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ABSTRACT

Pseudorandom numbers canbe obtained statically, i.e.,from atable
of random numbers, or they may be generated continually (dynamically).
Static cases have been investigated; e.g., tables of random digits often
contain results of tests. The dynamic case, however, implies that tests
for randomness be made continually. Go/no-go methods are attractive.

Problems associated with measuring randomness in the dynamic
case of agenerator continually producing binary digits are investigated.
The mathematics of Bernoulli trials serves as the model against which
the performance of the generator is compared. It is shown thatthere
are a large number of ways in which a measuring system might be
attempted. Such systems are based on explicit functions (called measure
functions) of p, the probability that a “one” is generated.

Since the digits can be grouped (a group consists of m digits),a
binomial expansion (p + (1 -p)]® can be written for each value of m.
Any term or combination of terms of any expansion can serve as a
measure group, the basis of a measure function.

A typical measuring problem involves the case where p is constant
and has a value within specified tolerances. A go/no-go measurement
indicates that p is within the specified tolerances. Means are provided
for the setting of measure group-count t. .erances; a count alone then
provides the indication of an acceptable or nonacceptable value of p.
The sample size is selected onthe basis of the desired confidence limit
or the upper bound of the error in measuring p.

Since there are many possible measure functions, some means is
required for comparing the relative effectiveness of different functions.
A useful method of comparison is available if measure function
“acceptance” characteristics are plotted. An acceptance characteristic
is a plot of the probability that the measure group digits occur within
the determined group-count tolerances. The acceptance characteristic
is plotted for the results obtained from a single application of a partic-
ular measure function. By requiring a sequence of applications of the
same measure function and by introducing an acceptance decision
criterion, the acceptance characteristic more nearly approaches the
ideal.

ii



ABSTRACT (Continued)

Under certain conditions, a failure of the generator might manifest
itself by the appearance of a repeated sequence of digits. Some of the
necessary conditions are investigated for a go/no-go measuring system
to breakdown, i.e., to give erroneous “accept” or “go” readings for an
input consisting of specific repeated sequences. Itis found that immunity
from breakdown is dependent upon the number of digits in the group
used in the measure function; the longer the group, the longer is the
sequence of digits which can cause an erroneous indication - thus,
more immunity.

The various aspects of the problem of a dynamic measurement of
randomness are illustrated in an arbitrary example. Results are obtained
for three measure functions.

In developing the theory, a method for measuring p was obtained;

it provided an independent method useful in checking the go/no-go
results.

PROBLEM STATUS

This is an interim report on a phase of the problem; work is
continuing on this and other phases of the problem.

AUTHORIZATION
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Projects RF 001-10-41-4150, SF 001-10-01-6106, 6108,
and RAV 52 R002/652-1/F001-10-001

Manuscript submitted November 9, 1961,

fii



SOME ASPECTS OF GO/NO-GO TESTING OF RANDOMNESS
OF CONTINUALLY GENERATED BINARY DIGITS

INTRODUCTION

There are two ways in which random or, more appropriately, pseudorandom numbers
can be obtained. The numbers can be taken from a table, i.e., statically, or, they can be
created continually (dynamically) and used as required. In the past, a number of (static)
tabulations satisfied the needs. With the increased use of high-speed computers, the need
for generating pseudorandom digits continually (dynamically) has also increased. Routines
are available which can be used by specific computers to create pseudorandom digits as
the machine requires them. There are other means for creating digits randomly.*

Regardless of how the digits are generated, the problem remains to determine if the
digits produced are random. In the static case of a tabulated set of digits, the tabulation
is subjected to a set of statistical tests.* The fact that the table was published indicates
that the conclusion drawn from the tests is that the entries are random with a high enough
degree of confidence. In the dynamic case, where the random digits are produced con-
tinually, repeated testing is necessary if the process of generating digits is to be checked.
In the case of a computer routine, the routine is selected because the digits produced will
exhibit random properties. The problem of testing the randomness of digits produced
continually does not appear to have been explored. It is this problem which is being
investigated in this report.

We will concernourselves more specifically with the problem of investigating the
measurement of randomness of continually generated, random, binary digits. As it turns
out, there are a large number of ways of making the measurement, and each method can
be adapted for testing any set of random numbers. While the static case permits a more
leisurely approach to the measurement of randomness, the dynamic case presents the
unique situation of continually requiring rapid evaluations of the numbers being generated.
Because of its attractiveness for the indicated purpose, a go/no-go method of measurement
is being investigated. Since go/no-go methods suggest unattended operation, a detailed
examination is appropriate to establish the likely limitations which are an inherent part
of the method.

It will be shown that the measuring method depends upon the probability p that the
digit generated is a *one.” There are a variety of relationships, explicit functions of p,
which can be formed; relations called measure functions are derived. The manner in
which measure functions can be obtained and applied is indicated. To illustrate the appli-
cation of the measuring technique, three measure functions are treated in an arbitrary
problem (arbitrary because any specific problem requires a prior statement of the
tolerances in the value of p which will be permitted). In the illustrative example, three
measure functions are compared, and it is concluded that effective results are obtainable.

As a subsidiary result, a means is obtained for the measurement of p. This result
provides an independent method which can be used in checking results obtained by go/no-
go methods.

*See the introductory remarks on the production of random digits and the tests for random-
ness in the Rand Corporation's “A Million Random Digits, with 100,000 Normal Deviates,”
The Free Press, 1955,
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THEORY
Introduction

Let us examine a process whose output is a sequence of binary digits. Suppose we
arrange the sequence, as it is created, into groups of m digits each. If we list the m-digit
groups in order, as they are generated, we can form for n such groups an array of
digits as follows:

b11 bn .« « by
by by . . . by
l:)“ bip - - - bin (1)
Bag bng - - - b
where
b,_=0orl, (i,j=1,2,...) ()

since we are dealing with binary numbers. The n by m array has n rows and m columns.
Consider any arbitrary column, say the mth. We can say that

D bin=na® (3)
iml

where n_ is the number of ones in the column. If we let n increase without limit, then we
can define

lim ?1‘- Z bim = Py (4
n-mo

il
as the probability of a one occurring anywhere in the column. Thus, if the process is
statistically stable, or n is large enough,

nL(1)
Py ~ plll . (5)
Since
ng(1) +ng(0) =n (6)
then
ny(0) = n-ny(1) (M
or, in terms of p, and q,,
9y =1-pp, ice., pptq,=1 (8)

where q, is the probability of a zero occurring anywhere in the column. In the same way,
values of p,, and q, can be obtained for any m. In fact, a value of p can be obtained by
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extracting a sample of any » digits from the array given in (1). In such a case, the number
of ones in the sample is defined as »(1), and

f‘(Tl)~p.0<#s ne. (9)

We can see that (9) gives the general form of a system of measurement of p. However, it
involves the counting of digits, or summing operations, and the operation of division. It
is desirable to use, if possible, only the summing of digits in a system of measurement.

Upon examination of (1) we find that for a finite value of n and for a given array we
can form a number of groupings, each of which contain » digits, and that this number of
groupings is the number of combinations of nm things taken . at a time (}"). Hence, if
we take a large enough number of groupings, we obtain a sequence of numbers

By (1), pa(1), pg(l), ... (10)

and if these numbers are “statistically consistent,” we might conclude that there is a
single value of p which can describe the digit generating process. In other words, we
conclude that the array of digits was produced under the condition that p, the probability

of a one occurring anywhere in the array is constant. We are drawn to the conclusion
that, ideally, the digit generating process is exactly that of Bernoulli trials. Consequently,
we look to the binomial distribution to guide us to the meaning of the term “statistically
consistent® as used with (10). The binomial distribution is given by *

B(wk.p) = (ff) p* q#-%, (k=01,2...,n) (11)

where B(wk,p) is the probability that in a sample of size ., exactly k ones will be pre-
sent; i.e., k =pu(1). Using (11) we can calculate the variation in k to be expected in the
ideal case. A basic aspect of the method of measuring randomness lies in the comparison
of the performance of an actual process with that of the ideal process of Bernoulli trials.

Measure Groups

In (11) the function involves p directly; it is a simple function. The use of (11) as just
indicated seems to imply the test of static situations, i.e., tests using a single array as
indicated in (10). In a dynamic case, different arrays would be involved. In a dynamic
case, either a single test or a number of tests. such as (10) might be performed; the
implicit assumption is made that p remains constant (or, equivalently, that p remains
within tolerable limits) for each array tested.

Returning for another look at (1) we note that the generated sequence of digits is
arranged in groupings of m digits each. In the above discussion we approached the array
essentially through the columns. Now, suppose we consider the rows. With m digits in
each row, we can form 2® arrangements of the m binary digits. From entries in an array
we can form digits, in essentially a new number system, in whatever fashion we desire.

If we care to do so for any particular array, we find that we can form (™) combinations

of nm things taken m at a time. If we wish to examine a sample size of .« digits in the trans-
formed number system, we would find that we could form (| ) samples. In this case, as

in the previous case, a static analysis can be made, or the analysis can be made
dynamically.

*See W. Feller, “An Introduction to Probability Theory and its Applications,” Vol. I, p. 106,
New York:Wiley, 1950,
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It is clear that no restriction has been placed on the value of m. This discussion indi-
cates that we may exhaustively test arrays, either statically or dynamically. We will not
consider any further here the extent to which we must go toward exhaustiveness. Instead,

we will consider what can be expected from making single tests, or a small number of
tests.

