development of fiber optics, have renewed interest
in the surface waveguides. There have appeared numerous papers and
reports concerning various forms of surface waveguides and the feasibi-
lity of these guides as practical transmission lines.

Before discussing the purpose and the scope of the present inves-

tigations, a survey of previous work on surface waveguides is in order.

1.1 Survey of the Literature

The surface wave guiding structures are capable of supporting waves
intimately bounded to the surface of the structure. These waves have
exponential decay characteristics in regions away from the surface and

1pz along the axis of

are governed by the usual propagation function e
the structure, where 2z 1s the axial coordinate and B is the propaga-

tion constant. For real values of B such waves persist at arbitrarlly
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large distances from the source. The'sfeady ssaxe,solutions with
harmonic time dependence .e-in -§re she oniy oaes-eonsidered here.
0f primary interest..are the v&ipeﬁ of B as a:funetiOn ef the fre-
quency and of the properties of the guiding system.

The surface wave guiding sysfem can take uaay‘forms. The one
intensively studied in the past was a surface uave'structure of
infinite extent imbedded 1n an infrnite uniform medium. The problem
then consisted of finding the solution that satisfied the homogeneous
field equations and the boundary cond@%ions wish_thevsource at infinity.

Typical surface wave structures may ae.eiassified Into three
types. The first type is the Aielectric'caatea conductor, such as
dielectric coated conductins plane and wire.‘“Tae.secand type is the
interface of two dielectric media, such a8 dieleptric rods, dielectric
tubes, or dielectric strips. The third type consists of various open
periodic structures, suﬂh as unbounded helix, corrugated vlane or cylin-
der. Sketches of these three types of surface vave structures are shown
in Figure I-1. f. .

Among the various struetures mentioned above, only those intimately
related to the propagation of surface waves along an elliptical dielec-
tric cylinder will be discussed further, namelyl the Sommerfeld-Goubau
wire, the circular dlelectrie rod, the:;diele‘ctri_.c tube , and the ellip-
tical dielectric rod. Related topics such &s she‘iateraction of two
surface waveguldes and the proﬁlea of-excitatiOn‘of surface waves will

also be mentioned briefly.

~

(a) The Sommerfeld-Goubau Wire .
The possibility of propagaxing a surface electromagnetic wave along

a circular conducting wire wae first dempnstrated theoretically by
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(a) dielectric coated (b) dielectric coated
conducting plane conducting wire
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(c) dielectric slabs (d) dielectric rod

L

(e) corrugated (f) unbounded helix
plane

Fig. I-1. Typical surface wave guiding structures.
Type 1, the dielectric coated conductor, (a),(bd);
Type 2, the interface of two dielectric media, (c),(d);
Type 3, the open periodic structure, (e),(f).
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Sommerfeld (1) in 1899. The wave was a circularly symmetric TM mode
with components Hg, Er’ Ez and was loosely bound to the surface of
the wire. In a numerical example he showed that the damping at high
frequency for this type of wave was too pronounced to use as a com-
munication wave. Consequently the practical uses of thils type of
transmission line were very limited. In 1909 Hondros (3), a student
of Sommerfeld, showed that an asymmetric field distribution was also *
possible. But the wave was so strongly attenuated that it could not
be observed experimentally.

Recently in 1950 Goubau (4) reinvestigated the properties of
the Sommerfeld line and studied its suitabillity as a practical com-
munication line. His investigation showed that a circularly symmetric
surface wave might be guided by a conducting wire of small diameter
with the same low attenuation as that of the conventional coaxial con-
ductor gulde. However, the fleld extended radially to a considerable
distance outside the wire before its strength decayed to a negligible
value; so that any small imperfection of the surface or any small cur-
vature along the wire would cause radlation loss. The practical use of
this surface waveguide was therefore limited. In an effort to reduce
the radial extension of the field, Goubau (5) proposed the coating of
the conductor with a thin sheath of dielectric,or corrugating the wire.
This reduction of radial field extent was achieved with the penalty of
higher attenuation due to dielectric loss or corrugation. This
increased attenuation due to dielectric loss together with the original
attenuation due to loss in the conductor has been calculated by

Goubau (5). It should be noted, however, that the first theoretical
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analysis of electromagnetic wave propagation along a conducting wire
with a cylindrical insulating sheath was given by Harms (5) in 1907.
Since Goubau's report, numerous papers concerning this type of
single wire line have been published. Among thefe are the papers by
Barlow and Karbowlak (6) in 1953 on the measurement of radial fi;ld
distribution; Sheibe, King and Van Zieland (7) in 1954 on the measured
losses of the "Goubau Line"; and Roberts (8) on the excitation of the .
single wire line. Kiely (9) also reported on the effect of fog and

rain drops on the attenuation characteristics of the wave propagating

along a long single wire line.

(b) Circular Dielectric Rod

Hondros and Debye (2) in 1910 analyzed theoretically the guiding
of a circularly symmetric TM wave along a solid lossless dielectric
cylinder and thereby removed the cause of the strong attenuation due
to the conductor (1). In 1915 Zahn (10) and his two students, Ruter
and Schriever (11,12), confirmed the exlstence of such a TM wave experi-
mentally. Carson, Mead and Schelkunoff (13) noted in their paper that
Southworth in 1920 also accidentally observed such a wave in a trough
of water. When the generatlion of high frequency electromagnetic waves
(about 10 cm) became feasible, Southworth (14) described some experi-
mental work dealing with phase velocity and attenuation of the circu-

vlarly symmetric ™ wave on the circular dielectric guide.

Not until 1936 were the propagation properties of asymmetric
waves on & round dielectric rod considered. A rather complete mathe-
matical analysis of this problem was given by Carson, Mead and Schel-

kunoff (13). It was noted in their paper that in order to satisfy the



'boundary conditions, a hybrid vave (i €., the coexistence of longitu-

dinal el.ectric and ma@etic fields) must be assumed. In other words,

..alynmetric TE and TM modes were inextricably coupled to each other

along a circular dieleetric rod They also showed that, 1) pure TE

and TM waves could only exist in the circularly symmetric case, and
2) there existed one and only one mode, ‘namely the lowest order hybrid

,’wawe cslled the 3311 mode, which possessed no cutoff frequency* and

' :7~;};could propagate at all frequencies. All other circularly symmetric or

'"'f}non-symnetric modes hsd cutoff frequencies. The dispersion relations

'..f of theSe modes were also obtained in their paper, but no numerical

. ;Qresults were given.

Since then the development of metal tube waveguides as transmis-

fsion systems completely over-shadowed the development of dielectric

'if waveguides. This 1is 1argely due-to the fsct that the field is con-

:Ejtained entinely vithin the: metal tube guide. For the dlelectric guide,
| hdvever, the f1eld is not entirely contained vhich leads to greater
":'transmission loss due to rediation when bends and ‘discontinulties are
.. fresent; A large numberlof papers have been published on the subject
. of. propagation of electromagnetic waves in a hollov metal tube. Borgnis
_and Papas (15) gave a very comprehensive treatment on this subject.
In 1945 Mallach (16) published his results on the use of the
:dielectric rod as a directive: radiator He showed experimentally that
- the rediation pattern obtained_by the use of the asymmetric HEll mode

:'-produced only one lobe in the prihcipal direction of radiation.

*This cutoff frequency does not have the conventional definition as

.~ that for the metal wavegulde modes (see p.295 of reference 15). It is
- here defined that the cutoff frequency for the surface wavegulde mode

. 18 the frequency below which the dielectric rod ceases to act as a

" binding medium and the vave -i1s no longer guided by this surface wave
structure.
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Immediately after Mallach's paper, Wegener (17) presented a dissertation
in which the asymmetric HEll mode, together with the lowest order cir-
cularly symmetric TE and TM modes were analyzed in detall. Not only
were the numerical results of the propagation constants for these

waves obtained, but also their attenuation characteristics. Apparently
he was not aware of Carson, Mead and Schelkunoff's work. A few experi-
mental points were also included in his work to substantiate hils
theoretical results. Elsasser (18) in 1949, independent of Wegener's
work, published his computation on the attenuation properties of these
three lowest order waves by the perturbation method (15). 1In a com-
panion paper, Chandler (19) verified experimentally Elsasser's results

consldering the dominant HE,., mode. He found that the gulding effect

11
was retained even when the rod was only a fraction of a wavelength in
diameter. Since the greater part of the gulded energy was outside the
dielectric, very little loss was observed. For the first time the
cavity resonator technique was introduced to measure the attenuation
constant of the HEll mode. The resonator technique was very sultable
for investigating -very low loss uniform waveguides. It should be noted,
however, that the formulas relating the @ of the resonator and the
attenuation constant « in Chandler's paper is only applicable for
very small za/xo » where a 1s the radius of the rod and xo is the
free space wavelength (see Chapter V).

King (20) in 1952 proposed the so-called "dielectric image line"
as a practical surface wave guiding device. The "dielectric image line"
was made up of a semicircular dlelectric rod mounted on a conducting
sheet and was designed specifically for the dominant HEll mode. He
indlcated that the conducting sheet not only could act as a supporting

1



-8-

device, but also as a polarization anchor for this dominant mode. A
detailed study on the attenuation and the radial field decay charac-
teristics of the HEll mode guided by this image line was reported by
Schlesinger and King (21) in 1953. Again the cavity resonator method,
used by Chandler, was used for the attenuatlon constant measurement.
As of now the "dlelectric image line" is still the best and the most

practical device for supporting the dominant dielectric mode.

(¢) Circular Dielectric Tube

A natural generalization of the analysis of the propagation of
electromagnetic waves on a dielectric rod would be that for the circu-
lar dlelectric tube. The earliest theoretical aralysis was carried out
by Zachoval (22) in 1932. He considered the propagation of a circularly
symmetric TM wave along & lossless circular dielectric tube. Two years
later Liska (23) verified Zachoval's work experimentally. A more com-
plete treatment on the theory of dlelectric tube waveguldes was given
by Astraham (24) in 1949, in which both symmetric and asymmetric propa-
gating waves were considered. He also substantiated his theoretical
results by experimental data. Independently, Unger (25) in 1959
reported his investigation on the same subject and showed that a dielec-
tric tube with a thin wall could support the dominant mode with very
little loss., But the radial field extent was rather la;ge. One of the
most promising applications of dielectric tube wavegulides may be found
in the field of millimeter wave cavity resonator and beam coupling struc-

ture (26).
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(d) Elliptical Dielectric Cylinder . .. "7

The first attempt to find the dispersion relation of an electro-‘;'
magnetic wave guided by an elliptical cylinder structure was made by
Karbowiak (27) in 1954. He considered the elliptical cross section
Sommerfeld line and the elliptical cross-sectlon Gouban llne. The wave
equation was formulated in elliptical coordinates and solutions vere -
obtained. However, he matched the bodndary conditiona only'at one_" A
point on the boundary surface; therefore bls results'can, at best, bé‘_f'”
considered an approximation for very small eccentricity. Another
attempt to solve the problem of surface wave propagation along an.elliﬁ-;
tical dielectric rod was made by King and wiltse'(28) Again they for-_
mulated the problem in elliptical coordinates and obtained solutions of
Maxwell's equations in this coordinate system. But in matching the

. i

fields on the boundary, similar over-simplifications of the boundary

conditions were made. The ' approximation of these tvo approaches can
be best illustrated by the following example.' For the sake of clarity,:'

only the matching of the axial electric field on the boundary vill be

consldered.

Karbowiak's method. The expression for the axial electric field

in region 1 which is the region inside the dielectric rod is

. '*’-." ”.:'.', g
Ezl = An Cen(gﬂ'l) Cen(ﬂ:rl)'- - L . (l)

where An is an arbitrary constant. The expréssion-for the axial elec-

tric field in the surrounding medium is
Ez, = L_Fek (£,72) ce*(1,1°) S (2)
o n n'>’'2 n' "2 .

vwhere L is an arbitrary constant. It.shodld befnoted thst all these

*The notations of the Mathieu or the modified Mathieau functions are
defined in Chepter II.
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Mathieu functions and modified Mathieu functions are functions of the

characteristics of the medium. The boundary condition dictates the

continuity of the axial electric fileld, 1.e., at ¢ = go ’ Ez = E,
1

o
we have

. 2 2 2
A Ce (£ ,v7) ce (n,77) = L Fek (& ,v))ce*(n,713) . (3)

" It should be noted that cen(q,ri) and ce;(q,yg) are functions of
n . The only way that equation 3 can be satisfied is by assuming
cen(n,ri) ='ce;(q,rg) , which is not true except when the eccentricity

is zero. This was the assumption made by Karbowiak.

King and Wiltse's method. King and Wiltse realized the invali-

dity of Karbowiak's assumption and proposed to attack the problem in a
glightly different way. They assumed that the expression for the axial
eiectric field in the dielectric rod is
X 2 2
E, = 3 A&cCe (&7]) ce (n,77) (%)
1 n= 0

where the A.n are the arbitrary constants; and the expression for the
axial electric field in the surrounding medium is

Ezo = L Fekn(g,rg) ce;(n,rg) (5)
where Ln is an arbitrary constant. Satisfying the boundary condition

at ¢ = £, » Ve have
x 2 2 2y w2
nz;o A Ce (&,77) ce (9,v]) = L Fek (& ,75) cel(n,¥vy) - (6)

They then multiply both sides of the equation by cez(n,ri) and
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integrate with respect to n from O tu 2x , obtaining

2 2
AnCen(go,Tl)Nn = LnFekn(g,r2)Mn , (7)
2n 2n
- 20 .2 _ 2\ (e 2
where N = j’ cen(n,rl)dn and M -./- cen(n,rl) cen(n,rg)dn .
0 0

This was how they eliminated the summation sign. It can be seen that
an identical result, i.e., equation 7, can be obtained by the use of
equations 1 and 2 . Multiplying both gides of equation 3 by cen(q,ri)
and integrating from O to 2x , one obtains equation 7.

Therefore the validity of King and Wiltse's solution is also ques-

tionable.

(e) Related Topics

Unlike the waves in the metal tube waveguides, there are no
evanescent modes on an open surface waveguide. It is not possible to
express any arbitrary field distribution in terms of the propagating
modes alone. Hence, there must exist a different type of wave, namely
the radiated wave (29) if any source is present in a finite region.

As a matter of fact, it should be noted here that the presence
of the surface wave was actually first postulated by Sommerfeld (30)
in 1909 when he was con;;Aering the now classical problem* which bears
his name. He found theoretically that there existed not only a radiated
wave due to the oscillating dipole, but also a surface wave which
traveled along the interface of the two dielectrics. Since then, a
great number of papers and reports have been published concerning varia-

tions of this problem. The most recent investigations have been reported

*The Sommerfeld problem is discussed very clearly and thoroughly in
Stratton (31).
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by Roe (29), Whitmer (32), Tail (33), Brick (3k), Wait (35), Cullen (36),
and Brown (37), to mention only a few.

The problem of interaction between two parallel uniform surface
waveguides 1s also an interesting one. Since the wave equation is not
separable in the bipolar coordinates, approximate methods must be
employed. Quite a few authors used the electrostatic approximation* in
the earlier years. However this approximation was not satisfactory at
very high frequencies. Most recently Armand (38) and Marcuse (39)
treated the problem of interaction between two parallel Goubau wires
without resorting to the electrostatic approximation. They formulated
the problem by assuming the interaction of only one single mode on each
wire, namely the circularly symmetric ™ mode. They indicated the
presence of space beats and the energy exchange phenomenon. Numerical

examples were also glven.

1.2 Purpose and Scope of the Present Investigation

In order that the dielectric rod may be a low loss surface wave
device, one must choose & small value of ka where k is the free
space wave number and & 1s the radlus of the dielectric cylinder. 1In
the millimeter wavelength range, the radius of the dielectric cylinder
becomes inconveniently small. Fortunately it has been found experimen-
tally (41) that if the circular rod is flattened, (i.e., if the circular
rod is rendered to an elliptical rod of the same area), the attenuation

of the dominant mode may be reduced considerably, provided that the

*The electrostatic approximation is as follows: In calculating the
structure of the field one would neglect quantities of the order of
o(d ng-kz), where 4 1s the distance between the wires, k, is the
wave number for free space, and k 1s the propagation constant of
the wave.
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‘electric’ field of the dominant mode is parallel at the center of the
rod to the .minor axis of the elliptical rod. The use of very thin
fibers of various cross- section as optical waveguides or as mode selec-
tors‘in optical masere has also recelved considerable attention. [For
- example, - see reference (Ld)]. Furthermore, it is noted that so far
there erists no.satisfactory way ot analyzing the problem of surfacé
wave propagation along a dielectric .rod of elliptical cross-section.
It is therefore the purpose of the present investigation to develop a

" method to analyze this problem theoretically, to examine in particular
.the propagation characteristics of the deminant modes, and to perform

‘ experiments to verify the analytic results.

o The investigation is divided into six parts, and the results are
correspondingly presented in Chapters II IIT, IV, V, VI and VII. 1In
Chapter II the fundamental theory of wave propagation along an ellipti-
cal dielectric rod is given. A method is developed to assure that the
solutions.of the uave equation satisfy all the houndary conditions on
"the surface of the dielectric rod The characteristic equations for
the principal modes are given so that the variation of gulde wavelength
with frequency, the dielectric constant, and the physical dimensions of
'the guide may be obtained. It is .shown analytically that there exist
tvwo non-degenerate nodes which possess no cutoff frequency. They are
called_the dOminant.mOdes,.and it is the propagation characteristics of
.these that-will be considered in detall in the subsequent chapters. It
is also shownhthat all the principal'modes on an elliptical dielectric
rod degenerate snoothly to the well known modes on the circular dielec-
tric guide, as the eccentricity of the elliptical rod approaches

2ero.
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Numerical results of the characteristic equations for the
dominant modes are obtained and discussed in Chapter III. Sketches
of the field configurations are also given. The decay characteristic
of the axial electric field is computed.

In Chapter IV the attenuation propertlies and the power distribu-
tion characteristics of the dominant modes are analyzed theoretically
with the assumption that the dielectric loss 1s small. Numerical

results are computed. It is found that the attenuation constant of

(1)
1n

rod is much less than that of the dominant HEll mode along a clircular

the dominant eHE mode* propagating along an elliptical dielectric
dielectric rod having the same cross-sectional area. Physical inter-
pretation of these results is also presented.

The Q's of an elliptical dielectric rod cavity supporting the
dominant modes are given in Chapter V. It is shown that very high Q
cavity may be constructed using thin elliptical dielectric rod. Also
derived is a formula relating the Q of a cavity and the attenuation
constant of a transmission line supporting the same mode. This for-
mula is more general than the one given by Davidson and Simmonds (41)
in that it 1s also valid for the hybrid modes. This relation is very
important whenever the cavity resonator method (19) is used to measure
the attenuation constant. ~

To verify the theoretical results a systematic experimental
investigation on the propagation characteristics of the two dominant
modes was performed. A detalled description of the measuring saspparatus

and technique is presented in Chapter VI. Experimental data are then

*The meaning of this symbol is given in Chapter II.



compared with theoretical results, and they are in very good agreement.
Summary and conclusions are given in Chapter VII. The advantages
of using a flat elliptical dielectric rod instead of a circular dielec-
tric rod us & microwave guide are pointed out. It is also indicated
that the analytic method used here may be applied to other similar prob-

lems. The problem with source present is also discussed briefly.
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CHAPTER II - THEORY OF ELLIPTICAL DIELECTRIC WAVEGUIDES

The problem 1s formulated in ﬁerms of the elliptical cylinder
coordinates; the appropriate solutions of the wave equation in this
coordinate system are then obtained. The difficulties of gatisfying
the boundary conditions on the elliptical surface are pointed oﬁt. A
method to overcome such difficulties is introduced. Various notations
and classifications of the principal propagating modes are defined.
Upon matching the boundary conditions by the indicated method, a set'of
characterlistic equations and explicit forms for all field components
correspondiqg to various modes are obtained. The existence of thq
dominant modes having no cutoff frequency is demonstrated. Finsally, it
will be shown that as the eccentricity approaches zero, all principal

propagating modes degenerate to the well known circular modes.

2.1 Formulation of the Problem

The surface wave propagation along an infinitely long, straight;
isotropic, and homogeneous dielectric cylinder of elliptical cfoss sec-
tion imbedded in an infinite dielectric medium of dielectric Eonstant-
€, and magnetic permeability My is considered. The dielectric. .
cylinder has a dielectric constant € and a magnetic permeability
Hy oo We assume that By = Ho o the free space magnetic perm?ability;{.

€ > € , and that the conductivity in both medis is zero. We further..

17 o R

assume that the exciting source i1s so far away that, in the.regién of ”.

interest, the surface waves dominate the radiated waves from the sour;e;_?i::
To analyze the source-free dielectric surface waveguide of ellfpi:

tical cross sectlon, the elliptical cylinder coordinates (&,n,z), ;s :

shown in Figure II-1l, are introduced. The elliptical cylinder coordinates':"
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7 = constant

¢ = constant = §

2 F1 '
e X

0 Y

\\ Semi-major axis=q cosh £
2 Semi-minor axie=gq sinh g
Eccentricity, e = 1/cosh g

(a)

(e)

Fig.II -1 (a) Cross-section of elliptical surface waveguide.
Fl and F2 are the focl of the ellipse. The distance

between foci 1s the focal distance, 2q .

(b) Degenerate form of ellipse when e = 1l. As e -1
semi-minor axis - Q , and semi-major axis - q .

(c) Degenerate form of ellipse when e = O. As e + 0
q -0, go -+ o0 , semi-major axis - semi-minor axis —»r .
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are related to the rectangular coordinates (x',y',z') through the

following,
x' = q cosh £ cos g
y' = q sinh § 8in q
z' =z

(O€t <o, 0 <n < 2x)

where q 1s the semifocal length of the ellipse. The contour surfaces
of constant £ are confocal elliptic cylinders, and those of constant
n are confocal hyperbolic cylinders. The elliptic cylinders and hyper-
bolic cylinders have focl at x’= q, Y= 0 and x‘= -q , y’= 0 . The
seml-minor axis 1s equal to g sinh go . The eccentricity e, defined
as the ratio of the semifocal distance to the semi-major axis, is given
by e = 1/cosh & -

One of the confocal elliptic cylinders with ¢ = go 1s assumed to
coincide with the boundary of the solid -dlelectric cylinder, and the

z-axis coincides with its longitudinal axis.

2.2 Maxwell's Equations and Their Solutions in Elliptical Cylindrical

i

Coordinates

It is well known that the harmonic form of Maxwell's equations in

a source-free medium characterized by € and u are given by

VxE = topH (1a)
VxH'=-1weE (1v)
V+HE =0 . (1c)
' V.E =0 (14)

where E and H are the electric fileld vector and the magnetic field

vector respectively. The harmonic time dependence of e'm)t for all
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field quantities is assumed. The rationalized MKS system is used
throughout this work. We shall now confine our treatment to waves
propagating along the positive z-axis. In complex representation
these assumptions result in a multiplication of all wave functions by

-lwt 1Bz
e e ; l.e.,

=it eiBz (2)

(3)

B(tn2t) = (g, B (L) +e E (6 + e, E, ()] e

-iwt 1
B(6n,2,8) = (g, B (6, +e B (6 +e, B (t,n)] &% 1P

where Sg’ Eﬂ and gz are unit vectors in the ¢§,n,z directions res-
pectively, and P , the propagation constant of the wave in the z direc-
tion, is to be determined from the boundary conditions.

In elliptical cylinder coordinates, equations la and lb become

2 ) d
-1wepEz = gE(PHq)-gﬁ(P Hg) (4)
)
- iwe p Eg = 5 (Hz) - i1Bp H‘] (5)
- iwe p E, = iBpH, - 5 (H) (6)
o) )
- o - 7
' iop p%{z 3t (p E’\) Ei (p Eg) (71
d
= o - 8
iop pI{§ T (Ez) ipp Ef] (8)
ioupH = iBDE, - 0 (E.) (9)
1 £ O oz
vhere p = (sinh ¢ + sin q) /2 k2 = w2p.€ = (% 2 and A 1is the

wavelength of a uniform plane wave in the medium. The above equations
4 through 9 can be .combined to glve the field components Eg’ E'l’ Hg’ H"l

in terms of Ez and Hz only; we have,



. 1 GE o BHZ
e T (k- .Be)p * K2 e _&_‘} (0)
o 1 { OE, .bnz} (1)
» By == 18 —= - Lop — S
L R A TN '
1 OE aﬁz} (12)
H = -lwe —= + 1B '
T L AT
IR -{- OE, , bHZ}- (13)
H = —5——— {-lwe —= - 1p . . 13
VT Ry U T T ,

Taking the derivative of equstion.l2-with respect to n and the deri-

vative of equation 13 with respect to g and substituting these

expressions into equstion h one obtains the equation

- %E . 3%E

o+ [qz(kz{Tse)(sinhzg 4's;n2n)] Eg‘;:_q o

Similarly, taking the derivative of equation 10 with respect to 3 and
the derivative of equation’'ll with_respect-to_'gf;anq substituting

these expressions intp equstion-7,'one'gets

BH |

2 2,2 2, 2. a.a .
‘—‘? + > f.[q_(k -B )gsinh 3 +‘sin n{l ?z = 0 : - (15)

a; . 97
Equationsilh and.lé’are the wsve'equationsl -It shoulo be noted that
these" two wave equations are of the same form, therefore it is only
necessary. to solve one of them. If H O ‘a TM uave results,_ 1f
Ez = O a TE vave results. The most general expressions for ‘the elec-
‘tromagnetic fields consist of a linear combination of the solutions of
TE and ™ uaves. | ‘ o

Conslder the following partial differentlal equation -
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2 2
aaAz ! %,A’é + [0 6%)(stnb®y + staPm)]A = o (16)
3 n

in which /A may be Hz or Ez . In order to obtain the solutions of

equation 16 one sets

Alg,n) = R(E) @ () (17)

and substitutes equation 17 into equation 16. Applying the ususl
separation of variables procedure, one may separate equation 16 into

the followlng two ordinary differential equations

2
d__&.ﬂl + (c - 212cos 211)@(7])

= 0 18
aq2 (18)
and
fﬂél - (c - 2r°cosh2g) R(E) = O (19)
at

where c¢ 1s the separation constant and 72 = (k2- Ba)qz/h . Equation
18 is the Mathieu differential equation; equation 19, which follows
from 18 by the transformation n = + it , is the modified Mathieu
differential equation (L42).

