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EXACT SOLUTIONS OF S.INGLE VELOCITY KINWTIC FiUsTION AND

THETR APPLICATION IN CALCULATING DIFFUSION PROBLEMS

(IMPROVED DIFFUSION METHOD)

by Yu. A, Romanov

e . e
Kinetic Fouation, Solution of lMilnmese’s rroblem and

Determination of Albedo of Semi-inflinite Medium

The kinetlc equatlion for the sinpgle-velocity nlane problem

for an isotropic scattering Iindicatrix is, as 1s well known,
Y I
¥ o= L) yd
. P t? 2, *.P’. (1)

in vhich ¢(z, p) is the distribution function of the number of

puarticles;

is the cosine of the zncle between the direction

f flight of & p.rticle 'nd the 7 axis;

P is the parameter describing the vroperties of a

medium and is eauzl to the ratio of *the scattering eross section

angd the total cross-section (p=<<l).

The tot2l v:th length of the v.rticle i¢ tiken us unity,

i bl ik
‘, In »n erg=ymde redium E1. 1\ has the exact solution

¢(z. r)--’—[ .,+~+c, ‘J

(8) J ¥z, p)dp - C, et + C, ,-n
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in which¥,@is the particle density;

C and C are arbltrary constants;
1

tee]

1k

is the coefficient vhich ic Tound from the solution

of the trunscendental equation

"'T -} (3)
In a breeding medium, at p > 1, the roots of Eq.(S}are purely
imaginury, while the solutions of Eq.(?)are periodic.

The solutions of Eq.(z)satisfy the diffusion eguation

provided the diffusion factor in it is assumed equal to
L
L (5)

(both the velocity of the particle :inl its path lensth are equal
to unity). Solution (/) describes the behavior of the particle
density some vay frorm the Interfice nd frorm the sources vith

PTS {"ir nccuricw, Fror nuv on the n.rticle denc’ty expressed by

FQ.L’)WiIT he mown =«¢ *he asymptotic deneity, while the

FTD-TT-61-124/1+2 )



diffusion:coelficient %/\is known as thégsymptotic diffusion
0

coefficient., Table I gives the coelficients k and gﬂ\for
- 0
x
different parameters p over the range 0.25 < p < 2,0 .,

-

The solution of Eq.(i>in a semi-infinite medium (¥ilno’s
problem) can be found by the Wiener and Hopf method /1/ and is
[} Y Coan
ziven in /Z-4/ for = particular(G?’g non-absorptive nedium
(p= 1¥. Ref. /5/ sives a solution of the Hilgy problem at p <1
by the varisation method. The particle density functionfqg\én
0

¥ilno?s problem can he represented asg

9y =Cy &% + Cre™ 4 Ole- ) = n(2) +f(2). - (6)
The asymptotice part of the solution lHQ(from now on called the
asymntotic denslty), as can be seen from the numerical data in
/5/, differs fron the true density w(0) on the bouniury (z=0)
by ioproximately 70%, 4and at the distance of the semipath from
the bounliry (7=0,5) by less than 27, The =syrptotic Jensity

L ok
n(z) in ¥ilnp’s protler iz e-u:l to (see next page)

g i@ ;,,,(o)l/ L shk(z 4 2,)

*
For p -1 k can be found with good accuracy from the following (N
formula 3 1 1

- B cr——————— +
FTD-TT-61-124/1+2 K TPl - 1) T4 Op2




Values of coefficients k, Qﬁﬁ ¥

Table 1

.4-

» & Dy ] " » k D, ]
0,25 | 0,99932 | 0,75102 | 0,1171 || 0.68 | 0.84707 | 0,44600 | 0,7070
0,26 o.mng 0,74136 | 0,1332 || 0.69 | 0,83¢04'| 0.44148 | 0.7176-
0,27 | 0,99878 | 0,73179 | 0,1492 || 0,70 | 0.82862 | 0,43701 | 0,7281
0.28 | 0,99840 | 0,72231 | 0,165!1 || 0,71 | 0.81584 | 0,43260 | 0,7:84
0,29 | 0,99794 | 0,71294 { 0,1810 .72 | 0.80565 | 0,42528 | 0,7456
' 0,73 | ©. 0,42402 | 0,787
0,20 | 0,99741 | 0,70384 | 0,1969 [| 0.74 { 0.78700 { 0,41981 | 0,787
0,31 | 0,978 | 0,60447 | 0,2127 || 0,75 | 0.77551 | 0.41 0,7786
.32 | 0,99605 | 0.68540 | 0,2285 {| 0,76 | 0,7 0,41157 | 0,7885
0.33 |.0.99521 | 0,67647 | 0.2442 {| 0,77 | 0,75108 | 0,40760 | 0,7982
0,34 | 0,99424 | 0,66767 | 0,2599 || 0,78 | 0,73808 | 0,403:5 | 0.8079
.38 | 0,99316 | 0,65898 | 0,2755 | 0,79 | 0,72454 | 0,39998 { 0,5174
0,36 | 0,99195 | 0,65043 | 0,2910
.37 | 0,99059 | 0,64202 | 0,3C64 || 0,80 | 0,71041 | 0,39%28 | 0.8268
0,38 | 0,98909 | 0,63375 | 0,217 || 0,81 | 0.6a:65 | 0,292%2 | 0,8362
0,3 | 0,95743 | 0,62563 | 0,3369 {| 0,82 | 0,68024 | 0,35900 | 0,8455
. 0,83 | 0.66411 | 0,3x542 | 0,8547
0,40 | 0,98562 | 0,61763 | 0,3520 || 0,84 | 0.64724 | 0.38189 | 0,8638 °
0.41 |0, 0,60979 | 0.3669 || 0,85 | 0,62950 | 0,37842 | 0.8728 .
0,42 | 0,98150 | 0,60207 | 0,3816 || 0,56 | 0.61087 | 0,37501 | 0.8818
0,43 | 0.97917 | 0,59451 | 0,3962 {| 0,57 | 0.59127 | 0,37166 | 0.8907
44 |0, 0,58707 | 0,417 || 0,88 | 0,57059 | 0,36839 | 0.8995
0,48 | 0,97397 | 0,57979 | 0,4251 || 0,89 | 0,548.8 | 0,36520 | 0,9083
.0,48 | 0,97109 | 0,57263 | 0,419
0,47 | 0, 0,5562 | 0,455 {| 0,90 | 0.52543 | 0,36206 { 0.9170
0,48 | 0,96473 | 0,55872 | 0,4673 || 0,91 | 0,50061 | 0,35897 | 0,9256
0,92 | 0.47397 | 0,35°93 | 0.9341
0,49 | 0,96122 | 0,55198 | 0,408 {| 0,91 | 0.44524 | 0,35203 | 0.9126
0,50 ] 0,95750 | 0,54537 | 0,4910 || 0,94 | 0.41304 | 0,31998 | 0,9510
0,51 | 0,95357 | 0,388 | 0.5071 || 0.95 | 0.37948 | 0,34708 | 0,9593
0,52 | 0,94941.] 0,53252 | 0,5.01 || 0.96 | 0.34081 | 0.34423 | 0,9676
0,83 | 0,94502 | 0,52628 | 0,¢ 0,97 | 0.29625 | 0,34143 | 0,975
.0,84 | 0,94040 | 0,52016 | 0,5455 || 0,98 | 0.24305 | 0,33%68 | 0,9839
0.55 | 0,93353 | 0,51416 | 0,5579 || 0,99 | 017227 | 0, 0,9920
0,56 | 0,93041 | 0,50828 | 0,5702
0,57 | 0,92504 | 0,525t | 0,5524 || 1.c0 {0,0000 | 0,333°3 | 1,0000
0,58 | 0,91940 [ 0,49686 | 0,5945 || 1.01 | 0,17383 | 0,33074 | 1.1080
0,59 | 0,91350 | 0,491 , 1,02 | 0,24¢86 | 0,32819 | 1,0160
- 1,03 | 0. 0,32 1,0238
0,60 | 0,90733 | 0,48588 | 0,6180 || 1,04 { 0,35188 | 0,32315 | 1,0316
0,61 | 0,90087 | 0,4+055 1,05 | 0,39497 | 0,32067 { 1,0793
0,62 | 0,89411 | 0,47534 | 0,6411 || 1.06 | 0.43431 | 0,31822 | 1,0470
0.63 ] 0,88708 | 0,47019 | 0,6524 || 1,07 | 0,47092 | 0,31580 | D546
0,64 | 0,87973 | 0,46516 | 0,6636 || 1,08 | 0,50585 | 0,31341 | 1,0622
- 0,85 ] 0,87206 | 0, 0,6746 || 1,09 | 0,53802 | 0,31105 | 1,0608
0,66 | 0,86407 | 0,45539 | 0.6856 -
0,87 | 0,83575 | 0,4 0,693 || 1,10 | 0,56926 | 0,30872 | 1,0773
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.



Zn is the extrapolated length,
1I 0

In vhich 2z

for vhich an e¥pression
is given helow,

The n-rticle flux on the bhoundary in this ciase
is

. 1 . . ;. . '.
J (O -_{ p# (0. ) dp = — $4(0) )' b (k) dp — — VD, $400).

Fa-p - P (0)
The angular distribution function on the boundary

the equation

sstlsfles

ggo dy = —L2 Y
y+p 2e0()(1 - o)

*‘1

(y,vnl(Q, aXe it possible to obtaln a.prorimzte express

ons
for the function e(u)

. In the

rero ninroximtion the angular
/<3
Als’ribution is approximated by # line~r rational function
+0r
v(v) Tt '

and the constines

g_und E.ure found from the normalization condi-
tion and fthe exuct value of the flux on the boundary
1
) . Vi—-
Iv.(r)dp-l:. [vv.(v)dv- —£ .
e »
¥e Tini thit : . ;
.L_’
: ¢ ‘
%(p)=—o 1— Mg ’ .
Lt Vi (10)
yrwhhiet TS,
*% (see previous page)
tp

1 k is imaginary and the solution becomes periodic; the author amsim
made a detailed derivation of the subsequent equations in 1951,

-6 -



In a particul.r case, when p=1, Eq.(lO) becomesthe angular

distribution formula put forward by Fernri

. ey =113
l+ﬁ

The following approximation can be obtained by iteration from

FA .(9) .’ll_(F)- ‘ ’ .
zu_kzpr)j'l‘?o(l‘) g

(84 Vales "P
The function e(w) his wm exict seheiscw at/l(=-0 at other

values/u the accur.acy in determining ¢@(w). by the above method is
shot .
amdy 0,17,

The vilue 2ofp) is found from the formula

®
Ay o M-—l+p |
v W(l—l') 1

IH- )d’ (11)

The Tunction 2(p) cin be represented with u zood dezree of

“ceurscy by the formula

(o) = T
%)= I (17)

The rrobvler of refl-ction of particles {from an infinite
sn-.ce 1s =olved by the Viener-Hopf m thol., Sebmgeimis vc ind
the :11%e?0 mnd1 m~ul:r Aictrirution of the n:riicles escinine

* . ]

frer the medium $- (w) from vhe siven ntu’ r iHdetritution of

-7 -
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incident pirticles $+ () . The integral relntionship linking

$4+(p) =nd 9-(p) (0<u<1) takes the form

)
(11— 3 )01 — ) [ 2B 0 ke .

in which the function e(u) is the angular.distribution in ?’ilng’s
nroblem :ind satisfles Eq, (9) Equ:.-xtion(lfa) has heen derived by
Ambartsumyan /6,7/ and Chandresekhar /8/ using other rethods.

Using the inte-ral rel2tionship (:13) ve can calculate the lbedo
for different cises of incident angular distribution: (a) for

2 flux fror a un'form »l=2ne isotroric source cituated on the

boun vy (’h-(ll): ":-).
el |
"4 [0—«).-4» - VisF.
- - = .
. ‘Ih(r)m . 1+V1—p

(14)

and (h) for isotropic distribution of the incident flux (§s (u)=2)

. - _
A-1- 4(1':» +4 V; —£ J?(ﬁ)»’dp: '

“n1 (e¢) for unzular distribution of the flux impingine normally

to fhe surfice [$s (u)ab(p—-l)].

' ? )
A-lf—’-(l—k)Vl —-p2(1). (16)

- 8 -
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Séltitidénrof Kinetic Fauatio

Oyu~£a&a3/
m for Two Rewelelmg Scinidnfinite

Let us use Eq.(ls)to derive a system of inte;ral equations
for the angular distribution on the plane interface between two

rmella. Let the particle flux be directed from medium 1 to medium 2

The ingul+r distribution of these particles will be designated as

$+ (0) , xnd the aengular distribution of puirticles leuving medium 2

,

“nd impingine on medium 1 will be designated 489~ (u). Since on

iccount of the conditions of the problerm the particle density in
at/

N redium 2 tende to zer0/7'9‘x3 the connection: between the functions

¢+ (0) nd $- (W)is determined by FEqe QB)

_ ____ 1 — &y +(no)(l Iwo ) diy, «
- () = = o, (8)( I‘)J ?a(po) dp (124)

in vaich the subseript 2 means that the correspen®ins valiuves and
functions refer to medium 7. The other eiuation is sirilar in form,

tut 1t rust be t<ken into account thut the purticlc lensity in-

creases exvonentially in redium 1 at r=»=09, nd thit in order to

use Fq.(l? ve have to renirite frorn b+ (B) “me ~rt of the angular

L tistritutionCe(u)responritle for che exaonentinl inere-se in the

Dirticle ‘epsity 4t » >~ 9 Thus,

-

-9 .



)= O = 2 n ) — k) X

s

i
i
,
¥
¥

L
¥

|
$= (rg) (1 — huto) 1o , 17
x5 T 91 (o) dio (17)

in ehich C is the normalizing constant deterzining the flux

coming from medium 1.

The solution of the system of two equations (134) and (17)

takes the form

¥+ (8) = Bpy — 11

(1—hn @
- (E—hp w0 18)
"‘f‘)- PP ham v -

which cun he seen by direct substitution. The normalizine constant

B 1s determined, for example, from the conditlon that the Adensity

on the medix bouniary is esuzl to unity

. .
)' 90 () + ¢ (W] do = 1.

In the given case B = %, wvhile the flux on the boundary is ex-

pressed by

I :
j=59l?+(p)-?-(r)ldr=ﬂ"—"',',:‘—'_—"’" (19)

The neular distribhution on the bouniary and the flux xre

cilcul-ted by 4Aifferent methods in /9,17/.

Yo ahouli noint out twat in < nurher of cases eqnuatione of

- 10 -



type (127) and (17) can be solved if the solution is sought in

the form )
= (1)
m‘). Ry () + Ry(p) " '

(o) — R ®
. P- (PQ Ry(#) + R, (v)‘-L—“ o
(20)

in which Btk) are linear rational functions.

Ihe coefficients in the linear rational Tunctions are found
from 2lgebraic relationships derived after substitution of ex-
pressions (20) into the initial equations.

The pairticle density functionwe(2)in the two media problem,
us in Milno’s probhlerm, cun he represented as ,

$(2)=Ci- =™ -i— Cis et + fi(2)=nm(2)+ f1(z) (z2<0)

. 94(2)~ Ca- =¥ & f1(2) == ns(2) I f4(2) (2>0),
in whicha(z) is the asymptotic density and f(z) only differs
from »ero in direct proximity to the boundary. The usymptotic
coefficients %ng%é\\and ;r\'are found as deductions with

re~spect to the noles s = * of the Laplacian mode #,¢(s) of

/1

the function e(2) , vhich in turn is expressed by the .nsulur

ulstribution on tn@ bwundary' $(0, u) usin~ the fo.!iowing formul:ze
J!t- e J‘ rte (w) din

0 1 4ps l—p' X
Q.,.(s): - ’
1- -ﬂArths
‘ (/1)
. )‘gm @ _ (e
. l+ps 1—ps
®:0(s)= ’

v 11— -?- Arths



The results of integrating can easily be shown by means of the function

" e(kg)= :_“: (1 - ':"_ Arlhs) and

— 1 T (22)
t"(" 3)—- 1 (k ) R
py (k. p)
and (|‘+3)J e dp
. . R l
L (k. ‘)“.. (‘,PS)-m " ’
1 1 e . . \
b plds Cup(h p)dp K2 ]
/'+" ,‘—" 'L—Lﬁmu
lor ' S E N

é'__ o= () s (ke &) ,
The coefficients are equal to L (A &)

Cie == Rk — &) - (Rye By) (ks Ay)
.o 2y s (ks &) x (R &) *

Cy. = 2R M)c— (A &)
o SRy Ry) - (R, k) ' : (23)
Cg,., =0. . ’ -

The solution of the »roblem correspondine to the flux directed

from medium 2 to medium 1 1s obviously derived by replacing the

~

subscriot 7 by 1, and vice-versa, in the first problem. The general
sclution represents 1 line:r combination of the two solutions,

"n? in the general solution the asymptotic dencsity suti=fles the

»
followine houndary conditions : 1, Faunlity of the logarithmic

at
ferivitives of the rsymntotic density tm the extranolated points

i ."—(‘J)—::: ."L"—)— .
m(5) (%) (: 4)

* méﬂog:gb‘lig%kwthgg}yed by D. Zaretal:iyizu‘l. well (1952) after he had read the
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2. Discontinuity of the asymptotic density 2t the extrapolated

roints

m(s) __Mm(s) )
1 1(py) (25)

The functions

':.|/ wa—m - X

are given In Table 1.

The position of the extrapolated points %T and %A\in Eqs.(24)
?

and(?s)are found by the following formulze

2= f(ky, k) — (R, Ry), .
zl=f(kl' ka)"‘f(kzo kz)' (27)

in which z is the distance from the extrapolated voint to the
‘ﬁﬂvy‘() .