We have thus far indicated a simple function involving p itself. We also indicated that
we might treat groupings of the digits by effectively treating the digits of a number system
with a higher order-base, or radix, 2®. The simple function consists of considering single
digits. We could just as well consider 2, 3, 4, or more digits together, and examine their
occurrences. This is equivalent to taking m = 2, 3, 4, etc. By the same process which led
to (8), we can obtain the relations for the probability of occurrence of specific pairs,
triples, quadruples, or quintuples of digits from the following relations:

a+p=1, m=1)
a2 +2pq+p2:=1, (m=2)
q3 + 3pq? + 3p2q +p3=1, (m = 3) (12)
q* + 4pq3 + 6p2q? + 4p3q +p* =1, (m = 4)

qS + Spq* + 10p2q3 + 10p3q2? + Sp*q+p5=1, (m=5)

and so on. These terms are obtained from the binomial expansion of (a + p)™,

At this point, let us consider a specific, but arbitrary, choice of a new radix. Suppose
we take m = 4. Then 2™ = 24, and we have a radix of 16, or what is often referred to as
the hexadecimal number system. While we will use this radix value throughout the
remainder of this report, other values could be used as well. For this case, the binary
combinations of the four digits are shown in Fig. I(b), together with commonly used
hexadecimal digital equivalents and expressions for the probabilities of occurrences of
each of the hexadecimal digits. Several possibilities are available to us. We can use any
one of the hexadecimal digits as an indirect measure of p, or we can use various groupings
of these digits. Among the possible groupings of digits, we can treat together those digits
which contain various numbers of ones. In this way we can form five groups, those varying
in content from none to four ones. Forming the individual probabilities ( Fig. 1(b)), for these
groups of digits and taking their sum, i.e., the probability that any of the groups will
occur, we write

q* + 4pq3 +6p?q? + ap3q +p* = 1. (13)

We can, furthermore, combine terms of (13) as follows:
(a* + 4pq®) + (6p%a?) + (4p%a +p*) = 1. (14)

We see that there are a variety of ways of forming groups of hexadecimal digits. Any one
of the groupings in (13) or (14) forms a valid function which can be used in the indirect
measurement of p. In a similar way, we can form groups of digits with any of the terms
or combinations of terms given in (12). The actual groupings which can be obtained are
shown in Fig. 1. It is possible to form other groupings by taking higher values of m.

Since there are a number of choices to be made with regard to possible groupings, we
will have to consider ways of comparing the results obtained by using a number of the func-
tions; the functions we’'use will be called measure groups. We will consider three measure
groups ‘later as part of an illustrative example. Now we wish to see how we can adapt any
of these functions to a scheme of measurement.
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2™ PROBABILITY OF
NUMBER | OCCURRENCE OF
SYMBOLS | DIGITAL GROUPS
i OR SYMBOLS
[ p
P
M=l
{p+q=1)
0 0 a
|
3 p2
2 Pq
M:2
(p2+2pq+g2:1) 1 rq
q o q?
| ; 03
6 p2q
5 p2q
q pq?
M:3
(p3+3p2q+3pq2 +q3+1) 3 p2q
2 pq?
I pa2
q 0 q3

(a)

Fig. (1) - Schematic or tree of (a) one-, two-,and three-bit
processes (m= 1,2,3), (b) a four-bit process (m=4), and
(c) a five-bit process (m = 5)

We have already indicated how, with (11) and the function B(u.k.p) , comparisons can
be made with the ideal case or model — only the count of ones is required. The use of
(11) applies as well to the case where compound functions, as in (13) or (14), are involved.
Let us consider the first term of (13) as a measure group; it is a compound function of
p because it is composed of four digits, which are all zeros. Let

pg = a* (15)

be the probability that the binary group 0000, or the hexadecimal digit 0, has occurred.
Then

q,=1-q*=1-p,. (16)
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2M=4 PROBABILITY OF
M=4 HEXA- | OCCURRENCE OF
. s 2 2 _ DECIMAL | DIGITAL GROUPS
p +4p q+6p°q " +4pq” +q =I NOTATION OR SYMBOLS
|
, P t pe
0
| P q . p3q
! 3
0 3 0 [ d poq
0
| Q < p2q2
| p : b qu
q o P 3 0 o p2q2
P
a~.o 2 ‘ ® pa?
q 9 8 pad
| 3
| P 7 pla
P T 6 p2q2
q \
P qQ 0 > ® b
0
0 q 4 pqd
0
q o ? 3 2 pq3
) o ° : ! pqd
q Q (°] q4
(b)

Fig. 1 (Continued) - Schematic ortree of (a) one-, two-, and
three-bit processes (m= 1,2,3), (b) a four-bit process (m= 4),
and (c) a five-bit process (m= 5)
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aMs8 | PROBABILITY OF

M= OCCURRENCE OF
® ;‘#’:&E‘_’; DIGITAL GROUPS

P2 +5p*q+10p°q2+10p2q3 +5pq*+q% =i OR SYMBOLS

o
o]
1-]
- % -~ C <
©
-]

© - ~—*—3 520 vo
o
o

O = NWDHE VO ND®OWO oo ae ~
©
]
o
~

(c)

Fig. 1 (Continued) - Schematic or tree of (a) one-, two-, and
three-bit processes (m= 1,2,3), (b)afour-bit process (m=4),
and (c) a five-bit process (m= 5)
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From (13) and (16)
aq = (4pq3 + 6p%a? + 4p3q + pY) (17

or, the probability that the measure group has not occurred is juct the probability that any
one of the other groups has occurred. This leaves us with a binary situation, which can be
treated using the binomial law. Thus, a measure group can be transformed into a new
variable and its complement by (15) and (17). Note that in a dynamic situation both p, and
q, will be constant as long as p is constant with respect to time.

We can rewrite (11) for the new variable and for a sample size of n as

B(nkp)—()p, n=k (18)

for which can be obtained the probability that there will be exactly k occurrences of the
particular group out of a sample of n trials. We can think of k as being the reading of a
counter which gives the equivalent value of n(g), the number of expected occurrences of
the special measure group chosen. Thus, k becomes a measure of Pe However, we can
only conclude from a given reading which falls within the range of expected values of k
that the process is following the model or ideal case. We can visualize a particular test
situation in which both n and k are fixed, and we do not know the value of p,. We will find
that there can be a range of values of Py which could probably have given the specific
counter reading. We seek a range of values of k which will permit us to conclude that p,

is within allowable tolerances. We are concerned in (18) with three variables: n, k, and p,.

Upper Bound of Error in p

Since we made use of a limiting process in defining p in (4), it is appropriate to turn
to the law of large numbers. We seek a relation between n, k, and p,. The law of large
numbers may be expressed* as follows:

Pr{|;|:- - p'|<e}ﬂ= ® [e (p:q')‘ "] -¢ [-e(p'“q')”’] (19)

Pr {l% - P‘|<£}-‘ 1, (20)

or

that is, certainty as n increases. In these statements ¢ is a preassigned small number,
selected suitably to the conditions of the problem, which represents the measuring error
or difference to be expected between k/n and p,. The right-hand side of (19) is the dif-
ference between two values obtained from tablesT of the normal distribution function (or
the normal cumulative distribution function). The terms of (19) are of the form

&(x) = I¢(t)dt (21)
where
¢(t) = __& e-(t’/z) (22)

is the normal density function.

* Feller, op. cit,, p. 137,
top cit. pp. 136 and 137,
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The difference on the right-hand side of (19) is called the confidence limit and, as given,
shows that equal areas of the distribution function are excluded at either end (i.e., extreme
positive and negative values are excluded). For the case where a 95 percent confidence
limit is desired, 95 percent of the area under the distribution function is taken into con-
sideration. Furthermore, half the difference, or 2.5 percent of the area, is excluded at
either end. Thus, when tables of ¢(x) are available,

¢ [e( n )"’] > 0.95 + 0.025 = 0.975 (23)
Pedg
hence,
n_\72 > 24
¢ (p‘q.)' 1.96. (29)

Therefore, we can tabulate the following values of n and ¢ (both numeric) for assumed
values of p, with 95 percent confidence:

n €
100 0.1
1,000 0.03
10,000 0.01
100,000 0.003

The effect of choosing different confidence 1imits is shown in Fig. 2 for values of

pg between 0.3 and 0.7. The use of Fig. 2 permits one to make a graphical selection of n,
once the error in measuring p, has been selected. Using the uppermost line in Fig. 2 for
selecting n provides a reasonntle upper bound for the error.

Use of Fig. 2 permits the selection, in practice, of a suitable measuring error. The
desired error, however, is that inp, rather than in p_. The relation between the relative
error in p, and that of the relative error in p is derived in Appendix B. It is shown that
Fig. 2 stilf serves a useful purpose in-determining the magnitude of the likely measuring
error to be encountered and still permits the selection of value of n.

Measure Function

Next, as a means for approximating the ‘expected limits of k, use can be made of the
De Moivre-Laplace limit theorem* which states the equivalence

1 (k-np)?
,K, R — - &7 1. 25
UnlPe) 27np,q, =P [2“P|QC ] .

The equivalence given in (25) is subject to the condition that

(k-np,)3

3 0, or ned ~0. (26)
n

In (25) and (26), np, is the average number of occurrences of the particular grouping,
(k-np.) is a deviation from the average value, and np_q, is the variance ©@?).

