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FOREWORD

1. The broad objective of the research project was to investigate

theoretically and experimentally factors which determine the performance

of linear beam microwave tubes and to find means of improving performance.

2. The contractor studied such factors as beam-circuit interaction,

interaction circuits, beam behavior, c-w and wide-pulse cathode operation,

X-ray generation, large-signal analysis, nonlinear space-charge effects,

harmonic analysis, klystron gap effects, spurious output generation, mode

probing techniques, and other phenomena related to microwave tube oper-

ation, the emphasis lying predominantly on the klystron.

3. The information should prove of interest to the microwave tube

industry and ultimately benefit all users of beam devices. The results of

the work not only provide more insight into large-signal phenomena, the

causes of spurious outputs, and cathode limitations, but also indicate design

criteria and experimental techniques which will aid the designer to achieve

desirable characteristics as well as minimize those which prove objection-

able. A possible method of controlling r-f enhanced X-ray generation

should be particularly of interest in the design of klystrons for operation

in the super power levels. A method of reducing the coupling of higher

harmonics from the beam to the circuit could be a major step in reducing

mutual interference problems that are proving so detrimental to system

performance in dense electromagnetic environments. Interesting obser-

vations of cathode behavior under bombardment conditions are noted.

These help explain the mechanism of cathode destruction under adverse

conditions. Measurement and probing techniques using perturbation methods
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are discussed in detail. The report "Nonlinear Space-Charge Wave

Theory of the Radially Finite Electron Beam" is an analytical treatment

of nonlinear behavior of space-charge waves taking into account the radial

boundary conditions. Though the study was limited to nonovertaking con-

ditions of individual beam electrons, the theory sheds further light on

low-level phenomena contributing to the generation of higher-order har-

monics, output phase-shift variations as a function of drive, and other

important factors affecting the behavior of 10": type devices.

4. The contract supported a theoretical and experimental effort.

This involved the fabrication of considerable laboratory apparatus associated

with the tests; no hardward end items, however, were required to be

delivered.
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FINAL REPORT

PART I:

GENERAL



ABSTRACT

This final report consists of a collection and discussion of seven-

teen separate technical reports. They are concerned with basic studies on

beam-circuit interaction, interaction circuits, electron beams, and cathode

phenomena. The main purpose of these studies was to increase the under-

standing of such important phenomena as spurious-signal generation, X-rays

caused by r-f induced high-speed electrons, cathode limitations, and related

phenomena.

Experimental Studies of Beam-Circuit Interaction

Velocity wave measurements were made on an almost perfectly fo-

cused Brillouin beam modulated by a cavity gap. A decrease in the maxima

of the wave were observed as a function of distance from the modulating

gap for small drive signals. This effect became accentuated as the drive

level was increased. It was found that the wave measurements were not

g-eatly affected by an increase in the magnetic field above the Brillouin

value but below the Brillouin value, a locking of the plasma wavelength

with the beam scallop wavelength was observed.

The interaction tester devised proved to be an excellent source of

accurate experimental information on the wave properties of electron beams.

It should prove invaluable in large-signal research and in studies of both

conventional and unconventional interaction structures.

Theoretical Studies of Beam-Circuit Interaction

In the space-charge wave analysis different simplifying assumptions
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were used to obtain solutions of the harmonic component amplitudes of the

beam current as a function of drive level, space charge, and drift distance.

A small-signal relativistic theory of gaps, important in an understanding

of klystron operation, was also developed using this approach. In the bal-

listic analysis, the large-signal behavior of electrons in the first gap, in the

drift region, and in the second gap was analyzed, both in closed form and

graphic form. These results are important in providing an insight into large-

signal phenomena and in predicting the behavior of beams of low perveance.

In particular they indicate possible control of r-f enhanced X-ray generation

by means of a velocity filter.

In the interaction experiments that were correlated with the theoretical

work, it was shown that a confined-flow space-charge-wave theory, which

includes the higher-ranking waves,accurately describes the behavior of a

Brillouin focused beam for normalized drive levels up to 30 percent.

Circuit Studies

The circuit studies wt re concerned with the design of klystron cavities

that would minimize the coupling of the higher harmonic currents in the beam

to the cavity, so as to reduce the output of spurious harmonics by the tube.

These studies give a procedure for designing a re-entrant cavity, which, while

having high impedance at the fundamental frequency has low impedances at

the higher harmonic frequencies. A symmetrical output section is required,

however, but several practical output structures appear to be feasible. Rela-

tive measurements of the harmonic output power of an unsymmetrically load-

ed klystron are described.
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Beam Analyzer Studies

A detailed description is given of a versatile precision beam tester

constructed for automatic measurements of the properties of a magnetically

focused beam. Described also are the results obtained on an almost per-

fectly focused Brillouin beam of unity perveance and 5 kv. This includes

current density contours, scallop amplitude, and wavelength measurements,

all as functions of magnetic focusing field and beam voltage. The measured

cyclotron and scallop wavelength were found to agree with the theoretical

values within two percent and seven percent, respectively. The same

equipment could be used for the studies of the beam-circuit interaction and

could also be readily adapted to study hollow beams.

Cathode Studies

A basic study was conducted in which an ion gun developed for the study

was used to perturb the equilibrium of a cathode by bombarding it with various

kinds of high-voltage ions. This is a basic research tool which should be

invaluable in cathode research. Bombardment of the cathode with ions of

oxygen, carbon monoxide, and argon shed new light on the operation of the

cathode at high voltages. It was found that when a cathode was bombarded

by oxygen ions, the resistance of the cathodes was affected as rapidly as the

emission, indicating that the effect spreads throughout the oxide coating in a

very short time.

Studies were also conducted on test diodes operating under conditions

simulating high-power klystron operation. An analysis was made of the gases

evolved during tube processing and under pulsed and continuous operation.

The study included an analysis of the gases evolved during cathode arcing,

the main constituent of the gas evolved being carbon monoxide.
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INTRODUCTION

The broad objective of this research project was to investigate, both

theoretically and experimentally, factors that are important in determining

the performance capabilities of high-power linear-beam microwave tubes

and to find means of improving their performance. The specific objectives

were to include basic studies of beam-circuit interaction, interaction circuits,

electron beams, and cathode phenomena. The main purpose of these objec-

tives was to increase the understanding of such important phenomena as

spurious signal generation, X-rays caused by r-f induced high-speed elec-

trons, cathode limitations, and related phenomena.

The Final Report consists of a collection and discussion of seventeen

separate technical reports, which have been issued as part of the contract

requirements since its inception on April 1, 1957. For convenience, all of

the reports have been included and form Parts II, Il, IV, and V of this Final

Report. A brief discussion and summary of the individual reports is included

as part of the discussion section to facilitate an over-all view of the project.

An important part of the research program was devoted to studies of

spurious output in klystrons. The high-power klystrons developed for radar

and communications during the past several years have been operated at higher

and higher power levels. The necessity for high efficiencies at such high

power requires operation in the nonlinear region, which leads in turn to the

presence of rather high harmonic power in the tube output. In order to analyse

the problem of the spurious outputs at the harmonic frequencies completely,

two separate studies were necessary. One study, both analytical and exper-

imental, was to investigate the impedance of the klystron cavity near the lower
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DISCUSSION

A. Beam&-Circuit Interaction Studies (Part II)

The basic problem in linear beam microwave tubes is to convert the

d-c energy contained in the electron beam into useful r-f energy. This is

accomplished by arranging, within the tube, a suitable interaction between

the electron beam and an electromagnetic field. Since all of the properties

of the tube are determined by this interaction, detailed studies of beam-

circuit interaction represent a major portion of the research.

There are many interaction theories, all of which make a large number

of assumptions and approximations. Several of these theories have been

developed further as part of the research project, and an evaluation is pre-

sented that attempts to place these results in their proper perspective. The

difficulty in considering the multitude of theories is the proper assessment

of the degree to which they can predict actual performance. It probably can

be safely stated that, while much has been accomplished in the field, most of

the theories developed are essentially only guides in predicting the actual

operation of the device.

To help in this assessment an experimental research program was

conducted parallelling the theoretical studies. Some preliminary measure-

ments were made of the performance of completed tubes, but it was found

that unexplainable effects often obscured the study or that suitable tubes

were not available for testing. For this reason a precision demountable

interaction analyzer utilizing an almost perfectly focused electron beam was

constructed as a research tool. While the results to date have been limited

to small-signal studies, they have readily shown that the space-charge-wave

approach to medium-power klystrons is an excellent one. The experimental
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harmonics. The other study, also both analytical and experimental, was con-

cerned with the nonlinear beam dynamics giving rise to harmonic currents

in the electron beam. Thus knowing the currents and the cavity admittance

of a cavity at the harmonic frequencies, the harmonic output could be calcul-

ated. The results ultimately would be expressed in terms of the load imped-

ance at the harmonic frequencies referred to the cavity gap. The beam dy-

namics analysis is discussed in Part II and the microwave cavity design is

discussed in Part III.

Also included in Part III are some recently obtained measurements of

the harmonic output of a high-power klystron and a description of the technique

of measuring the klystron gap fields by perturbation of cavity resonance with

a metal or dielectric bead.

The work on the ballistic analysis included in Part II was carried out

to investigate the velocity spread in modulated beams, which is of consider-

able importance in r-f-enhanced X-ray generation. Also discussed are some

general theories of large-signa dynamics of electron beams. The general

theories are of the greatest importance, since they ultimately lead to an under-

standing of important phenomena, such as, efficiency characteristics, phase

properties, bandwidth properties, drive characteristics, etc.

Finally electron beam analysis is discussed in Part IV, and some

of the fundamental problems of high-voltage, continuously operated cathodes

for high-power linear-beam tubes are discussed in Part V.
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results have been so rewarding that these highly precise studies of the large-

signal modulated beam are presently being conti.aued. There is considerable

promise that the interaction phenomena of a moderately high-power linear

beam tube can be well understood. This should lead to an accurate evalua-

tion of many of the proposed interaction theories and possibly will suggest

refinements in the theory or new analytical approaches.

Part II contains the complete report on this work by A. S. Gilmour

entitled, "The Velocity Distribution in a Velocity-modulated Electron Beam

from a Shielded Pierce Gun, " (Research Report EE 507). In order to carry

out the velocity-modulation studies, a gridless-gap cavity was used to mod-

ulate the velocity of the electron beam described in the study of the beam

analyzer reported in Part IV. At drive levels as high as a = . 30 the velocity

modulation on the beam produced by this cavity changed the beam diameter

less than eight per cent. Consequently, a confined-flow theory including

the effects of higher-ranking waves and the manner in which they are launched

in the modulation region was developed and is presented. The predictions

of this theory are compared with the velocity standing-wave data taken from

the modulated electron beam. It is found that the decrease in the maxima

of the velocity standing wave as a function of distance is accounted for very

well by considering the higher-ranking waves. Moreover, the presence of

these waves is the reason for the minima of the velocity standing wave not

reaching the d-c beam level. At higher drive levels, the data presented

show that the maxima of the velocity standing wave decrease much more

rapidly than at low signal levels. It is suggested that at least a second-order

theory be carried out to explain this behavior.

Data are also presented showing the behavior of the velocity standing-
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wave pattern for magnetic field levels above and below the Brillouin flow value.

These data show that the standing-wave pattern for the magnetic field above

the Brillouin value is nearly the same as that at Brillouin flow. The major

changes are a shortening of the plasma wavelength, which results from the

decreased beam diameter, and a decrease in the velocity standing-wave

maxima for high drive levels. The data show a considerable amount of inter-

ference between the d-c scalloping and the plasma oscillations for magnetic

field levels below the Brillouin level. In fact, under certain conditions the

plasma oscillation locks onto the d-c scalloping in a manner similar to that

in which an oscillator locks onto the resonant frequency of a resonant cir-

cuit.

The beam-circuit interaction investigation has included a number of

theoretical studies devoted to the nonlinear space-charge-wave analysis of

electron beams. Among these is the report by P. Mclsaac, "Nonlinear

Space-Charge-Wave Analysis," (Research Report EE 513). This report

considers a planar klystron (no transverse variations in the drift regions)

with the electron motion confined to the axial direction by a strong magnetic

field, takes into account the space charge, and is restricted tA beam modula-

tions below the electron overtaking point. An arbitrary number of gaps and

drift regions are considered. The objective of the study was to analyze

the nonlinear behavior of the electron beam in the gap and drift regions as

well as the interchange of power in the gap regions with external circuits.

By assuming a magnetic wall boundary for the electron beam in the drift

region, the planar solutions were obtained for a beam of finite cross section.

This allowed attention to be directed to the nonlinear behavior and the power

interchange without the complexity of transverse variations, so that the
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analysis could be pursued considerably further but with the sacrifice of

applicability resulting from using a highly idealised model.

In this report, the general problem of multiple gap and drift regions

was formulated with excitation fields having arbitrary time variation at

each gap. An exact solution was obtained to this nonlinear problem using

a particular set of independent co-ordinates, but unfortunately the solution

is not suitable for numerical computation. The main portion of the report

considered the approximate solutions for c-w excitation using the z, and

t co-ordinates, which are suitable for computation. These solutions were

obtained by analyzing a series of particular cases of interest for klystron

theory.

The first case was that of an ideal (i. e., infinitesimal) gap followed

by a drift region. A first-order solution was obtained which yielded the

harmonic component amplitudes of the beam current of all orders as a func-

tion of drive level, space charge, and drift distance. The onset of sat-

uration of the fundamental component and the rapid growth of the harmonic

amplitudes at the electron overtaking point was revealed. A second-order

solution, while not appreciably affecting the harmonic amplitude predicted

by the first-order solution, yielded a phase shift and a d-c polarization com-

ponent that were dependent on the drive.

The second case was a gap of finite length followed by a drift region.

The gap transit angle was computed and, to the first order, the amplitudes

of the various harmonic components of the electron beam current. The

dependence of the harmonic growth on the gap length, as well as the drive

level, space charge, and drift distance was examined. For short gaps,

the beam loading was computed.
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The third case was of two ideal (or short) gaps separated by a drift

region, i. e., an idealized two-cavity klystron. The power interchange and

especially the power delivered to the output load was studied as a function

of the parameters. The onset of saturation was noted, and some of the fac-

tors influencing the power output were examined.

S. Olving also considered the nonlinear space-charge-wave analysis

of planar klystrons in the report "On the Nonlinear Theory of the Plane

Klystron Tube, " (Research Report EE 500) in Part I. This study, pursued

independently of the study just described, uses as a model a confined-flow

electron beam of infinite cross section, which crosses an ideal gap followed

by a drift region. An exact solution was obtained for arbitrary (in time)

velocity modulation of the beam at the ideal gap, and then an approximate

solution, which is more useful for numerical computation. For sine-wave

modulation, the results obtained are essentially similar to those obtained

in the report by McIsaac. In addition, Olving considered d-c modulation

of the electron beam, comparing the infinite beam with the finite beam in

this regard, and also examined saw-tooth modulation of the beam. Saw-

tooth modulation might make for enhanced efficiency, and an estimate of

the improvement in the efficiency that might be attained was made.

The nonlinear space-charge-wave theory of an electron beam of finite

cross section passing through a conducting drift tube is presented in Olving's

"Nonlinear Space Charge Wave Theory of the Radially Finite Electron Beam,

(Research Report EE 497). The electron beam was assumed to be confined

by a strong axial magnetic field and its velocity modulated by an ideal input

gap. Attention was restricted, as before, to modulation levels below the

electron overtaking point. After obtaining the exact nonlinear partial differ-
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ential equation for sinusoidal modulation, a method of successive approxima-

tions was used to obtain a solution. The first-order solution was the usual

linear space-charge-wave solution and was used to obtain a second-order,

nonlinear space-charge-wave solution, which yielded the fundamental and

second-harmonic components. The resulting nonlinear space-charge waves

revealed a nonperiodic variation with distance along the drift tube, and, in

general, the second harmonic contained terms which grew linearly with

distance. In addition, by considering the thin beam case, the particular

space-charge reduction factors employed by Paschke (and apparently chosen

somewhat arbitrarily) for his thin beam analysis are shown to be, indeed,

correct.

Earlier studies on the nonlinear space-charge-wave theory for elec-

tron beams having finite cross section and confined flow were made by W. E.

Blair and J. Romaine. In the report by Blair, "Harmonic Analysis of Elec-

tron Beams in Klystrons, '° (Research Report EE 458), accurate predictions

of velocity modulation for gridded gaps under large-signal conditions are

made. These predictions include the effects of the signal on the transit times

of the electrons.

Using the thin-gap approximation of this velocity modulation theory, the

report then derived, following the successive approximation approach of

Paschke, the nonlinear space-charge-wave solutions in a confined-flow drift

space. The fundamental and two harmonic current components were each com-

puted as functions of drive and distance. The variations of these components

with distance depended on several waves of different plasma wavelengths, and

were in general very irregular. In the limit of a large beam diameter, com-

pared with a space-charge wavelength, the variations were regular and were
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like standing waves of constant peak amplitude in distance and having the same

period as the fundamental plasma standing waves. In the limit of a thin beam

compared with a space-charge wavelength, the variations were also more reg-

ular and were like standing waves whose peak amplitudes varied as the dis-

tance to the (n-1) power for the nt h harmonic and that had a period that

was I/n as large as that of the fundamental-frequency plasma wavelength.

At intermediate thicknesses of beams, the results showed a general trend

of rising peak amplitudes for the first fundamental plasma wavelength, with

higher harmonics rising faster, but being smaller in amplitude, and having

relatively irregular periods.

In addition to this work on nonlinear space-charge waves having a

simple plasma-frequency reduction factor, work was done using the different

space-charge reduction factors for the fast and slow space-charge waves.

This work showed that the difference in assumptions gave small effects which

should be of only minor significance in actual nonlinear interactions.

In the report by J. Romaine, "Nonlinear Analysis of Klystron Beams,"

(Research Report EE 426), computer programs for first-cavity, small-signal

interactions and for intermediate or final cavities and drift spaces at large

signals in a confined-beam klystron were set up. Next an analytical approach

was used. Even though this successive approximation approach to the solution

of nonlinear space-charge waves was started as an aid to direction in machine

computations, it proved to be valuable enough in its own right to be used to

predict klystron behavior directly. In this approach a simple gap-coupling

coefficient was used to give an effective modulation voltage and the resulting

small-gap approximation to the velocity modulation harmonic series. Then

with the approximation of the fundamental frequency being much larger than
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the reducedoplasma frequency, a first-order set of expressions for the funda-

mental frequency and harmonic currents was derived. The modulation approx-

imations would make the results poor for large gaps and large drives. The

frequency approximation would make the dirft-tube results poor for large

distances. The frequency approximation would also be poor for locating the

minima of harmonic currents and for evaluating their peak values.

These limited results make it possible to predict the harmonic currents,

in the first 900 plasma drift angle, up to (w/wql)(aC1/2) = y = . 73, where

the Fourier series convergence stops. At this drive the fundamental was 60

percent of its ultimate saturation value. The wql was the reduced-plasma

frequency, a was the normalized modulation voltage, and CI was the gap-

coupling coefficient. The results also predict that the fundamental current

saturated at y = 1. 63 at the 9 00 plasma drift location and,in general,could

predict the fundamental current behavior up to y = 2. 8. There was a peak

in fundamental current density at a distance that gradually reduces with drive.

It reduces to only 35" for y = 2. 8. The results agree well with ballistic

theory at small drift distances and indications are that the fundamental cur-

rent can best be computed from ballistic theory at drives larger than Y = 2. 8.

A study of the nonlinear space-charge-wave analysis of electron beams

focused by finite axial magnetic fields (and, in particular, using Brillouin

focusing) by P. Bottorff is presented in "On the Dynamics of Magnetically

Focused Electron Beams, " (Research Report EE 505). The aim of this

study was to obtain, by a method of successive approximations, the nonlinear

solution for a Brillouin beam. A third-order solution was obtained, yielding

information on the fundamental, second- and third-harmonic amplitudes of the

electron beam current in the drift tube for sinusoidal modulation at a gridless
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input gap. The analysis revealed the saturation of the fundamental component

of current at high drive, and it was observed that electron overtaking occurred

beyond the saturation drive level for this type of focusing. For particular

beam parameters, the theory predicts the growth of the second-harmonic com-

ponent with distance.

In addition to the six reports already described dealing with nonlinear

space-charge-wave theory, two other reports concern somewhat related studies.

The first, Olving's, "The Kinetic A-C Power Flow in Nonhomogeneous Rela-

tivistic Electron Beams, " (Research Report EE 499), extends the theory of

kinetic power flow in electron beams to beams with velocities in the relativ-

istic range. Chu has shown that for nonrelativistic homogeneous electron beams

the kinetic space-charge-wave power flow can be expressed accurately in terms

of the linearized space-charge-wave solutions for small-signal analysis. This

report extends this type of analysis to nonhomogeneous relativistic electron

beams, developing the relevant conservation theorems. This extension is im-

portant because of the ever-increasing power-level requirements of microwave

tubes and the conseqient increase in beam voltage into the relativistic range.

The second related report is Olving's "An Introductory Relativistic

Study of the Llewellyn Electronic Gap, " (Research Report EE 498). The

Llewellyn theory for the analysis of the behavior of electrons in klystron gaps

has long been important in understanding k]ystron operation. Olving's report

extends this theory to include relativistic effects in the linear range using the

space-charge-wave approach. This study is a basic starting point for future

investigations of high-frequency phenomena in diodes, multigrid electron tubes,

and klystron gaps, when the electron velocities are in the relativistic range.

Parallel with the studies of space-charge-wave theories, a large-signal
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extension of the classical ballistic theory was undertalken. This work is

reported in I. Turkekulls, "Ballistic Analysis of an Electron Beam in a

Klystron, " (Research Report EE 508). Although the simple ballistic theory

lacks validity at or aftier crossover because of space-charge forces and does

not apply to electron beams of finite radius because of fringing of the space-

charge fields, it has two advantages: (1) It is simple and provides an insight

into the physical phenomena, thus serving as a guide for more complicated

theories. (Z) It is faixly accarate at large-signal levels for low-perveance

beams.

The current tendency to demand higher power levels from klystrons in-

creases the importance of ballistic theory. In an experiment reported in the

literature, it has been shown that for large signals, the electron beam shows

ballistic behavior; therefore, at large-signal levels, the debunching effect

of the space-charge forces becomes less important. At the same time, in

finite beams, the space-charge forces act to enhance bunching at large signals,

by debunching inner and outer electrons differently.

The purpose of this ballistic study was to analyze the modulated electron

beam, both in the first gap and in the drift space, and to obtain functional rela-

tionships among the various parameters in analytic form. To simplify the

analysis, the following assumptions were made: (1) beam of infinite cross

section, (2) negligible space charge, (3) gridded finite gaps, and, (4) non-

relativistic velocities.

This study showed that the exact graphic analysis revealed the physical

relationships occurring in the first gap and in the drift space, but the method

is tedious and time-consuming and does not give the functional relationships

among various parameters. The method of analytical approximation to the
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graphic method, on the other hand, was demonstrated to be very satisfactory;

the second-order solution method approximated the large-signal cases well and

also gave analytical formulas which revealed information about the harmonics.

The results showed that the large-signal velocity modulation was a nonlinear

function of the depth of modulation and was inversely proportional to the d-c

gap transit angle. The difference between the minimum velocity and the d-c

velocity was greater than the corresponding difference between the maximum

velocity and the d-c velocity; the current modulation, on the other hand, was

also proportional to the depth of modulation, but first it increased and then

decreased as the d-c gap transit angle increased continuously. Both velocity

and current expressions contained harmonics at the exit of the first gap, but

this effect was more pronounced in the current expression.

The maximum value of the fundamental current found was greater than

the value of 1. 16 predicted by Webster. The point in the drift space at which

the maximum value of a harmonic occurred was inversely proportional to the

depth of modulation. These results have been shown, at least qualitatively,

in the work of others. An additional phase angle P n was introduced into the

current by the two independent components of each harmonic. The velocity be-

came more nonlinear through drift action; the extreme values did not change

considerably. This report dealt with the simplest case. Investigation of the

second gap and inclusion of the effects of space-charge and gridless gaps for

finite beams would be a logical continuation of this study.

The next important step is to obtain further precision measurements

of the properties of modulated beams, particularly at large drive levels.

These studies should suggest the proper model to assume and therefore indi-

cate the proper direction,of a new theoretical analysis. If successful, this

-16-



approach could be extended to super power and possibly investigations of

crossed-field tubes.

A second ballistic study undertaken to investigate the large-signal be-

havior of a modulated electron beam in the output gap of a two-cavity klystron,

is reported in "Large-Signal Klystron Gap Theory, " (Research Report EE483),

by W. Sackinger. He developed the ballistic theory of an electron beam in a

gridded gap modulated by a sinusoidal electric field and obtained an exact

solution for the velocity and current at the exit plane in terms of the entrance

phase. The theory was applied to an output gap with the velocity and current

at the entrance plane given by Paschke's results of the nonlinear space-charge-

wave analysis for planar klystrons. The velocity and current at the exit plane

and the change in average kinetic energy of the electron beam in the output

gap were computed for several drive levels. The velocity distribution at the t

exit plane showed two bunches of relatively high-velocity electrons per cycle.

This tends to support the feasibility of a velocity filter to extract energy from

the fast electrons and hence reduce X-rays.

B. Circuit Studies (Part III)

Within the past several years, engineers have become increasingly

aware of the serious problem presented by the spurious outputs of high-power

microwave systems. One worker has shown the severity of this problem as

related to interference caused by radar systems in a paper citing experiments

in which measurements were made on several radars to determine their power

output spectrum. All of the radars showed "very substantial magnitudes" of

power radiated at frequencies other than the signal frequency. The radars test-

ed employed both magnetrons and klystrons as the microwave power source.
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There are two broad approaches to this problem of spurious-outputs. The

first is to suppress the unwanted output by some means external to the high-

power microwave tubes, and the second is to improve the basic design of these

tubes to prevent the generation of spurious signals. The first method can be

used to improve existing tubes while the second is desirable for design of

future tubes. This phase of the linear-beam microwave tube program is con-

cerned with the application of the second method to high-power klystrons.

