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STEADYSTATE ELECTRON DENSITIES FOR IRRADIATED PLASMAS

ABSTRACT

Steadystate electron density profiles have been calculated for dif-

fusion- and recombination-controlled plasmas irradiated by an external

source of electromagnetic flux. In the former case the internal electron

generation caused by progressive beam absorption is balanced by electron

diffusion across the plasma boundaries. In the second model the beam-

stimulated electron growth is limited by recombination.

0)

The efficiency of electron diffusion and consequent wall recombina-

tion as a heat transfer process is calculated and found never to exceed

30%. Furthermore, the nonlinear diffusion model gives rise to a stability

criterion below which no steadystate electron configuration is possible.

(U)



I. INTRODUCTION

Previous reports (1,2) have dealt in detail with the Dynamic Shield

Response (DSR) of a slightly ionized plasma when subjected to electro-

magnetic radiation. The general features of the interaction are:

(1) a strong, initial thermal coupling just anterior to the resonant

plasma frequency depth,

(2) a local increase in electron density coincident with the heat

deposition which in turn affects the pattern of radiation attenuation,

and

(3) a consequent upstream movement of an ionization front resulting

from the electron growth which inhibits deep plasma penetration of the

impressed radiation.

(U)

These DSR characteristics are displayed in Figure I for a nonuniform

plasma with an initial exponential electron density distribution.

(U)

Models previously treated considered only electron growth effects,

i.e., all relaxation mechanisms such as diffusion, recombination, and

radiation were neglected. In this report the influence of diffusion in

altering the electron density profile will be considered. Passing ref-

erence will be given to recombination and a time-dependent growth limit-

ing process as well.

(U)
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II. THEORY

By analogy with heat flow, we may add to the fundamental electron

growth equation a diffusion term proportional to the divergence of the

electron density gradient. Thus in our onedimensional model we have

t = F aE2 + D 6X 2l2

where n is the electron density

f is the ionizing collision probability

P, is the molecule ionization energy

oE2 is the electromagnetic flux extinction

D is the diffusion coefficient.

(U)

In this first order treatment we assume the diffusion coefficient

is constant, leaving its exact magnitude unspecified.

(U)

We seek steadystate solutions of Equation (1) which, of course,

implies that )n/t = 0. This simplifies the hyperbolic partial differ-

ential equation into an elliptic type involving only one independent

variable

d2

d n f aE2 (2)2x- = - o E2  2

dx2 u

(U)
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In our model electrons are generated at varying rates inside the

plasma. The solutions of Equation (2) will give us those configurations

for which the outward diffusion of electrons at the boundaries exactly

balances their internal growth.

(U)

Unfortunately, the steadystate assumption implies equilibrium and

thus says nothing about the time taken to approach equilibrium. This

would involve a complete solution of Equation (1). However, some ap-

preciation of the magnitude of the growth constant may be gained from

earlier nondiffusion work(2 ) where the time constant T was shown to be

-1 Q vfF v- nvC  (3)

where: F is the flux incident from large x

nc a (rom/e 2)(X 2+v 2) is the critical electron density

e,m are the charge and mass of the electron

71 (/E) is the index of refraction, the squareroot of

the ratio of the dielectric constant of the medium and

free space

X,w are the in vacuo wavelength and radian frequency of the

electromagnetic radiation

v is the collision frequency of the electrons with the

numerically preponderant neutral molecule background.

(U)
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We take for our model an infinite plasma slab of thickness i. The

electron densities at the boundaries 0 and L are to be kept at zero.

This corresponds to infinite sinks for the electrons diffusing to the

boundaries. A monochromatic, steady flux F of frequency cu is incident0

from left to right on the slab as indicated in Figure 2.

(U)

As in the previous work we assume the plasma absorbs and transmits,

but does not reflect. This enables us to use the WKB approximation which

transforms Equation (2) to

d2 fF x
dx- - - K exp - K d (4)

2v n
where K - - - is the absorption coefficient, a linear function of

TIX co nc

electron density in this approximation.

(U)

Multiplication by the factor K/n simplifies Equation (4) to

d = - exp K dx),

(5)
fF

1 0 2t v
A n D jX w

where A is a constant having the dimensions of L
2

(U)

6
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Our task then is the solution of the integrodifferential Equation

(5) yielding the absorption coefficient (and hence the equilibrium

electron density)'as a function of position for various plasma models,

(U)

We begin with the optical depth substitution

x
Kdx

which eliminates the integral but increases the order of Equation (5).

