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WAVE PROPAGATION ON LOG-PERIODIC TRANSMISSION LINES

William J. Welch

1. ABSTRACT.

The propagation of waves along a transmission line, loaded log-
periodically with impedance elements, is considered. By definition,
the element spacing forms a geometric series, and the element
magnitudes are proportional to their respective distances from the
input end of the line. It is shown that the over-all effective impedance
per unit length and admittance per unit length are represented by
functions of the form: 1(x) = 1(x7), where T is the geometric ratio
for the line. A general orthogonal series expansion is then found for
such functions. Next, the general solution of the transmission line
equations is considered for impedance and admittance per unit length

of the form 1(x). It is shown that for a closely related set of equations,
namely for impedance and admittance per unit length, of the form

I(x)/x, the solution is of the form xt I (x). Although the solution for
the purely log-periodic line cannot be factored into this simple form,
a variational method is presented by means of which it can be approxi-
mately solved in terms of the logarithmic waves, xF'. The variational

technique makes use of formulas being stationary with respect to the
current and voltage distributions on the line. The distributions are
assumed to be of the form xt', and the stationary property allows
onc to calculate 1±.

2. INTRODUCTION.

In recent years, the so-called 'log-periodic' type of antenna has
received considerable attention, chiefly because of its great band-
width capabilities. Many structures having the characteristic log-
periodic geometry but of otherwise widely differing shapes have been
experimentally investigated and found practical. However, although
many common features have emerged from the various experiments,
there exists at present no really adequate theoretical description
capable of uniting these various features. In the present study we are
at tempting to gain understanding by considering a somewhat simpler
problem, namely, the propagation of waves on a log-periodically
loaded transmission line. This report contains the preliminary results

of this study.
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2. -- Continued.

In order to be clear about what constitutes a log-periodically loaded
transmission line, consider, as an example, the line shown in Figure 1.

o-{ 1-
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Figure 1

A Log-periodically Loaded Transmission Line

This consists of a uniform line with lumped capacitances connected
across the line, their locations forming a geometric progression.
The ratio of the positions of any two neighboring capacitors is a
fixed constant T, i.e., xn/xn_ 1 = T. In addition, the magnitude of
each capacitor is proportional to its distance from the origin (x = 0),

and thus the ratio of any two neighboring capacitors is the same fixed
constant, T ' Cn/Cn- 1 = T. Let us now divide the line into cells or
segments, each containing one capacitor and having the length Axn.
The requirement that the ratio of the lengths of any neighboring
segments be the same constant Tpermits a simple description of
the entire line in terms of any one of its segments or cells. That is,
each successive cell may be obtained from its smaller neighbor by an
expansion of everything in the cell by the fixed factor T. This state-
ment also defines the log-periodic transmission line in the more
general case in which the cells may contain lumped inductances and
resistances as well as capacitances. Of course, the general shape of
a log-periodic antenna will fit this description. It is divided into
cells, with each cell obtainable from its smaller neighbor by expansion
by a factor T.

Let us now consider how we may best represent the impedance and

admittance per unit length of a log-periodic transmission line as a
function of x, the coordinate along the line. In the example of
Figure 1, the capacitance per unit length, including the lumped
capacitors Cn , may be represented by the curve of Figure 2.

- 2-
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2. -- Continued.

C (x)
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Figure 2

Capacitance per Unit Length on a
Log-periodic Transmission Line

C is the per-unit-length capacitance of the unloaded line. C1 = aA
o 1

is the lumped element in the first cell. The lumped capacitance in
the second cell is evidently T times the one in the first cell, and so
on. Although the curve of Figure 2 provides the proper total 'lumped'
capacitance in each cell, it clearly represents these 'lumped' elements
as distributions. However, the distribution nicely satisfies the
condition of cell elements stretching from cell to cell and, in fact,
better represents a log-periodic line than the truly lumped-element
version of Figure 1.

In Figure 2, C(x) has the property that C(x) = C(xT). We shall
designate all functions that satisfy this condition as log-periodic
functions and generally denote them by the symbol I (x); i. e.
Ij (x), I?(x), etc.

I(x) = I(xT) (T)

-3-
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2. -- Continued.

The most general log-periodic transmission line will be loaded by
resistive and inductive as well as by capacitive elements, and will be
described by impedances and admittances per unit length which are
log-periodic functions. The problem thus becomes one of solving for

the voltage and current distributions on a non-uniform line,

dV dld- = Z(x) I dx = Y(x) V (2)
dx -. yx)

with z(x) = tl (x) and y(x) = I?(x), log-periodic functions.

In what follows we shall take up in turn the problem of representation
of log-periodic functions, the general solution for a restricted class
of log-periodically loaded lines for which a kind of Floquet's Theorem
is applicable, and finally a method for finding the input impedance of
a general log-periodic transmission line.

