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EXACT SOLUTIONS OF SINGLE VELOCITY KIN],TIC Ff,,U.,TON AND

THEIR APPLICATION IN CALCULI TING DIFFUSION PROBLEMS

(IMPROVED DIFFUSION METHOD)

by Yu. 4. Romanov

Kinetic _juation. Solution of M,,ilnm's Problem and

Determination of Albedo of Semi-infinite ?Iediun'

The kinetic equation for the single-velocity nlane problem

for an isotropic scattering indicatrix is, as is well known,

+(1

in which f(z, ) is the distribution function ol the number of

p-!rticles;

p is the cosine of the angle between the direction

of' flight of a P~rticle -nd the 7 axis;

p is the parameter describing the oroperties of a

medium Inl is e-iu~tl ro the ratio of the scatterinv cross section

:and the total cross-section (p.<l).

The total Poth length of the o"rticle is tken as unity.

In -n s redium E,.(l) has the exact sol),tion

FTI-TT- 6l- 124/1+2 g,, n'(,pdaC
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in -,hichlo s the particle density;

C and C are arbitrary constants;
1 -2

k is the coefficient which is found from the solution

of the transcendental e'iution

i - (3)

In a breeding medium, at p > 1, the roots of Eq.(3)are purely

ir.agin-ry, li-hile the solutions of Eq.(2)are periodic.

The solutions of Eq.( 2)satisfy the diffusion equation

06.AN +(P -0.-0. (

provided the diffusion factor in it is assumed equal to

(5)

(both the velocity of the particle 'and its path length are equal

to unity). Solution (2) lescribes the behtvi,_ur of the p'-rticle

dentity some ay fror the interface '!nd .from the sources v-ith

f ir - ccur,c'. Fro, now on tho rtrticle dens, ty expressed by

F1.t") il1. 'e n',non - F "he asy-rrtotic '.ensity, while the

FTD-TT-61- 124/1+2 - 2-



I]

diffusioncoefficient D is knovin as thsyymptotic diffusion

coefficient. Table I gves the coefficients k and D for
0\

different Par.atmeters p over the range 0.25 p < 2.0

The solution of Ea. ()in a semi-infinite rmedium (Iilno's

problem) can be found by the Wiener and Hopf method /l/ ,nd is

given in /2-A/ for i particular Of a non-absorptive medium

(p= 1 . Ref. /5/ gives a solution of the 111iln problem at p<l

by the variation method. The particle density function n\in

14ilno's problem can be represented as

4V

- C,,ft+c,-V + (e-9= "(z)+f(z). (6)

The :4.syiptotic part of the solution It \(from now on called the

Asyrintotic density), as can be seen Crom the numerical data in

/5/, differs from the true density *,(0)" on the bounlary (z=O)

by icproxirately 20", and at the distance of the semipath from

the bounl'Lry (7=n.5 by loss than _. The -:syr'ptotlc density

L, i** (See next page)n( ] in VilnV's trobl!: is e .ual, to

yL =--1)2 shk(z + z.),

For p 1 k can be found with good accuracy from the following (7)
formula 3 1 + 1

FTD-TT-61-124/1+2 -k P (P - 1) - 3



Table 1

Values of coefficients k, Dk :I' f , 11' Lu..L
0,26 09M2 0.75102 0j7 0.68 0 .847 0,446 0,7070
e:27 0, MO"7 0,74136 0,1331 0.69 0.8304' 0.44148 0.7176.
0A3 0 0,73179 01492 0,70 0,82862 0.43701 0.7281
0.2 0,72231 01651 0,71 0.81884 043260 0.7384
0.30 099794 0,71294 0.1810 0.72 0.886 0,4i828 0,7486

0.73 10790 0.42402 0,7.87
0,30 0,99741 0.704 0,1969 0.74 078700 041 0.787
0.31 0.%78 069447 0,2127 0,75 0.77551 0,41 0.7786
0,32 0,96 0 )68540 0.228 0.76 0,76354 0.41157 0,7885
0 .0,9921 0.67647 0.2442 0,77 0,75108 0.40760 0,7982
0.34 0,99424 0,66767 0.2599 0,78 0,73808 0.40376 0,8079
0.36 0,9916 0.65898 0.27'5 0;79 0,72454 0.3%98 0,b!74
0.3 0,99195 0,6t043 0,2910
0.37 0,96 0.64202 0364 0.80 0 ,71041 0 3'628 0.8268
0,38 0,9890 0,61375 0.:'217 0,81 0.69Z66 0,59262 0.8362
0,39 0.96743 0.62563 0,3369 0.82 0,684 0,.389 0.845-7

0,83 0.66411 0,Ms942 0,8547
0,40 0.48%2 .0.61763 0.3520 0,84 0.i4724 0,38189 0,8638
0.41 0,98 0.6M79 0.3669 0,85 0.62950 0,37842 0.8728
0.42 0,98150 0.60 0.3816 0,86 0.61087 0,37501 0.8818
0,43 0.97917 0,59451 0,3962 0,h7 0.59227 0.37166 0.<8907
* 0,44 0.97667 0..%707 0.4117 0,88 0.57059 0.36 19 0.899.
0,45 0,97397 0.5799 0,4251 0.89 0.54&t 0.36520 0,9083

.0,40 0.97109 0,57263 0.4394
* 0,47 .0.96e90 0,%%2 0,45:5 0.90 0.52543 0,36206 0.9170

0,48 0,96473 0,5572 0.4673 0,91 0.50061 0.35897 0.9256
0,92 0.47397 0,35S93 0.9341

0,49 0,96122 0,55198 0.4F08 0:93 0.44524 0,35293 0.9426
0,50 0.95750 0,54,37 0,4940 0.94 0.41394 0,31998 0,9510
0.51 - 0.95357 0.'3S 0,5071 0.95 0,37948 0,34708 0,959
0,32 0.94941. 0.5252 0.5.01 0.96 0.34081 0,34423 0,9676
0,53 0.94502 042628 0.1329 0.97 0.29625 0.34143 0.9758
0,54 0,94040 0,52016 0.5455 0.98 0.24305 0.33P68 0.9839
0.55 0.93553 0.51416 0,5579 0,99 0,17221 0.33598 0,9920
0.56 0.93041 0,50628 0,5702
0.57 0 92W04 0.5201 05824 1.00 0,00 0,33.V3 2,000
0,58 0.9940 0,49686 0,5945 1.01 0.17.'83 0,33074 1.1080
0,59 0,91350 0,49132 0,6064 1,02 0.24(86 0,32819 1,0160

1.03 0.30M 0.32566 1.0238
0.60 0.90733 0488 0.6180 1.04 0.35188 0.32315 1,03160.61 0.9007 0055 0.6296 1.05 0.39497 0.32067 1,0393
0,2 0.6411 047.%34 0,6411 1.05 0.43431 0.31822 1,04700.03 0.87 047019 0,5 1.07 0,47092 0,31580 H6
0,64 0.I6 3 0,46516 0.6636 1.08 0.105M 0.31341 1,06220,66 072 0,46023 06746 1.09 0.5W 0,31105 1,060
0.66 0.6640 0,45W3 0.685
0.67 0,657 0$45W3 0,6963 1.10 0.56 0,30672 1,77
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~~p kj~ j j h Do

im 0,5"2 0.341 .0848 1,56 1.56216 0.22948 1.3813
..1.12 0b2822 0,30113 122 1,57 IM046 0,22820 1,3872

1,13 0,65626 0 a0189 1,0996 1.58 1,59869 0.22693 1.931
1.14 0.64351 0. 29 1,1069 1,59 1,61687 0.22568 1,389
S1. 15 0.71003 0,9750 1.1141
1,16 0,73597 0,2955 1,1213 1,60 1,63501 0,22444 1.4047
1,17 0,76135 0.21)323 1,1285 1.,6 1,65309 0,22122 1.4105
.18 0.78618 0,29114 1.1356 1,62 lb7112 0,22201 1,4163

'jJ.19 0,81058 0,2890 1,1427 1,63 1,68910 0.22081 1.4221
1,64 1,70704 0.21963 1,4279

.20 0.83454 0.28705 1,1498 1,65 1,72493 0,21846 1,4336
1 0.810 0.2 M") 1.1568 1,66 1,7479 0.21730 1,4393

:222 0,88133 0,2Q09 1.1638 1,67 1,76059 0,21615 1.4450
.23 O.923 0,28116 1,1708. 1,6S 1,77835 0.21502 1,4506
1,24 0.96? 0.2925 1,1777 1,69 1,796 0,21389 1,4562
1,2S 0,04113 0,27738 1,18461,1914 1,70 8378 0,2278 1,4618
.27 099299 0,27375 1, 1982 1,71 1,83143 0,21168 1,4674.Af2.6 .045 02797 1,2049 1,72 2,8490 0,212059 2.4730

4,.29 .1.03M 0.27021 1.2116 1,73 1,86663 0.20951 1.4785
S,74 1,88419 0,20V44 1,440+13 ,50 06 1,12183 1,75 1,917 0.20738 1,4895

1 2,0760" 0,2672 1,21J0 1,76 1,91920 0,20633 1,4950
1 .084 0.26501 1,2316 1,77 1,93661 0.20530 ,5005"1.3 2.21 ,62 1.2382 1,78 1,54 0,2427 1.505

• *l.34 1.2M 0.26165 1,2448 1,79 1,97146 0,20326 1,5113
4 3S ,6024 0,26000 1,2513":.3 L,84 ,286 22578 1,80 1,988 0,20225 1,5167

137 1,2006 0.25675 1,2612 1.81 2,00627 0.20126 1.5221
,38 1,2206 0.2516 1,2706 1.82 2.02348 0,20027 1.5275''.39 1404 0238 1.2770 1,8.3 2,007 0,29929 1,5329

1,84 2,0502 0,1M3 1,5382
A . M.,202 0.25202 1,28,U 1,85 2,07515 0.19737 1,5435

'o, .. 4 12770204) 1,2897 2.86 2,92 0.196412 !,5188

,2 L002 0.24197 1,2960 1.87 2,10964 0.19548 I,&
S 1 1.31817 0,2747 1.3013 1,88 2,12681 0.1945.5 1.5594

1+.44 13.720.49 1,3085 1,891 2,239 0.193621 1.8646

JAS ' I. 0,24452 1,3147
',46 1,375 0.24303 2,3209 1,90 2,16106 0,19271 .,569S

.+.,41 ,420.46 1.3272 1,91 2 ,27 0,19181 1.5750

48 1,41T 0'24023 1,3312 1,92 2,295 0, 19092 1,5802
.4,4 0:2=3 1.3393 1.93 2.21228 0.19012 1.554+1,94 2,2293 0.18924 1.,06

,0 14110 0.,3454 1.95 2,24633 0,18827 1.-.957.
1i1 1467 0523 0 1,3514 %1,96 2,2633 0,18740 1,606 M•16 ,63 0,2347 1.357 2,97 2,81 0,186.5 1.6060

, 3,0603 0.23339 1.3634 296 2,29725 0,18570 1,6120
1,54 2,5M 0.23210 1,3694 1.99 2,1422 0.1848S 1,6261
,56 C53 0,277 1,3754 2.00 2,33122 0,18402 1.6212
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in which. z is the extrapolated length, for which an eTpression

is given below. The .rticle flux on -he boundary in this c:tse

is

j pt() IL)o)

The angular distribution function on the boundary s3tisfies

the equation

.1

Y?(Y)dy=Y+ L 2j,(i) (I - ki ) '(9

ring. (')ccn 2) .::';kc it poszible to obtain t.,j.roxir.te expressions

for the function fp(p) . in the e'ero .m?;ro i...ion the angular

, !sribution is approximtted by l !iner r-itional function

,I) - h'+'

and the constanw a .nd b are found from the normalization" condi-

tion and the exact value f the flux on the boundary

% (p d -1; p p)d.I Ir

We fin-] thalt

I- II

(10)

** (see previous page)
At p I k is imaginary and the solution becomes periodic; the author am
made a detailed derivation of the subsequent equations in 1951.

-6-



In a particu..ir case, w ,hen pQ=l, Eq.(lO)becoraesthe angular

distribution formnula put forwr~ard by Ferrni

2 ?~

The following, approximat tion can be obtained by iteration froin

2t(F (1-Ot L*(L)d

The function oy) ha s w ex tct atI(.;a te

values /4 the accur-icy in deternining qp(p). by the above methlod is

Tile value deP) is found from the formiula

04 + 0

'he function z,~p) can he represented ,,ith a~ -;,ood de.,-ree of

,ccur;;cy by 'he, formula

The 7,roleiw' of refjxction of- particles froni an infinil-.c

Fn-ce is : olv-d9 by t-he 1iener-Hcpf mi tho-1. we f ind

4-he il>&Po - .n-:ui~r -li7'ri"-uticin of the n rticlos esccolinag

r. hr '-"iri* p)fo the -ivpn n'~u' r :iF-tri-,utic1n of

-7-



incident p*.rticles f+ () . The integral relationship .inking

S
* .e (p) and t-.(p) (O<p< 1) takes the form

in which the function y(p) is the angular.distribution in .riln's

problem :and satisfies Eq. L9, Eiuation ,has been derived by

Arbnartsumyan /6,7/ and Chandresekhar /8/ usin other rethods.

Using the inte,r.al relationship (13) we can calculate the .Llbedo

for different c ises of incident angulir distribution: (a) for

-a flux fror :a un*'>orm o! ne isotronic source situa+ed on the

II-v

and (b) for isotropic distribution of the incident flux + (p)-*)

A:-= 1 4(1- + V-- I-ph + p ()'
k (15)

.nl. (c) for .nulir distribution of the flux impinginy normally

i- i-(- -zr i( - )cp (

p (16)

-8-



S61btitno,,of Kinetic Fauation for Two Se1iinfinite

MIedia

Let us use Ea..(l3)to derive a system of inte.,ral equations

for the angular distribution on the plane interface between two

e'eelia. Let the particle flux be directed from medium 1 to medium 2.

The :ngu!lr distribution of these particles will be designmtted as

f+ () , -nd the angular distribution of pa.rticles le'-iving mediu.9 2

2nd impinging on medium 1 will be designated as _ (p) . Since on

account. of the con,-itions of the croblem the p' rticle density in

wt=,r3um 2 tends, to zero/ 7-0, the connpction, between the fun.ctions

* (p) nd f- (iWis determined by Eq. C3)

t- OL 2-- ) (I ?2) a(p.) d4..

in wtich the subscript 2 means that the correspcn in, vaiues and

functions refer to :-idium 2. The other e-luation is simrilar in form,

1-ut it rust be t- .ken into account that the ,-rticlc lensity in-

cre tses exoonentially in eIiur 1 it z- -o, nd thtt in order to

use Pq.(L?.,we have to :eoir te fror, * (ga)-'e >rt of the -Angular

As ii-istributionC,(p)respon."ible for the exonnt!il incrr-se in the

r;-rtIcIP eniv ":t .'--* Thus,

-9-



xi ) £

(17)

in which C is the normalizing constant deteri ining the flux

coming from medium 1.

The solution of the system of two equations (13) and (17)

takes the form

+ (p) = Bp. (

(p) = ( -0 ,A'1(1) (18)._ I, 0 k1*0, ' ,

which c:n be seen by direct substitution. The normalizin) constant

B is determined, for example, from the condition tha t the ,9ensity

on the medi:. bounh' ry is equal to unity

(p) + +- (p)ld,- .

Tn the 7iven case B .1,! while the flux on the boundary is ex-

pressed by

-- $i+ (p) - - (p)lp = 1t ,,PI)(,-0,,

The ;nrulir distribution on the houn,3tiry ..tnd the flux re

clcu!-ted by different rethods in /9,10/.

11e s.-,oul i 'oint out thatt in nurher of c3.ses eoi-ttions of

- 10-



type (1,/) and (17) can be solved if the solution is sought in

S the form
++ (F) =R1 (P) + R,()9 (P.) .

ya(i')

*-(')-R,(P) + R4 (P) , ' -

(20)

in which R are linear rational functions.

"he coefficients in the linear rational functions :are found

from 'ilgebraic relationships derived after substitution of ex-

pressions (20) into the initial equations.