With respect to spurious outputs, there are two general areas of con-

cern in a high-power klystron. First, the requirements of reasonable gain,

high efficiency, and high output power will certainly result in nonlinearities in

the electron beams in the downstream section of a klystron. This in turn im-

plies that harmonics will be present in this beam. These beam harmonics re-

present a potential source of spurious output power. Second, there is the re-

quirement of coupling the r-f energy in the beam to an external transmission

line. The conventional coupling circuit, the "output cavity, " has pass bands

at higher frequencies as well as at the fundamental. These higher pass bands

facilitate the transfer of harmonic power from the beam to the external trans-

mission line.

The present-day technique of klystron design usually gives little attention

to higher-order pass bands or resonances of cavity structures. Consequently,

the approach here was to investigate the feasibility of defining optimum cavities

so as to minimize the transfer of harmonic power from the klystron beam to the

surrounding area. Thus, the ultimate goal was to suppress the spurious harmon-

ic outputs of a high-power klystron by controlling the output cavity design over a

broad frequency band.

Preliminary experiments measuring the harmonic content of a high-power
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klystron helped define the problem of spurious outputs. Two methods of mea-

suring the harmonic variations of the beam wlere originally considered: the

first, making multimode power measurements in the wave guide connected to

the output cavity; the secondplacing a small sampling loop in the output cavity

of the klystron. Considering the preliminary nature of these measurements,

the second method was chosen for two reasons: (1) It gives information about

all the harmonics present in the output cavity of the tube; therefore, the sam-

pling loop provides a method of determining which harmonics the tube is cap-

able of producing independent of the load placed on it, whereas the first method

provides only information about those harmonics which are coupled out of the

tube into the wave guide for the specific load presented to the tube. Conse-

quently , the sampling loop provides more complete and basic information

about.the tube itself than the multimode technique does. (2) The sampling

loop could easily be built and placed in the output cavity, whereas the multi-

mode power-meastiring apparatus, including the multimode load, would have

been very complex and difficult to construct. Some of the results of these

measurements are included as a note.

A theoretical analysis of klystron cavity resonant modes, also included

in Part U!, shows what possibilities there are for the synthesis of a symmetrical

cavity to reduce the responses to the lower harmonics of the klystron beam.

This cavity is of the doubly re-entrant, gridless-gap type, which is necessary

for high-power klystrons. The analysis showed that, in effect, appropriate

cavity dimensions could be chosen for a given operation frequency to displace

other cavity resonances from harmonic frequencies up to the fourth harmonic.

There were, in particular, optimum shapes of cavities which could be scaled

in size for frequency. The selection and specification of the optimum shapes

and the final scaling for frequency are described in L. MacKenzie's report.
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The unsymmetrical klystron cavity, as used in modern high-power klystrons,

was not considered in this analysis, because its mode structure is more com-

plex than the symmetrical cavity, with the result that an optimum shape would

be far more difficult to determine.

To complete this study of the klystron cavity, an accurate method for

determining the interaction fields of the cavity's gridless gap must be used.

The perturbation of this field by beads was discussed theoretically in L.

MacKqnzie's report, "Klystron Cavities for Minimum Spurious Output Power,"

(Research Report EE 418), and the actual technique used is covbred in the

study "Perturbation Technique, " (Research Report EE 429), by W. E. Blair.

This completes the phase of study on spurious outputs under this con-

tract. However, at present, effort is continuing in this area. In particular,

theoretical and experimental work will be directed towards methods for

coupling the klystron output cavity symmetrically to the output-cavity trans-

mission line. Such a scheme, together with a symmetrical output cavity, will

apply a symmetrical load to the klystron beam. This should make it possible

to control, analytically, the higher-order resonances of the output cavity by

the methods indicated in the report by MacKenzie (Research R4port EE 418).

This symmetrical output system would be novel in the design of high-power

klystrons, which at present use either heavy coupling loops or large irises

to couple the output cavity unsymmetrically to the wave guide. Finally, an

actual test on a commercial klystron will be performed by replacing the ori-

ginal output cavity with a newly designed symmetrical output cavity and

coupling system to the output wave guide. At this point more refined mea-

surements than those indicated in the note by Howland will be required on the

harmonic power output of this klystron.. Such measurements will probably be
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performed directly in the output wave guide so as to compare the perform-

ance of the new cavity with the original.

C. Beam Analyzel .ftudiqs (PartIV) ,

Although many workers have made measurements on velocity-mod-

ulated beams, no one has critically examined the state of the beam carefully

before it was modulated. A knowledge of the state of the unperturbed beam

to be velocity-modulated is important because most theories that describe

the r-f behavior of a beam are based on an ideal beam, i. e., one that is

laminar, free from scalloping or other variations in the axial direction, with

a charge density that is constant in the radial and angular directions. Since

one of the purposes of this research program has been to compare the predic-

tions of existing theories to the actual beam behavior, it was necessary to

produce a beam that approximated the ideal beam as closely as possible before

attempting an experimental r-f beam study.

A. S. Gilmour's, "A Beam Tester for Studying the Characteristics of

D-C and Velocity-modulated Electron Beams, " (Research Report ZE 495),

contains the complete report on the beam tester that was constructed to

analyze electron beams, as well as the results of d-c measurements thatwere

taken on a magnetically focused electron beam from a shielded Pierce gun.

Some of the important features of the tester were: (1) a valve between the elec-

tron gun and the drift region, which made it possible to keep the cathode at

pressures below I x 10' 7 mm Hg at all times, including periods when the drift

tube was exposed to air and when changes were being made in the beam-scanning

mechanism, etc. ; (2) an aperture which could be positioned so as to make cur-

rent measurements at any point in an electron beam; (3) a double vacuum
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system that permitted aperture adjustment rods to be moved into and out of

the drift-tube region without causing appreciable changes in pressure; and

(4) an automatic scanning and recording device, which eliminated the nec-

essity for taking point-by-point measurements in the beam.

The effect of the magnetic field of the filament of the gun, and of other

stray magnetic fields, on the beam shape is shown by cross sections taken by

an automatic recorder. Plots are given of the cyclotron wavelength, scallop

wavelength, and beam diameter as functions of the magnetic focusing field and

the beam voltage. The cyclotron wavelength was found to agree with the theo-

retical value to within two per cent. The experimental scallop wavelengths

were about seven per cent below the theoretical values. The reason for this

discrepancy was not determined, although the effects of the magnetic field in

the gun region and of the space-charge forces caused by positive ions and by

reflected electrons were investigated. The equilibrium beam diameter con.-

taining 93 per cent of the beam was found to agree with the theoretical values

to within three per cent. The 95 per cent diameter was greater than the theo-

retical value by about six per cent and the 90 per cent diameter was less by

about six per cent.

D. Cathode Studies (Part V)

An important limitation on the ultimate power capabilities of present-

day high-power microwave tubes is the maximum current that can be drawn

from the cathode. Often these tubes are operated under pulsed conditions so

that much higher currents can be drawn than by using direct current and the

problem of increasing the energy per pulse becomes that of increasing either

the peak current or the length of the pulse. The maximum value of this cur-
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rent is limited by: (1) the maximum emission of which the cathode is cap-

able, and (2) the sparking phenomenon, both of which depend on the condition

of the cathode. In the laboratory, maximum emission currents up to 100

amp/cm 2 have been obtained, but in practice an emission of 6 amp/cm 2 is

considered very good. For continuously operated tubes approximately 2

amp/cm 2 seems to be the highest practical cathode current density.

The problem of obtaining higher emission seems to be that of obtain-

ing a well-activated cathode initially and maintaining it by minimizing the

poisoning agents present in the tube. This requires improved cathode mat-

erials and improved processing of the tube. As part of the linear beam re-

search project, studies of the effects of the gases on cathode performance

were conducted, since the presence of gas appears to be the basic factor in

determining the safe operating level and the life of the cathode. In an early

study, a mass spectrometer examination was made of the gases given off

by a high-power diode during cathode breakdown, temperature and high-volt-

age processing, and sparking under pulsed operation. It was found that dur-

ing the breakdown of the cathode, the main gases given off were carbon mon-

oxide and carbon dioxide. During the high-voltage processing of the tube, the

main gases present were carbon monoxide and atomic hydrogen and a small

amount of water vapor and molecular hydrogen. Studies were also made of

the types of gases that evolved from the tube during the sparking. These

were found to be mostly carbon monoxide with a small amount of molecular

hydrogen. The origin of this carbon monoxide was apparently the result of

cathode breakdown.

Details of this study are described in the report by H. Hollister,

"Long-Pulse Diode Study, " (Research Report EE 430), which is included in
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Part V. These studies showed that four gases played an important part in

the processing of the tube: atomic hydrogen, molecular hydrogen, water

vapor, and carbon monoxide. From the fact that two of these gases, atomic

hydrogen and water vapor were not given off at all by gas bursts, it was con-

cluded that they must originate at the only other part of the tube that could be

affected by processing the beam collector. From the fact that although a

great deal of carbon doixide was given off by cathode breakdown, but not by

processing, it is concluded that this gas when adsorbed on the walls was

then converted to carbon monoxide before being driven off, possibly by the

reaction CO2 + 2H -. CO + H20. In addition to this origin, the carbon mon-

oxide observed was probably also being given off by the cathode and anode dur-

ing processing. It is believed that the molecular hydrogen observed must come

from either the cathode or the anode or both sources.

It was found that the pressure rise in the tube during sparking was due

almost entirely to carbon monoxide, and its fragmentation products, and a

small amount of molecular hydrogen. A tentative conclusion reached was that

the areas of high resistance in the cathode that cause sparking are due to

some condition with which carbon monoxide is intimately involved. The

amount of carbon monoxide given off by each burst varied frot I a minimum of

0. 001 microgram to a maximum of more than 0. 1 microgram, depending on

the intensity of the gas burst. The fact that the main gas involved in the gas

bursts was also the main gas given off by cathode breakdown and thus adsorbed

on the walls of the tube points to back poisoning as an important factor.

While studies of this type are of considerable importance, since the

operating conditions were almost identical to those found in actual practice, it

is difficult to separate out the relative influences of the various gases on the
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operating properties of the cathode. For this reason, a fundamental study of

cathode behavior was undertaken. The results of this research are discussed

in "Some Effects of Ion Bombardment of the Emitting Properties of Oxide-

Coated Cathodes, " by H. Hollister (Research Report EE 482). It was felt

that to study the processes determining the equilibrium in an oxide cathode, it

would be best to perturb this equilibrium in a controllable manner and observe

the resulting change in the electronic properties of the cathode. Perturbing

techniques that have been widely used in the past are admission of gases to

the cathode, admission of reducing agents to the cathode from the base metal,

and electrolysis of the cathode coating. A little-used technique is the deposi-

tion of chemical agents on the cathode surface by means of ion bombardment.

The ion bombardment technique was refined and an apparatus was dev-

eloped to study the effect of bombardment by various kindz of ions on the emit-

ting properties of oxide-coated cathodes. A description is given of the develop-

ment of an ion gun capable of delivering an ion current of up to 3 i amp/cm 2

on a target maintained at a pressure of 1(10) - 7 mm Hg. and the results of an

investigation of the general effects of ion bombardment by oxygen, carbon mon-

oxide, and argon are givmn In these studies only a small amount of differential

pumping was employed, so that during the oxygen bombardment studies the cath-

odes were severely poisoned and the emission density was only of the order of

50 ma/cm2 at 8300C. The results showed that ion bombardment by oxygen

further decreased the emission in all cases, oxygen arriving at the surface by

ion bombardment being about one to five times as effective in poisoning the '

cathode as oxygen from the gas phase. The studies with carbon monoxide and

argon were carried out with ion bombardment on active cathodes, having emis-

sions of 1-4 a/cm at 8300C, since the gases themselves had little effect on
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the emission. It was found that ion bombardment by carbon monoxide increased

the emission of oxide cathodes under all conditions. The effects with argon

were much smaller than those for the other gases. With all three gases the

emission returned to its original level after ion bombardment.

In order to explore the use of ionic deposition as a tool in studying the

effect of chemical agents of the gas phase on the emission oi oxide-coated

cathodes, a detailed study was &de of the effects of ion bombardment by oxy-

gen and carbon monoxide as functions of the voltage of the pulse used to mea-

sure the emission, ion beam density, ion energy, d-c current through the

cathode, and the temperature of the cathode. In the study using oxygen it was

found: (1) that the resistance of the cathodes was affected as rapidly as the

emission, indicating that the effect spreads throughout the cathode coating in

a very short time, (2) that the recovery from ion bombardment poisoning is

significantly retarded by drawing d-c current, which is interpreted as direct

evidence against the presence of mobile acceptors and indicates that mobile

donors play an important part in the recovery; and (3) that the percentage of

dec-ease in emission caused by a given ion current was nearly constant over

the temperature range from 6001C to 9000C. In the study with carbon monoxide

it was found that the effect of ion bombardment by carbon monoxide can appar-

ently be explained on the basis of creation of dono:s at the surface of the

cathode and that the activation energy of the rate-controlling process at tem-

peratures above 800"C was about 4 ev. It is felt that the results of this study

indicate that ion bombardment can be a powerful tool in the study of the oxide

cathode and should be exploited further.

Parallel with the more fundamental studies described in Hollister's,

"Long-Pulse Diode Stpidy" (Research Report EE 430), studies of a practical
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nature were conducted on dispenser type cathodes. The results of these studies

are described in Research Report EE 469, "Studies of Continuously Operated

Cathodes, " by N. Erdibel. In this study the gas evolution in a thorium-

tungsten cathode of an L-cathode during processing and operating periods were

investigated and the effects of carbon monoxide, carbon dioxide, hydrogen,

and oxygen on the emission activity of the cathodes were studied. The tem-

perature -independent components of the work function for these cathodes were

found from emission measurements determined by the measurement technique

using the shot-noise reduction factor.
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CONCLUSIONS

The results of the research program on linear-beam tubes have shown

that close linking of basic experimental studies of interaction with theoretical

studies are a very fruitful approach to a better understanding of linear beam

tube performance.

Experimental Studies of Beam-Circuit Interaction

In a study of the velocity distribution in a velocity-modulated electron

beam it is shown that a confined-flow theory that accounts for higher-order

space-charge waves accurately describes the wave phenomena on a Brillouin

beam in a large drift tube. It is also shown that when the magnetic focusing

field is above the Brillouin value, the space-charge waves are very similar

to those occurring at the Brillouin focusing field. When the focusing field

is below the Brillouin value, there is a considerable amount of interference

of the d-c beam scallops on the shape of the space-charge standing-wave

pattern. In fact, under certain conditions the plasma oscillation locks onto

the radial oscillation (d-c scalloping) of the beam.

Theoretical Studies of Beam-Circuit Interaction

From the various studies of the nonlinear space-charge waves in the

beam-circuit interaction investigation, a number of conclusions can be drawn;

One general conclusion is that these theoretical analyses have proceeded

sufficiently for qualitative estimates (and to some extent, quantitative esti-

mates) to be made of such experimentally observable parameters as the har-

monic amplitudes of the current and velocity of the electron beam, power
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output, beam loading, and phase delay. It is highly desirable, therefore,

that careful experiments aimed at measuring these parameters be performed

and be compared with the theoretical predictions so that the relative merits

of the analyses may be assessed and further attention directed toward the

more promising ones. A number of more specific conclusions can be drawn

from the various studies of nonlinear space-charge waves.

From the nonlinear space-charge analysis, one can conclude that an

exact solution can be obtained for the multiple-gap, confined-flow, planar

klystron, for arbitrary excitation signals below electron overtaking. This

solution is not suitable for numerical computations, however, but is valuable

as a starting point for obtaining approximate solutions that are useful for

numerical computations. For an ideal inp:t gap (i. e., of infinitesimal gap

length) a first-order approximate solution yields a good estimate of the

amplitudes of the electron beam current of all orders and shows the onset of

saturation effects. The second-order solution for the ideal input gap does not

appreciably influence the harmonic amplitudes of the beam current, but does

introduce an excitation-dependent phase delay in the drift region as well as

a d-c polarization.

For the input gap that is not ideal, the d-c transit angle is relatively

unaffected by the drive level. The fundamental component of the current

density is a function of the input gap length. The harmonic amplitudes

depend even more sensitively on the input gap length, and increasing the gap

length decreases their amplitudes. Beam loading, at least for short input

gaps, is found to be relatively insensitive to drive level.

The first-order theory for a two-gap klystron with ideal gaps predicts

that the power output will vary in the same manner as the electron beam
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current; saturation of the fundamental beam-current component causes the

power output saturation. In all cases the phase delay is a second-order effect

as a function of drive level. Below electron overtaking the output gap (or

below electron reflection at a very short gap) the power output should in-

crease as the load conductance is decreased.

A study of the nonlinear theory of the plane klystron tube gives similar

results for an ideal input gap followed by a drift region. In addition, it is

concluded that the space-charge reduction factor for an infinite klystron beam

(with no transverse variations) must be unity for d-c excitation. The reduction

factor for a finite, but large, beam with radial variations, however, is zero

for d-c excitation. Also, the use of the fundamental plus second-harmonic

excitation as a first-order approximation to a saw-tooth r-f input modulation

should produce a marked increase in the efficiency of a klystron.

In the second-order solution obtained for the nonlinear space-charge

waves on a finite, confined-flow electron beam in a conducting drift tube, it

was concluded that in general the second-harmonic component of the beam cur-

rent has terms that grow with distance along the drift tube and that a rigorous

justification is possible for the use of the space-charge reduction factors in-

troduced by Paschke in his nonlinear analysis of the thin klystron beam.

In the third-order solution to the nonlinear space-charge waves on a

finite Brillouin beam in a conducting drift tube, saturation of the fundamental

component of the electron beam current is predicted before electron overtaking

occurs, and amplitudes of the second and third harmonics are apparently lower

than those predicted by a confined-flow theory. Under certain conditions, the

second-harmonic amplitude grows with distance along the drift tube. It is

also concluded that the boundary conditions at the beam edge need more study

to improve the validity of the analysis.
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A study of the kinetic a-c power flow in nonhomogeneous relativistic

electron beams shows that the statements of kinetic power flow and small-

signal power conservation theories previously developed for nonrelativistic

electron beams can also be extended to relativistic electron beams. Llewellyn's

theory of confined-flow electrons between parallel-plane electrodes for the

linearized, nonrelativistic case has been extended to the relativistic case by

using a space-charge-wave approach. This study can serve as a basis for

future studies of relativistic electron inertia effects in high-frequency diodes,

multigrid electron devices, and klystron gaps.

Circuit Studies

A symmetrical high-power klystron cavity can be designed to minimize

the coupling to the klystron beam harmonics. This is accomplished by adjusting

the shape of a cavity to shift the higher resonances from the vicinity of the lower

beam harmonics while the fundamental resonance remains fixed. In addition,

it is possible to perform this optimization without affecting the coupling of the

fundamental from the beam to the cavity. In utilizing this technique, an impor-

tant problem remains to be solved - a symmetrical coupling system from the

output cavity to the external wave guide must be found to retain the symmetri-

calness of the cavity.

The technique of suppressing the spurious outputs of a high-power

klystron by optimizing the output cavity has an important advantage over a

technique that involves an external filter arrangement. The power-handling

capability of a filter arrangement which passes the fundamental and attenuates

the harmonics tends to be limited, particularly with respect to disposing of

the harmonic power. On the other hand, the technique considered here has no
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such limit, in principal, because the'harmonic power is at most coupled only

very weakly into the output transmission line.

The technique of suppressing spurious outputs of a high-power klystron

by optimizing the output cavity has the additional advantage that the electrical

length between the penultimate and ultimate cavities of modern high-power

klystrons is so short that the possibility of feedback through the drift tube is

enhanced. The optimization of the output cavity with respect to spurious out-

puts will tend to eliminate this possible feedback at the beam harmonics.

Furthermore, an extension of these same techniques to the penultimate cavity

could tend to eliminate this possible feedback over a wide frequency range

about the fundamental.

Beam Analyzer Studies

By using a carefully constructed beam analyzer ind a properly designed

gun, one can produce a magnetically focused electron beam whose behavior is

very close to that predicted by theory. This beam, which can be made nearly

free from scalloping (less than 2%). and from electrons with large translaminar

velocities, closely approximates the ideal bam normally considered to be

present when theories describing velocity modulation are formulated.

Cathode Studies

The new ionic deposition technique of controlled perturbation of a cath-

ode from its equilibrium condition appears to be an excellent approach to under-

standing of the behavior of high-voltage long-pulse operated cathodes. Ion

bombatdment of an oxide cathode by oxygen decreases the emission. Ion bcirn-

bardment by carbon monoxide, on the other hand, increases the electron emis-

sion, while argon has little effect. In the studies with oxygen, oxygen ions
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were one to five times as effective a poisoning agent as oxygen in the gas phase.

The oxygen-ion bombardment studies have shown that at normal cath-

ode temperatures, the bulk properties of the oxide coating change about as

rapidly as the surface properties. The results also support the hypothesis

that mobile donors play an important role in the equilibrium processes in

oxide cathodes.

After the cathode was broken down, atomic hydrogen, molecular hydro-

gen, water vapor, and carbon monoxide were liberated in the high-voltage

processing of the tube. The pressure rise occurring in tubes which sparked

was found to be almost entirely carbon monoxide.

Studies of diodes with thorium-tungsten and L-cathodes indicate that

high oxygen background pressures lead to poisoning of the cathode while high

carbon-monoxide background pressures lead to activation.
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LIST OF SYMBOLS

(Symbols in Appendices not Included)

Roman

a Ratio of peak value of electric field in modulating cavity
drift tube to Vj/d

A Magnetic vector potential

AH 1n±

[(Tn rb + H J(T rb)

bctnh = Bessel hyperbolic cotangent

b = Intercept on F axis of tangent to F versus yrb curve
n n nb

c= Speed of light

d Modulating cavity gap separation

ci n  = Coefficient of Jo(Tnr) in radial expansion for Ecl

E c Electric field applied by the circuitc

E cl = Coefficient of the first term (and only term) in the power
series in a for E c

E s  Electric field arising from the beam

E = Coefficient of the nt h term in the power series in a for E s

Esl = Component of Esl that varies only with r, the radial
co-ordinate



F = Plasma reduction factor

th
F Plasma reduction factor for n rank wave

n

n n e rb +bn

Hn = "rb bctnh rn rb( )

I, I = Modified Bessel functions of the first kind

J0 . it : Bessel functions of the first kind

k = W/c

K0 , K = Modified Bessel functions of the second kind

mn = Slope of F versus yr curvenn b

M = Gap-coupling coefficient

M Gap-coupling coefficients for nt h rank fast and slow waves

Pin Coefficient of J o(T nr) in radial expansion for PI

in Coefficient of Jo(Tnr) in radial expansion for 1 i

P Position of the modulated beam relative to the position of
the d-c beam

P n Coefficient of the n th term in the power series in a for P

P = Variational component of the velocity of the beam

-viii•



S Coefficient of the nth term in the power series in a for'
-n

P Component of P that varies only with r, the radial
co-ordinate

= tComponent of P that varies only with r, the radial

co-ordinate

r= Radial co-ordinate

rb Beam radius

r = Drift tube radiusC

t= Time

T = Radial propagation constant in beam

T n Radial propagation constant for nth rank wave in beamn

u 0 D-c beam velocity--o

V = D-c beam voltage

V = Peak voltage across modulating cavity gap with beam present

z Axial co-ordinate

Greek

a = Ratio of gap voltage with beam present to d-c beam voltage
(depth of modulation)

PC Factor used to give rate of variation of E with z in

aV 1

c -- (1 - cOSPCz)



e = w/u

p = (p/Uo
Pp Wpo

3q± Wq ±/Uo

y = Axial propagation constant

Yn = Axial propagation constants for nth rank fast and slow waves

2 2r b
6 n ~e(mn pprb) +bmn p n

-o Permi.Livity of free space

7 Electron charge-to-mass ratio

n:L PC

Xc Cyclotron wavelength

X Plasma wavelengthp

X q Reduced plasma wavelengthq

s Scallop wavelength

P = Beam charge density

Pn Coefficient of the nth term in the power series in a for p

PO = D-c beam charge density

Pi Component of p, that varies only with r, the radial
co-ordinate



7 Radial propagation constant outside beam

Irn Radial propagation constant outside beam for nt h rank wave

'01n = Coefficient of Jo(Tnr) in radial expansion for Iit

= Electric scalar potential

* n Coefficient of the nth term in the power series in a for *

* = Component of 0I that varies only with r, the radial
co-ordinate

= Frequency of input signal to modulating cavity
* o/

PW- Plasma frequency, ().o/
q . = Reduced plasma frequencies for fast and slow waves



ABSTRACT

To carry out the velocity-modulation studies described in this

report, a gridless-gap cavity was used to modulate the velocity of the

electron beam described in an earlier study. At drive levels as high as

a = .30 the velocity modulation on the beam produced by this cavity

changed the beam diameter less than 8 per cent. Consequently, a confined-

flow theory including the effects of higher-ranking waves and the manner

in which they are launched in the modulation region was developed and is

presented. The predictions of this theory are compared with the velocity

standing-wave data taken from the modulated electron beam. It is found

that the decrease in the maxima of the velocity standing wave as a function

of distance is accounted for very well by the consideration of the higher-

ranking waves. Moreover, these waves are the reason for the minima

of the velocity standing wave not reaching the d-c beam level. At higher

drive levels, the data presented show that the maxima of the velocity

standing wave decrease much more rapidly than at low-signal levels. It

is suggested that at least a Fecond-order theory be carried out to explain

this behavior.