Interface; swk 1f z 1s positive, the extrapol:zted point is in

medium » (its puarameters have a subscript 2), whereas if it is

negitive then it is found in medium 1. The extrapolzted length

z (En. 11) is also linked to the function £, to wit: gemf(k, &).

-0
The function g(k,g) from Ev, 5 is deternined from dne of the

equiv:lent formulae

- 13 -
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: 1/ 2OM =3 (pyth b)) g4
f"'ﬂ.' "=V Se-r® JI—N e

1
oS rawm=am [t w . (28)
thef “ ')"1/ r—p ) ) 1- o de.

An 1pproximation of Eq. 10 can be uqed as %’(‘jf) P(k}

the reciprocal function of function k(p) determined from the

transcendentsl En.(ﬂ.

Table < shows the values of z. To determine their sign
we cudn convenlently use thex rule that both extrapolated poinﬁé
sre always in the .ore active medium (in the medium for which
g is greater), and the extrapolated point of the less active
matter 1s further from the boundary. All the preceding derivations
are apnlicable to 2 hreeding medium (g > 1) and the corresponding
formulae hold, since E is purely 1imaginary in this carce,

To complete the plcture let us write down the relationships

linking the true particle density znd the particle density on the

hounlary between ftwo medis with the asymptotic density and its

derivative. .{_.‘. ..(,') V‘ b3 — A ,.'(“)
v 3(h—h) () 3(pi—pi) ﬂh)

A N

- -—Pl ‘t"")
10
Solution of Kinetic Foguation ¥'ith FExternal Particle “ource

(29)

Fauations of type(}?l)and(l7>for determining the anpulsr Als-

tripution on the boundary hetween tvo semi-infinite mediz can be

- 14 -
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cont. Table 2.

. At p for the adjoining medium

2,0
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R28SEEE
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—0,0482 —0,0417 | —0,0356 | —0,0301 | —0,0249 | -0,0200 -0,0135 —0.0!!4 ~0,0073 ~0,0038
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used to solve the problem of the particle distribution around
an isotropic source located on the boundary of these media. In
this case the equations take the form

3 o) P b () (1 — by by () L,
-0 ) (1 ) Rt s Wbl gyt

{

3

% | : -
: — (o) (1 — &) 1) 93 (i0) !
W)=k y‘?. Cl=blulbdgt - (30)

The source on the boundary is normalized in such a way that
the total flux from a unit of surface 1s equal to unity. Equations
(3Q)are solved by means of Egq. 20, and the functions $+(p) and

$-(#) take the following form

be () = 72 (1 — &) o2 () 2 .
+ pr—p)e(l—Rp) 91 () 2P~ pa)w
ey P —=R) 9 (8) P )
-0 = e (b)) | 2Ga—p0r - )

Juet 21s hefore, the narticle demsity is renresented as the sum

of the ewxponentlil asymptotic lensity and the addition

Y()=Cir e +fi(2) (<O
$(n)=Cr-e* +fo(2) (z>0).

el

fdmer On :ccount of the condition of the problem‘[fhere is no

flux {rom inifinity, the pirticle density at z ~—> @@ and z — — <2

—

tends exvnonentially to zero, i.e. %i\f %A\\= 0., Just as before,
- O+

‘e the 1symntopic coefficients ure found from Fas, 71 and are enual to

- 17 -



(b — &) < (g, R)c- (R &) -
(Pr—p1) (b, k)t (R, &)

= 3 (ky — g, '
l/(*: + *a)(h —Pn) e

c’_ by — By) x (s By) - (Ry, By) =
00 D) (Ry, ky) -~ (Ry, ‘a) ) (22)
ne

- T -M e
l/(k.u.)(p.-m Ll
are the Alstiances fraém the

C.... -

in which z and 2 extrapolated points
1

to the interfices determined by 27.

o~
In the special cuse of/ﬁgmogenous medium

5 Cﬁ-==Ch+"'—-1’

M-
holz )-—me b 4 f(2).

and

This partial solution is contained in Marshak’s review /11/,

The function f(z) is positive everywhere, as a logarithmic

anomily at z = 0 and decreases ranidly as 2z increnses. The integral
2

of function f£(2) can be Tound by using the law of consebvation of

S ..
the total number of particles (1—p) jv(z)dz- 1, from which
-n L. .

. b
' jf(z)dz-LI—_"’_D’lt.:, (213

Colution of Kinetic E~uation for a2 Sphere

o vhen solving sphericzl problems in wihlch the pirticle path
it is very useful inieed to use the theorem

lencth 1= conctant,

- 18 -
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*
of the reduction of a sphertcal problem to a plane one . Accord-

ing to this theorem, which can easily be derived if we write

down the kinetie equations in the form of &ggaytﬁéﬁf a sﬁﬁérical
prohlem with a set distribution of the function p(r) is equivalent

to a plane problem in which p(x) = p(-x) = p(r). To obtain the

- -

particle density in z spherical case, we select an odd solution
of the plane problem +o(x) , and the norticle density in the
spherical oroblem +o(r) 1is expressed in terms of the particle

density in the plane problem by the formulsa

*o(’)-

I, _,
r .
(35)

Here, of course, the angular distributions do not change into
one another,

This theorer implies a number of practical corollaries:

1. In an infinite svherical problem the asymptotic solution
i1akes the form

» '

> L -

* . e -
AP =C=+Cp e -

: ’ v ' -
The asymvriotlec Jdensity in the snherical nroblem, Just as in the
nline »roblem, is the solution of the diffusion esu:tion (ﬁ)

- 19 -
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with a corrected asymntotic diffusion coefficient.

2. When deriving boundary conditions in an equi-path spherical
problem, nr hus to be substituted into the boundary oonditions of
the plane problem instead of function n. The spherical problem

with a constant total path length, in which

P(’)=Pu .'<‘R '
P(r)=p,. r>R

(27)
reduces to a plane three-layer problem
. P(x)=py X< —R u x>R;
p(X)=p., —R<x<R. (28)

Here the boundary conditions imposed on the asymptotic density

on the boundaries #+ R are the same as in the problem for two

semi-infinite media (Fas. 2/ ard 25)). When satisfying the condi-
4« L/r«p(—v'woen‘%

tions swstbemwbd-dmipy of this aporoximation the true particle

density on the boundary is related to the asymptotic density

by the folliwing e~uation, eisily obtained from(@?L

Y e et

3o—r) (29)

Nerivition of the flux on *he boundaryv is rore corpnlex, since

~

the theore; ¢ re'uction of the cpherical nrobhlem to a plune one

- 20 -



when the »ath length is constant is not applicable to the flux.

The varticle density function may be represented as the sum of
LA e
the asymptotic density n(z) and the cﬁtﬁ.ﬁﬁte_g(z). In the plane

problem the particle flux on the bouniary (z = 0) is expressed

In
in terms of the integral of function £(z) Wy the following way

[
JO==DuDt| - -p)f £z (40)
On the other handi, Eq.(??)gives us

0) = — m(n)
/O)==Pa 1)

The relationship for the flux, similar to Eq.(AO)ytakes the

form

. ..
= | _O—p (" .
/_(ﬁf)--ou-;r R ..-‘ fiyrdr.

: (407)
'3' &/f’f‘"ca/"»lv(;

If the conditions pwhibensdsbdty of the approximation are
sitisfied, hy virtue of the theorem of reduction we obtaing the

hi(r)r = fi(2)
rel:tionship A o If the total vath length of the rarticles is

constint, by expressing f,(r) in terms of fxfg) in P1. L0? .nd

o\ “A
‘. cubstituting the integrals of T {f (z)dz is found from Fqs. 40
L d l - - -
§ h(2) 2dz
wnd 79, vhile 4« is caleulated by differentiztion at point s= 0

- 21 -
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of the iaplhcian modes of the particle density in the plane

problem (21&7, we find an expression for the flux in the spherical

problem
o PV [4(r) N
j(R) Ry(p) | or r-.R{-{.. Rlraras
+2 9 L. (e 0 — e, 0] (41)

The functions g(g,g) are determined by Egs. 28; in(%l\these
functions are taken at s = 0. The subscripts £ and € nean that
the corresponding parameter refers to the internal or external
medium, Eq.(él)obviously still holds when subscript i‘is replgced
by subscript 2 by virtue of the bounlary conditions,

Use of Exact Solutions to Calculate Diffusion Problems

(Improved Diffusion Method)

The anproximate method of calculating multi-layer plane
an? spherical problems for media with a constant total purticle
rath Jength cin be reduced to thc folioving: an asymptotic particle
Aensity function, satisfying the diffusicn equation with un aspmptotic
diffusion coefficient, 1s introduced in eich layer, and boundary
G
conlitions obtained fromjexact colution of the two media problem

1re imposed uron 1t at the boundaries 2t the extrapol:ted roints.

The boundiary condi*ions in the plane prohiem/ EWF.<?A)3nd(?SS/ can
- 22 -
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be reduced to the equality of logarithmic derivatives and
discontinuity in asymptotic density at the extrapolated points
near the boundary. As is clear from a survey of American research
e,

on(E;netic theory of neutrons /12/, & similar method called the
bouniary voint method has been worked out and is being used in
American calculations.

rpplecoli L ra

Tuestions of the accuracy, limits pebitoaddtlty and(ﬁggsibility

of using the method to solve spherical problems in media with a
vzrying total particle path length, in cylindrical problems and
problems with distriouted sources of particles can best be illus-

trated by solving specific problems.

—~
Critical Dimensions of a Plute and Sphere

If the origin of the coordinates ic selected in the center
of 2 plate, the asymptotic particle density in the plate is ex-~
rressed by the function

n(s)= Beoskz*.

The asymptotic density uat 2 puint’the distance of which from the
boundary is tiie distance o:i the extrapolated length is eouzl to

rero

* For Purposes of convenience k will mean the imaginary part of the trans-
cendental equation root from now on At _251



n

The critical thickness of the plate is

B(‘;"*"o =B¢03k(—:-+z.o)"°' (42)
¥e should point out that the same result 1s found if we use
condition(?A)for the equality of logarithmic derivatives at the
extrapolated point as the boundary conditions. Since there is
no reflection we can assume g = 0 beyond the plate. Hence, k = 1
and the logarithmic derivative of the asymptotlec function in the
ficticious medium beyond the plate is already equal to -1. Accord-
ing to condition(@%} the logzarithmic derivative of the asymptotic
density in the plate 1s equal to -1 at the extrapolated point 2y
i.e.,

o mé(-:- +"z).=.l.

o (471)

o(1) = 8(x—1)]

At p=0/2atp=0 A /y Eqs.(??ﬁand(g%)give us
= =

't
Zmgy— — , -
% ’

sfler ~hich it is clear both critical conditions(42)and (4:4)are
equivilent. In order to deterrnine the degree of cccuracy of the

formul= for critical dimensicns of the plate, Tihle 2 compares

- 24 -



caleculations of the critical thickness by the variation method.

9
. !

. formula for the criticz2]l dimensions of an active sphere can

be obtained in similar fashion

’ R--‘.....g.':_'. _.ﬂ
C & & | B
(42)

/provided z 1s represented by Ra. 12/,
0

Iable 2

Values of Critical Thicknesses of the Plane Layer Without Reflector

. e e = BEK o . . g .
4 : Variatio 4 | From eq.|Variation
“y method | () method
"' . ) , . ‘. of -0 |
0.1 0,142 0,157 0.6 0,482 0,48
0,2 0,242 0,251 0,8 0,560 0,56
04 |- 0,388 ,093_9 1,0 R ,0.53‘) - 0.059

Comp+«rison with numrrical calculations chows that vhen
netermining the critieal radius, the inaccuracy of Eq.(AB)does
not exceed 1% anywhcre over the range of P. The high degree of
in-ccur-cy in the siven case is due to the fact th-t the critical
T:3ius =5 ecalcul~-ted by(,B\at g—%)co chanres cuccessfully to/@‘ZZL
liritine forrul- ~udted in /13/.

Critiec~l Nirensions of ‘etive Sphere “urroundgd by Epherical

o L.yer of Inert ZREcflector

Tet us consider .n ctive rnhrre <urrounridd hy = epherical

- 25 -



layer of inert reflector. Let us assume that the particle paﬁh
length in the reflector is esual to the total length of the par-
ticles in the sphere.

The asymptotic density in the active sphere (E > 1) is

equzl to

. asinhr i
u,r.f, .

At v = O the function n/ﬁ\ is finite, In the reflector (p = 1)

T
h-ﬁf}.

The following boundary conditions are imposed upon the functions

and n ¢

AT IX

1) the function nﬁ\disappears on the external extrapolated
/e

boundary R+ 0.71
/e

. . N C o e ev o, 0w
ny(Re+0.71) =B + =5 =0

b) on the boundury of the active srvhere (r = R) 3t the ex-

-

tr.polated points the logarithmic derivotives of the functionm nr

re e uuxl to

ar BN
o

.

"’.+'.'

.!ﬂhﬂ.l T Ay
. '14;49

L
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Since both extrapolated points lie inside the active sphere

and z

(in the sphere p is greater than in the reflector), z
- ~1 -2

are negative.

Ag 2 resulft we obtain a Tormula for the critical dimensions

T\R=°E‘ __:'"c.gk(R'_R +0,7l —")—z‘. (44)

sf cppliebGG

To illustrate the accuracy and limits neivisbeshddty of Fq. /4

let us comp=re the critical radil calculated by(ﬁﬁ)and calculated

oterts '
by Remesile equation for p = 1.724 (E = 1,856, El = 0.0458, z

N

2

-0.0865), at Aifferent values of the velative thickness of the

reflecting shell8 = R‘;RTuble 4)
Table 4

Critical radius of active sphere as function of reflecting shell
thickness (p= 1,724)

X R
'§ From equation | from numerical | from equation

o calculations ]

- ‘.m . - . ' ‘.”' A . [ 4
] 1,097 ° 1,108 T e -

) 1,046 1,08 -

9 0,995 1,008 -

a °Ow o.m o

3 0,937 0.9 i -

o o.”' 0.” -

)

[#9
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Multiplication Factor for Point Source in Homo,qen%us Sphere
A

The asymptotic density in a sphere can be represented z2s5 the

36 ~ ‘
sum of the homogenous =nd inhomogeneous sélutions of wee Eq. 20.

!

e . Cohbr
u(rL——r’ + o

T

On function n(r) we imposed & bourmary conditlon u(R+ '") 0 from

which oy ‘:hk(R-l—M—-r)
n(r)=—1
‘ : " . rs hk(R+°"
The flux through the external surface r = R is found from Eq‘.(lx_,l)

As 1z result ve obtained the multiplication factor @ which is equal
. to‘f ratio of the total particle flux ererging through the external

surface and the total narticle flur of the source

Q= l/m-p) g RS 0) \
. P kRt

(45)
F'mwtion(/rrﬁ) zives us the mecan vath length of the particles

in the -~vhere

T=lim 9=L - _ 1 (46Y
""L'."n' p—1 0l + oo R+0.1l +3(R+071).

At R 2> 1 the error in Fq.(/;é}doos not exceed 1% =nd at P = 0

it eiver sn incorrect 1imitin- vwine, and -t low B ve cun ohtailn

l 1 hv *he cuccessive collision rethod,

- 28 =
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Application of lethod To Solving Svhericzl Problems

»

In
In Media(ﬁﬁich Total Particle Path Length is Not Constant

The main difficulty in solving the spherical problem for
media with different total free path lengths 1s determining the
conditions which have to be imposed on the asymptotic density at
the interfsace . It has not been possible to find analyticalgexact
solutions for this case, but the derivution of boundary conditions
from numerical «olutions reauires ﬂﬂhvﬁ£L¥ calculation?ézundary
coniditions obtalned by numerical calculations are only found in
scientific litersture for a few individual cases (absolutely
absorptive soheres and cviinders in an inert medium).

In one of his research projects the author zattempted to
compile boundary conditions for the spherical »roblem with a
non-constant virticle path lenegth by introducing 2 further dis-
continuity in the neutron density on the interface proportional
to the flux and different in path length, But the bhoundary condi-

hoe
tions when corrected in this vay s«iew 2 small sphere of applicebility
2nd do not solve the set task.

The follovines annroximite system may be put forward for

c.lculating the eeneral case of a v.rving path length. ¥hen there

- 29 -
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are no sources, the following diffusion equation is satisfied
thvoughout
divigrad Dy +(p — ) In =0,
~ (47)
)n
in which 1 is thetotal nath length (or transport-length ,sdawdmc
non<isotropic scattering, in the lahoratory coordinate system).
The equation contains boundary condition for n on the disconti-
nuity boundaries 1 and p:
1) continuitly of the flux on the boundary
o gnd'Dm n ,.-';, grad Doz ny; .
: : " (48)

b) discontinuity in particle Aensity:

Daisn = Do;n. (480

Conrltlons(§8) (j {) AV l differ from the exact ones for this
B!

fé%;flbionq 4 and( ﬁ In Ecs. </8\qnd(é8{)the boundzry condi-

‘jonq(ipnoqeﬂ 7t the true bound. ries, and not at the extripolated
points, snd the density discontinuity <t the boundary is %22

(A
and not ;: . Since‘g is usually considerzbly emaller than the ft)k

length , and the function Qo]ﬁ is almost consiunt over i wide

- 30 -



ruenge of varistion in g, this approximation proves satisfactory
in 4 number of cases. Since E_is maximum on the external boundary,
the exact boundary conditions are best kept fkw% . Instead of
conditions(}Sfl the following conditions are often imposed at the

boundary

These conditions are not a corollary of the differential ecuation
(47)/but ire more exact in a number of cases. It should bhe poilnted
out thit in 4 case in which the path length in the outside layer
of the spheric.-l svstem tends to infinity, conditions(ﬁs)and(g8)
40 not give a3 correct limiting process.