The ptrticle density function*o(z)in the two media problem,

as in_,Yilno's probler, cn be represented as

()= C,_ ±---Ci g'" +A(z)-i()+A(z) (z <0);
•~~~~~~~ !(-:,_-.+,.),,z-A (Z) (z>o0).

in Ahichn(z) is the asymptotic density and f(7) only differs

from 7ero in direct proximity to the boundary. The asymptotic

coefficients C C and C are found as deductions with
71+

r'spect to the ooles s = + k of the Laplacian mode *.o(&) of

the function *e(z) , rv:hich in turn is expressed by the ngul;ir

distribution on the boundary (. usin , the fo) Lo,%inc, forn:ulhe

I+P J I S

,.(s) = a ,u -y~'r- -- Arths

F+ .P ((P)
* 9

I+lam ° I-s
I- hArth (

S 11-



The results of integrating can easily be shown by means of the function

t(kS)= I--! Ah) and

(k, s) (22)

andS (kI "")I'dp
and +P

t (h. s)

ip R. ') doi p If (k. ;,) IA . s /-89

/ JI th s
t o r "

€,_1 l + !) •.(k,. kg)

The coefficients are equal to g, - (4ik.)
' " C ,+~ ' '(h - k ) .(k . kl) • (k . kj,)

C2_ v (k. s),- (k. Q,% (h, i,)-- (,. ,) ( ),

c$+ =0. '

The solution of the :-robler, corresponding to the flux directed

froir medium 2 to medium I is obviously derived by replacing the

subscriot 2 by 1, and vice-versa, in the first problem. The general

solution repvesents - liner corhination of the two solutions,

-n4 in the general solution the asymptotic density satizfies the

following houn,'9Try conditions : 1. u;-Jli-v of the locgarithmic

at
-erivitivps of the nsymrtotic density tx the extraoolated points

n,1(5). n i' (,)

• 1uJo pble 1 91yed by D. Zaretakiy an well (1952) after he had read the
W~r- 12-



.. Discontinuity of the asymptotic density at the extrapolated
A

points

i~h) ~Pa~(25)

The functions

(,) h'(Ih')(26)

are given in Tible 1.

The position of the extrapolated points 7 and 7 in Eos.(24,)

-nd(25) are round by the following formulae

z, y(k,, Q,)- f(k,, k,),

in which z is the distance from the extrapolated point to the

interface; 4o if z is positive, the extrapolated point is in

medium ', (its purameters have a subscript 2), whereas if it is

neg tive then it is found in medium 1. The extrapolated length

z (Eq. 11) is also linked to the function f, to wit:G,,m(kk).
-0

The function f(k,s) from Ei. 5 is deternined from Ine of the

equivlent formulae

- 13-



.€.,,/ ,,')- . (,)-P() i-,pt,

,h,((S, V)= s r "P(I) ( - - dp. (28)

An approzimation of Eq. 10 can be used as ) p) is

the reciprocal function of function k(p) determined from the

transcendental En. ().

Table 2 shows the values of z. To determine their sign

we can conveniently use thez rule that both extrapolated points

are always in the ore active medium (in the medium for which

p is greater), and the extrapolated point of the less active

matter is further from the boundary. All the preceding derivations

are applicable to a breeding medium (p p 1) and the corresponding

formulae hold, since k is purely imaginary in this case.

To complete the picture let us write dowrn the relationships

linking the true particle density an,- the particle density on the

boundary between two media with the asymptotic density and its

dterivative: j) h-k'(g,, 0) ,,-A 1,,. V = ,,,-p 1,, fP,,

AM Y,,(, (Zk -k pt (o
(29)

solution of Kinetic Evuation W'ith External Particle ource

Vqu'tions of type QlP,)and (17)for determining the angulir Iis-

tribulion on the boundary between two semi-infinite media can be

- 14-
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used to solve the problem of the particle distribution around

an isotropic source located on the boundary of these media. In

this case the equations take the form

i ~ ~ ~ ~ f k-,-- ,, 0 10- d+p o',

"(1 -np,.. ,+-' ' ' .,+ '. (30)

The source on the boundary is normalized in such a way that

the total flux from a unit of surface is equal to unity. Equations

(30 are solved by means of Eq. 20, and the functions f+(#) and

$-(p) take the following form

P, 0 -h) ) (A +-

-(pV-p I (I- y), (IL) 2 (p, ps) p

pgthF~.4 + (31
2(p~pg~Q-hg~y(~~ 2(p2-Pa)PA(1

Just a..s before, the oarticle density is reor esenter) as the sum

of the exponential asymptotic ensity and the addition

to (S) = ¢,+ eNA + f, () (Z < 0);
to,(,)= Co_-, + A,(Z) ( >o0).

Sueu On iccount of the condition of the problem there is no

'lux from inifinity, the p rticle density qt z o and z > -

.ends exnonen'iqlly to zero, i.e. C C 0 Just as before,

ihe isvrmntotic coefficients -Are found fron Fns. 1 ,nd are equal to

- 17-



C+ - .(h- h,)k03. k1) T- 0. h,) -

-i ) ±a (ki. h.) %-_h, hi)

,A+ )I ,,-h,)'(hle-k,; ,

';-s_ ,(i (ki. (,i. ks)
_ .. '=,- ,S 't (,-;.-- .42)

in which z and z are the distances frdrm the extrapolated points

to the interfaces determined by 27.

In the special case of homogenous medium

S , C ,_ =C + = ' ". 1". "
.2k+)

*O~z) h(t - A9 e-* 1 ,+fPz).

and

This partial solution is contained in Marshak's review /11/.

The function f(z) is positive everywhere, as a logarithmic

-noi-ily at z = 0 and decreases rapidly as z incre, ses. The integral

1-

of function f(z) can he found by using the law of consetv.tion~of

the total number of particles (1-p) -(Z)d I. from which

j'f(x) dz -30-'

Folution of Kinetic E-uation for a Sohere

Vhen solving spherical problems in which the pirticle path

1enrth is constant, i'" is vrry useful indeed to use thr th-orem

- 18-



of the reduction of a spherical problem to a rlane one . Accord-

ing to this theorem, which can easily be derived if we write

down the kinetic equations in the form of a spherical

problem with a set distribution of the function p(r) is equivalent

to a plane problem in which p(x) = p(-x) = p(r). To obtain the

particle density in a spherical case, we select an odd solution

of the plane problem *@(x) , and the particle density in the

spherical nroblem *o(r) is expressed in terms of the particle

density in the plane problem by the formula

(35)

Here, of course, the angular distributions do not change into

one another.

This theorew, i'iplies a number of practical corollaries:

1. In an infinite spherical problem the asymptotic solution

takes the form

-• I

., 0 .Ce •' e--,

(6)

"phe asyfnptotic lensity in the snhericil nroblem, just as in the

ol-tne !-roliem, is the solution of the diffusion eu,,tion

- 19-



with a corrected asymototic diffusion coefficient. s
2. When deriving boundary conditions in an equi-path spherical

problem, nr has to be substituted into the boundary oonditions of

the plane problem instead of function n. The spherical problem

with a constant total path length, in which

P(r)=P, r<'R

p (r)- p. r>R 3 7)

reduces to a plane three-layer problem

p(x)=h, x<-R m x>R;
p (x)-p,. -R<x< R. (38)

Here the boundary conditions imposed on the asymptotic density

on the bound-ries + R are the same as in the problem for two

semi-infinite media (Fqs. 2 aMr 5)). Ihen satisfying the condi-

tions l .... of this approximation the true particle

density on the bounda-ry is relted to the asymptotic density

by thi follwing e.luation, eisily obtained from(Q9),

toR) O- a,, (R + s,) (R + Sz)3lo( (p& a- p (9

nerivition of the flux on the boundary in more complex, since

1ho theore- c; re uction of thp sphpric-il problem to a pl-ne one

- 20 -



when the oath length is constant is not applicable to the flux.

The particle density function may be represented as the sum of

the asymptotic density n(z) and the M f(z). In the plane

problem the particle flux on the bounilary (z = 0) is expressed

Irl
in terms of the integral of function f(z) W the following way

s/(o) -o.,-- L- .'-p') j (z) dz. (/+o)

On tihe other hand, Eq.(29)gives us

J () = -P U X1 (S )
Ti (,)

The rel:tionship for the flux, similar to Eq.(4O)-takes the

form

(R = - g' -. --T () Y., (r) r .dr. (4 )

If the conditions of the approximation are

satisfied, by virtue of the theorem of reduction we obtaint the

It (r)r - f1 (z)rel-tionship A . If the total oath length of the ,:articles is

const,nt, by expressing f (r) in terms of f (z) in Fi. 40/, nd

!.ubstituting the integrals of f (z)dz is found from FqI. 40

1 h(z) zdz
.nc' ":, vhile A is cdIc.l-ted by differenti;tion --t point s= 0

- 21 -



of the laplkcian modes of the particle density in the plane

problem we find an expression for the flux in the spherical

problem

+I d -R (f(k, ) -f(k,,. o). ( U

The functions f(k,s) aire determined by Eqs. 28; in(c41these

functions are taken at s = 0. The subscripts i and e nean that

the corresponding parameter refers to the internal or external

medium. Ea. (41)obviously still holds when subs.cript 1 is replaced

by subscript 2 by virtue of the boundary conditions.

Use of Exact Solutions to Calculate Diffusion Problems

(Improved Diffusion Method)

The approximate method of calculating multi-lthyer plane

in- spherical problems for media with a constant total p'::rticle

path :ength c-in be reduced to thc folioving: an asymptotic p' rticle

density function, satisfying the diffusion equation with an asymptotic

diffusion coefficient, is introduced in each layer, and boundary

conlitions obtained fromlexact solution of the two media problem

•ire imposed upon it at the toundaries at the extrapolated Doints.

The boundary conditions in the plane problem/ >1s.('and(;5'/

- 22-



be reduced to the equality of logarithmic derivatives and

discontinuity in asymptotic density at the extrapolated points

neair the boundary. As is clear from a survey of American research

on kinetic theory of neutrons /12/, a similar method called the

boundary point method has been worked out and is being used in

kmerican calculations.

'uestions of the accuracy, limits pu--t 1"d-f," an. possibility

of using the method to solve spherical problems in media with a

varying total particle path length, in cylindrical problems and

problems with distriouted sources of karticles can best be illus-

trated by solving specific problems.

Critical Dimensions of a Plate and Sphere

If the origin of the coordinates is selected in the center

of' a plate, the asymptotic particle density in the plate is ex-

pressed by the function

ama)= Bcoshz.

The asymptotic density at a puint) the distance of which from the

boundary is the distance of the extrapolated length is enual to

7ero
* For Purposes of convenience k will mean the imaginary part of the trans-
cendental equation root from-now on2 t_.l



The critical thickness of the plate is

A +so(H 6)
2)

We should point out that the same result is found if we use

condition(24)for the equality of logarithmic derivatives at the

extrapoltted point as the boundary conditions. Since there is

no reflection we can assume p = 0 beyond the plate. Hence, k = 1

an-,. the logarithmic derivative of the asymptotic function in the

ficticious medium beyond the plate is already equal to -1. Accord-

ing to condition(24), the logarithmic derivative of the asymptotic

density in the plate is equal to -1 at the extrapolated point z,

i.e.,

." g k +'--.

(421)

9(p) - 6(0-I1
At p= A /a Eqs. C;)and ;)give us

• fter <,ich it is clear both critical conJ.itionsCi,.2)andc4 (). re

equivzlent. In order to deterrine the degree of accuracy of the

formuli for critical irmens!ons of the plate, Tible ? compares
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calculations of the critical thickness by the variation method.

formula for the criticas dimensions of an active sphere can

be obtained in similar fashion

..R 0 . 7 1

hR- p.,=()

/provided z is represented by Eq. "12/.
0

Table-1

Values of Critical Thicknesses of the Plane Layer Without Reflector

ZLU C0 " Variatio From eq. ar at on
m ethod •14 method

0 01 0142 0 1 66 ___ 0 482. 0,4'o., o., I 0,5 II o o o
0.2. 1 42 .0.251 o8 0 II0,5,J ,388 0f. 1,0O,39

Coinp-rison 1'ith numf rlcal calculations shows that 1hen

determining the critical radius, the inaccuracy of Eq.(4 3)does

not exceed l' anywhcre over the range of p. The high degree of

in-ccur--cv in the given case is due to the -Pct th'.t the critical

r -ius -1s c-.Icul',ter by],jIat p-)eC chan;?,'s successfully to /1i-L

liriting forrul- ,ubted in /13/.

Critic'<! Dirensions of Uctive Sphere urroundd~by Siherical

L .yer of Inert Rtflector

T t uF consiaer -n 'ctive rnh-re -urrourdl 1,y o spherici]

- 25 -



layer of inert reflector. Let u." assume that the particle path

length in the reflector is eaual to the total length of the par-

,icles in the sphere.

The asymptotic density in the active sphere (p : 1) is

equal to

At r = 0 the function n is finite. In the reflector (p = 1)

C

The following boundary conditions are imposed upon thp functions

n and n

i) the function n disappears on the external extrapolated

boundary R + 0.71

'C
• Re + 0.11

b) on the bound:- ry of the active sphere (r P.) at the ex-

tr '-iol-ted points the logarithmic derivtives of the function nr

re e-,u.! to

- " " I •

-26 -



I!

Since both extrapolated points lie inside the active sphere

(in the sphere p is greater than in the reflector), z and z

are nega, tive.

As a result we obtain a 7ormula for the critical dimensions

t _ narc tg k (ReR+O ? -'8)-;, (4)

To illustrate the accuracy and limits _ of Eq. 44

let us comp';re the critical radii calculated by4i)and calculated

by me equation for p = 1.724 (k = 1.8f56, z = O.OI58, z
1 2

-0.0865), at different values of the relative thickness of the

reflecting shell& - -'RThble 4).
R

Table .

Critical radius of active sphere as function of reflecting shell
thickness (p= 1.724)

Frmequationj from numericalfrmaxto

____________ calculations 1
I,207 -- I3.263
1.0w Ilia$ " -

1,07 31063t .046 1,048 .-

ItO,'W 0.954
0,27 0.94 -

-0921 0,3
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Multiplication Factor for Point Source in Homogenous Sphere
A

The asymptotic density in a sphere can be represented as the

sum of the homogelkus and inhomogeneous s6iutions of Ji Eq. 30.

3 ~C Shhkr

On function n(r) we imposed a boundary condition: R+OAl- 0 from

which ) k .

• rshk(R+-)

The flux through the external surface r R is found from Eq.(41

As , result we obtained the multiplICetion factor - which is equal

to ratio of the total particle flux erxerging through the external
4.

surface and the total i)-Lrticle fluy of the source

VP uR+ (x+o)

(45)

F'ou'tion(5), gives us the m-can oath length of the particles

in -he- -. here

P,1 P-1-- R + 0..1 2
"I- P 1 i.he error in Fq.(A/6 dops not exceed l . onrl -it P = 0

it aivp- mn innorrect. 1wi~tin- v-...iie, in4 .,t low P. v- c:,n ohtain

1 by 'ho 'uccessive collision r,.thcd.
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kp-olication of Method To SoJvin. Sherical Problems

IT-1IN edia~hich Total Particle Path Length is Not Constant

The main difficulty in solving the spherical problem for

media with different total free path lengths is determining the

conditions which h:tve to be imposed on the asymptotic density at

-he interface . It has not been possible to find analytical exact

solutions for this case, but the derivation of boundary conditions

from numerical Folutions reauires tz-iQ- calculationS.]oundary

coniditions obtained by numerical calculations are only found in

scientific literiture for a few individual cases (absolutely

absorptive spheres and cylinders in an inert nedium).

In one of his research projects the author attempted to

compile boundary conditions for the spherical nroblem with a

non-constant o ..rticle path length by introducing a further dis-

continuity in l-he neutron density on the interface proportional

to -the flux inr different in oath length. But the boundary condi-

Lions when corrected in this Tay v a small sphere of applicability

,and do not solve the set task.