Data are also presented showing the behavior of the velocity standing-

wave pattern for magnetic field levels above and below the Brillouin flow

value. These data show that the standing-wave pattern for the magnetic

field above the Brillouin value is nearly the same as that at Brillouin flow,

except for a shortening of the plasma wavelength, which results from the

decreased beam diameter, and a decrease in the velocity s'anding-wave

maxima for high drive levels. The data show considerable interference
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between the d-c scalloping and the plasma oscillations for magnetic field

levels below the Brillouin level. In fact, under certain conditions the

plasma oscillation locks onto the d-c scalloping in a manner similar to

that in which an oscillator locks onto the resonant frequency of a resonant

circuit.
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I. INTRODUCTION

In recent years, many experimental and theoretical studies have

been made of the current distribution in velocity-modulated electron beams.

The major drawback of the experimental investigations 1 ' 2, 3 has been that

no careful examination was made of the state of the direct-current beam

before modulation. A knowledge of the state of the unperturbed beam is

important, because most theories that describe the r-f behavior of a beam

are based on an ideal beam; i. e., one that is laminar, free from scalloping

or other variations in the axial direction, and having a charge density that

is constant in the radial and angular direction, and having a charge density

that is constant in the radial and angular directions. Since the major

purpose of this study was to compare theoretical predictions with the

actual beam behavior, it was necessary to produce a beam that approximated

the ideal beam as closely as possible. Moreover, it was desirable to

produce a beam similar to those used in commercial linear-beam tubes,

so that any results obtained would have a direct bearing on the design

and operation of commercial tubes. The d-c electron beam and the beam

tester that was constructed to analyze the beam were described in Research

Report EE 495.

In deciding upon the approach to be used in developing a theory to

describe the velocity modulation on a Brillouin beam some preliminary d-c

current measurements on the velocity-modulated beam were used as a guide.

These measurements showed that, under Brillouin flow conditions (less than

2 per cent scalloping on the beam), very little change in the beam shape

resulted from the velocity modulation. It was assumed, therefore, that



confined flow (no transverse motion of the beam present) existed, and a

small-signal theory was developed on this basis. The resulting theory is

similar to that of Ramo7 up to the point where the radial propagation constants

in the beam are found. From that point on, an infinite series of pairs of

waves traveling just above and below the beam velocity (fast and slow waves)

are considered.

After finding the initial amplitudes of the waves by considering the

gap-coupling coefficients for fast and slow waves, the shape of the velocity

standing wave on the beam is found by adding up the infinite series of fast

and slow waves.

Section IIIA describes the technique that was used to record the

velocity data automatically from the velocity-modulated beam in the beam

tester. By using this technique, velocity standing-wave data were obtained

for a Brillouin beam. These data are presented in Section IIIB and are

compared with the theoretical predictions. The theory and experiment

agree reasonably well on the percentage of decrease of the amplitude of

the velocity standing wave with distance, and they are in excellent agree-

ment on the magnitudes of the velocity standing-wave minima.

In section III B data showing the effect of scalloping on the beam are

presented. An interesting phenomenon in which the reduced plasma oscil-

lation locks onto the d-c beam scalloping is described.
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II. CONFINED FLOW ANALYSIS

A. GENERAL

In the following derivation of the velocities of a modulated Brillouin

beam in a large drift tube, two important assumptions are made. The

first is that the scalloping on the beam caused by the velocity nodulation

is small enough so that it can be neglected and a confined flow approach

used. This assumption was shown to be valid by some preliminary beam-

current measurements made with the beam tester, which showed that at

drive levels as high as a = .30, the ripple on the beam was less than 8

per cent. The gap-coupling coefficient a is the ratio of the peak voltage

across the modulating cavity gap VI to the d-c beam voltage V. The

value of VI is of course that existing when the beam is being modulated

by the cavity so that the effects of the current induced into the cavity by

the beam are being accounted for. The second assumption is that each

quantity associated with the beam can be expanded in a power series in a.

For example, the position of the modulated beam relative to the position

of the d-c beam is written as

00

n-

where the bars indicate vector quantities.

The reason for making this type of expansion is that it makes it

possible to separate the beam nonlinearities arising in the force equation,

dd (u +_)=- (E s +E

where F is the electric field arising from the beam and E from the
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external circuit, and those arising in the continuity equation,

v"p(uo + P , (3)

where p is the charge density of the beam. The quantity u0 is, of

course, the d-c beam velocity and 1P is the variational component of the

beam velocity. In this work, no attempt will be made to separate the

different velocities that a beam has at a particular position if overtaking

has occurred; therefore the theory is not valid for beams in which some

groups of electrons have actually passed others. Also, only the first-order
i

terms (coefficients of a1 ) will be derived, although the following treatment

shows how these terms may be used to obtain higher-order terms.

From Equation (I) and the EuJerian expansion of the total time

derivative, Equation (2) may be written as

- -+(u o + P) - .(E + Ec

or

It= n + u +E C
n + ,

0 n=t \n= I

(4)

where it has been assumed that the velocity of the undisturbed beam, u ,

is constant throughout the beam. This is true for Brillouin beams (see

Appendix B) as well as for the idealized beam whose charge is neu-

tralized by positive ions and which is confined by an infinite magnetic

field with all of the flux passing through the cathode. The electric

field produced by the circuit surrounding the beam, Ec , is directly pro-
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portional to a since the medium (vacuum) in which the beam is traveling

is linear.

In Equation (4), the coefficients of like powers of a may be equated

and the result is, for n = 1,

+ u - = "n(Es1 +E c
1 ) (5)

for n = 2,

'D2 _2 1

and so on. It will turn out that the term E is made up of products of

first-order terms so that the second-order velocity term, P 2 can be found

if the first-order solution is known. In a similar manner, third- and

higher-order terms can be found.

By using Equation (i) one can write Equation (3) as

Pn u0 na vtnC (7)

The first-order part of Equation (7) is

ap
V (Po 1  + 0 P+I) + 0 (8)

the second-order part is

aP2

• (poP + uop?) + -- - - (P ) (9)
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and so forth, and again, the second- and higher-order terms may be found

after the first-order terms are obtained.

Besides Equations (2) and (3), Maxwell's equations are needed for

the prediction of the velocities on the beam. Although these equations may

be written in many ways (in terms of solenoidal and irrotational vectors,

in terms of Hertzian vectors, or in terms of potentials) it is most convenient

to write them in terms of potentials. When this is done, the electric and

magnetic fields are expressed by

aA
E B = v x A , (10)

where E is the electric and B the magnetic field vector; # is the electric

scalar potential, and A is the magnetic vector potential. With Equation (10),

Maxwell's equations reduce to the well-known wave equations 8

22 p

c 8t

and

2 1 a2
c bt_7A Lp( 0 +-)( b

C at

where it is implied that

vA 1 -- (12)
C

A. FIRST-ORDER THEORY

An ideal approach to the problem of finding an expression for the

velocity of the electron beam would be to solve Maxwell's equations and
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the equations of motion for the beam, in the region where it is modulated

by the fields of the cavity first. After this is done, these same equations

would be solved in the drift tube region, where no circuit field is applied,

and the resulting solutions would be matched to the solutions in the gap

region to obtain initial conditions. The approach that is used here differs

from the above in that solutions to Maxwell's equations and the equations

of motion are obtained in the drift-tube region first. The propagation

constants determined are assumed to be the same as the ones existing in

the gap-modulation region, so they are used to help obtain an approximate

solution in this region. The final step is to match the solutions in the

gap-modulation region to those in the drift tube region at the exit from

the gap. Throughout the theoretical work, it is assumed that the drift

tube is small enough so that the normal wave-guide modes are cut off.

In the first-order theory, which follows, the work of Ramo7 is

followed closely because it is concise, and because, for nonrelativistic

beams, is exact for the first-order solution. Since this is a confined-flow

theory, it is necessary to consider only waves propagating in the z direction

with axial symmetry.

1. Determination of Propagation Constant

In the drift-tube region, where the applied circuit field E c is zero,

all quantities vary as eJ(Wt - zz) and may therefore be written as,

eJ(wt -Yz)

SI eJ(Wt - Yz)

p, = p ej(WYz)

0 = 0 11 ej(Wt " Yz)
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where P, 1 , Plti PHl' and 0,, are functions only of r, the radial

position. With cylindrical co-ordinates, the equation for the electric

scalar potential, Equation (Ila), becomes

8 1 2 i 11 2i4

Or z o

where k2 = w2 /c2 . The propagation constant y may be found if ptI can

be expressed in terms of 4it I From Equation (8), the continuity equation,

the following relation between Pi 1 and 1t is easily obtained:

1 YP
Pi I = U --- P 11(15)

0 Pe-

where P = . From Equation (5), the force equation, it is found that
e u

0the electric field caused by the beam is

u
E s- I -) .(P (16)

By combining Equations (10) and (12), however, one finds that

sit= j(, -) 1 (17)

so that, with a little manipulation, Equation (15) may be written as

i C p - h (18)Pii o p (P e )

where

2 tPP3p -4=---

U 0 0 Uo
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and w p is the plasma frequency. Combining Equations (14) and (18) gives

the following equation for the electric scalar potential:

Sa t r 1 (2 k 2 It  = 0 (19)
--- -- + + -1-t ( -

8r Z r

The solution to this equation is of the form,

0 1 = BJo(Tr) r rb , (20)

where rb is the beam radius, B is an arbitrary constant, and

T2 =[ ) - i 2 . k 2  (2 1)

No Bessel functions of the second kind are included in Equation (20) be-

cause the potential 0ti must be finite at r = 0. It is assumed that T 2

is positive and that the J function is the solution to Equation (19) since,

when the beam fills the drift tube, the potential given by Equation (20) must

go to zero at the drift tube wall. The other possible solution, which is 10

and which results when T 2 is negative, does not have zeros and would not

go to zero at the drift tube wall.

In the region between the beam and the drift tube wall, the charge

density iz zero; therefore, from Equation (14), the electric scalar potential

is

i= C[I (Tr) + DK (Tr)] rb S r < r , (22)

where T 2= Y k 2 , r is the drift tube radius, C and D are arbitrary

constants, and 10 and K are modified Bessel functions. These functions
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2 2

are used because y (which is expected to be near P e ) is larger than k

and so T is positive. At rc , the tangential electric field is zero, i

is therefore zero, and

D 0 (23)
K0 (-C

At the edge of the beam, the tangential electric field is continuous and

consequently Ly Equ,tions (10) and (12) the potential is continuous. This

leads to the relation,

G J(1-rb)G b) (Z4)
B Io (Trb) + DK(Trb) )

A second equat'on for th,; ratio C/B may ht deterrn'-d by realizing that

the tangent:ld magnctc field is continuo,: at tht, ,-dge ,l the beam. From

Equation (ib), it ., *-en that only the a component of A exists. From

Equation (10) therefore, onlv the azimuthal compnent of B exists, and

the continuity of thi: qt..ntlty reqt:uires that A/Or be ;ontinuous. By

examining the gr.dLent of Equation (12), one can see: that 81/8r must be

continuous; therefure,

C T J, (Trb) (25)
B 7"Ii(rb) - DK (Trb)

Combining Equations (23), (24) and (25) gives the following transcendental

equation relating T and -r:

Tr J I (r bctnh 7rb  , (26)
b Tr.F ) rb bcn r

where bc~uxl - the Bethel hyperbolic c tangent and is given by Equation

(A-14) in Research Report EE 495.
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The methc d of solving Equation (26) is to plot the right- and the

left-hand sides as functions of a common parameter x, for various values

of r c/r b as is done in Figure 1. Then, given a value of Trb and of

rC/rb, the value of the right- and left-hand sides is known; consequently

the values of Tr b can be obtained. There is, of course, an infinite

number of solutions, the first three of which are plotted in Figures 2a, b,

and c. The smallest solution is labeled T and is called the zero-rank
0

radial propagation constant after Ramo. 7 Higher-rank propagation constants
are numbered successively from T . One reason for labeling these constants

0

in this manner can be seen from Figures Za, b, and c. The function

J 0 (Tr), which gives the radial variations of the beam parameters, has no

zeros within the beam when T is T , has one zero within the beam when0

T is T and so on. As a result of this, and of Equation (22), which gives

the shape of the electric scaiar potential in the drift tube, the potential

waves must have the shapes shown in Figure 3.

Beside yielding curves for Trb versus Trb, Equation (26) pro-

vides important information about the orthogonality of the functions

Jo(T rb J(T r .... since it may be written as

Hi J (T r )+H (Tr)J'(T r n0 , n 2i,2, (
HnoTn b 2n(nrb o rb) = .

where H in is the right-hand side of Equation (26) and H2n is unity.

In Agnew's book 9 on differential equations, theorem 7.8947 states: I"Let

a > -1. If Hi and H2 are real constants not both 0 and if the numbers

xib, X2 b ... are distinct positive zeros of the function,

H I J (z) + H2 z J, (z) , 7.8947i
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Figure 3. General Shapes of Zero- and First-Rank Electric
Scalar Potential Waves.

then

XJa( iX a( x x= 0 7.89472

when j /k. " Equation (27) satisfies the requirements of this theorem so

fr J (Tjr) J (T kr)dr 0

when j / k; that is, the functions J3 (T r) and J (T kr) are orthogonal
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with weight function r on the interval 0 :5 r I rb. As a result, the

potential distribution in the beam can be expressed as a Fourier series of

J Bessel functions; that is, 0l1 may be written as
00

1ii = Z'in Jo(Tnr) for r -e rb
n=0

By using the orthogonality condition, one can express the coefficients *ln

as
r bIbril1 Jo(Tnr) dr

'In jbr Jo 2(Tnr) dr for r C rb

0

or as

r b

ZTnZJb rf 1 Jo(Tnr) dr

In = 2 for rrb -(&8)1(Tnb2H 1 0 n

By assuming that k <Y 2 and by writing y = Pe + FP , where

F is called the plasma reduction factor and is a measure of the decrease

in the plasma frequency caused by the bulging of the electric field lines

in and near a finite beam, one can write Equation (21) as follows:

F = (29)

Now, using curves similar to those shown in Figures 2 a, b, and c gives
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the well-known curves 10i shown in Figure 4a, as well as the curves

shown in Figure 4b for JF nI as a function of yrb, where the subscript

n refers to the rank of the reduction factor. In a small region about any

given value of yrbP any of the curves in Figures 4a and b may be con-

sidered to be linear; therefore IF n I may be written as

IFI = m n rb + bn

where the values of mn and bn may be found by letting yrb = perb.

Finally, to find the propagation constant associated with the nt h wave,

the linear approximation for F may be placed in y =

Yn = Pe 1 Pp (mnyr b + bn)

or

= Oe ± p bn (30)
n i T m n 0 p r b

Since the product mn p r b is usually small compared to unity (for the

beam tester, mn r.5 and p rb -y .2), Equation (30) may be rewritten as

'Yn+ :e + 6 n + Fn op Pe + {qn+

(31)
Yn- Pe +  n -F I op " qn-

where
=(mn~ npr) pbn6 n oe ( n p r b) 2 + m n o 2 r b  b nn n nn

and

F'=m P r + bn n e b n
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Figure 4. (a) Zero-Rank Plasma -Frequency Reduction Factor as
Function of yrb and rc/rb; (b) First- and Second-Rank
Plasma -Freq.uency Reduction Factors as Functions of
yr b andrcrb
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The propagation constants Yn+ and yn- correspond to n rank fast and

slow space-charge waves respectively, that is, waves traveling slightly

faster and slightly slower than the d-c beam. The terms Pqn+ and Pqn-

are called the reduced-plasma propagation constants. It is noted that the

wave velocities are not symmetrical relative to the beam velocity. This

effect was first pointed out by Hahn1 2 and later by Wang and Mclsaac. 1 3

In Equation (13), it was assumed that PI varies as eI j Yz , so that by making
th

a radial expansion for PI the expression for n wave, Pin may be written as

Pin~~ "JC- -(Pe" Pqn - ) z + °+ J(Pe + Pqn+ ) z

P'1n Cn qn- + •

where

O

Pi PIn 0Jo(Tn r)

therefore
e.J( e qn)z "J(pe+p n+ z

In = Juo cn-P- P- )e q C n+pqn+ e + n+)z

(32)

and c n and c n+ may differ in magnitude when the fast and slow space-

charge waves are launched at the modulating cavity with different amplitudes.

If the fast and slow position waves are launched with equal amplitudes and

of opposite sign then

ln = juon 
np 

I [(F n p- 6n) - pe Pqn-)z + (Fn' p + 6 n) e e

(33)

and the magnitudes of the two differ by 26 nn

Figure 5 shows how the zero, first- and second-rank velocity space-

charge waves, described by Equation (33), appear when Perb 1.0.
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2 Initial Conditions

In order to determine the amplitudes of the space waves on the

beam, it is necessary to investigate the interaction of the modulating-cavity

fields with the waves. The equation to be solved in the interaction region

is Equation (5), which is

ap I SP
+ uo 0T -, 7 (E3 + Ecl) (5)

and in order to solve this, E must be expressed in terms of P or P

This may be done by considering Gauss' law and the continuity equation;

that is

Pt
E (34)

CO

and
aPt

"+ Uop ) = - (35)

but Pk and u0 are directed in the z direction so Equation (35) becomes

a i.,= 8 +% ) u 1 (36)

The right-hand side of Equation (36) is simply - j , so Equation (36) may

be integrated to obtain

a P P, (37)

where the constant of integration is zero because at t = 0, p, = 0 and

PI = 0, therefore by Equation (34),

-a o aVE_ - P (38)

-- 0



Since

8 8

~-P, + U. ~Il P,

and since P, and P are assumed to have only z-directed components

(confined flow), Equation (5) may be written as

2  2 Z 2
2ua + u 8 P u + u P, - -y- Is+Ec) (39)

at az

Since all quantities vary as ej w t , Equation (39) may be written as

8 2 8 2_Z P + 2je P1 " -e Pe -- 4Z (Es, + E c i }  (40)
ez u

In the case of the infinite beam, Equation (38) reduces to

p0
E LO (41)st Co P '

because the beam has no radial variations. As a result, Equation (40)

may be written as

8 2a (8 _ p2 2 i t

_Z P + Zpe P V " =-u. E c  (42)

When the beam is not infinite, the plasma frequency is smaller than w

and is wq+ for the fast wave, and wq. for the slow wave. Since wq is

not the same for the higher-rank waves as for the zero-rank wave, and

since the electric field Eci must be expressed as the sum of higher-rank
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waves as follows, then

00

Ecl= 2. e c n J0 (Tnr) (43)

n=O

Equation (42) may be written for the nth wave as

a2  + j[e (a +._ a
Pi n e qn+ -qn -)  'Pin Pe+ Pqn+) (Pe " Pqn- ) P ln cln

0

(44)

where
00

Pt = LPin Jo(Tnr) (45)

n=O

The solution to Equation (44) is well known 1 4 and is

"j(Pe -qn- /eJ(Pqn" + P qn+ )e pe+Pqn+)t e dt do
Pin = I e ( Ve +

U0

(46)

It is shownin the Aplendix (by the results from electrolytic tank measure-

ments) that, for the particular geometry of the cavity used on the beam

tester, the electric field Ec is very nearly independent of radius for

r • rb and that the axial variation is approximated well by

F P ci (I - cos PZ) , 0 < Pz < Z , (47)

where V, is the peak voltage across the cavity gap. The Fourier co-
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efficien sectn may be determined in terms of E c by using Equation (28),

that is

r rb

2T 2 Ec J r Jo(T r) drno n

0cln ( rb) 20+ HZ 1 J-(Tr for r _ rb (48)

+ n i b 1 (Tnrb )

With the aid of Equations (47) and (26), this may be written as

ecln = PCV H2 n J(Trb) (1-cosPCZ) ; (49)

a (Trb)2 + Hn c

therefore Equation (46) becomes

p c An "J(P;" qn.) "jlqn.+ pqn+ " ( qn+ lt -1 coo PtdtJ dsPin -_ 4w e d

(50)

for 0 : pcz t 2w , where

2Hn

A 2 In (51)
Tn rb)Z + nJ(Tr

At Pc z = 2w, the circuit electric field has decreased to zero and Pin

must be

Pin =c e e n-p + cn+ e .qn+ (52)

The constants c and cn+ are therefore evaluated at z = 21/p c where
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PIn and 8/8z P,, are continuous. If the values of PIn and 8/8z Pin

from Equation (50) at z = 2Tr/P c are called cin and c 2n respectively,

then at z = 2w/Pc , Equation (52) becomes

-J(Pe" Pqn - ) _ J(Pe + qn+) V'
cen = Cn. e qn+

and 8/8z of Equation (52) becomes

C) ZW(P )cP e Pj~ 2W c-Aqe- qn- )  
e qn+ C ?n = J(Pe " qn- ) c n, e jlPe + Pqn+) Cn+ e

from which

c + PJ(Pe - Pqn-) 2W
Cz j(e + +)c V

n- ' (Pqn- +  Pqn+; (53)

and

C~n + ( e n) P (e +  Pqn+)  2 '

Znj( - PVC n+ e ..Pg 1 (54)

qr- qn+

With the use of Equation j50) these two equations can be written as

27r

"qn (1-cos z) dz , (55)n- '4,j (Pqn- + Pqn+f

0



and
27r

Pc An+ qn f ~e +  )

C 4j( + + e +qn+)z (1 -cosPz) dz , (56)
qn- q 0

where it has been noted that the values of A for the fast and slow wavesn

are not the same because the values of T differ. Integrations of the right-
n

hand sides of Equations (55) and (56) yield

0n-
An=__ _ J"-z-

c = M e (57)n- Zi (Pqn- + Pqn+)  n-

and

An+ J n+

CA n= - Mn+ e . (58)
2j (Pqn- + Pqn+ )

The M and Mn+ terms are the gap-coupling coefficients for the nth

rank slow and fast space-charge waves and are given by

e
ri-= -(210)2Z sin T,(59)

n- (2) ez O On.

a n+

M - sin (60)
n+ (r). 02  0n+

n+

where

0 e " Pqn-_(1
n. = [2w , (6
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and

Pe +qn+ 2 
(62)n+ PC

sin e
A plot of M as a function of 8 is given in Figure 6. A plot of ee

is also given to show that for values of 0 less than Zw radians, the actual

field configuration, i. e., 1 - cos Pcz, can be approximated by a rectangular

field pattern.

It is interesting to notice that, since 0n; = (Pe ± Pqn±L) 2w/P c

the gap-coupling coefficient of the fast space-charge wave is smaller than

that for the slow space-charge wave. For example, if Pe/Pc = 1, and if

Pqt+/Pc = 0.1, then Mj. is .573 and M,+ is .425; therefore Mj.

is 35 per cent higher than M 1 .

By using Equations (57) and (58) for the constants cn- and cn+,

Equation (52) becomes

( A M e-jPe " Pqn -)z -A M e + P qn+)z]
Pln = j{q"+ qn) n- n- - n+Mn+•

qn- qn+II

(63)

where the z = 0 position has been shifted to the center of the gap. The

(Pqn- + P qn+) term in the denominator of Equation (63) is very small

for large n; however, then .qn= S Pqn+ and so Pin becomes

A n M n  sin P z -jpe z
PIn n Pqn e (64)

and sinP qnz/Pqn -I as Pqn-0. Since pln= Juo(Pe-Y)Pln' the
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equation for the nth rank velocity wave may be derived from Equation (63)

and is

0 FJe + 6 - F' P )z
(n 1 Pp 6n )

PIn Z 2(qn- + qn+) I n- n-

_J(Pe 
+ 6 + F' p)

+ (Fp + 6) A M e , (65)n p n n+ Mn+ epZ

where the linearized propagation constants given in Equation (30) have been

used. It will be noticed that the condition described by Equation (33), that

is where the amplitude of the two space-charge waves differed by 2 6 nI

is modified because the product (F'p - 6 ) A M may be larger than,np n n- n-

equal to, or smaller than (F'p + 6 ) A n+ M , depending on the magnitudes

of 6n , An+ Mn+ and An. M n. Therefore when the amplitudes are equal,

the zero rank velocity wave is not as shown in Figure 5 because the null

of the wave actually goes to zero. Finally, since

P1 = ejwt : Pin Jo(Tn r)

n=0

the first-order velocity Pt becomes

* u J(~~ 2  F z
0= M A Jt(T r) e n p

P + (qn+ q) Lqn- n- n- o n-

n=0

-j F' p z l  "J(Pe + 6 n) Z

+ P M A Jo(T r) e np e (66)
qn+ n+ n+ 0 n+-
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III. EXPERIMENTAL RESULTS AND THEIR COMPARISON WITH THEORY

A. TECHNIQUE FOR MAKING VELOCITY MEASUREMENTS

The method used to measure the peak velocity of the electron beam

was that of applying a negative potential to the Faraday cage (see Research

Report EE /*)5 for descriptLon of Faraday cage and associated positioning

apparatus), which was just large enough to repel the electrons approaching

the cage from the aperture in the movable beam collector. Since the current

to the cage dropped rapidly from a constant value to zero as the cage potential

was varied from the beam voltage plus a few volts to the beam voltage

minus a few volts (see Figure 7), small changes in the beam velocity could

be easily detected by observing the curve of the cage current versus voltage.

The reason the curve of current versus voltage did not have a sharper cut-

off than shown in Figure 7 is because the "beam voltage" was a 16.7 -Lsec

duration pulse (rise time = .2 R sec, fall time = .3 sec) applied to the cathode

of the beam tester, and the pulse droop was about 50 volts.

It was anticipated that a large number of velocity measurements

would be required to determine the peak velocity distribution in the beam

as functions of the amplitude of the velocity modulation and of the amount

of scalloping on the beam. It was decided therefore that the velocity data

should be recorded automatically in the same manner as the d-c current

was recorded (see Research Report EE 495). The circuit devised to make

velocity recording possible ib shown in Figure 8. This circuit is essentially

a voltage divider in which a fraction of the current approaching the cage

was used to build up a bias voltage across the 10,000 M0 resistor in

series with the input resistance of the electrometer. This bias voltage
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Figure 7. Current-Voltage Characteristic for Faraday Cage.