Thus

3 _ exp(-) d. (6)

dx3  A dx

(U)

This equation integrates at once to

d2 exp(-t) - exp(- m)

dx 2  A

where the constant gm is the value of t for which K =K m i.e., (dK/dx)

(d 2/dx2 ) = 0.

(U)

The integrating factor 2dt/dx enables us to perform the second inte-

gration

8



2d~jjd (j 2
dx x dx) = [exp(- ) - exp(-Em)] d x

dxdx 2 d /1 A m dx

(U)

This leads immediately to

K 2 dx) = 2 [l-exp(- ) - exp(-gm)] (8)

where we have determined the constant of integration by requiring that

K = (d /dx) = 0 at the boundary = 0.

(U)

Equation (8) expresses the absorption coefficient as a function of

the optical depth. This is not the form we want. We wish to express K

as a function of position. Before continuing, we note that the imposition

of the second boundary condition K = 0 at = y, where is the total

optical thickness of the plasma, serves to determine as a function of

9m. Thus, from Equation (8) at x = I we must have

1 - exp(-k ) EL exp(-km) = 0 (9)

The solution of this transcendental equation which we shall require pres-

ently is plotted in Figure 3.

(U)

Returning to the main problem, both the absorption coefficient and

position can be expressed as parametric functions of the optical depth.

9
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From the definition of the optical depth we have

dx =_ ,x = I f=I t dL
K ' 0  K() ' K()

where A is the plasma thickness.

(U)

By using Equation (8) and Figure 3, we obtain the definite integral

relating the plasma thickness to the total optical depth of the plasma

[1-exp(-t) - exp(-m)]-l/2 d (10)

This quadrature has been performed numerically and is displayed in

Figure 4. Although the integrand diverges as t approaches 0 and t,

simple analysis shows that the integral remains finite. By appropriate

expansions of the integrand the following limiting values can be found:

= r2 for g<< I,

AF2 2t, + 2 An 2 for .>> 1.

Note the interesting result that I (2/A) remains finite as approaches

zero.

(U)
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Finally, in Figure 5 we have plots of the absorption coefficient

(electron density) against position for various fixed values of the

plasma parameters. The ordinate is obtained from the relation

K 2A-- = [l-exp(- ) - exp(-m)] 1/2

while the corresponding abscissa follows by numerical integration from

f t [l-exp(-t) - t exp(-gm)] " I / 2 dt
-: 0

20t [1-exp(- ) - t exp(-MW)]-1/2 dg

(U)

Our theory for the diffusion model is now complete for, given a

plasma thickness I and the value of the lumped parameters, A, we can

uniquely specify the equilibrium electron density distribution. From

Figure 5 we note that the equilibrium Jensity is symmetric about the

midpoint for small total optical thickness kV or equivalently, for low

values of I 4(2/A). As, for example, the incident flux F increases,0

the equilibrium optical depth grows as well with the profile becoming

skewed toward the incoming beam. The steeper slope adjacent to the

incident flux increases the electron diffusion out at this boundary

relative to the diffusion at the opposite surface.

(U)

Thus, qualitatively, by increasing the electromagnetic flux we

augment the diffusion at the outer boundary with little effect in the

13
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plasma interior. Thus the nonlinear plasma response tends to thwart ef-

forts to alter inner transport behavior.

(U)

These conclusions are rendered more quantitative by conidering the

efficiency of electron diffusion as an energy transfer mechanism. We

will assume that the electrons reaching the inner surface at x = Z re-

combine, yielding up all their ionization energy in the process. The

ratio of electrons reaching the interior boundary to all those being

created in the plasma is, from Equation (7)

dK/dxjx=i exp(-t) - exp(-t,)

IdK/dxI x=O IdK/dxI X=I I - p-

(U)

On the other hand the fraction of the incident flux going into the

production of electrons is

f 7E2 dx
I,"F - = ff K exp - K dx dx = f t exp(- ) dtF 0 0, ( 0

- f[l-exp( 9)] (12)

(U)

The efficiency is the ratio of the heating rate of inner wall re-

combination to the incident flux and is given by the product of Equations

(11) and (12)

15



eff = f[exp(-g ) - exp(-t) (13)

(U)

The ionizing collision probability f is, of course, less than unity

and for electron temperatures of several electron volts is of the order

of 0.1(2). Figure 6 is a plot of the efficiency as a function of equi-

librium total optical thickness. The maximum attainable efficiency for

f = 1 is 30% and occurs at g = 1.79. For large optical thicknesses

the efficiency drops off inversely with leading to

_ f (2A)
eff = > 1

(U)

As the total power F is increased the total energy transferred0

through wall recombination increases as the square-root of F0 , a result

which follows from the expression for A. Thus

fFo- = const(fFo) (14)

where is the wall heating rate.