3. REPRESENTATION OF I (x).

In discussing the solution of (2), we shall find it useful to have a
general series expansion for 1 (x) which is analogous to the Fourier
series for periodic functions. The most elementary log-periodic
functions are

sin I n, cos (2 rlnx and e InT) If x is replaced by

x Tin the argument of any one of these, the function is unchanged,
e.g.,

i 2 wln (xT) i 2r(lnx+lnT) i 2wlnx iZw i2Trlnx
ln T _n T ln T ln T

e -e ' e e e

(3)

so that condition (1) is satisfied. This condition is also clearly satis-
fied if the argument is multiplied by any integer n. In this wayan
infinite number of different log-periodic functions is generated, one
for each integer. This suggests that one may be able to represent an
arbitrary log-periodic function by an infinite series of these functions.

-4-
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3. -- Continued.

Co ni Zr ln x 00 in
1(x) = an x Tn T_ E a x a (4)

n- n=-oo (

where a = in T. Alternatively,
2 T

1(x) = ^ sin(n ax) + Dn Cos ( x (5)

We shall see that these series have the same general validity as the
Fourier series for periodic functions.

in

Let us restrict our attention to (4). Un (x) = x a is a solution of the
differential equation

x = xu) + (n)? un = 0(n  n a (6)

By construction, un (x) = un(xT). The functions un (x) form a complete
orthogonal set over the period T, that is, over any intervalb -- x -- bT,
with b an arbitrary number. The scalar product is complex and requires
the weight function 1/x. The orthogonality may be proved directly.

fT unxbT in -im
*b(x) dx abif a dxfUn(X) um (x- = -- x(7

bb x
i(n-m)bT ab= x dx = ln T 6 nm

b -im

6 nm is the Kronecker delta. If we multiply both sides of (4) by x-'W-dx/x
and integrate over b -- x -- bT we find, with the aid of (7), that the
coefficients of the expansion in (4) are given by

bT -in
ba dxa n = l--n -- f I (x ) x x (8 )

n n b

Any function defined over an interval b -- x -- bT which is square

integrable over that interval may be expanded in the log-periodic series
according to (5). The Un (x) are eigenfunctions of the differential

- 5 -
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3. -- Continued.
nz

equation (6) with eigenvalues (-) Inasmuch as the interval (b, b7)
is finite and the series (4) contains all the eigenfunctions of (6), we
can reasonably expect that the representation is complete. Of course,
any function defined over the finite interval which is expanded according
to (5) and (4) becomes a log-periodic function over all x. It is worth
emphasizing, however, that for representations of functions over
finite intervals, (4) is just as valid as the Fourier series and may even
be more useful for some purposes.

As an example, consider the follo-,ing function in the interval 1 5 x -- T.

f(x) A 0 < x < a

=0 a < x < T. (9)

According to (8), -in
T -in a-in -in

-d AA(l-J')
l f (x) x = l-Tf I x dx = 2r in

-in in(0)
Thus, f(x) = A : nx (a)

n=-oo

It is interesting to consider the limit of the sum (4) when T is allowed
to approach infinity. For this purpose it is convenient to rewrite (4)
and (8) slightly.

00 in in
I(x) = l-n-T anx "; a = I (x) x a . (12)

n=- -(0

Proceeding in a formal way, we write

in -Z irin
- = v ; a = O(Vn)a In T n n

Then

2 win Z ri(n-1) 2 wiAVn = lnT In T lnT"

- 6-
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3. -- Continued.

Substituting into (12) we have

1,(x) = ona(vn) x n Av-'-13
n=-co

In the limit, as T - o, Av- dv, and the sum becomes an integral.
Thus,

I(x) = i a:i (v) x v dv, with
00oo (x00 (14)

a(v) = f- (

and this is just the Mellin Transform. The corresponding operation
on the Fourier series turns it into the Fourier integral.

4. THE GENERAL FORM OF SOLUTION FOR A CLASS OF
QUASI- LOG- PERIODIC TRANSMISSION LINES.

A transmission line that is periodically loaded may be divided up into
cells, all of which are identical. In general, the voltage and current
distributions are the same from cell to cell except for a fixed complex
multiplier. That is, the voltage and current distributions may be
factored into a periodic part, having the period of the structure, and
a simple exponential function. This is a statement of Floquet's
Theorem, which is generally applicable to differential equations with
periodic coefficients.

Let us now consider whether the solution of Equations (2) can in
general be factored in a similar way.

dV dI (2)
-= 1 (x)I ; d =: (x)V.

Can the solution to (2) be written as the product of a log-periodic
function times a simple function of x? If a simple factorization is
possible, we should expect there to be some cases in which the
solution is purely log-periodic. For this to be so, the differential
equations, (2), must remain the same when x is replaced by xT.