FARADAY CAGE -SEAM COLLECTOR

10,000 MEG 4 RESISTOR7
16 "SEAM

Z16,300 VOLT BATTERIES
IN SERIES

i7RAL RADIO TYPE 1230"A ELECTROMETER

900 ,,-INPUT RESISTANCE OF ELECTROMETER

Alf TO Y INPUT OF X-Y RECORDER

1000-a RESISTOR

Figure 8. Circuit Used to Provide Peak Beam-Velocity Indication
to X-Y Recorder.
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in turn repelled the remaining part of the current approaching the cage

and returned it to the beam collector. Sixteen 300-volt batteries were

used to provide a cage bias just below the d-c beam voltage of 5000 volts.

Therefore the voltage required across the 10,000-MO resistor was

the difference between 4800 volts and the voltage equivalent of the peak

velocity onthe beam. At a beam voltage of 5000 volts, the bias current

required was .02 a, which represented only two per cent of the total

current of I a passing through the aperture under Brillouin flow conditions.

As can be seen in Figure 7, the cage potential at a cage current of .02 I~a

was essentially the peak voltage in the beam. When velocity modulation

was applied to the beam, the peak velocity of the beam increased, there-

fore the current necessary to bias the cage increased. In addition, the

voltage-current characteristic became more sloping, so that with 500 volts

of modulation on the beam, the bias current was .07 4a and the error in

measuring the peak voltage was about -5 per cent. This error could

have been reduced by using a resistor larger than 10 kM9; however,

then the time constants involved would have been too large to permit good

data to be taken.

The input resistance switch of the electrometer was normally set

on the 10 8-ohm position so that the voltage into the electrometer was

.01 of the voltage across the 10 kM92 resistor. The output current from

the electrometer was passed through a 1000-2 resistor to provide a

voltage input to the X-Y recorder.

Figures 9a and b show typical d-c current and velocity contours

taken at the same axial position on the beam under Brillouin flow con-

ditions. The horizontal and vertical axes indicate the horizontal and
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vertical positions in the beam, and the deflection at any point above a

horizontal line is proportional to the amount of current or to the incre-

mental velocity above 4800 volts on the beam. Notice that, even though

the current contour is not quite symmetrical and is not flat in the center

region, the velocity contour is perfectly flat and uniform over the central

part of the beam, indicating a constant velocity across the beam, which

is to be expected.

The small negative deflections on the right-hand side of the velocity

contour are thought to have been caused by secondary emission from the

Faraday cage. The part of the beam causing the negative deflections is

the "tail" described in Research Report EE 495 which is thought to have

been made up of reflected electrons traveling at a velocity slightly below

the beam velocity (in fact at a velocity the voltage equivalent of which was

very close to the cage bias battery potential). Because of the axial magnetic

field in the beam region and the repelling potential on the cage, these electrons

did not enter the cage, but instead struck the outer face of the cage between

the cage and the back of the beam-collecting plate. As a result, it is

probable that ratio of secondary to primary electrons was greater than

unity, and that the total electron-current flow was from the cage to the

beam-collecting plate. This reversed current, in turn, produced the

positive potential across the 10 kWO resistor, which is indicated by the

negative deflections on the velocity contour.

The reason that the velocity contour is not the same on the left side

as it is on the right stems from the fact that data was taken while the

Faraday cage was moving from right to left (the shape of the contour was

found to reverse when data was taken from left to right). As the cage
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moved into the beam, it first encountered the reflected electrons just

mentioned and its potential became slightly positive. The cage next

began to collect the main part of the beam, which was made up of primary

electrons traveling at the cathode potential, and the cage potential there-

fore became negative. As the cage moved out of the beam, it remained

above the bias battery potential because of the slow discharging of the

R-C circuit made up of the cage-to-ground capacitance and the 10 kM9f

resistor. The slow-moving reflected electrons therefore were not per-

mitted to reach the cage, and no negative deflection resulted on the velocity

contour.

B. BRILLOUIN BEAM RESULTS

This section gives the results of the measurements of the peak

electron velocities in a velocity modulated Brillouin beam (less than two

per cent scalloping) and compares them with the predictions of the con-

fined-flow theory given in Section II B. Data, similar to that shown

in Figure 10, were obtained by recording the d-c and the peak r-f beam

velocities at various axial positions in the beam as the Faraday cage was

moved horizontally through the beam at the beam's vertical center position.

This data was taken at drive levels ranging from a = .015 to a = .30.

In all cases, it was found that the variations in the peak velocity as a

function of the radial position in the beam were small. In particular,

under small-signal conditions (Figure 10 is a good example), the peak

r-f velocity as a function of radius was found to be nearly constant.

As a result, the velocity of the entire beam was very nearly that

shown by the curves in Figure 11. These were obtained by moving the
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cage to the center of the beam and by plotting the peak velocity as a function

of axial position. The important points to notice about the standing waves

shown in Figure 11 are (1) that at small-signal evels, the second velocity

maxima is greater than the first, and succeeding maxima decrease as a

function of distance, (2) that the nulls do not reach the d-c beam level,

and (3) that at large-signal levels the amplitude decreases rapidly, and

the shape of the standing-wave pattern deviates considerably from a series

of half sinusoids. The first two of these items may be explained with the

aid of Equation (66) if it is assumed that, even though the drift tube diameter

is large enough for wave-guide modes to exist, these modes have phase

velocities high enough that they do not interact with the beam. At the center

of the beam, (T nr) = I, so Equation (66) may be written as

U jF' P z
0 1qn M A e np
(n- +  n qn" n- n-

-jF nI P z ] j [-Wt - (Pe + 6n) Z-3

+ qn+ Mn+ An+ e e . (67)

The various constants for the zero-, first- and second-rank waves in the

above equation may be evaluated with the aid of Figures I through 6, the

geometry of the beam tester and the beam parameters. The amplitudes

of the velocity waves are predicted to vary with distance as is shown in

Figure 12. Since P qn Mn- An nearly equals qn+Mn+An+, only cosine

waves are shown. The phases of the various waves vary as is shown in

Figure 13, so that the sum of the zero-, first- and second-rank velocity

waves is as shown by the dashed curve in Figure 14. In order to find out
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what the total velocity wave should look like, an estimate should be made

of the effect of the waves of rank three and above.

Since the reduced plasma propagation constants are nearly equal

for the higher-rank waves, the equation for the nth velocity wave may be

written as
-+ F n z] j(wt - Pez)

In.= - MA n [e 'z ' j. p (68)

where the gap-coupling coefficient M is the same for all the higher waves.

Thus it is seen that the amplitudes of the higher waves are governed by

An which was given by Equation (51) as

2ni

A = In (51)n [(Tn rb)1 + H In ] J(Tn rb)

From Figure 1, it can be seen that the value of Tnrb for n > 2 is very
th

nearly the n zero of

(T r) i (T n r b)

(Tn rb) Jo (Tn rb)

which is of course the nth zero of J (T rb). (The zero at Tfrb - 0

is the n = 0 zero). Jahnke and Emde1 5 give the nt h zero of J,(x) as

being approximately equal to w(n + ) therefore An may be written as

2HinAn [Z(n + I)2 + H JZiJ Er(n + (69)

The asymptotic relation for J0 (x) for large values of x is

I

J(x) =2 Cos (x - T)
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therefore

[- _ ) (70)

and An may be written as

A J ) In ,_n (71)

where Hn <-C Wr(n + has been used. If it is assumed the FnIn n

are small enough that the higher-ranking waves all vary in about same

manner as a function of distance, then these waves can be added together

to form a correction factor to the wave shown in Figure 14. This cor-

rection factor will decrease with distance, and even though the exact

variation with distance will not be known, an estimate can be made of what

the total velocity wave will look like.

After summing the A ns in Equation (71) it is found that the cor-

rection factor has a magnitude of about 0.05 at z = 0 and a phase of

1800 relative to wt - Pe z. Since this correction decreases with distance,

it is to be expected that the total velocity wave given by Equation (67)

is as shown by the solid curve in Figure 14. This curve shows that the

higher-rank waves cause the second velocity maxima to be greater than

the first and that succeeding maxima decrease with distance. It must be

noted, however, that the initial increase in the maxima is larger than that

found experimentally. The percentage decrease in the succeeding maxima

is predicted to be about 8 per cent by Equation (67) and is found to be closer

10 per cent in the experimental results. The ratio of the minimum to the
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maximum velocity is predicted to be 0.14 and this is the same as the

average of the small-signal experimental results. The major difference

between the predicted and actual minima is that those shown in Figure 14

are not all at the same level whereas the minima resulting from the small-

signal measurements are all at the same level.

At large-signal levels, Figure 11 shows that there is no initial

increase in the velocity maxima. Also, the percentage decrease in the

maxima is nearly 20 per cent as compared to 10 per cent at small-signal

levels. Since the shape of the standing-wave pattern is no longer a series

of half sinusoids at high-signal levels, it is to be expected that at least a

second-order theory would be required to analyze these results.

In making computations for the curves shown in Figure 14, the

reduced plasma wavelength used was taken from the curves in Figure 11.

An experimental value for the plasma reduction factor can be obtained by

comparing this reduced plasma wavelength with the plasma wavelength,

which is the same as the d-c scallop wavelength of the Brillouin beam.

If the scallop wavelength is taken directly from Figure 3-9 in Research

Report EE 495, the value of F is found to be 0.42. If the cyclotron wave-

length is multiplied by 4- to obtain the scallop wavelength, then the value

of F is 0.453. The theoretical value of F from Figure 4a is .475, so

that the discrepancies between this and the experimental results are 12 per

cent and 5 per cent. It is probable that the experimental value of F that is

valid is 0.42, since the error arising from the use of Xs = W27 (see

Research Report EE 495) is avoided. This agrees favorably with the value

of .413, which can be computed by using the equation for the plasma re-

duction factor on a Brillouin beam as given by Beck 1 6 (page 118).
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Also of interest in the data in Figure ii is the very small ripple

that appears on the small-signal curves. The ratio of the wavelength of

this ripple to the reduced plasma half wavelength is about i to 8, and

this turns out to be the ratio of Pq to Pe; therefore the small ripple

appears to be a standing-wave varying as

sin Pez e j t

One possible explanation for this is that the part of the beam which is

reflected by the beam collector varies as ej((wt + 'Iz) This velocity wave

interferes with the forward traveling waves to produce a component

varying as

ej(Wt +YZ)+ e j(t -Yz) = 2 cosyz ejwt

C. SCALLOPING BEAM RESULTS

This section deals with the measurements of the peak electron

velocities in a scalloping d-c beam, which was velocity modulated. Plots

of the beam velocity as a function of axial position and of drive power for

a magnetic field 25 per cent greater than the Brillouin value are shown

in Figure i5. With the exception of the decrease in wavelength, these

curves are not much different from those shown in Figure 1i for the

Brillouin flow case. There is an increase in the d-c level as a function

of distance which was not present in Figure 15. The reason for this in-

crease is not known yet, but the reason for the decreased wavelength is

due to the equilibrium diameter being inversely proportional to the magnetic

field level. The decrease in beam diameter has two effects: First, the
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charge density increases as the square of the beam diameter, and this in

turn causes the plasma frequency to increase linearly with the magnetic

field since

2 YPo

Second, the plasma reduction factor decreases as the beam diameter

decreases, and this in turn causes the reduced plasma frequency to de-

crease. However, Figure 4a shows that this decrease varies as (yrb)a,

where 0 < a < I . The over-all result is that the reduced plasma wave-

length decreases as the magnetic field increases.

A plot of reduced plasma half-wavelength as a function of the

magnetic field is shown in Figure 16. The slope of the line fitting most of

the data points is -0.45. However, at 200 gauss, the slope changes to -i

5

S-.SLOPE 98

U .'SL PEz -. 45

a 3 SCALLOP \
49 WAVE LENGTH\wov

z

150 200 300 400 500
MAGNETIC FIELD (GAUSS)

Figure 16. Plot Showing Locking of Plasma Oscillation
onto D-C Scalloping of Beam.
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and the reduced plasma half-wavelength becomes equal to the scallop wave-

length. The explanation for this must be that the periodic d-c electric

field, which is caused by the d-c scalloping of the beam, forces the regions

of high electron density resulting from the velocity modulation to move

into the regions of low density on the scalloping beam. This action is

similar to the pulling of the frequency of an oscillator by a resonant circuit,

where the reduced plasma frequency corresponds to the oscillator frequency

and the d-c scalloping beam corresponds to the resonant circuit.

Plots of the beam velocity as a function of axial position and of

drive power for magnetic fields 25 per cent and 35 per cent below the

Brillouin value are shown in Figures 17 and 18. The effect of the d-c

beam minima on the velocity curves in Figure 17 is to depress the right-

hand side of each half sinusoid. In Figure 18, where the reduced plasma

half-wavelength is shown equal to the scallop wavelength, the right-hand

sides of some of the half sinusoids are actually depressed to the minima

of the velocity standing wave by the d-c beam minima.
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IV. CONCLUSIONS AND RECOMMENDATIONS

In order to carry out the velocity modulation study described in

this report, a gridless gap cavity was placed in the beam tester described

in Research Report EE 495. Since the change in the beam diameter was

only a few per cent at drive levels as high as a = .30, it was concluded

that confined-flow theory should describe the behavior of the modulated

beam. Indeed, after carefully accounting for the higher-ranking waves

and the manner in which they were launched in the modulation region, it

was found that the higher-ranking waves were responsible for the slight

decrease in the maxima of small-signal velocity standing waves as a

function of distance. It was also found that the presence of these waves

was the reason for the minima of the velocity standing-wave pattern not

reaching the d-c beam level. As the drive level was increased, it was

found that the maxima of the velocity standing-wave pattern decreased

more and more rapidly. It is recommended that at least a second-order

theory be worked out using the method outlined at the beginning of Section II

to find the explanation for this behavior.

Since linear beam tubes normally operate at a magnetic field level

high enough that a considerable amount of scalloping is produced on the

beam, velocity standing-wave data were taken under these conditions.

The resulting small-signal standing-wave patterns were found to resemble

the ones obtained under Brillouin flow conditions closely, the main dif-

ference being the shortening of the reduced plasma wavelength, which

resulted from the reduction in beam diameter. The predictions of the

confined-flow theory therefore apply in this case as long as the proper
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beam diameter is used. At large-signal levels the maxima of the velocity

standing waves were found to be much smaller than those for the Brillouin

flow case and again, a second- or higher-order theory is needed to ex-

plain the results.

Velocity data were also taken for magnetic field below the Brillouin

level, and these indicated a great deal of interference of the d-c beam

scallops on the shape of the velocity standing-wave pattern. In fact, under

certain conditions it was found that the reduced plasma oscillation locked

onto the d-c scalloping of the beam. This phenomena should be thoroughly

investigated since it is possible that, with the proper axial positioning of

the cavity relative to the d-c scallops on the beam, this locking will occur

at magnetic field levels above that for Brillouin flow. If the locking

happened to be a function of the amplitude of the modulating signal, the

reduced plasma wavelength could shift from X q to X a (scallop wavelength)

at a particular input power level to a klystron and this would result in a

shift in the output power level of the klystron.

-50-



APPENDIX! DESCRIPTION OF INPUT CAVITY

The input cavity used on the beam tester to modulate the velocity

of the electron beam is shown in Figure A-i. The frequency of resonance

of the cavity could be %aried from 1928 Mc/s to 1958 Mc/s by moving the

plunger shown at the left side of the cavity (the plunger was taken from a

Varian VA-87 klystron which was designed to operate near 3000 Mc/8).

The o of the cavity was 3000 and the input coupling could easily be

varied by changing the size of the coupling loop which was held in place

by two 0-80 screws.

0-80 SCREWS

COAXIAL INPUT

MOVABLE TUNING PLUNGER

Figure A-i. Input Cavity.
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Since the dimensions of the gap were small compared to the free-

space wavelength of the signal in the cavity, it was decided that the electric

field pattern in the cavity drift tube could be determined by electrolytic

tank measurements. The results of these measurements are shown in

Figure A-2. In addition, a dashed curve is shown which very nearly

approximates the average of the axial electric field plots which were taken

at four radii within the beam region. The equation of the dashed curve is

E= - cos 2 17.56 z (A.1)c d -

or, when the z = 0 position is considered to be at the first zero of the

cosine squared function, the equation is

E -. I- (I - Cos P Z)A.Z

where Pc = 345 in inks units. nce the integral of Ec from cz = 0 to

PC z = w must be the peak voltage VI, it must be true that

C
pcd

so

E - (I-cOSCz) . (A. 3)
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ABSTRACT

A theory based on an idealized model and including space charge

explicitly is developed for the nonlinear behavior of an electron beam

passing through alternate gap and drift regions, the gap regions having

excitation fields. The model assumes a univelocity cylindrical electron

beam confined by a strong axial magnetic field and neutralized by stationary

positive ions. In the drift region, the beam is bounded by a magnetic wall,

and the solutions of interest are those with no transverse variations. An

exact solution, valid below the electron overtaking point, is found in the

Ti , T co-ordinates for arbitrary excitation signals. Approximate solutions

suitable for numerical calculations, are found for a variety of special cases

with continuous-wave excitation in the Z, T co-ordinates. Among the

parameters varied are space charge, gap length, and drift length, as well

as excitation level. The influence of these on the generation of harmonic

frequencies in the beam current, on phase delay, gap transit angle, and

beam loading are investigated. The interchange of power in the gap regions

between the beam and external circuits is considered, and the power output

for a two-gap klystron is obtained.
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I. INTRODUCTION

i. i Objectives

When the input drive level of microwave amplifier tubes is raised

sufficiently high relative to the d-c beam power, the interaction process

between the electron beam and the associated electromagnetic fields be-

comes nonlinear. This nonlinearity results in effects which may influence

the performance of the tube or change the characteristics to an appreciable

degree. For example, the saturation of the gain and power output is, of

course, a direct consequence of the nonlinearity, and this determines the

efficiency attainable. Among the other effects that may be. of importance

are the generation of harmonics, the variation of phase shift with drive

level, and the influence of the drive level on the pulse response of the tube.

The object of this report is to present the results of a study of certain

of the characteristics of a particular class of microwave tubes, velocity-

modulated tubes of the klystron type, when operating in the nonlinear region.

The study is not exhaustive and only a few of the many possible cases that

might be considered have been treated here. The emphasis here will be

placed primarily on obtaining an understanding of the physical basis for the

phenomena studied. Although the basic problem is formulated and the

solution obtained without any restriction placed on the frequency spectrum

of the drive signal, most of the analysis and discussion is limited to the

case of a continuous-wave (CW) drive signal. Understanding of this case

is basic to the consideration of any more complicated drive frequency

spectrum (the more complex frequency spectra may be considered in future

reports). Particular attention is devoted here to the two main aspects of



the theory of velocity-modulated tubes, both of which are necessary for a

complete picture of the operation under either linear or nonlinear conditions.

These are, first, the state of the electron beam (i. e., the current density

and velocity) at any location, and second, the exchange of power between

the electron beam and its surrounding circuit structure in each gap region.

In order to investigate the nonlinear behavior of a velocity-modulTated

tube, an idealized model of a tube has been employed. The choice of a model

for the analysis of nonlinear effects in microwave tubes must often be a

compromise between one which represents an actual tube fairly closely but

for which the mathematical analysis is formidable, and one which is highly

idealized but for which the mathematical analysis can be formulated and

carried to completion. Depending on the aims and scope of a particular

investigation, one or the other extreme, or some choice in between, may

be appropriate. Here, the choice is of an idealized model so that the desired

analysis can be carried to completion. It is recognized at the outset that

the results of this analysis cannot be expected to apply directly to an actual

klystron. It is believed, however, that this analysis does provide insight

into the nonlinear behavior of velocity-modulated tubes, and that one can

draw conclusions from it that are valid for application to real klystrons.

There have been, of course, a number of theoretical investigations

of the nonlinear behavior of klystrons, some of them based on a ballistic
1-4 5-11

theory, some on an extension of space-charge wave theory, and a

few using computer techniques to extend the ballistic theory to include

space-charge effects. 1 2 .13 The present investigation is essentially of

the second group, taking into account explicitly the influence of space

charge, but ignoring the discrete nature of the charges comprising the

electron beam by considering it to be a fluid. This approach limits the
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application of the analysis to conditions where electron overtaking has not

occurred. This choice is made so that the influence of the space charge

on the nonlinear behavior can be evaluated while keeping the mathematical

analysis tractable. The theory applies, therefore, only to operation levels

somewhat below satuirated power output in conventional klystrons.

1. 2 Model

The particular model chosen for the velocity-modulated tube is

illustrated schematically in Figure 1. 2-1. A uniform, univelocity electron

beam is incident at the entrance plane, z = 0, moving in the + z direction,

and strong d-c magnetic field in the z direction constrains the motion of

the electrons to be parallel to the z axis. A uniform distribution of stationary

positive ions in the beam is assumed, such as to produce a zero net d-c

charge density within the beam. This ensures that with no input drive the

electrons will move with constant velocity through the tube, considerably

simplifying the analysis. The beam has a circular cross-section and

radius r
0

I' I I I

I I I I '

ELECTRON IGAPI DRIFT REGION IGAP I DRIFT REGION !GAP;

BEAM I I I II I I
i I I I I
I I I I I
I I I i I

'MAGNETIC WALL I
I I I I I I

Z=O Z -

Figure 1. 2-1. Schematic of Model for Velocity-modulated Tube.
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The tube is divided into gap regions and drift regions by ideal grids

transversely oriented to the beam. These ideal grids terminate all electric

and magnetic fields while permitting the beam current to pass without inter-

ception. At the beam surface, in the drift regions, is located a surrounding

'magnetic wall, " i.e., a wall which is perfectly inducing (IL = co) for a-c

fields. In the gap regions there is no such wall, and therefore there is the

possibility of energy interchange with the external world.

Only that mode of operation will be considered for which there is

no variation of the electron current or longitudinal electric field in the

transverse plane. This is commonly provided for by assuming the electron

beam to be infinite in cross section, but such an assumption is not necessary

and will not be used here. The magnetic wall surrounding the beam in the

drift regions ensures a mode with no transverse variations. The impedance

looking into a magnetic wall is infinite. Conceptually the magnetic wall

may be imagined to be made -f perfectly inducing material (& = aD). Other

circuits can be conceived for which the characteristics are similar. For

example, a finned structure of the type discussed in Appendx B and shown

in Figure B-I can be made to approximate a magnetic wall at discrete

frequencies.

As a consequence of the presence of the magnetic wall, with its

infinite a-c impedance and the lack of variation of the electron current

across the beam, there is no transverse a-c magnetic field in the drift

regions. In the gap regions, however, where an applied or induced voltage

may be present, there will be a transverse a-c magnetic field, and the a-c

impedance at the beam edge will be finite.

In addition the higher-order modes or space-charge waves with

transverse variations being neglected, the circuit waves that are related to
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the wave-guide modes for a circular cylinder with perfectly inducing walls

are also neglected. The diameter of the cylinder can always be taken as

sufficiently small that all of these wave-guide modes would be evanescent,

anyway.

It is recognized that the two assumptions of no transverse electron

motion and no transverse electron current variation are severe limitations

and that these are not met in any practical klystron. They are believed

justified here because they allow the nonlinear analysis to be explored

much more fully than would otherwise be the case. Furthermore, it is

significant that an actual klystron presumably could be built using a finned

structure, which would be operable in this mode with no transverse variations.

Thus an experimental verification of the theory could be attempted if this

seemed desirable.

1. 3 Summary of Problems to be Treated

In Chapter II the general problem of the state of the electron beam

for the model chosen is formulated with an arbitrary time variation of the

drive signal assumed. In Chapter II, exact solutions are obtained for the

general problem posed, and various combinations of gap and drift regions

are treated explicitly. Then in Chapter IV the power interchange between

the electron beam and the external circuits in the gap regions is discussed.

Although exact solutions are obtained in Chapter III, the form of

these is such that they are not suitable for computational use; therefore,

considerable attention is directed to obtaining approximate solutions, which

are suitable for computation in the important case of a continuous-wave

driving signal. Chapter V considers an input gap with a drift region following;

Chapter VI considers the multiple gap and drift region case with continuous-

wave drive.



II. FORMULATION OF THE GENERAL PROBLEM

2. 1 Drift Region

The formulation for the electron charge density, current density,

and velocity in the drift regions will be considered first. This is a non-

relativistic formulation. Because of the restriction of the motion of the

electrons to the longitudinal direction only, and because there is no trans-

verse variation of the current or electric field in the beam, the lack of an

induced or driving signal (in the drift regions) means that only the z-

directed components of the current density and electric field will exist,

all others being zero. The only magnetic field produced by the beam in

the drift regions is a d-c azimuthal qpagnetic field resulting from the d-c

electron current. It may be neglected because the confining magnetic field

is assumed strong and longitudinal.

The total longitudinal current density, the electron charge density,

and the electron velocity are defined as

T - "Jo + J(z ' t) , (2.1.1)

PT -P + p(zt) (2.1.2)

uT - u°  + u(z,t) , (2. 1.3)

where -J, 0 PoP and u are those d-c values which exist in the absence

of any a-c excitation and are independent of z, the distance along the tube,

and t, the time. In general the changes in current density J, charge

density, p, and velocity resulting from a-c excitation, u, will be functions
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of z and t, and may contain a d-c portion. These three parameters are

interrelated by

J T = PT UT

Jo Po Uo

The longitudinal electric field is E(z, t) and has no d-c component for

zero a-c excitation because of the presence of the stationary positive ions.

For this case of no transverse variations, the relevant Maxwell's

equations reduce to

P(zt) + - (z,t) = 0 (2..)

The force equation is

du(z m t) e E(z, t) (2.1.7)

Equation (2. 1. 5) is obtained from the equation relating the curl of the

magnetic field to the current density and the time derivative cf the current

density to the time derivative of the electric field. Only the parameters

with excitation present appear, because the original d-c terms are in-

dependent of the excitation and may be dropped.