For physically admissible single-valued electromagnetic fields,
A(e,n) must be a periodic function of 1, of period = or 2n ,
and the separation constant c¢ ,in this case a function of 72 » takes
on an infinite set ‘of characteristic values for every r2 . When r2
is real the characteristic values are all real; since we are considering
solutions in a lossless medium, only real values of ¢ and re are of
interest. Corresponding to r2 = 0 there are two independent periodic

solutions, namely sin nn and cos nn with the separation constant

¢ =n° where n 1is an integer. It can be shown (43) that when 72
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differs from zero, a characteristic value c determines one and only
one periodic solution which is either even or odd in 1 . The charac-
teristic values c¢ , giving rise to even and odd solutions are denoted

. 2
hére by an(T ) and bn(ra) respectively. The subscript n identi-

fies those sets of characteristic values which approach n2 as Y2

approaches zero. It is known from the Sturmian theory of second order
linear differential equations that solutions assoclated with an(rz)
and bn(Yz) have n zeros in the interval 0 € n < n (L4i) .

For arbitrary positlve real values of r2, the periodic solutions

of Matheiu's equation 18 are*(42,45)
2
cen(n,r ) (even) an(Tz)
CIOEE (20)

sen(n,rz) (0dd) bn(rz)

and the corresponding scl 'tions for the modified Mathieu's equation 19
are¥*

a, Cen(g,re) + agFeyn(g,re) (even) & (v°)

by Sen(g,r ) + beGeyn(E,T )) (o0dd) | bn(T )

For arbitrary negative real values of 72 the periodic solutions of

Mathieu's equation 18 are*
(a (|r2|) vwhen n even)
ce¥*( Irzl) (even) ,.°
n\» (bn(lel) when n o0dd)

IO (bn(lyel) when n even) (22)

2
seK('l;'Y ‘) (Od‘d) (an(‘72|) when n Od.d)

and the corresponding soclutions for the modified Mathieu's equation 19

*See Appendix A for the definitions and serles expansions of these
Mathieu and modified Mathieu functions.



are¥*
[7 vhen n even)

2 2
che;(E;lT |) + caFekn(g,Ir [) (even) |72|) vhen o 0dd)

R(¢) = n( v2|) when n even)

(an(lrel) vwhen n odd)
(23)

dSe*(g,lrl)+dGek (&, 7°1) ~ (odd)

an(r2) and bn(rz) are the characteristic values and n 1s the order

are the arbitrary

of the function. 8, 85 bl’ b2, s Cp» dl and d2

constants.
The proper cholce of the above solutions to represent fhe eiectro-
magnetic field of an elliptical dielectric cylinde? depends upon the..
" boundary conditions. For region 1, which is the spacé inside'the d;élec-
tric rod, all field components must be finite. For region O, which is--
. the space outside the dielectric cylinder, in order th;t energy;flbw only
- along the axis of the cylinder, all field components, must apéroach zero:
as the radial argument approaches infinity. Consequently we must discard'
the functions Feyn(E,Te) and Gey_ (£,7°) , since they a;e infinite at
the origin, i.e., at & =0 . The functions. Ceg(g,lr_l') - and Se;('g,'!:r I)
must also be discarded since they become infinite at infinify. Therefdre

the solutions of the wave equationslh and 15 are as follows:

- @® A - iB z
2
, (6n,2,8) = ) Age (67)) ce (n,rl) twt HP1
n=0
©
. ' 2 2y _-iwt Bl
‘ . + ngl AnSen(g,rl) sen('.q,rl). , (g >~§>o) (24)

S o | 1;32
2 -
1, (6,50 = ) LFer (5,11 Deskla, 1) 7% e 7
L f 2 2yt 1oz
+ gga IhGekn(§:|Tb|)Se;(q,|1§|)e 0% ; (w3gg) (25)

*We follow the notation adopted by McLachlan '(47) end Meixner (Lk).




=24

, . .
2 2, -iwt 1Bz
Ezl(gm:z:t) = nz;o Br'xcen(g’rl) Cen('l:Tl) e e

X - ig,2
+ ) BnSen(g,ri) sen(n,ri) et o P1 ,y (8,2 £20) (26)
n=1 .

-iwt 1Boz
e

(o8]
. 2 2
Ezo(é,n,a,t) = nZO PiFek (&, v ) ceX(n, v l) e

0

+n};

ig z
2 ~iwt o} v s
. PnGekn(g,IToH se;(q,l’fil)e e s (022 §°)o
(27)

A,A',B,B',)L,L',P and P' are coefficients which are related

n°” "n” "n’” "n” "n” n’ "n n
by the boundary conditions and are functions of n, w, ri, |r§| , and
the nature of the exciting sources, but independent of the coordinates.

2 2 2 .2, 2 2 2 2
Y] and |T§| are respectively (kl- ﬁl)q /4 and ‘(ko- Bo)q /hl

with ki = wgue and k§ = w2u€o . €, 1is the dielectric constant of

1 1l

" the cylinder and eo is the dielectric constant of the surrounding
_medium. §:=.§o is the surface of the dielectric cylinder. All trans-
l.verse field components for bofh regioqs can be derived from equations
lb'throﬁgh 13, using equations‘2h through 27. Incidentally, tne Hertz

vectors £;~ and u; (15) rather than Ez and Hz may be used as the

scalar quantities from which the other field components may be derived.

2.3 -The -Boundary Conditions

The task of'solving an electromagnetic wave boundary value prob-
lem is to find finite and single-valued solutions which satisfy the
source-free Maxwell's equations and the boundary conditions. The boun-
dary conditions are, that the tangential components of the electric and

.magnetic fields must, in general, be continuous through any surface. If
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the region of interest is infinite, then the radiation condition (46)
must also be satisfied. The above conditions are necessary and suffi-
cient. In the present problem, the continulty conditions in the

elliptical cylindrical coordinates are

E = E (1)
zl zo
B, = H (2)
1 (0]
E = E
" En (3)
and H = H (4
" Tl1 o )

for ¢ ol P 2n* 20 and +0 >z >-®

In order to illustrate the difficulties encountered in satisfying
the above boundary comditions for the elliptical dielectrlc cylinder,
we shall first consider the case of the surface wave propagation along
a circular dielectric cylinder. The required axial electromagnetic

fields both inside and outside the circular dielectric cylinder are (13)

©
EX = z Ai J (gir) cos no elX® ¢ 0% (0€r<a) (5)
z n ‘n

n=0
E = \Z“o\ ° k (£°r) cos no &K ¢TI (a€rcow) (6)
z % n

n=0

o0

i ikz -iwt

Hi=ZBiJ(§r)sinnGezew (04 r<a) (7)
z &2, n'n

[¥%
w
3]
5
ct

LY

o]
N

00
HZ= Z B® K (¢°r) sin no e re¢ o) (8)
where ;i =ka- k§ and g° = [k ~ ko with kf = w2p,€i and k(2)=u)2p.€o.

€ is the dlelectric constant of the cylinder, < 1s the dielectric
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constant of the surrounding medium, and enb > € Arix’ Aﬁ, Bi, and
BZ are the arbitrary constants and & 1s the radius of the cylinder.

The boundary conditions are

E; = E (9)
g - =
B, = E (11)
g - »

at r=8a, 00 €2x and -00 £ z € o0 . Substituting equations 5 and

6 into equation 9, one obtains

00 00
ik
z: Ai Jn(gia)cos né eikz = z: Ag Kn(goa)cos no e 7, (13)
n=0 ! n=0
Multiplying both sides of equation 13 by cos m@ and integrating with
respect to © from 0 to 2x we have, due to the orfhogonality of the

trigonometric functions,

A le) = k(%) . (14)

It should be noted that for each mode (in this case for each n ) there
should be only one propagation constant. Equation 14 shows that the
boundary conditions may be satisfied for each n separately, due to the
orthogonality in © of the fundamental salutions and the fact that the
angular funciion (cos n® or sin n®) is independent of the character-
istics of the medium. Similar procedures and conclusions can be applied
to the boundary conditions, equations 10, 11 and 12.

Conslder the boundary condition, equation'l, for the elliptical

dielectric cylinder. Substituting equations 2.2-26 and é.2-27 into 1
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‘one gets
0 : T ®
Y Broe (5,10) cen<n,r§> e 5 nse(t,1) se_(n,12)e
= _ - n=
e
Z: P Fek (& Al ceX( n,\r 1 e Po" - .
| gj Gek gdtr |)se*(q,|re|\e Poz .
B (15)

Equation 15 may be written as two separate equations, one corresponding

'to the even type modes, the other to the odd type modes. These equations

" are
. ' : 1B,z
e 2 2, 1Py
B Cen(io,rl) ce (n,r]) e

gl
O

o (16)

Z rer§o)|TO e\, To. e

and

® o . iB_z
: 2 L2 1
2 BSe (g ,m)) se (n,¥]) e

| F;l?r Gk (o[ 15 sezn 1 2] ¢ °° (17)

Suppose one multiplies both sides- of 17 by se (q,rl) and integrates

. with respect to n from O to 2n . Due to the orthogonality of the

'Mathieu fupctions~(§eg Appendix A), equation 17 becomes

'" N 1@12 oo Lo 2 iBoz
NmBmSem(go,rl e = = E:l Prqekr(gq?lro|) e

r=

ox
. 2 2
[ Se‘;. ( m \Yo\ ) sem( n Yl) dn
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2
where Nm is the normalization constant, .jl sei(n,fﬁ)dq + Assuming

= 0
Bl = ﬂo one gets
® 2x
2 2
NmBmSem(go,ri) = rzl PrGekr(go,irol) f se;(q,lro!)sem(n,rlz_)dn
- 0

(18)
Equation 18 involves the arbitrary constant Bm (m=1, or 2, or 3, or

+ 9 +) and an infinite number of arbitrary constants Pys Pyy Pyooe P,

3
Similar procedures may be applied to the remaining boundary conditions,
equations 2, 3 and 4, and each of them contritutes an arbitrary constant
on the left hand side of the equation and an infinite number of arbi-
trary constants on the right hand side of the equation. For example,
using 2, an algebraic equation involving A (m=1, or2, or 3, or * - +)

and Ll’ L2, L results; using 3, an algebraic equation involv-

3 . ) - I‘m

ing A and B (m=1,0or2, or 3, or -+ + + ), and Py Poy Poy v v P

3,
and Ll’ L2, L3 . .. Ibo results; using 4, another algebraic equation
involving A and B_ (m=1, or 2, or 3, or - « - ), and Pyy Py P3,

. Poo and Li’ L2, L3 ¢ . Lbo results. Since these equations
involve an infinite number of arbitrary constants, an infinite set of
linear algebraic equations is required. This means m must be equal
to O, then 1, then 2, « - +, then 0 . It can therefore be seen by the
method outlined above that in matching the boundary conditions, an in-
finite order of Mathieu functions must be used to describe the fields
in both madia, i.e., both inside and outside the elliptical dielectric
rod.

To overcome the above difflculties one assumes that only oné term

of the Mathlieu function could represent the field configurations in one

medium, while an infinite serles of Mathieu functions in the other.



Equation 17 can be written as

i1B.2 00 ig 2z
2 1 2
B Se (& ,7])se (n73)e * = rglPrcekruo,|r§|>se;(n,|r°|>e °
(19)
or
@® ig.z > ig =z
nngHSenuo,ri)sen(n,ri)e Lo pcek (¢ ,[v2])sex(n,[¥2)e © .
(20)

In equation 19 one term of the Mathieu function has been used to repre-

sent the field configuration inside the dielectric rod, and in equation

20 one term of the Mathieu function has been used to represent the field
configuration outside the dielectric rod. Conslder equation 19. Setting
Bl = Bo and multiplying both sides of 19 by sem(n,ri) and integrating
with respect to n from O to 2n , one obtains

Q0
2 2
NntnSen(go,rl) = rgl PrGekr(go,lrol) Bm (m = 0;1)2,--.) (21)

2n
2 2
vhere N __ Jf sen(go,ri)dn , vhen n=m
0

= 0 vhen n £ m
and 2n
_ 2
e ™ | 22(e 12D 56 (1D
0

For each value of n there exists an infinite set of linear algebraic
equations vwhich may be combined and simplified to give an equation in-

volving only two arbitrary constants, Bn and Pn , 1.e.,

2 2
N, B.Se (6,7]) = P Gek (¢,|r5]) F(B) (22)

where Fn(Brm) is a function of ﬁrm .
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As an example, suppose n = 1, equation 21 becomes

o]
2 o2 : .
NlmBlSel(go;Tl) = 21 PrGekr(go,Iro|)am ’ (m = 9,1',2?...) (23)

2n

with N, = 8 2( 2)d =1
m~ ¢ \nyy)an, m=21,
0
= 0 m#Fl. .

The infinite set of linear algebraic equations from'équétion 23 are

2 2 ' 2
WyBySey (819 = Bioek (¢, [v0]) B+ Pgeley(e v 1Dpg,

1171
o (24a)
+ PSGekS(go’{Yol)le 4+ ¢ o
0O = P.Gek, (& |r2l)5 + PGek (8 ,]72])B,, +
= 1 SolTo 17P13T TR R0 1 o1 P33 T
- ... (2k)
+ Py Gekg(t 5|7 |)Bsg + _ ,
I 2! ) 2
0 = Pygeky(8,,[7g1)B g+ PGeky(e, v, DBag +
2 (2ke)
+ PSGekS(go’lrbl)BSS o0 e e
Combining the above set of equations one obtains
N Bse (s 1) = Poex (e, R Fe ) . (&)
1171761\ 5007/ = PR B i1 1P o
where Bz Ps3
By Pos
f ) - R (26)
1'"rm . .
P By Bgy - .
P13 P33 P53

Pis Py5  Bss
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P, P

3 57 oo Poo can all be expressed in terms of Pl ; for example,

Bl3 B53 se e
Bls ﬁss P ,
e e Gek, (&, [vC])

P3 = * 2 ¢ ('Pl) (27)
By3 P53 v Gek (¢, 7o ])
By Pgs ot

and

533 313 se e
B B se e
35 15 2
Gekl(%'lro‘)

P - : (B . ()

> By PBsz v |  Cekg(e gl

Bys  Pss o

The above infinite determinants may be solved by the method of suces-
sive approximations (47). It may be shown that Py > P3> P5 > see>P
in this example.

The. method described above will be used in a later section to
satisfy the boundary conditions and to obtaln the characteristic equa-
tions' of the principal propagating modes. As one may anticipate, the
mode classifications are much more involved in the case of the ellip-

tical dielectric cylinder than the circular dielectric cylinder. This

will be discussed in the next section.

2.4 The Notations and Classifications of the Propagating Modes

For a circular dielectric waveguide it is well known that the

pure TE and TM waves can exist only 1f the fields are independent of the
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angular coordinates. These circularly symmetric waves are designated
by an for the pure TE waves and Eon for the pure ™ waves. The
subscript o signifles tpe angular variations.and n signifies the
nth root of the characteristic equation. The coexistence of E and
H waves is required to satisfy the boundary conditlions if the field
is a function of the angular coordinate .* These asymmetric waves are
then designated by HEmn if the cross-sectional field pattern resem-
bles that of an H wave and by EHmn if the cross-sectional field
pattern resembleés that of an E wave. The subscripts m and n denote
respectively the number of cyclic variations with © and the nth root
of the characteristic equation. These hybrid asymmetric modes dlscus-
sed above are doubly degenerate since an equally valld solution
results if sin m@ 1is replaced by cos mo , and cos m®@ by -sin mo .
As pointed out in the preceding section, no pure TE or ™ waves
can exist on an elliptical dlelectric rod. All modes must be hybrid.
In contrast to the case of a circular rod, the fields in one of the
regions of an elliptical rod must be represented by a set of infinite
series of Mathieu and modified Mathieu functions; while in the other
reglon by a single product term of Mathieu and modified Mathieu func-
tions. We shall be concerned only with the modes hereafter denoted as
the principal modes, which will degenerate to the well-known hybrid

HEmn modes when the g@ccentricity of the ellipse is zero. The principal

*Physically speaking, the presence of E; in a predominantly H wave
(1.e., the HE wave) or vice versa (i.e., the EH wave) assures the
return path for the electric or magnetic lines of force; in other
words, the electric and magnetic field lines must form closed loops
in the case of the surface wave propagation along a dlelectric rod.
The existence of a clrcularly symmetric pure E or H wave along the
dielectric rod is a special case; since the electric and magnetic
lines of force of the E or H wave have already formed closed loops.



'Y

modes will be denoted by HE HE(l’o)

ePun o depending upon

whether the modes are even or odd. The axial magnetic and electric
fields of an even mode are represented by an even and odd Mathieu
function respectively, and those of an odd mode by an odd and even
Mathieu function respectively. The subscript m is the order of

the Mathieu function used for the single product term, and n 1s the
nth root of the characteristic equation. The superscript 1 or O
indicates the region inside or outside in which a single product term
was used to represent the field configuration. The symbol HE means
that the cross-sectional field pattern of this dlelectric rod mode
resembles that of an H wave in the metal guide. The symbol EH is
used 1f the cross-sectional field pattern of the dielectric rod mode

is similar to that of an E wave in the metal guide.

2.5 The Field Componénts and the Determinantal Equations of the
Principal Modes

Having properly classified the modes we are now in a position to
describe the field components of the principal modes and to apply the
boundary conditions in order to obtain the characteristic equations
from which the propagation constants may be determined.

In order to simplify the notations for the Mathieu and modified

Mathieu functions without any ambiguities, the following abbreviations

are used:
Ce,(€) = Ce(£,72) cen(n) = cep(m7d)
Se (&) = Se (&,72) se(m) = se (n,79)
Pek (8) = Fek (t,|72]) cet(n) = cef(n|75])
Gek _(8) = Gek (&]72]) sex(n) = sex(n,|¢]) -
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The principal modes are separated into four major types, the

L) mode, the mE(®) moge, the mE(Y
e m [o)

(0)
e o mode, and the oHEmn mode.

(a) The emg;) Mode

Appropriate solutions of Maxwell's equations for both regions of
the elliptical dielectric rod have been given in section 2.2. According
to the definition of the eHEii) mode, specified in section 2.4, the

axial components of the magnetic and electric fields are for region 1

(0€¢g<¢g)
ig.z2

5, = Ay Ceylt) cey(m) e (1)
. _ . iBiz .
Ezl = B Se (&) se (1) e (2)
" and for région 0 (go £t <m).
oo} iBQz o
Hzo =.rgo L Fek (&) ceX(n) e ' 3)
: lo 0] iBoz
E, = ) P Gek (&) seX(n) e . (%)

Am, Bm’ L&’ and Pr. are the arbitrary constants. The harmonic time
dépendence e-hnt haé been implied in these exprgssions as well as in
the subsequegt expressidns for the field intensities. -Substituting 1
and 2 into 2.2-10 through 2.2-13, and carrying out the differentiation,

one obtains the transverse field components for region 1 (0 € g-é'go),

i at ' wel se! 1612

H. = _1ip A Ce (¢) ce'(n) + ffl-B Se'(t) se ( )} e
ni*mmmﬁ wV *E Pa%n' ) Sepl"

iB.2
L (e
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1.2
i ' ' 1
Egl = @é—)—p— {QBE AmCem(g)cem( T]) + Bmsem(g)sem( 7])} e (7)

-ﬁz

- S ! ' ' L
Enl = (ki- Be)p { B AmCem( §)cem(fl) + BmSem(§)Sem(q)} e (8)

vhere ki = wzue and p = q (sin h2g + sinzn)l/ 2 The abbreviations

1
. d d d
Cep(8) = g Cep(8), Sep(&) = g7 Sey(k), cepln) = g7 cey(n), and
seﬁl( 3 = difl sem( n) have been used. Substituting equations 3 and 4

into 2.2-10 through 2.2-13, and carrying out the differentiation, one

obtains the transverse field components for region O (go £t <o)

18§ [ reky() cep(n - o2 B ek ()sexl(m)] e O
H = —g—— L Fek'(t) ce¥(n)- — P Gek (&)se*(n)| e
o (L-pfpron T E T E T B m (9)
fo'o) we ip.z
- £ [ R e pagpe]
1'0 (ko- B )p r=1 (lo)
[0 0]
1p [ e ‘ . 1Poz
E = ——t— L_Fek_(&)ce¥(n) + P_Gek (é)se*(n)] e
2 2 B r " r r rr r
§O (ko- B ﬁp r=1 (ll)
o) . ipg z
E = _21.‘1? 5 [- ‘%‘-‘LrFekl;(g)ce;(q)+PrGekr(§)se;(n)]e ©
o (x-B)pr-0 (12)

where ks = w2p.€° . The prime denotes differentiation with respect to
¢ or n as the case may be.