*W. Feller, op. cit., pp. 133-137.
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o fit sl w0 e o ()"

pq 505
— — pg+ 04,06
~—-- pg 03,07

CONF IDENCE
LimT

[+X¢]]

B

MEASURING ERROR € (NUMERIC)

/
(o]

0,00 ] L] ool —_
100 1,000 10,000
NUMBER OF TRIALS, OR SAMPLE SIZE, n (NUMERIC)

Fig. 2 - The measuring error as a function of the number of trials.
For a choice of confidence limit, selecting ¢ will give n.

By making the substitutions

h= (np'q')'l/2 (27)
and
X, = (k-np‘)h (28)
we can rewrite (25) in the form of
B(n,k,p,) = ho(x,) (29)
where
D(xy) = %e""zm (30)

is the normal density function. It can be shown* that (29) can be expressed with little
error by

x,+h/2
he(x,) X B(t) dt = & (xy 4 1/2) = & Xy = 1/2)- (31)
5=h/2
The numerical evaluation of (18) is possible with the aid of (31) and tabulations of the

normal distribution function. We have inaicated that we will be concerned about a range of
values of k. Therefore, we are concerned about the function
)
M(ky. kan,pg) = Z (:) Pk q gtk (32)
k-kl

*W. Feller, op. cit., p. 137.
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which gives the probability that the reading will be in the interval k; <k < k,, this func-
tion is called a measure function. It can be shown* that

M(kykanpg) = @ (xy, 4 1/2) = & (X, _1/2) (39)

With the aid of tables of the normal probability function (if necessary, transformations
given in Appendix A can be used), a good approximation of (32) is obtained. It is interest-
ing to note that condition (19) is a special case of (33).

Validity Condition

In choosing specific values of x, care must be taken to keep within condition (26) on
which the normal law approximation was based. Condition (26) may be restated as

xkshp"zq'z — 0. (34)

Condition (34) establishes the validity of the application of the De Moivre-LaPlace limit
theorem (25) and (33). Fellert demonstrates that (34) is satisfied, in many applications,
for values of x, of 3 or 4. With x; between 3 and 4 and n between 10 and 100, the limit
of acceptability can be written as

xk-’hptiq'z <1, (35)
It follows that 2 maximum usable value of x, is
x,3 <h3n2 or x, < h(n)3/3. (36)

Note that for larger values of , the left-hand side of (35) becomes much less than 1 with
x, = 4.

Count (k) Tolerances

Each term on the right-hand side of (33) is a normal distribution function, and (36)
gives half the range for which reasonable approximations are valid. The fact that these
terms are normal distribution functions can be used to some advantage when it is found
necessary to go beyond the validity range given by (36). This fact will become evident
as the discussion proceeds.

As a first approximation, the special value x, = 0 can be used in setting tolerances,
i.e., in finding values for k, and k,. When x, = 0, it follows from (28), and because h ¥ 0,
that

k =k, =np, . (37
Specifically, the assigned limits will be the lower limit
ky = npy (389)
and the upper limit
ky = npg (38b)

*Feller, op. cit., p. 137,
top. cit. pp. 136 and 137,
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where Py and py, are either given directly or must be calculated from given values of p.
In the latter case? the transformation between p and p, can be performed graphically with
the aid of Fig. 3, or an expanded version of Py VS P for the specific measure group,
similar to Fig. 4.

The fact that both terms of (33) are normal distribution functions permits, with the
aid of probability graph paper, the use of graphical techniques in adjusting the tolerances.
It is possible, also, to show graphically the expected range of variation in k about a selected
tolerance. By solving (28) for k and using (27), we obtain

k:np'txko=k°txka- (39)

pe=a? .p2
08 D‘

07
06
05
04 | pg *3pq2 Po*3p2q
03
02

o]

0

10 .
m=4 m=

09 o +4ap201-p)
Pgtqd Pe*PS
08 {1-p)*+ ap(1-p)®

GROUP PROBABILITY pg (NUMERIC)

o7} p —

(1-p)*

08— B . Pg = 5p%q
- | pg=5pq

05 by 10302

apd-p)| | Pg 10203

04—
4p(1- o)
03— L
6p2(1-p)2
0.2

0l

b

| .
0 ‘
O Ol 02 03 04 05 06 07 08 09 10 O Ol 02 03 04 05 06 07 08 09 10
p (NUMERIC) p (NUMERIC)

(p= PROBABILITY THAT A1 OCCURS)

Fig. 3 - Graphical representation of transformations between p and pg for
the measure groups (values of m, or number symbols)indicated
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06

pg (NUMERIC)

o]

pe’ Pt : Po *ti-p)*
! | 1 1 | | ! 1
040 042 044 046 048 050 082 054 056 058 060
o (NUMERIC)
L L 1 1 1 | 1 A | | J
-010 -008 -008 -004 -002 0 002 004 006 008 010

BIAS Ap (NUMERIC)

Fig. 4 - Expanded graphical representation of tranformations
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tion of the group probabilities for m = 4.

In (39), since py and n (hence, o as well) are constant, the range of values of k can be
obtained. In Fig. 5 the variation in k is shown for seven values of x, (0, 1, 2,

and 3) for each of three values of n (10,100 and 1000). For each set of curves the
maximum usable values of x, are shown. In only the case for n = 10 does the extreme
curve (x, = 3) exceed the limiting condition of (35).

Tolerance Lines
In evaluating (33) it is desirable* to use the limits x, + h/2. It follows from (28) that
Xy, — 172 = (g = VDh = (k; - 1/2)h (40a)
and
Xky +1/2 = (WPg, + 1/2)h = (ky + 1/2)h. (40Db)
The values given by (40) will be used in (33).

Having a knowledge of the range of valid values of x, we can obtain, using (28), the
expected range of values of p, which could be used in determining their contribution to
accept readings. Note that the only condition imposed on p, thus far has been that of
constancy. By solving (28) for p, We obtain, dropping the subscripts of both k and x,

x2 4 2K x? 4+ 2k ]2 k2
= t -
Pe 2(x2 4 n) ‘[[2()(2 + n)] h(x? + n)* (41)
the range of values of p_ to be expected for given n, k, and x. It is expected that (40) will

be used to provide values for x and k for (41). The sign of the radical in (41) is chosen on
the basis of the expected value of Py there is symmetry, of course, about x = 0.

*W, Feller, op. cit., p. 137,
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Fig. 5 - Group count (k) as a function of py, the probability
of occurrence of the particular digital group or number
symbol, for n = 10,100,1000, and for = = 0, 1,12, and 13

for each value of n.

A knowledge of the range of valid values of p, is useful for several reasons. It pro-
vides, first of all, a test of the range of significant values over which the probability
that counts within the tolerance limits will occur. In addition, the valid regions of p  for
both terms of the right-hand side of (33) can be obtained independently. Furthermore (41)
is the basis for a method of comparing different measure functions, as will be shown in

the sequence.

By using (41) to calculate at least two points, a straight line can be drawn on arith-
metic probability graph paper for each of the terms on the right-hand side of (33); these
lines we call tolerance lines. The tolerance lines will be found to be useful in construc-

tion of the acceptance characteristic of measure functions, as will be shown.

An Independent Measure System

With the aid of Fig. 5 we have another measuring system. This system yields values
of p and consists of obtaining a set of readings. Each reading is obtained from an n bym
array. To obtain each reading, a count is made of the frequency of occurrence of the
specific arrangement of digits indicated by the selected measure group e.g., (15). By
taking a sufficiently large number of readings, calculation of the average value of count will
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permit the use of Fig. 5 in obtaining the most likely value of p, (the x, = 0 line is used).
Associated with the determination of the most likely value of p , there is an indication of
the range of variation in count to be expected, and the set of readings can be tested
against this variation for consistency.

THE GO/NO-GO MEASURING SYSTEM

While the aforementioned procedure does provide a measuring system, it is not a
go/no-go method; an average value must still be calculated. The advantage of a go/no-go
method of measurement, in which only counting in involved, lies in the simplicity of inter-
pretation. Any particular reading, when obtained, carries with it an accept or reject
classification. This type of classification tends to permit the conclusion that when a “go”
or accept classification is obtained, the process is following the model, and the value of
P, is within the tolerance permitted To assure ourselves of this conclusion, we must
examine the expected results more fully. In a go/no-go measuring system, allowable
tolerances on p will be set, n will be determined, and the tolerances onk, k,, and k, will
be obtained, at least initially.

The Effectiveness of Measure Functions

Equation (41) is of value in the comparison of specific measure functions. For example,
one method of comparison might consist of calculating the value of p; for some “standard”
value* of x. By transforming the value of p; into p, a range of values of p which provide
accept readings is obtained. The problem of comparing different measure functions leads
us to consider the ideal measuring problem, Fig. 6. The measure area of Fig. 6 is a plot
of mk, , k, , n,p') vs p. It can be shown that both scales have minimum values of 0 and
maximum values of 1. Ideally, an accept region a which is sharply divided from the
reject region is desired. We will find in practice a measuring situation more like that
shown in Fig. 7, where the lines of demarcation of the accept region are not linear. Note
that the extent of the accept region, the p-tolerance region, is ideally 24p or Ap, + &p,,
depending upon whether or not the tolerances are assigned symmetrically. This ideal
situation suggests that, in terms of p-tolerances,

d
~ ® and [&-’ M(k, .kz.n.p‘)] ot pz«. © (42a)

[3"; l(k,.k,.n.p.)]

or, equivalently, in terms of p,-tolerances,

P, =P,

d
[dip M(k.ky,n, p'):lp ~ ® and [E’ Mk, ko, n,p‘)]p ~® (42b)
'l '2
where the derivative is evaluated at the values given outside of the brackets. Condition

(42) can be expressed more practically as follows: Among alternative measure functions
the most effective is that whose slope is greatest at each tolerance limit.