It is convenient to introduce a parameter, z 1 , termed the polari-

zation, which measures the displacement of an electron at a position z, t
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in the presence of a-c excitation from the position zo , t that it wbuld have

with zero a-c excitation. If to is the time that the electron passes the

location z = 0 with no excitation, then

z(z t) z - z (2.1.8)

z ° = (t-t 0 )u 0  (2.1.9)

It is easy to show that 1 4

J(z, t) 8 1 z.(z, t) (2.1.10)

0 0

P(z -0 & zI(z, t)

do z '0(Z. 1. 12)

dz1 (z, t)

The total time derivative in Equation (2. 1. 12) is taken following one

particular electron, or at constant t . The electric field can also be

expressed in terms of zI by using Equations (2. 1. 5) and (2. 1. 6):

E(z, t) = -P- z 1 (z,t) (2. 1.13)

In order to simplify the form of the equations for later use, all the

quantities of interest will be normalized through the introduction of the

plasma frequency, wp, and its associated phase constant, Pe:

e Po

w = -- (2. 1.14)
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p _ER (2. 1. 15)
p u0

The normalized quantities are defined by

T wpt ,Z Z

T 0 w t 0 Z 0 p z T i  (2. 1. 16)T0 p0 o 0Z '

T t T- T , Z I Z- Z0 = pz

The electron beam has been assumed to be unmodulated at Z = 0.

The basic differential equation for the state of the beam in a drift

region, Equation (2. 1. 7), becomes

d2 Z, (Z, T)
+ Z1 (Z,T) - 0 { 2.1t.17)

dTT

where the total differentiation is performed at constant T . Implicit in

this equation is the assumption that ZI(Z,T) is a single-valued function.

This will be the case if electron overtaking has not occurred; but if electron

overtaking has occurred, then ZI(Z, T) will be multivalued. Attention

will be restricted in this report to the region of operation below electron

overtaking in order to simplify the problem treated, and this restriction

must be kept in mind when applying the results. This limits the theory

to levels of operation somewhat below the saturated power output of con-

ventional klystrons.

The general solution to this differential equation in its present
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form is difficult to find because the total differentiation is performed with

T constant. When the equation is written in terms of partial derivatives

with respect to Z and T, a lengthy nonlinear partial differential equation

is obtained. Paschke 5 has obtained an approximate solution to this equation

for particular initial conditions by using a method of successive approxi-

mations. An exact; solution, obtained by changing the variables, will be

discussed in Chapter III. Once Z,(Z, T) is found, the other beam para-

meters follow directly:

" 8Z 1 (Z, T)
7- = -"--- 1, 0T (2. 1. 8)

0

Po

±- ( Op. . 1t9)

azi 8Z1
u 8Z (Z. T) 8Z I+Z

- I + (2.1. 20)

0 1

2.2 Gap Region

The electromagnetic fields in the gap region are somewhat different

from those in a drift region because the possibility of power exchange with

an external circuit is allowed. The restriction is retained, however, that

the current density, charge density, and electron velocity do not vary

across the cross section of the beam. Since Equations (2. 1. 10), (2. 1. 11)

and (2. 1. 12) relating these quantities to the polarization are valid in the

gap region, z I will not be a function of transverse position, either.
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In addition to the longitudinal electric field, a radial electric field

and an azimuthal magnetic field may be present (only the transverse-magnetic

fields which do not vary azimuthally are considered). Although there is

now no direct connection between the polarization and the longitudinal electric

field [Equation (2. 1. 13) does not apply in a gap region], the longitudinal

electric field is taken as independent of transverse position. The relevant

Maxwell equations can be written as

BEr OH0

-E-- - - , (2.2.2)

J+(E .z (rH0 ) (2.2.3)

8 rrEr BE Z(2.2.4)
F57+ Vj . .r

Here J and E z are functions of z and t only, while Er and HG are

functions of r, z, and t. With this restriction, Equation (2. 2. 3) can be

integrated to give

H =(+ ) r + f~~)(2.2.5)

For H to remain bounded at r = 0, f(z, t) = 0,

BE
H = + r (2.2.6)e at



By combining Equations (2. Z. 1) and (2. 2. 2) to eliminate Er , the following

wave equation for H0 is obtained:

8 2 H S 0  (2.2.7)
a2e - 2H

ax at

At this point it is convenient to divide E z arbitrarily into two terms:

Ez =- z "I + Ea (2.2.8)

This defines the partial longitudinal electric field, E a . Substituting this

into Equation (2. 2. 6) and using Equation (2. 2. 0) gives

crSEa

H -r a (2.2.9)

Since pO/C z1 is the electric field produced by the a-c space-charge

density, Equation (2. 2. 9) states that the magnetic field is related to that

portion of the electric field in the gap region that is not produced by space

charge. Using this result in Equation (2. 2. 7) gives

z 2
E a !&Ea
IF A . =0 .(2.2.10)

it z at

This has solutions of the form,

Ea = f(t - ;VC z ) + g(t + -z) . (2.2.11)

Thus Ea is made up of waves moving in the plus and minus z

direction through the gap region at the velocity of light, c = i/4I.
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These traveling waves will combine to form standing waves. If the gap

length is short compared to the free-space wavelength of the highest fre-

quency component of the excitation, then at any one instant of time, the

variation of Ea with z will be negligible. That is, for sufficiently short

gaps, Ea Will be independent of z and a function of t only. The usual

d-c transit angle of a gap is appreciably less than 7r radians and this

implies a ratio of gap length to free-space wavelength appreciably less

than IU/c) . Thus, for all klystrons except those of highest voltage,

it will be a resonable approximation to take Ea as independent of z (at

least for the fundamental frequency and perhaps the lowest harmonics).

From Equations (2. 2. 2) and (2. 2. 9), Er is proportional to SEz/as ;

assuming Ea to be independent of z means that Er will be sero in the

gap region.

Although it is clear that p0/C s is the electric field resulting

from the space charge, the interpretation of Ea remains to be investi-

gated. Introducing the scalar and vector potentials, + and A, gives

- A

EI = a "F (Z.2. )

Note that + and A z can be functions of z and t only. A is related

to the current by

a 2A a 2A as-=,,- - IJ =- P - (2. 2. 03)
a

If the gap is so short that z does not vary significantly across it at any

one instant of time, then in the gap, both z and A z can be considered

-13-



functions of time only. For this circumstance,

8AP (2.2.14)

and SA z Po . P
E p - _ + zI = -E . (2.2.15)

That is, Ea is related to a voltage applied between the grids and is equal

to the ratio of this voltage to the gap length for the short gap. In any case,

it is clear that E a is related to the fields which are present in the gap

region as a result of applied or induced fields in the external circuit coupled

to the gap, and Ea measures the degree of coupling.

In the formulation of the equation of motion in the gap, the only

difference from the drift region case is the additional electric field, Ea
aaIt will be assumed that the gap is sufficiently short that E a can be taken

as a function of time only. If d is the gap length, and V = muo/e

the d-c beam voltage, a normalized excitation parameter can be defined as

E (t)
e(t) = a (2. 2.16)

The equation of motion, in normalized form, for the gap region is

d2 Z 1 (Z, T) O(T)

dT + Z 1(Z,T) = - =

where D - pd. Again the restriction to regions of operation before

electron overtaking occurs must be observed.
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It is seen that if the excitation parameter, 0(T), is reduced to zero,

the equation of motion becomes identical with that for the drift region. The

excitation parameter, O(T), used here does not have precisely the same

definition as the conventional gap excitation parameter, often denoted by a.,

which is defined as the ratio of the a-c voltage across the gap to the d-c

beam voltage. For short gaps a = 0(T); for long gaps the concept of

voltage becomes imprecise and the definition of a is consequently also

imprecise.

A comment on the boundary conditions at the grids is in order. At

the perfect grids assumed here, the beam quantities are continuous, i. e.,

the charge density, the current density, and velocity are all continuous

(the ideal gap with a double-layer grid is a special case and is treated in

Section 3.4). Thus &Zi/8Z, OZ 1/ST, and dZ,/dT must be continuous.

Therefore Z must also be continuous. Only two conditions are necessary

at each grid, and usually the continuity of Z and 8Z 1 /8T will be used.
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III. SOLUTION OF THE GENERAL PROBLEM

3. 1 Drift Region

The general solution for Equation (2. 1. 17) is sought. As noted above,

this equation leads to a lengthy nonlinear partial differential equation if the

independent variables, Z, T, are retained. However, in view of the con-

stancy of T during the total differentiation, if new independent variables
0

are chosen, one of them being T, the equation reduces to a linear partial

differential equation of particularly simple form. A convenient pair of

independent variables is T, T . The equation of motion for an electron
0

passing the Z = 0 plane at T = T is

a Z (T. T)
+ Z (T,T) 0 (3.1.1)

8T z

The solution is

ZI(T,To) = F(To) cosT + G(To) tinT , (3..2)
0 0

where F and G are functions of T0 only.

This change of independent variable has made the solution of the

differential equation almost trivial, but the difficulty has been shifted else-

where. Although the solution may be rewritten now in terms of any pair

of relevant independent variables, it is, in fact, difficult to express the

solution explicitly and concisely in terms of the independent variables of

most interest, Z and T. With the relations of Equation (2. 2. 16),

ZI(Z,T) = F(T-Z+Z,) cosT + G(T-Z+Z,) sinT , (3. 1.3)
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Z is implicit in functions on the right-hand side.

The interpretation of Equation (3. 1. 2) or (3. 1. 3) is clear If one

follows a particular electron (T constant),it will execute a sinusoidal

oscillation in the drift region at the plasma frequency, wp, about the

position it would occupy in the absence of any excitation. This motion is

sinusoidal and at the plasma frequency, regardless of the magnitude (at

least below electron overtaking) or frequency spectrum of the excitation

signal applied to previous gap regions. Changing the excitation can affect

only the amplitude or phase of the oscillation, not its frequency. On the

other hand, if one observes the combined effects of all the electrons

passing a fixed plane as a function of time, then the resultant motion is,

in general, nonsinusoidal and rather complex. The excitation in the

previous gap regions (which determined F and G) controls the resulting

motion.

Because of the implicit nature of Equation (3. t. 3), it is not suitable

for computation. In Chapters V and VI approximate solutions will be

sought which are of more use in computation.

3.2 Gap Region

A general solution is now sought for Equation (2. 2.17). This is

conveniently done by using Laplace transformation techniques. The first

grid of the gap is taken as the Z = 0 plane and, as before, To is the

time at which a particular electron passes this plane. In general, Z1 (0, T)

and 8Z 1 (0, T)/T will not be zero because of possible excitation in prior

gaps. For convenience, the gap is assumed to be followed by a long drift

region. This allows the easy application of the Laplace transform, but

does not actually influence the state of the beam in the gap.
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Again, the introduction of new independent variables will transform

the differential equation into a linear partial differential equation. The

most convenient variables are TV, T 0 , where T - T - T . Note that

for constant T o , differentiation with respect to T 1 is equivalent to

differentiation with respect to T. The differential equation and initial

conditions are

8 Zp(TITo) O(T 1+ T0 )
OT + ZI(Tit T) = - D H(T 1 ) , (3.2. 1)

T1

Z(0, To) = F(T0 ) (3.2.2)

ez I
T (0, TO) = G (T O) (3.2.3)

1 0 < T i I r

H(Tt) = (3.2.4)
0 T t I 0 , T tI > r

where r is the value of T at which the electron which entered the gap

at TI =0 (i.e., T=T 0 ), reaches Z = D, the end of the gap; H(T 1 )

ensures that the equation of motion reflects the fact that an electron

experiences the excitation O(Tt + T0 ) only during the time it is in the

gap and not in the drift region.

Let the Laplace transform of ZI(T i , T0 ) be Z(s, T0 ) and that

of e(T I + T0) be O(s, T0 ). Taking the Laplace transform of Equation

(3.2.1) and solving for Z(s, T0 ) give
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-o sF(T°) + G(T o0 )
Z/,0 )= - [O(s, To) - e" r @(s, To+ r)] + sFT)+ ( 0Z2,O  D(s +t) 1 +/

(3.2.4)

In the gap region, 0 < T1 < r, the inverse transform is

T/

ZI(TI, TO) = - + T ) sin (T r) dT + F(To) cosT 1 + G(To) sinT1

0

(3.2.5)

The interpretation of this equation is that the first term, the integral,

represents the forced motion of the electron resulting from the applied or

induced electric field in the gap. The last two terms are a sinusoidal

oscillation at the plasma frequency excited by any modulation on the beam

as it enters the gap region. It should be kept in mind that if power is not

applied to the gap region externally, 0(T) will, in general, not be zero.

The fields induced in the gap region by the modulation present on the beam

as it enters the gap will produce a O(T).

3. 3 Combined Input Gap and Drift Region

The Laplace transform method applied to the gap solution in the

previous section is a convenient method to use in obtaining solutions for

combinations of gap and drift regions. This section will apply this method

to an input gap followed by a drift region. In this case, Z = 0 is the plane

of the first grid of the input gap, and the beam enters unmodulated at this

point; thus F(T0 ) = G(T 0 ) = 0.

The expression for the state of the beam in the gap can now be
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written directly from Equation (3. 2. 5). For 0 < T I < r,

Z 1 (Tip T 0  (" + To) sin(TI - r) d7 , (3.3.1)

where r is the value of T at which the electron reaches the end of the

gap, Z = D; r may be determined from the fact that at Z = D, the

quantity T1 = r. Since Z = 0 + Z and Z° = T, [:see Equations

(2.1. 16)],

D =Z 0 + ZI(r, T0 )

D r 0(7 + T) sin(r - 7) d- . (3.3.2)

00

The solution of this integral equation will give r as a function of T0

for any excitation function (T). Physically, r is the normalised transit

ime in the gap.

The expression for the state of the beam in the drift region is

obtained by writing the inverse Laplace transform of Equation (3. 2.4)

(with F=G=0) for TI > r:

ZI(T i , T0 ) = I 0(,r + T o ) sin(T I- 7) dT (3.3.3)

0

Although quite different in form, this must be equivalent to an expression

of the type given in Equation (3. 1. 2).
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Equation (3. 3. 1) for the state of the beam, the equation for the

input gap, and Equation (3. 3. 3) for the drift region together with the

auxiliary relation (3. 3. 2), are given in terms of the T i , T0 variables.

These relations can be expressed in terms of the Z, T variables by

replacing T0 by T - Z + Z and TI by Z - Z I . The expressions

will not be rewritten here in this form because they are clearly implicit

relations, with ZI appearing on the right-hand side and cannot be easily

exploited further with 0(T) allowed a general time variation. In Chapters

V and VI, where sinusoidal excitation functions are considered, the analysis

is extended much further, and useful expressions are obtained with Z

and T as the variables.

3. 4 Ideal Gap and Drift Region

There is a limiting case of the input gap and drift region combination

treated in the previous section which permits a significant simplification.

This is the case of an "ideal" gap, where D approaches zero so that

O(T) does not vary during an electron's transit through the gap. Now only

the region T1 > r is of interest as r approaches zero. For small D

(and hence small r), Equation (3.3.3) is

~ r

ZI(Tit To ) = - U 0(To ) sin T, (3.4.1)

The limit of r/D as D approaches zero must be determined. Equation

(3. 3. 2) becomes

r2

D-- - e( o .4)



to second order in r. Solving for r gives

r 2 - ± i- (To)] (3.4.3)

The negative sign must be chosen since r must approach D as 1(T0 )

approaches zero; therefore

r D i-t - t - e(T 0) . (3.4.4)

The polarization, Z t , for the drift region following an ideal input gap is

then,

ZI(TI, TO) = -[t 4i- e(To) sinT1  ; (3.4.2)

in terms of the Z, T variables,

Z (Z, T) = -Ci - i - e(T-Z+Z )] sin(Z-Z 1 ) . (3.4.6)

The condition under which a real gap will approximate an ideal gap

is that the electrons' time of transit in the gap is small compared to the

characteristic time of variation of the excitation signal associated with

the gap. For this condition, the electrons experience an impulse force

as they pass through the gap. If the a-c velocity charge is not too large

compared to the d-c velocity, the criterion is that d/u 0 be small compared

to the characteristic time of variation of the gap excitation.

Examination of Equation (3.4.6) shows that Z and OZ,/&T are

both zero at Z = 0, but that in general SZ,/OZ and dZ,/dT are not
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zero at Z = 0. This means that for an ideal gap with a double-layer grid

and while the polarization and current density are continuous through the

gap, the charge density and the velocity change discontinuously through

the gap. An electron passing through an ideal gap experiences a force

which is a delta function of time; this causes an immediate change in the

velocity, but not in the position of the electron. The discontinuity in

charge density is equal to

S8Z1 (0,T) - I -q'i-J L) (3.4.7)

PO 4z -- (T}

the discontinuity in velocity is equal to

I£u dZ 1(0. T)
u" dT (3.4.8)

Although there is a discontinuity in velocity, because the a-c

current density is zero at the ideal input gap, there can be no time-

average power transferred to the beam by an a-c excitation signal. Thus

the time-average velocity squared leaving the input gap must be uo2

even though the beam is velocity modulated. This is easily seen by

considering

I uT(T+)U
Z- ~ dT r (I 1;=)1'[ - G(T)JdT =I O()d

(3.4.9)

For any excitation function which has no d-c component, the integral of

O(T) over a complete period will be zero; therefore the average kinetic
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energy leaving the ideal input gap is the same as the d-c kinetic energy

ente ring.

The application of a d-c excitation signal to a gap has been tacitly

prohibited in the analysis developed here. In each region, the analysis

has considered changes away from an initial d-c state. The application

of a d-c field to a gap establishes a new set of d-c values in the following

drift region and no provision has been made to take care of this case. In

this report, therefore, no cases will be considered where a d-c excitation

is applied to a gap.

3. 5 Multiple Gap and Drift Regions

The technique for analyzing an input gap and drift region is readily

extended to handle any combination of drift regions and gaps following an

input gap. Figure 3. 5-1 shows schematically a klystron with multiple gaps

, ,(T) ,02(T) 03(T) 9N(T)
I i ~ 4 J i/ •%/ 6

I I I

S Ii I' I g I

I I I ' I ELECTRON I I

I I I I , BEAM I I
I II I-I

; 0
I I I I

I I a

I II lI I
I ,L2 L+ LI313D LNLN N

Figure 3. 5-1. Schematic of N-Gap Klystron.
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and drift regions. The beam enters the first gap at Z = 0 unmodulated and

experiences a different applied or induced field in each of the gap regions.

Again it is convenient to use the T i , T0 variables. Let Xn(T 0 ) equal the

value of T1 at Z = L. , where Ln is the normalized distance from the

first grid of the input gap to the first grid of the nth gap. Let X n(To) +

rn(To) equal the value of T at Z = Ln + Dn , where Dn is the normalized

length of the nth gap. The applied or induced field in the nt h gap is 0 n(T) =

On(Ti + T 0 ). Then the equation of motion for an electron passing the Z = 0

plane at T = T is

0Z

a

Z 1(0 , TO ) 0 1 (0, T O ) = 0 (3.5.Z)

I X n Tt I Xa + rn

Hn(TI ) = (3.5.3)

0 Tt < X n T Tt >' Xn + rn

Again the Laplace transform is used to obtain a solution for a general

time variation 0n(T). The Laplace transform of Equation (3. 5. 1) is

0 (, X+O e'SX n " (,X+ T)es(X U+ r n)

Z( (, TT) = - n n )n+e n  To0is o Z( Z + 1) D n

(3.5.4)
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The solution in the m th gap, that is, X 4 T 1 < x + Fm (or Lm

Z <L m + D ),is

rn- n

Z I(Tit T 0 ) - 0 , sin(T,-7)dr

n

0 fT:r+T sin (T i- 7-) d7 (3.5.5)

m

Within the m th drift region, that is X~ + r <T< m+j (o m

D m <Z <L M+),

Z (Tip T 0 = J nZF n(r+ TO) sin (T - ) dr . (3.5.6)

n

Thepaamter ). nd a eotie yntn ht~n=T o
n

ThZprmeer, a nd~ r can for obtine by ntinhafterXeo foirn n n I 

that X =0

I
D I 8,-, + T) sin 2 (r rT) d-

I

- Z6 -



/I
L 2 + D 2 =2 + r, + T O) sin(X 2 + r2 - r) dr

2+ r 2

-"z 0 2(7+ TO) sin(k, 2 + r 2 -7) dT

L + T ) sin +m -r) dT

n

Z~~ n+rn o lmLm+Dm =m + rm-( + T) sn(+ -) dr

n= J :

(3.5s.7)

By evaluating Xn and r for successive gaps, starting from the input gap

and proceeding toward the output gap, all these parameters can be obtained

from the solutions to the integral equations listed above. The Fn are the

normalized transit times in the various gaps.

It is clear from both Equations (3. 5. 5) and (3. . 6) that in any gap

or drift region, the excitation in all of the previous gaps contributes toward

the net motion. For a klystron amplifier, the state of the beam at any

point is influenced by the excitatio, in the preceding gaps in two ways.

First, there are the "feed-through" terms which give the contribution

to the beam motion at the point under consideration from each of the pre-

ceding gaps. Second, the induced field in each gap has a contribution resulting

from the modulation on the beam produced by each of the preceding gaps, so
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that the excitation of a gap depends on all of the preceding gaps.

Again a considerable simplification can be achieved in the solutions

by considering the limiting case of ideal gaps, for which the Dn approach

zero. For this case of zero gap lengths, only the solutions in the drift

regions are of interest, and Equation (3. 5. 6) for the polarization in the
th

m drift region becomes

mt r n

Z1(TI, To) = - en(T 0 + X ) sin(T C Xn) (3.5.8)

for X m < TI < Xn+" To evaluate the Xn and rn/Dn, Equations (3.5.7)

are investigated for Dn approaching zero:

Zri e1 (To )

rl
L= 2 X 2 61 (T) sinx 2

2 2 + r. (r - r) Z
* + D- 0q * "."e(T° cinX"° " Q ez 0(T°+ XZ)

Lm = Xm - O 0no+'n) sin l i n)n n

n= I

Lm+ m= M+ r" OnT°+ n ) [sinm(X - n )

I (rn -zrm) coo(X m - X)I (3.5.9)
nm n

-28-



0u

0 
CD

1.0

S~ 0S

+ +

all% 
0 0

_ 4 
140*1

-I 

NS

0o 
+ 0

0 14
a0 ;AoA CD

.2

40 
_ _ 

14

4 . 1 5



By starting at the input gap and working along the tube, the various

parameters can be determined and substituted into the succeeding equations.

It is seen that in order to obtain the X M a transcendental equation must

be solved. Since r is proportional to Dm , then r will approach zero
M m

as D approaches zero. The ratio of r to D will remain finite,
m m m

however, and this is the quantity of interest for determining the state of

the beam. In the expression for rin, the ratio Dn/Dm occurs. Although

each term by itself approaches zero, the ratio will remain finite. If one

is considering multicavity klystrons with all gap lengths equal, then

Dn /D m  is unity. If some of the gaps have different lengths, then as the

gap lengths approach zero, the effect of the different lengths can be

evaluated by using the proper ratios for Dn/Dm.

The equation for the polarization in the mth drift region can now

be written as

Zt(TT - ( - 0(T o+,X co n(X-

" " ]*l 0 (To+)X) cos(Xn ] - (T

2 0 (T +X~ r,2 ( X
+ 4D( cs n ) jsin (T Xn)

n I I 4D~

(3. 5. i)
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Again, the fact that each previous gap contributes to the polarization is

evident, and also that a particular gap excitation is influenced by all the

previous gap excitations. Examination of this expression shows that Z

and SZ,/BT are continuous at each gap, while SZ 1 /8Z and dZ,/dT

are discontinuous. Thus in the general case, the boundary conditions at

an ideal gap are that the polarization and current density are continuous

but that charge density and velocity change discontinuously. Since there

will be a nonzero value of a-c current density at all the gaps except the

input gap, energy can be transferred to or from the beam on the average

in all gaps except the input gap; therefore, the average kinetic energy of

the beam will change discontinuously at each gap, except the input gap.

In the multiple-gap klystron with ideal gVps, one limiting case is

of particular interest. It is assumed that 0 n(T) << I. Although this

precludes appreciable nonlinearity in the gap regions, there can still be

an appreciable nonlinearity in the drift regions (see Section 5. 2), if the

plasma frequency is small compared to the frequency of the excitation

signal. For this case, X Lm and r S Dm The equation for thesignl. Fr ths caeth

polarization in the mth drift region is now

Z1 (T1 , To) = 0-X n) sin(Ti-k) , (3.5.1Z)

n=i

since r =D
m m

Xm =L m + n(To+) sin(Lm - Ln) (3.5.13)

n=1
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to the first order in en(To). It is clear that this has produced a marked

simplification in the equation for the polarization, and this expression will

form the starting point for discussions of the ideal gap in Chapters V and

VI.

3.6 Discussion

This chapter has presented the solutions for the polarization of an

electron beam in a klystron under nonlinear conditions when the time

variation of the driving signals in each gap is arbitrary. It is well to

keep clearly in mind the conditions for which these solutions are valid.

First, they apply to the model of a klystron described in Section 1. 2.

Second, it is assumed that the gaps are short compared to the free-space

wavelength of any significant driving signal. And third, only operation

before electron overtaking has occurred is considered. In addition, only

those driving signals are considered which have no d-c component.

The results of this chapter are essentially summarized in Section 3. 5,

which gives the general results for multiple gaps and drift regions. Within

any drift region, the electrons will oscillate at the plasma frequency about

the position they would have had in the absence of excitation. The amplitude

and phase associated with this oscillation of any particular electron is

determined by the excitation it has received in each of the preceding gaps.

Within a gap region, in addition to this oscillation at the plasma frequency,

an electron undergoes a forced oscillation resulting from the excitation field

in that gap.