'The fol2ovin arnroximr.te system may be put forward for

cjiculatin the genr,-i case of a v rying path Jength. When there

- 29-



are no sources, the following diffusion equation is satisfied

throughout

div Igrad Dn +(P- 1)'*n ='O,

in which 1 is th otal nath length (or transport-lengthg

non-isotropic scattering, in the laboratory coordinate system).

The equation contains boundary condition for n on the disconti-

nuity bound.aries I ind p:

.) continuity of the flux on the boundary

(4
"'I, grad'D.,n 1 -'4grad Do.2n ; )

b) discontinuity in particle density:

D.,t- l. (4 S)

Con itio n8 (A8 ) at 1 =1 differ from the excict ones for this

c, " tions (, /)and (2. In ECs. (I )and 80)the bound.ary condi-
I- in (! n 4."n

jons 9 pnosed t the true bound-ries, and not at the extr':.pol.ited

points, ;n the 3rnsity discontinuity .,.t the boundary is 01

in.. not . Since z is usu'lly considerably smaller than the 4-A

length , nd the function D is almost cons t-nt ov,:r ,, wide
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ralnge of variation in p, this approximation proves satisfactory

In a, number of cases. Since z is maximum on the external boundary,

f the exact boundary conditions are best kept . Instead of

conditions(s8), the following conditions are often imposed at the

boun ary

These conditions are not a corollary of the differential equation

C/7) but are more exact in a number of cases. It should be pointed

out th'at in a Case in ii,-hich the path length in the outside layer

of the spheric,.l system tends to infinity, conditions(js)and i

do not give a correct limiting process.

Problem with Distributed Source in Sphere

To solve the problem using th hoery of pertubations , lpt us

repl-'ce the true distribution of sou-,-ces i(r) by :an euivalent

f,)- |.(r) the vlue being found from conlition

S.f.$3dV- (qdV -Q))

'ftPr this the problem meow fin AA the critical value of the

.r':!,cl-er "p'-p+.| at a known value of the st-here radius R /fror,

P ( )i s the ei.,enfunction in the critic-il sf.-te. Fron

* In the general case of varable Peierls parameters and distribution of the

- 31 - (see next page)



isotropic sources q , the averaging conditions for the theory of
pe'rturbation take the form

S ., Ic -. )ndV+ 5 qV- ((r-) +-.eJ. jfr

is the density of the particle flux). The condition for averaging the
parameter is written down in the diffusion approximation. The theory of
perturbation for a kinetic equation was developed by Fuchs and, independently,
in the USSR by N.A. Dmitriyev (1948).
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the condition of particle balance we find the outward flux and

the multiplication factor which is equal to

Q - 4p ,4% dV.. 4.dV
J,,V (.@'(R)-p)fdVi.odV. (50)

state
Eo.(50)is exact near the critical Xxtx, but its accuracy is

s'itisfactory in other cases as well, even at p = 0 (absolutely

absorptive medium).

For a source distributed throughout the eigenfunction, Eq.(50)

is exict for any values of R, and the multiplication factor is

Q Q=+ P-

Below we give formulajoe dcter~ining the eigenfunc-tions and

its inte::+r:als for # case of an active sphere. The integral 1+J*dV

in the critical state is expressed, according to the perturbation

theory , in trrrs of the ieriv'.tive of the critical radius 1-ith

res., ct to the Parar-eter p

The ntr-r'-,l 'A is foun3 f'ror' the ,'trilcle nun-er itiance; thus,
1,

f3dV= 3,

-33 -



For an active Sphere in the critical state, Fqs.( 39)an{J) give us

the follovwinz relationships
1R) . R _-R+f(k 0)
lb(Rg-- *- R "

For a source with a constant density, we obtain from Eq.(50)

Q= D+ (p')(-) X

S(PI n, ( R( - )( --- ,' ,

For a central point source, Eq.(50gives us a formula coinciding

near the critical state with (4).

This method If calculation was then applied to the solution

of a number of specific problems.
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Ai n~inite Method of Calculating Critical Masses of

_ Spherical Reactors with Infinite Reflectors

by G. I. Marchuk and V. P. Kochergin

Let us consider a critical reactor in vhich the active

'one of the r.,Aius R, m which is a spherically symmetrical

neutron source, is surrounded by an infinite refl-ctor • there

the
are no neutron sources in/reflector. If the origin oil the co-

ordina.tes is selected in the center of the active zone, the

solution of the single-group diffusion eauation for the neutron

flux in the reflector takes the !'orm /l/

O'(r) =C' - r .

r (1)

The effect of the reflector on re-iucing the critical dimcnsions
d -

of the reactor is describpd by thp effective additiw

in rhich R/i , rhe extr .pol ted ridiu; of thc rcactor vithout a

r flector.

The e'f(ctive Axlitic.n can .lso be (le:'incA "is the length of

-he liner '7:or rltion of the nautron flux in the rcflcctor on the
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boundary with the reactorg's active zone

from the equility of Eis.(2) and43' we can determine

Rg~

If and R/\are knon,,then by solving Fr,.(!4,v.it. respect

to R v e obtain

.R= I,.- 2 + VT4+ (. .
21.

(5)

To fn..ke LhE r!;Iius positive, plus sign is put before the root.

convenient -!uantity describing the energy spectrum of the

reflectoriess reactor is the so-called cadmi" chamber ratio

Cdt RS!,:,ry(m) dull'jdZl,?()da. (6)

The v'ilue of the !unction of the cadrimi:,tio is Ieter;ined

., ns "" w. oC the critical narameters R and R d .erived by

solving the mul7igroun di'fusicn e'iuitions .t the ,ivcn 'ensities

c-f .he nicle-r ,uel n, 'o lerator, as i-ell as 'It the riven urznium

:'5
enrich-cnl vith respect fo isotope U (or e .'ple, 1OO<.
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present collection) anr, by Fq. wicqe of variation

in the ratiosg=,JPOus are given in Tables 1 and 2. The asterisk

renotes the ra-dius found by (5).

DiscreTpnc*es in the critical rass lie within the limits of

.ccur-Lcy with which the multigroup calculation was made, and

do not in effect exceed 10%.

Since is deterr:ined by means of the multigroup calcultion,

it thereby ta-kes into account the retardation effect of the neutrons

in the feflector: hence can be both positive and negative,

iccordin to the effectiveness of' the reflector.

It follows from Eq. 5 thaft ihen varies between - .and + oo,

R vries I-etveen 0 and -An ,

(7)

'The v'aiuc N rem:'ins positive for the system U32- H,( 0 =

~~LA L 2.

6 g/cm ) t the -* of variation in the tadmiur r-,tio under

consi er.tion, -n' the effective addition ER iF therefore s2rr.ller

th-n P. hroughout; it -3 cErtain value o he c Adriur r'-tio.
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in the systems U - C and U - Be, / changes its sign and becomes

-egative, tat by virtue of which the effedtive addition in this

region becomes recater than R /z. This also follows from the

Taibles.

We should point out that in, calculation of the critical
2

dimensions of the systems UO -Pu- 0 6 g/cm ) from

F(.45 it is nossibie to use the function X shown in Fig. 1, m

confirmed by T'.ble 1, in which A. , and the uranium is n..tural.

This fict shov.s tha.t the xogwk graph of the function x,) does not

chan!;e when uranium is replaced by plutenium provided the compound

in which they are present exhibits the same density. It prob.ibly

re-
does not ch.ange either when ursnlum or plutonium are/placed -by

-nother fissil element. Thus, -e .re in :. osition to clcul te

1he critic-l m,,sses from E.(5 for any combinations of fissile

elerents . in the P.iv-n comno ,hd, if the grnph of 'unction X is

• v~il ble.

o 'er: in,- the critica l.'sses of nric. re;LcLorsb 1Lflk

n, ni:e reflcc,.ors t o'her fuel xn1 ,,odei ;or -ensiti's, it is

essenti il to c i.culte Ihe critic'.,l oara-ters "ry meLnF of multi-

7re, ue-utions ,1i_'us *we% any enrichment of the 'uel
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Cto determine the function \A_

For reflectorless reactors there exists a1*n

/3/, and the critical dimensTons can easily be converted when

:he fuel and moderator densities vary. Let us now consider a system

consisting of two components.

If v;e fix a-P/Pm, the number of fuel nuclel Pei, 1 cm is

determined in the follov,:ing way

I .'_' +6-_

in irich N*Y ( is the Avogadro number; f is the density,

g/cr ; \ is the torlic %-eight).

If -( nd - vary, Pf and Pm will vary in identi6al

proportion, hence, to ch n-,e from one system to the other the

m.croscoic w sections have to be m-ltiplied by . Here,

ro '-as not to ',isrunt the multigroup liffusion eiu;tions, the linear

-,iensions h ve to be divided by irhe siiil:-rity f-ctor

hu s ,
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The curves showing the critical mode as a function of the ctitical

volume when ^nd change in the sume ratio are transposed

parallelly without changing the shape, since the similarity factor

in this case is the same for all t .

If l',,indcld do not chan-e in the same ratio, and the simil'trity

f.ctor therefore depends on CK , the ' a curvestare still W-

4 , i the transfer.
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Footnote on page of English text:

In physical meaning K is the reciprocal of an effective diffusion length.

Some authors use in the effective boundary coditions method /2/. In this

work is considered from a different viewpoint.
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USF, OF TVBN 'XPPBIOXIUATIONS IN SPTHERICL AKOT .LTHOD

by G. Ya. Rurnyant,,ev

WT hen solving the kinetic Boltzmnann equation by the spherical

hirmonic niethod we ma,-ke use of the so-called P/\approximations.,

in which N is the order of approximation. In particular, the

w,,ell-knovn diffusion theory is identical to the JP pproximation.

If it Is necessary to m,,ake the diffusionm theory m,,ore accur-,,te,

V C caLn resort to --qeoroxima.,tions of hi--her orders, .-.d it is usu-.ly

un,'erstood that1- this !-,e.-ns the P and P *pproxiiitions,, or, in

otier ,..-orrds -- nroxirmt,.1ions -.a exclusively uneven Orders. 7- fa-r

ther.e b-.s beer -no !-ention in -scientific l-iteer ture of iny ear-rps

of" t-he -.r ct.icail :,nnlica-.tion of t.he ~r~oirtosof ven orders.

ihr- popsibility of using,:, P/ 1_onrO-xiMaUton 1i!2 of particular

interest s-ince there is reason to belienve ithat it ouj-,ht to be miore

ccrte thlan the P --imroxiiration (since it is one o:* the, iollov~n7

or-~er) Ln*l _t the r, irme tirie less cuolnersome th,-n t~he ' pTr6xijA-

lin In ,)--nv 2-seq it' couldl he 1tf1i~rl sedl is -corl.C-ctlon

fo the .if.'usion terins--ead of P

'"he re .son z-hy the rven -- pro-H-' tion. -tlp 1c'nred 17 -thtt
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the nunber of genuine solutions in thenm, and conse-uently the

number of' arbitrary coefficients in the 7rnercl solution, is

smaller than the number of spherical comronents retained in the

exprinsion of' a distribution function. On account of this tit is

impossible to s.tsfyonthe interface of two unlike meia those

boun i -ry conditions hich nre usuilly imposed in the case of

uneven anoroximD-ations, to v it, conditions of continuity of all

these spherical harmonics v individually. (It should be pointed

out thrit in nonunidimensiona.l problems this difficulty al]so aris

in the c:.se of uneven :up9ro-Timitions.) Below r-e -live n brief descrip-

tion of this "-etho of formulating the boundary con* itions, en:bling

us to use the -o-oroxiations of any orders, including] P and the

other even ones. For the sake of simplicity we illus L.te the

;rctho1 vith the y- mnle of - ol'-ne unidir(nsion.2] nroblpt. '.s

P ;rls sy,;-bols, 1me ire keeping: to '.. D. Galanin~s hook /1/.

Let us condider the system of equations for the spherical

harnonic method

•~ i -.-" + ;+x 2 +34+1 =0(0 4< cO).

(1)

This system contains an infinite number of equations. The
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P approximation is that in the equation corresponding to n=N,

N+1
the term 43++ is discarded, and the system then becomes

finite. Seeking the solution in a form such that

A fX, (2)

we reduce the differential equations to normal algebraic ones.

From the condition that the determinant of the system is eqqal to

zero (condition of compatibility), we find for X' a characteristic
/

equation the roots of which are tigenvalues of the problem.

It can be shown that the characteristic equations for different

EP\approximations will take the form of polynomials

N=I *'-3&=O,

N-2 (5+,t)'-15=O,

N.-3 9s'-(5 5+3S)a+ los-0,
N =4. (64t + t61)a4 - (735t + 315)c' + 945= o.

Here 9-I -z-.*

- (3)
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This type of equation correspinds to a case of isotropic

scattering, when all the c , except for a = 1, are equal to zero.
n

This, however, is = of no importance in principle.

As we see, the degree of the characteristic polynomials with.

respect to O( is equal to N + 1, if N is odd, and N, if N is even

(this regularity exists as well for N 4). Consequently, the

number of 1 ig4nvalues of oc \ and therefore the number of partial

solutions determined by Eq.(2)at different OcX will always be even,

and equal to N + 1 or N, according to the parity of the approximation.

Thus, the number of arbitrary coefficienbts in the general solution

only coincides with the number of spjerical hammonics for uneven N,

for in the P approximation for a plane unidimensional problem the
-N

number of them is equal to N + 1.

Eqs.(l)still hold even when their coefficients reflectt4g the

properties of the medium are arbitary functions of the coordinates.

We can therefore consider that they have been written down for the

medium as a whole, and that in a heterogeneous medium the material

characteristics 1, X and c take the form of piecewise-constant

functions.

Let us integrate each equation from the arbitrary lower limit
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x a, and get as a result

~i~s + +a fZf fdx +

+ 2n 2+ +33 -

There is always a function under the integral sign, hence

the right hand side of Eq. (4)is always continuous. This implies the

requirement of continuity in the expressions

Jg= fA+jf+1 q' '0< it< 00

2s. 2n+3 (5)

This requirement should be satisfied as well on the interface

between two media.

The combinations J arb coefficients of the serial expansion

with respect to the spherical harmonics of the function I(x, O)cos*.

Indeed,

(6)

Consequently, the system of conditions (5) can be considered as

the continuity condition of the function f(x,0)cosO. . As we see,

contditions (5) are equivalent to the continuity requirement of

the integrals
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Ifcos &P(cos*)dQ (O4n< ). (7)

At _r 0 we have a continuity condition for the diffusioh flow.
-~ N

AVN- I -1
In the P approximation , , which implies the continuity

- Taking this fact into account and using -1 , we arrive at 6

jwcontinuity f N etc. It is not possible to draw a similar conclu-
-N-lt

sion with regard to the functions f , f /and so on. They are

only part of the continuity condition in the form of combinations

(5).

Thus, conditions on the boundary between the two media reduce

to thelcondition oTy-j the folloftng values.

AV- 1; IN-a; IN-, "." 1f(;

IN. -; 'N-,; JI ... 1J().

(8)

The minimum value of the subscript in functions(8)depends on the

parity of N-. The number of joining equations is obviously even in

every case. It is/difficult to calculate that for an uneven N this

number is N + 1 , and for an even N it is N, i.e., it Ip also

coincides with the number of arbitary coefficients in the solution.
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In particular, for the approximation we only find two condi-

tions, expressed in the continuity of the functions

A W KfAW)+ -1 f(X).
5

Typical of even approximations is the fact that the scalar

flow, which coincides with the function f (x) up to an accuracy--

of the f normalizing multiplier, experiences a value at the

interface whigh drops as N increases. When there is no absorption

in either medium, the discontinuity disappears.

in
Por uneven approximations in problems/which the number of

conditions 8)coincides with the number of spherical harmonics, the

O conditions derived are identical to f the continuity condition

for each separate harmonic.

It has been demonstrated in Ref. /2/ that in the general case

conditions of type(8)should be derived from continuity on the

boundary of the integrals

fflr,)cos(2) Y,,(2)d2(-.<.in, o<ftJ, (9)
the

in which V is normal to /(hboundary,
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Y are spherical eunctions of the general type which can

be selected , for instance, in the form

Y,.* =Pam (cos 6) J COSlMI in my

P. are the Legdre joint polynomials.

(See /3/ and other courses in mathematical analysis for spheri-

cal functions in greater detail.)