Problem with Distributed Scurce in Sphere

*
To solve the problem using thé;hoery of pertubations , let us

replzce the true distrihution of souvces a(r) by :n enuivalent
(r) = te(r) the v:lue § being found from coniition
Tfo3av = [qeav. . (49)
TN
*Iter this the problen me@e {inideg the critical value of the
n.remeter 'p"-p-_{-‘; at a known value of the srhere radius R /frorm
Fw.Cﬁﬁ].l#b(r)is the eizenfuncticn in ihe criticel stiite. Fronm

% In the general case of varable Peierls parameters and distribution of the
- 31 - (see next page)




isotropic sources g » the averaging conditions for the theory of
perturbation take the form

. o f B—a)mdV+ § endV = (F—7) +o8)§ ndV;
' [ofdvas ey -

(f is the density of the particle flux), The condition for averaging the
parameter is written down in the diffusion approximation., The theory of
perturbation for a kinetic equation was developed by Fuchs and, independently,

in the USSR by N.A. Dmitriyev (1948),

- 32 «



the condition of particle balance we find the outward flux and

the multiplication fastor which is equal to

Q=—"ﬂ= 1.- () [0 dVS goav
L ' (R)—p) fqaV.S v (50)

. state .
Eo.(so)is exact near the critical x3te, but its accuracy is

satisfactory 1In other cases as well, even at p = 0 (absolutely
absorptive medium).
For 2 source distributed throughout the eigenfuncticn, Eq.(ﬁO)

1s exact for any values of R, and the multiplic.tion factor is

“_ N r;—l .
-97‘+;6F;’

Below ve £ive formulae determining the eigenfunctions and
its intesrals for @ case of an active svhere. The integral f¢3dV
in the critical state 1s expressed, iccording to the perturbation
theory , In terms of the deriv:tive of the criticil radius vith
resn ¢t to the nparqreter p

[ataV=ppr(Ry =R 22

The ingrar-l is found "rom the nariizle numter eﬁlance; thue,

5, i S,
.

.

j' b dV = ERS (R
—1

- 33 -
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For an active sphere in the critical state, Eqs.(?9>an?éi$give us

the follovinz relationships
IO _ypREIEO

K] . R
. Yo _ )
TS V3 Ry

For =z source with a constant density, we obtain from Eq'(ﬁo)

Q=1+ b X

» ’ — _d_R.
=R (-F), .,
X!R (K. 0F
R

For a central point source, Eq.(50>gives ug a formula colnciding
near the critical state with (Aé.
This method &f calculation was then applied to the solution

ol' & number of specific problems.

.3 -
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Approximite Wethod of Calculati

_ Spherical Reactors with Infinite Reflectors

by G. I. Marchuk and V., P. Kochergin

Let us consider a critical reactor in vhich the active

i

o
!
<
4

ek

RS

one of the r~dius R, mmt which is a spherically symmetrical

ax P WE

neutron source, is surrounded by an infinite reflectors there
the

are no neutron sources in/reflector. If the origin o the co-

ordinates is selected in the center of the active zone, the

solution of the single-group diffusion eauation for the neutron

v Tlux in the reflector takes the lorm /1/

o) =c .
r (1)

The effect of the reflector on reiucing the eritical dimensions

= ‘ (o ty, IR 3 .2

o
of the renctor 1s descrihed hy the effrctive zdditiems

WR=R.—R, (2Y
in vhiech Bé}jq the exir.pol.ted radius of the reuzcwor vithout a
r-{lector.
IL The eTective 1iiticn can 21so be derined us the length of

*he line'r ex'r rol=tion of the nemtron flux in the recflcctor on the
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boundiary with the reactord?s active zone

RNe— ———2 L = —
o .. d0/dr =R _L
o N (2)
: ®

{rom the equality of Eqs.(ﬁ)and(g we can determine

. ]
XY T 2

(4)
Ir X~ and R/Q>are knovn, then by solving Fﬂ.(A\with respect

to R we obtaln

'R'==, Ry —2+ VA+ (R
: ' 2 !

(5)
To m-.ke Lhe rsadius positive, : plus sign is put before the root,
v convenient ~uuntity describing the energy =pectrum of the

Liin .
reflectorlecs reactor is the so-czlled cadmiwmn ﬁ&&dh chamber ratio

- a=15 B
Cdl\-._j.:{!!,g(u) du,’ jv,z:,q(u)da. : (6)

e
The v-ilue >\ of the Tunction of the cudriem v-tio is determined
= ‘
v . eone Twe of the critical narameters RQ and R ) derived by

zolving the mulrtigroun di"fusicn enuutlons ~t the riven Jensifies

o cf the nuecler fuel .nil rolerator, ug vell is <t the riven uranium

-
*

N

5
enrichrenl vith resrect fo isolope U (for ex-iple, 1007,
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Fige 1, Function A= Ri—R Ty for spherical reactors,
U0 — Hy0.

The critical size of = rezactor with an infinite reflector
with other enrichments nd the came fuel and nmoderator densitles
73 .
ie enlculited from Eae. (.>u31ng Z zraph for the function X, . BDut
first '« rultigroun calculation of the reflector lwmmk reactors has

ta he mde Lo determine R/é} and the cadmium r=zatio,

\
Gy ‘x
"he ¢r .ths of the functicn for ~yetems vith water, grarhite

D .
aniesw be;nLLAM- raflectors zre riven in Figs. 1, ¢ =nd E/reﬂoec—

tivelv. Corn-ridon of *he critieczal dirensicns of the -ctive rone

o

for th se cv-ters, drterrined by re.ne of the rultigrcup clcul-tion

in I%e * rers tv lLorschuk .n? othere {see »m, 29, ¢, and 57 in the

N
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A w
nresent collection) an? by E@.(ﬁ)iﬂ:ﬁ!ﬁ vice ophere of variation

in the ratiosa=p/feps, are given in Tables 1 and 2. The asterisk

denotes the radius found by (5).

Discrepencies in the critical rass lie within the Jimits of He

R

sccurscy with which the multigroup calculation was made, and
do not in eTfect exceed 10%.

Since }\ is deterrined by means of the multigroup calculdtion,
it thereby tnkes into account the retardation effect of the neutrons
in the feflector? hence %,can be both positive and negative,

. According to the effectiveness of the reflector.

It follows from Eg. 5 that vhen X varies between =~ oo and + oo,

R viries retveen 0 &nd B@X’ and

(7)

R
N

€]

1the value A‘remvins positive for the system U9\: %AQ GK =
[y 2 : “UL
6 g/cm ) i the wehe® of variation in the cudniur ratio under

IL consi er .tion, .ni the eflfective =z2ddition SR is therefore smxller

th'n Ré}/: rhrouchoutl; 4+ 4 ceriqin viiuve ¢f *he cudriurm T"tio;
- - 42 -
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s

in the systems U - C and U - Be, A changes its sign and becomes
T .

yegative, wk by virtue of which the effeétive addition in this

region becomcs zreater than R /7. This also follows from the

Tubles.

e
We should point out that in(ﬁﬁiculation of the critical

2

dimensions of the systems UQ/CPUQ/CQ/Q (qf O:/K%O =6 g/cm”) from
2 2 2 U'). Wy

M»)aubh
Eq.(5>it is vossible to use the function.x gshowvn in Fig, 1, =

confirmed by Table 1, in which A , and the uranium is nutural,
. ‘ - y . .
This fact shovws that the xwwgk granh of thc function X does not

chinze when uranium is replaced by plutenium, provided the comvound

/

in which they are vpresent exhibits the same density. It probably
re-

does not ch.nge either when ursnium or plutonium are/placed by
wnother fizglile element. Thus, we are in = mosition to culcul te
the critic:l misses Trom Eﬁ.(S)for any combinations of fissile

——— B
elerments meh in the given comporhd, i the eraph of {unction N is
svi;il.rle.

—

To leter:ine~ the criticql neszes F coherictl PEACLOTS ( Wl bk

‘nTinite refleciors -t o*her fuel nd noler tor Jensities, it is

eszentil to cileul.te ‘he criticul nurimeters *v mewns of multi-
:Pcuvie1u:tions ﬁtg&ii?fusiEE% e :ny enrichment of the Fuel,
- b4 =




b O
(to determine the function N .

. For@ reflectorless reactors there exists a2 I-dkeness
/2/, ¥k® and the critical dimensions can easily bhe converted when

the *fuel and moderator densities vary. Let us now consider a system

consisting of two components.

P
. -

If we fix G-p_f'/pm, the numbher of fuel nucleacae per 1 em is

determined in the following way

.
k- 0
L4l (8
£ M

* . . . 1
in vhich p"-gy (g is the ivogudro number;f{‘ls the density,

g/em 3 4 is the .tomic veight).

If 1’ and ‘K‘ vary, Pg and Pp will vary in identidal

provnertion, hence to ch .nwe from one system to the other the

} = pgth

—_ 4 ) n - - . 4 L4 L4
m.crosconic omesr sections have to be multiplied hy A . Here,
f0 18 not to Aisrunt the multizrour ?iffusion ejuztions, the linear
Aimensions hwe to be divided by the siiilarity frctor g .

@:8—?: .

~~
~O
S—
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The curves shoring the critical mode as & functlon of the ctritical

volume when %& and m”A change in the sunme ratlo are transposed
¥ m

parallelly without changine the shape, since the similarity factor
E in this case is the same for all @ .

It lnd’( 40 not chanze in the same ratio, and the similurity
M&F‘L da & VOM )

PN i
fuctor therefore depends on X s the lLead=rabume ﬁurve§¥;re still nqve

Al h, o et G G
SEESTAe? , epsab-Bgom the transfer,

- 46 =
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71

Footnote on page /{ of English text:

T ”
In physical meaning N is e the reciprocal of an effective diffusion length.
Some authors use )\ in the effective boundary corditions method /2/. In this

work )& is considered from a different viewpoint.



. REFERENCES

- oo MR IR

l. Glesston S and others. Fundamentals of the theory of nuclear reactors. Moscow.
For. Lit, Press. 198,

2. Galanin A. D. Appendix No. 2=3 to the journal "Atomic Physics" fskidiximeimpxprimkedyxx
Moscow, Atomizdat, 1957; Orlov V. V. In coll. "Neutron Physics" (in brocess of being
printed) .

3. Shikhov S. B. "Atomic Energy", 6, Lssue, 2, 182 (1959).

A - 48 -



"
i
it
14
L

\ ot S

USE OF EVEN PPROXTLIATIONS IN SPHERICAL HARLONIC 1.ETHOD

by 5. Ya. Rumyante<ev

®hen colving the kinetic Boltzmann ejuation by the spherical

harmonic method we mnke use of the so-called gﬁ\approximations,
N

in which N is the order of approximation. In particular, the

well-knovn diffusion theory is identical to the gﬁ\approxi@ation.
1

If it 1s necessary to make the diffusionsmmse theory more accur:te,

[£7]

we ¢un resort to =peoroximations of hicher orders, :nd it is usu.lly
uniervstood thit this

neans the P, and P, approximuitions, or,in
7> A

th
other vords, ipnroxim . .tions & exclusively uneven orders. %o far
/ L

L

there h~ s beer no mention in scientific liter-~ture of any ex mples

of the »r ctictl :pnlication of ithe arnroximations of «ve

T™e poessibility of using(?;;aopr ¥imation ie of particular

n oraers.

interest cince there is reason to believe thut it ourht to he more

1eeorcte than the ;\ apvroximation (since it is one o the follovine
1

crder) n? t the sime time lesc curmhersome th-n ihe %A\apnrﬂxiiw—
e
*ien, In m-ny :-ses it could he s-fi~fuctorilv used i8¢ .. corveet

5.
=

to the iif’usion theory, instead of P ,

2

"he reisen why *the nven arprowim tiopne :re ionored ic *hut



the number of genuine solutions in them, and conseasuently the
nunber of arbitrary coefficients in the general solution, is
smaller than the number of spherical components reftained in the

expansion of a distribution function. On account of this,1t is

impossible to satisfy(ga the interface of two unlike mcﬂlq)thoqe

rouniiry conditions which are usuzlly impozed in the case of
uneven avoroximations, to vit, conditions of continuity of all

T —
these spherical hammonics weme individually. (It should be pointed
out that in non+~unidimensional problems this difficulty also arisés
in the c.se of uneven .p~rozim:tiong.) Below vwe =zive =a brief descrip-
tion of this =wethod of formulating the boundury conlitions, enwubling
us to use the ~poroximations of any orders, including E%\and the

I'd

other even ones. For the s.ke of simplicity we 1llusir..te the
wcthod with the eveoemnle of -+ pleine unidirension:! nrotlem. s
rez . ris syrbols, we are keevlne to . D. Galanin’s hook /1/.

Let us condider the system of equations for the spherical

harmonic method

) !-u,
) ﬁ LqF;:LL“—0w4n<m)

(1)

This system contains an infinite number of equations. The
« 50 =
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1 WERYETL

R

P approximation is that in the equation corresponding to n=N,

N

the term ;;:Lj;+, is discarded, and the system then becomes

finite, Seeking the solution in a form such that

S =5 I | (2)
we reduce the differential equations to normal algebraic ones.
From the condition that the determinant of the system is egyal to
zero (condition of compatibility), we find for X a characteristic
equation, the roots of which are,Eiéenvalues of the problem.
It can be shown that the characteristic equations for different

%ﬁ\approximations will take the form of polynomials

-

" N=1 a2 — 3 =0,

N=2 (5+4¢)a?—15¢=0, o
N~3 9a'— (554 35)a? + 105¢ == 0, 0
N=4. (64¢+16l)a‘—-(735z+315)a’+945c 0.

HGre ‘-l'_'l—Lc.
. s

3)
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, speEats:

This type of eguation corresptnds to a case of isotropic

scattering, when all the ¢ , except for ¢, = 1, are equal to zero,
n

%\

P
This, however, is mm of no importance in principle.

-

As we see, the degree of the characteristic polynomials with.
respect to X 1s equal to N.+ 1, if E is odd, and N, if E is even
(this regularity exists as well for N > 4). Consequently, the
number of :ﬁgéhvalues of a%“, and therefore the number of partial

solutions determined by Eq.(z)at differentAyU will always be even,

and equal to N + 1 or N, according to the parity of the approximation.
Thus, the number of arbitrary coefficientss in the general solution
only coincides with the number of spperical hammonics for uneven N,

for in the P approximation for a plane unidimensional problem the
N

-

-

number of them is equal to N + 1.

Eqs.(l)still hold even when their coefficlents reflecting the
properties of the medium are arbitary functions of the coordinates.
We can therefore consider that they have been written down for the
medium as a whole, and that in a heterogeneous medium the material
characteristics 1, )( and c take the form of pilecewise-constant
functions.

Let us integrate each equation from the arbitrary lower limit

- 52 -
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x;‘ a, and get as a result

2"+3fl+l j l‘.-‘un fdx +

| +[’7—""+2n+a"“1- . (4)

There is always a @nction under the integral sign, hence
the right hand side of Eq.(A)is always continuous. This implies the
requiremnent of continuity in the expressions

J fn l+

u+3fu+l .'(0<"<“i)°‘

(5)
This requirement should be satisfied as well on the interface

between two media.

The combinations aré coefficients of the serial expansion

J
with respect to the spherical harmonics of the function f(x, ©)cos?d.

Indeed,

B+t '
IfcosbP,(cosO)dQ-— o S+ 2.+3fm
(6)
Consequently, the system of conditions (5) can be considered as
the continuity condition of the function f(x,®) cos®d. . As we see,

~
contditions (5) are equivalent to the continuity requirement of

the integrals

- 53 -



§fcosd Py(cosd)d2 (0 <n< ) N

—
—

At m; 0 we have a continuity condiltion for the diffusioh flow,

In =gy T
In the P approximation 4 s wWhich implies the continuity
N

-

{N /" Taking this fact into account and using J 1, we arrive at the
- N-

- —

mecontinuity £ etec., It is not possible to draw a similar conclu-

-E_lf
sion with regard to the functions f , f

N “N-1/

and so on, They are
only part of the continuity condition in the form of combinaticns

(5).

Thus, conditions on the boundary between the two media reduce

to thelcondition dmﬂf&r the following values,

Iv-vi fueai fu-s oo fous
In-vy In-3; In-s -+ Joy.

(8)
The minimum value of the subscript in functions (8) depends on the
parity of N, The number of Jjoining equations is obviously even in
y
every case, It 1is /difficult to calculate that for an uneven N this
N
nuzber i3 N + 1 , and for an even N 1t is N, i.e., 1t A also

coincides with the number of arbitary coefficients in the solution.
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In particular, for the gﬁ~approximation we only find two condi-
2

tions, expressed in the continuity of the functions

ha) xS+ 2100,

Typlcal of even approximations is the fact that the scalar
flow, which coincides with the function f (x) up to an accuracy
0=
/"\
of the mk normalizing multiplier, experiences a value at the
interface wheégéh drops as § increases. When there 1s no abserption
in either mediup, the discontinuity disappears.
in
For uneven zpproximations in problems/which the number of
conditions(ﬁ)coincides with the number of spherical harmonics, the
T -
s conditions derived are identical to B the continuity condition
for each separate harmonic.
It has been demonstrated in Ref. /2/ that in the general case

conditions of type(?)should be derived from continuity on the

boundary of the integrals

" ff19)cos(9) Yam(@)dB (—n<m<n, 0KASN), )

the
in which v 1is normal to /\hboundary,
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gnhqare spherical sunctions of the general type which can

o

be selected , for instance, in the form

cosme |

Yu.tm =Pym (€08 a){ s

&
ghm are the Le%tndre joint polynomisals.