It is seen that the solutions are somewhat simplified by considering

the limiting case of zero gap lengths (ideal gaps). In this case, in each gap
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the beam experiences a force in the form of a delta function. Although

the current density, charge density, velocity, and polarization are all

continuous at a single grid, this is not the case at an ideal gap (double

layer grid). Here the polarization and current density are continuous,

but the charge density and velocity change discontinuously. Therefore,

in general, both the instantaneous and the time average kinetic energy

of the beam will change discontinuously through an ideal gap. At an input

gap, however, although the instantaneous kinetic energy may change dis-

continuously, the time-average kinetic energy must be continuous, since

there is no a-c current density in the beam at this point. And finally for

ideal gaps, the restriction to excitation signals such that e n(T) 1 I, is

seen to lead to a very considerable simplification in the expression for

the polarization.

All of the solutions which have been obtained in this chapter, for

both long and short gaps, have resulted in implicit expressions for the

polarization. While they are valuable for providing insight into the be-

havior of the beam in nonlinear operation, they cannot be used conveniently

for computations. Therefore Chapters V and VI will develop approximate

solutions (based on those obtained above) for the case of continuous sinusoidal

excitation signals which are suitable for computational use.

For reference purposes it is desirable to state here the limiting

condition for which electron overtaking occurs. In the T, T0 system

this is at

azi 8Zi8T - 8 t.0 , (3.6. t)

0 1

and under this condition the current and charge densities became infinite.
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In terms of the general solutions presented in Section 3. 5, the limiting

condition in the mth gap is

n+ rn

67-T sin(T1 -7) - n(+T ) cos(Ti , d0

n

+ enx0X+r+T o) sin (T- x- ) nn " n (n+T o) sin(T exn)

0 0)

{U- si(T 1 -7) - e (T+T coo (T"-T )]d

- em(m+TO) sinlT-M) " = 1.0 (3.6.2)

and in the mth drift region is

- - {JL n[ o sin(T 1 -r) - On(,ToT) cos (Ti-T)]dl.

I 1 1+ri 8( + r ax
n

+ en0nrn To) sin(Ti -n) ) n(Xn+T) sin(Ti -xn) A .0

001

(3.6.3)
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For the ideal gap case, the limiting condition in the mth drift region is

- " (% n (T, - + r n(%)-, sin(Ti-).,

D n ] n T T n

"Vn n(T) o coo(T 1 -),) " rn0n(T ) cos(Ti)] = .0, (3.6.4)

and if 0n(T) 4C I

n(%)uy- sin (T1- -L (T) n coos(T,-) x (T 1.0
0IT n o n 1" in On)o o(TI)J n

(3.6.5)
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IV. POWER EXCHANGE

4. 1 Poynting's Theorem

The power exchanged in the gap region with a cavity field which has

been induced by the beam current or produced by an externally applied field

is of prime interest in the analysis of klystrons. The power exchange

between the electron beam with its kinetic energy and the gap field with

its electromagnetic power flow is described by Poynting's theorem;1 4

therefore, it will first be stated and put in a form convenient for the

analysis of power exchange.

In terms of the electric and magnetic fields and the current density,

Poynting's theorem states

v - (E xH) + T-(f E- + + E - JT 0  (4.1.1)

It is often convenient to express the current density in terms of the velocity

and charge density, 3 T = .PTUT. When this is done, it can ae shown 1 5

that Equation (4. 1. 1) can be written as

(4.1.2)

Integrating over the volume of the gap occupied by the beam, and using

Gauss' theorem, gives the two expressions:

f H) nds +f[ 8e(f E- 2 + j!,2)+E . JTdv]= 0

V
(4.1.3)
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fE+H+ +3 f O (P~ u  dv =O

xH+ PTu nds + J8 i2f+2E +H UT)

V

(4. 1.4

The interpretation to be made then is that PTuT represent. the kinetic

energy density of the beam while M PTu3 represents the kinetic power

density which flows through any cross section of the beam.

In many cases, the time average values are of most importance.

For the class of excitations which are periodic in time (this class is of

considerable practical importance), the time average value of the volume

integral in Equation (4. 1. 4) is zero; thus

f(E +MPTU 3) . nds = 0 (4.1.5)

or

fEx H) -nds = _fE IT dv (4.t. 6)

5 V

where the overbar indicates the time average.

4. 2 Formulation for the Gap

The formulation of Poynting's theorem in terms of the particular

model used in this report will be developed. For the gaps considered here,

only E z and H will be present, since the gaps are assumed short com-

pared to the free-space wavelength, and the electromagnetic power flow

will be purely radial. When the azimuthal symmetry of the fields is con-
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sidered, the radial power flow at any radius r is given by

P "r ME H dz (4.2.1)

0

Using the expressions for E z and H obtained in Section 2. 2, and

introducing the normalized variables gives

D

P 2
= -. r + ~ dZ .(4.2.2)

0 R
0

Here, R - pr is the normalized radius of the particular surface con-

sidered; R = Pr is the normalized beam radius; and P is the original

d-c beam power. Usually one is conceren.with the total power into or out

of the beam and R is taken equal to R0 . It is clear that Z and 0 must

be expressed in the Z, T system to evaluate the integral over the gap

surface.

The integral has two terms. The term which contains only 0 and

86/8T is associated with the stored electric energy in the gap considered

as a capacitor and is independent of the state of the beam (except in so far

as the state of the beam determines the magnitude of the induced field).

Since 0(T) is independent of Z,

I - so dZ = - .(4.2.3)

0

In terms of the unnormalized variables, this is

--f rz  -6.E2

P 0 f-Tt a(4.2.4)
0
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This is clearly the rate of change with time of the electric energy stored

in the gap by the excitation field, Ea . divided by the original d-c beam

power. The main interest therefore, will be directed toward the first

term of Equation (4. 2. 2) for R = R :

Iz89 dZ ,(4.2.5)

which describes the power interchange with the electron beam. In terms

of the normalized variables,

= + 2 Z dZ + dZ + dZ

(4.2.6)

also,

ri TuT ds I I (+~ ) (4.2.7)

f pf [( ;;)( W -

u7 TT) dv/8[ (1OZ) (+ dZI)]dZ .(4.2.8)

V

Since&Z 8
dZ I Z + ZW6Zz (4.Z.9)

v0

9 =-o I
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d3 T n dZ . (4.2.i)

Both E z and He must be continuous at the beam edge; thus for

a given state of the beam, the values outside the beam are determined for

a specific cavity geometry. For the model assumed here, H 0 is indepen-

dent of z and the Ea portion of E z is also independent of z. But the

portion of E z related to the space-charge field will in general be a function

of z. Thus while the magnetic field in the gap external to the beam must

be inde, endent of z, the electric field must be a function of z. And the

particular z variation observed will probably be a function of the excitation

level. A rough estimate of the relative amplitudes of the two portions of

the electric field can be made. It will be seen in Chapter V that within a

gap, Z 1 is roughly of the order of 0/2D divided by the ratio of the

excitation frequency to the plasma frequency, or less. Therefore the "

ratio of the space-charge field to the excitation field will be roughly of

the order of the reciprocal of the ratio of excitation frequency to plasma

frequency, or smaller. In this report, the greatest attention is directed

toward situations where the ratio of excitation to plasma frequency is large

(because of the simplification in mathematics that this provides), and

therefore the portion of the electric field which varies with Z will be

relatively small.

-40-



In order to circumvent the necessity of having to consider specific

cavity geometries associated with the gaps, an equivalent circuit for the

cavity will be developed with the edge of the beam (r = r ) taken as the

reference surface. The main requirement for the equivalent circuit is

that it predict the same power interchange for a given beam state as the

actual circuit. An equivalent current into the equivalent circuit, Ic

and an equivalent voltage across it, Ve , are chosen as

V rR 2

1r 2wr OHe(r) = 0 0 (4.2. 2

V =-2V Z+ dZ .(4.2. 13)
C0

The power flow into the equivalent circuit, normalized to the original d-c

beam power is

ro e e _ (Z, +2;r dZ (4.2.14)

0 0

This is seen to be identical with Equation (4. 2. 2) for the electromagnetic

power flow radially outward from the beam; therefore the equivalent circuit

chosen provides the proper power flow.

When the excitation is periodic in time, V and Ie can be developed
e e

in a Fourier series based on the fundamental excitation and its harmonics.

For each frequency, an equivalent circuit impedance can be defined as the

ratio of V to I at the particular frequency:
-e
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('I+ 2;") dZ 2Z IdZ

V fzZd-o _____ __ e
e ; v = R

(4. 2. 15)

The second term in the expression is clearly reactive in nature. Figure

4. 2-1 shows the two equivalent circuits for a cavity that are of interest;

I

V v, zt
S eZL

(a) (b)

Figure 4. 2-1. Equivalent Circuits for Cavities:
(a) Input Cavity with Signal Source;
(b) Intermediate or Output Cavity.

the first has a signal source and represents an input cavity, the second

represents an intermediate or output cavity. In the first case, one may

write

V = I Z + V (4.2.16)e e s 8
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or

D V R

-2V ZidZ- V e = - o Z + (4.2.17)

0 C

If Z can be expressed in terms of 0, then the second equation can be

solved for e, thus providing a means for determining the excitation para-

meter 6 in terms of a source voltage, V . For an input gap, Z 1 , is

zero at Z = 0 and only the value of 0 in the gap contributes to Z .

For the case of an intermediate or output cavity,

V e = Ie Z L  , (4.2.18)

o2Vf dZ - e = 0  0  s ZL (4.2.19)

In this case, Z t at the input plane of the gap is nonzero due to modulation

of the beam by previous gaps. By expressing ZI in terms of the excitation

of the gap under consideration plus a contribution from previous gaps

excitation, it is possible to solve for the gap excitation in terms of ZL

and the previous gap excitations. Thus this equivalent circuit approach

enables a determination to be made of the excitation at each gap without

determining in detail the electromagnetic fields in the cavities.

On the other hand, if one looks at the surface of the beam, the

impedance seen is that resulting from the gap capacitance plus the beam

loading. This impedance is
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/" + 1 (4.2.20)

0 Fr F

the first term being the beam loading and the second the gap capacitive

reactance. In computing the beam loading, an excitation is applied only

to the particular gap under consideration, so each gap is considered as

an input gap in the calculation.

4. 3 Power Exchange in an Ideal Gap

Again, some simplification is obtained in the expressions when an

ideal gap is considered. For example, as D approaches zero, the radial

electromagnetic power flow through the beam sucface is

-ro 1 " 8(0)2 Z 80 (4.3. t)

0

The first term, which is related to the stored electric energy in the gap,

approaches infinity as D approaches zero, because the gap capacitance

approaches infinity. The second term represents the power exchange with

the beam. This second term is zero for an input gap, since the beam

enters unmodulated and Z is zero. For a periodic excitation, average

power transfer to the beam in an intermediate or output gap will occur if

Z has a component in phase with 80/aT.

The gain in energy by the beam in the gap is

I J Tdv = 0 + (4.3.2)

V
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Again, an input gap has no average beam energy increase since aZt/ST = 0.

In intermediate or output gaps, there will be an average kinetic energy

increase for a periodic excitation when 0 and OZ,/OT have components

which are in phase. For an ideal gap, the impedance looking into the beam

is zero, from Equation (4. 2. 20). And finally, from Equations (4. 2.7) and

(4. 2. 10), the change in kinetic power in the beam, normalized to the d-c

beam power, through an ideal gap is.

8 Z 3 ] o u , Z j 3

) T Z (4.3.3)

out in

For an input gap this becomes

[ 8Z) ( = -U 3 (4.3.4)
Tr) -T 1) ut

using Equations (3. 4. 7) and (3. 4. 8).
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V. INPUT GAP AND DRIFT REGION WITH CONTINUOUS-WAVE DRIVE

5. 1 Exact Solution

In the remainder of this report, attention will be confined to the

analysis of klystrons that have sinusoidal signals applied. In this chapter,

the input gap and drift region are studied in some detail, since the results

are basic to the analysis of the multigap klystron and also indicate some

fruitful analysis techniques for the more general case. The general solutions

obtained in Sections 3. 3 and 3. 4 form the basis of this discussion of the

input gap and drift region.

The gap excitation in the input gap is taken as

O(T) = A cosa T (5 1.1)

where o = w/wp is the ratio of the excitation frequency to the plasma

frequency. In most cases of practical interest o is fairly large compared

to unity. The polarization in the input gap is Esee Equation (3. 3. 1)]

Z=(T , T A Fcos(,T + aT) - cos (wT ) cos T + T sin(To) sin T-]S )D( Z-) 0in0)T 0)

(5. t.2)

for 0 < T r, and in the drift region that follows is [:see Equation

(3.3.3)-]

ZD, A [coo(To+ ) cos(T-r) - a- sin(o T + r) sin(T 1 -r)ZTto) 2D(o. Z-)010

- cos(wrT ) cosT, + o sin(oT ) sinT], (5.1.3)
0 0
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for TI > r, where r is obtained from [see Equation (3.3. 2)3

A [cos(oT + rr) - cos(oT ) cosr + sin(aT) sin r = D
2D( -1)

(5.1.4)

These are the exact solutions, within the limitations discussed in Section

3.6, for the polarization with a sinusoidal excitation.

For the ideal input gap, the polarization in the drift region following

is [see Equation (3. 4. 5)]

Z I(TI, To ) = - - iV -A cos(vT) sinT, (5.1.5)

For A <4 1, this becomes

Z1(11 0) = .. coos(aT) sinT (5.1.6)

Although the introduction of the T1 , TO variables has served

admirably to make possible the exact solution of the differential equation

and to obtain a qualitative picture of the state of the beam, in order to

obtain a more quantitative picture of the state of the beam and evaluate

the power exchange at the gaps, it is necessary to use Z and T, the

laboratory variables. The exact solutions can be written in terms of the

Z and T variables by replacing T1 by Z - Z and To by T - Z + Z

Csee Equations (2. 1. 16)]. When this is done it is seen that the exact

solution for the polarization becomes an implicit relation, with the polari-

zation, Z, , appearing on the right-hand side of the equation in the argu-

ments of the various functions. This renders these exact solutions in-
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convenient for computational use. It is the purpose of this and the next

chapter to obtain from the exact solutions, approximate solutions that are

suitable for computational use.

5. 2 Ideal Gap, First-Order Approximation

As a starting point for the study of the ideal input gap, it is assumed

that 0 << I and Equation (5. 1. 6) applies. This does not necessarily imply

that linearity is approached. The point of electron overtaking is given by

Equation (3. 6. 5); for sinusoidal excitation this becomes

A Ea. sin(w To) sin T+ coso (wT) cosT 1.0 . (5.2.1)

This means that the maximum allowable value of A is * for TI = 0, but

only f- for T1 =w/2. But T 1 = Z -Z1 I =w/2, and Z w/2 is a common

drift-region length for practical klystrons. Thus if electron overtaking at

any point in the drift region is to be avoided, A must be restricted to less

than 2/ . For 4 >> I (a common situation), A will be small compared

to unity. For large ratios of excitation frequency to plasma frequency,

Equation (5. 1. 6) becomes increasingly accurate. For a- = 5 and A = 0.4

(the largest allowable value), the approximate expression (5. 1. 6) falls

within 11.3 per cent of the exact expression (5. 1. 5), and for T = 10,

A = 0.2 (the largest allowable value), the approximate expression is within

5.3 per cent of the exact expression. The approximate expression essentially

precludes nonlinearity within the gap but allows significant nonlinearity in

the drift region.
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Equation (5. 1. 6), expressed in the Z and T variables, is

A
Z1 (Z,T) - cos(sT- wZ +rZ) sin(Z-Z 1 ) . (5.2.2)

Since A << 1, then Z< I for all values of Z and T, and the maximum

value of Z will occur in the immediate neighborhood of Z = w/Z. There-

fore Z can be neglected relative to Z in the sin(Z - Z ) term since

Z is at its maximum (though much less than unity) where sin(Z - Z1 ) is

varying only slowly relative to its argument, and approaches sero where

sin(Z - Zt) varies most rapidly relative to its argument. But aZ I cannot

be neglected in the argument of the cosine. In the neighborhood of Z = w/i,

and for A = 2/a (the limiting value), a Z t will be of the order of one

radian and hence can appreciably affect the value of the cosine term. For

r >> I, then,

AZi(ZoT) = -z cos(oT - wZ +rZ,) sinZ (5.2.3)

Equation (5. 2. 3) can be rearranged to give,

wT - wZ + wZ 1 = aT - aZ - A sinZ cos(oT - 4Z + aZ)

(5. 2.4)

This has the form

y = x+C cosy , (5.2.5)

where

r
y = T -aZ + Z , x = T - Z , C =-- 2 -sinZ

It is shown in Appendix C that for an equation of this type, y can be
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obtained explicitly as a Fourier series in x. The Fourier coefficients

for this particular equation are obtained in Section C. 3 and the resulting

Fourier series is

'(nc' [s#in (_T~ cos (nx) + coos(Y~ sin (nx)]

J nc) sin [n (x +)] (5. 2.6)n nn

where J n(nc) is a Bessel function of the first kind of order n and argu-

ment nc. The resultant expression for the polarization is

Z (Z, T) 2 3 nwA sinZ) sin n (rT - aZ - (5.2.7),,,-,T,~ ~ Z= n"° ('

To obtain this, the relation Jn(-x) = (-1)n Jn(x) was used and the (-1) n

absorbed by changing the sign of the ir/2 in the sine term. The region

of convergence of this series (see Appendix C) is A sin Z 4 1. This is

essentially equivalent to the restriction to operate below electron overtaking.

Not only has this inversion process given an explicit relation for

ZI(Z, T), but the relation obtained is in the form of a summation of the

harmonics of the excitation signal since naT = nwt. This is convenient

for computation. The electric field in the drift region is proportional to

Z, Esee Equation (2. 1. t3):) and with Equations (2. 1. 18), (2. t. 19), and

(2. 1. 20) the a-c current density, charge density, and velocity may be

obtained:
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JZ,o T) 2 Jo. nA si co n -T o~o - o- w 1ITo Z oZ c [n(T-FZ-)] , (5.2.8)

In these equations, J' (x) denotes differentiation with respect to then

argument of the Bessel function.
Several conclusions may be drawn from these results keeping in

mind the model used, which included an ideal gap, the restriction to levels

below electron overtaking, and the assumption that a > 1. The most

important relation is probably that for the current density, Eq uation (5. 2.8).

In this relation the amplitude parameter, A, appears in conjunction with
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(r/2, so that in all cases for which aA/2 is the same, the amplitude of

the current density will be the same. The phase of any harmonic will be

different, however, since a appears without A in the cosine terms.

This observation is not valid for the charge density and velocity relations

since A appears without a there. In all three expressions, the generation

of harmonics is evident, and the start of the saturation effect for the funda-

mental term is also apparent since the amplitude parameter appears in the

argument of a Bessel function.

Although the phase shift of any harmonic depends on r, it is in-

dependent of the drive level. Therefore, any phase shift with drive must

be a second-order effect and enter only if a more accurate expression

than Equation (5. 2. 2) is used. Since Equation (5. 2. 2) becomes more

accurate as a is increased, one would surmise that any phase sensitivity

to drive level should decrease with increasing a. The location of the first

maximum of the fundamental component of current density is seen to occur

at Z = w/2 regardless of the drive level. Thus any shift in the location

of the maximum in the funda mental component of current density can be,

at most, a second-order effect, at least below electron overtaking.

Not only the fundamental component, but all the harmonics of the

current density have their maxima at Z = w/2 for A = 2/a and 0 <Z <

w/2. Each component of the current density is zero at Z = 0. Only the

fundamental component of charge density is non-zero at Z = 0 because

J (0) = 0 for n Z I and J'(0) = 0 for n_ a2, but J,(0)= 1/2. Then n

a-c charge density is not zero at Z = ir/2, although the a-c velocity is

zero there. Because the total velocity at Z = w/2 is just the original

d-c velocity, the a-c charge density there is equal to the a-c current
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density

PO J

Figure 5. 2-1 presents curves of the amplitude of the normalized

a-c current density (or normalized a-c charge density) versus the nor-

malized drive parameter, aA/2 at Z = w/2 for the first twelve harmonics

of the excitation frequency. The curves are terminated at arA/2 = 1.0,

where electron overtaking occurs and the theory developed here ceases

to be valid. The onset of saturation of the fundamental component is

clearly evident, and at aA/Z = 1.0, the amplitude is 1.1 db below what

a linear theory would predict. In addition, the rapid growth of the amplitudes

of a large number of harmonic components for aA/2 approaching 1.0 is

striking. At the electron overtaking condition, the beam current is rich

in harmonic content.

The harmonic amplitudes of the current density at Z = w/2 and

arA/2 = 1.0 may be explored further. From Equation (5. 2. 8) the harmonic

amplitudes are equal to 2J n(n) for these conditions. Watson1 6 gives an

approximate formula for J n(n) for large n. Using this, the harmonic

amplitudes for large n are approximately equal to

1
2 rs 0.a.

3 irn n

The amplitudes are plotted as a function of n in Figure 5. 2-2. They are

seen to decrease very slowly with n inasmuch as they fall off only as n- t / 3

If the abscissa of Figure 5. 2.1 is taken as TA sinZ rather than7-
crA/2, then the curves represent the amplitudes of the normalized current
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Figure 5. 2-2. Normalized A-C Current Density Harmonic Amplitudes
for Z = wr/2 and arA/2 = 1.0.
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density harmonics for arbitrary values of Z in the range 0 < Z < /2.

If aA sinZ is taken as the abscissa, the curve does not represent theZ

charge density. The value of unity on the abscissa represents the over-

taking point at the particular Z position chosen, and the theory is invalid

for larger values of Z.

Figure 5. 2-3 shows curves of the normalized current density

harmonic amplitudes as a function of Z for A/2 = 1.0. It is seen that

half way along the drift region the harmonic amplitudes are already signif-

icant, and, in fact, the growth of the lower harmonics in the last third of

the drift region is relatively slower than in the middle third.

In contrast to the current density, the polarization has a much lower

harmonic content since the harmonic components of the polarization fall

off as 1/n relative to those of the current density. For comparison,

Figure 5. 2-4 presents the harmonic amplitudes of the polarization (multi-

plied by w-) versus aA/Z for Z = r/2. This is to be compared with

Figure 5. 2-1 for the current density.

No curves of the harmonic amplitudes of the velocity will be given,

since these are of less importance and cannot be readily obtained from

Equation (5. 2. 10). It is clear, however, that except for the fundamental

component, all the harmonic amplitudes are zero at Z = 0 and Z = 7r/2

and have a maximum at some intermediate position. The fundamental

component is non-zero at Z = 0 and presumably decreases monotonically

to zero at Z = w/7.

It should be kept in mind that the nonlinearity exhibited in this

section is due solely to the nonlinear behavior in the drift region. The

approximation made in Equation (5. 1. 6), in effect, discards the nonlinear
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terms in the gap region and retains only the first-order, linear term.

Thus the velocity modulation imparted to the beam by the gap has only a

fundamental component. To take account of the nonlinear behavior in the

gap region additional terms must be used in the representation of the gap

excitation.

5. 3 Ideal Gap, Second-Order Approximation

The previous section considered a first approximation to the polari-

zation in a drift region following an ideal input gap. In the approximation

developed there, the space charge was so small (T = w/wp >> 1), or the

excitation so small (8 << i), that the gap modulation was linear and the

only nonlinearity arose in the drift region. Thus, at the input gap only

the fundamental component of the a-c velocity is non-sero.

In this section, the next order of approximation is made and a

nonlinear gap modulation considered at the input gap. The basic equation

is Equation (5. 1. 5); in the Z, T variables it is,

Zi(Z, T) = - [1 -A cos(wT-Z +oZ) ] sin(Z -Z 1 ) . (5.3.1)

The second-order approximation to the first term is obtained by expanding

the square root and retaining the first three terms,

i - 41 -Acos(wT - wZ +Z)

I - - cos (oT - rZ +oZ 1 ) - A cosZ(wT - sZ +.Z I)

A A AZ
- a + 7- cos(rT - wZ +tZI) + IT cos(ZarT - 2arZ + ZaZ1 )

(5.3. Z)

-57-



To be consistent, the second term of Equation (5. 3. 1) should also be

approximated as

sin(Z-Z 1 ) - sin Z-ZI cosZ (5.3.3)

The equation for the polarization is now

A2AA l2 T - WZ + 2'Z co
Z(Z, T) =[" + 4 cos(aT -Z +rZ ) +TG co(ZT - 11 [sintz)- Z IcosZ

-6 4 coo(wT-rZ+aZ 1 ) + A2 cos (24T -ZwZ+ ZI)]

L -A + A cos(wT - aZ+ oZ 1 ) + A cos(Zo- aZ+ Zo1 I)coos

The restriction to A/2 < 1/ (below electron overtaking) is still observed,

and again o is taken as large compared to unity. Then the denominator

can be approximated and the whole expression rewritten as

Z Z T) - (sinZ + sin2Z) - sinZ cos(T-aZ+Z 1 )

A2

- - (sin Z + sin 2Z) cos (2oT -2ZZ + rZ). (5.3.4)

Only terms to A have been retained, consistent with the second-order

approximation being developed. The accuracy of this approximation is

within 2.4 per cent of the exact expression for (r = 5, A = 0.4 (the

largest allowable value without overtaking) and with 0.6 per cent for

= 10, A = 0.2 (the largest allowable value).
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Equation (5. 3.4) can be rewritten as

oA-

wT-o+ O .[oT-w 4 2(i + si. snZo,+ T -.<° Z.+,w°,1)

- - (sinZ + sin 2Z) cos (2rT - rZ +ZZ) . (5.3.5)

This has the form

y = x+C t cosy+ Ca cosy (5.3.6)

where

y = rT - wZ + Z

x = rT -IrZ - Z (sinZ + sin2Z)

C = - w sinZ

C2 = - W (sin Z + sin 2Z) (5.3.7)

In Appendix C, Section C. 4, an equation of this type is solved explicitly for

y in terms of x. From the result obtained there, the polarization is

T - (sinZ + sin2Z) + acoa (T-Z (sinZ + sinZZ)

Z(ZT) = AZn

+ bn sinrwT - noZ - A + sin 2Z)]} (5.3.8)

The values for a n and bn are obtained from Equations (C. 4. 7) - (C. 4. 10)

with CI and C. given in Equation (5. 3. 7). The a-c current density is
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-1Ts n sin noT - nrZ - (sin Z + sin 2Z)

-b n cos[nT -nwZ n=(hinZ+ sin2Z)]} (5.3.9)

The a-c charge density and velocity are somewhat more complicated in

appearance (recall that an and bn are functions of Z) and will not be

written here, although they may be obtained in a straightforward manner.