Conditions(9, the number of which in the general case in equal

to N(N + 1), make the problem a closed one, irrespective of the

nature of the geometry or the parity of the approximation.

The numbrical examples and theoretical arguments show that

in these cases in which the use of approximations of a low order

is generally possible, the P approximation can make the P approxi-

mation considerably more accurate. At the same time, the laborious

nature of the P approximation, compared with the P , increases

only slightly in most cases of practical interest.
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CRITICAL MASSES OF URANI[,1 GRAPH=ITF lhACTORS

BY G. I. Marchuk, G. A. Ilyasova, V. 7e. TFolesov,

7-

V. P. Kochergin, L. I. K4netsova and Ye. I. Pogudalina

Introducti on

No detailed information is available so far in scientific literature on the

critical masses of uranium graphite reactors. In view of this the need arose to

make the relevant calculations for reactors with a wide variety of neutron energy

spectra. Some very interesting calculatLons havo b-mn i-.iade by Safonov, Out, they

relate to reactors with 100c enrichmaent with -T.he- uranium isotope U2 3 -5 /I/.

This paper deals vr*th thR problem of th,; criLical masfcs of uranium graphite

reacto-s with different degrees of enrichment.

Basic Equations

In most cases the diffusion approximation is su'icien& to calcuilte the

critical masses of reactors. it is asauned that the neutrons in the reqctor are

inoc4er:-ied by elastic and non-elastic scatteri .2. 11he effect of neutron thermalization

is taken ino account in the low-neutron -nergy rej.on.

e mull.'roup system of eqniA ons for th- ruactor takes the form
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if'

.1-

I * 
• I

VIC S., , z:+,z V/,

(1)

in which / =I, 2

El V I. and Z

gro~p )
here are the neutron-spectrum averaged (cross-sections of

and
moderation non-elastic scattering, and the total removal and fission cross-sections,

while D is the diif usion coefficient

. E . z z( i-)+ V,

in vwhich is the elastic scatering cross section, and

PO A is the mean cosine o' hc scatl.'rin: ,ingle.

in h l,ii;h-enerr reion, it is advisable to aver6e the
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scattering'capture and fission cross-sections with consideration

for the fission spectrum, and in the intermediate energy region

K

with consideration for the A Fermi spectrum . The constants

D,',Z,. and E/,Tfor the heat group have to be averaged over the

steady-state neutron spectrum in an infinite homogeneous medium

taking into account the thermal motion of the moderator nuclei.

For this purpose we use the model of a single-atom gas moderator

put forward by Koen /2/. The corresponding equation for neutron

density N derived in Wilkins' differential form /2/ is

-= -- x x

9 (2)

in which / (v is the neutron velocity, P is the absolute tem-

perature of the medium, and k is the Boltzmann constant);

;=l/-~ 7"[.(Ms is the moderating power at E = 0.025 ey/.

The function N(x) at x = 0 satisfies the con-itionN(O) 4 N'(0)=Oj

N(0= const. When solving EQ.C2)we find the function N(x), which

is then used to average the physical constants:
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S

N-AF(x) dx

- N(x) dxT Xrp '

in which n is the boundary separating the thermal diffusion

region from the moderation region, and

£,, .t is the absorption and fission cross section for thermal

neutrons /3/.

Considerable attention should be given to the resonance neutron

capture in the intermediate energy region. Twelve resonance levels

f 23 51

have been calculated on s U nucle6 in the capture cross section

238 1
and four levels on the U nucle46. The corresp6nding probabilities

of avoiding the resonance capture for a particular isotope are

calculated by the formula
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Here n is the resonance number, and

Ft.. is the number of nuclee of the absorber per unit of volume.

The effective resonance integral is determined by the formula

in which e"is the total resonance integral at the level with the

number n, and

T is the temperature of the medium;

=- .A is the absorption m cross section at maximum re-

sonance;

ZJ is the potential scattering cross section );

. is & factor taking into account the Doppler broadening

of the resonance lines due to the effect of the thermal motion of
C,

moderator nucle4;

In-ra (ra is the resonance width;

v-
The function ql.h) is turbulated in /4/.Markelov and Tyutere

have put forward a simple interpolation formula for calculating

this function
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if I>,

: . , 1,05, if j> 1,

in which
P= (0,15 + 1);

T= - 0,228t + 0,282.

This formula was the one used in the calculations.

If the group with number 3 contains so-called resonances,

we calculate the total probability of avoiding resonance capture

in the group <y >. Here the density of the moderation of the

neutrons I& in the group 3

SI-~

has to be multiplied by the factor <V>

It should also be noted that there is a definite probability

235
of fission at the resonances of U . If the probability of resonance

capture with fission is desipted 1/(l+ C'), then the probability

of radiation capt*tee is equal to c /(l+ £). The total number of

235
fissions caused by resonance capture of neutrons on U nuweli takes

the form
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II

in which - ___-_,_

'Fj

235
and summation is with respect to all the U resonances reaching

the group with number J.

MultierouD System of Constants

The multigroup of physical constants has been compiled on the

basis of published data.

\ the fission spectrum regi6 a system of constants has been

put forward for U and U i /Sef. ISA In the region of inter-

mediate energies the system of constants was derived on the basis

of experimental date, processed by Malyshev /6/. The constants for

the heat group are taken from Ref./'. The averaged group constants-

for graphite have been checked by calculating the neutron age in

the graphite. The neutron age up to the indium resonance is 318

cm , which tallies well with the experimental value e multigroup

system of physical constants is given in Tables 1-3, and the

235 238
resonance parameters for U and U are given in Tables 4 and 5.
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.. TABLE 2

Matrix of inelastic scattering Um* (Um)

i I

3 0,49 "0.38 -

4 0.35 0,4. .0,36 -
5 .0.14 0.22 0,10 0,14 -
.6 0.06 0.09 0,U3 0,03 0,076
7 0.02 0.03 0.0 0.0 0,01 0.02

TABLE 3

Matrix of inelastic scattering Um(Qum)
* I..I .o , ., I -, I o I, 3

0- - _ _0.7
,. 0 .0,40 -

4 0.80 0.35 0.34 - - -

5 0,20 0.14 0 0.24 -
6 0.0 0.05 0 0 0,1 o.
7 0,02 0,02 0 0 0,066

* TABLE 4

Matrix of inelastic scatterini .-

No. of I 1 ere cbfacc ."J ' .

I 35.3 1730 9. 0,987 04
2 34.6 1510 5.76 0.692 0:69
3 I 33,7 So0 3.72 0,835 0.50
4 II 32.2 700 3.40 0,054 0.50
5 11,25 23.6 900 6,00 0,996 %0.50
* 11,50 21,1 -700 5,05 1,06 0.50
7 11.50 19,40 359 15,4 1.32 0.62
8 12.00 12.40 2340 18.4 0,854 1,71
0 12.00 11,65 1840 10,5 0.!96 3,85

30 12.25 8.82 1970 33.8 1,57 0.67
II 12.75 6,39 1120 14.5 1,02 0.26
I1 13,00 4,84 , 5,0 0,686 6,25.
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Table 5

238
Resonance Parameters for U

, i -

ofre . Ir I-j ' Isonances. I "W "_

1 10,25 66.3 21190 10,03 0.258
2 it 86,8 39"20 44.24 0,475
3 11.50 21,0 33090 61,84 0,J62
4 12,50 668 22030 129,0 0,500

Calculation of Reflectorless Reactors

The multigroup system of equations for reactors without re-

flectors takes the form

(%'D1 + Z/) t/- 9 + %IQ
(0 D,+ Zev)o 0

Q- Z/?/ + V (3).
-I
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0 { oi (3)
Here in groups in which there are resonances, and

in the remaining groups;

*1 is the geometrical parameter and the first Eigenvalue

of the problem

Y't+'t-~o
t-o Ra S,

(1)

(9/, is the extrapolated reactor surface).

It is assumed that in the resonance energy region the modera-

tion density q is expressed in terms of the flux q by the formula

q -I Z.

The problem is solved by the method of successive approximations,

which is nornally called the method of source integration /7/.
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Broke lie joi point wit iJ/ ident Iical ta;,-.,

with isotope U2(35 .

We should point out that transition from an

extrapolated surface to a true surface, the extrapolated length

was averaged over the enervy neutron spectrum in the reactor.

Solaition of the problem gives the critical loads an- critical

volumes of the spherical reactors without reflectors sow a wide

range of the ratio hat different degrees of enrichment

235
of the uranium by isotope U 5

The results of calculation of the critical masses of the

reactors are given in Fig. 1.
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-. Critical volume,14

Fig. 2. Critical masses of uranium-graphite reactors without
reflectors as function of volume.

Solid line - theoretical data , uranium enrichment 90%.YC "1.65 g/cm3

o -experimental data, uranium enrichment 93.2% yC M 1.645 g/cm 3

Fig. 2 compares the results of the calculations and measure-

,aents made in uranium-graphite reactors without reflectors /8/.

The close correspondence of the experimental and theoretical data

is observed in the region of both thermal neutron reactors and

intermediate neutron reactors.
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Fig. 3 shows the cadmium ratio for the fission chamber of

the function of , . The curve shown corresgonds to a 100% uranium

enrichment. The curves for other uranium enrichments coincidefor

practical purposes with the ones in shown Fig* 3.

Figs. 4 and 5 show graphs for minimum critical masses and

their volumes. Fig. 6 compares the results of calculation of

aritical masses with experimental data for pure uranium as a

function of enrichment /9/. Analysis that the diffusion approxima-

tion &eads to substantial errors, even for small systems.

Calculation of Spherical Reactors-With Reflectors

Reactors with graphite reflectors used to be calculated by

the multifgroup method, the principle of which is described in

Ref. /7/. It was assumed that the reflector was of infinite

thickness, but that the calculation was made with a reflector

thickness of 70 cm. The error due to substitution of a finite

for an infinite reflector was comparable with the errors of the

numlerical calculation
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Fig. 7. Economic advantage of graphite reflector for
spherical uranium-graphite reactors Ye - 1,65 g/95 %

Figures on curves show enrichment with isotope U ()

Fig. 7 gives the effective additions of a function of

at different degrees of enrichment derived iuomn numerical solu-

tion of multigroup reactor equations. The maximum value of the

effective addition for reactors with a 100% uranium enrichment

is found in thermal reactors and is equal to the square root of

the migration area 7R = 64 cm, and decreases monotonically to

8 cm for fast reactors. For intermediate neutron reactors we

observe an increa3e in the effective addition.

Given other degrees of uranium enrichment, the curve showing

the effective addition of a function of o( is also complex in form.

When the enrichnent decreases, the maximum effect of addition is

attained in the region of intermediate neutron spectrum%actors.
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It may be assumed that there is a region in which infinitely

large suberitical reactors without reflectors may become critical

if reflectors are used. This means that an infinitely multiplying

medium coinciding in properties with the active zone of the reactor

is subcritical (k t = k < 1). At the same time, if the size of

the active zone surrounding the reflector is restricted, the system

may become supercritical.

It should be pointed out that to calculate fast neutron reac-

tors the diffusion approximation is not sufficiently accurate. Fig.

8 gives the critical masses of spherical uranium-graphite reactors

with infinite graphite reflectors.

e- -.

'"00

V4

off 6 0I

Critical volume a
Fig. 8. The critical Messes of sDhpxial u niuM !raphitereactors withn nite grap e' re ectdri. Broken

line, Join Piats with 'idenitical ,. solid lines show enrichment
with isotope LP'(i).
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CRITICAL MASSES OF URANIUM-BERYLLIUM REACTORS

by

K
G. I. Marchuk, G. A. Ilyasova, V. Ye. olesov, V. P. Kochergin,

L. I. Kuznetsova and Ye.I. Pogudalina.

A number of papers /l/ deal with the calculation of critical

masses of uranium -beryllium reactors, but they only touch on

calculations of reactors without reflectors with 100% uranium

235
enrichment with U . The present paper contains the results of

calculating critical masses of uranium-beryllium reactors both

without reflector and with an infinite beryllium reflector at

235
different degrees of enrichment tith isotope U . Althe cal-

culations have been made in the diffusion-age approximation by

the multigroup method bet forth in the paper by Marchuk and others

entitled "Critical masses of Uranium-graphite Reactors", in which

uranium-graphite systems are investigated in a similar fashion.
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Qroup constantsi I I I i -,.
Letargy cat elk aft

-1,626-0,375 0,44 13,5 0,050 0,35
0,35-1.0 0,65 2,6 0,650 0.08
1,0 -1,6-5 1,00 3,4 1,000 0.02
1,05-2.25 0.90 3,9 0,900 -
2.25 -3,0 1,10 4,8 1,100 -
3,0 -3,75 1,30 5,4 1,300 -
3,75 -4,5 1.3 5,5 1,300 -
4,5 -5,25 1,66 5,60 1,66 -
5,25 -7,0 0,710 5,1 0,710 -

.7,0 -8,5 0,828 5,56 0,828 -
8,5 - 915 1,24 5,56 1,24 -
0.5 -10,5 1,24 6.56 1,24 -
10,5 -11,5 1,24 5,5 1,24 -

1.5 -12,5 1,24 5,56 1,24
12,5 -13,5 1,24 5,56 1,24 -
13,5 -14,5 1,24 5,55 1,24 -
14,5 -- 15,5 1,20 5,46 1,20 -

Note: for the heat group #*0,0; (1 -cos O)k 6,48; a: :3,46.

I00

Criica vol--","I,

-Li
+

i 1 ri s oM 1 tj

hr,4

Critical volume, l

Fig. . Critical masses of spherical uranium-bei7llium reactors ,,ithout reflectors
( -- "b. 1 .6 g/cm3); the dashedi ].in(s -qb join points -,,iith th , same ,
the solij lines correspon.d to dif"L en 4. - ;" . -

-7pa---u errc'-rc,+ts Ull( ":-



'-4-

r-4

Critical volume, 1.
Fig. 2. Critical masses of spherical uranium-beirllium reactors without reflectors

l1 g/cm3 ). .fhe meaning of the lines is as in Fig. 1.

0

Enrichment, %.

Fig. 3. Minimal critical mjasses of' uranium beryllium reactors 1-85 g/crn3)

1) without reflector; 2) with beryl'lum reflector.
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In the high energy region, apart from elastic scattering,

we calculato nonelastic scattering in uranium and the reaction

(n, 2n) on beryllium. The corresponding group constants are given

in Refs. /3/. To obtain the group constants in the intermediate

energy region we used data from Ref. /3/. Here the calculations

235 238,

took into account the resonance absopltion on U and U 29

u and at low energies took into account the thermalization of

nettrons within the framework of the model single-atom gas moderator

/4/. The heat constants for beryllium are taken from /5/.

The multigroup system of constants for beryllium is given in

the Table. The age of the neutrons up to the indium resonance energy, 
"'N

calcula using these group constants, is 81 cm. (beryllium

3
dansity'o = 1.85 g/cm ), and this tallies well with the experiment.

The results of the calculations of uranium-beryllium reactors

without reflectors at ratios a=pmepum (in which is the

nuclear dmatty) and different degrees of enrichment with isotope

235
U are given in Figs. 1 to 3. The critical load curve correspond-

ing to a 100% enrichment tallies well,, qualitatively speaking, with

9the data in /1/.

When calculating reactors with a reflector, the thickness of
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the latter was taken as 49 cm. A beryllium reflector of this

thickness can be considered infinite. Results of the calculations

235
of the critical masses of U and the effective additions are

given in Figs. 4 and 5 respectively.

Calculations were made with a Strelarf(arrow) computer.
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CRITICAL MASSES OF WATER T1IXTURES OF URANIUM AND PLUTONIUM COMPOUNDS

by

G. I. Marchuk, G. A. Ilyasova, V. Ye. Kolesov, V. P. Kochergin,

L. I. Kuznetsova and Ye. I. Pogudalina.

Introdactio

Knowledge of the critical masses of different 1 uranium and

plutonium compounds is very important both in designing and building

nuclear reactors as well as in solving problems b: safety.