-

(See /3/ and other courses in mathematical analysis for spheri-
cal functions in greater detail.)

Conditions(gl the number of which in the general case in equal
to g(g + 1), make the problem a closed one, irrespective of the
nature of the geometry or the parity of the approximation.

The numérical examples and theoretical arguments show that
in these cases in which the use of approximations of a low order
is generally possible, the 22 approximation can make the 21 approxi-
mation considerably more accurate. At the same time, the laborious
nature of the g2 approximation, compared with the gl, increases

only slightly in most cases of practical interest.
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CRITICAL MASSES OF URANIUNM CRAPHITT REACT(RS

BY G. I. Marchuk, G. A. Ilyasova, V. Ye. Kolesov,

2z
V. P. Kochergin, L. I. Kugnetsova and Ye. I. Pogudalina

Introduction

No detailed information is available so far in scientific literature on the
critical masses of uranium graphite reactors. In view of thisz the need arose to
make the relevant calculations for reactors with a wide variety of neubtron energy
spectra. Some verv interestineg calculalinonsg have b-szn made by Safonov, bul they

. o . . . . 2358
relate to reactors with 1007 enrichment with +h~ wranium isotope U -~ /1/.

This paper deals with the problem of the critical masrces of uranium graphite

reacto»s with different degrees of enrichment.

Basic Equations

In most cases the diffusion approrimation is swuificisnt to calculate the
critical masses of reactors. it is ascumed that the neutrons in the regctor are
moderated by elastic and non-elastic scatteri: ;. lThe eflect of neulron thermalization

is taken in%o account in the low-neutron snergy region.

The multi roup system of equalions for the reactor takes the lorm
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vD’w’ 8’9’=-— ¢ -x'Q(r) LU

q"-' l—ll/, g '

Q(r)- 2’?‘+'/E,,°+QR

(1)

. . [ 123} . .
in which /=- 3:31.1-14-3,.. J=12 .. m

group
are the neutron=spectrum averaged cross-sections of

Here

and
moderation;/ﬁgg-elastic scattering, and the total removal and fission cross-sections,

while D is the 4iffusion coefflicient

Lo D L=y + B

R 3 z{'
in which Sf\ is the elastic scat“ering cross section, and
He » is the mean cosine o” the scaticrin: angle.

I b2 hich-eneryy resion, it is advisable to averagze the

- 59



scattering,//capture and fission cross-sections with consideration
for the fission spectrum, and in the intermediate energy region
*

with consideration for the €4k Fermi spectrum . The constants
D, E, &and I Tfor the heat group have to be averaged over the
steady-state neutron spectrum in an infinite homogeneous medium,
taking into account the thermal motion of the moderator nuclef®.
For this purpose we use the model of a single-atom gas moderator

put forward by Koen /2/. The corresponding equation for neutron

xx
density N derived in Wilkins’ differential form /2/ 1is

_(__._'gx) +4(_- )N.

(2)

X =

in which ?T (! is the neutron velocity, P is the absolute tem-
perature of the medium, and k is the Boltzmann constant);

—l/ T m)' ~ [(tZ)y 1s the moderating power at E = 0.025 ev].

The function y_(a.c) at x = 0 satisfies the conriitiomlj((_)): N’ (0)=0,
N"(0Y= const. When solving EQ.(2>we find the function N(x), which

is then used to average the physical constants:
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N o il

. T T xy - ’

) xN(x)l.x
e

Xep E
z}”(‘)dx

2" = h T xr' ’
1 xN(x)dx

in which 54& is the boundary separating the thermal diffﬁsion
region from the moderation region, and
2, 8; is the absorption and fission cross section for thermal
neutrons /3/.
Considerable attention should be given to the resonance neutron
capture in the intermediate emergy region. Twelve resonance levels

— 235 ;
have been calculated on e U nucleéb in the capture cross section

238 ;
and four levels on the U nuclese, The correspénding probabilities
of avolding the resonance capture for a particular 1sotope are

calculated by the formula

.
<e>y=e ’.“(7')'
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T

Here n is the resonance number, and

/S is the number of nucle"é of the absorber per unit of volume,

The effective resonance inéegral is determined by the formula

Sy (T)= o AR
e | V1+n,

D,
in which %‘/ is the total resonance integral at the 1level with the
number n, and

}'_ is the temperature of the medium;

. . ammm
8

Alp,,:-:-"- A is the absorption em cross section at maximum re-
N ”»m
sonance;
L;a. 18 the potential scattering cross section );

.- 1s @& factor taking into account the Doppler broadening

of the resonance lines due to the effect of the thermal motion of

f'/

moderator nucleﬂj;
_t.--?—(l‘,. is the resonance width;
. . On /.
] [ ar
A,:? -;'-‘-E,,).
v
The functionn( h) 1s turbulated in /4/.Markelov and Tyuterel?,
have put forward a simple interpolation formula for calculating

this function
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,,(E ,,)__{I+Vp'+h+l—-w'—ﬂr+l if 0,09k,
i 1,05, if £>l

in which . ' - -
- ‘ l-h(ons+e). Voo

r—L‘—-omwm

Ry
asghate

This formula was the one used in the calculations.

If the group with number J contains so-called resonances,
we calculate the total probability of avoiding resonance capture
in the group < ¢/ >. Here the density of the moderation of the

o~
neutrons gge in the group }

0’ éuu

=1
has to be multiplied by the factor<¢/> .
It should also be noted that there is a definite probability
235
of fission at the resonances of U « If the probabllity of resonance

capture with fission is designsted 1/(1+ o), then the probability

of radiation capturee 18 equal to O(/Q/ (1+ %\). The total number of

235
fissions caused by resonance capture of neutrons on U nuelei takes

the form
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Q= zv,quf/.'

in which Z ,__<’>.
l+c, '

235
and summation 1s with respect to all the U resonances reaching

the group with number i.
Mu up S m of Constants
The multigroup of physical constants has been compiled on the
basis of published data.

v
<;;jthe fission soectrum regi éii-system of constants has been

235
put forward for U and U Jgef. /5/% In the region of inter-

mediate energfes the system of constants was derived on the basis
of experimental data processed by Malyshev /6/. The constants for
the heat group are taken from Ref./?ﬁ The averaged group constants -
for graphite have been checked by calculating the neutron age in
the graphite. The newtron age up to the indium resonance is 318

2
cm , which tallies well with the experimental value.The multigroup
system of phystcal constants is given in Tables 1-3, and the

235 238
resonance parameters for U and U are given in Tables 4 and 5,
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1| —res54 0915 os674] 22 | 32| 43 |o00¢ |21 | 163 4.30.008 a.au* 1,44 | 0,353
2 | 40,0754+ 1,00 0258] 255 | 319 | 4.8 |00 | 113 |0 | 4.8 oow]o6w 216]0.6x
3| 1004+ 1,625 omet] 1,977 316 57 }o050 |03 |0 | 5.80.080]0.77287]0.77
4| 1,625+ 2,25 0059| 1,9 | ‘335 | .74 |00 |o4s |0 | 7.4)0.00]0,888 3.41 | 0.886
5| 2250+ 3.000 00269| 223 | 423 96 |006¢ | 045 |0 | 950,080,948 3.9 0.9
6| 30 +3715{0002! 277 | sal 1.5 o005 {049 |0 [11.3}.092]0.909] 4.33]0.9
T 375 4+ 45| 00031| 354 | 642 128 | 000 |05« |0 |12.4]0,000 0,90 ¢35]0.9%0
8| 45 + 625] 00010 49 | 840 145 0115 | 0,67 |0 |14.0}0,123 | 0,99] 4.4 | 0,90
9] 5254+ 700) 0005| 7.1 | 123 | 17.¢ | 00008 | 1.4 |0 |12 88* 0,424] 4,44 | 0,424
100} 7,00 + 8,5 0;0000] 149 | 24,6 | 23,7 | 00577 | 400 | 0 |14,9 '0.0616 0,495| 4.4¢ | 0,495
‘1.l 850 + 9.5/ 0 270 | 4,3 | 35.4 |o0865 |02 [0 |21 _“.s.k_ 0.743l 4,44 | 0,743
12| 95 +105 | o0 3,9 | 67,4 | 51,8 | o0.085 | 991 lo [2.8 .82“ 0.742) 4,14 | 0,742
Bl 105 +115 ) 0 38,6 | o9 | 1010 | 0,009 | 0,09 | 0 |11,00.09¢ 0,742 4,44 | 0,742
1w}l s +125 | o 24,1 | 39,4 | 112,0 | 0,009 | 0,002¢ | 0 |11.0 f0.092¢ 0.742] 4,44 | 0.742
15 ) 125 +135 | o 2.6 | 458 | 529 0105 [0.29 [0 |11.2.0.09¢ 0.742] 4.44 | 0.742
18] 135 +1485 |0 292 | 60 | 489 [oms | o043 |o |11.40.002d 0,742 4.4 | 0.742
‘1) s #1550 8,6 | 19,0 | 9.1 [013 |o6ss [0 |15 _982_ 0.742] 4,44 | 0,742

for heat group 0er = 687; opp = 580; o, (1 — jag) m9,97; 8y = 2,75; &, (1—pig) =9,972; _ Sy = 0,0032;
. AR - 0 (1 —pe) = 4,33
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Table 5

238
Resonance Parameters for U

of ‘re- L] 4 o J ¢
sonances.
' ' 6,3 2119 10,03 | 0.258
2 1 .8 3920 “. 0,475
3 11,5 21,0 . 33030 61,84 0,462
: 6,68 2200 | 1290 0,500

Calculation of Reflectorless Reactors

The multigroup system of equations for reactors without re-

flectors takes the form

(D) + B/ )¢ = ¢ +2/Q
(*D, + L) ® =g,

=, .
¢=2 Tue? T ¥

=4vL L, ®
Q=2 B/ v+
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3 " s ..'
. ol [ <e> (3)
for =1 e
Here in éroups in which there are resonances, and
y £3, \/
o= THL) P

in the remaining groups;

y2 1s the geometrical parameter and the first Eigenvalue

of the problem

V' + xlp=0
$=0 ua S, }

(4)

(§£§ is the extrapolated reactor surfsce).
It 1s assumed that in the resonance energy region the modera-

tion density q is expressed in terms of the flux (p by the formula
g=tL,y.

The problem is solved by the method of successive approximationms,

' which is norrmally called the method of source integration /7/.
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Fig, 1. Critical masses of spherical uranium-graphite
reactors without reflectors (yC = 1.65 g/cm3)

Broken lines join points with identical a;
Solid lines shog different degrees of enrichment
with isotope y2335 ).

-

We should point out that wisew=demssbiae transition from an
extrapolated surface to a true surface, the extrapolated length
was averaged over the energy neutron spectrum in the reactor.
Solution of the problem gives the critical loads anl critical

volumes of the spherical reactors without reflectors emee a wide

range of the ratio &= t~ at different degrees of enrichment

’
235
of the uranium by isotope U .

The results of calculation of the critical masses of the

reactors are given in Fig. 1.
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Fig. 2. Critical masses of uranium~graphite reactors without
reflectors as function of volume.

Solid line - theoretical data » uranium enrichment 90%.
yc = 1.65 g/Cm

0 - experimental data, uranium enrichment 93,2% Yo = 1.645 g/cm3

Fig. 2 compares the results of the calculations and measure-
Jents made in uranium-graphite reactors without reflectors /&/.
The close correspondence of the experimental and theoretical data

is observed in the region of both thermal neutron reactors and

inctermediite neutron reactors.
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Fig. 3 shows the cadmium ratio for the fission chamber of
the function of a , The curve shown corresronds to a 100% uranium
enrichment. The curves for other uranium enrichments coincidjzgor
practical purposes with the ones in shown Fig* 3,

Figs. 4 and 5 show graphs for minimum critical masses and
their volumes, Fig. 6 compares the results of calculation of
eritical masses with experimental data for pure uranium as a
function of enrichment /9/. Analysis that the diffusion approxima-
tion heads to substantial errors, even for small systems.

Calculation of Spherical Reactors With Reflectors

Reactors with graphite reflectors used to be calculated by
the multi;group method, the principle of which 1s described in
Ref, /7/. It was assumed that the reflector was of infinite
thickness, but that the calculation was made with a reflector
thickness of 70 em. The error due to substitution of a finite
for an infinite reflector was comparable with the errors of the

num‘érical calculation

A
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Fig. 7. Economic advantage of graphite reflector for
spherical uranium-graphite reactors Ye = 1,65 8/595
Figures on curves show enrichment with isotope (%)

7

4o
Fig. 7 gives the effective additions & a function of X

at different degrees of enrichmen?,derived dupdnce numerical solu-
tion of multigroup reactor equations., The maximum value of the
effective addition for reactors with a 100% uranium enrichment
is found in thermal reactors and is egual to the square root of
the migration area IR = 64 cm, and decreases monotonically to
8 cm for fast reactors. For intermediate neutron eeactors we
observe an increase in the effective addition.

Given other degrees of uranium enrichment, the curve showing
the effective addition of a function of X is also complex in form,

When the enrichment decreases, the maximum effect of addition is

attained in the region of intermediate neutron spectrumﬁkactors.
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It may be assumed that there is a region in which infinitely
large subsritical reactors without reflectors may become critical
i1f reflectors are used, This means that an infinitely multiplying
medium coinciding in properties with the active zone of the reactor
is suberitical (k¢ﬁ = ko <1). At the same time, if the size of
the active zone surrounding the reflector is restricted, the system
may become supercritical,

It should be pointed out that to calculate fast neutron reac-
tor;,the diffusion epproximation is not sufficiently accurate., Fig.
8 gives the critical masses of spherical uranium-graphite rezctors

with infinite graphite reflectors,

s ' ' .
4'1/ \, - .
! = 71 /
ST 4] /
T WiRVLE N ‘é
° & [ 4 y /
w L W 21 4 11 "
Q: A\l EA 7~
B 2 y o {e
- -
§: ‘f' ‘Ak'/
;‘é ﬁ‘/ o™

66 2 ¢ 04N 2 e 1 ¢ s
' Critical volume a v oseent .
Pig. 8, The critical mpsaes of 1
B 8. The Crislclin™Panenif sphepical upfniym-graphite
linea join peimts with identical , solid lines show ehrichment
with {isotope us (%),
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CRITICAL MASSES OF URANIUM- LIUM REACTORS

by
K

G. I. Marchuk, G. A, Ilyasova, V., Ye.‘}olesov, V. P. Kochergin,

L. I, Kuznetsova and Ye.I. Pogudalina.

A number of papers /1/ deal with the calculation of critical
masses of uranium -beryllium reactors, but they only touch on
calculations of reactors without refle€tors with 1004 uranium

235
enrichment with U . The present paper contains the results of
calculating critical masses of uranium-beryllium reactors both
&
without /reflector and with an infinite beryllium reflector at
235

different degrees of enrichment with isotope U « Alllthe cal-
culitions have been made in the diffusion-age approximation by

the multigroup method det forth in the paper by Marchuk and others

entitled "Critical masses of Uranium-graphite Reactors", im which

uranium-graphite systems are ilnvestigated in a similar fashion.
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In the high energy region, apart from elastic scattering,
ad
we calculatime nonelastic scattering in uranium and the reaction
(n, 2n) on beryllium. The corresponding group constants are given
in Refs. /3/. To obtain the group constants in the intermediate
energy region we used data from Ref. /3/. Here the calculations
235 238,

took into account the resonance absopption on U and U znd
re and at low energies took into account the thermalization of
nettrons within the framework of the model single-atom gas moderator
/4/. The heat constants for beryllium are taken from /5/.

The multigroup system of constants for beryllium is given in

T
the Table. The age of the neutrons up to the indium resonance energy;
fd) T —— 4
calcule{ieupmttemms using these group constants, is 81 em (beryllium
3
dnnsity‘{é = 1.85 g/em ), and this tallies well with the experiment,
2

The results of the calculations of uranium-beryllium reactors
without reflectors at ratios a==ps/ou= (in which e is the
nuclear demstty) a2nd #ifferent degrees of enrichment with isotope

<235

U are given in Figs. 1 to 3. The critical load curve correspond-
ing to a 100% enrichment tallles well,, qualitatively speaking, with

the data in /1/.

When calculating reactors with a reflector, the thickness of
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the latter was taken as 49 cm., A beryllium reflector of this

" thickness can be considered infinite. Results of the calculations

235
of the critical masses of U and the effective additions are

given in Figs. 4 and 5 respectively.

Calculations were made with a Strela;y(arrow) computer.
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) WATER MIX URANIUM PLUTONIUY COMPOUNDS
by
G. I. Marchuk, G. A, Ilyasova, V. Ye. Kolesov, V., P. Kochergin,

L. I. Kuznetsova and Ye, I, Pogudalina,

Introductiopn

Knowledge of the critical masses of different/;;\ﬁranium and
plutonium compounds is very important both in designing and building
nuclear reactors as well as in solving prohlems enmedwedmwdm safety.
Systems withi;;;;;;;;;;;;;;;;i'a water-containing roderator are
of great practical interest. The results of smme experimental
investigations of critical masses of uranium-mater miwsures have
recently been published. In particular, Ref. /1/ discusses a
large number of experiments made by scientists,

It is an extremely difficult thing to calculate the critical
masses of uranium-water and plutonium-water reactors, The main
difficulty is that hydrogen moderation cannot be considered con-
tinuous, and on that account the age theory of calculation proves
inapplicable. So far comparatively little theoretical data on the

critical masses of water-containing systems has been published.

5

We can therefore only refer to Sa’onov’s calculations which are
- 83r.
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given in /2/.