-7-
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4. -- Continued.

With this change in (2) we find

dV dI
d- T I I (X) I dx = T 12 (x) V. (15)

The equations are altered by the change of variables, and a purely
log-periodic solution with V(x), I(x) = V(xT), I(xT) is not possible.

On the other hand, if the impedance and admittance per unit length
are given in the form I(x)/x, the transmission line equations are
invariant under the change of variables, x = xT.

dV I (x) I dI (x) V(16)
dx x 'dx x

In terms of the example of Figure 1, a capacitance per unit length
of the form I(x)/x would represent, insofar as the lumped elements
are concerned, capacitors of equal size distributed along a trans-
mission line in a geometric progression. For this type of quasi-log-
periodic line it is possible to express the general solution as a simple
function of x times a log-periodic function. One can find the form of
this solution in much the same manner as in the case of a simply
periodic line.

The two equations of (16) can be combined into a single second-order
equation for either V or I. Let the two independent solutions of the
second-order differential equations be denoted by g(x) and h(x), so
that, for example,

V(x) = Ag(x) + Bh(x). (17)

Clearly, g(x7) and h(xT) are also solutions, since the change of
variables leaves (16) unchanged. Then these must be expressible in
terms of g(x) and h(x).

g(xT) = alg(x) + *,h(x), (18)

h(xT) = Pig(x) + 1 2h(x).

-8
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4. -- Continued.

Then V(xI) = Ag(xf) + Bh(xT)

= A [alg(x) + aGh(x)] + B[Plg(x) + P h(x)]
(19)

= (Aa1 + BP 1 )g(x) + [Aa2 + BP 2 ]h(x)

= KV(x), provided that (20)

KA = Aal + BP 1, and (21)

KB = Aa 2 + BP2 '

Such a solution other than the trivial one, A = B = 0, is possible if
K is such that

a 1 -K, 1

=0. (22)a2 P 2 - KI

It is possible that K=l, but not in general. We assume that K can always
be found to satisfy (22). To see what sort of solution gives rise to the
factor K, let

f(x) = x - 1 V(x). (23)

Then f(xT) = x "1 T- }* V(xT) = x - ' (T - K)V(x)= x1 V(x) = f W,
provided that K = T1. Thus we can write f(x) = I(x) and

V(x) = xRI(x) . (24)

The current distribution must be of the same form.

With the aid of (4) and (24), we can reduce the solution of (16) to the
solution of a set of algebraic equations. Let

-9-
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in
1i(x) = zn xa

n
in

12 (x) =F1 Yn x -an in (25)
V (x) = x Vn x an

-K

n in
I (x) =X'I E In "

n

Substituting these into (16), we find

. iq Eim iq
xP _Vq( _+ l) xa = x

"- "xajI xa and (26)

q m q
E l- x4 = E a V x a

xis qG(L + i) xEym

qm q

Multiplying each equation by -in dx .

a e--, and integrating over (x', x T),
we obtain the following with the use of (7).

Vn  Z+ = ZmInm, and
Sman (27)

SYVn-m

If, for example, Zn = 0 for n 4 0, (27) becomes

in 2

(. + "-) in Zo Y I = 0. (28)a 0 : mn-m

The term p. is found by setting the determinant of the coefficients of the
in to zero. If this is done with (28), one obtains essentially Hill's
determinant, the solution of which is discussed in Whittaker and Watson;
p. is given by the expression

4 = sn [A()-- sin 1 (29)

* Whittaker and Watson, Modern Analysis, Cambridge, 1927, p. 415.

- 10 -
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4. -- Continued.

where the elements of the determinant, A(0), are given by

A- = ; Amn -O ZoYmn , m=n. (30)
mm mn 4m + Z0 yo

5. INPUT IMPEDANCE AND ADMITTANCE OF THE
LOG-PERIODIC LINE.

Although a general method for solving the transmission-line equation

for the quasi-log-periodic line is available (16)there appears to be
no corresponding simple procedure for the purely log-periodic case
(2). In this section we shall discuss an approximate technique for
finding the input impedance or admittance of a semi-infinite non-
uniform line and apply the technique to the log-periodic line. The
method is an application of the calculus of variations, and depends
upon the finding of an expression for the input impedance in terms
of an integral over the current distribution such that the expression
is stationary with respect to the current distribution.

Consider a non-uniform transmission line extending from x = I to
x = o, on which the current and voltage are given by

dV d-- = z(x) I • - = y(x) V (31)
dx ' dx

We wish to know what current will flow into the input terminals at

x = 1 when a known voltage is applied. The ratio of these two
quantities is the input impedance,

V(1) (32)

In the search for a stationary expression, the best rule is to find an
expression which is homogeneous with respect to the distribution.
Now,

d [)dV dl 2 1 dl 2
-x [VI '2_x I + Vdx- = ZI + - (x) (33)

Integrate both sides over (1, oo).