Systems with ' .in• - a water-containing moderator are

of great practical interest. The results of smme experimental

investigations of critical masses of uranium-mater mixtures have

recently been published. In particular, Ref. /1/ discusses a

large number of experiments made by scientists.

It is an extremely difficult thins to calculate the critical

masses of uranium-water and plutonium-water reactors. The main

difficulty is that hydrogen moderation cannot be considered con-

tinuous, and on that account the age theory of calculation proves

inapplicable. So far comparatively little theoretical data on the

critical masses of water-containing systems has been published.

We can therefore only refer to Sa onov's calculations which are
- 8T
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given in /2/.

W The authors made a large number of calculations of the critical

masses of reactors both without reflectors and with water reflectors.

The fuel used was UO with water and a mixture of UO + PuO with
2 2 2

water. The concentration of the fissile matter and the mixture

varied within wide limits. The calculations were made for different

degrees of enrichment and different ratios of the number of uranium

nuclei to plutonium. The error in the critical mass did not exceed

30%. t g,4C4 IA c," L-

All the calculations were made with a Strelaomputer

Basic Eauations

The multigroup system of reactor equations in the d diffusion

approximation in the presence of hydrogen can be as follows
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yvf+ Vffi= q-' + XQ(r.

5(1

V , + E,. , ,.

Q() 1 Z; 4 v, Zf,. + QR.

9,-Et Elm+ E*),ol+rl (J= 1,2... a,)
I--I

Here Elm, are the group nonelastc scattering cross sections from

the group with number 1 into group with the number J;

'z -/(2 are the group moderation cross sections on all

nuclei, except hydrogen,

I-) I-
za -S , are values describing the elastic scattering on

hydrogen nuclei from group 1 into group J;

is the total cross section of > from group J.

The heat constants were avered by the formult

- 8 dxEe? = zv~ Zw
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Elt,? = E51(1 --;o,) + rx

/

in which 4'0T ET(- P-T) are the thermal cross sections at an

energy 0.025 ev,

x, is the boundary separating the thermal diffusion 3

region from the moderation region,

T is the temperature of the medium,

TO  is the room temperature.

The function N(x) is the neutron spectrum in an infinite

homogeneous medium/allowing for the thermal motion of the moderator

nuclei.

To find N(x) we use (3)

Y"W- S W Y'(x) R R(x) y(x)

with the initial conditions

• y(O)=O, y'(O) const.
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* Here

S(x)- P(x)l erf(x);
R(x) =P(x).e - ,O' - x' +r(x) 4

P(X) =P

ezpI- At] +Vxed(m)

r(x) =
tee, + + if P()Jf

and

The resonances in the absorption cross sections were taken

into account in the following way. In the groups with resonances

the moderation density , was multiplied by the probability of

avoiding resonance capture <10> . The calculation of <'> was

done in the same way as described ini"Critical masses of uranium-

graphite reactors" by sarchuk and others ih this collection. Twelve
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235 238
resonances on U and four resonances on U were calculated.

The nurmber of neutrons obtained during fission through
235

resonance absorption on isotope U 2 fg LA At -66

in which

235
and summation is over all the resonances of U which are found

in the group with the number J.

4A
When calculating reactors without reflectors, syste (1) was

solved by separation of the variables. In the case of bizonal

, the method of source integration was used to find

the igenvalue of the problem, while the system of equations (1)

was solved by the finite-difference factorization method /4/.
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Table 2.

Group cross sections for elastic scattering
on hydrogen

.. r k.

1121314 5 6J7
0.61I 0.372S 0.1995 0.1212 0.0573 0.0271 092421-5427 0.8257 0.5018 0.2370 0.1120 0.0529j 0.01732. 1'3 3I.262 0,6264 0.2959 0.1398 0.1034 0.0217* 3.4020 1.6069 0.7.91 0.35S6 0.2ti52 0.0.134 0.01245 4.29 2.0.94 0.9583 0.70"0 0.1159 0.0210 0,0122

, 5,4497 2.5741 1.9041 0.3111 0.0535 0.020 0.0121
1 6.442 4.7658 0.7787 0,1414 0.0520 0.0191 0,0 11L 129 !.844 0.3 l 0,35 1233 0,0453 0,0167 0,00979 7.3740 1.3388 0.4925 0 1812 0.0667 0,0245 0,0143,0 6.$5820 2.4214 0,8907 0.3277 0.1206 0.0443 0,02.581[ $,0324 2.9550 1,0871 0.3999 0,1171 0,0541 0,031512 8,0326 2.9548 1.0672 0,3999 0.1473 !.0&6 -

13 8.0323 2.9554 1.0870 0.3999 0.2328 -
I 8.0312 2,9548 1.0571 0.6327 -
Is .0480 2.9609 1.7232 - - -

If 8.2617 4.8081 - - -

17 13.911 - - -

I--f+k

I 0..5.4 0.1787 0.0700 0.0304 0.0099 0,0032 0.00152 1.,143 0.4561 0.1952 0(443 0,020 00(,;s 0.}033.3 1.61SS 0.7I/37 0.224 0,0741 0.0241 0.0107 0.0o00
4 2.5562 0-8299 0.2694 0.uoS5 0o.039 0.0027 0.(,W33.1616 1,0.65 0.3332 0.14 56 0.0101 0.0009 0,0036 4.(001 I.29s7 0.5791 0,0105 0.CL37 0,0005 0.00027 4,7169 2.1032 0.1469 0.0134 0.0W03 0.0007 0.0002s 7.2Y22 0.5083 0.0466 0.0101 0,0-2.3 0.000. 0,0001
9 4.2640 0.3903 0,0671 0.0194 0.O103 0.0010 0,0003I) 4.16C4 0 .. % 0.2074 0.04629 0.0103 0,0231 0.(711 5.4274 1.2111 6.2702 0. 0603 0.0134 .0.0030 I0,j001- 5.4274 1.2110 0.2702 0.0503 0.0134 0.0039 -13 S. 4 W-s 1.2109 0 27(2 0.0303 0.0173 - j -14 5.42o2 1.2110 0.2702 0,0776 -

I~5.4409 1.2139 0.34873 5 559.:2 1.6o59 -
1 7 .7,71
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I TABLE 3

Group cross sections of non-elastic
scattering on IplYtonium

Ia.

2 0.32 - - - -
3 0.32 032 -
4 0.23 0.34 0.28 -
5 0.09 0118 0,12 0.15 - -
6 0.03 0,07 0,04 0.03 0.13 -
7 0.01 0.02 0.01 0.01 0.01 0.04

System of heat constants TABLE 4

element 'FA I

PUM 1026 M746 2.91 9,6
H 0.33 - - 12.70 0 -- 4.03

The multigroup system of constants for plutonium, oxygen and

hydrogen in given in Tables 1-4. The corresponding multigroup

235 238
constants for U and T are taken Lo be the same as in the

paper by Marqhuk n mentioned above. The multigroup water

constantsused in the calculation give a value A the m

length square down to indium resonance, equal to 26..5 cm , r - =0.665

5 4 5
10 cm (in the diffusion approximation); r X is 1.,222 10

t Cm .

Results of Calculations
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The above described method was used to find the critical

masses * of spherical . .. n . reactors with water

as the moderatoj. Both reactors without reflectors as well as

those with a water reflector 2,..5 cm thick were calculated. A

reflector of this kind is for practical purposes infinite.

r T~ _ 11

It It 6to 1 4 1J WIF s,,,oT?-i6o
Fic. 1 Crticl msse ~Critical volume, 1 H~hu
Fi,. .riicl asesofspherical reactors U02 -f;'hu reflectors

Figs. 1-7 show the results of calculations for ~re~oa

the active zone in which is a mixture of UO (C = 6 g/cm 3) with

Ir water. The dependence of the critical masses of the reflectorless

st*

reactors on critical volumes at different degrees of enrichment

-92 -

±#



is shown in Fig. 1. The points with the same ratio of the nuber

of nuclei ,=pH/PtL are joined by dotted lines. Fig* 2 shows the

variation± in critical mass as the concentration of the fuel in

the mixture changes. The correspondihd dependences for reactors

with a reflector are given in Figs. 3 and 4. Comparison of then

miniM critical masses of reactors with and without a reflector are

given in Figure 5. The difference between M -- t the

extrapolated radius of the reactor without a reflector and the

radius of the active zone of the corresponding reactor with a re-

flector is given Fig. 6. For reflectorless reactors, furthermore,

we have calculated the cadmium ratio in the fission chamber

CdR~ =da-

Fig. 7 shows the Ca/] as a function of X( . It corresponds to a 100%

235

enrichment with U

limilar calculations were also made for the mixture UO -PuO
2 2

and water (natural uranium and UO Pu,, 6 g/cm 3).

The results are given in the form of graphs in Figs. 8-14.
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The calculations were made for different ratios PPueP. •

Fig. 16 shows a comparilson of the results of the calculation

of critical masses and measurements published in /l/. The dependence

d=0,71 it,,.d, du?6
of the extrapolation length d = 0.71 A " oni uel concentration

in the mixture is shown in Fig. 16.

The value 12.7 given in Table 4 is the transport cross section

for single-atom hydrogen. This gave us a certain exaggeration of the

diffusion length in water, which was offset by tuc low a value for

2 2
the neutron age (-V/L = 26.5 cm ; -/N = 30 cm ). But in accordance

with the new experimental value of the neutron age in water ( from

a report given by A. Veynberg in the Institute of Atomic Energy of

2
the Academy of Sciences of the USSR, -L 5 26 cm ), the transport

cross section has to be varied in accordance with the experimental

value of the diffusion length. Neve~theless, errrors in the critical

mass due to this effect are only slight over a wide range of ratios
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Fig. 9. Critical masses of spherical reactors UO - PuO - H2 0

without reflectors at different ratios Ias a function

of a.
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Critical volume, 1

Fig. 10. Critical masses of spherical reactors 1.1 -PuO -H2

with a water reflector
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4

Ratio PU/SPA

Fig. 12. Minimal critical masses of spherical reactors

U61;- PuQj - H, 0 as a f unctionl of A.~ p.:du PH

1) without relector; 2) with water reflector.

40 ' $ u ,~

Fig. 13. Econom~y of water ref lector for spherical reactors

UC PUO -- H20 as function of a -P /pp.-
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Critical volme, 1

Fig. 15. Critical mnasses of spherical reactors UOj H 0with a water reflector.

Solid line shows theoretical data at~ 10V1 enrichment 
of' uranium: o shows

experimental data at 9Ocf enrichment with uranium.
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INTERACTION OF SYSTEMS OF FISSILE MATTER IN A SCATTERING MEDIUM

by

V. G. Zagrafov

1. ADDroximate Solution of Integral Eauation

ihe critical parameters of the system are determined by the

Pelerle integral equation /1/

-. K P(r') d

in which Iaev(r) is the neutron distribution function;

is the reverse free path length of the neutrons

(N is the number of nuclei of matter ina unit of volume, and

s:ps. are the scattering, fission and absorption cross sections);

(= !. 2is the reciprocal mean neutron rultiplication factor
"4I + S'

J per one collision with a nucleus (-V is the number of neutrons

~uring one fission}.

For fistile matter T < , for absorptive matter (> 1; during

scattering without absorption = .
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The kernel b Eqkl) is determined by the expression

e.- xp(-- Snd?) . -

to
Integration is carried out with respect a the total volume of

the system. For a system consisting of fissile matter (medium 1)

and an absorptive matter (medium 2), Eq. ti) takes the following form

S ( r')5()K(r. r')dV'±

+ K (7, ) dV',

in which V and V are the volumes of the regions filled with
1 2

fissile and absorptive matter.

To obtain an approximate solution to Eq.(2 let us single out

a spherical area of volume V in the center of the system which in-

cludes one of the fissile media and the are4of the absorptive medium

4surroundihg it. Let us term the singled out region the primary region,

and let us c.ill the remaining part of the volume the supplementing
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region. tet us integrate Eq. (2)with respect to the volume of the

primary region add assume q0(r) = const . We get

. dvj a,(r7) K(r,r) dv• + V(,')K(,,')dv',

(-)

in which c = V,!y,
2

Let us assume dV' = 1 dld.L, in which dCL is the solid

angle at which the volume element dV' can be seen at point r' from

point r. By changing the order of integration, we can transform

Eq.(3)

-f--Vf(-" + c-")du +

+ J,5 dVf (eC"+ ce-4') du,

(4,)

x As shown in /2/, the error arising here has a signe favorable

from the point of viewtof safety, and the absolute value of this

error decreases as the volume of the primary region V increases.
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where L is the optic distance with respect to the ay from

the point r lying in the primary region and the surface bounded by

the primary region ;

U adl is the optic distance with respect to the ray

between the point r and the current point r';

u00 is the optic distance with respect to the ray between

the point r and infinity;

and u are the optic distances with respectmok to

between the point r and a point r lying in a medium 1 or 2,

respectively, so that the integrand is

J. . f+,e -a, when ? in med.

CO-S, when in med.

Let us designate t= u -L; Viu -L; t"= u-L; to = u, -1

(t,t',t" and t , are the optic distances with respect to the ray

counted from the surface of the primary region).

Then

Wa -+-0) =e-L ( -c'.,,)) d.

xx We will use the word optic for the distances expressed in

lengths of neutron free path. - 108-



Let us replace t' and t" in the integrand by the mean values

of t' and t" over the volume of the primary region (the dependence

of these values on the direction of O. is retained here). Let us

consider a case inx which the primary region is symmetric (a sphere

surrounded by a layer of absorptive). In this case, the values of

the integrals

e7LdV df Was + cC'") du
VOL

do not depend on the direction of ' . Eq. (/)assumes the form

L

, c ') du +."-'dVX

- 109 -
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if thasupplementing region, the critical value ,

as
for tte primary region~if c = aIY2.' is fixed i determined

by Eq. 5),is

, ' dV' (e-0, + ce")du.

If tb upplmenting region l g , but the matter in the

primary region is homogeneous in composition (c=l), the critical

value i found from Eq.(5)is

JO. 'J~ e da = I- 44 C-dV.

V oV

Taking the values found for and 1 into account, the

relationship for the critical parameter; I , given the fixed

value c assumes the following form
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+ce"-) dt.

(2(6)

From now on we will take and to mean the Xigenvalues

for the s w primary region, calculated by exact methods,

for example, the improved diffusion thod put forward by Romanov

in Ref . /3/. ((1 t'. -,:,Z~ 4 ~d

Finally, to simplify Eq.C6)let us use the fact that when

avragin t' and t" over the volume V the middle part of the cross

section of the primary region 0 i-- t the greatest weight /2/.

Hence we will take it approximately that t' and t" in (6) coincide

with t,1(2) and t,'(2) for a ray emerging from the center of the

primary region.

Limiting Cases

Let us consider the limiting cases which are satisfied by

Eq. 6:

1. Medium 2 is absent, Vy-jy

t.~ ~7 A - (

e-- - 4" ) =0

The relationship (6) becomes a critical condition for the
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homogeneous composition system obtained in /2/

(7)

2. Iledia 1 and 2 are homogeneous in condition, c=l. Eq. 6

gives us the critical relationship (7) for a homogeneous composi-

tion system.

3. Homogeneous system; the dimensiornof bodies from fissile

matter tend to 0 when their number is increased to an unlimited

extent with retention of the relative volumes of the first and

second media (v and v ). The radius of the primary region tends

to 0, kxUN hence ,O 0and7'--mO. . The qualitative dependence of

the integrand in Eq. 6 on the optic length t along the ram £L is

showm in Fig. 1.

At the limit, when the increase in the number of bodies and

the decrease in their dimensions and the distances between them

are all Hnoaoutrkth (i.e., when the relative volumes v and v

3, are retained), the number of discontinuities in the integrand

function at the intersection point of the ray and the interfaces
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* of the media per unit of length will increase to an unlimited

S Pextent. The relative dimensions of the areas of continuity

expressed in free path lengths, tend to K , andK -
gt~ + aVI @It + ap,'

for segments of the ray lying in( n - n media 1 and 2,

respectively ence the integral of functione +cc at the

limit becomes the integral of the continuous function

!Iv'a r.4 V e
*j1I + 43V2

in which X, and c are the reciprocal neutron free path lengths

in media 1 and 2.