In Fig. 7 the departure from the ideal is indicated by the two cross-hatched regipns
a, and r,. The region a_is an addition to the accept region and includes values of p out-
side of the interval of acceptance (p, - 4p, , P, + Op,). The region r_1is an addition to
the reject region even though the values ofl p are within the accept interval The extent
of these two regions in terms of values of p, can be obtained using (41) for both values of «.

*The choice of a standardized value is quite arbitrary, The value of x which is chosen
should be large enough to include a reasonable range of values of p and still be con-
sistent with the validity condition given by (35).
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In terms of these areas, condition (42) can be restated as follows: (a) if the value of
pto be determined is in the accept interval (p, - 4p,, p, + 4p,), the best measuring
function is that which gives the smallest area r,; (b) if the value of p is outside the accept
interval, the best measuring function is that which gives the smallest area a,

There may be cases where either one of the above two conditions can be satisfied. In
other cases a compromise may have to be made. In making the compromise, a measure-
ment of the areas is a quantitative indication of the effect to be expected on the overall
measurement. In any event, these areas are of importance in judging the expected effec-
tiveness inthe determination to be made of values of p.

If we denote the ideal accept region (Fig. 6) by A, we see that

A=20p =0p, +0p, (43)

since the ordinate is unity. If we take R to be the rejection region, then, since we have
unit measure area,

R=1-A. (44)
From Fig. 7 we have an effective accept region A_ given by
A,=A-r_ +a,. (45)
There is, correspondingly, an effective reject region R, given by
R,=R-a, +r,. (46)
From (45) and (46) we can see that if the areas a_and r, are made equal we have
= A and R, = B. This indicates the best comproml'se that can be expected. Note

'that if both tolerances are assigned tn accordance with (37), then a *best compromise”
results.
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We can compare various measure functions on the basis of the capability to give accept
indications when the value of p to be determined is within the tolerance interval. We can
also make a comparison on the basis of giving reject indications when the value of p being
determined is outside of the tolerance interval. We can take E, as a measure of the
acceptance effectiveness, where

A-r, Ty Ta 47
= = - — - —————_——— a
L Wik ey Wb Eeb -yery. - (47a)

and E, for the rejection effectiveness, where

" =R-ar a a,

zle—m=1- .
r R =1 R 1 1-(391 +Zp25

The values E, and E, are overall indications covering all values of p either within the
tolerance interval or outside of it.

(470)

Acceptance Characteristics

In discussing the effectiveness of measure functions, the line of demarcation between
the accept and reject regions was considered in a general way. It is possible to obtain
data for plotting this line and thereby obtain the accept reject region boundaries. In the
case where tolerances on p are given, the characteristic of interest is a plot of Mk, ,k,,
n,p,) v8 p. A plot of this characteristic for each of several possible measure functions
will provide a graphical means of comparison.

There are several ways of obtaining data for plotting the accept reject boundary lines,
i.e., the acceptance characteristic. Once n is obtained, e.g., from Fig. 2, k, and k, are
obtained from (38). Then either (18) or (33) can be used. Calculations using (18) or (32)
can be made either directly, or tables* can be used. If tables are used, there is a
restriction on values of n; the tabulation* used includes values of n up to 1,000.

The use of (33) with due regard for its range of application provides a practical means
of getting the data for acceptance characteristics. In fact, the two terms on the right-hand
side of (33) can be treated independently. It is necessary to treat them separately if
gross errors resulting from failure to satisfy condition (36) are to be avoided. That gross
errors can be avoided becomes evident once it is considered that (32) and (33) both attain
the values 0 and 1 for finite values of x. It is possible to use arithmetic probability graph
paper to get a reasonably approximate acceptance characteristic. In this case, with
Py Plotted as the abscissa, a straight line can be drawn connecting the selected points.

The actual characteristic as a function of p can then be obtained graphically.

The advantage of a graphical method lies in the ease with which adjustments can be
made in the limits initially chosen. The comparative effect on the measuring effectiveness
can be seen by plotting the initial and subsequent limit lines.

The acceptance characteristic yields at least a qualitative judgment of the measuring
effectiveness of specific measuring functions. If the p-tolerance lines are drawn in and the
appropriate areas are measured, then there is a quantitative judgement. In the measuring
case where p is obtained from Fig. 5, the probable range of variation to be expected in k
is obtained directly from Fig. 5. In the go/no-go case, a point on the acceptance
characteristic gives the probability of acceptance for the particualr value of p. The area

#» Tables of the Cumnulative Binomial Probability Function,” by the Staff of the Computational
Laboratory, Harvard U. Press, 1955,
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under the acceptance characteristic represents the probability of acceptance for all values
of p. The effective accept region given by (45) is the probability that if the value of p being
measured is within the tolerance limits for p, an accept indication will be obtained.

From Fig. 7 we see that the probability of acceptance decreases as we increase or
decrease p with respect to the central value p,. We must take this variation into account
in interpreting the readings of a go/no-go measuring system.

Effect of Repeated Measurements with a Decision Criterion

In a go/no-go measuring system, the-value of p is not obtained. Instead, the measure-
ment indicates that a particular value of p is essentially within the p-tolerance interval.
In such a system, the acceptance characteristic gives the probability of acceptance for any
particular value of p. The value of the probability of acceptance remains constant as long
as p remains constant. Thus, a pseudorandom digit generator which is stable will be
expected to yield a value of p which remains substantially constant. If for some reason
a change in p occurs, then there is a corresponding change in the probability of acceptance.
If the value of p was initially near the central value, then the probability of acceptance
would decrease or the probability of rejection would increase. Now, we can choose to use
either the probability of acceptance or of rejection as the constant probability in a new
sequence of repeated trials. Let there be n, trials with the constant probability p, (i.e.,
the probability of acceptance) in each trial. We use a small value for n_, and assign a
value to k4, the number of acceptable occurrences out of n_ trials. The expectation that
out of n, trials there will be at least k, occurrences when the constant probability of
acceptable occurrence in a single trial is p,, is given by

BagkeP) = ) napx (=P (48)

The probability B(n,,k,,p,) is tabulated; it is the cumulative binomial probability function
referred to earlier. e selection of n_ and k, is quite arbitrary. For purposes of
illustration let us take some small number suéx as n, = 10. With the aid of tables, k,
might be so chosen as to make

B(n,.kq, P,) 2 0.50, when p, = 0.50 . (49)

This choice of p, follows from the way in which k, and k, were selected (by (38)). The
result from the tables gives k, = 5 and B(n,,k,,p,) = 0.62.

By introducing (48), we are provided with a means of interpreting a series of readings;
in short, we have an acceptance decision criterion. With its aid we can predict the
increase in rejection rate as the value of p departs from the central value. To illustrate
a possible use of this type of decision criterion, the function (48) has been plotted, with
the aid of tables for four values of k, (Fig. 8). Since the values of k, and k, were set
essentially to give a probability of acceptance of 50 percent, if we use (49) as the
decision criterion then whenever p approaches one of its tolerances it can be expected
that there will be only about 5 acceptance readings in 10 trials. From Fig. 8 with p, =
0.5, we could expect a variation in the number of acceptances of between at least 4 and 7,
and the process under test would still be following the model.

Repetitive Patterns

The go/no-go measurement of randomness in a system which has no memory involves
the risk of accepting sequences which are repetitive. The very fact that a given random-
ness generator begins to produce sequences of digits which are repetitive is an indication
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of failure of the generator to perform properly. Thus, it is the capability of the measuring
system to detect certain types of generator failure that we are investigating at the moment.
In specific cases, a generator may produce only certain sequences, so with these known,
the measuring system should be designed to cope with those sequences, i.e., to give reject
indications when they do occur. Here we point out a few of the general aspects of the
problem.

The problem of determining the effect of repeated sequences is treated in detail in
Appendix C. It is shown that the investigation is tedious and no general method of making
the test is evident.

It is possible to make the following qualitative generalizations from the investigation
made in Appendix C.

(2) The vulnerability of measure functions to erroneous accept indications depends
upon the choices made for = (i.e., the specific measure groups resulting when Py is
designated), as well as upon the values of k, and k,.

(b) While some reduction in vulnerability to accept indications is possible through a
narrowing of the acceptance limits, the change in the acceptance characteristic should be
determined.

(c) The use of a decision process (e.g., multiple application of a measure function)
should reduce the probability of erroneous acceptance indication and, therefore, the
vulnerability.

(d) It should be possible to reduce vulnerability by the use of two or more measure
functions which individually have different regions of vulnerability.