The authors made a large number of calculations of the critical
masses of reactors woth without reflectors and with water reflectors.
The fuel used was UO2 with water and a mixture of UO2 + PuO2 with
water. The concentration of the fissile matter and the mixture
varied within wide limits. The calculatiocns were made for different

degrees of enrichment and different ratios of the number of uranium

nuclei to plutonium. Lhe error in the critical mass did not exceed

30%. deregroi A A Ao £y 4
L‘S\\o’:wu‘ C‘)’Mr“é’."j Cb\f;e
All the calculations were made with a Strela'36ﬁﬁﬁf§5}

Bagic Eguations
The multigroup system of reactor equaticns in the JdR diffusion

approximation in the presence of hydrogen can be as follows
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v+ Vo= ¢ + ¢ Q).
J=11-4

—vv£+3{,9{ 22: o

V¢l+2 D =¢q",

® lem+t (1)
-;—v¢.+ 3m° 2 P )
Q(’) =3 2" zl?‘+ Y 2/,¢ +QR .
=1
i ] flej4t  1=jal

¢=2 (Tut B)eitrinu=12m

=1

\_ r‘-/_"‘“’"q/

1
Here 2.:° are the group/nonelastic scatterixlg) cross sections“from

the group with number 1 into group with the number _J_;
2("'% (%:-): are the group moderation cross sections on all
nuclel, except hydrogen,
"'7 ek 8,, are values describing the elastic scattering on
hydrogen nuclei from group }_ into group ,:]_ H
is the total cross section of Yewwourl from group _?_

The heat constants were avergged by the formuli
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a—— N F

5 Jron

T x
I'xN(x)dx

zln = :f(l —;ot) + zc"

L= r'.h

in which Egl" Zh s En(l = tor) are the thermal cross sections at an
energy 0,025 ev,

X 4 is the boundary separating the thermal diffusion mgk
region from the moderation region,

T is the temperature of the mediunm,

'{‘0 is the room temperature,

The function E(f) is the neutron spectrum in an infinite
homogeneous medium,allowing for the thermal motion of the mod.erator
nuclei,

E‘cy. ,
To find N(x) we use the—samation (3»

Y’ (¥) = S(x)y’ (x) — R(x) y ()

with the initial conditions

- y(0)=0, ¥ (0) = const.
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Here

- S(x) = P(x)V werl(x);

R(x) = P(x)e™ — x* 4 r(x) —*

Vern)
1

Px)= — :
. exp[— ] + V:xerf(x)

I

r(x)= — 7 .
£, +[2—; erf(x) + m]zg

x*

Nx)=r(x)y(x)xe ? .

and

The resonances in the absorption cross sections were taken
into account in the following way. In the groups with resonances
N
the moderation density t/was multiplied by the probability of

-

avoiding resonance capture < ¢/ > . The calculation of <e¢/> was
done in the same way as described 1n["Critical masses of uranium-

graphite reactors" by karchuk and others ih this collection. Twelve
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235 238
resonances on U and four resonances on U were calculated.

The number of neutrons obtained during fission through

235

resonance absorption on isotope U {s QTAA‘L 73
Qn=§v;q/F/,
in which .
F=Y1l=<9>,
Z I +a, *
235
and sumration is over all the resonances of U which are found

in the group with the number J.
m
Vhen calculating reactors without reflectors, syste& (1) was
solved by separation of the variables. In the case of bizonal
spyessbawes, the method of source integration was used to find
the Figenvalue of the problem, while the system of equations (1)

was solved by the finite-difference factorization method /4/.
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Table 2.
zl Group cross sections gor elastic scattering
on hydrogen
lol 4k
. S
! 1 2 3 4 S 6 7
0,691 | 03728 ! 0,195 0,1212| 0,0573 7 2

| nisizr! o8as7| oisois | 02370 | 0l31m0 | oroZi o2
; 218231 1,3262 1 0,6264 | 0.2959 0,1398 | 0.1034 0,u217
| 340201 1,609 | 0,7591 | 0,355 | 0,2652 | 0.0131{ 0 L0124
5] 4290 2,029 4 0,958 | 0,7040 | 0,1159| 0.0210 0.0122
¢ | 54H97| 2.51411 1,941 | 03111 | 0,055 | 00208 | 0’0121
7] 64| 47658 | 07757 | 01414 | 0.0520 | 000191 | 9021
s {1204 | 184541 0,3351 | 0,1233 1 0,0453 | 00167 | 0.0097
9 | 7.3740] 1,3388 1 0,4925] 0,1812 | 0,0667 | 0.0245] 00143
0 ] 6.5520] 24214 | 0,597 | 0,377} 0.1205] o 04431 0,0258 -
u | so3s] 2,955 | 1.0871 | 0.3999 0,171 | 0,051 o, 0315
12 { 8,036 | 2,951 | 1,0572| 0,399 | 0,1473 | #.055

13| 8,0323] 2,9554| 1,0870 | 0,3999 | o0.2328 | ~'— -
1} 8,032 2,95481 1,057t ]| 06327 — - —
15 | 8,0480 | 2,9509 ] 1,7232 - - — -
15 | 8.2617 1 4,508t - —_ - —_

17 113,911 - - -— —_ — -—

L J
-t 8
. 3 .
&
’ .
} 2 3 4 s 6 7

1 1 outsos | 01787 | 0.0700 | 0.0308 | 0.00% 0,002 | 0.0m5
2| LIs3 Y 045511 0,1982] 006ai3| 0,020 0005 | 0.0033
31 L6IsS | 0,7037 | 0,2254 ] 0,0741 | 0.0241 | 0.0107 | 0.000%
125521 0,629 | 0,269 | 0,075 | 0,059 | 0.0027 | 0.0003
51 3,1616 1 0265 | 0,3332{ 0,145 | 0,010 | 0.0000| 0.0:03
61 4,000 { 1,2957 | 0.5791 | 0.0105| 0.0037 0.0028 | 0.0002
Cb 471094 2,1032 | 0,1469 | 0,013 | 0,0030 | 0.0007 | 00002
S 1725221 0,5083 | 0,045 | 0,0108 | 0,0723| 0.0005| 0.0001
31 42640 0,3%03 | 0,0571 | 0,0194 | 0.00i3] 0.0010 | 0.0003
14,1664 o 529 | 0,2074 | 0.04529 0.0103 | 0.0'23 0,0007
s 12 g2 | 00603 | 0,0138 |- 0,0030 | 0upo0n
) 54274t 12110 | 0,2702 | 0.0503 | 0.0134 | 0,003 -
B Saxs| 1.2199 | o0.2702 0,0203 | 0.0173 - -
sl awl ozl o 0776 - - - -
I3 3404 12139 | 0,347 - - | -

| vem | B - ~ 1. - _ -
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[ ] ‘ TABLE 3
~ Group crogs sections of noneelastic .
scattering on 'plytonium
“lapyrs
[}
] 2 3 4 S 6
2 0,32 - - S -
3 0,32 0,32 - - - -
4 0.23 0,33 0,28 - - -
S 0.09 0.18 0,12 0,15 - -
] 0,03 0,07 0,04 0.03 0,13 —
7 0.01 0,02 0,01 0,01 0,01 0.04
System of heat constants TABLE 4
S
element I O o " s (1 ~ )
Pyme 1026 146 2,92 9,6
H 0.33 ——— - 1211
0 ¢ ] - -— 4,00

The multigroup system of constants for plutonium, oxygen and

hydrogen in given in Tables l-4. The corresponding multigroup

235 238
constants for U and @ are taken fo be the same as in the

TS
paper by Marghuk mwhsstmw mentioned above, The multigroup water

e ——

/
constantsused in the calculation give a value Sew the
for motheration 2 &
length squaredown to indium resonance, equal to 26.5 cm’, © =0.665

5 4 5
* 10 cm (in the diffusion approximation);: TN\ iIs 1222 - 10\/
“ex

i e

Results of Calculatio
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The above described method was used to find the critical

AN — —
masses & of spherical maxkmmmenbdblwex reactors with water wesd
as the moderatox. Both reactors withoutl reflectors as well as

1y.5

those with a water reflector 24.5 cm thick were calculated, A

reflector of this kind is for practical purposes infinite.

”Q

4 v/ 4

¢ /

)

.| *efow {,(;/

o’ T/
0 ’ > *
o) ‘f[,r' /

‘ p

A /
] J '
b e @f PRy 'J/‘ L
~/ 7Y, T

] 4 y SAY AW 4 !
g : 4"( { // !
=z} iJ/, L
8 0 44 // /
Is‘ Vi et
ol Y — s
5

2 o~

Critical volume, 1
Fize 1. Critical masses of spherical reactors U02 - }{2 rithout reflectors

T
Figs., 1-7 show the results of czlculations for Sesemmsgrreattors,
3
the active zone in which is a mixture of U0 ( 4( =6 g/em ) with
2
water. The dependence of the critical masses of the reflectorless
reactors on critical volumes at different degrees of enrichment

- 92 -
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is shown in Fig. 1, The points with the same ratio of the nulber
of nuclei a=py/p.. are joined by dotted lines., Fig* 2 shows the
variationt in critical mass as the concentration of the fuel in
the mixture changes. The correspondihg¢ dependences for reactors
with a reflector are given in Figs. 3 and 4. Comparison of them

.
minqﬁé critical masses of reactors with and without a reflector are

given in Figure 5. The difference between’i;;;;-n-nt!l;-il:&!l the
extrapolated radius of the reactor without a reflector and the
radius of the active zone of the corresponding reactor with a re-
flector is given Fig. 6. For reflectorless reactors, furthermore,

we have calculated the cadmium ratio in the fission chamber

‘val(p. du
CdR = —==

§=185
5 VI zf ?. dll.

Fig. 7 shows the CdR as a function of X , It corresponds to a 100%
®
<35

enrichment with U .

Similar calculations were also made for the mixture UQ -Pul

2 2
3
and water (natural uranium and Ugs< Pugée Q(L01‘= ‘X}i; 6 g/em ).

The results are given in the form of graphs in Fizs. 8-14.
- 93 -



for

The calculations were made for different ratios B=rpy/Pp.
Fig. 16 shows a compafz&son of the results of the cagculation
the
of eritical masses and(measurements published in /1/. The dependence
d=0,71 .hh?.dulj %o
of the extrapolation length 4 = 0,71 A" oh”1uel concentration
in the mixture is shown in Fig. 16.

The value 12,7 given in Table 4 is the transport cross section
single-atom hydrogen. This gave us a certain exaggeration of the
diffusion length in water, which was offset by two low a value for

2 2
the neutron age (T/\ = 26.5¢em 3 T, = 30 em ). But in accordance
Heor 0;(()
with the new experimental value of the neutron age in water ( from
a report given by A, Veynberg in the Institute of Atomic Energy of
the Academy of Sciences of the USSR, T -~~~ 26 cm ), the transport
cross section has to be varied &« in accordance with the experimental

value of the diffusion length. Nevertheless, errrors in the critical

mass due to this effect are only slight over a wide range of ratios
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INTERACTION OF SYSTEMS OQF FISSILE MATTER IN A SCATTERING MEDIUM

by

V. G. Zagrafov

oximat ution of Iptegra atio
Ihe eritical parameters of the system are determined by the

Peierle integral equation /1/

-

*0) =f O PG Py,
1(r’)

(1)
in which lucﬂa is the neutron distribution function;
|=(F)-N(=,+=/+c¢) is the reverse free path 1engfh of the neutrons
(g is the number of nuclei of matter 1n:%;,unit of volume, and

% % are the scattering, fission and absorption cross sections);

w Gy

W= is the reciprocal mean neutron rultiplication factor

vy -+ 3

smgw per one collision with a nucleus (+ 1s the number of neutrons
(64 ZPW o 258
uring one fission),
For fissile pagter T < [, for absorptive matter 7 >1; during
scattering without absorption ’r’= 1,

- 105 -
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fhe kernel tanqg;§>is determined by the expression

to
Integration is carried out with respect s the total volume of

! the system. For a system consisting of fissile matter (medium 1)

and an absorptive matter (medium 2), Eq.(i)takes the following form

#(n) = lf a(F)5 () K(r, PV’
T v . )

L {a@PrePkE Pav,
v,

in which Yl and Yz are the volumes of the regions filled with
fissile and absorptive matter.

To obtain an approximate solution to Eq.<?l let us single out
a spherical area of volume V in the center of the system which in-
cludes one of the fissile media and the areq,of the absorptive medium

‘ surroundihg it. Let us term the singled out region the primary region,

and let us c¢all the remaining part of the volume the supplementing
- 106 -



region, fiet us integrate Eq.(?)with respect to the volume of the

> *
primary reglon and assume cP(r) = const . Ve get

_,_‘t;,fdvs.(r')/((r.r)dv' £ dt:J‘a(r)K(r.r)dv'
v v, (3)
| (3)

in which ¢ = y/va R

2
Let us assume dv’ = 1 d1d (L, in which dQb 1is the solid

-— e

.—’
angle at which the volume element QZ’ can be seen at point r’ from

-y
point r. By changing the order of integration, we can transform

Eq.(B)

L
1 &2 -
n= j‘ = J dvj'(e " 4 ce™™)du +
. .

) ‘?‘J dvj @+ ey,

(4)

% As shown in /2/, the error arising here has a signéjfavorable
1& from the point of vieuzof safety, and the absolute value of this

error decreases as the volume of the primary region V increases.

1elonwtianasniloeni-opiSaliEEi .l il RoAsetrnedsasd—tn
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-~
Py
where L 1s the optic distance with respect to the gay A, from
p ¢ -
the point r lying in the primary region and the surface bounded by
x

the primary region
u = ggg; is the optic distance with respect to the ray
- -
between the point r and the current point r?;

u is the optic distance with respect to the ray L between

[« "]
-~
the point r and infinitys;
R —
1_._1‘ and u. are the optic distances with respectmmk to AR

-
between the point_; and a point r’lying in x medium 1 or 2,

respectively, so that the integrand is

-8 -8 -l '
e +ce ={¢ s Wwhen 1nmed.l

ce= when

AU

in med, 2:

Let us dmsignate t= u -L; t’#u -L; t"=u -L; t =u_ -1

—~— -

(t,tg_’,t." and t,, are the optic distances with respect ¢o the ray

counted from the surface of the primary region).

Then

. tn
5(:"' 4 ce”™)du=e" ‘[(e“' +ce”")dt.

?Q

— )
xx We will use the word’ optic for the distances expressed in

lengths of neutron free path. 108 -
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Let us replace t’ and t" in the integrand by the mean values
of t? and t" over the volume of the primary region (the dependence

-
of these values on the direction of (‘.(11 is retained here). lLet us

consider a case inw which the primary region is symmetric (a sphere

surrounded by a layer of absorptive). In this case, the values of

the integrals

: L
J e~tay, ; dV.j (€™ + ce™™) du

—
do not depend on the direction of JL o, Eq.(l-, assumes the form

‘ .
u= -‘!,-Jde(e"' + ce~®)du + —:,—’\' e~tdvyx
. )

xj -ﬁ— f.(e"-' + ce "y at.
[)

-« 109 -
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Phore & s o
If wee(supplementing region, semimelsbee, the critical value v\°

e as
for the primary region[if;c = yilyah is fixed, mst determined

e

by Eqe (5>,£is
L \
'7,0 = JV-J d V.S (e + ce™) d.u.

e nes) S
If u-/su/pplmenting region bembmsisbwx, but the matter in the

primary region is homogeneous in composition (c=1), the critical

value 'KOO found from Eq.<5> is

L
1“--5—Vdeje"du=l-%-£e“dV.
[] .

0
Taking the values found for « ° and /(00 into account, the
)

relationship for the critical parameteryg “& » given the fixed
i

—

value ¢ = 7 /T , assumes the following form
VAR

- 110 -



ta
.%-:_:’%!._5 .‘;'9;. 5((7' + ce™0) dt.

(6)
From now on we will take qKO and f%’ooto mean the E&genvalues
. \
tsol ot
for the sepemede primary region, calculated by exact methods,
for example, the improved diffusion mthod put forward by Romanov
in Ref. /3/. ($ex p. 12 Wl @ cotluclid)
Finally, to simplify Eq.(é)let us use the fact that when

cawoi:‘«,
averaginjg’ and t" over the volume z,the middle part of the cross

section of the primary region 0‘....':;;;;i(£§? greatest weight)/2/.
\\\___,,__,_...-———-—————""'"‘“

Hence we will take it approximately that t’ and t" in (6) coincide

with t.'(é.) and t,,'(‘;’.) for a ray emerging from the center of the
primary region.
Limiting Cases
Let us consider the limiting wases which are satisfied by
Eq. 63

1. Yedium 2 is absent, ySmy®

{e - te
[ Oumr B, fily,

The relationship (6) becomes a critical condition for the
- 111 -



homogeneous composition system obtained in /2/

B ““
3

':.
i
s
¥
¥
i

5

1—y, _j‘ - ta (2) a0
l"h’ 4=

~ o tEwy

(7

2. Media 1 and 2 are homogeneous in condition, c=1., Eq. 6
gives us the eritical relationship (7) for a homogeneous composi-
tion system.

3. Homogeneous system; the dimensionsof bodies from fissile

. matter tend to O when their number 1s increased to an unlimited
extent with retention of the relative volumes of the first and
second media (v and v ). The radius of the primary region tends

1 2
to O, mmem hence 1°-+0andy*-+0. . The qualitative dependence of
->
the integrand in Eg. 6 on the optic length t along the ray. L is
shovn in Fig. 1.