Eq. 6 takes the form

in which

I __

I T, 'Me +,etv2 77 'out 2..

113 - (8)



coincides with the critical relationship (7) for a homogeneous

system whenhe volume of the primary region tends to 0. The

value of obtained is equal to the reciprocal mean nuetron multi-

plicatio. factor for a homogeneous mixture of two substances in

the proportioniv :v . Indeed, for a homogeneous mM mixture

2-l~ + 42; =PIV,+ PI-,= -- + --
12 7

h = (, + I,)
in whici . it is easy to see that the mean value

y.afl/ coincides with the value in Eq.

4. No supplementing region. Eq.(6,gives us y,=y,..

5. Medium as an ideally scattering substance, a = __
JCdt- .=02 dt &he-)

1(,=1. We get ;1expression on the rig 4and

side of 6 is finite. Since for a medium in an ideally reflecting

shell f = 1 and " = 1, the expression in the lef#and side

of 6 is finite at -( = 1.

6. Medium 2 as an ideally absorbing substance, CY
0

The value -( determined by the exact method coincides in this case

with the critical value T for an isolated body without a shell.

4 The expression on the righ hand side of the equation Mom. vanishes

(s i n c e c 4 0 ) , h e n c e 114 "
- 114 -



7. The distance between regions of fissile matter is infinitely

Increased, the density of medium 2 remaining the same. Here T .0 ,

since the radius of the primary sphere tends to infinity. In order

O-h)
to to keep Eq.(6)J the lefhand side finite, -0 should *a tend

0

to * When determined by exact methods, 4 ° coincides with the

critical value - for a body in an infinite medium with the constant

C

Convolution of Ea.C61for System of Siheres

Let us apply Eq. 6 to a dystem of sphereSwith radius R located

at equal intervals around the volume of a sphere with radius a filled

with an absorptive (or scattering) material. Let us single out

the primary sphere containing the central sphere in the center of

the system.

Let us divide up the integration interval with respect to the

beam (0; t,,) into segments, in each of which the in~egrand function

in(6) is monotonic. The boundary points of these segments are the

points at which the ray. Entersects with the interfaces of media

1 and 2. Let us designate the optical distances with respect to

3the ray between the surface of the primary sphere and these points

as t~ V t .. -* , = t in which k is the number
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of sphere intersected by the ray (see Fig. 1Y. Then

e-"to +Ce- )dtfc +(l- -(I -- ))0-4" +
+(l --c~e - ' - (1 -cte",

+(0C).e-... +(1-c)e - t

(9)

Let us introduce the mean values:

ltq/ is the mean optic distance of the path in the sphere,

and

1'l( is the mean optic distance in medium 2 with respect to

the ray NC in the surfaces of the two neighboring spheres.

When the geometric progression in Eq. 9 has been folded and

the mean lengts have been introduced, Eq.6) takes the form

:q-71"= - " -- - (1-c)') (I - 1.
I --0 -8-419+116)"

(10)

Let us supplment Eq. 10 with relationships for t, -C/Nand -/'

for a case in which the seattering matter is in p uniformly

distributed in the space between the spheres. Let us represent the
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optical radius of the system as to, - , in which is the

mean probability of extracting neutrons from the beam per unit

of path length- If there is no medium 2, then

&I --P$ P - 0(1R)l,

in whichj is the number of spheres per unit of volume,

S is the cross section of the sphere, and

g(VI R) is the transmittance coefficient of the sphere for

a plane neutron beam determined by the following relationship /2/

g (R) - ,' exp(- )dS = 1+ (+2R)exp'2(,,R), s

If there are no spheres, the probability of extracting neutrons

per unit length may be represented as the d

-2-pS [1 -g (4R)I.

C'(1
where a is the probability of extracting neutrons in medium 2;

2

pS[I--g(C9 29)] is the probability of extracting neutrons in the

sphere system from medium 2, identical in geometric size and position
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to the spheres of fissile matter.

The total probability of extracting neutrons from the beam

per unit length is equal to

a -a,+a2 -a + PS[g(a 2R)-g(2jR)J.

(12)

The values Aand (i1+v) in Eq.(.O) are determined by the
m

relationships

*.-kqdS= e-A I

e- + 1_ Icp.L e- A e(A- -,, ,= -A9c..-QRJ.

in whichAca2 pSis the Path length expressed in the neutron free path

length in medium 2 per one intersection of the sphere by the ray A,,

p the function X(x) is determined by Eq. We should ppint out

that the function g(x) satisfies the following approximate relation-

ships

-  1 (x,
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Fig. 1. Qualitative dependence of function
P - e" + &'1 -on the optical distance t

in the direction of the ray 0.
Medium Q circles) is dashed.
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which is equivalent to

e- + =)cP = e-, e- "

Finding the Critical farameters r and !XN Iiy the Asymptotic

Diffusion Method

Let us find the critical relationship for a sphere from

medium 1 with radius R surrounded by a show of matter 2 with an

external radius r (isolated primary region). The asymptotic

solution of the diffusion equation satisfying the condition of

finiteness of the neutron density is ?,, (r) at r = 0, and the

condition at which ?Wc (r) vanishes on the extrapolated external

boundary of the shell r = r + 0.71 p/ takes the form

?act, Wr = n alk T);

i-shnk(y)(r.-r) at T2 <1
r2-
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I

in which the dependence k(,() is determined by the relationships

k = tan (k ) at , 1 and k = th(kr) at 1.//4/ (also see

Romanov's paper in this collection).

Let us assume that at the interface of the two media the

asymptotic solution %j1,and T,12 satisfy the boundary condition M

into account the deviation ?, near the boundary from the true

density p(r), satisfying Eq.Q). In its simplest form the

approximate boundary condition derived by Davison /3/ takes the

form

grad Va, - ad- Va at r= R.

Substituting T, into the boundary relationship, we obtain the

critical condition

[1 - sk (T) R ctga, k(T,) R=

I + a(T, R cth as 6.) V, -,)i a t. >

S 1 + %k(UslRctg %kl' J (r.-R)! at &,< I.
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We can obtain a relationship for the critical parameter of

the sphere at a fixed ration c = by replacing T, by

r and f by T<a/c in Eq.Q1). If we assume 1ib=YN. , Eq. C3)

gives us a relationship determining the critical parameter

for a homogeneous composition o* the matter in the fizzi primary

sphere.

In practice ghe asymptotic diffusion method is used for approxi-

mate calculations when the radius of curvature of the interface is

either largeor comparable with the neutron free path length in the

media (roughly at R >0. 3 cK- ) . If this condition is not *atisf ied,

the diffusion method may prove unreliable.

_ Spheres of u(93.5) with radius R = 4 cm are uni-

formly spread through an infinite space in a scattering medium with

constant absorption " = 1.1 and free path lengths C- = 10 cm.

We are to find the critical distance between the spheres. The para-

meters for Ou (93.5): are: = 0.74, D(I = 0.25 am.____= 0.4,35 = .2 c

N Ou (93.5) is metallic uranium containing 93.51 isotope U\ 7 .

urn The values of these pirameteqs are found in accordance yith
experimental data by measuring ane critical masses given in /5/.
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Let us single out the primary spherical region of the greatest

. po possible radius in such a way that it includes one of the spheres.

If there are p spheres per unit of volume, the radius of the

primary sphere r = d - R, in which d = p 3 if the distance be-

tween the centers of the spheres. The em is such that we

should take t = * in Eq The system of transcendental equa-

tionsL6)and 13) can be solved by the seledtion method r . For
= 0

example, at r0 = 22.6 cm, Eq. (13gives us 0.553, 0.756,

and Eq.(6)is satisfied if we assume that c = 0.769, instead of the

true value c= ', = 0.673. At r = 16.6 cm, -To 0.535 and

0.683, Eq. (6) is satisfied at C = 6.647. At j r 18 cm, -j

0.538 and I"= 0.697, Eq.Q6) is satisfied at c = 0.669, and so on.

By interpolating we find that the true value corresponds to

1 0 = 17.8 cm, i.e., the critical distance between the spheres d =r

+ R = l.8 cm. We should point out that in our example the ratio

(1 - e Y/')/ .- ', +)J) virtually coincides with unity in Eq. 10.

The difference between this ratio and unity is a small correction
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Comparative table of physical parameters of system

of spheres and homogeneous fissile medium

Fissile material medium Syste; of spheres of fissile material

Probability of fission per unit path length Probability of interaction with

a/- Nal spheres per unit pth length

Reciprocal free path length Probability of extraction of neutrons

from beam per unit path length
Em -N/o, + ,)

/given uniform distribution of scatt-

ering, SZ is depermined by (12)1

Probability of scattering per unit path length _
a - Ne,

Probability of absorption per unit path length

Breedingcoefficient per one fission Coefficient of multiplication by sphere

of neutron flux incident on sphere and

V underg&inglat least one

collision with nuclei of matter in sphere,

__ 1
N /(Oaf + O-s)

j-4-7j ief±oient for neutrons per one

collision (Q_±) ,$ILA) +'

T -s.f~12
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in - of Problems met with in Practice. This fact relieves

I
of the need to calculate~ nd(i+)c exactly, when the scattering

matter is nonuniformlj distributefn the space between the spheres,

and when an exact determination,,of these values may prove taborious.

II. Kinetic Equation for Averaged Neutron Density

The breeding of neutrons in a system consisting of a large

number of spheres multiplying a stream of neutrons inmpinging

upon then is similar to the microscopic process of neutron breeding

in a fissile medium. A parallel can be drawn betwuen the concept

and the physical values in these cases (see Table).

On scount of the the Boltfmann kinetic equation

can be used approximately t escribe the neutron transfer in the

sphere system, if we replace the elementary constants by effective

microscopic constants, in accordance with the Table. Here we have to

take ikhto account 1 /spherical anomalies in uur problem. The

first it the nonisotropic nature of the angular distribution of

a neutron flux r rom the sphere when the incident, plane

neutron flux bom . A similar phenomenon m reedbngneutrons

in , fissile matter would be the nonisotropic nature of the angular

distribution of neutrons 4A during fission. Hence in order to
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use the transfer equatiohs for the problem of a system of bodies

we have to generalize the concept of transport path for a case of

nonisotropic neutroro during fission.

A( is the number of neutrons per unit of volume at

the point r, whose directionsof motion lie in the element of the

solid angle bA around 0 , the kinetic equation for V(r.q) takes

the following form

v0grad N (r, 2) + v=N ()=

in which Pf(2'- Q) d2l is the probable number of secondary neutrons

with a direction of motion 0, appearing during interaction between

the ratter and the r4qtron with a direction of m6tion in the elementar)

cone dQ around -0, per unit of its path length;

A q(r is the number of neutrons from the source per unit of

volume and unit time.

IIf the angular distribution of the neutronrafter scattering

and fission is nonisotropic, then
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- v 2) - vaCf1(2'. 2) + . (2, 2),

angular distribution

in which ff(2' - D) and f,(0' -) are/functions -t of the probable

nunber of neutrons after fission and scattering, satisfying the

normalization condition.

By integrating Eq. 14 with respect to dQ , we obtain the

continuity equation

*div (r) -= v- ) ('7) + q

(15)

in which n(r)-fN(r-, )dQ"-is the *Jtron density, and

i(4r)-o N(io)d- is the neutron flux density.

Let us multiply Eq.(14)by 1) and integrate with respect to

d . Taking it into account that the functions f f and f .

only depend on the angle betwuen 5 and Q'. , we get

-1gradN(r, d2+ 0*
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in which

0 ,,1'(-.) + 0 -- /) +.

i and ^p/ are the mean cosines of angular distribution

of the neutrons after scattering and fission.

The continui~j (15J !Sand C6' coincide with the relevant

equations for isotropic neutron distribution during scattering and

fission, provided the latter undergo substitution of o( by

0 -- p)+ Cl-/0- )+a., and C-, by In the problem of

a system of interacting spheres, it is essentialka to U/Aisotropic

it..: neutron# from the spheres into account, since this

effect is unfavorable rrom the viewpoint of the safe handling of

fissile matter (later on we will show that the inean cosine of angular

distribution when the nghtrons are bred by a sphere is always negative).

$he second anomaly in our problem, also unfavorable from the

viewpoint of safety, is the deviation of the true neutron density

Idistribution in the scattering mediuiu from the mean value n(r). If

the free path length in the 'cattering medium is small compared with
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the distance betwwen the spheres, a neutron emw from the

sphere has the probability of going back to the smae sphere after

scattering and breeding again, Thus, some of the neutrons com-ng

from the sphere cause an infinite tain of successive multiplica-

tions. Since the scattering of those which had emerged and returned

to the same sphere occurs mainly in the close-lying layers of the

scattering medium, the phenomenon leads to an increase in the

neutron concentration-neat these spheres, compared with the mean

density in the spaces between them n(r), contained in the continuity

When these two effects have been taken into account, all. the

approximate: methods of solving the transfer equations$(for example,

the asymptotic diffusion method) can be applied to the problem of

the system of interacting bodies . Consideration for these effects

is made below. Let us first look at a case in which the effects are

only slight.

Example 2. Let us evaluate the critical number o: spheres

x This relationship is often called the generalized Fick law /3/.
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of Ou(9.35)of mdss m uniformly distributed in the empty cavity

W of a spherical reflector with relection coefficient (Albedo) A 0.8

- 0.9. MR Volume of the cavity hs V . Let us assume that there
0

is no absorptive or scattering matte~n the cavity, that the radius

of the spheresR is smallcompared f with the critical radius R-o0

of an isolate sphere of F Ou (9.35).

Applying the asymptotic diffusion method, we find the critical

relationship. If we are given the Klbedo of the reflecting shell,

the boundary condition on the internal surface of the reflector

takes the for 3/

-grad 73c 3 I-A

ar ac 2 I+A

Substituting the equation for 11 in the active zone (sphere

system), we obtain the critical relationship

-. (1 - ,kactgsjka)= 3 I-A
6&4 2 I+A

(17)

in which a is the radius of the system. For the case in point, in

which the /lbedo is close to unity, and the coefficient of neutron
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breeding by each sphere is considerabli less than unityj'he@Y
following decompositions hold

ctgi,, ,ka ~- 1 6p!43 Pip, Iat, ka 3 . \air

(18)

Taking into account that P -t,---awe can represent Eq.(17)

with consideration for 18) in the following form

pS(1 -g)(Q--I)a= _ 1LA
,2 I--A

Let us introduce the multiplication factor which is defined

as the ratio*,of the zxl flux of neutrons leaving the sphere to the

flux of neutrons inci2ert or ', irrespective of whether the neutrons

striking the u sphere(reacted with the matter or passed through

uE are -
it without undergoing any collisions. The values Q and Q/related

as follows

Q- I = [I- g(QR)i(Q - I).

(20)

aE-
As will be shown lter, Q can be approximately described by
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the following tnterpolation between the extreme f cases R -- 0 and

R

(21)

Using Eqs. Co) andC2), and expressing all values in Eq. (19)

in terms of the sphere mass m, the volume of the system V fand
0

the total number od . spheres in the system N , we get-o

the critical condition

NO=2(t- _, 3. (jw I -A

(22)
OL'

in which Mis the critical mass of the isolated sphere (for %(95)
S= 51.3 kg /5/), is the density of the matter in the m

3
spheres (for OuL(93.5) is equal to 18.8 g/cm ).

We should point out that the critical Eqs. (19)and(2o) do not

include dependence on the angular distribution of the neutron flux

,*ne from the spheres. The reason for this is that on account

of the proximity of the albed6 of threflector A and unity, the
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mean neutron density varies slightly along the radtus of theI. __ angular

system, and M_10, for the anisotropty of the/distribution

of the flux during breeding gives a correction for the small value

of the gradient of the mean neutron density ( if the latter is

constant, for example, in an infiiely-extended system, the

anysotropkr has no effect at all on the state of the system).