If m is ocdd, r must also be odd due to the orthogonality of the
Mathieu functions. In other words, when m 1s odd the series are
summed over all odd values of r ; and wvhen m is even the series are

summed over all even values of r . The problem with m odd will be

analyzed in detail.
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Equating the tangential electric and magnetic flelds Hz’Ez’Hq

and E'l at the boundary surface § = §, » Ve arrive at the following

equations
iBlz [ o] iaoz
ACe (& )ce (n) e = ), LFek (g )ceX(n) e (13)
r=1
odd
iﬁlz (e o] 1ﬁoz
B Se (& )se (n) e = ¥ pGek (¢ )sex(n) e (1k)
r=1
odd
B we ip.z
1 ' 1 1 1
?k_i'?; [AmCem( go)cem( n) + —B—l B Se: (¢ )se ( Tl)] e
1
Bo o , meo 1502
= (—ké-_ﬁz) rz= L [ L Fek (g )ce*(n)+ B, P Gek' (¢ )se( T])] e
° 7 oda (15)
B 18,2
l w ' . l
(ki . 62) [-Am Ef Cep( go)cem( n) + BmSem( go)sem( ")] ©
1
Bo o) op , iBoz
= _—_(kz - 32) rgl[ -L, B Fekr( go) ce*(n) +PrC-ekr( go)se;( q)] e .
° ° odd (16)

Setting B = B = B; and eliminating ce‘;'(q) and se"l‘;'( n) by equa-

tions 13 and 14, we obtain

o)

AmCem( go)cem( n = rz=: ) LrFekr(go)ce;(q) (17)
odd

00 _

eyt ee(l) = 3 Bcek (s )ee(n) (18)

odd
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k2- 2 we
Ay [l - (:}——B-g)] Ce (& )ce (n) + -53= B Se:(t )se () =
-
klz_- 52 @ we
(5—3) 2 LB Pk (&) sex(n) (19)
ko-. B rds .
- 2. 2
g
A %H‘Cer;l(%)cem( n) -B [ 32' ] ge (£ )ser(n) =
k¥-p° o o .
(5—5) Y 2 L pek!(t )eex(n) (20)
ka_Bz =1 B r rr 1 )
[e]

The method discussed in section 2.3 will now be used to eliminate the
n dependence in the above equations. Multiplying equations 17 and 20
by ces(q) and equations 18 and 19 by ses(q) , and integrating with

respect to 7 from O to 2a results in

®
Amcem( go)' €ne’m ~ rgl I"r'Fekr( &) %rs (21)
odd
0o
Bmsem( go) “usm g PrG?kr(go) Pra (22)
odd
K2 g2 '
1
e e B
° 2 L2
kKT=- B we 00
1 1 '
(;2"__—;2') 5 :L;:l P Gek (£ ))B (23)
° odd
2. g

L]

W, ] 1
Ay —g Cem( §°) emscm' B, ':l - (;?:—B-é')] Sém( §°) Ss
o

(= ) Z= L Fek! (£ )a,., | (24)
ko - B odd



and 8 = 1,3,5,7,9"" .

defined as

These integrals have been evaluated in Appendix A.k.
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“ns’ C? Sm’ Crg? Brs’ 6ms' and x’ms are

ems =1 vhen m =8
=0 vhen m{ s ;
2 2
C, = fcem(n)dn ;
o)
2x
s = | se3(pa ;
m m VN !
0
2
@ = fce;(n) ce (n)dn
0
2
Brg = f se(n) ae (n)dn
0
2x
8 = [ se'(n) ce_(n)dn
2
Yps = f cey(n) se (n)dn .
0

(25)

(26)

(27)

(28)

(29)

For each value

of m there exists four infinite sets of linear algebraic equatlons

which may be combined to give the following:

AcE ()

B Se (¢)

s

= LmFekm( go)Mm(ars)
- ek (e )N (8,)
ki- B2 wey
;2—:;5)] Cem( §o) Q‘m(srs’xms) + e Bmsex;t( §o) =
)
klz.‘ B2 we

(;.?—__52') _Bg Pyelky ( go)Nm(Brs) ’

(30)

(31)

(32)



-39-

ke_ 62
Am%ECe!;(go)-B [1 - (-——;E)} se (¢ )R (@ ,8 )=
x2. p2
(;’;——_;5) Wop Fecl (e M (@) - (33)
o]

Mm(ars), Nm(Brs), Qm(Bra,xmB) , and Rm(ars, 5ms) are obtained according

to the technique developed in section 2.3. As an example, we choose the

m = 1 mode. These constants are then glven by

%33 %3
%35 55
M(a )= LN ce e soe ] l (3]+)
1' rs . Cl 4
%y 93y %y
%3 %3 %3

%5 %5 %

/
LN

By3 P53
Bis  Pss
s e e P ss e l
N,(B_) = . ’ (35)
1 78
rse Bll 631 le .. 1
B3 P33 Ps3




Ql(ars;xlj) =

B B see ﬁ3l le B
31 Sl B B ae
( 5 B ... 33 P53 \
35 Pss 5. B ...
31 757
{Xn'xn 5. B ... +1as B B ee +P_S—1- (38)
33 °53 33 "S53
g B g B .
\ B 555 35 P55 )
Rl(ara’als) =
a o e
31 %1
@ %
( .. @33 %3 - )
%5 Bs o . e
37 %57
s * ¢ s e L) ) 1
(8y,- 8 + 5 $oeee e = (37)
17 “13 15 P C
%3 %3 %3 %3 Pt
U5 %5 o0t %5 %5 oo )
\
2x 2x
vhere C; =.f. cei(q)dﬂ and S, = jﬂ sei(q)dn . These infinite deter-

ﬁantb may be solved by the method 8¢ successive approximations (47).
Equations 30 through 33 are a set of four homogeneous linear
algebralc equations in coefficients Am, Bm’ Lm and Pm from.which
only the ratios of these coefficients can be determined. These ratios
provide the coﬁpling factors between the different coefficlents. For a
nontrivial solution the determinant of this set of equations must vanish.

Therefore we have -



(8¢)

Am.ﬂdvsz X w.mudvamx
0 o o
Q| X o m Nﬂ NM
. Coltma &2 (s |( T, -1]-
Amnn sz X
o o ,
e ° (1) —
- (°5)"%e0 %MAN@-M v 5
Q= ] NM
SR SRS 0 (°5)%ss
0] Am.NdvEZAOM vaumw.&l .
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Putting
X2 = q2 coeh2g°(k§- 32) (39)

2

2 2, (2. 2
y~ = -q cosh™¢ (k - B

) (ko)

after some extensive algebraic manipulation equation 38 finally yields

the transcendental characteristic equation for the eHEg') mode

€
(x2+ y2)(x2 e_(])_' + Y2)
* xﬁyﬁ - R (ars’sms)qm(ars"x.‘ns) = 0. (k1)

m

(1)

The propagation constant B of the eHE wave can be calculated from

mn
the above characteristic equation, together with the fact that Bo= Bl
or
€
x° + y2 = »kiqzcoshzgo(-e—l -1), (k2)

o
in terms of the frequency, the sise of the gulde , the eccentricity of
the guide and the electromagnetic constants of both reglons and, of
course, the order of the mode.

The ratios between the different arbitrary constants are important
because they indicate the coupling between the amplitude and phase of
the different field components. From equations 30 through 33, expres-
sing all arbitrary constants intterms of Am , We obtaln

L Ce (&)

A ) (1*3)

m Fek (£ M (o)
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2 L
- (fﬁ) Fek!( ;ommmrs)(f:) + Cel(k.) "
A V% \/(x2+ ve) (x2+ y2 _Z_l_) ’ (
Se_( go)[ =2 2 Jnm(ars,am)
and
P se_ (& B
I - n (o) c (45)
m Gek (¢ )W (B.) ‘n

The other three typesogf principal modes HE(O), HE(l) , and
e mn’ o mn

OBE;g) , may be analyzed in a similar manner as outlined above; only

their principal results will be given here.

(b) The eI{E;Z) Mode

0)

The axial field components for the eHEIEm mode are, for region

1 (0£ef¢g),

o o] iBlz
B, = Z A% Cer(g) cer(q) e , (46)
l r=1
odd
00 iBlz
EZl = rgl B% Se (&) se_(n) e (47)
odd
and for region O (go £t <),
iﬁoz
Hzo = I Fekm(g) ce;(q) e (48)
ig 2z

P* Gekm(g) se;(q) e ©° (49)

=
"



wllya

vhere A;, B;, L; and P; are arbitrary constamts. All transverse
fleld components can be obtained from eguations 2.2-10 through 2.2-13

using equations 46 through L9.

The two determining equations for the propagation constant are

1 Ceplty) L1 Fek,;(gc)] L Selt) g Gek,;(:o)J
x2 Cem( go) y2 F.ekm( go) X2 Sem( gO) y2 €l .Gek;(§°)

€
2 2, o @
(x+ ¥y ) x— +y)

- -
xuyh Rm(ars’az’;s) Q;(ﬂ;s,?-';s) =0 (50)
and
€
2 2 22 2 1
x" +y = k.q'cosh go(e—o- -1 , (51)

vhere x2 and y2 possess the same definition as those in equations 39

and 4O and

2n

@ty = [ cepn) cextnan (s2)
0
2n

B = f se (n) se*(n)dn (53)
0
2

)(;8 = fce;l(q) se;(n)d'q (54)
0
2x .

&% = f sex'(n) sex(n) dn . (55)
0

‘ *
These integrals are evaluated in Appendix A.lL. R;(ars,&gs)q;(ags,)l;s)
can be obtained in the same way as outlined for Rm(ars ’sms)q'm(ﬁrs’%ns)

in section 2.5a.
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(¢) The ormg) Mode

The field components for region 1 (0 £ & € go) are

H, = agBey(t) se(m) & (56)

iz

Ez]_ = meem(g) cem(n) e (57)
H =——%&—-{a Se'(t) se ( )-ﬁb Ce_(&)ce'( )} e1Bz (58)
51 p(kl'Bz) == V" TE

H, = —P a Se (&) se'( )+u—-£-l-b Ce’(E)ce_(n)§ & P2 (59)
nl-p(kf_-ﬂe) m m n B mm m "

Egl = p(k‘]i‘fe?') {am %‘- Sem( g)se;‘(q) +meei(§)cem(~q)} o1P2 (60)

i ' ' ig

%=m%%&g%%m%w+wqmgﬁe?(m

The field components for region O (go < ¢ <o) are

X ipz
H = Z ngekr(g) se*(n) e (82)
Z r=1 r
odd
X 1Bz
E, = ). hFek (t)ceX(n) e (63)
o} r=1
odd
00 e
H = -_1.;L2 v {ngekl',(ﬁ)se‘;(q)- —B-‘l hrFekr(g)ce;,(q)}eiBz
% p(xc-p%) rT1
° odd (6k)
o0 we
B , i
Hy = 12 = {ngekr(g)se;'(q)w—Bo hrFekr(g)ce;(n)} e Pz
o p(ko-ﬁ ) r=1

odd (65)
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E, = g, 2L Gek (£)sex'(n)+ h Fek!(¢)cex(n)} o'P%  (66)
¢ ) r 1 p
odd

E, - p(k Z= { (8)sex(n) + b Fek (& )ce;'(n)} P (63)

& bm’ 8 and hr are the arbitrary constants. Upon matching the

boundary conditions, one obtains the dispersion relations for the propa-

gation constant

, Sei(e) L1 Gek'(8)7 cel(t) .€£Fekl;l(§°)
2 Se (¢ ’éaekTg) 2 Ce(U 2 € Feig (8)

m' o

2 2,,2°¢€ 2

(x™+ y ) (x e—i +7)

* L L Qm( rs’);s) Rm(ars’sms) 0
xY (68)
and
€
N y2 - K q2 cosh2§ (—l -1, (69)
[o] o €o
2 2

vhere x, y , @ Brs: Xms ms’ Qm(ﬁrs)xms) and Rm(ars’sms) have

been defined in section 2.5A.
Expressing all arbitrary ponstants in terms of &, 5 ve have
se (&)

- (70)
Gek (&) N (B..)

g |

gm
(X)oeri () N(5_) G+ seyls,)

m_ JE y (71)
[;Ex2 + y2)(x2 + y2 l)

-2 J Qm(srs,xms)

and
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h C
-:‘2 i em( Eo) E.".‘ , | (72)
m

) Fek (8 )M () *n

. f 2. L]
where Nm(Brs) and Mm(ars) have been defined in section 2.5a

(d) The BE(O) Mode
o m

The axial field components for reglon 1 (0 € ¢ £ go) are

o 1Bz
RPN o
E = 5 bx e (t) ce(n) oiP? (74)
zl_rglrergcerne .

And the axial field components for region O (§o < g <) are

ipz

By g*(Gek (&) sex(n) e (75)
ipz
= *
Ezo h* Fekm(g) cem(n) e . (78)
a;, b';, % and h; are the arbltrary constants.
The dispersion relations for the propagation constant are
t 1 1 ]
[L Se (&) L1 Gekm(go)] [L Cer (&) . l__c-:gFek],,,(go)}
( 5 Z j 2 5 2
x2 Sem go Y2 Gekm go X Cem( go Yy €1 F.ekm( go)
€
2 2,,2 0 2
(x™ + y7) (x Gl ) :
*
+ X Q(r g Xes) RE(GG,,88,) =0 (77)
and
€
2 2 2 2 2 1l
x“+y = k q° cosh §o(-€-; -1 . (78)

2 .2
vhere x°, y, o a;s, Xk, B

re’ ms’ Rl*n(a;s’&;s) and QE(B;SI%:,B) are
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given in section 2.5b.
Some interesting observations concerning thesé dispersion relations

for the principal modes can be made:

The presence of the factor R (@ ,8 ) Qm(ﬁrs’7%s) or

R*( o* ) Qm( 7%;) in the dispersion relations is the

rs’ ms

result of using an infinite series to represent the fleld com-

ponents in one of the two regions. According to Karbowiak's

approximations (27), i.e., cem(n) = ce;(ﬂ), Sem(n) = se;(q),

ce'(n) = -se (n)m, and se'(n) = ce (n)m, one obtains for these
m m m m

principal modes the dispersion relations that are the same as

those glven above except that the factor Rmﬂzrs’sms) Qm(Brs’);B)

2
or R;(ars’ﬁ* ) Qm(Brs 7;5) is replaced by -m“ .

The differences between the dispersion relations for the

( 1) mode and the HE(O) mode or the HE(l) mode and the
mn o mn

o

R;(a;s,bas) Q;(B;S,7i;) . Numerically speaking, these factors

e
mode are the factors Rm(ars’sms) Qm(Brs’};s) and

are in general not identical except when go = 00 .,

It is therefore expected that these modes are not degenerate

modes, in general. However, it was found numerically in the

next chapter that vhen m =1 and n =1 withina ceréain

arbitrary region in the x-y plane* Rl(ars, ls) Ql( s ls) =~
(¥ ,88.) Qtlaky, M ) . Thus the mz:(l) mode and the EE\O)

e 11

(1) (0)
mode, or the QHEll mode and the OHEll mode may be considered

degenerate within this region. One may generalize the above

*Here x and y are not the components in the rectangular coordinates.
x2 and y2 are defined by equations 2.5a-39 and 2.5a8-40 respectively.
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Fig. II-3. The HE'Y) mode and the HE'®) mode, or the HE'Y
e m (0) e O m
mode and the oHEmn mode are almost degenerate
within the shaded region. The boundary of the shaded
region is quite arbitrary. It is determined accord-
ing to the allowable differences of Rm(ar B,sm)qm(am,';( m3)

and R;(O;a'GGB)Q;(s;s’J%;s) ‘
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observation by stating that in the x-y plane there exists a certain
region (shaded in Figure II-2) in which the eHEii) and the eHEig) mode
or the HE(l) and the HE(O) mode may be considered degenerate. The

0 mn o mn
boundary of this certain region is determined according to the allowable
differences between the factor Rm(ars’sms) Qm(ﬁrs’}%s) and the factor

R*( * 5* (B* ﬂt*

2.6 Cutoff Frequencles of the Principal Dominant Modes

It is known that x and y are the roots of the dispersion rela-

tions. Combining equations 2.5-39 and 2.5-40 we arrive at the propagation

constant
1/2

1 2 2 2] 1 2 2 2 2

= cosh“t k E — 1

B ¢ cosb & [q g T cosh go[q cosh™¢ k_+y ]

x2s &L 42 1/2
- — [e 2 : (1)
q cosh & —-]-'-l.J

In order to have a gulded wave, 62, x2 and y2 must all be real
and positive¥. One recalls that the positive and real values of y2
indicate that the fleld intensities outside the dielectric rod decay
with increasing distance from the surface of the guide. If y2 is
negative and real, the expressions for the field components will indicate
the presence of an outgoing radial wave at a large distaﬁce from the sur-

face of the dielectric rod, which can only come from an infinltely long

*The fact that x- and jzrmust all be real and positive offers a way

to determine the upper and lower bourds of the P opagatiog constant B.
According to equations 2.5-39 and 2.5-40, B €£k{ and B o .
Thus ko B £ k) -
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(in the z direction) line type source located at some finite ¢ .

Such sources have not been postulated in the assumptions. In fact,
the concern here is with the source-free problem. Thus y2 must be
positive real for all surface guided waves and consequently the lowest
permissible value of y2 is zero. The propagation constant and the

2
frequency corresponding to this value of y are

(2)

and

€

(y==0) 1
q cosh & (T~ - L)pme,
o

respectively. x corresponds to the root of the characteristic equation
with y2= 0 . The frequency defined by equation 3 is called the cutoff
frequency of the wave, since below such frequency the ﬁode can no longer
exist on tne dielectric guide. Physically it means that below this
cutoff frequency the structure can no longer support such a wave and
thereby ceases to be a binding medium.

The approximate expressions of the modified Mathieu functions for

small x and y are derived in Appendix A.2. For small values of y

we have
2t
Fek' (& ) 2 ° -4
L_=m o_=£§{.m- Y S () ¢ (al)e ) +o<y“>},
y° Fekp(g,) o 8(m-1)  cosh'¢_

[for m 23 (m odd)] ()
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2t ¢
Pek (¢ ) 2 "% G o ° -2
lzpkl o =_J_-§ 1+ Ve (=YL& )3-2 °]+0(yb')} (5)
yo Feky(6) 8 cosh™ & 4 cosh ¢
fo) [o}
and
2k
Gek! (&) 2 0 nt
}_2 m o’ _ _1_2_ {-m - 32’ . £ " [(m+l) + (m-1)e O]+0(Yu)}:
y Gek, (&) y 8(m“-1) cosh £
(for m2 3 (modd)] (6)
2¢ 3
Gek! (&) (25 a o -2¢
1_2____1__‘3._=}_2-i-1+ye m(ELE ) (342 w(y“)} (7)
y Geky (&) y 8cosh & L cosh &

where « 1s the Euler's constant. For small values of x , we have

Ce'(t )
lﬁ Ce‘n(:) - 1—2 [ta.nh £, G+ O(xe)] , [for m>1 (moad)] (8)
x m' 5o P
and
Se'(t )
Lg' 2o - }E [coth E, G, + O(xz)?J , [for m21 (modd)] (9)
X Sep(€o) x
vhere
m;l 1 2r
2 r (%—- +r)! (cosh go)
Z (-1) m-1 . m-1
r=0 z -0 G
. = L (er)!
1 = m-1
2 r 2;—]-2 +r)! (cosh §0)2r
Z (-1) m-1 . m-1 -
r=0 - -0 (G-
4 (2r+1)!

and



L 2

g( 1)r 51-'2'—% +r)! (sinh ¢ ) T

L E T a
6 - r L (2r)

= .
2 E—( )r(ﬁ'l;—l +1r)! (sinh & )2r
-1
r=0 (E%E -r)! (Eéi -r)
I (2r+1)!

It can he shown that for small velues of x and y to the first

order approximation,

, p 2
Rm(ars’sms) Qm(ars’)hs) = RE(“:s’BEs) Q;(B;s’};s) = -mee (10)

Substituting the above approximations into the characteristic

equation 2.5-41 or 2.5-50, one obtains for the even principal waves

€ €
o 0 L 2
(m(l + z=) + (~ tamh €, Gy + coth g Gz)] 4(m"-1)

x2 ~ 1 1 (11)
2
e2§0 -hgo
[(m+l) + (m-1) e ]
cosh®k [for m 2 3 (mwodd)]
and
€ €
[(L+ —=) + (— tanh & + coth & )] 8
5 € € o o)
X = - 1 )
GQ eégo a e§o _2§o ’ kl )
- = m(e® LE—)[3-2¢ ]
1l cosh §O 2 cosh §o

[for m=1].

Upon inspection of equation 11 we may immediately conclude that
the right hand side of the equation is always positive and non-zero and
is not necessarily small for all values of §0 and eo/el , thus x

is not zero and is not necessarily small. In other words, the imposed
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small x approximation is not valid and x must be determined from
the original characteristic equation 2.5-41 or 2.5-50 with y = 0 .
Tue same ccnclusion may be reached for m =2 2 (m even) even princi-
pal modes.

From eguation 12 it ls noted that as y apprcaches zero

&
o
tu(e i—g————Q approaches -0 , thus the right hand side of this
2 cosh §O
cquation approaches +0 . 1In other words, as y approaches zero, X

also approaches zero and the imposed small x approximation is valid.
\
Therefore the cutoff freguency of the eHE§i/ mode or theeHEig) mode is
zero (refer to equation 3). It should further be noted that the
(1) (0)
eJEll mode and the eHEll mode are degenerate at zero frequency.
Substituting the above approximate expressions 4, 5, €, 7, 8, 9

ard 13 into the characteristic equation 2.5-63 or 2.5-77, we arrive at

the following expressicns for the odd principal waves:

f) € €
1 - \ _O_ ._o.
A(m"-1) [m(l + el) + (tanh &, Gy * & coth 50 Gg)]

2 L (1%)
X = :
eggo -)+§O ’
[(m+l) + (w-1) e ]
h
cosh & [for m2 3 (modd)],
and
€ €o
of(L +7=) + (tanh g + ¢ coth ¢ )]
2 1 C_ 1 -
x“ = 28 3 » (for m=1) . (1h)
€ 0 °© -2¢
S22 (L) (3-2e O]
€1 cosh 3 2 cosh §o
o)

Similar conclusions as those for the even principal waves are
reached. For the m 2 3 (m odd) odd principal waves, the right hand

side of equation 13 is always positive and non-zero, thus x 1is also



-55=

positive and non-zero. It can be shown that the same conclusion
applies for the m ® 2 (m even) odd principal waves. However, for
the m - 1 odd principal wave, according to equation 14, as vy

approaches zero x must also approach zero. There exists no cutoff

(1) (0)

frequency for the HE )" or IE,,’ mode (refer to equation 3). And
at zero frequency the oHEii) and OHEgg) modes are degenerate.

The results of the analysis in this section are summarized as

follows.

i. Alcrg an elliptical dielectric rod there are only two non-
(1) . (1)
degenerate modes, namely the eHE 11 mode and the OHEll
mode, which possess no cutoff frequencies.

ii. It can be observed from equations 12 and 1k that as the
elliptical cross section of the dielectric rod gets flat-
ter, x approaches zerc more slowly since coth go is
very large if go is very small. This fact has been

verified in the next chapter (see Figures III-1 and ITI-6).

1ii.The cutoff frequencies of all the other modes are higher

for flatter elliptical cross section rod.

2.7 Transition te Circular Cross Section

As an ellipse degenerates to a circle its semifocal length g
tends to zero while go approaches infinity so that the product
q cosh go or q sinh éo or qego tends to a constant r, vwhich is
the radius of the degenerated circle. The degenerate forms of the
Mathieu and modified Mathieu functions are given in Appendix A.3%.
Uslng these degenerate expressions one obtains the following de-

generate forms for the factors appearing in the characteristic equations:



-56-

cei()  xJ:(x)

Ce (8)) | I W

Sel;‘( go) x J!;l(x)

) (2)
Sem(go) Jm(x) ’
Fek'(€ ) Y K'(y) "
)
Fek (&) K (¥)
Gek'(& ) Y K (y) (h)
Gekm( go) K_(7) s
A ™ d:.s ~ B = B‘;S -1 vhen r = s (5)
- 0 when r # s
s = %ps ™ ');5 ~ -12&-* m vwhen m=s (6)
- O viken m# s
2
Rm(ars’yms) Q'm(ars’)Lms) = R;(a:s’%:m) Q;(B;’sf)é;s) - -m (7)

2 .
with x2 = ri(ki- 62) and y = ri(Bg- ki) . Putting these degenerate

expressions into any one of the characteristic equations for the four

types of principal modes ylelds

[l Y K,;(y)] 150 & 1 KW)
xJ(x) vk ) xT(x) YK
o (2 A2 5 D)
= n T 5§ (8)
x Yy

vhich is the characteristic equation for the hybrid HEmn mode on a circu-

lar dielectric rod. (Compare with equation III-UO in reference (13)).
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One can easily shov that only one term of the infinite product
series used to represent the fleld configurations in one of the two
reglons remains. The order of this remasining term corresponds to the
order of the single product term representing the field configurations

in the other region. In other words,

L. - L, when r=m (9)
- 0 wvhen r {m,
P - P when r=m (10)
r m
- 0 when r #m,
A% o A% wvhen r =m (11)
r m
- 0 wvhen r £ m,
B* - B¥ vhen r=m (12)
r m
- 0 wvhen r £ m,
g, = &, when r=m (13)
- 0 wvhen r f£m,
h, - h when r=m (14)
r m
- 0 wvhen r £ m,
aX - a¥ vhen r=m (15)
- 0 vhen r #m,
b*x - B when r=m (16)
r m
- 0 vhen r # m .
(1) (0) (1) (0)
It thus appears that the eHEmn ’ eHEmn ) OHEmn , and oEEmn modes are

degenerate when the elliptical cross section degenerates to the



circular cross section.
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CHAPTER III - NUMERICAL ANALYSIS OF THE DOMINANT MODES

It i1s the purpose of this chapter to investigate in detail the
propagation characteristics of the dominant modes on a lossless ellip-
tical dielectric rod.

After a brief review of the method for computing the numerical
values of the Mathieu and modified Mathieu functlons, the transcenden-
tal characteristic equations derived in the previous chapter for the
eHEgi) mode and the oHEii) mode are solved. Several graphs showing how
the propagation constants vary with parameters are given. Interpreta-

tions of the results are given. The field configurations and the axial

electric field extent of these waves are also considered.

3.1 Computation of the Mathieu and Modified Mathieu Functions

It is known that the periodic Mathieu functions may be expanded in
terms of an infinite series of trigonometric functions, and that the cor-
responding modified Mathieu functions can be expanded in terms of an
in%inite series of products of Bessel functions (see Appendix A.l).

These Bessel function product series converge very rapldly [see
McLachlan (hS), P.257). As has been pointed out on page 21, Chapter II,
in order that the solutions of the Mathieu differential equation be
periodic, the characteristic number ¢ or the separation constant of
the wave equation must satisfy a certain transcendental infinite con-
tinued-fraction equation which is a function of 72. * Furthermore, the

coefficients of these infinite series are functions of 12 and c (k2

L5).

*The infinite continued-fraction equation was first used by Ince (48) in
calculating the characteristic numbers; c and 72 are defined in equa-
tions 2.2-18 and 2.2-19.

-
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Supposing one is 1nterest;d in obtalning the numerical value of a
certain modified Mathieu function of order m , he must first determine
the value of the characteristic number which is the root of an infinite
continued-fraction transcendental equation and then find the coefflcients
from the three-term recurrence relations which are functions of r2 and
¢ . Substituting these coefficlents into the infinite Bessel function
product series and carrying out the computations, he then finally obtains
the result.