There are several points in which these solutions differ from those

obtained in the previous section using the first-order approximation. These

points are, (a) the polarization has a d-c term which is dependent on the

excitation level, (b) the amplitude of the various harmonics will depend

somewhat differently on the excitation, and the values at crossover are

different, and (c) each of the harmonics has a phase shift which is dependent

on the excitation level. These various points will be discussed in turn.

The d-c term in the polarization is

AZ
- T (sinZ + sin 2Z) (5. 3.10)

Since the electric field in the drift region is proportional to the polarization

[Equation (2. 1. 13):, the electric field will have a d-c component in the

drift region. For the model used here, the appearance of this d-c electric

field is somewhat awkward because it was initially assumed that the d-c

space charge of the originally undisturbed electron beam was neutralized

by stationary positive ions. No provision has been made to include any

motion of these positive ions, their mass having been assumed to be so
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large compared to the electron mass that such motion was negligible.

However, with the appearance of a d-c electric field in the drift region,

the positive ions would have to have an infinite mass to preclude their

motion. If they do move, the solution obtained here becomes invalid, at

least to some degree. In order to retain this solution one must assume

either that the positive ion mass is infinite, or that the excitation is in

the form of pulses of sufficiently short duration that the ions do not have

time to move. Although the occurrence of this d-c electric field has cast

doubt on the applicability of this second-order solution, it is believed to

be still of considerable interest in providing an understanding of some of

the other nonlinear effects,and therefore these will be explored.

The magnitude of this d-c electric field can be estimated from the

relation,
3

E --- 2-° z . (5.3. It)

As a reference value with which this might be compared, one might take

the d-c electric field, E., which the undisturbed electrons in the original

beam would produce. Note that one would not observe Z' experimentallyo

because of the presence of the positive ions and that E ° is not the field

that would exist in the absence of positive ions:

-J z
El + constant (5.3.12)

0 W p

Taking E' = 0 at Z = 0, gives

M T (5.3. 13)
0
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the ratio of the d-c part of E to E' is then

A
2

-fg7- (sinZ + sin ZZ) (5.3.14)

Since to preclude overtaking, the restriction on A will still be that it must

be less than approximately 2/o, the magnitude of this ratio is of the order
1 2

of - a at most. For o large, this will be quite small.

It is of interest that this d-c component of the electric field is zero

at Z = 0 and w radians and has a maximum value at Z = 0.94 radian.

The value at Z = wr/2 radians is about 57 per cent of the maximum value.

Of course, there is no change in the d-c component of the current density

with excitation since the source of the electrons is unaffected by the presence

of excitation.

The Fourier component of the current density of most interest is the

fundamental component. From Equation (5. 3.9), this may be written as

1 22/b\[J(Z, T)I = a si +...nZ 2Z

s sin[rT - Z - + (sinnZ Z) tan-

0

(5. 3. 15)

From AppendixC, Section C.4, a I and b Iare

a I ZJ I (-T sin Z) Jo[T (sin Z + sin ZZ)]

+ 2 in (7 ) ( sinZ) m+ Jm+, (sin Z + sin ZZ)]

- coo(3m-w!j) A sinZ) jm[ (sinZ + sin 2Z)]} (5.3. t6)
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b = -2 cox Q im+ W sinZ J C+1 Z (sinZ + sin 2Z)

+ sin ( 2m+ 1 (i sin ) [a (sinZ + sin ZZ)] (5.3.17)

However, for w a 5 and .A/2 < 1, the series converge very rapidly

and the first term alone is sufficient:

a~ = - 2j (wAsin Z) Jj! (sin Z + sin ZZ)]

b = 3 - 2J sin Z) Ji (snA + sina.2Z) (5.3.18)

It is also clear that 1b1 | << Jail so that tan-I(b1 /a,) can be replaced by

b,/a 1 .

Evaluation of a and b t in these expressions for the range of

values of a and oA of interest here leads to a value of the amplitude

of the fundamental component which is essentially the same as that found

in the previous section. Thus the amplitude of the fundamental component

versus wA/2 or Z is very closely given by the appropriate curves of

Figures 5. 2-1 and 5.2-3. There is no indication of any shift in the maximum

value of the amplitude as a function of Z away from the Z - w/2 radian

toward smaller values of Z.

The phase delay of the fundamental component at Z - w/Z can be

approximated as

+ 6+(5.3.19)

-63-



This is the excitation-dependent part of the phase delay and is in addition

to the spatial part rZ = a- w/2. This portion of the phase delay is plotted

in Figure 5. 3-1 for a* = 5 and o- = 10. This phase delay is seen to be

quite small and increases with increasing space charge (or is inversely

proportional to i').

C

-oiw

~LO

0°

WA/2

Figure 5. 3-1. ExcitatiorrDependent Portion of the Phase Delay of the
Fundamental Component of the Current Density.

To within the approximation used for the fundamental component

amplitude, the second and third component amplitudes are:

a2  [Js(aA sin Z) + J4(wA sinZ)j J [ (hinZ + sin2Z)j
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2 2 (A sinZ) Jo (sinZ + sin ] -y[ (sinZ + sin2Z)]

a 3 =- 1 3-7 sin Z) __ (sinA Z8f + sin2ZZ~

3= - in)+3(A iz) 3TZ(sin Z + sin 2Z)]

(5. 3.20)

Substituting representative values in these expressions gives results which

are very close to those of the previous section. Thus the second and third

harmonic amplitudes are essentially as given in Figures 5. 2-1 and 5. 2-3.

Each of these harmonics will, however, experience an excitation-dependent

phase delay which was not predicted in the previous section. For somewhat

higher-order harmonics, the amplitudes will be somewhat different than

those obtained in the previous section, and the more accurate expressions

of Appendix C would be needed to evaluate them.

The physical basis for the increase in phase delay of the fundamental

component is clear. The ideal input gap does not increase or decrease the

kinetic energy of the beam, but transforms some of the original d-c kinetic

energy to a-c kinetic energy. For the time-average kinetic energy to

remain constant, the time-average electron velocity must decrease. The

average kinetic energy depends on the average of this square of the velocity.

This slowing of the average velocity of the electron beam with increasing

excitation produces the increasing phase delay, since the modulation is

carried by the electron beam. In the previous section, the approximation

used to evaluate the polarization essentially assumed that the decrease in
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d-c velocity was negligible su that no excitatio~n-dependent phase delay was

obtained. In this section, the excitation-dependent phase delay was obtained

because the second-order approximation did include the possibility of a

d-c velocity change.

5. 4 Nonideal Gap

The problem of the nonideal input gap is now examined. The exact

solution for the polarization within the gap is given by Equation (5. 1. 2),

and within the following drift region by Equation (5. 1. 3). The transit time

within the gap, r, is given by the transcendental Equation (5. 1. 4).

First, the state of the beam in the gap region will be investigated.

Rewriting the polarization in the gap, Equation (5. 1. 2), in terms of the

Z, T variables gives

AZI(ZT) = -a--- ) cosorT - cos(aT-aZ+ rZ) cos(Z-Zt)ZD(o -)11

+ or sin(aT-aZ+ZI) sin(Z-Z 1 )J . (5.4.1)

When considering excitation levels at which no electron overtaking occurs

even in the drift region following the gap, it is clear that Z in the gap

will be very small for large a , although qZ I may be appreciable. If

Z 1 is neglected relative to Z, Equation (5.4. 1) may be rewritten as

A orAZ+ Z - T- Z+ Z con -rT - - cos Z cos(aT-urZ+a Z)2D(o- - I) 2D(o- - 1)

o2A

+ ... sinZ sin (aT -aZ+Z) (5.4.2)2D(a - 1)
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This equation has the form,

y = x+ CI cosy+C 2 siny , (5.4.3)

with

y = asT -Z + oZ i

x = oT - Z + wA cos aT
2D( Z - I)

- sA
C i = rA cos ZZD( Z - 1)

22 rA= D s. inZ .(5.4.4)

ZD(a( I

The results obtained in Appendix C, Section C. 5, show that y - x

can be expanded in a Fourier series in x - tan- t (Ca/cI) :

x - tan () = TT - aZ + DA ) cosoT - tan'i(-a tanZ)
-I) 2D(cr Z- 1)

= wT - wZ + tan-I (w tan Z) + - A coso T (5.4.5)
ZD(. - 1)

Using the results of Section C. 5, gives the polarization,

Z(ZD T) = A o aT +/ on L n ArZ Q(Z)]sin [no-T
i(ZT) W(. - i) an n ZD(A i)

(n A cosa.T1  (5.4.6)

-naZ + n tan anZ) + T + ZD(.Z. 1)
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with

Q(Z) = 4cos2Z + 2 sin2Z (5.4.7)

This expression for the polarization is not in as convenient a form

as those obtained in previous sections. Here, because cos T appears

in the argument of the sine term, the expression is not a sum of harmonics

of the excitation frequency. But a transformation can be made to the more

convenient form:

sin(a + b cosc) = sina cos (b cosc) + cosa sin(b cosc)

2 sina ( I)m Cm Jzm(b) cos (2mc)

0D
2 cosa i) m J m+,(b) cosE(Zm+t) c:]

-- (-I) m i m  (b) 5 in (a + 2mc) + sin (a - 2mc)

M=u

+ JZm+I(b) cos~a + (Zm+i) cj + costa - (Zm+i)c}

(5.4.8)

with Cm: i/2, m = 0, and Cm = 1, m 2_ 1. With these relations, after

considerable algebra, the polarization can be written as a sum of harmonics

of the excitation frequency:
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The range of validity of these expressions may be deterrnWved from

Appendix C. This is a somewhat complicated function of the parameters,

but roughly, for Z TO, 7r, 2,, etc.,

rA < ;(5.4. lla)

ZD(rZ - 1)

for Z in the neighborhood of w/2, 3w/2, etc.,
2

- a A (5.4. ifb)
2D(o - 1)

Z is, of course, restricted to be less than D.

It is of interest to determine what the polarization and current are

for small values of Z, i.e., small compared to the plasma wavelength.

In the following discussion, no restrictions are placed on D. For small Z,

the expressions for the polarization and current density may be expanded
2

in a Taylor series in Z. The first term which is not zero is the Z term;

thus the first two terms are

A _ _ r- _w

Z 1 (ZT) 7V Z J.)jn MT e i _ _ i nT+

Zn--ZM [ D0._ )].1n-rn n-rnID(, _ in1 n r+!V)

(jt)m rnoaA T w 2 OkIZ 12 moA
- Jn+m L T. sin no - M -  I)]

mL Z ",,,, r'r( I" ° Y[ D(c - - nrnL=oV'-

m FQ. _m _m1 cos _1)coo+ , ,-~j - _ oo(TV, (..2
n+rn ZD(r 1)
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~.-rA Z a n M uA 1 A c

2 Z Z~)l] { [ _1 ])

+ (-t)m Z [] [P(n [s.} (5. . 3)

* In these, J~n(x) is the derivative of the Bessel function with respect to the

argiument. The results obtained above will be utilised and discussed further

in the next section which deals with beam loading in the gap.

In the drift reglion following the input glap, the exact solution for the

plabrtiation is given by Eqluation (5. 1. 3). In terms of the Z, T variaibles

this is

€oW( ) A T Z+rr+rZ) cos(4-r-')

- W sin(adT-rZ+r+rZ) sin(Z] rz+)

- cos(rT-=Z+oZ 1 ) cos(Z-Z 1 ) a sin(rT- Z .Z1) sin(Z-Zt)]

(5.4. 13)
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In order to obtain an approximate solution for Z the gap transit angle,

r, must be evaluated.

The gap transit angle, r, is given by the transcendental equation

(5. 1. 14). When this equation is expressed in the Z, T variables (with

Z = D), then Z,(D, T) appears on the left-hand side, The nature of the

equation makes it difficult to obtain an exact solution. It is possible, how-

ever, to develop r as a power series in the excitation parameter, WA/2.

The first three terms in the series are

r M wA+ i -D z (T -y- cos(arT +P)
+D D( n- M

+ M sinD (0) [Cos(v+rD) + cos(rT+u- rD)J, (5.4.15)

where

M = [I +coS D+r sin D - ZcosDcosD -ZsinDsintrD: ,

V = tan- I[sinD cooD-r cosD sinD (5.4.16)" coo a-D coo D - o- sinerD sin Dj(. 6

The positive square root is taken for M and the principal value for r.

The first-order term in wA/2 contributes an a-c portion to the gap transit

angle at the fundamental excitation frequency. The second-order term

contributes a correction to the average transit angle plus an a-c term at

the second harmonic of the excitation frequency.

Figure 5.4-ta shows the variation of M/oDZ (wr-t) versus aD

with o as a parameter. The amplitude of the fundamental frequency
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component of the transit angle is given by the product of the ordinate and

(aA/Z)D. Normal klystron gap lengths are such that aD lies between one

and two radians. If aA/2 < 1, it is seen that the maximum amplitude of

the fundamental frequency component of r will be less than ten'per cent

of D for a = 5 and less than five per cent of D for a = 10. Figure 5.4-1b

gives the phase angle associated with the fundamental frequency as a function

of aD. Although the curves are not precisely identical for a = 5 and 10,

they fall within a degree of each other for the range shown. For small aD,

M/aD2(r 2 - 1) approaches 1/2r and v approaches (-Z/3)o-D.M sinD

The coefficient for the second-order term, D3  ) , is given
20.Z 3(C Z- 1)

as a function of aD in Figure 5.4-1c. For small aD, this approaches

2i/4w . Figure 5.4-1d shows the correction term for the average value

of the normalized gap transit angle, r/D. Both of these, of course,

are multiplied by (oA/Z) 2 to give the actual value. For aA/2 = 1, the

curves show that the contribution to r/D from the second-order terms

will be less than one per cent for a- = 5 and less than one-quarter of one

per cent for a = t0.

In the expression for the polarization, Equation (5.4-14), again

it is reasonable to neglect ZI compared to Z in all terms in which it

is not multiplied by a. As before, the larger a- is, the better this

approximation is. Likewise, it is equally reasonable to replace r by

D in those terms in which it is not multiplied by a. One might then

proceed by using the first two terms of Equation (5. 4. 15) to approximate

r in Equation (5.4. 14) and try to obtain an approximate solution for the

polarization. For the purposes of this report, the complexity introduced

by retaining an a-c term in the gap transit angle, r, is not justified.
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Since the a-c term will always be small in the range of variables considered

here, it will be neglected and r replaced by D everywhere. This will

give a first approximation to the results of interest, but the restricted

validity of the solution must be kept in mind.

If r is put equal to D in Equation (5. 4. i4), the equation can,

after considerable algebra, be put in the form,

aT - sZ + oZ1 = T - oZ - - (Z-D) +0 2(Z) - 2Q(Z-D)Q(Z) cos[oD
2D(V - 1)

+ tanI ( tan(Z-D) - tan7 (a tanZ)J} cos T - !Z + aZi

+ t sinaD coo(Z-D) + w cosoD sin(Z-D) w sin Z
+ t cos D cos (Z-D) - w sinaD sin(Z-D) -cosZ )J

(5.4. 17)

with

Q(Z) =cos2Z i

as before. Setting y = aT - aZ + aZ i , x = aT - rZ, we find that the

analysis of Section C. 5, Appendix C, applies directly. The polarisation is

r nA i.nwZ lZ. T) = ' 7 p](-.) [sinTcos (n T - n s Z + n tan' t N)
-2 q ni ZD( w -1)
n=t

- cos r sin(naT - naZ + n tan 1 N)] (5.4.18)
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with

P = {Q(Z-D)+Q (Z)- 2Q(Z-D)Q(Z) cos[-wD +tan '1aw tan(Z-D)] - tan I (w tan Z)] j

N = sin rD coo (Z-D) + a coocD sin(Z-D) - r sinZ (5.4.19)
coo rD cos (Z-D) - a sin0D sin(Z-D) - cos Z

The positive square root is taken for P and the principal value is taken for

tan N. The a-c current density is

- = Z2 n A in( in) (nT - nZ + n tan" N)

+ cos() co (noT - n.Z + n tan 1 N)] (5.4.20)

The polarization has no d-c component, nor is there an excitation-dependent

phase shift in the polarization or current density. This is almost certainly

due to the omission of the a-c term in the gap transit angle, r. By analogy

with the ideal gap results, one might expect that while the phase shift terms

are missing here, the amplitudes of the various harmonics should be fairly

accurate.

Figure 5. 4-2 shows the amplitude of the fundamental component of

the current density as a function of distance from the gap, Z-D, for

aA/2 = 1. Curves are shown for oD = 1, 2 and w = 5, 10. For reference,

the curve for D = 0, w 1 5 is repeated from Figure 5. 2-3. It is seen

that the amplitude of the fundamental component of current density leaving

the gap depends primarily on the gap length measured in terms of plasma
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wavelength, i.e., the amplitude increases for increasing D, for the range

of D considered. On the other hand, the limiting amplitude reached at

Z-D = 900 depends on the gap length measured not in plasma wavelengths,

but rather in free-space wavelengths. All gaps of the same length (i. e.,

same value of a"D) have the same maximum amplitudes at Z-D = 900

regardless of the value of space charge, or a, at least for a- 2 5. As is

known from small-signal theory, the amplitude of the fundamental current-

density component is lower the longer the input gap. The degree of com-

pression of the amplitude resulting from the nonlinearity, however, de-

creases with increasing gap length, aD. Thus at Z-D = 90, the amplitude

has been decreased by 1.1 db for orD = 0, by 1.0 db at oD = 1, and by

0.76 db for rD = 2 radians relative to the corresponding small-signal

values (all for qA/2 = 1).

Figure 5.4-3 shows the amplitudes of the first three harmonics

of the current density versus oA/2 at Z-D = 90". The three cases of

rD = 0, t, and 2 radians are shown. At least for o k 5, there is no

dependence on space charge (a) for fixed aD. It is seen that increasing

the gap length, aD, decreases all of the harmonic amplitudes. In fact,

the decrease in the third-harmonic amplitude at a-D = 2 compared to

aD = 0 is considerably greater than for the fundamental component, at

least for aA/2 < I.
-1

Figure 5.4-4 shows the behavior of the phase angle term, tan N,

as a function of Z-D for aD = 0, 1, 2 and w = 5, 10. For aD = 0,

tan IN = 0. At Z=D, tan' N = aD/3.
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5. 5 The Input Gap and Beam Loading

The basic equations to be used in discussing the input gap were

obtained in the previous section. The polarization is given by Equation

(5.4. 9) and the a-c current density by Equation (5.4. 10). Although each

harmonic is made up of an infinite series of terms, the convergence of

these series is rapid so that only a few terms are needed to give good

results in the range of excitation levels for which the equations hold,

[:Equation (5.4. Ii)]. For the usual values of gap length, D, the restriction

on the excitation level is considerably less stringent than that required

to prevent electron crossover in the following drift region.
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If attention is restricted to the fundamental frequency and the

excitation level is restricted so that rA/2 6 1, then the fundamental

component of the polarization is

zIz(, T)] =

cos wT 2 oA Q(Z) Jo  cos-T-oZ+tan (otanZ)].ZD(o -1) [2)( 7 . 0[2D . 1)]

(5. 5. t)

and the fundamental component of the current density is

1i' wA A Q(Z) 1  ___-
OJ JJ:@ .)1sinL - 2JJ sinDT,-wZ +tan 0Ltan Z)]

(5.5.2)

These relations will be with-n a few per cent of the correct values for gap

lengths in the normal range. They will become less accurate for very

small values of D unless oA/2 is restricted so that TA
ZD(@ ) -.1)The expression for the fundamental component of the current can also be

written as( {[] 12 (Z)1 9- A 1
L . + U o L

D(, ._ ) 2 bD( 1 lt~j O D( -1)j 0

o-A A [ AQ(Z) WA - i "
4D-i LiiJO'1) cosL:oZ - tan 1(w an Qs in~ --.-

2r - Z) [ sin[Z - tan (w tan Z) ]
+ ta 1 2 '[D(w 1)_~ 2D(W - 1)
+A Z j ()ir-w o[q ta tr- - '(or tanZ)

7t) 2D(- -1)J °2D(o -Ij

(5.5.3)
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In this equation the variation of the amplitude and the phase of the funda-

mental component of the current density with excitation level is evident.

To determine the loading of the cavity gap by the electron beam,

it is necessary to find the ratio of the gap voltage to the current into the

gap from the external circuit, Z gap. This must be evaluated at the ex-

citation frequency. Since in this report excitation is considered at only

a single frequency, the implicit assumption is made that the cavity will

respond only to the excitation frequency and not to the harmonics of the

excitation frequency. From Chapter IV Z is the negative of the ratiogap

of the equivalent circuit voltage, V, to the equivalent circuit current, I

The impedance seen looking into the beam at the gap was given in Equation

(4. 2. 20) and is repeated here:

/D

z (f zZIdZ 2
gap Ber0 (554

In this equation, Z t must be expressed in the Z, T system and only the

fundamental component chosen. The second term in the parentheses in the

capacitive reactance of the gap and is independent of the electron beam.

This term will, therefore, be largely ignored hereafter. The first term

is the beam-loading impedance,

fD Z dZ

= B2D 1Z I "6 (5.5.5)
B L Fee 7 7 wR B

In order to evaluate the beam-loading impedance, it is necessary

to integrate the fundamental component of ZI(Z, T) with respect to Z

-8i-



over the length of the gap. That is, the n = I term of the expresson (5. 4. 9)

must be integrated over the length of the gap. If attention is restricted to

rA/2 C I and the usual values of D, then the approximate value given in

Equation (5. 5. 1) may be used. It does not appear possible to integrate

either of these two expressions directly; therefore some kind of approxi-

mation is required.

One method of approximation which may be used is valid for large r.
wA

It is assumed that a >> 1, D << 1, and (1; rD may have any
2D(o -t)

value consistent with these requirements. Since D << i, then Z << 1,

and the approximate value for Z 1 (Z, T) given in Equation (5.4. i) may be

used. Thus for the fundamental component,

/ZIdZ =

AD 2  ' 1 )n [MeA iLv[nA 1 ilnT [mA1cos-, rn. 1. 7__ +. 'nt m f

- (mnin nc L, ]} . (5.5 6)

If aA ,(< I as well as r >> i D (C i, then the above relationZDIZr [D -)
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simplifies to

D

AD 2 1 r A1
Z dZ = . cosT J' Dl

sin T JIZ- - -- i [2 (5.5.7)
1 4Do7-1 1 2D[ 1

With these relations, the beam loading impedance relative to the d-c beam

impedance, 7.BO' is

Z BO rl r R° Fee z.

BO'
Z BL 2D 3 (w i) DaA i r

- 3o -A.- (1mm i jZe- Jn-m

m 3 n mTA +Z1)J[ nA[rrA

[ZM D(T -1) 1 1  ( 0.~ _1 n-n)-r

+ (..j) m  1 (5.5.9)

for .- ) 1, and
2D(w -1)
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Z B 2 [3 2 2 r_ 1 rj[ qA 1
r-1 0 =I 2DDr -1)

[ 12D._1)] 0 2D(q _1)

for cA < 4.
ZD(o--1)

Figure 5. 5-1 shows curves of the beam-loading impedance,

normalized to the d-c beam impedance, ZBO, versus the excitation

parameter, o-A/2. These are for the case where qA/2D(a -1) << 1,

with w >> I and D << 1. It is seen that the beam-loading impedance

for this case is essentially insensitive to the drive level over the range

shown. The only appreciable change with drive occurs for w = 5,

D = 0.1. For longer gap lengths, however, the sensitivity to excitation

level might be considerably larger. This would require more detailed

computation to investigate.
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VI. MULTIPLE GAP AND DRIFT REGIONS
WITH CONTINUOUS-WAVE DRIVE

6. 1 Exact Solution

The exact solution for the case of multiple gap and drift regions with

arbitrary gap excitations was developed in Section 3. 5. Here the solution

will be specialized to the case of continuous-wave excitation in each gap with

the same frequency in each gap. This implies that any generator coupled to

a gap has an output at only one frequency. Furthermore, any external load

connected to any of the gaps presents zero admittance (or infinite impedance)

to the beam at all frequencies that are harmonics of the excitation frequency,

and a finite admittance at the excitation frequency. This must be true for

single-frequency excitation, since from Section 4. 2, the equivalent gap

current generated by the beam has only the excitation frequency, while the

equivalent gap voltage generated by the beam will have harmonics of the

excitation frequency present. Figure 6. 1-1 shows the case considered here

schematically. The frequency of excitation is, as before, w = awp

I_

Y Y

- ' I I ,
I I !I I I ! IZ: 0 L2  Le+0 2 L n Ln+Pn  L Ln++Dn

Figure 6. i-. Schematic of Klystron with Multiple Gap and Drift Region
(The load admittances, n are finite at I = O and

zero at all harmonics of this frequency.)
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The basic equations for the exact solution in the T , T variables

are Equations (3. 5. 5) - (3. 5.7). The excitation in the nt h gap is taken as

en(T) = An cos(T + an ) (6. 1.t)

Using this gives the polarization in the mth gap as Xm < T• m + rm

n cs c+(crT+ an+ °'n+ orn) cos (Ti -Xn r

+ o sin (aT + a + + rn) sin(T, -X- r ) +cos(rT +cn +'r)cos(T,'Xn)0n n nn o 0 nn

-rsin {To+n+OXn) sin (T)J -  -Am coo (wT+a+wT1 )
w~2 si n ( w %n)

+ cos(oT +L+o+X) cosTi-A.) - w sin(oT +G=+,-Xn) sin(TI-Am)

(6. t. 2)

In the m drift region, X m+ rm c TI < 'm+I' the polarization is

Z (TIT ) = - I n^ [-cosT +c +O +,r ) co,(T-o - r)2( -1) nZ=-

+ a sin(wT + n ++ A+r ) sin(T,-n - rn)

0 n n n n n

+ cos(rTO+an+wrn ) cos(Tt-Xn) - r in(rTO+i +o n ) sin(T -Xn) ] .