MultiDlication of Instant Neutron Stream by Body Made

of Fissile Matter

Let us derive relationships for the multiplication factor

for a plane beam of neutrons Q and mean cosine 1' of angular

distribution Of the s flux; All the elementary processes

in the body (scattering of neutrons by nuclei and fission) are

confidered isotropic, hence in the kinetic .Mbl14we must

assumef(2' 2)--Laccording to normalization of the function f.
4C

We will take(Ysotropic sources in Eq.(14)to mean secondary neutrons

N
occurring through interaction of the incident plane beam and

the matter . Integraing Eq. I4) . along the ray emerging

from point r in the direction cl we get

x The method used here of reducing the problem with anisotropic

source to isotropic :istribution of sources is described in /6/.
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2), r) r -C)n(f,. r--l exp(

1'~2d1' dl +5 9(2*r - 2Cxpf i(;- 1'2) dl'j d, (23)

(23)

in which A0 is the direction of motion of the neutrons in the

plane beam;

1 is the coordinate along the ray

We can obtain an expression for the neutron flux l(.o), emerging

from the body in the direction . by integrating Eq. c23)with

respect to the area of the cross section normal to

4-J( ,2) - 4, J N(r,. 60)s= dS ()rn, X.)X

)(exp(- if dl'l)dV + q(r, 0 )exp (-I d'l)dV,

in which ffdI is the optical distance between point r and the

surface of the body along the ray A , and V is the volume
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of the body.
@£

Let us designate X(., r)=exp( Id' ).. If the body is impinged

upon by a single (per unit of area) plane neutrun stream in the

direction 0 , the density of the sources q(r.Qo),, according to

the definition given above, is equal to

The expression for the flux takes the following form"

,4Wj(,.- 1P() ',(r.I F)x( . r)dV +

+ P(hX(2.7) x(-2. r)dV.

For a homogeneous body of spherical shape

SS Awn [r,(P'20)j X fr (T2'!)j r2drd~jr-

+ JJ lr. (d'?)J ". fr - (2'f,) r2drdL'.

40, (24)

in which (66) is the cosine of the angle between the unit vectors
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£I~ and a0.

The multiplication coefficient defines the number of neutrons

leaving the body per one act of interaction between the matter and

the neutrons striking the body is equalp to

"_ L. L_%), dc! _ 5' " (rF1(r) dr + ..(r)rdr

2 (r). (. -i4)dV -74(r) , dr (25)

in which ( - r  ('-)J -. a(r)w=. r "") "

The mean m cosine/A/, of the neutron flux emerging from

the body is

u r) j ()r2dr- MI F,. (r) Prldr

Jj(' i.) ; Q x(,),,,2 (26)

in whic - " l ) -

When deriving Eq. Q26)we made use of the following relationship,
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valid for the arbitary function I( .Q):

0 T (2 '2) d 2 T2' ) d(').

In a limiting case, in the radius of the sphere R is small

compared with the critical radius R and with the free path length

of the neutrons, we get vn<Q. Xfl. Confining ourselves to the

first terms in the expansion of equalities (25)and C26)into a power

series R,# we get

QT=i, R2.
15

(27)

Let us consider another limiting Ease in which the radius of

the sphere R is close to the physical radius R • Let us expand
- 0

the neutron flux vn in Eq.(2$)into a series with respect to the

,igenjunctions C/4\ of the Peierls homogeneous ua (1).

Omitting the operations described in /6/, we get

va [r, (2'O)J - 1, ,'v ?, [r, ( ',)I,

, = f7 _ ?i[r, (2'*,)jX[r, -(-'=6o)jdV.
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in which wwxgat are the $igenvalues of Eq.(1(( - 0, 1, 2,... .

The , gen'ffunctions (g form an and normal system

Confining ourselves in the expansion to the two first terns

containing the function (4' , which is at not dependent on('),

and nwhich is proportional to the first power (al) sand

taking it into account that',.(r)= o(r), q,(r)-O,we obtain the following

for a sphere close to the critical state

Q = I 5. 'jr I. d )

i (() r',drfv)r2dr

(27')

Let us approxiuately replace the distribution of asymptotic

In 3kr r)w I - VR.

denM ty?,,,(r)-----by the parabolic dependence I- which

ROe is the extrapolated critical radius of the sphere determined
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IN
in the asymptotic diffusion theory by th e relationships

k

Having integrated Eq. 27'), we get

QT (--1 .

(28)

in which

0, ( d) + f_. _ I
K.- (- + )I~

R. r Re (gI +k) --I

K, R% + -L)exp (- 2R );

I,- Rs,- - R'.+ R% - 2 + (Mo + R.2 + 4R* + 2) >2 2

X exp (- 2Ro);

H Here and from now on the linear dimensions are expressed in

neutron free path lengths 0,-.

- 139-



I

g(R ) is the transmittance coefficient for a sphere of critical radius as

determined by (11).

S 91

Fig. 2. Multiplication coefficient of a sphere made of Ou as a function

of the relative sphere size R/RO : 1) dependence of l/Q; 2) dependence of l/Q*

3) experimental points derived by Stsiborskiy and Kuvshinov; R is radius of the

sphere; R is the critical radius of the sphere.
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Interpolating between the two limiting -ases, we get the

following approximate expression for Q

R-QT - I +M4 T) ----

(29)

Fig. 2 shows the dependence of Q(R/R.) for 0t93.5), (T =

0.74; = 0.61) obtained by Eq.( 2. It also gives the

dependence Q (R/R ), deterrined by Eq20), which can be experimen-

tally Lchecke S!_irectl, and we plot the experimental points for

Q obtained by Stsiborskiy and Kuvshinov.

We should point M out that the simplified expression(24

in example 2 conveys the ependence Q (R/R ) qualitatively

except that it slightly exa rates Q , which is at.

from the point of safety.

Antsoetroh of Angular Distribution

Let us derive a relationship for the mean cosine of angular

distribution of neutrons imerging from the sphere. Since ppo=O

in the critical state, when o = 1, the numerator in Eq. (26)rekains

finite and the medn cosine vanishes on account of the fact that Q

-- . Thus, near the critical sate the anisotropty disappears.

But it cannot be disregarded completely since the expression for
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N\ and contains the produc t which remains finite in the

critical state. In order to obtain an interpolation expression

for/A, let us continue analytically the dependence of/Ao,AQon

R, as determined by (6 to the supercritical state in which = 1.

In this limiting case Eq426) becomes the following expression

I ( I F, (r)j (r) r ,r)

I' raildrlFicr'd

in which F (r) is the part of the function p[r, (Q', do).which does

not depend on the angle. Solution of the asymptotic diffusion

equation gives us the following expression for CP

! cos kr_,s, kr

Let us assume roughly that

in which
R, R, ±0,71
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R is the radius of the sphere in the state with A ; = ;

A - tg (ki);

= 4.934 is the root of equation 9 = tan .

Integration gives us

I -s

in which
5 1 dRI (r) (K1 - L.R:,13
4 R, dl R1'1 1-g(R)]Afs

. dR() R, I
RS d - Rl 1 (1+k)-1

K 1  -Rt- , R+ I- (R% + 2R, + 1)exp (-2R,):

7 R, 9 R,,);
L, = 2 R'l - 2R 4 + 4R31 - 5R2, + - -R,+4R z,

3 2 +'

+ IORt + 15R+ 15exp1(- 23).
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I

S+ I

o-exprimentlpoin s f o oe
Fig. 3. DependenceA Q on R/Ro for a sphere of

E 
Qy (53.5).

. Dashed line is extrapolated re lationship
to the supercritical state wih)% I
a - experimental points of B.D. Stsib~orski

and M.I. Kuvshinov

The interpolation expression satisfying the limiting cases

for Eqs.(Q7,fand (30 takes the form

_i_ - .. . .L

(31)

Fig. 3 shows the dependence of /I,- on P/R. for 0u(93;5) (R

3.335; = 0.108) described by Eq. 31, and plots the experimental
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points found by Stsiborskiy and Kuvshinov.

Multiple MultiDlication by Sphere of Neutrons Reflecttd.From

Scattering Medium

Let us deterrine the number of neutrons 6mitted by a sphere

per primary neutron, taking into account the possibility of their

reflection from the layer of scattering medium adjoining the sphere.

For the sake of simplicity let us use the concept of the multi-

plication factor Q related to Q by i I=___(2 . Let us single

out around the sphere ax a region of the a scattering medium for

the given sphere, the reflection coefficient (/lbedo) of which can

be - equal to A. If a neutron strikes the sphere, Q

neutrons leave it after multiplication. Of thrse (1 - A)Q leave

the bounds of the separated region, while AQ neutrons return to

x2
the sphere and, after multiplicatio produce AQ neutrons of the

next generation, and so on. Thus, for each primary neutron the
(I .'A)Q*

sphere emits (1-A)Q*+(1-A)AQ*2+(1 A)A 2Q*3 + - I A)

neutrons. Calculation of the multiple multiplication can be reduced

to the replacement of Q by (1 - A)Q /(1 - AQ ) in the W=Izxk

critical equations.

To a'
1. S u ambiguity in selecting the dimensions of

- 145 -



!/

reflecting layer, we will consider that A is the Albedo of the

scattering tynxy layer of infiniteness thickness. The error S

involved in this assumption kx has a sign which is favorable from

the viewpoint of safety. If the radius of the sphere is large or

comparable with the neutron tree path length in the reflector, in

order to find A we can use the asymptotic diffusion theory, in

which the expression for the /lbedo for an infinite medium surround-

ing a sphere takes the form /4/

1- -2D k +)

I+2D(k.+ 2 .)

(32)

in which R is the radius of the sphere (in free path lengths in

the reflector),

D - is the asymptotic diffusion coefficient in the
k2

scattering mediun (*ith absorption); the dependence of k on the

aboorntion constant of the medium -f is given by the relationship

k = th(k ).

Let us find an expression for the Albedo of the infinite re-

flector in another limiting case, when the radius of the sphere
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- .0(

is small compared with the free path length of the neutrons in the

reflector medium. Let us assume we are given a neutron density

distribution n(r) in the reflector (r A the distance from the

center of the sphere). In the element dV in the neighborhood of

point r, -dV neutrons are scattered every second. Taking the- 1

scattering to be isotropic, we find that nu 0 (rR)dV neutrons

arrive a the zxhz xz syhere from (eementp dV every sevond, in

ID(r, R)='exp1-1 (9)lT. I(Q) -

which is the distance between point r and the

surface of the sp1re in direction -a, ,and is the solid angle at

which the sphere can be seen from point r. Integrating with respect

to dV, we obtain an expression for the flux U on the sphere,

i.e.,

.t f vn (r) (r,R dr.

R

(33)

The neutron density n(r) can be expanded into two components;

/Or (r) is the density of neutrons of direct origin urriving at

point r from the sphere without colliding with/scatterer nuclei,

,ind nj (r) the diffusion density. If the radius of the sphere R
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is reduced with the neutron stream from sphere J remaining un---0

changed, the fluv of reflective neutrons of direct origin, striking

the sphere, is reduced in proportion to R, while the flux com-

ponent due to scattering of the diffusion neutrons is reduced in

2
proportion to R . Hence at low R it can be taken that in(53)

van (r)== va., (r) = 1 (r. R)

(34)

Substituting Eq.(34)into Eq. , we obtain an expression for

the Xibedo

4=+ - f 12(r. R) redr.
R

(35)

A comparison with the numerical calculation shows that Eq35)

is equivalent with a high degree of accuracy to the rela.tionship

obt.ined by interpolating Eq.(35with respect to the limiting cases

,R 0 and R
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I + RE!2R)]A , 2.

3 + - -

2(1--In2)

(36 )

Equation 36 expresses the dependence of the XIbedo of an

infinite medium ot the radius of the spherical cavity R and

absorption anutanz± constant I for a case in which the radius of

the cavity is small compared with the length of the free path, and

the diffusion approximation is inapplicable. For intermediate R

the /lbedo may be found approximately by interpolating between the

dependence curves for A(R) in Eqs.(32)and 16) For = 1.1, this

interpolation curve is given in example 3. We should point out that

values
as T increases, the of R restricting the sphere of applica-

tion of Eqs. c32) and(a6) are greatly increased.

PxamDle 3.. Spheres of Ou(93.5) are uniformly extended through
U

infinite space in a scattering medium with the absorption constant

-j

= 1.1 and free path length o 1 = 0 cm. Let us calculate the

dependence of the critical distance between spheres on the sphere

radius R by the rmethod set forth in Section 2.

An infinite system is critical when the averaged breeding co-
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efficient in the system is equal to unity.

(Q .. L.SI I(OaR)I + I

(37)

Let us express the mean probability of extracting neutrons

from the beam O( and density of location of spheres p in terms

Yu)
of the distance between/spheres d

"i= pS[g (;2R) -g (aR)j, -d-= ,

and let us take into account the correction for multiplication of

the neutrons. The relationship for the critical distance between

spheres d takes the foll6wing form

, = aQ +  g - (it,.R .

Th dependence of A(R) for a medium with =l1 as determined

by Eqs.(32 and(36)is given in Fig. 4. FigM 5 shows the dependence

of the critical distance between spheres d on R (curve 1) derived

by Eq.( 38 For comparison Fig. 5 (curve 2) shows the dependence d(R)
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obtained by the method of approximate solution of the integral

equation put forward in Section 1?"

.2

Deft -,2 I.8 -i R ,O
Radius of the cwt

Fig. 4. Interpolated curve of the relationship
between the Albedo of the infinite medium and the
radius of the spherical cavity R (R expressed in'
length of free travel of neutrons in the medium,a 2  0.1 cm- I , Y2 - 1 .4
1Ri the curve calculated according to formula (36);
2 -gcurve calculated according to formula (32).

Figure 5 shos that the results obta he ine be m antegral method

contain a greater safety margin than by the method given in Section

HI. When the radius of the spheres in an infinite system is reduced,

"Itxtupan both lep in dependent curves d(R) merge since both

m~ethods satisfry the limiting transition to a fomogeneous mixture.
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I00 I

Fi 5. Relationship
of the critical distance lot
between spheres from Oy (93p to Ene
radius for a system of
spheres uniformally distri-V
buted and infinitely
scattering medium.

(alculation for a limited system of spheres is not more com-

plicated than in the example considered. If the system has a

spherically shaped radius a, for the critical relationship we only

need W-red breeding coefficient (making a coorection for

multiple multiplication and anisotropby of the angular distribution)

memowd equal to the critical parameter of the system 1/-(Y O )

which is determined by exact methods (dependence of critical radius

on optic radius of system given, for example, in /2/.

Limits of Applicablity of Methods

Both the methods considered are applicable, irrespective of

the relative dimensions of the bodies, distances between them and

tree path lengths of the neutrons in the media. Although attention

has been given in the main to a case in which the scattering medium

it uniformly fills the space betwwen the multiplying spheres, both

r!ethods per it generalization for more complex cases of distribution
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of the scattering n xtter (for example, scattering matter

in the form of spherical layers surrounding each sphere in the

system, or a system consisting of spheres of two types, and so on).

We should recall that by a scattering medium we mean a medium with

T 1,although all the arguments are still valid if medium 2 is

a fissile matter with 1 1, differing from medium 1 in pro-

perties.

The difference in the limits of applicability of the two

methods is as follow,:. Method t is reliable when alculating

systems consisting of a large number of multiplying bodies, when

the dimensions of the system are large or comparable with the mean

probability of extracting neutrons from the beam per unit length

during ±x interaction with the spheres, i.e., when we can use the

kinetic equation for averaged values. Method I does not have this

limitation, since Eq.C6)is valid, irrespective of the number of

multiplying bodies in the systerm.

I
On knxmx the other hand, Method A is applicable to calculation

of the system of spheres in a scattering medium surrounded by an

rxternal refl-ctor (see example 2), whereas Aethod I assumes that

there are no external reflectors (in Principle Method I may be
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generalized for this case as well).

We should point out that when deriving critical relationships

for systems consisting of a large number of multiplying bodies /

it is assumed that the bodies do not form a regular geometric

go",, but on an average uniformly distributed through the volume

of the system, whereas the arrangement of the bodies in actual

systems is more often than not geometrically regular. The appli-

cation of these methods to regular g gives a greater safety

margin since the presence of singled-out directions in the

means a substantial dtrengthening of the mutual screening of the

spheres.
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OF
EXPERIMENTAL STUDY 2 INTERACTION BETWEEN TWO SUBSCRITICAL REACTORS

by

A. Kamayev, B. G. Dubovskii, V. V. Vevilov, G. A. Popov, Yu.D.

Palamarchuk and S. P. Ivanov.