That the incidence of repetitive sequences is a departure from the ideal can be seen
if the probability of occurrence of specific sequences is considered. A sequence of m,
repeated digits can be expected to occur with a probability p, in such a way that in the
ideal case of p = 0.5

Py = 2=(ms), (50)
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In other words, each of the possible arrangements is equally likely. We can obtain from
tables the probability that for a given m a specific grouping would occur continually in an
ideal process. These values have been tabulated (Table 1). It can be seen that for m =1,
the probability that there will be a sequence as long as 8 digits is quite small; we should
never expect to find as many as 18 digits repeated. In the same way we find that we
should encounter almost no occurrences of sequences where m =17,

Table 1
The Probabilities of a Specific Sequence of m_ Digits Occurring Each
Time in n Trials for an Ideal Binary Process

Probability That the m_ Digits Will Be Repeated Each
Time In n Trials

me| 2m, j1/2™ =p,
Number of Trials (n)

2 3 4 ) 8 7 8

2| 05 0.25 0.125 0.0625 | 0.03125 | 0.01563 | 0.00781 | 0.00391
0.25 0.06250 | 0.01563 | 0.00391 | 0.00098 | 0.00024 | 0.00008 | 0.00002
0.125 0.01563 | 0.00195 | 0.00024 | 0.00003 | 0.00000
16 | 0.0625 | 0.00391 | 0.00024 | 0.00002 | 0.00000
32 | 0.03 0.00090 | 0.00003 | 0.00000
128 | 0.01 0.00010 | 0.00000

- N e W D e

It follows that in choosing a value of m, consideration should be given to making it as
near to 7 as possible. Of course, the complexity of testing is undoubtedly also directly
dependent upon m. A balance must be struck between vulnerability and complexity. In
devising the entire test, consideration might be given to the use of at least one measure
function for which m = 7, and this should be a direct indicator of erroneous accept indica-
tions from repeated sequences.

APPLICATION OF THEORY

We are ready to consider an example to illustrate the procedure for applying the theory
developed above. A rather arbitrary case is being used to eliminate the need for special
consideration which might be required in initially setting the p-tolerances. Thus, instead
of starting with given p-tolerances, a nominal value of p, = 0.5 was chosen. The lower
and upper limits, Ap, and 4p,, were then selected individually from a shuffled *deck” of
cards. The values obtained are

4p, = 0.062 and Op, = + 0.038.

It follows that the p-tolerances are 0.438, the lower limit, and 0.538, the upper limit.

We will examine the following three measure groups as part of the demonstration of
the theory: p, 6p2q2, and p* + 4p3q. Next we make the assumption that an error of 5
percent or less is permissible. We find from Fig. 2 that a sample size n of about 1,000
is required. We note that condition (26), when evaluated, gives ne3 = 0.125, a value con-
sidered close to zero and satisfying (35) as well. We should, therefore, expect a reasonable
approximation of the binomial distribution using the normal law equivalent.
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In Appendix B it has been shown that a good indication of the upper bound of the error
in p_ can be obtained from Fig. 2, and that the error in p can be within this bound. In
Appendix B the three specific groupings selected for our discussion have been evaluated
with regard to the error inp. For Py =P the error in p is just the error in pg. For
Pg = 6p2q2, the relative error in phas an asymptote at p = 0.5. For p, = p4 + 4p3q, the
asymptote for the relative error in p occurs at p = 1. Since the asymp‘ote for py = 6p2q2
occurs at p = 0.5, which is within the region of measuring interest, we would suspect that
that particular grouping might not be suitable. This turns out to be the case for other
reasons as well. Because this function has some interesting qualities it will be treated
further. The rélative error in p for p_ = p* + 4p3q is less than the relative error in

p,sover a wide range of values of p, inéluding the region of interest between 0.438 and
0.538.

Graphically Determined Acceptance Characteristics

Using (38) we can obtain values for k, and k,. At this point we can use graphical
techniques in obtaining the acceptance characteristics. By selecting at least two values
for x, and using (41), points are obtained to make a straight-line estimate of the acceptance
characteristic when plotted on arithmetic probability graph paper. By plotting the
tolerances separately, the difference indicated by (33) can be obtained graphically from the
two straight-line plots on the graph paper itself. This was actually done, and Figs. 9-12
are the result. To illustrate the degree of agreement possible, points on the acceptance
characteristics were obtained using data from a table of the cumulative binomial function.*
In Figs. 9, 10, and 12, the straight lines are adjudged to be a reasonable connection of the
triangularly designated points. The circularly designated points were obtained from the
table of the cumulative binomial function. Because the measure group 8p2q? (Fig. 11)
exhibits some interesting qualities for the tolerances which were obtained, it was decided
to plot the composite or acceptance characteristic curve by calculating a number of points,
indicated by crosses, using (33) directly. In Fig. 11, the curve which has been drawn was
obtained graphically from Fig. 10, and the crosses and circles are points obtained,
respectively, from (33) and (32). Further evidence of the agreement obtainable is shown
in Fig. 12; the same designations for points applies as in Fig. 11.

We note from Fig. 11 that the two lines corresponding to tue distributions about the
two tolerances are both incomplete and close together. The terminal point of the two
lines corresponds to the maximum value of

P, = 6p%q

which occurs for p = 0.5. The two lines are close together because p, is symmetrical
about p = 0.5; there are two values of p for each value of p,. In case this particular
function is to be used in determining values of p, ambiguities will arise, and other means
have to be used to resolve the ambiguity.

With the aid of Figs. 3 and 4, values of P, can be transformed into values of p. Then
the curves of Figs. 9,11, and 12 can be used to obtain acceptance characteristics for each of
the measure groups, Figs. 13-15. The acceptance characteristic is aplot, on linear scales, of
the probability that the specific measure groups occur for particular values of p when
n and k are fixed. Again, to indicate the effect of the normal law approximation, a com-
parison is made with results obtained using the table of the'cumulative binomial probabil-
ity function.

*The staff of the computational laboratory, Harvard University, op. cit.
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Fig.11 - Graphical composite (solid
curve) of tolerance lines shown in
Fig. 10, The values calculated by
the cumulative binomial function
(circled points) are shown for
comparison.
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obtained graphically from Fig. 12. Comparison with
three decision sequences, as indicated.

Effect on Acceptance Characteristics of Repeated Measurements
and a Decision Criterion

Having obtained the acceptance characteristics, the effect of using an acceptance
decision criterion, such as that given by (48), can be determined. The acceptance
characteristics gives, for specific values of p, the probability of acceptance in a single
trial as the ordinate in Figs. 13-15. Figure 8 is a plot of the probability that there will
be k, or more occurrences of specific groups of digits (the ordinate) as a function of the
probability of acceptance in a single trial (the abscissa). We can use graphical means
to obtain new characteristics: the probability that there will be k, or more acceptances
in n, = 10 independent trials. To show what such characteristics look like and to indicate
the variation to be expected, three values of k, (4, 5, and 6) were selected. The results
are superimposed on the acceptance characteristics, Figs. 13-15. The increase in sharp-
ness is apparent. In Fig. 14, four values of k, were used to show the complete trend as
k4 i8 increased.

The increase in sharpness of the acceptance characteristics indicates that the
theoretical line of demarcation between the accept and reject regions of the measure
area can be approached quite closely. Thus, conditions (42) can be satisfied and the
effectiveness given by (47) should be of high order.

From Figs. 13-15 not only is the increased sharpness shown, but the usefulness of
criterion (49) is indicated.

Comparison of Figs. 13, 14, and 15 shows that two of the functions yield similar
acceptance characteristics. The second, p, = 6p2q?, however, yields a different
characteristic. In terms of (47) it can be stated qualitatively that the second function does
not offer very good acceptance effectiveness for the tolerances chosen. By increasing
both tolerances, the tolerance lines become separated and the acceptance characteristic
can be made to reach unity.

Use of Graphical Means for Adjusting Tolerances

As a demonstration of the usefulness of the graphical method in the adjustment of
tolerances, we consider the grouping Py = 6 p2q2 further. With reference to Fig. 16,
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an initial change in tolerances was made by changing k, radically to 265, while changing
k, only slightly to 375. Using (41), calculations yield tl!ne points for drawing the straight
line, indicated by the triangles. In this case the lower tolerance was obtained, using (40),
after the extreme value had been obtained for the case where k, = 375. This choice
assured no crossover of the tolerance lines (see Fig. 16). This choice of tolerances still
gives a depressed central region up to the point where the upper limit line crosses the
line of maximum value of p_, 0.375. To remove the depressed region it is necessary to
increase the upper limit further. A clue to the amount of increase is obtained from Fig. 5
(n = 1000): it is found that for this particular function, when at its maximum value,
readings (i.e., values of k) up to about 430 are still quite probable. However, an arbitrary
decision was made to accept values of k of about 410 with 1 < x, < 2. At this point it was
observed from the plots of the first revised tolerances that the slope of the two lines is
nearly the same. By sketching in on a worksheet the new line, an attempt was made to
find the lower limit graphically. Here, it was only necessary to go far enough with the
lower limit line to permit a small amount of crossover. Thus, it was found that a value
of about 310 could be used. It was decided to compare these lines with the lines which
would be obtained for other comparable values — hence, the lines for k, = 302 and k, =
400. To show the results of the graphical process, points for each of the lines mentfoned
were calculated using (41). Note that in the case of the last two upper limit lines it was
necessary to plot points which have only graphical significance since they are beyond the
maximum value of Py

To illustrate the effect of choosing the various tolerances on the actual acceptance
characteristics, two of the sets of tolerances referred to in the description of the graphical
process have been plotted (Fig. 17) along with the previously obtained acceptance charac-
teristic. From Fig. 17 it can be seen that the increase in acceptance effectiveness is
obtained at a sacrifice in rejection effectiveness.
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Fig. 17 - Effect of choosing various tolerances (values of k; and k;)
on the acceptance characteristic of M (ky,k2,1000,6p2q2)

Application of Graphical Means in Comparing Measure Functions

The success of graphical means suggests the possibility of using these results as a
rough indication of acceptance and rejection effectiveness. Such an indicator is useful in
comparing results to be expected with the various measure functions. From Figs. 9, 10,
12, and 16 the upper limit on nearly each of the tolerance lines is coincident with the
calculated point; the end of the probability graph paper yields a useful, although arbitrary,
range of the characteristic. This choice offers a useful standard point of reference. In
this kind of indication, two factors are of significance: (a) the value of the measure func-
tion at the point of intersection of the tolerance line with the p-tolerance value, and (b)
the range of values of p out to the significant end of the tolerance line. These two factors
outline standardized portions of the regions r, and a_ in Fig. 7.