According to the above description, it is quite evident that the task
of computing the numerical values for a great numver of Mathieu and modi-
fied Mathieu functions is very time consuming and laborious. Fortunately
it is found that the characteristic numbers and the coefficients for a
certalin finite range of 72 , which is the range of interest for this
present problem, have been tabulated and published by the National Applied
Mathematics Laboratories of the National Bureau of Standards (49). These

tabulated values are used in our computations.

3.2 Solutions of the Characteristic Equations

The solutions of the characteristic equations for the dominant eHEgi)

mode and the oHEii) mode will now be considered. It can be seen that all

these transcendental characteristic equations are of the form

€
f(goJ E‘c:‘:) ¥, x) = O . (1)

Knowing go which determines the eccentricity of the elliptical cross-
section and eo/el vhich is the relative dielectric constant of the sur-

rounding medium and the medium of the rod, equation 1 reduces to

g(y,x) 0 (2)

§o= const.=
eo/€l= const.
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y and x are related to the major axis of the rod, the frequency,
the propagation constant and the characteristics of the medium by the

relations

«
"

2 2 2 2
- g~ cosh™¢ (k - B")

and

"
[

o cosh2§°(k]2_ -8°)

respectively. In order to have propagating waves on the dielectric rod
x and y must both be positive and real. Furthermore, for these
dominant modes as y varies from O to +o00, x varies from O +to
some finite positive constant which is a tunction of eo/el and E .
Equation 2 can most readily be solved by the "cut and try" method.
Assuming y to be some finite constant, say Yo the first root of x

can be found by plotting the function g (yo,x) versus X

t,=const.
€,/ €1=const.
as x varies from zero and up, and obtaining the first value X, where
the function is equal to zero. Then by setting y to be another cons-
tant, the above process is repeated.

The above method of solution will now be applied to the character-
istic equations for the even and odd dominant modes.

(a) The Even Dominant Mode, the eHE&) Mode.

From equation 2.5a-41 setting m =1 and n = 1, the characteristic

equation for the eHEii) mode is



1 Ce(e) .1
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€

o) [

Se(¢)

+
5ey(%,)

x+y)x €—-+Y)

Rl(ars’ 8ls) and Q'1(

2.5-37 )

n
xy

Rl(ars" gls)
) Gy Oy
%5 Fsy
< 8- 613 ¥ 815
@33 %3
\ %35 %5
and
Ql( ﬁrs} 118 ) =
, By1  Psy
Bis Pss
<7ﬁl'7i3 K5
Pz PBs3
\ P35 Pss

where

Rl(a s’ ls) Ql(ﬁ

T
%3 %3
%3 %3
%5 %5
By PBsy
P33 Ps3
Pz Ps3
B35 Pss

€ Gek'l(go)
Gekl( goj ]

)=O- (3)

Brs’xls) are given by (see equations 2.5-36 and

1
'?q: (%)

+ ) éi , o (5)
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2
8, = fse]'_(n) ces(n)dn ’ (6)
0 2
7&5 = .j} cei(n) ses(q)dn , (3)
27 Q
a. = f ceX(n) ce (n)dn , (8)
o) 2
Brg = f se*(n) se (n)an (9)
2n ©
c, = Jﬁ cei(n)dn ) (10)
0

sef(nan . (1)

w
’—l
"
Ok\‘;\‘)

Upon examining the solutions of equations é fﬁrough 11, the following
deductions can be made:

(1) [8yy] > [By3]> Brg| > =+t > o]

(11) 1%, > |7./13| > |7li5| > e > K

(111) oy, | > |a13| > Jayg| > e > oy

|a]_3|
|a33[ > gr > |a35| > > og|
31
%50 %351

ase| > or” > or” > [ag,| >+t > o |
55 7 %
1%51] 193]

(1v) lﬁlll > |Bl3| > |ﬁ15| > ee0 > Byl

3!
|B33| > or > |B35| > > |B3s|
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lBy5] 1835
sl > e 17 ey > Pl > 1Bl
o1 >3

It is found that three terms (i.e., s = 1,3,5 and r = 1,3,5)
of the expansion are sufficient to approximate the value Rl‘ars’als)
Ql(Brs,yis) in the region of interest (0 £ x£€5 ,0 £y £ 3). The
validity of the "3-term" approximation can best be illustrated by the

numerical values in the following table:

Exact* 3=-Term Approx.
go x y Rl(ars’bls)ql(ﬁrs’7as) Rl(ars’als)ql(srs;yis)
3.0 1.1 0.1 -0.9999 -0.9999
2.1 2.9 -0.9999 -0.9999
0.7 1.4 0.1 -0,9999 -0,9999
2.7 2.9 -0.8979 -0.8984
0.2 2.8 0.1l -0,9991 -1.0002
4.7 1.7 -0.7533 -0.7781

£, = 3.0 corresponds to an ellipse with eccentricity = 0.0932 (or the

ratio of semi-minor to semi-major = 0.995) which 1s very close to a

circle. The value of Rl(ars,sls)ql(s 7&8) for a circular rod is

rs’
exactly 1.00000 for all values of x and y . As go gets smaller,
i.e., 88 the ellipse gets flatter , the dependence of Rl(ars’sls)

Ql(ﬁrs’7is) with x and y Dbecomes more pronounced, and for large

#By the exact value we mean the value obtalned by using five terms,
(i.e., 8 =1,3,5,7,9 and r = 1,3,5,7,9.) of the expansions (equa-
tions 6 through llS
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values of x or y the value of Rl(ars’als)ql(ﬁrs’jis) gets quite
small. It means that more terms of the expansions (equations 6 through
11) are required to obtain the value of Rl(oEs’sls)Ql(Brs’)as) and
the field components of the mode, as the ellipse becomes flatter and

approaches a strip. Consequently, the computations become more involved.

However, if we limlt our interest to only the region

-

< < 0.2,
0€x€5 and 0 £y €3, the "three-term approximation" is sufficient
for our computations.

According to the discussion in section 2.5 it is known that the
eHE§i) and HE( ) modes cannot in general be considered degenersate

except in 4 certain region. It can be seen from the following table

that our region of interest is within this region.

3-Term Approx. 3-Term Approx.
£, X y Ry(a,,0 )@y (B, %)  Ri(ak &% )ef(Bx ,»%,)
3.0 1.1 0.1 -0.9999 -0.9999
2.1 2.9 -0.9999 ~0.9999
0.7 1.4 0.1 -0.9999 -0.9999
2.7 2.9 -0.8984 -0.8990
0.2 2.8 0.1 -1.0002 -1.0004
.7 1.7 -0.7781 -0.7805

Since in this region Rl(a )Ql(B )’3'Ri(a 8,5 )Qz(ﬁ* {715),

one may assume that the eHEii) and eHEgg) modes are almost degenerate

rs’ ls

and only one of the modes, the eHEii) mode, needs to be considered.
Now we are in a position to compute the roots of the characteristic

(1)
equation 3 for the eHEll mode.
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The computations were carried out on a high speed electronic com-
puter, the IBM 7090%. The coefficients Ai‘“) and Bf_‘“) prepared by
NBS (49) were stored in the computer's memory cells. A three-point

Lagrangian interpolation (50) sub-routine was used to interpolate the

(w)
r

coefficients A(:) and B from the stored values. The number of
decimals for the various coefficients obtainable with a maximum error
of 2.5 uni' s in the last place by this interpolation method have been
tabulated in the NBS Table. It was found that the values of the Mathieu
functions or the modified Mathieu functions obtained using these inter-
polated coefficients were correct at least to the third significant
figure. The roots of the characteristic equation were found according
to the method outlined on page €0 of this chapter. The results are
shown in Figure III-1 for the case of el/eo = 2.5 and for various
values of go ranging from go = 3.0 to go = 0.2 .

It is required that the propagation constant inside the rod be the

same as that outside the rod, i.e., from equations 2.5-39 and 2.5-L0 ,

2q cosh ¢ 2 €

2,71
X 4y = (——2) (= -1) . (12)
(o] o]

The intersection of the function in Figure III-1l with the circle,
determined by equation 12, gives the values of x and y required.

The propagation constant B of the wave is related to x and y by

2q cosh £ 2 ,[ € rp2
X = (——2) = [-}- (3= ] (13)
[o] (o]
and
2q cosh ¢ 2 Ap2
o Rl ne[(—g;) i 1] (14)
o]

*The facilities of IBM 7090 were provided by Western Data Processing
Center at UCLA.
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Fig. III-2. Normalized guide wavelength x/ko of the eHEii) mode

-68-

as a function of normalized major axis.

1.k
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respectively, where xo is the free-space wavelength. Carrying out
the method outlined above graphically, the results are given in Figure
III-2. The normalized gulde wavelength x/ko is plotted against the
normelized major axis 2q cosh go/ xo for various values of §o in
Figure III-2. It is noted that the guide wavelength X\ 1is related to
the propagation constant B by the relation B = 2x/). and 2q cosh £,
is the major axis of the elllpse. As expected, no cutoff frequency
exists for this dominant eHEgi) mode. PFor small values of 2g cosh go/xo
(i.e., the size of the major axis 2q cosh g, compared with the free
space wavelength Xo is small) the guide wavelength approaches that of
the free space wavelength; for large values of 2q cosh go/xo, it

approaches asymptotically to the characteristic wavelength of the rod
S
0

material, XM = For small values of y which correspond to

e /€
the small values o% gq cosh go/)_o the modified Mathieu functions
describing the field outside the dielectric rod decay very slowly;
physically it means that the field strength of the wave falls off very
slowly away from the rod and only a small part of the energy is trans-
ported within the dielectric cylinder. The guide wavelength of this
hybrid eHEii) mode actually becomes that of a transverse electromag-
netic plane wave* as the size of the dlelectric rod becomes vanishingly
small. TFor very large values of y which correspond to very large
values of 2q cosh go/xo , the modified Mathieu functions describing

the field outside the dielectric rod disappear very quickly, so the field

strength of the wave outside the rod vanishes very fast and almost all

*Although the wave is propagating at the plane-wave velocity of a medium
it does not follow that the wave is entirely transverse. ©See reference

(51).

v
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the energy is transported within the dielectric cylinder. The guide

(1)
1

wave propagating in a uniform medium filled with a dielectric of

wvavelength of the hybrid eHE mode approaches that of a TEM plane

dielectric constant €1 . The above discussion concerning the field
decay properties of the wave will be substantiated later in this chap-
ter with numerical results.

It may be further observed that for a fixed value of 2q cosh §°/xb
as the ellipse becomes flatter, i.e., as & becomes smaller, the
gulde wavelength become.s closer to the free space wavelength. This
effect can best be illustrated by Figure III-3 in which x/xo is
plotted against go for various fixed values-of 2q cosh go/xo
The fact that the variation of the curve becomes gentler as
2q cosh go/)\.o gets smaller is expected, since at very low frequencies
most of the energy is outside the dielectric rod thus the geometry of
the cross-section is not important as far as the gulde wavelength is
concerned.

It is also noted that for a fixed value of 2q cosh go/xb there
is more binding dielectric material in a circular rod (go = co) than
in a flatter elliptical rod, therefore, (x/xo) is smaller for larger
go . However, this is not the only reason. Supposing we plotted
x/xo against the normalized cross-sectional area, (EE;E;EE—Eg)etanh £,
(o]

for various fixed values of £, in Figure III-4. It can be seen for

2q cosh &; 2
very small values of (————————)" tanh £, » S8y <0.05 , that x/xogl

0 2q cosh ¢
for all values of § . As (_Q_T_o
)

effect of varying go becomes more noticeable. For a fixed value of
2q cosh go)g

Ao

2
) tanh ¢, gets larger, the

_tanh go ’ x/xo is smaller for smaller go . This behavior



. OM JO UOT3OUNI B €8 Ipowm Awmﬁw ay3 Jo ysBuaTssea 9pINI pPOzZTTBWION

*€-I11 *374
°3
oS ot 0T T°0
T T 1 TITT T T T 7 MTTTT T T T 7T 570
it o o
Gz === — = VRN
- T 3 usoo bz 4 90
@ = VN mmw.oumm FPTI
— 0'T = VAN
~
L'0 = VAN
6°0 = VAN
%°0 = VAN
| | | 1 O T I




rlr

-72-

A
Limit o~ 0.633
0.6 [ —
0.5 1 1 | 1
0 0.2 0.k 0.6 0.8 1.0
2q cosh ¢ 2 L
o _ 4 area _
( . ) tanh g = 2 NCSA
[o] 3
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suggests that the fleld intensity is more concentrated in a circular
rod than in an elliptical rod with the same cross-sectional area, and
that more energy is transmitted inside the circular rcd. We conclude

that the circular dielectric rod is a better binding medium for the

2q cosh 50)2
o

very large, the effect of varying ¢ on x/ko again becomes quite

eHEii) mode than an. elliptical rod. As ( tanh £ becomes

small, since most of the energy is carried inside the dielectric rod;

therefore, the geometry of the cross section is not important. When

2q cosh g, 2
————77-————) tanh £, ~ 00, the problem can best be handled
o

by consldering the case of a T wave propagating along a thin sheet of

§o-»o and (

dielectric slab in space.. Due to the simple geometry of this equivalent
problem, it can be easily analyzed (52). The results will not be given
here.

(1)

It can be seen from the above numerical results that the eHEll

mode passes smoothly to the circular HEll mode &s go - 00. The

go = 3.0 curve in Figure III-2 is almost identical with that given by
Wegerer (17).

The effect of the variation of relative dielectric constant
el/eo on the propagation constant can be seen readily from Figure III-5.
As a representative example, go = 0.7 1s chosen to illustrate the
effect. For large values of el/eo ; A approaches to the characterls-

tic wavelength of the rod material, XM = xo/\/el7eo very quickly; and

for quite small values of el/eO , t.e., el/eo -1, x/xo varies very

2q cosh &,
slowly with respect t0 —————— . One may therefore deduce that for
o
2q cosh g
constant ————x;-——- and constant §o more energy 1s carried within

a red with higher relative dielectric constant and that the field out-

side the rod also decays faster for the higher dielectric constant rod.
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It may then seem that the higher dielectric constant rod is more
desirable as a transmission waveguide. Unfortunately the high dielec-

tric constant material usually 1s associated with a large loss factor

(63).

(b) The 04d Dominant Mode, the oHEii) Mode

(l)

Similar procedures as those used for the HE mode can be
applied here to analyze numerically the characteristic equation for

the HE(l) mode. From equation 2.5c-68, setting m =1 and n = 1,

1l
the characteristic equation for the oHEgi) mode is
] 1]
[ Se; (&) 1 Gek; (€))7 [g;_cei(§o> 1% Fekl(go)J
2 2 2o (E) 2 € Tok (2
Se (e)) ~ y2 Gek (£ )] | x2 Cej(8)) 2 € Fek, (&)
2 o 2
(% ¥ (£ 2 + ¥9)

+

Ql(srs,;is)R (a_ ,8_ ) (15)

4 L 1V rs? 1s
Xy

where Rl(a LI

and 5 respectively. The discussion given in section 3.2a concerning

’ ined b; n
) and Ql(Brs,}is) have been defined by equations

the validity of "3-term" approximation for Rl(ars’sls) Ql(Brs’}is)

(o ~
also applies here. Furthermore, since Rl ’Sls) Ql(ars’7is)’”
Ri(a:s,ﬁis) Q*(ﬂ* ‘1* within the region of interest (i.e., 0 € x £ 5,

O £y < 3), the HE(l) mode and the HE(O)

ofE1) 11 mode are also considered to

be degenerate,

Equation 15 is now solved according to the method outlined in
section 3.1. Figure III-6 shows the results of this extensive computa-
tion. Again y 1is plotted against x for various values of go , and
a constant value of el/e0 which equals 2.5. Combining the results

shown in Figure III-¢ with equations 12, 13 and 14, the gulde wavelength



-76-

TT_©0
Spow (&

t
|

» °3 qwey = sTXe JOfEN/ITX8 IOUTH
sq3 Io3 uojjenbs oy3siISyOBIBYD U3 JO sjood 9-IIT *ITJ

X

c T 0
1

G'e =

wr-i|w0




17~

vwhich 1s a function of & , w , the size of the guide, and el/eo can

be obtained. The normalized guide wavelength x/xo versus the nor-
2q cosh ¢,

Mo

constant el/eO is given in Figure III-7. The pattern of the curves

(1)
11

malized major axis for various values of go , and a

mode. Again as expected, no cut-
2q cosh §o

o
is small, the guide wavelength becomes that of the free-space wavelength

is very similar to that of the eHE

off frequency is observed. When the frequency is low, i.e.,

and most of the energy is being transported outside the dielectric rod;

2q cosh &,

a small value of implies a small value of y , which means

A
0
that the field outslde the rod decays at a rather low rate. For a large
2q cosh g,
value of 5 the gulde wavelength approaches asymptotically the
o

———
characteristic wavelength of the rod material XM = ko/\ el/eo , almost
all the energy is being transported inside, and the field outside the

rod decays very rapidly.

By comparing Figure IIT-7 with III-2, it is noted that the dif-

(1)
oHEll

eHEgi) mode is more pronounced as §o gets smaller. The normalized

ference between the gulde wavelength curves for the mode and the

guide wavelength of the m:(l) mode approaches to the limit, x/xo

o1l
l/\/:]___]_e:, faster. For example, when ¢ = 0.2 and Eq_;%ﬂiﬁ_o = 0.9,
)} /xo for the OPIES) mode is 0.895, while /xo for the e}mﬁ) mode is
0.987. We conclude that the OHEii) mode binds closer to the dielectric
rod than the eHEii) mode. When £, is larger than 3, the gulde wave-
length for the oHEii) mode is almost identical with that for the eHEii)

mode, since these modes are degenerate on a circular dielectric guide.

To show the effect of the variation of £, with respect to A /A_

2q cosh g
for a fixed value of - , Flgure III-8 is introduced. For a

2q cosh ¢, © (1)
fixed value of ———— the curve for the oHEn mode is smoother
(o]

than that for the eHE§i) mode. It is again quite evident that when

L 4
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2q cosh go
N is very small, x/xo is a constant with respect to the
o] ) 2q cosh go
variation of go . For very large values of —_— the geometry
o]

of the rod is not important as far as x/xo is concerned.

In Figure III-9 the normalized guide wavelength is plotted against
2q cosh &,

Mo

values of §° . Unlike the case for the eHE§i) mode, 1t seems that the

the normalized cross-sectional aresa, ( )ztanh §o for various

elliptical rod is a better binding geometry for the oHE§i) mode than a

circular rod. These curves for various values of go are quite close

to each other, which means physically that the field lines are quite
uniform for this OHEii) mode. The slight differences between these
curves may be explained by the fact that as a circular rod deforms into
an elliptical rod, the electric lines of force are beilng squeezed
together so that the fleld density is more concentrated. For a very flat
elliptical rod, the electric lines of force are almost uniform (the field
density is also almost uniform) and any further flattening of the rod

would not change the field density too much. Flgure III-10 shows the

2q cosh ¢4
variation of the X/Xo versus ———— (with £, = const.) curve with

(o}
respect to the various values of el/eo . The behavior of these curves
for the OHEii) mode is very similar to those for the eHEii) mode. It

is interesting to note that as Gl/eo approaches unity, or as el/e0

2q cosh §o

approaches infinity, the x/xo versus — T cwve for the
o}

HE(l) mode becomes identical with that for the HE(l) mode.
o 11 e 11

2q cosh gq

S

the problem of TE wave propagation along a thin sheet of dielectric

-+ o and go - 0 , this problem degenerates to

slab in space (52).
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3.3 Field Configurations

In practice the field configurations are most quickly found by
inspection of the mode functions. It 1s found that the patterns of the
electric and magnetic field lines are quite similar to those known in a
hollow metallic guide. However, owing to the absence of the metallic
shield around the dielectric, the field is no longer confined to the
inner space. Furthermore, due to the absence of conducting walls and
therefore the absence of the conduction current, all the electric and
magnetic field lines must form closed loops.

Figures III-1lla and IIT-12a show the transverse cross-sectional
field distributions of the HE(l) mode and the OHEgi) mode respectively.

e 11
The longitudinal cross-sectional views of the field distributions of

(1)
1

III-12b. The traveling wave patterns are shown in these figures. Solld

the eHE mode and the oHEii) mode are given by Figures ITI-11b and
lines indicate the electric lines of force; dotted lines represent the
magnetic lines of force. Three dimensional sketches of the field con-
figurations for these two dominant modes are shown in Figures III-13 and
III-14. The field configurations of these modes are quite similar to
the correspondihg dominant modes in the metal tube waveguide, as men-
tioned above; a sinple method of excitation is thus available. The
method of excitation of the HE(l) mode and the OHE(l) mode will be dis-

e 11 11
cussed in greater detail in Chapter VI.

3.4 Raie of Field Decay

The dielectric rod waveguide is an open structure and hence the
field is not confined within the dielectric rod. Therefore, the gulde

is susceptible to considerable radiation loss when it is mismatched at
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input and output ends, when 1t is curved, or when extraneous objects are
near it. The knowledge of the external field extent and the rate of

fleld decay outside the rod is very lmportant. It is known from the
2q cosh &

Ao

the energy 1s transported outside the dielectric rod, thereby we may

discussion in section 3.2 that for small values of most of

expect to have a large field extent and a slow rate of field decay. For
2q cosh ¢,

%

the rod so that the field extent is quite moderate and the rate of field

large values of most of the energy is belng carried inside

decay is fast. To get an idea of the variation in the rate of fileld
2q cosh &,

decay and the field extent with respect to the change in — and
0

go, numerical results for the longitudinal electric field will be obtained.

(a) The eHEgi) Mode

According to section 2.5a, setting m=1 and n =1, the

equation for the external longitudinal electric field of the eHE§i) mode

is
X 1z
E, = r};l PrGekr(g) sex(n) e (1)
where
Prs P53 PBgz o
Pis  Pss Pos oo
Bi7 PBsy Pyy
K
;3 } ;}:klézoz ’ ()
1 3 o] f333 B53 e
Bys  Pys -
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By3 Pz Byg
Bys P Bys
?_5 . c.ekl(go) "
P ’
1 Gek_(¢ )
570 B33 653 oo
Bys  Pgg  e-

The above infinite determinants may be solved by the method of suc-

cessive approximations (47). It is found that
> P_ > > s .
P> P >>P »>P, . (4)

Therefore the external Ez may be approximated by only considering a
few terms of the expansion. The normalized external longitudinal

electric fleld is given by

P
g Gek(g) seX(n) P—i Cek,(8) sef(n) + -
E_ P ) (5)
Zo Gekl( go) se’i(q) + f)-f Gek3(§o) se';(n) 4+ oo

where EZ is the axial electric field intensity at ¢ and Ez is
(o]

the intensity of the axial electric field at ¢ = go . Equation 5 is

2q cosh ¢4

)

and n = x/2 . The results are shown in Figures III-15, 16, 17, 18 and

computed for various values of & and with €l/€° = 2.5

19 for g; = 3.0, 1.0, 0.75, 0.5 and 0.3 respectively. A family of
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2q cosh ¢,
curves for varlous values of 5 are shown in each figure.*
0
These figures possess similar characteristics as far as the variation

2q cosh &g
~—————— is concerned. The axial electric field decays (not

by
o}
exponentially) much slower and extends much farther for smaller values
2q cosh &, 2q cosh §,
of -—-—;—-——-. for large values of —_— the fleld decays
(o} (o]

exponentially quite rapidly and its extent is quite small. Physically

it means more energy is being carried outside the guide for smaller

2q cosh ¢,
values of —_— - The same conclusion was reached in the discus-
(o]

sion in section 3.2
To observe the effect of axial electric field extent as a function

of frequency for various values of eccentricities, we introduce Figure

2
III-20. The field extent, B/Bo , at which point (EZ/EZO) = 0.1 is

2q cosh §,

o

various go « It is quite evident that B/B0 is larger for the flatter

plotted against the normalized frequency )atanh ¢, for
elliptical cross-secticon rod. As frequency becomes very high the nor-
malized field extent B/BO approaches to unity and for low frequencies
B/Bo can get very large. Since B 1is a function of §_ , it is
somewhat difficult to compare the absclute axial electric field extent
of a circular rod and that of an elliptical rod having the same cross-
sectional area using Figure III-20. Thus Figure III-21 1s introduced.

B/x0 , the normalized absolute field extent, is plotted agalnst the
2q cosh gg

A
o

normelized cross-sectional area, ( )etanh go for various go .

*In each figure (E,/Ez )° s plotted against B/B_ for various values
of 2q cosh go/xo and for a fixed value of § . B is the distance
from the axis to the point of observation; Bo is the semi-minor axis.
(See the sketch in Figure III-35). E, 1is the axial electric field
strength at the point of observation.
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Some very interesting features are noted in this figure. For the

2q cosh &,
reglon 0.05 = O———jr————
o

variation of B/xo is quite small; it varies petween 0.35 and 0.55.
2q cosh §°)2

A
o

very low frequencies, B/x0 approaches zero. As the cross section of

)2ta.nh go €0.5 and 0.2 £ go < m, the

As | tanh §°' approaches infinity so does B/x.o ; at
the rod gets flatter, i.c., as £ gets smaller, the peaks and the
valleys of the curves become more pronounced. The fact that within a
certain frequency range the absolute axial electric field extent of a
flatter elliptical rod is actually smaller than that of a circular rod
of the same cross-sectional area is worth mentioning. As a typical
numerical example, we choose Xo = 3 cm . According to Figure III-21
the absolute field extent B for (Ez/Ezo)2 = 0.1 18 1.37 cm for a
circular rod with a 1.5 cm diameter, while it is 1.28 cm for E): 0.5
elliptical rod with the same cross-sectional sarea.