(U)

This conclusion most certainly overestimates the rate of increase

of wall transfer with higher flux because of the neglect of reflection.

From Equation (7) we see that the slope of the density profile at the

outer boundary increases linearly with the incident flux

16
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d =- l-exp (-) I

for >>l (15)dx _- A A I

(U)

The discontinuity in slope at the boundary will tend to reflect the

incident beam with increasing effectiveness for increasing flux. This

will temper the growth factor in Equation (14), so that the squareroot

wall transfer dependence on the flux should be viewed as an upper limit.

(U)

One unexpected effect merits discussion. This is the fact that

(see Figure 4) the nondimensional parameter I %(2/A) approaches the finite

value n as the equilibrium optical depth g tends towards zero.

Physically this implies that there are no stable equilibrium confiaura-

tions when the followina lumped plasma parameters are less than unity

2f

2 <1 (16)
v n cD nX

(U)

Let us imagine a plasma being irradiated with an increasingly in-

tense beam. Since the ionizing collision probability is a monotonic

function of electron temperature and hence of incident flux, there will

always be a power range satisfying this inequality. Wall transfer at

this flux intensity would therefore occur only in some unstable, un-

steady fashion. We are forced to conclude that no steady diffusion

18



pattern can be established until the power level determined by the in-

equality is exceeded.

(U)

We turn now to treat another electron relaxation mechanism, viz.,

recombination within the plasma. The fundamental equation in this case,

neglecting now diffusion, becomes

&n f 2 2 (17)
~t= - E -pn (7

We have assumed the recombination rate is equal to the product of a

generalized coefficient p and the square of the electron density, reflect-

ing the fact that deionization must involve collisions between charged

particles.

(U)

The steadystate configurations are then the solutions of the equa-

tion

2 fF 
x

n - K exp K dx (18)

(U)

By making use of the proportionality of the absorption coefficient

and electron density, we can transform this equation to

K = K0 exp K dx (19)

19



where

(2X c2 fF

K = n

is the value of the absorption coefficient at the outer boundary x = 0.

(U)

Using elementary analysis we readily find as solutions of Equation

(19) the family of hyperbolas

K

K o0 (20)
0

(U)

Figure 7 is a universal plot of these recombination-controlled

equilibrium electron density configurations. Once again since the beam

interaction is strongest at the outer boundary we find an electron

maximum there having the finite value

fF
n =- Y (21)

This maximum electron density is, among other things, directly propor-

tional to the electromagnetic flux.

(U)

As a final model we treat a time-dependent electron profile growth

which perhaps logically belongs in a previous report (2) Ignoring all

20
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relaxation effects, the fundamental growth equation can be written, say

for our infinite sink model irradiated in the positive x-direction

t o=-E2 = f F Kexp K dx (22)

(u)

Strictly speaking this equation is invalid since it predicts, for

example at the outer boundary an unlimited exponential growth of electron

density. The correct form includes a factor which accounts for the fact

that the probability of an ionizing collision decreases as the medium

becomes ionized. Thus we can more correctly write the growth equation

as

6K exp xK dx) (23)

where N is the number density of neutral molecules and positive ions

(assumed singly ionized).

(u)

A closed form solution of Equation (23) appears impossible to ob-

tain. The solution at the outer boundary, however, follows readily by

elementary integration

N (24)
+ exp(-t/)-)] ")

22



where n0 is the initial electron density at x = 0. Thus the plasma at

the boundary approaches asymptotically with time the finite, completely-

ionized density n = N.

(U)
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III. CONCLUSIONS

The steadystate electron distribution has been calculated for a

confined plasma in which the internal electron generation is balanced by

diffusion across the boundaries. The profile is asymmetric with the

steeper slope at the outer boundary where the radiation makes contact

with the plasma. An increase in the flux density increases the equilib-

rium total optical depth, steepening the slope at the outer boundary but

causing little change at the interior surface. The efficiency of wall

recombination as an energy transfer process can never exceed 30%. At

best, ignoring reflection, the wall heating rate cannot rise faster than

the squareroot of the incident flux. If the product of the plasma thick-

ness, ionizing collision probability, and incident flux falls below a

certain critical value, no steadystate electron configuration is possible

and the profile becomes unstable.

(U)

For a plasma in which the electrons are internally formed through

impact ionization and lost through recombination, the equilibrium pro-

file is hyperbolic. The electron density has its finite maximum at the

outer plasma boundary trailing monotonically downward with deeper plasma

penetration.

(:0
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