At the 1imit, when the increase in the number of bodies and
the decrezse in their dimensions and the distances between them
are all unsestnbebed (i.e., when the relative volumes v and v

"1 T2

‘[ are retained), the number of discontinuities in the integrand

function at the intersection point of the ray and the interfaces
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of the media per unit of length will increase to an unlimited

extent, The relative dimensions of the areas of continuity ,
expressed in free path lengths, tend to k—o.2t andk —=%
8,V - ayt, Qv -+ a0,
for segments of the ray lying in digegulisebesest "cdia 1 and 2,
—'@) | =@
respectively%ﬁence the integral of functione +ce at the
limit becomes the intezral of the continuous function

(U, - 02,0,

~t
e
34Uy + ayv,

in which (X| and o(l are the reciprocal neutron free path lengths
in media 1 and 2.

Eq. 6 takes the form

s [ote
1- 1_Ie -

in which

- |‘-

= _'.. 8 Uy + ]
T fY + e, ?,-

ot 1)

W 0,
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coincides with the critical relationship (7) for a homogeneous

’ system whenlbhe volume of the primary region tends to O. The

value of 'K obtained is equal to the reciprocal mean nuetron multi-

plication.factor for a homogeneous mixture of two substances in

0
the proportiom:vy :v . Indeed, for a2 homogeneous millthmm mixture
1 2

; = ¢“v‘ + a:l'vz; 3—= pﬂl‘ + 3’0’ = _____'l;:l + _—G;l:, .

3=af1 = N(v; + ).

in which A . 1t 1s easy to see that the mean value
y = a/f coincldes with the value % in Eq. ké‘
4. No supplementing region, Eq.(b,\ gives us vi=v% .

5. Medium ; as an ideallv scattering substance, a = o2,

- 2
Jev dt-O Se"‘ dt = 1 3he )
" /(/\= 1. We get ;7expression on the righ hand

~— A

side of 6 is finite. Since for 2 medium in an ideally reflecting
shell /{‘D = 1 and YOO = 1, the expression in the lef -and side
of 6 is finite at ’(‘ =

6. Medium 2 as an ideally absorbing substance, O, = o=,
The value T‘o determined by the exact method coincides in this case
with the critical value T for an isolated body without a shell,

- /—\
‘ The expression on the rightﬁxand siie of the euation wiemblesg vanishes

(since ¢ # 0), hence 10
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7. The distance between regions of fisslle matter is infinitely
increased, the density of medium 2 remaining the same. Here‘foQ—>(,
since the radius of the primary sphere tends to infinity. In order

(V2a = —N
to to keep Eq.(@)tn the 1efﬁﬁ;nd side finite, ’K. should ema tend
to ]fo. When determined by exact methods, 4r° coincides with the

I |
critical value ¥ for a body in an infinite medium with the constant

Tz=J‘" .

[ 4
Copvolution of Eg,(é‘for System of Spheres

Let us apply Eq. 6 to a dystem of spheregswith radius R located
o
at equal intervals around the volunme of a sphere with radius g_filled
with an absorptive (or scattering) material., Let us single out
the primary sphere containing the central sphere in the center of
the system.

Let us divide up the integration Interval with respect to the
beam (0; tao) into segments, in each of which the in#egrand function
1n(§)is monotonic. The boundary points of these segments are the

—ﬁ
points at which the ray N kntersects with the interfaces of media
1 and 2. Let us designate the optical distances with respect to

the ray between the surface of the primary sphere and these points

as t’!, t_’ » t 9 t;- seey Ek, E_,

=t , in which k is the number
' - -~ 0o -

k
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of sphereSintersected by the ray (see Fig, 1Y, Then

t’(e-"'+ce"")dt=c+(l —ge = (1—e)e™ 4

F(—c)e =i d(l=c)e "—e™ W,

(9)
Let us introduce the mean values:
i{‘} is the mean optic distance of the path in the sphere,
and
N, 1s the mean optic distance in medium 2 with respect to
m
-t
the ray L, in the surfaces of the two neighboring spheres.

When the geometric progression in Eq. 9 has been folded and

the mean lengtls have been introduced, Eq.(6) takes the form

2= g — ey [1 g —0=n_ ],
1 ’f"'. (] _,—("‘l"l)qf)

(10)

Let us supplment Eq. 10 with relationships for t, 'r_/“}and ’Vl/\
- [

~
for a case in which the seattering matter is sslllhhyg uniformly

distributed in the spice between the spheres. Let us represent the
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optical radius of the system as t ,_ = X4, in which &K is the

mean probability of extracting neutrons from the beam per unit

of path mength‘b If there is no medium 2, then

a,=pS[1 —g(R)),

in which,’” is the number of spheres per unit of volume,
S 1s the cross section of the sphere, and
g(o&‘ 1_1) is the transmittance coefficlient of the sphere for

a plane neutron beam determined by the following relationship /2/

=2 L - — 14+ (1423,R) exp (—20,R)
g@R)="¢ ,sjexp( yds = HEET (1) .

If there are no spheres, the probability of extracting neutrons

k“fl—ﬂ«u

per unit length may be represented as the dimbamme

& =0, —pS [1 - g(5,R)],

oK
wvhere a 1s the probabllity of extracting neutrons in medium 2;
2

pS(1—g(azR)] 1s the probability of extracting neutrons in the

.G-i

sphere system from medium 2, idendical in geomeiric size and position
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to the spheres of fissile matter.
The total probability of extracting neutrons from the beam

per unit length is equal to

@== &, 3 3 = a, + pS[g(2,R) — g (2,R)}.

(12)

The values ’VZA and (n+7) in Eq.(lo) are determined by the
m

relationships

- 1L (- —A (A~ '
e "r_°§j e dS=e ':E'S 4~ Vas =‘-Ag.("°zkv‘v

-Gt 1 —A(L (A—q- - :
O A [T asn g - R

in which‘\na,/gs is the Path length expressed in the neutron free path

._9
length in medium 2 per one intersection of the sphere by the ray ﬂ.. K

4
9 the function ‘.(x) is determined by Eq. Q.l). We should ppint out

that the function g(x) satisfies the following approximate relation-

ships
d £

g(—n=lgW)". elx—x)=E2.
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Fle) \ N

4 t ¢
Fig., 1. Qualitative dependence of function

Fee® + ce~"on the optical distance t

in the direction of the ray Q.
Medium / (circles) is dashed.
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which is equivalent to

e~ O ¥ o e

ding the Critical Parameters 4’ and 4% By the Asymptotic
Diffusion Method

Let us find the critical relationship for a sphere from
medium 1 with radius R surrounded by a sh# of matter 2 with an
external radius gb (1solated primary region). The asymptotic
solution of the diffuslon equation satisfying the condition of
finiteness of the neutron density is ¢, (n) at r = 0, and the
condition at which ¢, (r) vanishes on the extrapolated external

boundary of the shellr =r + 0,71 T/“ takes the form
“e ~O 2 1

Paalr)= "l:' sin ‘l_k (7:) r,
%sh &’k (1) (r, — ryat > 1

() = ’
—sinak(n)(r,—r) at 1<,
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in which the dependence 1__{_(»X) is determined by the relationships

k = tan (ET) at Y< 1 and k = th(l_t_'r) at ’X > 1//4/ (also see
Romanov?’s paper in this collection).
Let us assume that at the interface of the two media the
Wl Cobere
asyxptotic solution Dact and 9.2 8atisfy the boundary condition wisies
into account the deviation ¢, near the boundary from the true
@ density @(r), satisfying Eq@ In 1ts simplest form the

. approximate boundary condition derived by Davison /3/ takes the

form

gr2doacy __ grad gacs

at r=2R.
& Pac1 €3 Facs R

Substituting ¢, into the boundary relationship, we obtain the

critical condition
— [t — ek (1) Retga, k(1) Rl =
-,‘;n + ek () Rethagk (1) (ry — R)| 2t 1,> 1,

;"-ll + azk (15) Retgak (1) (r, — R)] at 3, <1 )
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We can obtain a relationship for the critical parameter of
the sphere 1[: at a fixed ration ¢ = fr]/qgh by replacing 32 by
/?ﬂo and 7, by ¥,’/¢ 1n Ba.(13. If we assume wep=v*, , Ed. (13)
gives us a relationship determining the critical parameter
for a homogeneous composition op the matter in the Rkxxx primary
sphere.

In practice ghe asymptotic diffusion method is used for approxi-
mate calculations when the radius of curvature of the interface 1s
eilther large,or comparable with the neutron free path length in the
media (roughly at §>>O.Bo<“ ). If this condition is not gatisfied,
the diffusion method may prove unreliable.

Example 1, Spheres of Ou(93.5)* with radius R = 4 em are uni-
formly spread through an infinite space in a scattering medium with
constant absorption 1ﬁ1= 1.1 and free path lengths CK:l= 10 cm.,

We 2re to find the critical distance between the spheres. The para-

-1 e,
meters for Ou (93.5): are:‘zu = 0.74, X, = 0,25 em

3 td
% Ou (93.5) is metallic uranium containing 93.5% isotope G%/j,

»x The values of these pirameters are found in accordanc ith
experimental data by me%suring tge critical masses given in 757 o

122
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~ R

Let us single out the primary spherical region of the greatest
possible radius in such a way that it includes one of the spheres.

If there are p spheres per unit of volume, the radius of the

—

tondsbim ¢ J
tween the centers of the spheres. The (froblem is such that we

should take to,= & in Eq.éﬁ. The system of transcendental equa-

-L g
primary sphere rb =d - R, inwhichd = p 3 1f the dlstance be-

tions(é) and @.3) can be solved by the seleftion method r . For
0
(/] [+9]
example, at r, = 22,6 cm, Eq. (lB}gives us I = 0.553, ¥ = 0.756,
= l
and Eq.@) is satisfied if we assume that ¢ = 0.769, instead of the
" -— — -— 0 -— 90 -
true value ¢ = ’f,/(,_’ 0.673. At r = 16.6 cm, T, = 0,535 and 7y =
~~ o
0.683, Eq. (6)1s satisfied at € = 6,647, At i=x r, =18cm, . =
00
0.538 and ’X = 0.697, Eq.(é) is satisfied at ¢ = 0.669, and so on,

By interpolating we find that the true value corresponds to

17.8 cm, 1+e+, the critical distance between the spheres 4 = r

g ]
S
L}

0

+ R

——

£1.8 cm. We should point out that in our example the ratio
- . Ve
(1 - ¥N)/f .~ e+ ) virtually colncides with unity in Eq. 10.

The difference between this ratio and unity is a small correction
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Comparative table of physical parameters of system

of spheres and homogeneous fissile medium

Fissile material medium

Systep of spheres of fissile material

Probability of fission per unit path length

& = No

Probability of interaction with

spheres per unit ;Eh length
PS[1—=g (3R] , o

Reciprocal free path length

ch(¢1+°-:+¢c)

Probability of extraction of neutrons

from beam per unit path length %

/ziven uniform distribution of scatt-
ering, X is depermined by (12)/

Probability of scattering per unit path length

1 -
T S Urd 1

8g == N‘J
{ Probability of absorption per unit path length 1\~
| o N, (1——)E—rsa-an

Breeding coefficient per one fission

Coefficient of multiplication by sphere

of neutron flux incident on sphere and
an
undergding Timiew at least one

collision with nuclei of matter in sphere,

B =N o5 +05)

I

(e=)psa—nes

T Breeding Coefficient for neutrons per one

collision
_ VOFf + O¢

= e

/
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[ tha
in -“vof(ﬁ{'oblems met with in practice. This fact relieves

of the need to calculate wnd (q+ <), exactly, when the scattering
m
matter is nonuniformly distributecﬁ.n the space between the spheres,
and when an exact determination: of these values may prove taborious,
etic Equa Ayera N D i
The breeding of neutrons in a system comnsisting of a large
number of spheres multiplying a stream of neutrons inmpinging
upon them is similar to the microscopic process of neutron breeding
in a fissile medium. A parallel can be drawn betwwen the concept
and the physical values in these cases (see Table).
M—LO z
On scount of the A', the Boltemann kinetic equation
can be used approximately t$escribe the neutron trénsfer in the
sphere system, 1f we replace the elementary constants by effective
microscopic constants, in accordance with the Table., Here we have to
/“\m
take ihto account "[fpﬁerical anomalies in ovur problem. The

first 1€ the nonisotropic nature of the angular distribution of

a neutron flux 4rom thie sphere when the incident, plune
neutrons

neutron flux »ewbswed. A similar phenomenon wiwem /dreeddng
/'\
in @ fissile matter would be the nonisotropic nuture of the angular

distribution of neutrons w Juring gission, Hence in order to
- 125 -



use the transfer equatiohs for the problem of a system of hodies

&
we have to generalize the concept of transport path for & case of

-/’,——-_.\
nonisotropic ewsmpemmambymbise ncutrong /during fission.

N(rQ)dQ .
If A is the number of neutrons per unit of volume at
the point r, whose directionsof motion 1lie in the element of the

——p
solid angle b/\ around .O- s, the kinetic equation for .\'(}:If) takes

the following form

v2 grad N (;. 1’) +vaN(r, @)=

=o NGV @ > Had + 1D,

(14)

in which ?f('?s"-»ﬁ) dQ’ 1s the probable number of secondary neutrons
with a direction of motion 5, appearing during interaction between
the ratter and the rjyqtron with a direction of mbtion in the elementary
cone dQ apound , per unit of its path length;

A 0(6 is the number of neutrons from the source per unit of
volume and unit time,

If the angular distribution of the neutrons/after scattering

and fission is nonisotropic, then
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® B (@ &) = vayfy (&~ D) +af @ - 9),

- = - - angular distribution
in which f,(€ - Q) and f,(2 ~%)  are/functioms JEE of the probable

number of neutrons ifter fission and scattering, satisfying the

normallization condition,
jf,'(é'\-’é.)dﬁ.’:l; If,(-é'—»é)dgzl.

By integrating Eq. 14 with respect to _Q.Q, , we obtain the

continuity equation

odivy () =B —a)on () + (7).

(15)
in which n(r)-IN(;: 0)dQ —1s the yetron density, and
7{'3=v_f§N(?,5)dQ-—is the neutron flux density.
Let us multiply Eq.(ﬁ_u.)by Q. and integrate with respect to
ddl . Taking it into account that the functions _f:{ and »t:s -

w— -

only depend on the ungle hetwwen ‘ﬁ and &', , we get

( .
“ o S(@ grad N(7. )] d2 + a7 =0,

(16)
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in which

a, =a,(l —;:)+“/(l ‘f"'l.‘-/)'{'ag.

n={ @9 f,E2) a2, ¥=[@¥)f©@T)de.

,F; and MT,' are the mean cosines of angular distribution
of the neutrons after scattering and fission.
Eys. .
The continuiyy *(15} and @6\ cofncide with the relevant

equations for isotropic neutron distribution during scattering and

fission, provided the latter undergo substitution of X by
\

~ -

- _ fomvay (1 —pg) 4 2, (1 —p,).
%, =8 (l —p)+a/(l—vp)+2, and (Z Ilny ! ! A ! . In the problem of

a system of interacting spheres, it is essentialxzm to W/ggr{isotropic
m neutrono%m the spheres into account, since this

effect is unfavorable from the viewpoint of the safe handling of
fissile matter €{later on we will show that the mean cosine of angular
digtribution when the n@Mtrons are bred by a sghere 1s always negative),

Bhe second anomaly in our problem, also unfavorable from the
viewpoint of safety, 1s the deviation of the true neutron density

—>

‘ distribution In the scattering medius from the mean value g(}‘_). If

the free path length in the rcattering medium is small compared with
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el had
the distance between the spheres, a neutron ewowgdmy from the

sphere has the probability of going back to the smme sphere after

scattering and breeding again, Thus, some of the neutrons com: ng

from the sphere cause an infinite #rain of successive multiplica-

ve

tions. Since the scattering of those which had emerged and returned

to the same sphere occurs mainly in the close-lying layers of the

scattering medium, the phenomenon leads to an increase in the

neutron concentration near these spheres, compared with the mean
-

density 1n the spaces between them n(g), contained in the continulty

oquation(15.

When these two effects have been taken into account, all the
approximate: methods of solving the transfer equations‘(for example,
the asymptotic diffusion method) can be applied to the problem of
the system of interacting bodies . Consideration for these effects
is made below, Let us first look at a case in which the effects are

only slight.