Similar curves for smaller values of (Ez/Ezo)2 may be plotted.
The general shapes of these curves remaln the same, only the peaks and
valleys of these curves are more pronounced.

Figures III-15 through III-19 also offer a convenient way of

verifying the purity of the mode on the dielectric guide. (Experiments

(1)
n

and the results are reported in Chapter VI.)

on the field decay properties of the eHE mode have been carried out

Although only the Ez field is discussed above, it may be shown
that the other electric field components also possess simlilar though not

identical behaviors.

«



(b) The OHE&) Mode

Setting m=1 and n =1 1in equation 2.5-63, one obtains the

expression representing the external axial electric field for the

ormﬁ) mode:
o] i3 2z
E, = r};l h Fek (8) cex(n) e ° (6)
odd
where .
%3 %3 %3
%5 %5 Y5
5 i Fekl(go) vee e . (1)
hy Fek3( ) Gy gy
%35 %5
%3 %3 %3
%5 %5 %5
%37 %7 K7
:_5- _ Fek, (¢_) . . . ®)
1 Feks( §O) a33 a53 .
%5 %5 T

The above infinite determinants may be solved by the method of succes-

sive approximation. It can be shown that hl < h3 << h5 << h7 AR 4 h03 .
Therefore the value of the external axial electric field can be approxi-

mated by using only a few terms of the expansion, 6. The normalized

external axial electric field is
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* Ej *
Fekl(g) cel(n) * 8 Fek3(g) cea(q) 4+ o

* 33 *
o Fekl(go)cel(q) + Ry Fek3(§°)ce3(n) + e

HIM
[
|
\O
S

Numerical computations are carried out assuming n = O . The results

are shown in Figures III-22 through III-25.for go ranging from

go = 3.0 to go = 0.2 . In each of these figures (EZ/EZO)2 is plotted
2q cosh ¢,

against A,/A.o for various values of ——-—:;———- . 24 1is the major

axis of the ellipse while A 1s the distance measured from the origin

to the point of observation in the 1 = 0 plane (see the sketch in

Figure III-22). The decay characteristics are as expected. At lower

frequencies the field decays slower since a larger portion of the

energy is carried outside the rod, and at higher frequenciles the field

decays faster and the field extent is less, since more energy is car-

ried inside the rod.

Figure III-26 which is similar to Figure III-21 1s introduced. In

this figure the normalized absolute axial electric field extent 2A/Xo

2q cosh &5 2
is plotted against the normalized cross-sectional area (————x————-)-
o]

tanh §° , for various values of §o ; the point of observation 1s taken

to be the point where (xa:z/EzO)2 =0.1 . Againas w- 0, 2A/h

2q cosh g,
*o

Hovever, it is interesting to note the variation of these curves with

approaches to zero; and as ( )ztanh §° - @, so does 2A/xo .
respect to the change in eccentricity. Unlike the eHEgi) mode, 2A/ko
is always larger for flatter elliptical cross section rod. This is
because the major axis of a flatter ellipse is always longer than a
rounder one having the same area.

Figures III-22 through III-25 may also be used to check the purity
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of the oHEii) mode on the elliptical dielectric rod.

3.5 Summary

The numerical results of the characteristic equations for the two
dominant modes are obtained. It is found that for the eHEgi) mode the
guide wavelength becomes longer as the elliptical cross-section becomes
flatter, and for the OHEgi) mode the opposite is true, although not as
pronounced. As expected, there is no cutoff frequency for these two
dominant modes. The fact that these two modes are degenerate vhen
go - 0 1s also demonstrated numerically.

Sketches of the field configurations for these modes are obtained.
It is observed that the cross-sectional views of these modes are similar
£o the cross-sectional field pattern of the dominant mode in the metal
waveguide. The possibility of launching these dominant dielectric rod

rodes by means of the metal wavegulde 1s also discussed.

The field extent of these modes outside the dlelectric rod is

(1)
11

mode, and the flatter the

considered. It is found that the electric field extent of the OHE

(
mode is much greater than that of the eHEii)

cross section, the larger the contrast.



~101-

CHAPTER IV - ASTENUATION AND POWER FIOW CHARACTERISTICS OF THE DOMINANT
MODES

Having obtained the guide wavelength from the transcendental
equation and investigated the field decay characteristics, it would
seem appropriate to consider the attenuation and power flow properties
of these dominant modes. Attenuation 1s caused by imperfection of the
dielectric material. It is possible to include the dossy characteristics
of the dielectric material by assuming a complex dielectric constant to
represent the permittivity of the material. The effective complex

dielectric constant is given by

- L]
€, = €+l . (1)

Replacing the lossless dielectric constant el (as used in Chapters II
and IIT) by the effective complex dielectric constant ee and substitut-
ing €e into the equations in Chapters II and III where applicable, one
notes that since the arguments of the Mathieu and modified Mathieu func-
tions are complex, the roots of the characteristic equations can no
longer be real and must be complex. Therefore the propagation constant

B 1is also complex and must be represented by
B = B'+1ia (2)

where pB' 1s the nev real propagation constant of the wave on the lossy
dielectric guide and & 1s the attenuation factor of the wave. Of
course the new real propagation constant p' does not necessarily equal
the propagation constant of the wave along the lossless dlelectric gulde.
The numerical solutions of these complex characteristic equations are

extremely complicated and involved. Even the analytic properties of the
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Mathieu and modified Mathieu functions with complex argument have not
been well investigated and understood (45,L49).

However, when the conductivity of the imperfect dielectric is
very low, in other words, when the imaginary part of the effective
dielegtric constant given by equation 1 is very small, i.e., eie << €’
it can be assumed (15) that to the first order approximation the dissi-
pation has no effect on the field configuration of the wave, which
simply remains the same as that of the lossless case. Thus the propa-
gation constant B 1is unchanged by the presence of small dielectric
loss and therefore the analyses carried out in the previous chapters
still apply. The mode functions in the case of small dielectric loss
differ from those of the lossless case only by a multiplicative attenua-
tion factor e-az, where  1s the attenuation constant and can be
calculated by a perturbation method which will be described later.

The approximate formula for the attenuation constant «a will
be derived by the Poynting's vector thecrem. The problem of attenuation
of the eHEii) mode along a slightly lossy dielectric rod will then be
analyzed analytically and numerically. The results will be_exhibited
graphically. Similar considerations concerning the problem of attenua-
tion of the oHEii) mode along & slightly lossy dielectric rod will also
be made. The .results on the attenuation properties of these two domi-

nant modes will be discussed and compared in detail. The power flow

characteristics of these modes will be calculated.
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4.1 The Attenuation Constant

The attenuation constant ( can be calculated by a perturbation
method, provided that the power loss per wavelength along the rod is
small compared to the power flowing along the rod. Since there 1s no
radiation perpendicular to the rod at large distances, the power flow
is only in the z-direction, 1.e., only along the axis of the rod. It
has been pointed out earlier that the fields are damped exponentially as
they propagate along the rod, and if their attenuation factor is «a,
that of the Poynting's vector is 2a . Therefore the attenuation

constant can be calculated from the following relation:

Qs

P

2

, (1)

where P 1is the time average transmitted power and gg is the time

|

ol

average power loss per unit length. According to Poyniing's theorem
(15) we have*

—_— . = - . E%* i . H* - . BN pe)
5.5, + %" 5 J - E*+iw (uH- B* - ¢ E - E¥) (2)

where Sz is the longitudinal component of the Poynting's vector S,
and §t is the transverse part of S . Integrating this expression over
a cross-section A of the guide (this A includes the cross-section Ai of

the dielectric guide and the cross-section Aj outside the dielectric rod)

we get
® [ B*)dg = dA + biw [W- W (3)
az+j:_r_1_-(_E_x_)z--cxd E - E* + [m- e] 3
c A
i

* E*¥ or H* signifies the complex conjugate of E or H respectlvely.
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where %; P 18 the time-aYerage povwer loss per unit length; wm and
we are the time-average magnetic energy and electric energy per unit

length of the guide respectively. It has been assumed that od =0

outside the rod and J = odg inside the rod. The value of the second
integral on the left hand side of equation 3 is zero, since pover flows

along the rod only. For the undisturbed field, Wm = We » thus we have

Se--o [2-pran. ()

A

The time-average transmitted power is given by

P=fgz-(§tx§"€)d.A. (5)
A

gt and gt are the transverse components of the electric and magnetic

field of the mode under consideration, and A 1is the total cross-sec-

tional area of the guide. Substituting equations b and 5 into 1 we get

the expression for the attenuation factor

°dAf§'§*dA
2a = 1 (6)
Jrgz. (Eh;xgi) dA

A

vhere the unit of @ 1is nepers/meter. Changing into practical units we

have
E‘B* A
H A
@ = = .8.686 + g, - |2 1 {dt/meter)
2 4 €o M

o

T ) g (B Hy)aa
A (7)

where g3 = €f; + ¢ and g, are respectively the dielectric
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constant and the loss tangent of the rod. It may be noted tﬁat for a
Plane wave propagating in an infinite homogeneous medium of conducti-
vity 04 » the expression within the absolute value signs becomes
1/\/21725' vhere € is the dielectric constant of the surrounding

medium.
Let us nov consider the integrals within the absolute value signs.

In elliptic cylinder coordinates these integrals can be expressed as

follows:
go 2x
_ 2 2 2
E«E* dA = (E, E*x + E_ E* + E_ E* )q“(sinh“¢ + sin®n )dnde¢ (8)
- - 26 MM 21z
A 0 0

IEZ ’ (‘Etx gz)dA - [EZ.('E-tlx Lrgl)dA * f SZ. (Et X g{o)dA

o}
A Ai Ao

(Eg H; - B HE )q2(sinh2§ + sinen)dndg
11 1°1

A

(B, H* - E_ H* )qe(sinheg + sinzn)dndg , (9)
gO T]O TlO §O

+
d"'k“~\8 e
O—n o—=X

where the subscript 1 and the subscript 0 represent the inside and outside
regions of the dielectric rod respectively, and g is the semifocal

length of the ellipse. go is the boundary surface of the elliptical rod.

4.2 The Attenuation Factor and the Power Distribution Characteristics of

(1)
the eHEll Mode

The field components of the eHEii) mode can be obtained from sec-

tion 2.%a by setting m =1 and n = 1. They are, for region 1,

(0 €& £g),



i
Hzl = AICel(g) cel(n) P2 (1)
i
B, = Bisey(s) sey(w) & (2)
H = __5595__ § Cel(g) cel(q) - ! —= B Sel(g se! (q)} (3)
H is {A Ce. (&) ce’(n) +m€l B.Se; () se (n} ()
Wy LY B 1
E§ = 2162 {%" AlCel( E) ce (f]) + BlSel se q)} Bz (5)
1 (k3-B)p
E = 2162 {; AICe'(g ce (n) +B_Se_(g) se! q)} (6)
mo ol L P L
and for region O (go £ ¢ Coo)
X 1Bz (7)
HZO = rzl L. Fek (&) ceX(n) e
odd
g - S p_ Gek,(t) sex(n) e (8)
%5 r=1
odd
1p Ios) we , 1pz
H = L Fek'(t)ce*(n) - —— P Gek (&)sex(n)| e (9
go (k2-62)p rz;l[ rr r p "rr r ] )
° odd
[0 0] we
i 4 °] iBz
H = ——f—— L Fek (&)ce*(n) + —— P Gek'(&)sex(n)| e (10)
1 (ki-Be)p rzgl[ T T r 5] r T r ]
odd
- iﬁ o a_iE' 1% [ iBZ
° odd
E = —2%“ § [- SE L Fek!(&)ce*(n)+ P Gek (§)se*'(n)] % (12)
% (ko-B )p =1 g r r r r r r
odd
2 2 2 2 1l/2
vhere k= 0 e kl= ® HE and p = Q(Sinh E o+ Sin n) / « A By Lr

and P, are the arbitrary constants which are related by the boundary



-107-
conditions and are given by (see section 2.5a, equations 43 through 45)

Ll Cel(go)

1
1 : (13)
A Fek, (go) Ml(ars) ’
%3 %3 %y
%5 %5 Os
A, G5 Qg
Ly Ly L Pe(e) o (14)
Ay L A Pek(e) Oy O, A
%35 Fss
|
%33 %13 %3
|
; %5 %5 Y
a Q. Q.
B h Gy [Ty S T DO W
L Fek (& ) .. a’
1 A a a AL
> : 33 753 !
lo‘35 T R I
B Prek! (€ ) 1y (@) - cel(e )y®
C1 qz: x Fek, (€, A 1 g/ T V€ §O)y (16)
- , 2 22 ’
MoV S se () {65 ¥ (e y" 2V E R (a8
Py Py B Se(s) 1 By (17
————— . b4 J
A B A T Gek (g) N (B_) A



-108-

P13 Ps3 "
Bis Pss o
Eé i Ei . E& . Gekl(go) cee  eee aee . E& (16)
Moo eeg(r) ey ey | TR
Bys  Pgg oo
Pz Py o
| Ps Prs
32 =f§.i =_Gekl(§o) ..ll (19)
Ay P A Gek5(§o) Biy  Bos . A 7
Bis  Pss
1A e e e e e

The symbols used in the above expressions have all been defined in
Chapter II. N

Upon examining the second integral in equation L4.1-9, it can be
seen that it would be extremely laborious to carry out this integral if
many terms of the expansions representing the field components outside
the gulde are required. Fortunately it is found that, within the region

of our interest, i.e., for § *>0.2, x<5, and 0.1 £y €2,

L L L L P P P
1 3 2 1 3 p)
— > |==] > || >> ¢+ >>|—| , and =] > | =] > =] > e
b A ol A Ay A !
P
>> K;_ , 80 that the expressions representing the field components

outside the guide can be approximated by only two terms of the infinite

series expansion. In other words, the infinite series, representing the
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field components in region O, converge rather rapidly, providing that
go is not too small. Fér instance, it is found numerically that when
£ * 1.0, the value of H, (see equation 7) computed from the first two
terms of the infinite serigs, is accurate to the fifth significant figure
at the worst; when 1.0 2 £ 2 0.5, it is accurate to the fourth signi-
ficant figure at the worst; and when 0.5 2 go 2 0.2, 1t is accurate to
the second significant figure at the worst. It can be seen that the
accuracy gets better as go gets larger, assuming that the same number
of terms is used.

We are now in a position to consider the integrels in equations
4.1-8 and 4.1-9. Substituting equations 2, 5 and 6 into 4.1-8, one

obtains

2

° 7 2 2 2

f J (E +F E¥ + E, ;‘)q (sinh"€ + sin"n)dn de
. E'1 g1 MY AR

A w
f f B(%_’l [ ; 2(ce2()ce; °(n) + Cej*(t)cel(n) +

0 (k - B

B, 2 - N wype, e B
+ (;; = ) sel“(¢)sel(n) + Se;(g)seiz(n)-+2 —— Jg% (Ei)

(?el(g)Sei(g)cei(n)sel<n) - Cei(g)Sel(g)cel(n)sei(nb]

B ;
2 ()7 sef(t)sef(n) (stan’t + sin®y) b anag . (20)

ol

Separating the angular and radial integrals and simplifying, one gets
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r B 2 e
= ClI-CQ(IBIl*'I 1) + (4 )( ON(T, I+ 1

[ & e
Ai

2, 2,24
cosh §oq Ay E—o-

1073 llIh)

B, [e By 2 e —J—(I )
+2yc, (7%)\/170 (T12T5" I13]:5)} ' (-‘%) ( O)[ 13" -é cosh” £ 7 ]
(21)

= _ 2 2 2 .2
where Cl——-zre—l-— ) 02-—5——51—-—2, X =qcosh§°(kl-ﬁ);and

y = -qgcosh2§o(k§- Bg). I, through I, are the angular integrals which
can be integrated analytically and are given in Appendix B.l; I8 through
Ilh are the radial integrals which must be evaluated numerically and a;‘e
defined in Appendix B.2.

Substituting equations 3 through 6 into the first integral in equa-

tion 4.1-9 gives

2x
o
f f (E H -E HE )q (sinh ¢ + sin n)dndg
1
O

3
2A2 B g 2n Nren )
j—gﬁ 1 eosz[ 5 ° (Cei(g)ceie(q)+Cei(&)cei(qb
(kl' B7) 00

€ w,/p.eo

€
v 1>(se' (8)seS(n) +5ed()ses’(n)

U

<+

(o]
Bl € wzp.el
(;I) \[% (1+ 7 )(Ce (£)se;(€)ces (n)se, (n)

- Cei(e)Sel(g)cel(n)sei(n))] an ag . (22)
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Simplifying this expression we have

fsz' (E)y xHy()dA
A B.2

€ €
i - : 2 - ()¢
— " G [\/52 (Tgly+ T I+ : Ve, = (Al) Iy Ipg,)
cosh §oq Al \/'e—o

B €
f ;—1% 2 O (1,0, T 13Iﬁ)J ; (23)

where Cl’ C,, x and y have been defined earlier. The angular inte-
[ [

grals Il through I6 and the radial integrals 18 through I13 are
all given in Appendix B.l and Appendix B.2 respectively. The above ex-
pression 23 also represents the portion of the total transmitted pcwer
being carried inside the dielectric rod. The other part of the trans-
mitted power which is carried outside the rod is represented by the

second integral in equation 4.1-9. Substituting the "two-term-approxi-
mation" of equations 9 through 12 into the second integral in equation

4.1-9, one gets

2n
T [ (E, H* - E_ H% )qz(sinheg + sin2n)dq at
L4 o bk

o}

= ?fngFu Bl)+Pl B (2)
£

(D2H€O N
+BL (L + — Nm% an ag (24)

in vhiebh



-112-

- L2 2 . 2 Ly \ \
(Bl)= Fekl(E)Cel (n)+ (—l) Fek3( §)ce3 (n)+ Z(E-)Fekl(g)Feka(g)cei(ﬁ ce*é-(n)
. L 2 L
+ Feki2(e) ce’l(n)+ (——) Fek'(g)ce* (n)+ 2(g= )Fex (&)Fek! (g) et(n)eex(n),

P
(B2)= Gek (g) ( )+ (-I)chki(g)seg"‘)(m 2(P—]-3.)Gekl(g)Gek3(g)Se*'l(n)se§'(n)

12 2 P32 2 P
+ Gekl(é)Se*J"_ () + (Fi-) Gek'3 (g)Se*f(qp 2(§—i)Geki(§)Gek,‘3(g)se*{(n)se"?‘;(n),

and

(B3)= Fekl(g)Geki(g)ce;Yq)sei(q) - Pek;(g)Gek (g)cei(q)seikq)

L.t

+ L—z lFek (&)cek! (g\ce*'('] 3e (q) - Feké(g)cekl(g)se{.(q)ce§(n)]
Pyr )

+ P—i-‘LFekl(é)Geké(E)cef(n)Seg(n) - Feki(g)c;ek3(g)cei(,‘)se%.(n)]
Eg Eé r Gek'(i)ce#( Yse*{(n) - Fek'( )Gek (E)Se*k )ce*( )]
L Pl 3 t(n)sex(n) 1(8)cek, (wees(n)] -

Simplifying equaticn 24 results in

Jr g2 (Etox E:o)d'A

Ao xl+ Ll e Pl 2 =%
———— - Spo (g Vo BHE) Ve, & (eID)
coshggoqui - Y 1 1
o}
¢ L P
9 1 1 —
+ \[u: (A—l)(A—l)(l + 02) (BIII)} , (25)
where
L2 Ly
(BI) = (11121+ 1é122)+ (T{) (13123+ I! Ih)+ 2( )(12515+ 12616) s
P32 Fs
(BII) = (I},L0+ ThgIi)+ (Fl_) (TygTa T3Tio)+ 252 DIt T L)
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P
(BIII) = (Ij;I4,- I3T00)+ ( )(Iéslis ‘éelie) (5= )(I37 177 Tiglig)

+ (P )( )( g - TioTao) 2

and Cl, 02, x and y have been defined earlier. Again the angular
integrals Ii through I' which can be integrated analytically, and
the radial integrals Iél through Iho vwhich must be evaluated numeri-
cally, are tabulated in Appendix B.l and Appendix B.2. It should be
noted that the numerical values of the higher order terms, neglected in
the above expressions (BI), (BII), and(BIII) are of the order of
PS/Pl or LS/Ll . Expression 25 represents the portion of the power
being transmitted outside the rod.

Substituting equations 21, 23, and 25 into the expression within

the absolute value signs of equation 4.1-7, we get

Jr(gl- Ef)da

A € f
R =|—t ’_‘2 -1, (26)
f B f2+‘3

(ExH*): e dA
Ajmﬁt z
i o
where
[ Bl 2 €
f.=C, |C (I I.+ I I )+ (=) %5 1
U iltete tgel R (IlOI3+ T+ 2@(E)
B. s e I (I-1)
€o( 1\« "o 11'°3 71
/:IJ-I I) |+ (=) (1., I+ )
\r 125 136 ] A k3 cosh & 2

-c. [/ o L o (1
f= cl[ c (1811+ 1912,+ 3 C, " (Al) (11013+ IllIu)

and
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L1 P, 2 € € L P
1,2 1 1y, 1
£y §H c,| 7‘1-) Ve, (B1) + (A—l)./c2 m (BII)+\/;?' (Kl-) (X]-‘)(lwg)(BIII)

.

| SN

R 1is related to the attenuation constant o 1in db/meter by the follow-

ing relation

. —
2 d \V

a = (27)

%
where Ud is the conductivity of thé dieiéétric rod.

Using the results given in Chapter III regarding the relationship
between x and y for variocus values of go and Gl/eo, nuuerical
comp.tation of R can now be carried out. All radial integrals, I8

2l

son's rule (50). Results of this very lengthy computatio:: are snown in

through Il? and Il. through ILw’ are evaluated numerically using Simp-

Figure IV-1*. 1In this figure the value R , which is directly propor-

tional to the attenuation constant (see equation 27) is plotted against

2q cosh £,
the normalized major axis (NMA), ———— , for various values of £
)
ranging from £, = 3.0 to & - 0.2. Tt is assumed that el/eo = 2.5 .

For sufficiently large values of NMA, R <teands toward tlie plane-wave
value lA/€l/€o for all values of go ; for small enough values of NMA
R can be chosen as small as desired. 'This behavior is attributed to
the fact that, when NMA is sufficiently large, almost all of the energy
of the wave is transmitted inside the rod**; and for small values of

NMA almost all of the energy is outside the rod. (It'has been assumed

that the dielectric surrounding the rod is perfect.) It is also clear

*It takes almost 2U minutes of continuous computation by the IBM7090
computer to obtaln each curve.

**¥Tt is noted that when NMA is very large the attenuation factor R is
nunerically identical with the attenuation factor of a certain wave-
gulde mode propagating in a perfectly conducting metal tube waveguide
filled with the same dielectric material as that of the dielectric rod
under consideration.
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that R tends to the limit l/\/el/eo much slower as &  gets smaller
and that flatter elliptical dlelectric guide possesses lower loss char-
acteristics. This may be explained by the fact that, according to
Figure IV-1, for a constant value of NMA, smaller go rod has less
volume of dielectric material and therefore lower dielectric loss. How-
ever, this is not the only reason. If we plot R against the normalized
2q cosh go 2

Y ) tanh &, s for various values of

o)
g, with el/eo = 2.5, as in Figure IV-2, the same effect (i.e., lower

cross-sectional area (NCSA), (

loss for smaller go) 0f a lesser degree can still be observed. As the
elliptical cross-section gets flatter, the field of the eHEii) wave
spreads out more so that the total integrated effect on the attenuation
indicates that this type of field distrivution offers less loss. The

shape of these curves in Figure IV-2 shows that the attenuation factor

can be made extremely small if a very flat strip is used. For example,

(1)
eHEll

made ten times smaller if go = 0.3 elliptical rod is used rather than

when NCSA = 0.15 the attenuation constant «a of the mode can be
a circular rod, and  may be almost JO times smaller if go = 0.2
elliptical rod is used. It is interesting to compare the axial electric
field extent of these rods corresponding to the above example. According
to Figure III-21, when NCSA = 0.15 the axial electric field extent B/XO
where (EZ/EZ )2= 0.1 for ¢ = 0.3 elliptical rod, is 0.47, and for
&, = 3.0 elli;tical rod it is 0.435.