- 11 -
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5. -- Continued.

V - O [ ZI +-- ] dx. (34)
1 l y dx

Let us assume that IVII x=oo = 0, either due to losses in the line or

reflections from internal impedance variations. Actually, this condition
must be met if the integral on the right of (34) is to exist. Then,

V(1)I(1) = -f [ZIZ + I dx , and (35)
- y dx

zi =V (1) 1 OD 2ood

I(1F [I" ]2 [ZI +-(Tx) ] dx (36)

Equation (36) is homogeneous with respect to the current distribution,
in the sense that it is independent of the level of I(x). If the correct
I(x) is inserted into (36), the exact input impedance will result.

Consider now how the computed z i changes when we insert a slightly
erroneous current distribution into (36). That is, let I become I + 61

and find the resulting 6z i . At x = 1, 61 = 0, since we know the
input current.

-[( 2] 0Z = &l°Z2 1 I (l 2"  OD°  2(d d 6

[(1)] 6Z. dx = [2ZI(81) + (L )!x61)] dx
1 fyudx fy dx dx

+2 6 dl) f d 1 )
=f Zi (61) dx + - (axx (61) I jdx ( Y-() (61) dx

S2 f ZI - -- x [y ( -) ] (61) dx =2 [fZI -_ ] (61) dx

= 0. (37)

- 12 -
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5. -- Continued.

Thus, 6z i = 0, showing that to first order the impedance calculated
from (36) does not depend on the error in the I(x) used.

Equation (36) may be used to find the exact z i by successive approxi-

mations, and the stationary property guarantees rapid convergence.
By the same token, one may obtain a good approximation for z i by
using a simple approximate function for I(x) which is characterized
by a few parameters, the parameters chosen so that the resulting
impedance be an extremum.

A stationary expression for input admittance may also be found. In
(33) we eliminate the current instead of the voltage.

d = 1 dV)2 2T'- [ VI] - d + yV " (38)

Then 0 +II° fa1 _1 (dV 2 V2
dxxTe VI = +f [- dV ) + yV]dx, and (39)

y.= 00 dx + yV2  dx. (40)

It is easily shown that 6y i = 0 with respect to the voltage distribution.

Equations (36) and (40) may be applied to any nonuniform line. Consider
the application to the log-periodic line, (2). We first find an approximate
expression for the input impedance.

in in
Let 1 (x) EZxa 1 - -Eq x a (41)n 12 (x)n

100 2 n in

Then Z. I LZnxa + q x a] dx. (42)
1 "-]-1 f I dZn +() n

From the results of Section IV, we would expect the most plausible trial
function to be: I(x) = x L. With this approximation,fo in in)
zi -- f- (x2 t  -Z x 7 + 2;-2 a dx- x Eqn x d

n n

n + +_- (43)

-13 -
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5. -- Continued.

Note that Re{1t}< -1/2 for the integral to exist. The quantity ± must
be chosen to make z. an extremum. To do this we differentiate (43)
with respect to p. ana set the resulting expression equal to zero,
obtaining

(2, +Ln + q Ij !- 0 . (44)
_______in [2.2. -1) 2.L

One of the roots of (44) is then inserted into (43) for a numerical
approximation to z i .

The corresponding approximation for input admittance may also be
found. Let

in in

(x) n x- 1 (x) = Pn x a (45)
n

With the trial function V (x) = x (40) becomes
yi 2[_ +i + 1 + (46)

n~a +in +  -~
a a

A value of . which makes (46) an extremum is found from the equation

in
n -- a 0+y a 0. (47)

+ n(Z ++l) (2 + + in .)
a a

A particular line is characterized by its impedance and admittance
per unit length, 11 (x) and 1 2 (x). Once these are given, the Zn, Yn,

qn' and pn may be found by means of (8), and the formulas above
used to find an approximation to the input impedance and admittance.

6. CONCLUSION.

The next step in the investigation is, clearly, application of the
results of Sections IV and V above. Because the solution for the
quasi-log-periodic line leads to the Hill determinant for the gross

- 14 -
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6. -- Continued.

line transmission factor, e I x the properties of such lines may be
discussed in terms of standard Brillouin diagrams. Although this is
not the case that bears most closely on the antenna problem, it may
shed some light on the latter.

On the other hand, the approximate formulae of Section V may be
capable of predicting the input impedance or admittance of a log-
periodic antenna. Whenever the antenna elements can be approximated
by impedance elements on a transmission line, as in the case of the dipole
array, (43) and (46) may be employed. Such calculations are currently
in progress.

(ii + 15)
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