Example 2, Let us evaluate the critical number o: spheres
fee Pace 727 (o)

x This relationship is often called the generalized Fick law /3/.
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of 0u(9.35)0f mass m uniformly distributed in the empty cavity
‘4 ' of a spherical reflector with reTlection coefficient (Albedo) A= 0.8
- 0.9. W Volume of the cavity #s V . Let us assume that there
0
is no absorptive or scattering matteﬂin the cavity, that the radius
Lo
of the spheresR is smalljcompared W with the critical radius R
0
‘L o
of an 1isolate sphere of & Ou (9.35).
Applying the asymptotic diffusion method, we find the critical

relationship. If we are given the [(lbedo of the reflecting shell,

the boundary condition on the internal surface of the reflector

. takes the formf;/

— Fadgae __ 3
8¢r 9ac 2

I—A
I+A4°

Substituting the egquation for (pasin the active zone (sphere

system), we obtain the critical relationship

1 3 1—-A
1 —ay, kact ka)= — =2
."‘( L7 cigay, a) 2 l-l-A'
(17)
t in vhich a is the radius of the system. For the case in point, in

which the ﬁ{lbedo is close to unity, and the coefficient of neutron
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4
29
‘\, ;
“i'

A

+eFE

[

breeding by each sphere is considerably less than unity;’ghe

following decompositions hold

— 1 __q,ka kgzs(_a_lr___l).
ctge, ka=x — 3 ' at

(18)
Taking into account that 8,,—a,=3—a, we can represent Eq.(}?B
with consideration for(}@)in the following form

. 314

*
Let us introduce the multiplication factor Q ,Which 1s defined
TN
as the ratiog:.of the xtx flux of neutrons leaving the sphere to the

flux of neutrons incident or ., irrespective of whether the neutrons

striking the spims sphere(reacted with the matter or passed through

% are
it without undergoing any collisions. The values Q and Q /related

as follows

Q —-1=[1—-g@ERIQ-)

(20)

} €3
As ¥will be shown 1l.ter, Q can be approximately described by
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N

the following interpolation between the extreme W cases R — 0 and

® -

0

(21)
Using Egs. @o) and Qe]), and expressing all values in Eq. (19)
in terms of the sphere mass m, the volume of the system zoi‘and
/"“"“"\

the total number of »wiewwmspizsx spheres in the system N , we get
0

the critical condition

[ Eaaii \

N.=2[(-:T’)”’ - ](—’%—.)’h:-:—j“-,

(22)

Ou
in which ¥ is the critical mass of the isolated sphere (for ‘(95.5)

M = 51.3 kg /5/), e is the density of the matter in the mphaa
3
spheres (for Ow (93.5) is equal to 18.8 g/cm ).
%
We should point out that the critiecal Egs. (19) and (20) do not

include dependence on the angular distribution of the neutron flux

/——’“"_"‘\
emewgdne from the spheres. The reason for this 1s that on account

¢4

of the proximity of the albedd of thgreflector 5_ and unity, the
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mean neutron denslty varies slightly along the radtus of the

Al raite angular
system, and eemeddewwmiligh for the anisotroggy of the/distribution
of the flux during breeding gives a correction for the small value
of the gradient of the mean neutron density ( if the latter is
constant, for example, in an infihibely-extended system, the
anysotrogyy has no effect at all on the state of the system).

ultiplication o t eutron Stre Body Ma
of Fissile Matter

Let us derive relationships for the multiplication factor

for a plane beam of neutrons Q and mean cosine/bv of angular

distribution 6f the(;;;;;;ii flux/’KTi/the elementary processes

in the body (scattering of neutrons by nuclei and fission) are
cons$idered 1sotropic, hence in the kinetic oqu-ttaa(;A)we must
assumef(f." -72)= -‘—:—according to normalization of the function f.

the
We will take/1sotropic sources in Eq.(;A)to mean secondary neutrons

x
occurring through interaction of the incident plane beam and

//—__——-‘—-—\\
the matter ., Integrating Eq.(iA) xkbonwsapast along the ray emerging

from point r in the directiont-_q_.\ we get

% The method used here of reducing the probler with anisotropic

source to isotropic .istribution of sources is described in /6/.
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- ‘ A ‘ [}
1=oN (. 2, 8)) =£p(7 — 1B n (2, r— IS]exp(— Sa(;-_
p ,

- ' .
_rayr)dt +§q‘(§.. 7 —B)yexp[— [a(F—rd)arydl, (23)
)

(23)
—

in which 'ﬂ‘o is the direction of motion of the neutrons in the

plane beam;

-—
1 1is the coordinate along the ray db .

We can obtain an expression for the neutron flux J(ﬁ,@a).emerging

-? 3
from the body in the direction £k by integrating Eq.(23)with

—
respect to the area of the cross section normal to Q

4=/(2,8) = 4=v [ N(7. 8, 8)dS= 1[ 8(r)vn(r; 8%

L Y 3
X exp(—| f. adl’|) dV + {q(?.éa)exp (—1faarpav;

¢
1 in which l!ld’l is the optical distance between point r and the

-—>
surfice of the body along the ray ﬂ , and V 1s the volume

—
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of the body.

: L
. Let us designate z(ff, ;j=exp( ]‘fadl’]). « If the body 1s impinged

upon by a single (per unit of area) plane neutrun stream in the

-_9 d
direction ‘0"0 , the density of the sources ¢(rQd),, according to

the definition given above, is equal to
q(r.2) = () x(—2.. 7.

The expression for the flux takes the following formy/

4=J(8,0) = [P on(r, 2@ AV +

+ (B2 @7 x(~S. P av.

For a homogeneous body of spherical shape

402,80 = [ [ Bon(r(@ B 7 @Dy ridran-

+ §feulr, @Butr, - @3y rdraer,

. (24)

i

in which (§§o) is the cosine of the angle between the unit vectors
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-
L ana Q.
The multiplication coefficient defines the number of neutrons
leaving the body per one act of interaction between the matter and

the neutrons striking the body is equaljp to

i S 2 |

0= f7@ Ry ar _Jpon (i (ryridr + [ 570 () riar
Ja@u @ —Fyav J aittr) rrdr ' (25)

cle
in which

4=

0=t @B, G = [l @9 5.

-~

— -—
The mean ambwme cosine /u of the neutron flux emerging from

the body 1s
- @&y @ehan _ [vpalnm(n)rdr — | 3 n)prdr
p= - = - - . ) "
) Je O)de Q ! ay (ryridr ( 26)
B3
in whic

10 =[@lr @) = W) =[@Dnlr @25

Yhen deriving Eq.(Zé}we made use of the following relationship,
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valid for the arbitary function ‘F(ﬁ'ﬁ):

gu (Q)qe =& | (@0)w@8)qe.
faw@d)d f@dw @

In a limiting case, in the radius of the sphere R is small
compared with the critical radius R and with the free path length
0
of the neutrons, we get vy x=1. Confining ourselves to the

first terms in the expansion of equalities (25) and @6> into a power

series R,§ we get

-— —-—-—-l—.
(27)
Let us consider another limiting mase in which the radius of
the sphere f_{_ is close to the physical radius R . Let us expand

e 0
S
the neutron flux vn in Eq.(z’)into a series with respect to the

/)f.igen }_functions t(?/‘:\ of the Peierls homogeneous equ-&an (1),

Omitting the operations described in /6/, we get

wn[r, (28] -%t«mlm [r, (@8,)].

tonli =25 [Balr, @Blulr. - @Bo1av.
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/\ .2.
in which wexgex )“i are the Figenvalues of Eq. Q)(F =0, 1, 25..47.

The ﬂgenpfunctions <Po- form an Wm\ké and normal system

at l=j'

Confining oupselves in the expansion to the two first terms
containing the function CPO , which is': not dependent on (29Q) ,
; and cf7| which is proportional to the first power (ﬁ’ﬁo) , and
taking it into account that..(r)=m(r), ¢1(r)=0,we obtain the following

for a sphere close to the critical state

Q=" %NV (ryridep
N—1  Juule)rtdr {35 v)rdr

(27)
Let us approxinately replace the distribution of asymptotic
(r)ul—( 4
sin akr Ro»
densdty ?..,(r)—— by the parabolic dependence A 1n which

%Q

Rﬁe is the extrapolated critical radius of the sphere determined

WWW*
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x
in the zsymptotie diffusion theory by the relationships

Ro=Ry+0Tly'=-2, k=1tg(k.

Having integrated Eq.(2'7’), we get

N Y 4 ¢
Qr= 1 -RIR,'

(28)

in whic‘h

3 ARy (1) (Ky— 3
& () = —— L. Z50() (Ko—LyJR )
4 R a1 RyI—¢ Rul My *

o ] Rf) 1
R« T T+t

KomRa= Lt (B L) exp22:

RS

4
Ly= Ry~ TR’o'f”g‘R’o"‘z'f'(Rzo+’z~R’o+4R.+2)>r.
Xexp(—2R,);

% Here a2nd from now on the linear dimensions are expressed in

neutron free path lengths o ' .
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g(go) is the transmittance coefficient for a sphere of critical radius as

determined by (11).

- <G
Y '
RN
as]— %\
) N\

' 2 0.1 0,‘ 0,‘ 0,' 2 ,'/"

(93.5)
Fige 2. Multiplication coefficient of a sphere made of Ou as a function
of the relative sphere size _Ii/go ¢ 1) dependence of 1/3; 2) dependence of 1/9” ;
3) experimental points derived by Stsiborskiy and Kuvshinov; R is radius of the

‘ sphere; 50 is the critical radius of the sphere,
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Interpolating between the two limiting sases, we get the

following approximate expression for Q

—

U=1+um 2.

(29)
Fig. 2 shows the dependence of gﬂg/go) for OEF;B.S), (’r’=
0.743 E(—ﬁ = 0.61) obtained by Eq.(2t§. It also gives the
dependence gf(g/ﬁb), deterrined by Eq(?dL which can be experimen-
tallylggggggggﬁz;gziiiL and we plot the experimental points for

%
Q obtained by Stsiborskiy and Kuvshinov.

—
We should point ¥emk out that the simplified expression(zﬂ

tomrect * o (B2 vt
in example 2 conveys the(a€§€ﬁaence Q (R/R )(qualitatively-o‘--l-ty,

* /’4—-’-\/1-«&12
except that it slichtly exaakrates Q , which 1s an gpesd=tistmg.

-

from the point of safety.
o of ular Distribution
Let us derive a relationship for the mean cosine of angular
[
distribution of neutrons gmerging from twe sphere. Since pugo=0 s
in the critical state, when )%,= l, the numerator in Eq.(?é)reiains
finite and the medn cosine vanishes on account of the fact that Q

-
- o, Thus, near the critical séate the anisotroply disappears.

But it cannot be disregarded completely since the expression for

- 141 -



O(@and(%} contains the product //\62 which remains finite in the

critical state. In order to obtalin an interpolation expression

for//xa , let us continue analytically the dependence of/&@ on
B’ as determined by @6} to the supercritical state in which >\l = 1.

In this limiting case Eq.(@é) becomes the following expression

Q=——1_ _{ [8F, (nwi(r)rdry
o M=1 fay(r)rrdr [eFr(r)rdr

in which F' (rq_) 1s the part of the functioner, (2, Qo)lwhich does
not depend on the zngle. Solution of the asymptotic diffusion

equation gives us the followlng expresslion for C.P'

1 stk o3
Frae™ &~ (coskr e )( /0)-

Let us assume roughly that
. r ,
Fy()= r[‘ - (Rn) ] )

'rs in which
Ry,=R, +0,714 =-% :
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R 1s the radius of the sphere in the state with )L‘ =1
1

.e

k= tg (k)

8 = 44934 1s the root of equation @ = tan & .

Integration gives us

20y = &(1)
pll = =200
QT l"lex'

in which
t ( )= 5 7 de‘Y) (Ki‘_Ll,R’u_" .
W= TR " @t Rull—gRIM

‘1 dR, (3) =1 © Ry 1 .
R & TR Jusm-1-°

K= 3 Ry — R+ 1 — (RY + 2R+ exp(— 2R):

(30)

—1_JO R\ 5 (R \s
M=1-7 (o) +5(25)
L,Z‘;‘R.l—2R‘l+4R,l—5Rzl+%-(R.l+4kll"'

+ 10R%, + 15R, + ) exp(— 2R)).

ALd
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.
\sﬂ‘
9 ~\~15~‘
@ o g8 40 12 16 16
re 2[Ry
Fig. 3. Dependence/’l Q on R/Ro for a sphere of

Oy (93.5):

Dashed line is extrapolated relationship
to the supercritical state withk = I;

o - experimental points of B.D. §tsiborski

and M.I. Kuvshinov

The interpolation expression satisfying the 1limiting cases

for Egs.(27)and (30\ takes the form

-.—l——Z--—li—.E_ ! R
(M mf*mn““"??)

(31)
Fig. 3 shows the dependence of «{ on R/R, for Ou(93:5) (R, =
e =2 “ 1

3

()

353 ;l = 0,108) described by Eq. 31, and plots the experimental
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points found by Stsiborskiy and Kuvshinov,

Multiple Multiplication: S re Neutr Reflec ~From

Scatte Medium

Let us deterrdne the number of neutrons é¢mitted by & sphere
per primary neutron, taking Into account the possibllity of their
reflection from the layer of scattering medium adjoining the sphere.

For the sake of simplicity let us use the concept of the multi-

3 Ea. .
plication factor Q related to Q by tha=oupecozztn(§d. Let us single

TN TN
out around the sphere am a region of the =z scattering medium for

the given sphere, the reflection coefficient (ﬂibedo) of which can

bt A *
be medmbe=membe cqual to A. If a neutron strikes the sphere, Q

-

®
neutrons leave it after multiplication. Of thrse (1 - A)@ 1leave

H-
the bounds of the separated region, while AQ neutrons return to

%®2
the sphere and, after multiplicatiol produce AQ  neutrons of the

next generation, and so on., Thus, for each primary neutron the

sphere emits (1—A)Q*+(1—A)AQ**+ (1—A)AQ*+ . . . =140

neutrons, Calculation of the multiple multiplication can be reduced
* 4 *

to the replacement of Q by (1 - A)Q /(1 - 4Q ) in the phyxiExi

critical equations.

To avocl
In owsor wmmmekid 2mbizulty in selecting the dimensions of
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Rl ST

/ N
reflecting layer, we will consider that A 1is the/Aibedo of bt &

e —_—
scattering iyxer layer of infiniteness thickness. The error 5
involved in this assumption kx has a sign which 1s favorable from
the viewpolnt of safety. If the radius of the sphere is large or
comparable with the neutron free path length in the reflector, in
order to find A we can use the asymptotic diffusion theory, in

which the expression for the ﬁlbedo for an infinite medium surround-

ing a sphere takes the form /4/

in which R is the radius of the sphere (in free path lengths in

the reflector),
D=U=D _  is the asymptotic diffusion coefficient in the

142

scattering medium (with absorption); the dependence of k on the
absorption constant of the medium 1( is given by the relationship
k= th(lﬁx).

Let us find an expression for the Albedo of the infinite re-

flector in another limiting case, when the radius of the sphere

- 146 -



il

is small compared with the free path length of the neutrons in the

O o b

reflector medium, Let us assume we are given a neutron density
distribution n(r) in the reflector (r i# the distance from the
center of the sphere). In the element 4V in the nelghborhood of
polint ?, -';idv neutrons are scattered every second. Taking the

scattering to be isotropic, we find that -%"—-cb (gg)_d_y neutrons

A3

g - ~
arrive at the xphrmxtx %)here from(‘ élementp dV every sewvond, in

®(r. R) = | exp[—=HRIT 1Q) —
which s is the distance between point r and the
surface of the spﬁf'e in direction 5. Q,andﬂis the solid angle at
which the sphere can be seen from point r. Integrating with respect
PnCletecit
to dV, we obtain an expression for the flux imebemt on the sphere,

i.el,

]=-2 ( wn(r)®(r, R)ridr.
2

(33)
ihe neutron density 2(1_') can be expanied into two components;
%r (f) is the demsity of neutrons of direct origin =mrriving at
‘e point ?from the sphere without colliding with/s'catterer nuclei,

4and n""f\ (r) the diffusion density. If the radius of the sphere R
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is reduced with the neutron stream from sphereAE remaining un-

0
e

changed, the flu%gof reflective neutrons of direct origin, striking
the sphere, is reduced in proportion to R, while the flux com-
ponent due to scattering of the diffusion neutrons is reduced in

2
proportion to R . Hence at low R it can be taken that in(?B)

~ I R
vn(r)y==wvn,(r) = —‘L—:(—;—-) .
(34)
. Substituting Eq. BA)into Eq.(?j, we obtain an expression for
the ;{1bedo
—._"_-—__4.. ( 2 '-
R
(25)

A comparison with the numerical calculation chows that Eqg 35)
is equivalent with a high degree of accuracy to the relationship

cbtz2ined by interpolating Eq.<35>with respect to the limiting cases

4

4 _g—JOandg_-—aoo.
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1+-;—Rsi(—2R)

R
1+ 2(1—12)

-~ R
Ar= 3

Equation 36 expresses the dependence of the/ﬂibedo of an

infinite medium oft the ruadius of the spherical cavity R and thm
— T
absorption zmmremt constant ﬂ” for a case in which the radius of
the cavity is small compared with the length of the free path, and
the diffusion approximation is inapplicable. For intermediate R
the‘ﬂibedo may be found approximuately by interpolating between the
. 3
dependence curves for A(R) in Eqs.(32>and(}6l For ‘3f = 1.1, this
interpolation curve 1is given in example 3. We should point out that
~yYalues

as 1r increases, tﬁéjril-x of R restricting the sphere of applica-
tion of Eqs.(??)and(?é)are greatly increased,

Example 3,.Spheres of 0u(93.5) are uniformly extended through

u
infinite space in a scattering medium with the absorption constant
~l

/E; = 1.1 and free path length cx; = 10 cm. Let us calculute the
dependence of the critical distance between spheres on the sphere

radius R by the riethod set forth in Section 2.

An infinite system is critical when the averaged breeding co-
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efficient in the system is equal to unity.