Following the foregoing method, two sets of values are given in Table 2: those for
the acceptance region (indicating the extent to which desired values of p are rejected)
and those for the rejection region (indicating the extent to which undesired values of p are
accepted). There are limitations in the use of the data of Table 2. While the first entry
for the acceptance region is straightforward, the second entry contains a dash. This dash
must be interpreted as a failure of the tolerance line to reach the end of the graph paper.
Another difficulty arises because there is a depression in the acceptance characteristic
within the acceptance region. This situation is handled by introducing the middle category.
The point-of-intersection entry in the middle category indicates the lowest point reached
by the depressed portion of the characteristic; in the cases tabulated, the region affected
by the depression in the acceptance characteristic is included between the two p-tolerances.
Aside from these special interpretations the data can be used in comparing different
measure functions From the tabulation we find that of the three functions, the function
M(225,372,1000,p* + 4pq) has the smallest areas r_ and a,, and these two areas are of
a.pproximately the same size. Hence, this function most nearly satisfies (42) and should
give the best overall acceptance characteristic

Vulnerability of Measure Functions to Erroneous Accept Indications

Having obtained a rough comparison of the three measure functions being used in
this application, it is necessary to make some comparison of the capability for each of
these functions to reject certain known repetitive sequences. The sequences have been
examined in Appendix C.
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In Appendix C two methods of sampling sequences made up of repeated groups of digits
are used. The results of the investigation of Appendix C are plotted in Fig. 18. For both
sampling methods the probability of acceptance for each of 184 sequences has been obtained.
In Fig. 18 this probability of acceptance for each of the 184 sequences, and for the three
measure functions being considered here for purposes of illustration, has been plotted.
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Fig. 18 - Effect of repeated sequences on three measure functions

Aside from the fact that sampling method 11 (see Fig. 18) yields acceptance indications
from more sequences, but with generally lower probabilities, the individual vulnerability
of the measure functions increases in the following order:

M(438,538,1000,p)
M(310,410,1000,6p242)
M(225,372,1000,p* + 4p3q).

For the measure functions being considered, mis equal to 1 in the first function and to 4

in the other two functions. From Fig. 18, the first erroneous indications for the more
stringent method IToccur respectively atm,= 2, 3, and 5, the measure functions being con-
sidered individually. If, however, the third measure functions is combined with either of
the first two measure functions, the only common region of erroneous acceptance indication
occursfor m = 6. This represents some increase in the fidelity of go/no-go accept
indications.

From Fig. 18 we see that for the case in which two measure functions are combined,
there are seven sequences which will cause erroneous accept indications. A further
increase in the fidelity of accept indications should be obtained by determining the measure
function which includes just the 7 sequences which cause the erroneous accept indications.
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For the illustrative example being considered, a satisfactory go/no-go measuring
system consists in using three measure functions, M(438,538,1000,p), M(310,410,1000,8 p2q3),
and M(225,372,1000,p* + 4p3q), on which the limits and acceptance characteristic have not
been determined but which includes the seven sequences which cause the erroneous accept
indications.

SUMMARY AND CONCLUSIONS

The general problem of testing a particular process for randomness reduces to the
problem of examining a sequence of numbers to determine that the set of numbers have
statistical characteristics which are within predictable limits. The sequence or set of
numbers can be arranged into an n by m array. The dimensions of the array yield certain
information about the tests which might be performed to determine the randomness of the
numbers contained in the array. The length n (number of rows) of the array sets the upper
bound on the measuring error (in the value of p), whereas the width m (number of columns)
is an indicator of the digital groupings which can be used for randomness testing. The
width m of the array serves also (for go/no-go tests) as an indicator of the capability of
specific digital groups to reject nonrandom sequences (i.e., groups of digits which are
repeated) and thereby to prevent false (go) indications.

Consider the case of an array of binary digits. If the assumptions are made that each
entry in the array is independent of any other entry, and the probabilities of generating
the two digits remains constant, then the array could have been generated from Bernoulli
trials. Thus the binomial distribution and its characteristics serve as the theoretical
basis of comparison for observed results.

It has been shown that there are many kinds of tests which can be devised to measure
randomness. Essentially these are tests in which p is measured indirectly, by using any
term or combination of terms inthe binomial expansions [p + (1 - p)]". In selecting a
particular value for m, an effective transformation in the array is made, from a m-column
array to a single column array, and this is tantamount to a change in number system of
higher order radix; the original number system radix is 2. Thus the selection of mis
made partly on the basis of the digital group or groups of digits considered of interest.

Although exhaustive testing for randomness is indicated, this investigation has con-
sidered the results to be expected from single tests and for tests repeated a small number
of times. The investigation was directed to automatic tests, with go/no-go indication.
Because the binomial distribution is not as well tabulated as is the normal distribution,
the theory was developed about the latter.

It has also been shown, particularly for the go/no-go measuring case, that the choice
of the value of mdepends upon the desired capability for the test to reject repeated sequences
of digits. A value, m = 5 or 6, satisfies this requirement if the two means used to generate
repeated sequences are the only ones to be considered. The mere choice of a value for m
does not prevent repeated sequences, when they occur, from causing false “go” indications.
Once m has been selected, various digital groups can be tested to determine which repeated
sequences are likely to cause the false indications. It should be noted that m should be
given as large a value as possible, and if it i8 an odd number, the resulting effect of
repeated sequences should be minimized. With m an odd number, repeated sequences
which might cause false indications should be irregular; hence, it may be easier to devise
tests to prevent such false indications. Thus combinations of tests are implied to cope
with the problem of false indications. On the other hand, the method of generating the
random digits, which essentially is being tested, might profitably be examined to determine
if particular sequences are likely to be generated. A particular generator may be prone
to fall into a particular pattern or sequence of digits, and this pattern, if known, serves
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to evaluate the need for concern about repeated sequences when devising the tests. Indeed,
it may be impossible for some generators to change from a random to a nonrandom
(repeated sequence) state without the test detecting the transition. While there is no
unique solution to the problem of selecting the value of m, these are the considerations
which must be given. Once the selection of m has been made, the possible digital groups
made available for the tests should be checked to determine their effectiveness in measur-
ing p; an error analysis in accordance with Appendix B is required to avoid gross errors.
Means are given for determining the upper bound on the error to be expected in measur-
ing p. While this error is primarily determined when the length of the array of the sample
size (n) is selected, the error analysis for particular digital groups will show what
departures from the upper bound of error can be expected.

Having determined both the particular digital group(s) and n, with known limits for
P, the tolerances k; and k, on the group count can be assigned. The measure function
thus obtained is of the formM(k,,k,,n,p;). The effectiveness of particular measure func-
tions can be determined qualitatively once the acceptance characteristic is obtained. An
acceptance characteristic is a graph of M(k,,k,,n,p,) vs p. Any acceptance limit line can
be compared with the ideal, a straight line of infinite slope. In practice, there will be a
small number of measure functions to be compared, and the best measure function will be
that having the smallest dispersion of both limit lines.

The acceptance characteristic is essentially composed of two normal distributions,
corresponding to the upper and lower limits of p. Because of this fact, acceptance charac-
teristics are readily obtained with the aid of tables of the normal distribution function.
With the aid of normal probability graph paper it is possible to obtain the characteristic
graphically.

The acceptance of the measure function establishes the results which can be expected
in a single go/no-go test. The acceptance characteristic of any measure function can be
made to approximate the ideal more nearly by using a relatively small number of tests
and adopting a decision criterion. It is shown that considerable improvement is achieved
if a sequence of 10 tests is used, with a decision to accept based on 5 acceptances out
of 10.

It has been shown that dynamic, automatic testing of randomness can be achieved
with useful results. The requirement for a relatively small digital group, to avoid false
“go” indications, and for a relatively small number of repeated tests suggests that
practical devices can be built to perform the tests.

In developing the theory, a means for measuring p more directly was described.
This alternative method consists of obtaining statistically suitable samples, each of size
n, of the frequency of occurrence {or count) of specific groups of digits. If enough samples
are obtained, the parameters of the distribution of count can be calculated. It can there-
fore be determined statistically that the counts are distributed randomly. Furthermore,
from the average value of the count the most probable value of the group frequency of
occurrence can be calculated. The value of p can thus be measured. By the application
of this method, an independent check is available for verifying the results of go/no-go
tests. The advantage of this alternative method lies in the fact that the instrumentation
requirements may be somewhat less than for the go/no-go method.