The fact that the variation of slopes with respect to NCSA in
Figure IV-2 1s smaller for flatter rods in the low loss region, is quite
significant. It means that a small imperfection in the dimensions of a

flatter rod vwould induce a smaller change in the attenuation factor R .
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It is interesting to note the distribution of the transmitted
pover. There is a very close correlation between the percentage of
pover carried inside the rod and the loss factor of the wave. With
the help of Poynting's vector theorem, one can easily calculate the

percentage of power transmitted inside the dielectric rod. It is

P == ) (28)
t f2+ f3

where f2 and f3 are given in equation 26. Numerical results of
equation 28 are given in Figure IV-3 in which Pi/Pt is plotted
against NMA for various values of go ; el/eo 1s assumed to be constant
and is egual to 2.5 . It is observed from Figures IV-2 and IV-3 that

a higher percentage of power transmitted inside the rod corresponds to

a higher attenuation factor and more power is carried inside the circu-
lar rod than an elliptical rod of identical cross-sectional area.

Figure IV-3 also confirms the fact that more power 1s carried inslde

the rod as the frequency gets higher.

The §o = 3.0 curve in Figure IV-1 corresponds very well with the
published results for the circular dielectric rod (18). The analytic
expression of the loss factor R for the degenerate circular dielec-
tric rod can easily be derived from equation 26. Noting that as
€, > @, a~0, qcosh g ~a and qe§/2 - p, where a is the

radius of the circule and p 1s the radial component in the polar

coordinates, one gets,

H:>|\nr'

o
gy
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P P P
f—i - -—2 - _z - s e 2. - 0
I ) A
2 L1
X J 3\ ‘ vy
Bl /—-&—_ E Y Kl(}’/ 7\: + X Jl\')
Al \V € P > = (3 2
o J. (%) yx“+y Y(x€+ y2 ?6)'
2
Y J
)
= L 1, T_YJl(x) (EE)
and
2 2, 2 2 2 2 2
x" =8 (k-8), y = -a (k2- %)
o}
since a =0 when r# s
p o]
=1 when r = s
B =0 vhen r # s
=1 when r = s

(B ¥,) ~1

Equations 21, 23 and 25 degenerate to the known expressions associated
with the loss factor of the dominant mode propagating along a circular

dielectric rod (21); they are, respectively,

f@i' Ey)da
A

=
NS



‘[(Etl —tl) esz
Ay
2,e Ko
a f =2
TN
WAy
and
*
jkmegt) ~fA
A <
2 M as!
a2 2 /Eg Y
MV e
)
€1
X +y €.
where Cl = —E——EI—“E— Cy = = : Y
x (&=-1) o+ 2 y2
fo) €
)
%
- - | 52 92 -
Ig =13y 'le(p> p > 9~ To
0
X X
- - ] -
I)p = Ihs «le(p) I (pdp, Iy —f
0 0]
™
2 dn -
I = o =f Kj) 5 v I "
Yy
®
t 1] 1]
and Ii=1) = fxl(n) K;(n)dn
Yy
in which p=x% and =Y%-

-121-~

[\/_(Ie* 19)+ \/”2 " (——-) (1,4 I;p)

‘1
+ E; cg)(112+

W

P.2
[ l)\/—z(l' + I} )+ (-ql) %9\/3:;(1' + 1)

L B ﬁ \ : ]
('Z:l‘) (K{) 'a‘ (1 + 02)(133"' 13“’) s

The attenuation constant of the HE

11

wave on 8 circular dielectric rod can easily be obtained by substituting

the above

expressions into equatlon 4.1-7.
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4.3 The Attenuation Factor and Power Distribution Characteristics
(1)
of the oHEll Mode

The case of the oHE](i) wave can be analyzed in a similar manner

(1)

11 wave. From section 2.5c¢c one obtains the field

to that of the HE

components of the HEJ(_P mode. They are, for region 1 (0 £ ¢ £ go),
H l= a Sel(g)se ('q)e (1)
Ezl= blCe_.L(g)cel('r])eiBZ (2)
1p wel 162
51 ;z;gjg-) {alSel(g)se (n)- —5= b,Ce, (&) cey (n)} (3)
1, - B {;l5e1(5>sei<n)+ 1 b ces(e)ce (e
1 p(k-B %)
B, = —2—{a % se (t)sel(n)+ bicel (g)ce, () { P (5)
&1 p(k B2) 178 1771 1

i} _iB__ - % N ' iBz
T P(ki'ﬁe) { 8y B Sel(§)sel(n)+ blCel(g)cel(n)} e (6)

and for region O (§04§<oo) .

s iz
B, = ) gGek (£)sex(n)e ' (7)
o r=1
odd
= 1Bz
Ezo— r}; . hrFekr( g)ce;(q)e (8)
odd

H, = -—39-- 53 g Gek’(¢)seX(n) - “2 b pek (8)cex(n)t P2
T L L I
oad (9)
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we
H = g_Gek (g sex(n)+ —2 h Fek!(€)cex(n) { e'P*  (10)
%o p(k -8°) 1= 1'{ B
_ 1B op ' 1Bz
E, = —5—5 g Gek (&E)se* (n)+ h Fek'(g)ce*(n)} e (11)
go p(kf-BQ) =1 { r B r r r T T
odd
SR B {- & 9B Geki(£)sex(n)+ b pek_(1)eer(n) | &1 (12)
0 2 ~1 L & B r r refpibcerin
o p(k-p") r=1
odd '
where k§ = wzueo, ki: weuel and p = q(sinheg + sinzq)l/z. a» bl,

&, and hr are arbitrary constants which are related by the boundary

conditions and are given by (see section 2.5c equations 70, 71 and 72,)

gl Se(ﬁ) (13)
o 13
a
1 Gek (£ )N, (B )
P13 Ps3
Brs  Pss
3=2ﬁ=_cekl(go) vee e .i’ (1)
8 & & Gek3(§ ) 633 653 . a,
Bis  Pss
P33 Pr3
Pis  Pis
Ez i 52 El . Gekl(§o) .o ves el El (15)
8 g, 8 k a
1 &% Gekg(e) Biy Bgy 1
Bys  Pss

ooooooooooooooooooooooooo
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2 g1
x 1 —— ]
b =5 Gek; (8 )N, (B ) 5 Se; (&)
= = %‘ y e » (16)
1 V& 042 (v 2y
Cel(go) y2 Ql( Brs’yls)
El _ Cel(io) . El (1)
a . a -
1 Fe&l(ﬁo)Ml(ars) 1
%3 %s '
%5 s ’
BoMh Ty ok (18)
a h, a a
1 1 %1 Fek. (& ) 1
37707 03 Bg
%5 Isg
..
%3 %3 ot
035 C!ls
_l’ii = il.é i]; = = ___Fek____l( go) i]: (19)
a h, a ‘a
1 1% Fek_(& ) | 1
3707 033 %y
%35 g5
and

The attenuation factor of the oHEii) mode can be calculated in a
similar manner as that of the eHE§i) mode. It can be shown that

gl a'l > 33/31 >> gs/al > > gCD /al ) and hl/al > h3/al >> hs/al >>

e >> hm/a.l » provided that & 2 0.2, 0 4

x€5, and y € 3.0 .
The first two terms of the infinite series are sufficient to represent
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the field components in region O .
Substituting the appropriate field expressions 1 through 12 into

4.1-7 one finds after some manipulation that

8.686 . 5
a = 3 cd\[::; R' , (db/m) (20)
in which R!' = F/F 3
where
f(gl E#)dA
Ai bl2 €
F, = [02(1 I+ IT )+ (—) = (I912+ 1811)
cosh2§ 2 2“’—
q al €
(o]
b € b, 2 € (I -I)
8
+2\/E:_(--i \[;-(I )J+(—)£[I I+-l--——-—-—},
2 &’ 1376 125 1k 11+NN2 2 cosh2§o
(21)
Jexmy) e
A €
1 _ 1 l o)
F, = = Cl[\/—.(IllIh+ It )+ \/_2( ) (19 o*IgIy)
2, 22 (B
cosh goq al \/—:o

b
+(h—l)((1+ O (15T T, 5)] ,  (22)

J @ x 1) 200 u

A g h €
[o) _ X P12 ' _& 2 o '
F3 = = ;17 cy [(—al) \/CQ(BI) + (al) m \/CE(BII)

cosh2§ qzai \/—2:0
+ (_ (_._ \/‘ (1 + c,)(BIIr)" } . (23)

and
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(BI)', (BII)', and (BIII)' are respectively

g,2 g
tTt 111 3 IT! t T 3 T T t T
(17127+ I8128)*'(§Z) (19129+ 130110) +2 (EI)(I31111+-I32112) ’

h

2 N pe .
t 1 ] 3 1 ] 1 t
Iz3*'12u1u) + 2(31) (125154-126161) ,

h
Tt . TITH __3 t
(13144 12122)+ (h ) (I3

’..J

and
332 h3 2
(T315) " I33113)*'(;51) (T3eT16~ T3T35) * (EI) (T3gT18- I37117)

83 (23 (0 10 - 10 g
SR Wielan - Tyghy)

1 1
where Il through I6 » 18 through 113 » I1 through IuO ) I7c and

I are given in Appendix B . The loss factor R' for the OHES})

1LNN
mode as a function of NMA 1is computed for various values of go

ranging from go = 0.2 +to go = 3.0. The relative dielectric constant
el/eo is assumed to be constant and equals 2.5. The results are plotted

in Figure IV-4. The attenuation factor R' for the oHEgi) mode varies

(1)
11

attenuation factor R' approaches 1/ Jel/eo as frequency approaches

with frequency in a similar way as that for the eHE mode, viz., the

infinity and R' can be made arbitrarily small by lowering the frequency.
It should be noted that the slope of the curve 'Tor the elliptical rod in
the low loss region is quite steep, i.e., a small variation in NMA would

cause a rather significant fluctuation in R'. It is quite obvious that
1)
1

the HE(l) mode 1s more suitable than the HE( mode as a transmission

e 11 o 1
mode.

The distribution of the transmitted power as a function of frequency
can easily be computed. The percentage of power carried inside the dielec-

tric rod is
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57 = o (2k4)
Pt F2 + F3

where F2 and F3 are given by equations 22 and 23 respectively.
Figure IV-5 shows the variation of Pi/Pé as a function of NMA for
various values of go ; el/eo equals 2.5 . The behavior of these curves
1s as expected. More power is carried inside the rod as the frequency
gets higher. Again there is a very close correlation between the

amount of power carried inside the rod and the value of the attenuation

factor.

4.4 Summary

A detailed analysis on the attenuation characteristics of the

(1) (1)
HE mo h
RN de and the oHEll

tric rod are carried out in this chapter. Numerical results are obtalned.

mode propagating along an elliptical dielec-

It is found that a thin elliptical dielectric rod operating in the
dominant eHEii) mode is a better guiding structure than a circular

(1)
1 mode, because the eHEll

mode has much lower loss on a flat elliptical rod than on a circular rod

dielectric rod operating in the dominant HEl

of identical cross-sectional area.

It would be interesting to compare the attenuation constant of the
eHEii) mode with the attenuation constants of some well known metallic
vaveguide modes in the millimeter wavelength region. The values of the
attenuation constants for various kinds of waves are tabulated in the

following table.
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CHAPTER V - ELLIPTICAL DIELECTRIC ROD RESONATOR

To conclude the theoretical analysis of surface wave propagation
along an elliptical dlelectric rod, we lnclude here the analysis of the
Q factor of the elliptical dielectric rod cavity. The earliest work
on dielectric resonators was carried out by Richtmyer (53) in 1939. He
developed the theory of operation for several interesting dielectric
resonators of simple shapes, such as the spherical dielectric cavity
and the "doughnut" shape dielectric cavity. The dielectric tube resona-
tor was first used by the group in the Northwestern University (54).
Later in 1959 Becker and Coleman (26) made use of the dielectric tube
resonator to generate millimeter and submillimeter waves and to operate
. as a frequency meter. Most recently Snitzer (40) proposed the use of
dielectric rod cavity as a mode selector in laser operation.

In the present problem the dielectric rod cavity consists of an
elliptical dielectric rod suitably terminated at its ends by suffici-
ently large flat metal plates which are perpendicular to the axis of the

rod (see Figure V-1). At resonance, the length of the cavity L must

i 1
//reflecting

v dielectric rod plate

- 2z

i to— L

Figure V-1. The Elliptical Dielectric Rod Resonator
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be n zg (n, an integer), whgre xg 15 the guide wavelength of the
particular mode under consideration and 1s a function of Xo ’ el/eo,
and the size and shape of the dielectric rod. The relations between
Xg and the mentioned physical ( nstants are determined by the hound-
ary conditions. Only the eHEgii and the oHEiii modes of the dielec-
tric rod resonator will be considered in this chapter.

The @ factor of a resonator 1s indicative of the energy
storage capablility of a structure relative to the associated energy
dissipation arising from various loss mechanisms, such as those due to
the imperfection of the dielectric material and the finite conductivity
of the end plates. The common definition for Q 1is applicable to the
dielectric rod resonator, and is given by (15)

total time-average

Q = Wy energy stored -
average power loss o

(1)

wn|z|
-

where Wy is the frequency of oscillation. The above approximate ex-
pression is valid when @ >> 1 .

In our case the time-average power dissipation P consists of
two parts, the power loss due to the dielectric rod and that due to

the metal end walls

Pdielectric + Pwall : (2)

wol

The power dissipation due to the dielectric rod is:given by (15)

L
1_D‘d:i.electr:i.c;‘ -Gdjhjﬁ (El' Efl)dAdz (3)
0Ay

while the loss due to the end wall is (15)
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B 1 fou ]’
P = = H . H¥* aa , (%)
wall 2 ecM twall twall
end
wa

where /%ﬁ; is the surface resistance, Rs . The total time-average

energy stored is given by (15)
V=W =W = & jr H + H* aV = jr E - E*V (5)

vi+o Vi+o

oln

where Vi+o is the total volume of the cavity.

5.1 Q of a Cavity Supporting the eHEiii Mode

-

By a linear superposition of the mode functions k4.2-1 through

4.,2-12 for the eHE§i) wave traveling in the positive and negative z-
direction, the normal modes of the cavity may be constructed. The re-
sultant axial fields of an eHEgi) wave traveling in the positive =z-
direction and a superposed eHEii) wave of the same amplitude traveling
in the opposite direction are as follows for region 1 (0 € ¢ € go)
Hzl = A Cel(g)cel(q)sin Bz (1)
Ezl =-B Sel(g)sel(q) cos Bz (2)

and for region O (go £ <)

0o

Hzo = rZ;l L Fek (&)cex(n) sin Bz (3)
odd
o0

EZO = ;Z;l PrGekr(g)se:(n) cos Bz (4)

odd

2
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All the symbols in the above expressions have the same meaning as those
defined in the previous chapters. The arbitrary constants Al, Bl, Lr
and Pr which are related by the boundery conditions are given by
equations 4.2-13 through 4.2-19. Expressions 1 through 4 satisfy the
boundary conditions on the surface of the dielectric rod and at the end
2z = 0 . To make them also satisfy the boundary conditions at the other
end, z = L, we restrict B in such a way that BL = nn where n 1is
an integer, (i.e., L = nxg/Q)-

Substituting the proper field expressions into 5-5, carrying out
the integrations where possible and retaining encugh terms of the expan-
sicn to give the same order of approximation as obtained in Chapter IV,
one finally arrives at (after some rather lengthy algebraic manipula-

tions) the expression for the energy stored in the cavity for the HE(l)

mode,
€l f
W = — x = _*
w-2j dV+ (E )av
V
Le
2 2.2
= cosh ﬁo q Al —Eg Eg CT (5)
o
€. B 2 € I.. (I,-I,)°7 ¢«
vhere Cp = Eé (—E) =2 {IlhI3+ 1 3 5 Ly I Ei Cl[ 02(181 + 1 I )
0 A1 Ho L 2 cosh go J o}

€

5 By &%
(A_l) “o 2 (IyoIg+ Ip31,) +2/C, (KI)\/IC; (I, T5- 1y Is)]

+
1,2 . Ié7(I" L1, Bl o, et b)
+ () ) TiaTe* + (5 | 10,
A1 cosh go 2 cosh gOJ
P r (I -I) L rL
+ 2( 3) [1 1! it c u+ X ¢ l(—l)e(BI)c +
—"T“
P | b3 2 cosh k| ;Hl<Al 2
P2 e P €

+ (-—) (——)(BII) +2\/—; (27) A1 =2 (BIII)}.

-
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2
Cl’ 02, BI, BII, BITII, x and y2 are gliven in Chapter IV. The inte-
grals, i.e., I's or I' 's, are defined in Appendix B.

The power dissipatibn due to the dlelectric loss is

€& 2n
- a 2
= e — . d.
Pdielectric 2 9 0 (El Ei)p ndg

o.L %)
_ . a 2 2 2 (o) (6)
=" = Al q cosh §O €O Cd

where

(I )1
d—(l)( )[m3 1173 7_l+ [CZ(II+II)

2 cosh §0

B, 2

B
1 o 1, [€o
+ () n (T)oT5* IpTy)+ 2\/52 (Kl') \/% (1175~ I13Is)]

1

m

Again the integrals are defined in Appendix B
Another source of power loss in this cavity is caused by the
finite surface conductivity of the reflecting end plates. This loss may

be computed from equation 5-4,

= .l . 2 2 2
Prall = 2[2 R f(gt Et)at o dAJ = Rghjcosh € a C (7)
vhere
el B 2 €
Cy = [(IBI +1 12)+ C( Al p (TpT5+ I150))

+

W—rpfz 1)
L

x 12 “o(s11)+ 2 III)}
yhcl[( )(131:)+c2(Al 7 (BIT) (A1 Al [\/*(B

(@)

+

Rearranging expression 5-1, we get
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—

1_F Paielectric . FPyanl I S (8)
Q w 7] oW w W Q'd Q’U

Qd is the Q factor of the cavity if the end plates are perfectly con-
ducting, and Qv is the Q factor of the cavity if the dielectric is
perfect. According to equation 8 we have

C

oW 1 T
Q = 5 = SN (9)
dlelectric Mg = d
(o}
and
_ wWw L Cp
“E T (20)
Pwall w

vhere ¢d is the loss tangent of the dielectric rod and & is the
skin depth of the end plates.

The expressions CT/Cd and CT/Cw are evaluated numerically and
the results are shown in Figure V-2 in which CT/Cd and CT/Cw are
plotted against the normalized cross-sectional area (NCSA) for various
values of & with el/eo = 2.5. For small values of NCSA, cT/cd can
be very large, thus Qd can also be very large. This is because most
of the energy is cutside the rod. As NCSA approaches infinity, CT/Cd
approaches el/e0 and Q, eapprosaches l/2¢d*l Again one notes that
the flatter the elliptical cross section, the higher the Qd factor.

It is worthwhile to take notice of the behavior of CT/CN as a
function of NCSA. For an ordinary cylindrical metallic waveguide of

simple cross-sectional shape, terminated at both ends by short-circuiting

*Incidentally, the @ of a section of perfectly conducting metallic wave-
gulde, terminated at both ends by perfectly conductlng end walls and
filled with a dielectric material with a loss factor of ¢d is salso

1/2¢d.
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plates, the Q factor resulting from the imperfection of the end plates
is L/26 . L 1is the length of the gulde and & is the skin depth of
the end plates. This @ factor is independent of the type and order of
the mode under consideration as long as the mode is either of TE, TM or
TEM type and not of a hybrid type. It means that for this type of
cavity, CT/Cw is always unity. However, CT/Cw is no longer a cons-
tant (see Figure V-2) if a hybrid wave is present. This characteristic
is probably due to the fact that the TE and TM waves are lnextricably
coupled to each other on a dielectric rod except for the clrcularly sym-
metric waves.

It is also noted that Qd is independent of the length of the
cavity and Qw is directly proportional to the length of the cavity.
The total Q of the cavify can be computed from the knowledge of Qw

and Qd using equation 8. For a very long cavity, Qv >> Qd , therefore

Uotal © Q'd ’

5.2 The Q of a Cavity Supporting the OHEiiﬂ Mode

For the sake of completeness, we include here the analysis of the
oHEiiﬁ mode. The geometry of the cavity is the same as the one shown
in Figure V-1. The analysis in this section follows very closely that
in the previous section, therefore only the results will be given here.

The power dissipations due to the dielectric loss and the end

walls loss are respectively,

€0 2x
?t OdL 5
dielectric’ ~ 2 (E, - Ef)p"dndt
0 O

o,L 11

2 2 2 :

= - -%— Al qQ"cosh Eg C& (1)
o
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and
Rs
Pwa.ll 2 I(H . )at 2=0 A
A
i+o0
2 2 2
= RA] cosh'¢ a C! (2)
where
B, 2 € (I -I.)
t _ __% 0 8 /c
B.2 ¢
1 [¢)
+ (-AI) 'J; (181 + I 1 +2\/_ (-—)\/ (113 6" 1215)}
and
B 2e
C;=¢; [(IlOI3+ Illlu) + -e-; C?‘-(FI) u_ (181 + I )

+

B € €
2 (TA'll‘) @\/-0—2\/% (11316' IleIs)J

b L 2 P, 2e, L. P, JE
1 , 1 1,, 1 .
c, [<A1> (1) +0o(5) > (BII) '+ Q(E’(A—B\/ﬁ"_"e‘Bﬂ”J

+
%;43

All the symbols in the above expressions have been defined either in
Chapter IV or in Appendix B. The total time average energy stored in

the cavity is given by

T = = _ 1 © E¥) = *
w'_sz_ewH_eelf(gl EldV+ €, f(E E)av

Le 9
2 2,2 7o "o .,
cosh §O q Al T €— CT (3)

where
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€. B .2 € I(1I.-1I,)7 ¢«

1l 1 o 872 7c’ |
Cr = = () —[I It ———— |+ = [C(I +1..I)
T & A uy Ly 2 2cosh §O J € 11" s

(o]
B, 2 ¢ B
1 o l i
&) i (gl Iy +2V e, T V ™ > ()T, 12I5>J

+ ()
1 o)
- v v‘ ' f U '
Al Ho hh 2 cosh g P1 b7k 2 cosh go
2 [ ——g—’(r
+2(X2) (I I+
Pl ‘ 4676 2 cosh g .
L L2 P.2 ¢ P [e_
X \ l o
X o (D) @B e+ (D) (—)(BII)' 2\/- ( 2 (BIII):‘
vl { 5 2 A A V“o )

Ea, Pw and WT arc related to the Q factor by the following relation
_' —'
= ) P
1 _ P _ Tdielectric wall = 1 1 =
’é_i' = - 1 + —_T = Q' + Q' (4/
(»W& w W& w W& d w
where
ot
1
@ w WT ] 1 CT
d - , Fl Cl
dielectric P —= a
d ¢
and
) '
Q; i w W& L CT
— -
Pwall w

¢d is the loss tangent of the dielectric and © is the skin depth
of the reflecting end plates.

The expressions Ci/Cé and c&/c; are evaluated numerically.
Results are given in Figure V-3 in which Cp/C} and Cp/C;, are plot-
ted against the normalized major axis (NMA) for various values of &

with c-:l/eo = 2.5 . The characteristics are similar to those of tue
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(1) Vo
JHE ], mode. CT/Cd can be made as large as desired by choosing suitable
values of NMA. As NMA approaches infinity, Cé/Cé approaches el/eo for
all §o . In the region where C&/Cé is large, the slopes of these
curves are very large; in other words, a small variation in NMA can

cause a rather larger variation in C,I',/Cd , thus a large variation in

(1)
1 1

Qq - The behavior of cT/cW is similar to that of the HE )  mode.
Similar deductions as those given in section 5.1 can be made and will

not be repeated here.

5.3 Relation between Q and «

In 1944 Davidson and Simmonds (41) derived a relation between the
Q of a cavity composed of a uniform transmission line with short-
circuiting ends and the attenuation constant a of such a transmission
line. Later in 1950, Barlow and Cullen (55) rederived this relation.
These authors showed that this relation is quite general and is appli-
cable to arbitrary cross-section, uniform metal tube waveguides. Since
then one of the standard techniques for the measurement of the attenua-
tion constant « 1s the use of the cavity method*. This method offers
an excellent way of measuring the attenuation constant of the gulde when
the loss is quite small. Later on this method 1s generalized and applied
to open waveguides, such as the single wire line, the dielectric cylinder
gulde and associated guides, by various authors (6,7,19,21).

However, it should be remembered that the formula by Davidson,
Simmonds and Barlow 1s derived under the assumption that there exists a

single equivalent transmission line for the mode under consideration.