Experiments with Homoeeneous Reactors

Experiments were conducted to determine the critical state 6f

cylindrical
a system consisting of two nzrt~ttz homogeneous roactors without

reflectors in an ordinary air medium at different distances between

them.

The two cylindrical reactors in the experimental plant were

attached to a frame, one on a movable base and the other on a carriage

moving along the frame. The distance between the cylinders could

be e from 0 to 120 cm.

The walls of the cylinders were made of rustless steel (lv8On9t)

1.5 mm thick. Each cylinder was fitted with an emergency rod which

drcpped into th4iddle of the active zone when the set power level

was exceeded. The active zone was a water solution of UO (NO )
2 3 2

salt containing uranium with 90% enrichment.

It is obvious that when the reactors interacted, each reactor

was subicritical, even when the system was critical as a whole.
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The experiments determined the connection between the degree of

subcriticallity of each reactor (w considered separately from

each other) and the distance between them at which the reactors

form a critical system.

The experiment was carried out in the following way. The

cylinders were placed right next to each other and

a water solution of U02(NO: tnl c
2 3 2

state was reached. The cylinders were then moved quickly part.

The systems became subevitical. In order to achieve criticality,

fresh amounts of solution were added simultaneously to both cylinders.

The cylinders were separated and filled with fresh -xkim amounts

of solution until both cylinders became critical, irrespective of

each other, i:e., until a position in which the interaction was

equal to 0. fuxzput The inspection and control system was carried

out in such a way that it was possible to follow the behavior of

each eactor sep.rately, and the system as a whole.

( esults of exper ments with the homogeneous reactors are

shown in Table 1 and in Figs. 1 and 2. In each separate (the two

interacting reactors were of the same size and had the same active

zone composition. The effective faz breeding factor of the reactor
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was calculated by the following formula

e f + %h:)( +x's

in which x is the geometrical parameter of the wiitax critical

reactor and,

7 is the geometrical parameter of the subcritical reactor.

In experiments 1, 2 and 3 the reactors mom ... ,reflec-

tors, while in experiments 4 and 5 the reactors were set up on

a graphite base forming the lower end-reflector and a vertical

side walltalong which the mobile cylinder moved. The dependence

A

of K / on the distance between the reactors, found in the first

is
three experiments,/shown in Fig. 2.

Experiments with Heterogeneous Reactors

The experimental plant constituted a steel reservoir, 2.5

meters high, 2.1 meters in diameter, with walls 5 mm thick. At the

bottom of the reservoir was a steel base plate with fastenin: s to

which were attached two guiding grids made of

for urnajum block channels. The active zone was assembled from

uranium blocks/ and 10% enrichment. The distance between the reactors

- 158 -



0i 44 .4*

8.0 .- d0

14> S$4

00 1.4 > .

3d41 u v41

I4 -4 "__ _ _ - ~41 00 O
e) 00 a 4 4.4 0

go 4) $4 44 6 0 4

C"4 .4 u 4 A
-- 0 0) tds 0 .4 14..

0'. !9 !5 4 4

*0 SO 10 44 02

-H > NC44J OO4i

.00 NC.C4e ;; z 0 Sd .4.-

41 m.0f 0 g 4.1. 4

w x..n 0 Go r4 I'S

140 414

:041 SOf 4 )
0~~~4 i.)$ C ~ *l4

... . .. 14~ ooo~ ~ 0- 0 44

C4 04u~

0~ .04

000000SO

ft~~ A0 '0' 41s~.-
Sd U 10 4 J54"

41~ 41.101)
Q.4 w* .- J

0 $401560
*4) ~ 445 ~J

b C 0 44 in U J *- 4 0
0; C;. C; 0 0 0 .i. cc1 .r4

%.._______ *1.4 0 0

Vj ) 4j .0.dw W

~C 14 0C 0) 0 000

I ~C j 8  O0IRSa ,I

I1s9 4



0W 0

0

0 00

4. -4 0H
=JA

-n,

14 W'V to
0 0--

-W 10 0 pI

0 p- 0o
V.4 -

:0 *,-I 44W-
00

4- M
0o 04.1

0OP w

*-4 4.)04Cto - cc 4 0 p.40

4J0 4JO

(L) rC-4 ,0 04

t- x u~ :9

$4. r 0
4-4- co to*-4-0

0 'VOWI0
ri -_c_ -_ t_ _ _ _ _ 4 0 0

* I0- 1.0 0

4.) *,4 4-4
01 4)1 1 

4 0

0 I'~I 4 "q-4

ON -- n 10 -l r I i

F c$ -4 ) 140

0)-
t- 41 %,rt 4j 144.

C; C;~ C; C;C;0 ; 0 44

044

0140



S

V.1

44

0 V. so F $0 ;" 0 r, cm

Fig. 1. Critical volume of system of two
reactors as function of distance between
interacting reactors: i) fourth experiment;
2) first experiment; 3) fifth experiment;
4) second experiment; 5) third experiment.

' ,'

eft

&V 4Q 6b 0 O O0 e.cm

Fig. 2. K of one of homogeneous interacting
reactors alft function of distance between them.
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II

Fig. 3. K ff of one of the interacting

reactors as function of distancebetween
them: 1) first experiment; 2) second experiment;

3) third experimelkt.

0 JO 20 CM

Fig. 4. K eff of one of the interacting reactors

as function of distance between them:
1) first experiment; 2) second experiment; 3) third experiment.
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was changed by reloading the e 1 4n the lattice.,he critical

state was achieved by filling the reservoir with water. The

experimental method was similar to that described for homogeneous

reactors. Results of the experiments are shown in Table 2 and in

Figs. 3 and 4. The experiments demonstrated that the combination

of two roughly equilateral subcritical reactors flush with one

another (K = 0.94) is critical for each of them. Two identical

tv/-D

subcritical cylindrical reactors with"' = 1 and K e<0. 9 4 each,

not exceeding 2.0 at K cannot form a critical system.

The effective interaction of two identical subcritical reactors

at the given K (breeding coefficient in an infinite medium) is

deternined by the solid angle between the adjoining surfaces.

The effectiveness of the interaction of two subcritical reactors

in water t large distances is considerably less than in air. If

there is a 30 cm protective layer of water between the two reactors,

interaction between them can be ignored; here the error in deter-

ruing K will not be more than 0.1%.
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QCULATION OF SECTIONALIZED NUCLEAR PQWER PLANTS

by

G. I.Marchuk9, B. G. Bbbovskiy, V.V. Smelov and Z. N. Vilyutina

In connection with the study of sectionalized reactor

which L
systems/provide for nucYear energy in subcritical reactors and

a considerable increase in the burn-up depth of the fissile

isotope /l/, mathematical caluulations of these plants were

made and results were obtained which can be applied to certain

specific versions of the systems.

The physical system of a sectionalized reactor system

considered in this paper is to some extent a further development

and generalization of the physical system of the &Mk PWR

reactor /2/.

The mathematical calculations are based on the use of

matrix spectrorization of finite-difference reactor equations /3/.

1. We consider a sectionalized reactor system representing

a combination of a critical reactor, which is the ignition source

for brightening ron . and subcritical sections

attanged in series. On the interface between the critical reactor
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and the first subcritical section, and also on the interfaces

1 of the other subcritical sections there are dirt layers which

only let the neutrons through in one direction. This system was.

calculated in cylindrical geometry for one subcritical section.

Fig. 1 is a scibJatic of a sectionalized reactor system.

In the middle there is an ignition critical reactor, 1, then

a "black" one for thermal neutrons; the barrier,2, which is a

combination of a layer of uranium 235 of thickness 0.2 cm, a

layer of cadmium and a layer of moderator water 2.5 cm thick;

subcritical section, 3, adjoins the barrier, and there is a

"black" layer of uranium on its outside boundary.

In the uranium of the barrier layer tie thermal neutrons

from the critical Pactor w are converted into fast neutrons of

the fission spectrum, which pass through the layers of cadmium

and water and reach the subcritical section, where they breed.

The greater part of the neutrons formed in the subcritical section

are unable to pass through the neutron barrier in the reverse

directionsince they are moderated by the water and absorbed in

N
the cadmium layer

m-When taking into account the effects of the reverse transmission
of neutrons by the barrier, as shown by further calculation, the
increase In the effective breeding coefficient of a sectionalized
system is not greater than 10Q.
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Fig. 1. Sectionaliz.ed reactor system: a) top view; b) vertival
section; 1) critical reactor; 2)neutron barrier;
3) first subscritical section.

2. The spatial-power spectrum of the neutrons in each sub-

critical section which is an element of the sectionalized subcritical

system fan be written in the diffusion-age approximation as the

following system of equations 131
d I1

/". = X-T -

4 2- on is, 4 2 d. n
, . D, d --

Fr m at
4. " -an , .4sd
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Here ",-is the yield of zzauuuzz secondary neutrons per 1

Ibsabsorbed neutron,

X(a)- is the energy spectrum of neutrons occurring through

fission,

S and S are the boundaries of the subcritical section with
/

precetding and following sections, respectively,

n is the normal to the boundary, directed wway from the

center of the sectionalized system,

(n)'k. and -, are the flux densities /3/ of fast and thermal neutrons

(from the preceding section 'to the given one.

If we use the multigroup representation /3/, system (1) re-

duces to a system of equations of the diffusion type
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I

vD:i - z~ .... 11, - Di sj ,,
II

4 2 dn is. 4 2s,)

U 1 , 2 .. . m)

If the sectionunder consideration is close to the critical

state, the iteration method of solving system(2)is not effective

in view of the slow e of the solution /3,1/. Hence to

solve system(2)we used method /3/ based on matrix representation

of the problem (2)

VDV(P - E(1; 0,

0 D I'I . , D -0.
4 2 dn s, -4 2 d ,, (3)

in which and H are vectors with the components (?;, Ni} ,

D - ii , ) I, = !1Zt-
resepctively, D and F are matrices & and

C, .j- &., I , I W .

"it' o, u" I).

In view of the fact that the composition of the barrier is a
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thir layer of uranium 235 and cadmium, we should discuss in

greater detail the formulation of diffusion conditions on the

boundary between the two media (A and B) separated by a thin

absorptive layer (C). In the given case it is permissible to

consider the problem within the framework of plane geometry.

Let us take the direction from medium A to medium B as the

positive direction of the normal.

If we use T(x,E,)) in the plane problem to designate the

neutron flux in a unit of volume of the phase space (x,Ec),

the integral neutron fluxes ?] (x ji)ef each of the energy groups

obviously assume the form

+

Here jL=cosE3,E is the angle between the normal and the direc-

tion of motion of the neutron.

The diffusion approximation corresponds, as is known, to

representation of the function ?j (x, p) in the form
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where

I?J(X) p) d, /x ,a1,.

Assuming that the neutrons are not scattered in layer C,

but xl:x are only absorbed and. reproduced, we can jotn the number

of neutrons entering layer C from medium A every second with the

number of neutrons leaving layer C in the direction of medium B

every second

I I

A e d 3D 11 2e. 4"
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Here d is the thickness of the absorbing layer)

is the macroscopic absorbtion cross section in it,

Q is the number of neutrons generated per unit of time

per cm of layer.

The balance of neutrons in flying in the opposite direction

can be written in the form

oo

?A d p 3 D_ di,

-I -0 -' !'f :,.d

jL ze I dig - 3D,6~ 1 r.e dp -- Q.

(5)

Intergrating equalities 4) and 51 we get

- O- () - 3Da " E4( ) + Q,

2 dv dx
?A 'A , '. r' E )-Q.

. .2 DA ! x = - ?s(..) _ 3Ds "L -

(6)

in which E Q.(.) e t

1
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System(6) easily gives us the boundary conditions for

particular cases:

a) Layer C does not absorb neutrons (E = 0);
C

In this case the system of equations (6) gives the known

boundary conditions on the interface between the two media:

?A - ?
dx 'dx 16 O)

b) Layer C * strongly absorbs neutrons ( =
C

In this case we get the boundary conditions on the surface

of the "black" layer:

dx

DA dyfj
2 dx

(60)

c) /edium B is xblack" for neutrons (in particular, it m.ay

be '3 vacuum) ;.

Since it has been assumed above that layer C does not scatter

neutrons, a neutron which has left medium A no longer returns;

this means* that layer C may(be reprde 64 7 as a "black" one
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thus giving us the condition

?A A d?A Q.

In the matrix form W the conditions on the boundary between

two media separated by a thin absorbing layer can be written in

the formi of equations 6), in which .E and E are matrices:

E, 3 CIO 14, 1 E (3)

while! is the matrix introduced above.

The differential matrix-vector 4-4 (3) all the

boundary conditions were represented in the finite-difference

form, and the solution of the problem was found by means of the

matrix spectrelization method /3/.

To throw light on the physioal processes occurring in a

sectionalized reactor system, we carried out calculations of this

system.

We considered identical, homogeneous lattices in the central

critical reactor and in the annular critical section. The uranium-

graphite heterogeneous lattice with a 20 by 20 cm mesh consisted
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of infinitely long cylindrical rods of uranium,3.5 cm in diameter

with 2% content of uranium 235.

The concentration of elements in the active zone of the

3
lattice per 1 cm was as follows:

.u 04771. 0,07977.

PIf'o = 0,0.33-16.

The thickness of the uranium 235 layer in the neutron

barrier =0.2 cm, and the thickness of the w:.ter layer was

H = 2.5 cm.

Calculations were made for three values of the effective

multiplication coefficient (K ) in the subcritical section:

0.88, 0.93 and 0.97. In accordance with these values of K ,

we calculated the dimensions of the section AR = R - R

(see Fig. 1). The construction of the neutron barrier was the

same in all cases.

Figs. 2 - 6 show graphs for the s Tial-energy distribution

I of the neutron fluxes in the cases un'.er conideration.

Figs. 7 and 8 show the fission integral 0(r) for a subcritical
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t'"

¥2

iig. 6. Neutron flux .(r. in active
7'one of subcritical i~eactor (third version):

.I -1 a , (r --. ;: --. . u . j

3t.ej r u -17,5); .1 - (I)~ q r I= IT

71 I

0 ,5

Fig. 7. Division integral u(r)for a subcritical
reactor: 1) first version; 2) second version;
3) third version.
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a

internal reactor.

The fission integral is taketo mean the value

MT

Fig. 8. Division integral _Q(r) for critical
reactor.

The ratio of the maximum fission integrals Q(r) in the sub-

critic2.l sections and in the critical internal reactor for different

ffof subscritical sections is as follows

- cc

.,. . 1 7 1

-~ 17



As can be seen from the figures given in Figs. 7 and 8,

as K. in the subcritical reactor increases and approaches unity,

there is a considerable increase in the neutron flux in the sub-

critical s reactor through brightening of the high voltage

critical reactor by neutrons.

Thus, the calculations given confirm the initial assumptions

that the use of sectionalized reactor systems makes it possible

to produce high fluxes of thermal neutrons.

The U

/Ratio of to Q where Q is the mean integral value of
max -

for subcritical and internal critical reactors, and also the ratios

of Q to Q a are as follows

ef = U.8 ,. , 0 Critical

ef reactor

1,401 1.40 1.40 2.12
"0 I /Q cr . . II I 1.5A) 1,84 1.00
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Vw
The integral values of the energy emission in the critical

Sreactor and subcritical sections as well as the relative values of

the specific energy emissions per 1 cell are:

Kgc.OAS Keff-O.9W Kf'-Ox Critical

reactor

Relative specific
heat emission .
per cell . . . . I.w 1.4; I.O

It follows from these figures that the distribution of the

energy emission ft-z in the subcritical sections may be Just as

advantageous as in the critical sections, and this confirms the

advisability of using the sectionalized reactor system proposed

in /l/. It is quite clear that if there were a grpphite reactor

on the outer boundary of the subcritical sectioninstead of a

layer of uranium, 4he distribution of the en~rgy release in the

subcritical section would be still more advantageous.
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