APPENDIX A

SOME RELATIONS BETWEEN EXPRESSIONS
FCR THE NORMAL DISTRIBUTION FUNCTION

Given the normal density function

1 2
#(t) = “(t92),
(t) a1 ? e

the normal distribution function is defined as

&(x) = L e(t¥/2) gy,
@an? ),
Furthermore,
Cd 0
j é(t) dt = I etV gy = 1,
- (emt2J_,

We can divide (A3) into three parts:

I #(t) dt +I #(t) dt +I #(t) dt = 1.

(A1)

(A2)

(A3)

(A4)

Since we are dealing with the normal density function, which is symmetrical about t= 0,

I @(t)yde = I é(t) dt.

It follows that

I ¢(t)dt+I ¢(t)dt=2I $(t) dt

= 2! #(t) dt.

32

(AS)

(A6)

(A7)
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Using this result in (A4) we obtain

2 J“ P(tydt =1 -r B(t) dt. (A8)
Let
$(x) = r #(t) dt. (A9)
Then
$(x) = I-"¢(t) dt + r @(t) dt. (A10)
Also,
®(-x) = I-. d(t) dt. (Al1l1)
Now
&(x) + §(~x) = I-. @(t) dt + J" @(t) dt + I-' #(t) dt.
Using (AS)
-z 2 .
&(x) + ¥(~x) = [ P(t) dt + [ () dt + I @(t) dt = 1.
Therefore,

(=x) = 1 = §(x). (A12)
Now take the difference between (A10) and (Al1):

$(x) - #(-x) = I $(t) dt + I $(t) dt - I $(t) dt

@(t) dt - I ¢ (t) dt (using (A9)).

g
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Therefore,

But, using (A12),

or

or

Also,

NAVAL RESEARCH LABORATORY

P(x) - &(=x) = J. &(t) dt. (A13)

$(x) - [1-¢(x)] = j @(t) dt

28(x) - 1= I #(t) dt

d(x) "% +% j’ $(t) dt. (Al14)

d(-x) =% -% I ¢(t)dt. (A15)

Many sets of tables of the normal distribution function are available. A rather com-
plete one (“Tables of the Probability Functions,” Vol. II, FWA, WPA for the City of
New York, 1942) tabulates the function

[ e



APPENDIX B
THE RELATION BETWEEN THE ERRORS IN p, AND p.

The ability to select an upper bound to the error expected in making a measurement
is of considerable significance. Equation (19) provides a mean for selecting an upper
bound to the error in measuring p, the probability of occurrence of a specific grouping
of digits whose functional relatlonship may be one or more of the terms in (12)., Use of

¢ in setting the upper bound of error provides a general way of setting the error, but
it does not show how this error affects the value of p, the independent variable in func-
tions represented by Py

It has been shown that there are a large number of possible functions of p which can
be used to define p,. We will consider a small number here to show the relationship
between the error in p_, which can be selected by (19), and the corresponding error in p.

In general,
P = f(P)- (B1)
Let us differentiate (B1):
dp'
—_— = f B2
dp f'(p). (B2)

Now, suppose we let the differentials dp, and dp approximate the respective differences
bp, and Ap. Substituting the differences “for the differentials in (B2) we obtain

bpg ~f'(p) Bp (B3)
where
Bpg =€ (B4)
the small number of (19).
In (B3) we have the (approximate) relation between the error in p, and the corre-

sponding error in p. For purposes of comparison, we are interested in the relative errors.
We obtain approximations of the relative errors as follows:

8pg  f'(p) P Ap
—_— = _ f' —_— 5
g oe T () () (B5)

which, upon rewriting, becomes

Ap\ Pe 1 Ap,
G-+ pr)(’p‘) (B8)

35
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To illustrate the use of (B6) let us consider the following seven measure functions
whose relative errors are as tabulated.

Relative Error Ratio
Measure A Location of
Function (_‘2) Pe Asymptote
(Pg) P Py (p)
P 1 none
1-p
2 .
Pq T2 0.50
1-p
6p2q2 —_— .
p*q TR 0.50
1-p
3p2 .
p*q 3= 3p 0.66
1-p
3
4p°q 3-4p 0.75
1-p
Sp4 .
P'q 2 5p 0.80
4 - 3p
4 + 4 3 —— .
P p3q 120 - p) 1.00

To aid in comparing the above tabulated functions, Fig. Bl has been drawn and shows
how the relative error ratio (Ap/p)/(Apg/P¢) varies with p. Of particular interest are
those functions for which |Ap/p[/|Apg/pg| < 1, representing direct utility of the selected
value of ¢ as an upper bound of error.

The above tabulated functions are a sample of the possible functions which could be
assigned to P, Once a particular functional relation is chosen for use in making meas-
urements, an error analysis should serve to indicate the maximum error likely to be
encountered within specific ranges of numerical values of p. From Fig. Bl the location
of the asymptote, if one exists for a specific function, is a useful indicator of the region
of gross errors. Because of this, the location of the asymptote is tabulated above for
each of the functions.

It can be concluded that an error analysis can indicate the utility of a specific func-
tion in making measurements of p. Furthermore, for certain ranges of values of p,
functions can be chosen such that |App| < 1, and the upper bound determined on the basis
of p, remains an upper bound for errors in p.
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number symbols



APPENDIX C

REPETITIVE SEQUENCES AND THEIR EFFECT
ON GO/NO-GO TESTING OF RANDOMNESS

Suppose that a sequence of digits is obtained by repeating a group of fixed digits.
If m, is the number of binary digits which form the group of fixed digits, then a sequence
of any length can be obtained merely by repeating the fixed group. The sequence thus
obtained can be arranged in the form of an n by m array. The content obtained for the
array will depend upon the way in which the sequence is sampled to derive entries for
the array. Consider two ways of sampling (there are many ways which could be devised).
In one sampling method, each digit of the sequence is used as it appears in the sequence
and m-digit groups are formed from the sequence until there are n groups. In another
method, the sequence is sampled to obtain m consecutive digits starting at arbitrary or
essentially random places in the sequence, again until there are n groups.

To show how the array content can be derived, it is necessary t» know what measure
groups are to be used (i.e., must be specified), as well as the count limits. With small
values of m,, and for small vaiues of m, only a small number of entries need be made in
the array because these entries are repeated. Once this repeated portion has been obtained
it is easy enough to calculate the content of an array of any size.

The first sampling method has been used to investigate the following measure func-
tions for the case where p = 0.5:

M(45,55,100,p), M(35,65,100,p), (m=1)
M(45,55,100,2pq), M(35,65,100,2pq), (m=2)
M(33,43,100,3p 2q), M(23,52,100,3p%q), (m = 3)
M(21,29,100,4p3), M(12,38,100,4p%), (m= 4)
M(12,19,100,5p4q), M(5,26,100,5p%),  (m = 5).

In each case the count limits, k, and k,, were obtained from Fig. 5 at the appropriate
values of p_using first x, = + 1 and then x, = :+ 3. The results are given in Tables C1
through C4 Included in Tables C1 through C4 are the repeated portions of each sequence
tried, i.e., the actual digital content of a repetition period. From the sequence of repeated
groups of digits the array content is derived as described above; only that portion of the
array which is repeated is shown. Repeated sequences are located together whenever,
for a given value of m_, the array contains the same m-digit groups, regardless of their
order of occurrence. The sequences are tabulated, for each value of m, for increasing
values of m_. As a matter of interest the number of possible arrangements of digits for
each value of m, and mis given, i.e., the number of combinations of m, things taken m at
atime or of m things taken m, at a time: (Ts) when m, >m,or (m) when m>m,.

A given sequence is only considered once; for example, all zeros or 41l ones are con-
sidered once for each value of m. The group count is obtained by repeating the portion

of the array which is shown an appropriate number of times, ag determined from the
value of n indicated for the particular measure function. It should be noted that when m,
is greater than m, the array content is readily obtained by taking the first m digits from
each of the similar groups of repeated sequences given in the second column. Thus, for
example, Table C4 might be used to investigate the effect of a value of m, = 7 with the
measure functions given in Table C9J.