*The procedures of this method in general are the following. Short the
uniform transmission line under consideration at both ends and measure
the Q of such a resonator. From the knowledge of the measured Q and
other constants such as the cut-off frequency of the guide, the frequency
of oscillation, etc., it is an easy matter to obtain « from the formula
derived by these authors.
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This assumption is true for a pure TE, T™ or TEM mode, but it 1s not
clear that such a single eguivalent transmission line exists for the
hybrid waves. This suspicion originates from the fact that a) the TE
and TM waves are intimately coupled to each other, and b) the charac-
teristic impedance defined by Schelkunoff (56) is not constant with
respect to the transverse coordinates. It is, therefore, very difficult
to concelve the possibility that there exists a single equivalent trans-
mission line for this hybrid mode; at best the hybrid wave may be repre-
sented by a set of transmission lines coupled tightly with one another.
Hence tne formula by Davidson, Simmonds and Barlow is not applicable to
the hybrid wave.¥

A more general relation between Q and « can be obtained
without using the transmission line equivalent circuit, provided that
a 1s very small compared with p (57). The propagation constant of a

gulded wave with small attenuation constant at w, is
Nay) = alwy) +1Ble,) . (1)
At resonance**, the following relation is true

I‘(wo) +%Aw zia(mo) . (2)

Combining equations 1 and 2 we have

Ao) = - Fow= -1 L (3)

)
According to the definition of group velocity vg which is :ﬁf and

the definition of the ¢ factor which is wb/?(gfﬂ , we finally arrive

¥But several Iinvestigators (19,21) apparently unaware of this restric-
tion, used this formula in their investigations of the hybrid wave.

#*The resonant cavity is made by shorting both ends of the gulde under
conslderation.
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at the relation

w
¢}

RV,

a =

. (4)

Blw

|
<| <
(10 el

This is the general relation that we are seeking. Substituting the
values of vp/vg* for TE, ™ or TEM into equation 4, one gets the

relations derived by Davidson, etc. For the TM or TE mode,

v

1
;;B=————-, oz=—l———f3 , end for the TEM mode,
g A2 A2 2Q
1-(3) 1-(57)
c c
vp/vg =1, .. a=pB/2q. A, 1s the cut-off wavelength.

The group and phase velocity of the dominant modes can be
obtalned easily from the w-p dlagram. A sketch of the w-p diagram
for the dominant modes is shown in Figwre v-4. It can be seen that
at low frequencies or small B's, v;ﬂ1:5 vg and again at very high fre-

guencies or large B's, vphftgvp . Therefore, the relation «a = 8/2Q

is applicable only a% very low frequencies or at very high frequencies.

* Vo Von~ the phase velocity of the wave.
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s

slope = ¢ = 1
VHe,
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§O=O.5
§0=l.0
=
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slope = < = 1
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Figo V-lh

X

6 [q cosh goJ

A sketch of the w-f diasgram for the dominant dlelectric
rod mode.
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CHAPTER VI -  EXPERIMENTAL INVESTIGATIONS

It 1s the purpose of this chapter to investigate and verify the
analytic results experimentally. The properties of a certain propagating
mode along an infinitely long uniform waveguide are usually specifled by
three characteristics*, (a) the guide wavelength which is directly re-
lated to the propagation constant of the wave, (b) the field configu-

rations or the field distributions, (c) the power loss or the attenuation

*In order that a good matching condition may be obtained so that in
coupling energy into and out of a dielectric rod guide without the
presence of high standing-wave ratio which is a measure of the relative
intensities of reflected and incident waves, the knowledge of the charac-
teristic impedance or the wave impedance is very important. As we have
pointed out earlier the characteristic impedance defined in the usual
manner (i.e., the Schelkunoffidefinition) is not meaningful, since it is
a function of the transverse coordinate system. A mean value impedance,
which takes into account the energy distribution over a cross-section of
the rod was first suggested by Wegener. He divided the (circular) dielec-
tric rod into four sections and in each of these four sections he assumed
the field to be independent of {§, the angular variation, so that in
regions I and III, ¢ is assumed to be zero and in regions II and IV, §
is assumed to be =n/2. [See Figure J, ref. (17)]. The approximate
expression for mean impedance is therefore
E E

(D) (xmn)- e ans () (exE¥)e, a
o, . I+IIT "o $=0 2 IIT IV P g=n/2 z

f(EXEﬂ e, dA

He showed that Z/Zo = xg/x . Similar approximate mean impedance as
defined above may be obtained for the elliptical dielectric rod.

The fact that the characteristic impedance of the hybrid wavegulde is
not well defined shows that the single transmission line analog is at
best an approximation. Any measurements assuming the single transmission
analog of this gulde are therefore approximate, and should not be consi-
dered as precision measurements.

Since at present we are only concerned with the problems of wave propa-
gation along an infinitely long uniform dielectric rod, the "characteris-
‘tic impedance" or the equivalent circuit network of this guide will not
be considered. -
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constant of the wave. Experiments will therefore be specifically
designed to m;asurejthese three quantities.

After a detalled description of the experimental apparatus, the
methods of measurement for these various quantities are discussed. The
experimental results are then compared with the theoretical results. A

discussion will be given.

6.1 Experimental Apparatus

Figure VI}l is a photograph of the general physical appearance of
the experimental set-up. A block diagram is shown in Figure VI-2. For
the sake of convenience and simplicity, measurements were performed in
the X-band frequency range. The microwave X-band power was obtained
from an X-13 Varian reflex klystron which offered a maximum power output
of five milliwatts and was powered by the Hewlett-Packard power supply.
The microwave signal was modulated with a 1000 cps square wave. The
Aoufput of the klystron was connected to an isolator followed by an
attenuator, a cavity resonator, a slotted line section, and a section
of standard X-band rectangular metallic waveguide. These were standard
X-band components. The other end of the rectangular metallic waveguide
was connected to the special apparatus specifically designed for the
present experimental investigation; see Figure VI-2.

The following sections are devoted to a detailed description of

the special apparatus.

A. The Launching Device
The method of transferring microwave energy from an ordinary metal-
lic wavegulde into a dielectric rod was not very difficult or complicated.

Since a rectangular metal gulde operating in the dominant TE 0 mode had

1
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an electric field whose configuration was roughly similar to the trans-

(1) (1)
11 mode or the oHEll

mode on the dielectric guide, the transfer could be made simply by

verse component of the electric field of the eHE

inserting the dielectric ro& longitudinally into the metal guide for a
short distance. The orientation of the cross-section depended upon
whether the eHEii) mode or the oHE§i) mode was desired. To improve the
matching and to minimize reflection the dielectric rod was tapered to a
point within the guide and after emerging from the metal gulde the rod
was tapered to whatever size was required for a given test. Furthermore

a flare pyramidal horn whose flare angle was adjusted for best energy

transfer was connected to the rectangular metal guide. (See Figure VI-3).

SHNRNRRNS

elliptical dielectric rod

RN

rectangular
metal waveguilde horn

RSN

DSOS

Figure VI-3. The Launching Device.
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B. The Elliptical Dielectric Rod

Since dielectric rods of elliptical cross-section were not com-
mercially available, they were machined from available rectangular
lucite strips which vere é.t least five and half feet long. A total
of twelve rods of different sizes and ellipticities vere made, in
order that the éxperimental data would cover a wide range of QLE'ih_%e
and § values. A picture of these rods is shown in Figure VI-L. One
end of each rod was machined very flat while the other end was tapered
as described in section 6.1A to fit into the metal guide. A small chunk
of lucite was taken from each rod in order to measure the electrical
properties of each rod individually by Von Hippel's method (58). It was
found that the dielectric constant of these rods varied between € = 2.5
to € = 2.6 and the loss tangent varied from tan ® = 0.005 to
tan & = 0.003. It should be noted that due to the resilient property
of lucite it was very difficult to machine such a required length uni-
formly. A special and rather expensive technique was developed and used.
Although extreme care was taken in making these rods, some small non-
uniformities which might attribute to experimental errors were unavoid-

able. The major axis and go ‘of these elliptical rods ranged from

2A =1.5 in. to 2A =C 5 in. and §O=wto §°=0.37.
C. The Shorting Plete

In order that the plate could be a good shorting device, its sur-
face had to be very flat and large enough to intercept practically all
of the energy outside the dielectric rod and the plate had to be made
of good conducting material. A 1/4"x36"x36" aluminum plate was used.

One side of the aluminum plate was machined flat and its surface was
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cleaned and polished in order to assure maximum conductivity. The

plate and its support can be seen clearly in Figure VI-1.

D. The Probe and Its Carriage

To detect and measure the electromagnetic field on the dielectric
rod, a small electric probe was designed and used. The probe con-
sisted of a section of rigid coaxial cable whose outside diameter was
about 1/8" and whose length was about 1'3". An inch from one end of
the cable was formed into a gradual 90o bend and the center conductor
protruded about 1/8". The other end was connected to a crystal detec-
tor which was calibrated, and the output of this detector was connected
to the HP standing wave indicator. The L bend was introduced to
reduce the amount of metal conductors parallel to the electric field
indicator. The probe and the detector were supported by a stand which
was fastened to a HP carriage. A picture of the probe and its support
is shown in Figure VI-5. The whole instrument was so designed that the
probe might be moved up and down radially with respect to the center
axis of the dielectric rod and longitudinally along the center axis of
the rod. Furthermore, the probe could be adjusted to detect either
Eg or Ez field. The longitudinal movement of the probe could be
measured from a scale on the carriasge; and a dial indicator was used
to obtain accurate measurements of small longitudinal movements of the
probe. The radial movement of the probe was measured by a level tele-
scope whose movement had been calibrated.

With the help of a transit and a level this whole experimental
set-up was aligned carefully. The dlelectric rod had to be very straight
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and its axis perpendicular to the shorting plate. To insure a good con-
tact between the polished shorting plate and the flat end of the
dielectric rod, a slight pressure was asserted on both ends of the system.
To minimize sagging of some small or flat rods, very thin nylon threads
vere used aldng the rod to provide support. Although disturbances due

to these threads were unavoidable, because of the sizes of the rods used

at this frequency range very little perturbation was observed.

6.2 Method of Measurement

In general there are two most commonly used methods for measuring
the propagation characteristics of a certain mode along a uniform low
loss wavegulde. The first one 1s the so-called resonator technlque. The
guide under consideration is placed between two parallel plates with
proper coupling holes. Resonance occurs when the length of the cavity is

A
n £ where n 1s an integer and xg is the guide wavelength of the mode

2
on the guide. xg can be measured easily either by counting the nunber
of minima within the cavity length with a small probe or by moving one
of the reflector plates and measuring the displacement of the plate for
each resonant peak. By measuring the Q of %this cavity, the attenuation
constant @ can readily be calculated*. This method is particularly
useful and accurate for very low loss transmission lines**. The second
method is the standing wave measurement technique. The guide is terminated
. by & perfectly reflecting plate acting as a short-circuit device. The

propagating wave 1s perfectly reflected by the termination and a standing

*See equations 5.3-k4
#*This method was first used by Chandler (1) on the measurement of attenua-
tion factor for the HE;; mode on & very small circular dielectric rod.
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wave pattern is formed along the guide. A probe, such as the one des-
cribed earlier in section 6.1D, can be used to detect the microwave
signal along an open waveguide. By measuring the distance between two
adjacent minima of the standing wave pattern, and the standing wave
ratio, it 1s an easy matter to calculate the guide wavelength and the

attenuation factor of the mode on the guide*.

#The formula relating the attenuation factor o with the standing wave
ratio can be derived as follows: It is well known that
P
1
A = 510810§§db

where Pl and Pé are respectively the input and reflected power of

the guide; and P '
?l = (f&}%)e, where r 1is the standing wave ratio
3 .
at the probe. Therefore, we have a = -:% l_oglo(-g—;—}:) 2d.‘t)/xn in which 2

1s the length of the gulde as indicated in Figure VI-6.

1liptical dielectric rod
eLLip // ,/reflecting plate

| S

b

! }

|
|

a

Filgure VI-6.

To take into account the loss due to imperfection of the shorting plate
one notes that the attenuation measured at polnt a is Aa = ata +D,
and similarly the measuired attenuation at point b is

Ab = azb + D where D 1is the loss of the .szflecting plate. Coubining

these two equations and eliminating D one gets

A -
a = (—3——5;) (ab/meter)
(‘a - lb)
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The latter method was used for our measurements since it presented
a simple and expedlent way of measuring the desired quantities with
reasonably good accuracy. To avoid perturbation by the launching device
or by end effects, measurements were made in the middle section of the
rod. It should also be mentioned that throughout this whole experiment
the coupling between the probe and the field was kept at a minimum in

order to avoid interference with the propagating wave.

6.3 Comparison of the Theoretical and Experimental Results

The results are separated into three genersal categories.

A. Guide Wavelength

Guide wavelength was measured according to the procedures described
earlier. The distance between adjacent minima of the standing wave pat-
tern vas measured at several sections along the guide and the average
value was calculated and recorded as the measured xg/2 . The maximum
difference between these measurements was about 3%. Wavelength measure-
ments were taken from nine different sizes of elliptical dlelectric rod
for the eHEgi) mode and the OHEgi) mode. Normalized experimental
results, together with their corresponding theoretical results, are
glven in Figures VI-7 through VI-15. The physical size of each dielec-
tric rod used and its measured dielectric constant are indicated in each
figure. Excellent agreement was obtalned.

To illustrate the agreement between the analytic and experimental

results, we introduce the following table:

P




1.0

0.9

0.7

0.6

0.5

1.0

0.9

0.8

o?‘l?’

0.6

0.5

¢

(o)

1.24 2.6

0.793 2.5
0.387 2.6

«157-

5

—
Figo VI-70
| ] | i ] i
(Circles are experimental points)
Fig. VI°8.
| | L ] | |
002 00,“ 006 0.8 l.O 102 loh’

2q cosh ;o/xo




°>'| >

o?“l &

1.0

009

008

0.7

0.6

0.5

1.0

0.8

0.7

0.6

0.5

I L]
— —+
- -
— -
Figo vI-9-
| 1 | 1 1 ]
(Circles are experimental points)
1
%
a 0.8u8
— a
b 0.376
B N B
P —
Figo VI-].O.
1 1 | | 1 |
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2q cosh go/ A




*TT-IA *81d

!

9°1

" \o“ ysoo bz
o N°1 FAd ¢ [0 § 8°0 .m.o ’ %°0 c°0 o 0
1 T | ! i |
(syutod TejuswTIadxe @xe SITOITD)
—4 9°0
— L0
To._ X
~ X
O~ o . — 8°0
3
G2 ﬂ
gotro = % —] 60
0T




o’l”

O?‘IV

1.0

0.9

O'8

0.6

0.5

1.0

0.9

0.8

0.7

0.6

0.5

2q cosh § /A

3 ;1 -
()
a l.24 2.55
b 0.848 2.5
¢ 0.376 2.5 —
ngo VI-la
| 1 | ] | |
(Circles are experimental points)
I | | | |
(1)
g, = 0.587 olByy mode
€ —
1
-e-— = 2-6
°
m. VI"lBo
] ] 1 ] | ]
0.2 0.4 0.6 0.8 1.0 1.2 1.4




o?’l?‘

o»lr

1.0

0.9

0.8

0.7

0.6

0.5

1.0

0.9

0.8

0.7

0.6

0.5

. % —
a 1,22
b 0.793
¢ 0.368 2.55 -
Fig. VI-1lk4,
| | | ] ] |
(Circles are experimental points)
|
_— —
Pig. 'VI-15.
| i | L B 1
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2q cosh go/xo



=162«

Mode of Size g 2q cosh g ( Tﬁ) (k) c .
Operation (M) ° o O meas. o calc. ° .
. gi) 0.770"x0.645" 1.22 0.55 0.845 0.853  2.55

0.63 0.80 0.804
JHE ii) 0.770"x0.645"  1.22 0.555 0.83 0.833  2.55
. 0.635 0.784 0.787
. gi) 0.769"x0.505"  0.775 0.56 0.925 0.925 2.5
' 0.785 0.80 0.802
o §i) 0.769"x0.505"  0.775 0.55 0.875 0.882 2.5
0.695 0.80 0.80
. ii) 1.005"x0.361"  0.376 0.725 0.962 0.964 2.5
1.00 0.862 0.862 _ :
o §i) 1.005"x0.361"  0.376 0.72 0.87 0.873 2.5
0.93 0.79 0.792 )

It was found that the wavelength measurements Were rather insensi-
tive to small non-uniformity of the rods and to the variation of
humidity and temperature in the laboratory. Incidentally, the above
experiment also suggested a rather convenient way of measuring the

dielectric constant of a certain low loss dielectric material.
B. The Field Distributions

Iq order to establish the degree of field purity an examination of
the radial field decay at a fixed axial position was carried out. The
decay of the axial electric field was measured since it can most easily .
be detected by a probe pninted ;n the axial direction. For maximum sig-
pal strength, the probe was aligned in the 15 = x/2 plane for the HE(]')

(1)

mode and 1 = O for the oHEll mode. The general method of measurement




-163-

has been outlined in section 6.2.

Experimental results, together with their theoretical results
for the eHEii) mode are shown in Figures VI-16 through VI-18. Six
different rods rmg.ing from go = 00 to go = 0.376 wvere used. It
can be seen that the experimental results corresponded rather wvell
with the analytical results. The largest differences were found among
thin rods. This effect may be explained by the fact“that for small
values of NMA, a large percentage of energy was carried outside the
dielectric rod, thus a small amount of curvature or sagging may have
caused some errors in the field decay measurements. These measurements,
together with the wavelength measurements verified the existence of
the eHEii) mode along an elliptical dielectric rod.

Similar measurements were performed for the OHEgi) mode. Four
rods ranging from go = oo to go = 0.376 were used. Results are
shown in Figures VI-19 through VI-20. Again, good agreement with
theoretical results vere observed. These measurements also confirmed
the existence of the OHEgi) mode.

The above discussion show:c c;early the necessity of having a
structure which may support the dielectric rod and at the same time
will not interfere with the desired propagating mode. One of the best
ideas, which was first proposed by D. D. King (20), is the use of the
image plane. He took advantage of the symmetrical property of the

HE.., mode and mounted a half-round dielectric rod on an image plane.

11
It can be seen that his i1dea can very well be extended to the ellipti-
cal dielectric rod. This image plane can not only serve as a support
without disturbing the fields, but also may serve as & polarization

anchor.
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C. Attenuation Constants

Attenuation measurements were made by probe, using the standard
standing wave technique (59). For each experimental point two mea-
surements at two different locations were carried out in order that
the loss due to the imperfections of the terminating reflecting plate
could be eliminated, (See the footnote on p. 155). The percentage
variations of the loss factor of these dielectric rcds were found to
be quite large. The loss factors for various rods were found to vary
from tand = 0.00% to tand = 0.003 . Both theoretical and experi-
mental results for the eHEgi) and the oHEii) vaves are shown in
Figures VI-2l through VI-27. In general, the agreement is quite good,
and it 1s better at higher frequencies than at lower frequencies. One
of the reasons for this is that at lower frequencies, more energy is
distributed outside the rod; thus, more energy 1ls radiated due to the
slight curvature of this open guide. Furthermore, the disturbance of
the field caused by the presence of the supporting threads and the
probe 1s more pronounced at lower frequencles. Since the attenuation
is lower at lower frequency, the standing wave ratio is higher and the
percentage error.in thee measurements of this high standing wave ratio
is therefore larger. Because the attenuation constant is a measure of
the pover loss as compared with the power transmitted, it is quite
understandable that the above mentioned factors would affect the ac-
curacy of our measurements more at lower frequencies. It is for this
reason that the resonator method is superior for low attenuation mea-
surements. At higher frequencies most of the energy is carried inside

the guide; very little disturbance will result from the supporting

threads, the probe, and the small curvatures of the rod. The accuracy
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of the experimental measurements 1s thus greatly improved. Another
source of error is probably due to the approximations used in computing
the numerical results from the analytical equations. It was mentioned
earlier in Chapter IV that as the elliptical cross sections become
flatter, i.e., go gets smaller, more terms of the expansions are
requlred to obtain more accurate numerical results. However, suffi-
ciently close agreement between the analytical and experimental results
ie observed to warrant the verification of the theoretical predictions.
It is noted that a dielectric ribbon having the same cross sec-

tional area as a circular dielectric rod and operating in the dominant

eHEﬁi) mode does indeed offer much less attenuation than the circular

dielectric cylinder.

6.4t Conclusions

Speclal experimental apparatus was designed to measure the propa-
gation characteristics of the two principal dominant modes, namely the
eHE§i) and the oHEii) modes. Desplte the mentioned sources of experi-
mental errors, measured results were found to be in good agreement with
the calculated results. Particularly good agreement was observed in
the gulde wovelength category. The existence of these two dominant
modes was verified.

It was noted experimentally that the next higher order mode occurs
at a higher frequency for the flatter elliptical cross-sectlon rod.

Therefore, the flatter rod possessed not only a lower attenuation factor

but also a wider bandwidth.
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CHAPTER VII - SUMMARY AND CONCLUSIONS

The problem of electromagnetic wave propagatioh along an elliptical
dielectric rod was considered. It was shown that, in general, no pure
TE or ™M wave might exist on such a wavegulde except when the eccentricity
of the rod was zero. In order to satisfy the boundary conditions, an
infinite series of product terms of Mathieu and modified Mathieu func-
tions were used to represent the field configurations in one of the two
regions. The field components and the characteristic equations of four
prinéipal types of waves were obtained. They were classified aé the
eEExExi) mode, the eHE‘SnC;) mode, the om':g) mode, and the OHEIES) mode. These
modes were degenerate and became the well known EEmn mode when the eccen-
tricity was zero. The modes with m =1 and n = 1, called the dominant
modes, possesSed no cut-off frequency. The propagation characteristics
of the dominant modes were considered in detail both analytically and
experimentally. Extensive numerical computations on the properties of
the gulde wavelength, the rate of fieldvdecay, and the attenuation charac-
teristics of the dominant modes were carried out.

Experiments were designed and performed using various sizes of ellip-
tical luclite rod to verify the analytic results of the dominant modes.
Measured data were compared with theoretical results and it was shown
that very good agreement was obtalned. |

The Q of a dielectric cavity resonator operating in elther one of
the domlnant modes was also computed. It was found that a very high Q
cavity conld be made using proper size dielectric strip.

It was demonstrated analytically and experimentally that a thin

elliptical rod operating in the eHEgi) mode typically had considerably
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lower loss than did a circular rod, operating in the HE 1 mode, having

1
the same cross-sectional area.

Other advantages are ligted below:

a. A flat elliptical dielectric rod has larger surface area, N
thus it would be easier to handle at very high frequencles,
such as in the mm wavelength range.

b. The eHEii) mode possesses greater bandwidth, since the cut-
off frequency of the next higher order modz is higher for
flatter elliptical cross sections.

¢. Depolarization effects are minimized because the gulde wave-
lengths differ for the even and 6dd modes. It is known that
internal strain, non-uniform dimensions, and bends of the

circular rod cause the HE,., mode to change polarization.

11

d. A flat elliptical dielectric rod vhich may be approximated
by a strip is easier to fabricate slnce wider dimensional
tolerances are permitted. This is because the gulde wave-
length and the attenuation constant are slower varying
functions of the dimensions for the strip than for the

ciccaiar rod.

It should also besnoted that the eHEii) mode can be launched as easily

as the HEll mode.

The advantages and disadvantages of using the dielectric tape line
as a transmission line in comparison with the conventional metal tube
waveguide (at frequencies above 50 kmc) are discussed below.

a. Keeping the spread of the fleld outside the dielectr;c tape
within a reasonable distance from the surface of the dielec-
tric gulde, the loss factor of the eHEgi) mode on a dielectric

tape line can be made smaller than that of the dominant mode

in a rectangular metal tube guide, but still somewhat larger

than that of the TEOl mode in a circular metal tube gulde.
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In order to avoid mode conversion the surface of the cir-
cular metal wavegulde must meet very close tolerances.

These kind of tolerances are not required for the elliptical
dielectric rod; thus, it is easier to fabricate.

Unlike the metal tube waveguide, the field of a dielectric
tape is not entirely confined within the strip. Consequently,
it can be subjected to interference due to nearby foreign
obJects or foreign signals. The presence of curvature or
discontinuity of the strip will also cause energy loss by
radiation. It is rather difficult to support the dielectric
rod without disturbing the field. The use of image plane,

as proposed by King, as a supporting device appears to be
quite sultable.

The greatest attraction of a surface wave dielectric tape line as a

millimeter wave transmission line is in its simplicity of construction,

its low cost and ease of manufacture, and its flexibility.

The analytic method of solving this elliptical dielectric wave-

guide problem should prove applicable to others involving the use of

the elliptical coordinate system and the Mathieu functions. For

instance, one may apply this technique to the problemsoof

a.

the propagation of electromagnetic waves along an ellip-
tical dielectric tube, or

the surface wave propagation along an elliptical Sommer-
feld or Goubau wire, or

the scattering of electromagnetic wave by an elliptical
dielectric cylinder.

Other analogous mechanical problems can also be solved in a similar

manner.

We did not consider the source-present problem. However, it is

emphasized here that it 1s not possible to express any arbltrary fleld
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distribution in terms of the propagéting modes alone for any open
boundary problems. The problem with source pre'sent must then be for-
mulated in terms of Green's function in the form of a contour integral.
The residues at the poles of the integrand will give rise to modal
type waves which are also called guided waves. The contribution of

the integral around the branch cut will give rise to a radiated wave.
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APPENDIX A
Mathematical Relations
Many of the formulas.and expressions which are used throughout J

this report are given in the following sections for convenient refer-
ence. Those relationships which are considered well known are stated
with only a reference to their origin. Others, which are considered not
so well known are discussed in more detail. Some relations which are

glven ‘here for the first time are derived.