(6. 1. 3)
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The parameters X and r are given byn n

L =X - cos(a-T+a +qx +or ) cos~x -). -r20- 1) n= n n m n

+ cr sin(orT +aL +O),. +or ) sin(Xm- - -r0 n n n n n

+ coo(qT +a +.X ) cos(X -xk or uin(o-T +iL +qx, ) COS(x -x)

L +D =x +r - I~ [n Csr~~~~.i)CS>m m~ n

+ co (ofT 4-a. +x+O ) c sin( +~ r -xrunr ar~)snX4rx1o n n n o n n-rnnj

(6.1.4)
For ideal gaps, where D-s-O. the equation for the polarization in

the m ri drift region simplifies to

Z TTI- IIA 5 cos(aT +a. cos~x -
Z1 (T, T) = . ( 1=1

A5 0 ca T + . 1 ) Co&5Xn - X n 0 n

D, A cos(wT +a. ) r 2 A 2
4,coo~(T T +a.F -ccoo -X-7}-)sin(TI -%r)51n 0 Sd o(nX
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M-i

I r A' co (oT + a) sin - Lm
m n 0 n m- n m

r m 2 A r n
1- = A coS({T +a An cos(rTo+an) cos(i- Xn)

I { A cos("To+ an) cosXm-X] -A m cos(oT+C)
n

If, in addition to ideal gaps, o )> 1, then the further simplification

may be made for the polarization in the mth drift region:

m

Z (T, T) = A " cos(T+ an) sin(T >'n (6. 1.7)

X L + I A cosl' + ) sin(Lm-Ln) ( (6.1.8)

It is these last two equations that will be the basis for,. the discussions

of this chapter. For reasons of simplicity, and to focus attention on the
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basic nonlinear behavior, consideration will be restricted here to gap

lengths which are short enough that the gaps may be considered to approach

ideal gaps. This means that the gap must be short compared to the plasma

wavelength, 2r/p = 21Uo/ p . It should be recalled that throughout it

has been assumed that the gaps are short compared to a free-space wave-

length in order to simplify the excitation analysis. Starting from Equations

(6. 1. 2) -(6. 1. 4), one could investigate the multiple-gap case for nonideal

gaps at the expense of much greater complexity.

6.2 Two-Gap Case

This section discusses the approximate solution for the two-gap

case when the gaps are short enough to be considered as ideal gaps. This

means that the gaps are short compared to a plasma wavelength and that

the polarization and beam current can be taken as constant through the gap

as a function of Z. The beam velocity and charge density, may, however,

change through the gap. The chief aim of this discussion will be to explore

the interchange of power between the electron beam and the output gap.

The equivalent circuit for the two-gap case is shown in Figure 6. 2-1.

The equivalent current and voltage at the gaps are given in Equations

(4.2. 12) and (4.2. 13). For the input gap, 0 =A 1 cos(vT+ aI), and

Ia = Iso cos aT. Since Z t =0 in an ideal input gap, the equivalent current

and voltage are

I e 0 D 0- A sin (rT + 1  , (6.2.1)

V = -V A cos(o-T + 1) , (6.2.2)
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Figure 6. 2-1. Schematic of Two-Gap Klystron.

where A1 and at may be determined from the equivalent circuit in terms

of I and Y 5 . Simplification can be achieved by recognizing that
0

R2 c 2
0 - .2 = B g (6.2 .3)

where Bgj is the susceptance of the input gap when no electron beam is

present. Then, from the equivalent circuit, with Y= G + j Bs,
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I

A = -so (6.2.4)

V 4G1  +(B + B

= -tan- I 1 (6.2.5)
Is

At the entrance plane to the second gap, then, the polarization (in

the T,, T variables) is

Z (TI, Ti o Cos T t7 - B sin (T,)

(6.2.6)

This may be put in the fo-'m of an explicit equation for Z in terms of the

Z, T variables using the method developed in Appendix C and previously

employed. The result is

Z (Z.T) = - .LJn( I sinZ sin [naT - naZ2V G 2 +(Bt+ Bs

-n tan7 .i (6.2.7)

At the entrance to the second gap, Z = L2 .

The relation between the equivalent current and voltage at the

second gap is given by

Ie2 = YL VC2 (6.2.8)
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At the output gap, 0 = A 2 cos (wT +a 2 ), and Equations (4.2. 12) and (4. 2. 13)

yield

Ie2 = -BgzVo A2 sin(rT+L2 ) (6.2.9)

Ve = -2VD Z (L, T) - VA 2 cos(wT+a) , (6.2.10)

where Bg 2 is the susceptance of the output gap in the absence of the

electron beam. In obtaining V 2 . the assumptions that D2 is small

and that Z does not change appreciably through the gap were used.

Recalling that YL = GL + j BL is zero except at the fundamental ex-

citation frequency, then using the fundamental term of Z from Equation

(6.2.7) in Equations (6.2.8)- (6.2. i0) one can determine A 2 and a 2

A2 =

4D 2 Io sinZ L cos {rL2 +tan' t  + BL sin[ aL 2+tan GsIdjt.i

0, v 4G.2 + (B +Bs) 2 [GL coso 2 - (Bg2+BL) sin 2 ]

(6. 2. 11)

GL B 2 + (G 2 + B) + B )tan L +ta n - (B /

GLBg tan L 2 
+ tan- 1 L:s - (G 2 + B2 + BLBg 2 )

(6. 2. 12)
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The power delivered to the load is IeZ Ve 2 , and the useful power

output is the time average of this value. The second term in the voltage

expression (6.2. 10) is always out of phase with Is2 (being related to the

capacitance of the gap) and does not contribute to the average power output.

The time average power delivered to the load conductance, GL, relative

to the d-c beam power, P, is

PL
7-- = a AZ ZI(L2, T) sin(rT+ a 2 )

0

- -AL[_ 4. + (B gl.B....] 

(6. 2. 13)

This expression gives the output power in terms of the source and load

admittances, the gap susceptance, the beam parameters, and the source

level. From this, one could investigate the influence of any of these para-

meters on the output power.

As an example, consider the case when the input and output circuits

are adjusted for resonance in the absence of the beam; thus

B +B g 0

BL + Bg 2 = 0 (6.2.14)

Recognizing that the restriction to short gaps implies that Bg and Bg 2

are very large, gives, in this case,
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4D2  (ao sinL 2  
0 L c o n aL 2 + BL sinaL 2A, = - Ji Z~~ s  G cost z

4D2 / L Bo an2

4D2  (a I sin L 2  EL sinrL 2
W. I V G cos a

o8 6 L 2

C= tawnI(GL + G Ltan o-L ) tan"(ctno-L2  T L? (6. 2.15)
2 G B S2tan oL 2 - G 2

The power is then

P 4D 2  B L Zr. 0 siL (6. 2.1t6)
W -- ff- JL I -V----

but B L  Bgz and YBo 2 2 Bg2/W - then

PL 2 YBo 2 ('lo sinL 2 (

o L t\ 05Z /

The restriction on the source level to keep the beam modulation below the

electron overtaking point in the drift region must be observed. This limits

the argument of the Bessel function to values less than unity.

This approximate expression for the power output exhibits the expected

type of behavior. It reveals the onset of saturation effects as the input drive

is increased and indicates the dependence of the output power on the drift

length, space charge, and the source and load admittances. This expression

should hold well for short gap lengths (D <( 1); longer gap lengths would

require a considerably more complex analysis and possible resort to

computer techniques. Because of the assumption that the gaps approach
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ideal gaps, the computed power gain would be infinite since no power is

transferred to an ideal input gap. However, for a short, but nonideal,

input gap the input power can be calculated from the discussion oi beam

loading for short gaps in Section 5. 5. For example, using results of that

section, the power input to the first gap is (for Bs + Bg= 0),

P in -ooa Z.1) D3 1 ] [ 0o

o 2 VG s I (Or-' 1) ZVG s D( - 1)

(6. 2. 18)

if o r so I. This, together with the other restriction previously
2V GD (ff -1),

noted on the source level, implies that DI(o -I) >> 1. The gain is then,

2 (- Iso sin L 2
P, G o  /

L 12 5  10 0( siLZ
U'- r @1r @1in W(a -1) L so 3 so 1o

2V1 GD(-]I L2V G D (W -1)J

(6. 2. 19)

The many approximations made in deriving this equation should be kept in

mind.

There is another point of interest that requires discussion. Equation

(6.2. 17) indicated that the power output can be increased indefinitely by

decreasing the load conductance, GL. There are limitations, however,

which are not apparent in this equation. Equation (6. 2. 15) for A z shows

that as G L is reduced, A2 increases. However, A2 must be restricted

so that reflection of electrons at the output gap does not occur, let alone
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electron crossover in the output gap. Thus as GL is reduced, the output

gap excitation will increase to a level where the theory developed in this

section is not valid and other effects will occur to limit the maximum power

extracted from the beam.
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VII. CONCLUSIONS AND RECOMMENDATIONS

This report considers an electron beam of finite extent, confined

by a strong axial magnetic field, which passes alternately through gap and

drift regions. In the gap regions the electron beam interacts with an ex-

citation field produced either by an externally applied signal or by an in-

duced current resulting from the beam modulation. In the drift regions,

assuming a magnetic wall at the beam boundary has allowed the solutions

of interest to be those with no transverse variations. The theory developed

here for nonlinear space-charge waves takes account of space-charge effects

exactly, therefore consideration has been restricted to beam modulations

below the level at which overtaking of the electrons occur. For convenience,

throughout the report the gap lengths have been assumed to be short com-

pared to the free-space wavelength.

An exact solution for the case of N gaps and drift regions with

arbitrary excitation signals at each gap has been obtained in the T , To

co-ordinate system. Unfortunately, this co-ordinate system is not con-

venient for the numerical calculation of the operating characteristics of

the model. However, these exact solutions are valuable for the insight

they provide into the nonlinearity of the model and as a starting point to

find approximate solutions in the Z, T system, which are suitable for

numerical computation. It is found that for the case of ideal gaps, and

especially for o- = w/wp >> 1 , significant simplifications result in the

exact solutions.

Most of the report is directed toward the case of continuous-wave

excitation of an input gap with a drift region following it. Although the

exact solution is developed in the T , T system, the main emphasis is on

-98-



obtaining approximate solutions in the Z, T system suitable for computation.

The first-order solution for an ideal input gap with continuous-wave

excitation followed by a drift region yields expressions for the polarization

and current density in terms of the fundamental frequency and its harmonics.

The harmonic amplitudes are obtained as a function of excitation level,

position along the drift region, and cr. The compression of the fundamental

current-density component with excitation level (compared to a linear theory)

is obtained and equals i.1 db at the electron overtaking point. The harmonic

amplitudes are found to increase rapidly with excitation level, and at electron

crossover the harmonic amplitudes fall off only as n- . Because the

first-order solution neglects nonlinearity in the gap, only the nonlinearity

in the drift region is accounted for. Therefore, no excitation-dependent

phase shift is found nor any d-c term in the polarization.

The second-order solution for the ideal input gap does take account

of nonlinearity in the gap, and as a consequence the polarization exhibits an

excitation-dependent d-c term. This term, while small, may disrupt the

assumed d-c beam behavior, but this possible effect has not been investi-

gated. Also, an excitation-dependent phase delay is found. This term is

small, of the order of a few degrees at electron crossover, and increases

nearly linearly with excitation power at levels appreciably below electron

crossover. Close to the crossover point, the phase delay increases more

rapidly with drive power. The physical explanation for the drive-dependent

phase delay is that in the ideal input gap some of the original d-c beam

energy is converted into a-c kinetic energy and the beam slows down,

causing a phase delay. At least for the first few harmonic amplitudes,

the values given by the second-order solution are essentially the same as
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those given by the first-order solution. This indicates that a first-order

solution is adequate to compute harmonic amplitudes for the first few

harmonics, but is inadequate to provide phase shift data. Excitation-

dependent phase shift is clearly a second-order effect.

Approximate solutions are also obtained for the case of a nonideal

input gap. In the course of this development, the dependence of the d-c

gap transit angle on the excitation level is seen to be fairly small, at least

for excitation levels low enough to preclude electron crossover in the

following drift region. To obtain an approximate solution in the drift region,

the a-c variation of the gap transit angle is neglected; this is somewhat

akin to the first-order solution for the ideal gap. As a result, no excitation-

dependent phase delay or d-c term is obtained in the polarization. By

analogy with the case of the ideal input gap, however, it is expected that

the harmonic amplitudes should be fairly accurate.

For the nonideal input gap, the fundamental current density component

leaving the gap is found to depend primarily on the gap length measured in

plasma wavelengths; i.e., the longer the gap in plasma wavelengths, the

larger the current density. However, the limiting amplitude attained at a

quarter plasma wavelength along the drift region depends on the gap length

measured in terms of free-space wavelengths. The shorter the gap (in

free-space wavelengths) the higher the peak value, and all input gaps with

the same length have the same maximum amplitude. Also, the compression

of the maximum amplitude of the current density relative to the linear theory

is found to decrease for increasing input gap lengths (measured in free-space

wavelengths). The harmonic amplitudes depend even more sensitively on

the input gap length than does the fundamental. Increasing the gap length
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decreases the harmonic amplitudes, at least for the lowest harmonics.

Numerical results for the beam loading of the input gap are obtained

only for short input gap lengths. Longer gap lengths probably require

computer methods to obtain numerical results. For the range of gap lengths

for which computations are made, it is found that the beam loading impedance

is virtually insensitive to the excitation level (below the electron overtaking

level), although, of course, highly dependent on gap length and U..

And finally, the approximate solution for the two-gap case is obtained

for ideal gaps. The power delivered to the load in the output gap is believed

to be reasonably accurate for short gaps. Inasmuch as nonlinearity in the

gap regions is neglected, there is no drive-dependent phase shift evident.

The results for the power output show the onset of saturation effects at the

electron overtaking point where the output power is 1.1 db below the value

that a linear theory would predict. This power compression is due to the

saturation of the fundamental component of the current density. The theory

predicts that the power output may be increased by decreasing the load

conductance. This is somewhat illusory, however, since there are limits

on the minimum value of the load conductance that can be used in practice.

The load conductance must be large enough that electron overtaking does

not occur in the output gap, or worse, that electrons are not reflected back

into the drift region from the output gap. In either case the theory becomes

invalid; therefore, the theory predicts the maximum power output for the

smallest load conductance consistent with no electron overtaking and no

electron reflection in the output gap.

The theory developed in this report appears to provide a useful

approach for investigating some of the nonlinear properties of an idealized
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model of a klystron and it is recommended that it be exploited in several

directions. First, more attention should be directed toward obtaining

tractable approximate solutions in the long-gap cases. Second, the theory

for the multiple-gap and drift-region case should be pursued. This might

provide valuable insight into the operation of multicavity klystrons. And

third, excitation signals with more complex frequency spectra should be

investigated. In particular, the application of two continuous-wave signals

at different frequencies would allow investigation of the effect of electron

beam capture. And the application of short pulses of RF would enable

an investigation of the limiting pulse capabilities of klystrons to be investi-

gated.
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APPENDIX A: GLOSSARY

A Amplitude of excitation signal in first gap

An  Amplitude of excitation signal in nth gap

A Vector potentialz

a Fourier coefficient
n

B Gap susceptance with no beam presentg

BL Load susceptance

B Driving-source susceptance

b Fourier coefficientn

Ci, C 2, c Constants

c = Velocity of light

D p d, Dn = p dn  Normalized gap lengths

d First gap length

dn  nth gap length

E(z, t) Total electric field

Ea Electric field in gap produced by excitation only

e Absolute magnitude of electronic charge

GL Load conductance

Gs aDriving-source conductance

H(r, z, t) Magnetic field

Hn(T)= I where X < T I <n + r

=0 where T I < X or TI > r +)

I e  Equivalent gap current

10 D-c beam current
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Driving-source current

J(z, t) Change in beam current density resulting from excitation

j 0o Original d-c beam-current density

JT = - 0+ J(z, t) Total beam-current density

Jn(X) Bessel function of first kind and order n

L Normalized length of first drift region

L n Normalized distance from origin to location of the
entrance plane of the nth gap

M Constant

m Electron mass, or integer

N Constant

n Integer

P Constant

P0 =V D-- beam power

P r Electromagnetic power in radial direction

Q(Z) = cos

R = P pr

RBL Beam-loading resistance

R0  p r

r Radial co-ordinate
r Radius of beam edge

0

s Laplace transform variable

T = wt Normalized timeP

T W t
0 p 0

T1  Wpt -T-T 00
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t Time

to 0Time that a particular electron passes z : 0

t = t-t

u(z, t) Change in electron velocity due to excitation

u Original d-c beam velocity

uT = u° + u(z, t) Total beam velocity

Ve  Equivalent gap voltage

V0  D-c beam voltage

Vs  Driving-source voltage

XBL Beam-loading reactance

x Variable

YBL Beam-loading admittance

YBo = 0o/Vo D-c beam admittance

Y L Load admittance

Ys 8Driving-source admittance

y Variable

Z = pz Normalized position

Zo  p z T I

Z,= pZI = Z-Z 0

ZBL Beam-loading impedance

ZBo 0 0o/10 D-c beam impedance

ZL Load impedance

Z 8 Driving-source impedance

z Longitudinal position with excitation

z 0 Longitudinal position in absence of excitation
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z i - Z-z °S-Z 0

Z(s, To) Laplace transform of Z (T. T0 )

Pp = p /u Plasma phase constant

17 u/c 0 u

r Value of T1 at Z = D

Xn  Value of T at Z = Ln

Xn + rn Value of TI at Z = Ln + Dn

O Azimuthal direction

E(t)
0(t) = / d  Normalized excitation

4(s, To) Laplace transform of 0(T1 + To]

v Angle

p(z, t) Change in charge density resulting from excitation

-Po Original d-c charge density

PT= -PO + p(z, t) Total charge density

= / W p

T Integration variable

40 Scalar potential

w 2w excitation frequency
=  ePv Plasma frequency
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APPENDIX B: STRUCTURE TO PROVIDE MAGNETIC WALL

Consider the finned structure shown in Figure B-I. The fin spacing,

h, is assumed to be small compared to the wavelength of any wave considered.

- - -- -

Figure B-I. Finned Structure to Provide a Magnetic Wall at r b

Solutions will be sought in the region b < r < a, which have only radial

(r) variation and no angular (0) or longitudinal (z) variation. Since only

the transverse-magnetic fields are of interest, Hz = H r = E e = 0. In

addition, Er = 0, since longitudinal variations are excluded. This leaves

only E z and H0 as possible fields. Maxwell's equations yield

8E Z

=~jw LH 0

8 (rH O) = jweE (B. I)
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A E - I k2. = 0

r ) z

k w Te(B. 2)

The boundary condition is that Ez = 0 at r a. The solution which

satisfies the differential equation and boundary condition is

E -- C (kr) - 0 ka N(kr) (B. 3)

kG J (ka)1
He = -- Jlkr) . 0 N lkr) (B. 4)

0 JW I~L I I(r W07MI I

where J (kr) and N (kr) are Bessel functions of the first and second

kind, and C is an arbitrary constant.

The question of the possible existence of a magnetic wall at r = b

is the prime motivation for considering this structure. At a magnetic wall,

H0 = 0. This requires that

JI(kb) J(ka)

NI(kb) =oq (ka(B. 5)

There are an infinite number of values of kb which satisfy this equation

for each ratio of b/a. The first six solutions (taken from the data in

Jahnke and Emde, (pages 207-209), are shown in Figure B-2, where

b/a is plotted versus kb. Thus for a particular b/a, there are an

infinite number of frequencies at which the surface r = b appears to be

a magnetic wall. These frequencies are not harmonically related, although

they do increase nearly as n - 1/2 for n k 2.
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The reason for the close-spaced thin fins is as follows. The fields

in the regions between the fins are taken to be independent of z. Since

there is no coupling between regions for b < r < a, the phase between

neighboring regions is arbitrary and determined by the fields inside the

r = b radius. Thus if h is small compared to the longitudinal wavelength

of the fields for r < b, then the structure can provide an effective magnetic

wall at r = b regardless of the longitudinal variation of the fields.
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APPENDIX C: INVERSION OF CERTAIN TRIGONOMETRIC RELATIONS

C. I General Development

In the nonlinear theory of klystrons discussed in this report, relations

of the form,

y = x + f(y) , (C. i. i)

have frequently arisen where f(y) is a periodic function of y with period

2 w, and it is desired to find y explicitly in terms of x. This appendix

indicates how one might find a formal solution for a broad class of functions,

f(y), but since the solution cannot be expressed in a concise form, this

development will not be explored in detail. Rather the solutions for the

few special cases of interest for this study will be presented explicitly.

The development to be sketched here is a straightforward extension

of the method used to solve Kepler's problem in celestial mechanics by

Lagrange (see, for example, Watsoni8). In that problem, f(y) = C siny.

Sackinger 19 has applied the results for this case to the nonlinear ballistic

theory of a klystron.

It is clear that since f(y) is periodic in y with period Zw, that

y-x is also. Considering x as a function of y, then gives

y+2w-x(y+ Zwn) = f(y+ 2wn) = f(y) = y-x(y) , (C.i.2)

x(y + Zwn) = x(y) + 2wn (C. 1. 3)

Thus, whenever y changes by 2wn, x must also change by 2wn. The

consequence of this is that f(y) when considered as a function of x must
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be periodic in x with period 21r. If f(y) is single valued in x and

satisfies the usual conditions, then y - x = f(y) can be expanded in a

Fourier series in x:

y-x = (an cosnx + bn nx) 1.4)

Figure C-I shows a typical example of y-x considered as a function of

y and of x.

The Fourier coefficients in Equation (C. 1. 4) may be evaluated in

the following manner. Let X equal the value of x when y is equal to w:

(yf--x)dxt y -dx -(

- x[x" - dy - 2w(.-j

-xdy = - - f(yl3- dy

y=-w -ii

f(y) dy 
(C. 1. 5)
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Figure C-I. y-x as a Function of (a) x, and (b) y.

-113-



Thus a is the average value of f(y) in the interval -w to w.

an (y x) cosnxdx ycosnx dx cosnx )

n si 7xr

(-)- --. Jsinnx dy - -7 Cos nx + nx sinnxirI =X,. - n n =X -2,w
y= -

1 w
- - j sinnx dy = - - sinFny - nf(y)dy (C. t.6)

-if -if

b n  (y x) sinnx dx y sinnx dx- sinnx
n V 

V

= " nx + cosnx dy - 1 sinnix - nx cosnx

- if

I cos nx dy = cos Fny - n f(y)] dy (C. 1. 7)
n w -- fn

-if -W

At this point one could continue the general solution by inserting a

Fourier series in y for f(y) and expanding the integrands in products of
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series of Bessel functions. However, attention is restricted here to a

few special cases, which are of immediate interest.

Before these are examined, the range of convergence of the Fourier

series in x will be investigated. The usual restrictions on y - x as a

function of x obtain; e.g., that it be of bounded variation and that ff(y) dx

exist. In addition, it must be a single-valued function of x. This fixes

the range of convergence. Consideration of y - x shows that it will be a

single-valued function of x for dfay < I and multiple valued for 1y I.

C.2 Case of f(y) = C sin y

The Fourier coefficients are,

a = 0 , (C. 2. 1)

a sin(ny - nc siny) dy = 0 (C.2. 2)n n-w P

-W

C.3 Case of f(y) =C cosy

a = 0 , (C. 3. 1)

w

an = . sin (ny -nc cos y) dy = 2 sin(!ir) (nc) (C. 3.2)

-n i
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bn  - fcos (ny - nc cos y) dy = coo n.) J,(nc) (C. 3.3)

C.4 Case of f(y) = CIcosy +C 2 cos2y

a = 0 (C. 4. 1)0

an = fsinlny - nC 1 cosy - nC2 cos 2y) dy , (C. 4.2)

R- os(ny - nC cosy- nC cosZ2y) dy (C4.3)

-W

These integrals may be evaluated by using expansions of the type,
+00

ejC cosy = U)m Jm(C ) eJmY (C. 4.4)

The results are, for n odd,

a = sin 3nw m im(nC) J (nC.)
n F -T n-m Zm-n I n-mZ

&n = I

+ in n+3m) wJ 2 m+i(fnCi) J,+ (nC2 )91 R + M'
+ sinj(n + 3m) Zm~m(fC,) Jm(nC7)f;C.4.5)
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a si~N!) m t n-m J2mn 1) Jnm(nC2 )

+ Z csi[(n+ + 3m) m m(nC)3 (nC)

71sin [ n m) ] Jn + (0.4.7) 2

=

+ Co [(n+ 3m)w cIm J+3(nC,1 ) J(n 2 } (C.4.)
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In these expressions,

I

em=0

Cm m > 1 (C.4.9)

C. 5 Case of f(y) = I cosy + C2 siny

This can be transformed into a form similar to that of Section C. 3:

f2y C 21~ T con( tan 1  2) (C. 5. 1)

It is clear that this may be expanded in a Fourier series in x - tan.

C2 x C 2 )

Z[an cos(nx - n tan 1  + bn si - n tan1  (C. 5. 2)

From Section C. 3 the Fouri'er coefficients are

a =0 (C. 5.3)o

2- si n J ~ C (C .5.4)

bn- co s(!)(n 4 ) .C+Ce (C.S. 5)

n n n
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