38 .
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Table C2
Effect of Repeated Sequences for m = 3

Repeated Sequence Measure Function Equation, Group Count, and Accept(A) or Reject(R) Indication
Portion of
Number of Digits N;;n.:;l :( Array Which Sequence Sampling Method I Sequence Sampling Method 1T
Mumber | Disits ‘"P‘:’M o Per Period |AFFang is forthe | Group Count Group Count
v Ty of Digits Selected from the {Numeric)
* ") G oc Array TS N 213 (Total varia- PREFE )
L} Toups (Numeric) tion of + S0
allowed)
23, p = 3p2: Selected Groupings 110,101,011; Py = 0.375 at p = 0.5 4(23,52,100,3p2q) | M(32,48,100,3p2q) n{325,425,1000,3p2q)
1 0... 1 1 000 0 R R 0 R (all)
2 1. 1m
3 o1... 2 4-2 010
4 10... 101 30 A 450 - 5%0
S 001... 3 8.2 001 0
] 010... 010 0 R
7 100... 100
s 110 1000
9 101 100
10 011 |
11 ‘ 18 - 4° 000 I )
12 100
13 o010 ° !
" 001 !
s 001 i
16 100 H 450 - 550
17 110 S0 A
18 011
19 111 700 - 800
2 on
n 101 ki) R
2 110 !
23 00001... s TR 000 j
] 00010... o010 0
] 00100... 000 0 R
26 01000... 100
n 10000... 001
u 00011... 000 350 - 450 | A (about 7%% of
9 00110... 110 range, or 0.93
3 01100... 001 40 A A probability)
an 11000... 100 R (0.07 probability)
32 10001... (23} .
33 00101.. 001 150 - 250 R (all)
M 01001.. 0o
35 01010... 010 20 R R
38 10010.. 100
n 10100... ! 101 I O B
38 11100... 1 j 350 - 430 | A (0.93 probability)
] 01110... 001
40 11001.. 110 40 A A R (0.07 probability)
41 10011.. ol
42 o011, 100 B o ) .
43 11010, 110 T 750 - 850 R (all)
4“ 10110, 10
45 10101... 101 80 R R
46 01101 o
41 o1011.. 010
[1) onn o11 850 - 650
49 10111, 110
80 11011., 11 60
51 11101... 101
82 11110... m i

*The second nhumber indicates the number of arrangements previously considered,
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The results obtained using method I and shown in Tables C1 through C4 are sum-
marized in Table C5. The purpose in choosing two measure functions for each value of
m was to demonstrate that different count limits (k;, and k,) can have somewhat different
repeated sequence effects. While the difference can be clearly seen from Table C5 (e.g.,
the measure functions for m = 3 and 4), such a drastic change in limits would not be recom-
mended without ascertaining the change in acceptance characteristic and the associated
change in the incidence of reject indications. This trivial example serves to illustrate
how far it may be necessary to alter the limits in some cases to achieve a significant
change in accept indication in the presence of repeated sequences.

Table C5
Repeated Sequences Which Cause Accept Indications for the Measure Functions Being Tested
Repeated Sequence Numbers | Approximate Probability
Seque;;cemmpllng Measure Function |m|m Which Give Accept Indications of Accept Indication
(from Tables C1 through C4) {Numeric)
t M (45,55,100,p) 1] 2 3,4 1
M (35,85,100,0)
n M (455,545,1000,p)
I M (45,55,100,2pq) 2] 4 11 through 14
 (35,65,100,2q) 19 through 22
1§ M(455,545,1000,2pq)
1 M(32,43,100,3p2q) | 3| § 28 through 32
M(28,52,100,3p%q) 2 3,4
4 15 through 18
5 28 through 32
38 through 42
1 M(325,425,1000,3p2q) 0.93
I M(21,29,100,403q) 7 135 through 141 1
171 through 177
M (12,38,100,4p3q) 71 through 82
135 through 141
149 through 155
171 through 177
I m(208,292,1000,4p3q) 71 through 82 0.003
135 through 141 0.74
171 through 177
1 M(12,19,100,50%q) |5 7 178 through 184 1
M (5,26, 100, 5 n*q)
I M (120,190,1000,5p%q) 0.97

Next let us consider method II. Now we are concerned with a sequence which is made
up, as before, with a group of fixed digits m_, which are repeated. In sampling a sequence,
arbitrary or (assumed) random places are taken to select an entry of m digits for making
up the array. To illustrate the process we will consider the following measure functions:

M(455,545,1000, p)
M(455,545,1000,2pq)
M(325,425,1000,3p%)

M(208,292,1000,4p3q)
M(120,190,1000,5p%).
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For each sequence to be tried, the array content is determined as in the case of the first
sampling method; hence, the entries of Tables C1 through C4, which include the portions
of the arrays which are repeated, are applicable in this sampling method. In this case it
is necessary to ‘assign (in practice, to determine) the variation in count which is likely
to occur; for our example, a random selection of entries in the repeated portion of the
array has been assumed. It is natural to assume that in the long run a normal distribu-
tion of entries should be obtained. It will be noted that the limits for each of the measure
functions have been obtained from Fig. 6, at the appropriate value of p, (corresponding to
p = 0.5), for x, = 3. This assignment of limits permits a nearly normal variation in
count to be obtained under normal circumstances; the range of this distribution is 60. For
purposes of illustration, the expected count is assumed to have the same type of distri-
bution - a normal distribution with about the same value of 0. Therefore the value of
total variation is taken to be 30, where

ky = ky

5 (c1)

o-=

and k, and k, are, respectively, the lower and upper limits of count taken from the meas-
ure function.

In Tables C1 through C4 each of the above measure functions is investigated. For
each function the total variation ( ¢ 30) is given, using the value of o obtained from (C1).
Where appropriate, the total variation is included in the group count. The expected group
count is compared with the measure function limits (k;,k;) and the expected indication is
noted (R = reject, or A= accept). In method II, when the group count is compared with
the measure function limits, it is found in some cases that only part of the expected count
falls within the accept limits. In these cases it is necessary to determine the approxi-
mate probability of getting an accept indication. The example we have chosen, which does
not give tolerances on p, is assumed to have an acceptance characteristic which is the
normal curve. With this assumption, the probability of acceptance can be readily deter-
mined; this calculated value is given in the tables.

For purposes of comparison, Table C5 includes the accept indications obtained for
both sequence sampling methods. The results shown by Table C5 are indicative of what
can be expected from an investigation into the effect of repeated sequences on a go/no-go
test device. The measure functions with the wider, more realistically set limits are more
vulnerable to sampling by method 1.

The foregoing discussion serves to point out the nature of the problem which arises
with repeated sequences. The examples used are not realistic, but they have served to
illustrate some of the conclusions which can be drawn. It is appropriate to consider the
measure functions used in the latter part of the report, as possibly, a more realistic
demonstration.

The three measure functions being considered now are the following:

M(438,538,1000, p)
M(310,410,1000,6p3q2)
M(225,372,1000,p%+4p%).

and

For each of these measure functions, the acceptance curve is available, Figs. 13, 14, and
15, respectively. We will consider each of these functions and show the reaction to
repeated sequences when sampled by both methods I and II.
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Let us consider the formation of arrays in which m = 4 for each of these functions.
This poses a problem insofar as the first of the three functions is concerned; for purposes
of illustration it is considered that a single column sum (one of the four obtainable from
the 4-digit array) will be used. It is interesting to note that a simplification in tabulation
is achieved if the hexadecimal number system is used to write the array entries. The
conversions for the sequences of Table C4 are given in Table C6. Table C7 includes the
hexadecimal numbers used. In Table C8 are shown the binary and hexadecimal digits of
some specific groupings.

Having set up the procedure for obtaining arrays, use can be made of the sequences
listed in Table C4, the most extensive of the tables, to test the measure functions just
listed. Using both methods of sequence sampling, the effect of each of the sequences can
be obtained; however, it is first necessary to allow a variation in count for method II, as
was done previously. For our purposes, a count variation of : 50 is considered suitable,
since this value is very nearly obtained from Fig. 5 (n= 1000) for any of the limits used.
The results are given in Table C9; a summary of these results is given in Table C10.

From the summary, Table C10, we find that out of the 184 sequences for sampling
method I there are 24 accept indications obtained from use of the first two measure func-
tions, and only 13 with the third. In the case of sampling by method II, the first two meas-
ure functions give 83 and 59 accept indications respectively; the third, only 23. Of the
first two measure functions, the second gives values of the probability of acceptance which
are lower, for sampling by method II.

It should be noted that the conclusion previously obtained regarding the better ability
of Method I to make tests is not substantiated in Table C10. The inability to verify a
conclusion merely points up the inability to specify a general or absolute method of test-
ing for the effect of repeated sequences.
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Table C6

Array (m = 4) Content of Repeated Sequences Expressed
in Hexadecimal Notation

Array Content

Table C7
Hexadecimal Number Equivalents

Notation

Binary

Hexadecimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o

- O 0O T P © 0O 3 0 N & o =

Table C8
Digital Groups Associated with Some
Specific Grouping Functions

Binary

Hexadecimal

Measure Group
(equation for p, )

q¢

Sequence Number Hexadecimal Number of Digits
(from Table C4) Notation per period (m,)
(see Table C7)
1 0 1
2 {
3,4 5.8 2
5,6,7 2,49 3
8,9,10 6,b,d
11-14 1,2,4,8
15-18 3,6,9,c 4
19-22 7,b,d,e
23-27 0,1,2,4,8
28-32 1,3,6,8,c
33-37 2,4,5,9,2
3842 3,7.0,ce 5
43-47 5,6,a,b,d
48-52 1,b,d,e{
53-58 0,1,2,4,8
$9-61,65-67 0,1,3,8,8,c
62-64,88-70 1,2,4,5,8,a
71-76 1,3,7,8,c,e
77-79,83-88 2,5,6,9,b,c [
80-82,86-88 2,3,6,9,a,d
89-94 3,7,8,c,e,1
95-100 5,7,a,b,d,e
101-108 1,b,d,e,1
107-113 0,1,3,4,8
114-120 0,1,3,6,8,c
121-127 0,1,2,4,5,8,a
128-134 1,2,4,8,9
135-141 0,1,3,7,8,c,e
142-148 1,3,5,68,8,b,c 7
149-155 1,3,4,6,a,d
156-163 2,3,4,6,9,¢c
164-170 2,4,5,9,a
1711-177 1,3,7,8,c,e,
178-184 2,5,7,9,b,c,e

0001
0010
0100
1000

‘N’

0011
0101
0110
1001
1010
1100

o2

0111
1011
1101
1110

il (PR

1111

A ATN|OP OO |~ IO
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