A.l Series Representations of Mathieu and Modified Mathieu Functions

The Mathieu differential equation may be written in the form.

927@— + (c - 2r2<:os 2@ = o (A.1-1)
dn
where r2 is a constant which may be positive or negative, and c 1is
the separation constant or the characteristic number. The periodic
solutions of A.l1-1 which may be expanded in terms of trigonometric
functions are given below (42,45): |

For 72 20,
@

cean(q,rz) = P éin) cos 2ry (A.1-2)
ce2n+l(n,72) = rijo éﬁi{l) cos(2r+l)q | (A.1-3)
'se2n+l(q,12) = rgjo B;fjll) sin{2r+l)q (A.1-4)
se2n+2(n,r2) = rijo Béii;?) sin(2r+2)q | ' (A.1-5)

and for r2 €0,
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ceg (0, 17°]) = ‘02: 17 A2 con 2y (A.1-6) :
cepy )« 8 (0 p 7 s (aaen '.
se*él+l(¢,|r2 ly - rio (-1)T* Aéiil) sin(2r+1)n (A.1-8)
Cae wlrD) < § 0™ 57 statere)y (A.1-9)
The expansion coefficients, Aéin), (fizl), Béiﬁil), and Biingz)

functions of |r2| and have been tabulated by NBS (49) for various
values of |72| up to Irzl =25 .
The modiflied Mathieu differential equation may be written in the

form

%R

~—5 - (e - 272cosh 28)R = O (A.1-10)
d§

where 72 is a constant which may be positive or negative and c¢ 1is
the separation constant or the characteristic number. The stable solu-
tions of A.1-10 vwhich correspond to the periodic solutions of A.l-1 can
be expressed in terms of Bessel function product series. Comparing this
with other ways of expressing the solutions of A.1-10, the Bessel func-
tion product series converge the fastest and therefore are best suited

for computational purposes (45).

et u = |T| e'g and Vv = |7| eg ; the set of stable solutions

of A.1-10 with 7= 20 is (45),

P @
Cezn(§n‘2) = ;z(ng) )3 o (-1)° Aéf.n) J (w3 (v) (A.1-11)
. r=
o
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oo} : -
C°2n+l(gﬂ2) ) A?Hl Z (- l) 2r+l )[Jr(j'l)szl(v)+ Jr+l(u)Jr(V)J
(A.1-12)

8 o0 -
Sea (67 = Tty T (DT B 5,03,y ()43, 03,0
1 S (A.1-13)

Se2n+2(g,r2) 2n+2 Z ('l)r Béﬁgz)[Jr(u)JHQ(v)'Jr+2(u)Jr(v)] *

(A.1-14)
And, the set of stable solutions of A.1-10 with ra £ 0 is (45),
(-1)%, o
2 2n
reion (8 F°1) = —1m 1 a2 1) k(0 (A-1-35)

A r=
™ %

(-1)" ®©  (2n41) '
2 2n+l +
konea (b [7°]) = —md) L Pera (1K (- 1, (K ()]

1 (A.l—lﬁ)
-1)%%p @®
2n+l Z Aéle‘r:;_l) [Ir(u)Kr+l(v) + Ir+l(u)Kr(V)]
n A (A.1-17)
E (-1 e & (2n42) \
Ge]“2n+2(§’ ¥ l) = :;rm—- rZ_:__OB21‘+2 [Ir(u)Kr+2(v)'Ir+2(u)Kr(v)] :

2 (A.1-18)

ek, (617]) =

The expansion coefficients Aefn +1) é?:;_l)

connecting coefficlents p'2n, p2n+l’ 62n+l, 32n+2 are functions of

(2n+2)

Dre2 and the

, B
N rzl and have all been tabulated in a table prepafed by NBS (49). The
above series are absolutely and uniformly convergent. The analytic expres-

sions for the connecting coefficients are

Py, = cean(o,r ) ce2n Y )/A(zn) (A.1-19)

Pope1 = ey, (0Y )ce2n+l(én, T )/ (2“1) (A.1-20)
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2 1 2 (2n+l)
Sonsl = 982041 (077) segy (5% v) /7 By (A.1-21)
o 2, 1 2 (2n+2) _
Sonen = b o(01)sel (2 %,v7) / ¥ B2, (A.1-22)

The prime signifies the derivative of the function with respect to 1q .
The normalizations introduced by Goldstein (60) will be used.

They are

2[A§2°)]2+ g:o [Aéf“)]a =1 (A.1-23)

It is also defined that when r2 =0

Ac(>0) I , [Aga:]a - [ (2n+l)]2 - [B(2n+l)]2 B [B(2n+2)]2 .1

r+1

B

(A.1-25)

A.2 Approximate Expressions for the Modified Mathieu Functions Suitable
for Small Values of | y°|

Mathieu (61) first derived the expressions for the expansion coeffi-

(2n) ,(2n+l) (2n+l1) _(2n+2) 2
clents Aar 5 A2r+1 » B2r+l P 32r+2 when | ¥ | is small. They are

y 2r '
Bif%r ~ ‘\Eafzr ~ (-1)* ;ﬁ;;), ({—) P (A.2-1)
' (r 20, m >0)

BT ~ A7), ~§¥ﬁ%§-¥ (-7;?)r ) (A.2-2)
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vhere » means approximate equality.

' ' 2 2
a. Approximate Expressions for Fek2n+1(§"7 |) and Gek2n+l(£;lr |)

when l‘ra‘ — 0 . The approximate expression for Fek2n+1(§ ,|r2|) from

A.1-16 is ‘ o
n 12 1 .. (2n+1)
(-1)% l;“al‘2n+l(§’| )= B22n+l) { * B(2n+l)-2
2n+l 1l

X [In-l(u).xn(v) - In.(‘-"')Kn-l(v)] + Bénzr-:ll) [In(u)Kn+l(v)

20+l |
. In+1(“)Kn(")] + B§a11§+2[1n+1‘“)“n+e(") 'In+2(“)Kn+1(")J+ }

@21) (A.2-3)

where
2
2nsl <
p{2H . L =+ o(v") (A.2-k)
(2n+1) b '
B2n+l = 1+0(r) ' (A.2-5)
wa pl2D) 1 ° . | -
‘ 243~ " Bmr) T 00N | ‘ (A.2-6)

O(rl‘) means that the next term in the expansion is of the order of rh.

The value of O(‘ru) in A.2-5 can easily be obtained from the normaliza-

tion io [B(2n+l)]2=.1. Thus

r2o b A+l '
4 ' '
(2n+l) T en(n+l) + 1 8
Bansl 1T [—r;é(:i)T'] + o) (A.2-7)

The follow,tng approximations for the modified Bessel functions (62)

will be used, vhen u and v are small:



I (u) = Cil PN u® o(u | | (A.2-8)
and
-1 3 ' a
k(v EANET 2TNm2) o Ly, ()™ 1 (1) m(EY) (a2-9)
v v
(m21)
xo(v) ~ - In lg (A.2-10)

vhere  1s Euler's constant, @ = 0.5772 «+. .

Substituting these expressions, A.2-4 and A.2-6 through A.2-10

into equation A.2-3 and remembering that u =yt , V = reg, after

considerable algebraic manipulations one obtains the approximate expres-
sion

3T

2 1 1 -(2n+l) ¢
m‘ Fek&l+1(g’lr |) = ;m) {(;) [e ¥ ]
2n+l 1l ‘

( )[e(-2n+l)§ )
- (r

Bl (n+1)+ 2¢72% . ne-hg)J so(rd) .

. (A.2-11)

(2n+l)
1

Putting the approximate expression for B into A.2-11, one

finally arrives at the equation

2n 2 2¢

n 21y _ 27 (2n)! __Je

RN Feky 1 (6:]77]) = 2l (eI {l Bn(orl) [(‘“1)
an+l

+ 20728 L net] o(r“)} . (m21) (A2-12)

For the special case, n = 0

e i -3¢
T ey &, v°)) = r_i? + B (& et [2-62] - T+ oY) .
' (A.2-13)
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The approximate expression for the Gek2n+l(!J72|) can be obtained
in a similar manner. Carrying out the tedious algebraic steps, one

arrives at the equation for n 21

-1)" 2n) ! 2t . 28 b
éz_nﬁz Gekzml(g"” %‘In Dael) & { 8n(: ) [(’”l)‘ ce -ne g]
+ o(r'l‘)} (A.2-14)

a -3¢ ‘
ey (6, 77]) = 2 + I n(G veh)[1e7®)- B v 0(rY) . (a2-15)

2 2
b. Approximate Expressions for Ce2n+l( £,7") and Se2n+l(§’r )

2 2 2
as |r 50 . 1t is possible to expand Ce2n+l(§,r ) and Se2n+l(g,r )
in a series of Bessel [unctions (45). They are
ce! l:t Y ) ®

2n+1'2" 7 (2n+l;

Tt Z ( 1) Ay Top,p(2r cosh €)
r AT ) ' (A.2-16)

(l§’72) =

Ceone1

and

(0,7 ) foe)
2, _ 2n+l ’ (2n+l)
Seona1(87) = ——my Byl Jprey(2r sioh g) .
T Bl r=0

(A.2-17)

These series are absolutely and uniformly convergent (45). Substituting
equations A.2-1 and A.2-2 and the small argument approximation of the-
Bessel function into equations A.2-16 and A.2-17, and keeping the first

order approximation, we get

L l ' |
ce e 2)- i °e2n+l('2—“’12) Y2n+l Zr.:l ( 1)r ner) ! gcosh ”2r+1
2ns1 'S0V )= (2n+1) -r)! \o-r (2r+1)!

L

+ o(ra“*”} (A.2-18)

and (a *0)
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2
2 Be'aul(o’r ) r2n+l 3 r (n+r)! (sinh g)arfl o,
S (bT) v gléld) (2n)t zgo(-l) (n-r)t o=t o) ‘ ‘

+ o(ran*3)}, (n®0) . (A.2-19) i

Fekénﬁ(.ngal ) Geki (&, ¥

c. Approximate Expressions for — ’ s
Fekpn 1 (B 1721) * Gek, (&, [72])

' 2 . 2
ce), s (&67") sey . (&7) ;
._"l‘i;’l_:_z_ and _-2..11___’_2_ as erl -0 .
Ce2n'+1(§’r ) Se2n+l( LY)

Taking the derivative of equations A.2-12 through A.2-15 with res-
pect. to ¢ , combining these derivatives with the required functions,

and keeping only the second order term in the approximation, we arrive

>

at the following expressions:

Fek: _ (8,]v2]) 2 2¢ \
~enel w— = =(20+1) LA {(n+l)+ ne-hg} +0(Th) » (n21)
Fek, (&7 ) bn(n+l) (A.2-20)
Fek! (&,17°]) Pt & "
.-————-—§|—=-l+'——2—ln(—2fe)[3‘2e ]"'O(T)) (n21)
Fek, (&, |7" )' - (A.2-21)
cex, (&, [¥3)) 2,28 " N
+ = -(2n+1) -hr e {(n+l)+ ne” §}+ oy), (n21)
Gek, (&, (v°[) R ' .
2n+1 : (A.2-22)
and
Gek; (e, | v7|) 228 @ oo
'kl( ek 1+ Lo (S ret) 342672 ]+ o), (2 1) | .
Gek; ;, T (A.2-23)

Taking the derivative of equations A.2-18 and A.2-19 with respect to ¢ ,
combining these derivatives with the required functions, and keeping only
' ®

the first order term in the approximation, we arrive at the following
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expressions:
( 5 zn (-1)F L+r). (cosh g)er
Ce} £, 7)) 2 0. (n-r) ! n-r '
____2_2“? = tanh rnO X (ar)ér +o(y) ,
Ce2n+l(g,‘r') Z (- l)r n+r : (cosh &)
.20 B=r)s 4B F(orsl)t
- (n20) (A.2-24)
n | . . ar
5 : (_l)r n+r)! (sinh g) )
gse! _(&,v°) Z . (n-r)! -r , 5
. ﬁL’T- = coth ¢ ro-;O {n-r) “’é (2r?. + 0(1‘2) s
- Sey 1 (8577) 5 r (n+r)! (sinh &) :

=1 7
r o(..)' (0-r)? )05y

(n20) (A.2-25)

It should be' noted that all the approximate expressions derived in
this section reduce to the ﬁell known approximate expresslons for the
Bessél functions when the ellipse degenerates to ‘a‘circle.

Similar approximate expressions for the even order modified Mathieu

functions can be obtained in the same manner.

A.3 Dggenerate Forms uf Mathieu and Modified Mathieu Functions

When the ellipse tends to a circle, i.e., as the semifocal lengths
q a.nd ¢ tend to zero and infinity respectively, such that

g
qcoshgseqsinhgs%——)r,

where r 1s the radial component of the circle, all Al()m) and BI()‘“) tend
to zero except that A( ) im) —> 1 . Therefore the degenerate forms of
the Mathieu functions are (45)

cem( q,raj ->cos my | . © (A.3-1)

sep( q,'re) - sin my ' ' ' (A.3-2)
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with m® 1, and vhen m =0 | | | . -
2, 1 | | v
- — A.3-
ce (n,7") 5 (A.3-3)
The degenerate forms®of the modified Mathieu functions ax;e,
ce, (672 = (-1)% p, J, (x =) (A.3-4)
2n >’ 2n’on r)’ . -
. 2 ' '
Cepnyy (87) » (-1)° P2n$1J2n+1( oAk | (4:3-5)
2 . ' : o
Seaml(&,r ) » (1) sy o (X ;;) , (A.3-6)
n+l ' Ty )
Se2n+2( §)T ) ind ( l) z].+2J2n+2(x a) ) . . (A'3-7)
“Cep (6,77 -+ (-1)" py (x ;’.—)‘Jé'n(x %) ; (A.3-8) .
. 2 n r
ce2n+l( E;Y ) ind (-l) P2n+l( )J2n+l( o) } ' (A'3'9) .
' r
Seaml(g,r ) - (-1)° Sons l( )J?_n 1 (% o) ’ (A.3-10)
n+l ' r _
seZn 2( &, ) - ( 1) _2n+2( )J&1+2( o) ) _ (A.3-11)
. n
reiy, (010 - 5k (y e (A.3-12)
’ n
ek2n+l( §:T2) - (-l) 8211+1K&1+1(y %o') ) . (A' 3"13)
n
n+l
. Gek2n+2(§’72) L l) 5204 Fons2lY ro) ’ (4.3-15)
«
. n .
Fekan(bT )~ (——L pzn(y -—) Ky (v —) ) - (A.3-18)
Fek) . (£,7°) (1 ( ) v5), (a3-17)
ekons1 {87 )~ Bons1l WV ) KoV T A-3-
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gek: (5,17 - (22 (y ) Kk (y &) C (A.318)
onelt b 5 Popa WV onelV T r .
, 2, (-1 ry o, r .
Gkt (87 = =g g p (v 1) Kp ) (A.3-19)

vhere p21i’ p2n+l’ 82n +1° sax+2 are connecting factors vwhich have been

- 2
defined in section A.l, and x- = kire - Bzri - B°r Xor i in

which r, is the radius of the circle. The prime on the modified Mathieu
function represents the derivative of the function with respect to ¢ ,

while the brime on the Béssel ‘or modified Bessel Function represents the

- derivative of the function with respect to-its argument.

A.4. orthogonality Relations of Mathieu Functions.

The orthogonality relations of Mathieu functions are (u45)

a. For all 7‘2'3'-'

2 . o .
fcem(q;Tz) cep(n;Ye)dn = 0 ' : (m # p) ' (A.4-1)
A .

2x o ,

j-. Sem(n‘,rz) se'p(fl)rg.)edl‘] = 0 (m f p) _ | (A:h-z)
| 2n ' , "

: - (m#p |
f ceq(n1) se(mri)an = o or (4.4-3)
5 m=p) .
b. For 1° 20

T2 L r(ane . & ()2

f. cezn(q,r )dn.= 2n [Ao ] +n r2=1 [A2r ] (A'.l&-k) ,
2n ' : ® _

f cegml(m’ra)dn = x Zo [Aéraﬁl)]z _ (A.4=5)
5 . r= .



- -1%0-

25 . )

| f S5 (V1IN = "jo Pf:ﬁi”]z | e
% I
T seo (1,7 )dn = = ri() [Béff:;z)]e - (A7)
0 :
e For 7 €0, |
. 7 cé;(t;,\re])dq = 2x [A(()zn)]ef' ﬂril [iAgr&)]e A(A.h-8)
i °e§nf1(“’\72\_)d" .= -. . :O[B(:ﬁ)]a o (a9
" .
[ segn,, (37 Dan = . 2 [Agf‘jf)]a - (Ak-)
o T e
0
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~ APPENDIX B

. Tabulation of Integrals Involving Mathieu a.od Modified Mathieu Functions

: Integrsls resulting from the attenuation consi:sxif and Q factor.-'
c.alc.uiat.ions are tabulated in this: a.ppendix.‘ ‘Integrals are ihtegre.ted-
analytical].y~whexiever possible, snd the.resﬁlts are given. The ixite-
grals are divided into two cstegories, those involving the Mathieu
functions are called the angle integrals since they correspond to the
trigonometric integrals of the circular gulde, and those involving the
modified Mathieu functions are ca].led the radia.l integrals since they

correspond to the Bessel integrals of the circular guide. .

B.l Angle Integra.ls Involving Mathieu ‘Functions-

The definite integrals involving Mathieu functions can ‘usualiy be

integrated analytically. They are

- 2x
o)

celz(q)dn ;'“‘rzo éi)l(&"*l)

2
—

[o o)

Ip= | eep(man - "r'; ‘éﬂl
. N o

13 = Bei(n)dn = x rZ B‘,(;z_l'

sei?(ﬁ)dq n OZO (l) (21'+1)

| @
A8}
[}

- ' :

. F

) ll‘ L 1 -
R OFp ot ooy oty ©

ce (m)se, (a)an = - L: Iﬂl g{l(am);

'I6 = cel(n).sei(q)dn = "- I5 -

o
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2 . ) . ' l-. . )
2 o . o : o
=f selz_(q) cos 2ndn = {- -;'- Bil) + ero .g.B-l 223} - : .

2
cel( n cos 2ndn

o o) V2 v
2 e 2
*' = TS
ce¥ (n)dn = E 32r+1 (2r+1)

= ce(n)dn = x L L |
2 w 2
= ce‘g (q)dq,:.lx Z 355.3) (21‘+1)

r

2 2 #(3)2
°e*3(")‘.1" = rgo Boril

Y oW o.kﬁ?-ogﬁg’ dﬁ:’i’ o OLQ’ oy A B
* ' -

' : o
cei'(q) cez;'(n)dq = - Z=: B_ B*éizi(?.‘r+l)

ce¥(n) ce*(n)dn -" n 23 Bﬁiii BEifi

P . (s ) " 2 ~
1%2 = x(1) (2r+1)- "
sel (g)dn == Z A2r+l +1)
- r=0 o -

8

2, . e
sex“(n)dn =x ) A%
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A*(l) A*( 3) (2r+l)2

sey'(n) se¥(man = - x ) A ap )
0

gt

r

. gf WD) 4 (3)

se;(n) éeg(n)dn

ceg(n)'seé!(n)'dﬂ . 1']'_9.-_

2(q5cos 2qd1:]: = - ,([_;: Ai(l)z " i) *(l) (l)

]
®
%

2r+l 2r+3

(3)2' 2 3 3
.+ Z A5£+J). 21('+;

i

)
oA
7 )
ol
Hx

seg?( n)cos 2ndn

20 2r+l 2r+l

ot segtan - - x § ) af.ii<?r+1> |
cé{(n) sei(n)dn =-1I '
cet’ (o sei(ﬁ)dq -x 52:_ 22{ zf'ﬂ(eruf

i'(-n) ,c.§§(n).dfi = - I'.i'sk
o () segrlen = b Asf.iim)
cé{(n:) se; (n);in' --1,
g £ e

i
]
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I - f se*('l)ﬂe*('l)cos 2ndn - -;-[Al A1 ZO(AQMAZS%*AZQ Zﬁf;’} .
0 ' ‘ '

PO o 1'*(1)2 & #(1) 1) | -
;= ce¥ (n}c95'2ndnj= | 2: Borsl B2r+3]

0
- oy 2 @ |
| ,Ié=_[i cegz(j)cos'2ﬂdﬂ'= X3 B*(3) Z; B;ifi ;izl]
) : CoT y -
[
0

=3

* * _ X #(1)_x(3) *(l) *(3) *(3) *(1)
ce (q)ce (q)cos Q“dn [B B * Z: (Bar+132r+34'32r+l 2r+3)

The prime signifies'theiderivative of fhe function with fespect to g .
The * indicates that the argument r? of the Mathieu functions or the

expansion coefficients is (ﬁ- - k )q cosh® & /4.

B. 2 Radial Integ;als Involvigg Modified Mathieu Functions : R A : ." 2

A1l these radial integrals are integrated numerically by Simpson' s
: Rule (50) The normalized dimensionless variables.

N S X

xe ye L
‘2. = —_— » ., 22 = ————
2‘cosh gv S 2 cosh-go

_ ) s o .
.where 'x2 q cosh § (kl B ) and ya‘ q cosh [ (B -k ) are used.

As the ellipse ayproaches a circle, ‘2 —a-x 5— and z, e Y ;— .. The
: o

1
o _ , o
: limits of integration instead of being from O to g and go to o
- e &
. will be from -——33———— “toV EE——-—_ and - ye? to o0 respec-
. “cosh §6 2 -cosh go - 2 cosh §o : : SN
tively ' Assuming ' ' ‘ ' '
' ' SN T g . 3 : : -
. : . e O ‘ (o] : :
X _ xe ._ Ye . and b

e, = a, = b, = =
"1~ 2cosh ¢ ? "2 2 cosh L, ’ Y " 2 cosh & 2 !

'welhave the following radial integrals
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- -4z,
: pi
Cgl( zl) z,

az -

1l

. -A- \ V:" | . lll
Cel(zl/.Sel\zl)gzl

zl)dzl

L h cosh® g z

2
Sel(zl)

Cei(ii) [ -

] 2
_ & cosh gozlx

o o dz
'Fekl(,za) —z—-

Fek' (z )z

4 cosh” 6,21

a2, 2
4 cosh gozl.

L]

2-.
2

%2

s dz
'F¢F3$ Zy) —-

2
2
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AU X | |

1, - f Fek) (z )z 25

‘ "-bll--"' o
b

| | j_g L ey
s, Tl Teln) 5

- .:N

_‘['2‘ " o . a4z
. _ vk ! ek!(z,)"
Iy = | Fekj(zy) Feki(z,) -
B % SRR

-Nl
-

S -b2 5 ’ dfza i
N TR
b

: 2
SRS 2
, . - 1 )
128 = f Gekl (22) zzdz
by

f Gekz(z )

o
o

2
1 & )

‘w
(@]
o
o

o
n

dz

G':ex;(.za’.)_ Gek(2,) "2“2'

w
= .

m!—'

. -"-' w
[\M]
U-Rﬁo“ e I

Gek]_(z ) Gek (22)22‘122

[

n

Fekl( 22) Gekl(z )dz

w




- -197-

u = jﬂ Fekl(z ) Gek (z )dzg-: ‘
: b - -
b

Fek (22) Gekl(ZQ)dzat'i .

'\) .

o) rentey atrar,

-

N -

Fekl(;e) Gek3(22)§22

T = :
=~
o

e :d-¥+;o?'

’_l

n

Feki(zz) Gek3(22)d?2

S LU
_01 .
(-

Fek (Z ) Geké(zz)dza

RIS

w- .

\o N
o o .
oo c>~—"2;f "UF_""qf

Feké(z2) Gek3(22)dz2

’_l

_ 2, 2 2.,
b cosht 27 -y | 4z,

S B
E-

.o -

,;‘,ﬂ%o‘ o
R

'_l

Gek (z,) - - ‘
e | h_coshzﬁo 2y 4 72

ka2, 22
"k cosh_;o 2T Y

N

Q
0
N .

2

=
b

. T R
L L posh,io zgf‘ v

gy

& cosh g zg f?§2:5?

], d22:>&
u cOSh g P

m .
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w

Geki(ig)'Gek () [
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o
&“"jgd

.—J

' N coshzg 22 ?Hya:--a;::  |
Fek 2(2 ) [ — 2 }‘
L h.cosh.§° z
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' 2
2 : 4 cosh“t z_.~ y 7. dz,
b b coshg 2y ). ST

2
1

T =

2 | b ocosh®y 22 - yBq cap, o TULET e
Fek, (z,) Fek (22)[ SROC - T "~J7';,2“ I SR
o T -3 2y L

.4 cosh 50322?'

The prime on the modified Mathieﬁ’funétién:1ndié8ﬁés"thé_défivati?e éfAi,i ?T  B

.the:function with respect to its aiguméht,‘f
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