@_L?mpymn+L=L
) a T

37
Let us express the mean probabillty of extractiing neutrons
from the beam EZ' and density of location of spheres p in terms

ey
of the distance between/géheres d

e=a,+pS[g(@R)—g &R), »=d~,

and let us take into account the correction for multiplication of
the neutrons. The relationship for the critical distance between

spheres g.takes the folldwing form
d:as-s_.[ 1z Q“"l +'__ (IR) .
8 [}a—1 1—AQ* gloy ]' (28)

g

Th- dependence of A(R) for a medium with.‘x = l{{: as determined
- X

by Eqs.<32)and(;6)is given in Fig. 4. Figér. 5 shows the dependence

of the critical distance between spheres 4 on R (curve 1) derived

by qu(?Sk For comparison Fig. 5 (curve 2) shows the dependence 2(3}
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obtained by the method of approximate solution of the integral

equation put forward in Section 1?//

0,26 {— i v//’!’ -
o ‘//
V4

« 4

o Al
B o2
2
<

0,05

0 g, 3,0

12 18 24 -
§ Radids of the cawity R

Pig. 4. Interpolated curve of the relationship
between the Albedo of the infinite medium and the
radius of the spherical cavity R (R expressed in
length of free travel of neutrons in the medium,

ag = 0,1 em~1, y2 = 1.1),

1 - the curve calculated according to formula (36);
2 - curve calculated according to formula (32),

Flgure 5 shows thzt the results obtained by the integral method
contain a greater safety margin than by the method fiven in Section

II. When the radius of the spheres in an infinite system is reduced,

e

fmdepen both fnttptn in_dependent curves 3(5) merge, since both

methods satisly the limiting transition to a Yomogeneous rixture.
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Fig. 5. Relationship _ /’
of the critical distance ‘/‘,/”’
between spheres from Oy (9388 t5th i
radius for a system of ;;Q//
spheres uniformally distri- , W/

buted and infinitely o
s / . .

scattering medium,
2

(ﬂ'\ﬂ g 7 * § X

(Egi;ulation for a limited system of spheres is not more com-

plicated than in the example considered. If the system has a
spherically shaped radius a, for the critical relationship we only
MMU\L
need aq/ﬁ?éfﬁged breeding coefficient (making a coprection for
QO : . '
multiple multiplication and anisotroply of the angular distribution)
b de
smoummed equal to the critical parameter of the system l/qr(b<£§),
which is determined by exact methods (dependence of critical radius
on optic radius of system given, for example, in /2/.
Limits of Applicablity of kethodgs

Both the methods considered are applicable, irrespective of
the relative dimensions of the bodies, distances between them and
free path lengths of the neutrons in the media, Although attention
has been given in the main to a case in which the scattering medium
¥z uniformly fills the spiace betwwen the multiplying spheres, both
rethods perrit generalization for more complex cises of distribution
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~
of the scattering mmidmsx zatter (for example, scattering matter

in the form of spherical layers surrounding each sphere in the
system, or a system consisting of spheres of two types, and so on).
We should recall that by a scattering medium we mean a medium with
33’22 1,although all the arguments are still walid 1f medium 2 1is
& fissile matter with ’X1<: 1, differing from medium 1 in pro-
perties.

The difference in the limits of applicability of the two
methods is as follow<, Method 2 1s reliable when alculating
systems consisting of a large number of multiplying bodies, when
the dimensicns of the system are large or comparable with the mean
probability of extracting neutrons from the beam per unit length
during xx interaction with the spheres, i.e., when we can use the
kinetic equation for averaged values. Method I does not have this
limitation, since Eq.(6)is valld, irrespective of the number of
multiplying bodies in the systen.

1)

On hexgx the other hand, Method & is applicable to calculation
of the system of spheres in a scattering medium surrounded by an
s

rxternal refl-ctor (see example 2), whereas Method I assumes that

there are no external reflectors (in principle Kethod 2 may be
- 153 -



generalized for this case as well),

We should point out that when deriving critical relationships
for systems consisting of a large number of multiplying bodies/
it 1s assumed that the hodies do not form a regular geometric
Rabree e 64R
gwiel, but on am average{uniformly distributed through the volume
of the system, whereas the arrangement of the bodies in actual
systems is more often than not geometrically regular. The appli-

Lo Meces

cation of these methods to regular g8 gives a greater safety

1

R
margin since the presence of singled-out directions in the gwisd

means a substantial dtrengthening of the mutual screening of the

spheres.

- 154 -



Il Y

LY d

References

1. Peierls, R, Proc Cambridge Philos. Soc., 35, 610 (1939).

2. Zagrafov, B. G. A Method of estirating the critical parameters

gg :odies of arbitary from fissionable matter. "Atomic Energy", Vol. 8,
No. 1, p. 23 (1960),

3. Davison, B. Transport Theory of Neutron. Oxford, 1957, p. 98.

4. Glesston, C., Edlund, M. Bases of the theory of Nuclear Reactors,
Moscow, For. Lit. Press., 1954, pp. 148 and 429,

5. Graves, G., Paxton H. Nucleonics, 15, No. 6, 90 (1957).

6. Puchs, K. Proc. Phys. Soc. A., 62, 791 (1949).

155



OF
A INTERACTION BETWEE '0_SUBSCRITICAL R ORS

by
V.
A.\Kamayev, B. G. Dubovskii, V., V., Vevilov, G. A. Popov, Yu.D.

Palamarchuk and S, P. Ivanov,

Experiments with Homogeneous Reactors

Experiments were conducted to determine the critical state of
cylindrical
a system consisting of two mekkkzaixthomogeneous peactors without
reflectors in an ordinary air medium at different distances between
them.

The two cylindrical reactors in the experimental plant were
attached to a2 frame,one on a movable base and the other on a carriage
noving along the frame. The distance between the cylinders could

WHLLA
be cimmged from O to 120 cm,

The walls of the cylinders were made of rustliess steel (1§p18§9§)
1.5 mm thick. Fach cylinder was fitted with an emergency rod which
drcpped into théﬁiddle of the acsive zone when the set power level
was exceeded. The active zone was a water solution of U0 (NO )

2 32

salt containing uranium with 90% enrichment.

It 1s obvious that when the reactors interacted, each reactor

was subxcritical, even when the system was critical as a whole.
156



The experiments determined the connection between the degree of
I —

subcritica{'}ty of each reactor (wwem considered separately from

each other) and the distance between them at which the reactors

form a critical system,

The experiment was carried out in the following way. The

I
cyliniers were placed right next to each other and Sk

Wt aAAsp P e f"‘“ﬂ

"“taneewsty—with a water solution of UO?(NOE)?{ﬁﬁtil tThe eritical
2 322

state was reached. The cylinders were then‘movedgquickly kpart.

The systems became subspitical. In order to achieve criticality,

fresh amounts of solution were added simultaneously to both cylinders.
T ™~
The cylinders were separated and filled with fresh ximukmx amounts

of solution until both cylinders became critical, irrespective of

t

each other, 1:eﬂ, until a pésition in wheéch the interaction was
equal to O, Imxperx The inspection and control system was carried
out in such a way that it was possible to follow the behavior of
each eactor sep:rately, ani the system as a whole.

The )

/ﬁesults of exper ments with the homogeneous reactors are
Ly 14"1\—4_73—;
shown in Table 1 and in Figs. 1 and 2. In each separate (the two

interacting reactors were of the same size and had the same ‘active

zone composition. The effective £xm ireeding factor of the reactor
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was calculated by the following formula

%
!
!
1

K =30+l
eff 1 4 u3)(1 +w2L3)

(1)
in which x is the geometrical parameter of the mkkiex critical
0
reactor and,
% 1is the geometriczl parameter of the subcritical reactor.
In experiments 1, 2 and 3 the reactors wese—wikmst/ reflec-
tors, while in experiments 4 and 5 the reactors were set up on
a graphite base forming the lower end-reflector and a vertical
side wull,along which the mobile cylinder moved. The dependence
of §42§ on the distance between the reactors, found in the first
is
three experiments,/shown in Fig. 2,
m wit terogeneou eactor
The experimental plant constituted a steel reservoir, 2.5

meters high, 2,1 meters in diameter, with walls 5 mm thick. At the

bottom of the reservoir was a steel base plate with fasteninss to

which were attached two guiding grids made of

[ty )

for urnaium block channels. The active zone was assembled from

wit ,
uranium blocks/? and 109 enrichment, The distance between the reazctors
. 158 .
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Fig. 1, Critical volume of system of two
reactors as function of distance between
interacting reactors: 1) fourth experiment;
2) first experiment; 3) fifth experiment;
4) second experiment; 5) third experiment.
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Fig. 2. K ££ of one of homogeneous interacting
reactors s# ~function of distance between them,
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of one of the interacting

reactors as function of distance. between

them: 1) first experiment; 2) second experiment;
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Fig. 4. K ¢ of one of the interacting reactors

as function of

1) first experiment; 2) gecond experiment; 3) third experiment.

distance between them:
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was changed by reloading the ocn.ic/fﬁ)the lattice.q4;e eritical
state was achieved by filiing the reservoir with water. The
experimental method was similar to that described for homogeneous
reactors., Results of the experiments are shown in Table 2 and in
Flgs. 3 and . The experiments demonstrated that the combination
of two roughly equilateral subcritical reactors flush with one

another (K;§_= 0.94) is critical for each of them. Two identical
B N/D

subcritical cylindrical reactors with.§¢“ = 1 and §<4}<:0.94 each,
not exceeding 2.0 at Etb; cannot form a critical system.

The effective interaction of two identical subcritical reactors
at the given waﬂbreeding coefficient in an infinite medium) is
deternined by the solid angle between the ad joining surfaces.

The effectiveness of the interacticn of two suberitical reactors
in water 1t large distances 1s considerably less than in air, If
there is a 30 cm protective layer of water between the two reactors,

interaction between them can be ignored; here the error in deter-

A

e

ming X = will not be more than 0.1 %,
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ON_OF SECTIONALIZED AR POWER PLANTS

by

G. I.Marchuky, B. G, Bubovskiy, V,.V. Smelov and 7. N, ¥ilyutina

In connection with the study of secticnalized reactor

which

systems/provide for nu%Pear energy in suberitical reactors and fo
a consliderable increase in the burn-up depth of the fissile
isotope /1/, mathematical caluoulations of these plants were
made and results were obtained which can be applied to certain
specific versions of the systems.

The physical system of a sectionalized reactor system
considered in this paper is to some extent a further development

P

and generalization of the physical system of the bawwk PWR
reactor /2/.

The mathematical calculations are based on the use of
matrix spectrorization of finite-difference reactor equations /3/.

1, Ve consider a sectionalized reactor system representing

a combination of a critical reactor, which is the ignition source

for \Prightening M' neutron?, and suberitical sections

attanzed in series. On the interface between the critical reactor
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and the first suberitlical section, and also on the interfaces
of the other subecritical sections there are dirt layers which
only let the neutrons through in one direction. This system was
calculated in cylindrical geometry for one subcritical sectionm.

Fig. 1 is a sch@@gtic of a sectionalized reactor system.
In the middle there is an ignition critical reactor, 1, then
a "black" one for thermal neutrons, the barrier,2, which is a
combination of a layer of uranium 235 of thickness 0.2 cm, a
layer of cadmium and a layer of(moderatorg;gzg;lz.s cm thick;
subcritical section, 3, adjoins the barrier, and there is a
"black" layer of uranium on its outside boundary.

In the uranium of the barrier layer tlie thermal neutrons
from the critical ®pactor ss are converted into fast neutrons of
the fission spectrum, which pass through the layers of cadmium
and water and reach the subcritical section, where they breed.
The greater part of the neutrons formed in the subcritical section
are unzable to pass through the neutron barrier in the reverse
direction;since they are moderated by the water and absorbed in

*
the cadmium layer .,

¥-When taking into account the effects of the reverse transmission
of neutrons by the barrier, as shown by further calculation, the
increase in the effective breeding coefficient of a sectionalized
system 1s not greater than 10%.
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Fige 1. Sectionalized reactor system: a) top view; b) vertival
section; 1) critical reactor; 2)neutron barrier;
3) first subscritical section.

2. The spatial-power spectrum of the neutrons in each sub-
criticzl sectlion which is an element of the sectionalized suberitical
system zan be written in the diffusion-age approximation as the

following system of equations /3/
. . ar
513 = vDYs — Lz v _f Lidu+ Xp2,).

thv?t - “':'u?t = Ez.? (f: u.),
D vz |

? 3 D, d:
e =a(u), TSI =
4 2 dfl IS, ‘( )v .' 2 dn s, (1]

_DT ds;
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Here ®,—1is the yleld of xmmimmaxy secondary neutrons per 1

pAA bovevten

absorbed neutron,

£(u)— is the energy spectrum of neutrons occurring through

fission,

S and 8 are the boundaries of the subcritical section with
—1 ;

preceié;ng and following sections, respectively,
n is the normal to the boundary, directed wway from the

—

center of the sectionallized system,
(m* and v, aee the flux densities /3/ of fast and thermal neutrons
&C«)

( from the preceding section ‘to the given one,

If we use the multigroup representation /3/, system (1) re-

duces to a system of equations of the diffusion type
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| ey 4ol AT

. , -1 o
vD;v3j - Epj-— Wie —&%Q%

S P Ay o Dy
4 2 dn ls,” Y 4 72 dnls,

G=1,2,..., m)

£2)
If the sectionm under consideration is close to the critical

state, the iteration method of solving system(2)is not effective

Ceny afTren
in view of the slow »esembdmwee of the solution /3,4/. Hence to

solve system(<)we used method /3/ based on matrix representation

of the problem (2)

vDy® — Ed == 0,
D dv &% D db

LD ody gy b, Dy
4 2 dnls, 4 2 dn|s, (3)
in which (:/_F and H are vectors with the components {3, {n} ,

U' J ';Ill)i Ilo 2:.: ![ r'ﬂ.:v
resepctively, D and 3. are matrices A and

2/, c st[ '5' a/[!':/ ,J._ alv {4+ "Vi‘

s {l. (=1
o, (D

In view of the fact that the composition of the barrier is a
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thin. layer of uranium 235 and cadmiuwm, we should discuss in

greater detail the formulation of diffusion conditions on the

boundary between the two medla (é and E) separated by a thin
absorptive layer (g_). In the given case it is permissible to
consider the problem within the framework of plane geometry.
Let us take the direction from medium A to medium B as the
positive direction of the normal,

If we use (f(}i’E—f‘) in the plane problem to designate the
neutron flux in 2 unit of volume of the phase space (J_:,_E,/u) ,
the integral neutron fluxes %; "(x, u) ef each of the energy groups

obviously assume the form

Ei-n

%%, p) == L[ ?(x, E. p)dE.
)

Here p=c0s6,61s the angle between the normal and the direc-
tion of motion of the neutron.
The diffusion approximation corresponds, as is known, to

' representation of the function o, (x, g) in the form
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1
9j(x #) = Yy [?j(x) — 3Dy d-——?"li’"] ,

where
1

7y(x) = f‘ oj(x, p)dyp.

Assuming that the neutrons are not scattered in layer C,

~—NN
but xxx are only absorbed and reproduced, we can Jjoitn the number

of neutrons entering layer C from medium A every second with the

number of neutrons leaving layer C in the direction of medium B

every second

1 1
d3;
e o 305 S [y -

@

l E‘ d 1 }-,

o e ——
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Here d is the thickness of the absorbing layer)

£¢ is the macroscopic absorbtion cross section in 1t,

)

Q is the number of neutrons generated per unit of time

per cm of layer,
N
The balance of neutrons im flying in the opposite direction

can be written in the form

) d 0
. TA
%A dp — 3Dy 2 | p2dp -
S pa; A\ flp
-] -1
o Eﬁ . 0 X.d
* n 475 ¢ T
73 ne dp — 3D; ‘7;‘ ‘ nee dp — Q.
-1 ha¥

(5)
Intesrating equalities (4)and L5) we get
? a3 d‘il . A
‘2—"- -—D/. —;'i——"-'-E; (?') A — SDA "Z:' 54 (.3) + Qo

? d‘ d? > ’,

-—21- "),‘ -;—: :’—Eg(?’)?ﬁ ’“3D57£‘E((;“)"Q' ( )

6

in which 3--5d, E (*)—je‘”-‘f‘—
B e Lpglyt) — m
1
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System(ﬁ)easily gives us the boundary conditions for

particular cases:

a) Layer C does not absorb neutrons (22C1= 0);

In this case the system of equations(ﬁ)gives the known

boundary conditlions on the interface between the two media:

{6%)

b) Layer C #w strongly absorbs neutrons ( 2§c== o)

In this case we get the boundary conditions on the surface

of the "black" layer:

] d?
b
—-'55—0 —
2 b ux
1 d; . *
— 54 = D4 —~ ==
3~ P4 4 —= Q

(6m)
c)/ﬁediém B is "black" for neutrons (in particular, it may

be 1 vacuum)§:

Since i1t has been assumed ahove that layer C does not scatter

neutrons, i neutron which has left medium A no longer returns;

(LL}O)
this meansk that luyer C may(be regarded/;;;;;iihas a "black" one
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thus giving us the condition

WA ds 4
——— D — Y
2 + Da dx Q

6n?
T
In the matrix form m# the conditions on the boundary between

two media separated by a thin absorbing layer can be written in

the formx of equations(ﬁ, in which E's and gﬂ? are matrices:

Ey -1 E,G) 0. Ej= 3,E3):,

pJ
while(t is the matrix introduced above.

E’Y@ Ao toell 4y
The differential matrix-vector M(s)m all the
boundary conditions were represented in the finite-difference
form, and the solutlion of the problem was found by means of the

o~
matrix spectrplization method /3/.

To throw light on the physte¢al procﬂ::ses occurring 4m a
sectionalized reactor system, we carried out calculations of this
system,

Ve considered identical, homogeneous lattices in the central
critical reactor ind in the annular critical section. The uranium-

graphite heterogeneous lattice with a 20 by 20 c¢m mesh consisted
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t.»‘

of infinitely long cylindrical rods of uranium,6 3.5 cm in diameter,
with 2% content of uranium 235,

The concentration of elements in the active zone of the

3
lattice per 1 ecm was as follows:

2 - 0LE24T, ppia = 0092061,
By = 0HITH, 2c = 0.07977,
?“‘o = 0 ,033“6.

The thickness of the uranium 235 layer in the neutron

2

barrier f = 0,2 em, and the thickness of the w:iter layer was

H= 2.5 cm.

Calculations were nade for three values of the effective

multiplication coefficient (g@%? in the suberitical section:

0.88, 0.92 and 0,97. In accordance with these values of Ké% ’
R

we calculated the dimensions of the section AR = Ry - N

(see Fig. 1). The construction of the neutron barrier was the

same in all cases.

ak

Fizs, 2 - 6 show graprhs for the sg:nial—energy distribution

of the neutron fluxes in the cases unler con-ideration.

—
Figs. 7 and 8 show the fission integral Q(r) for a suberitical
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Fig. 6, Neutron flux (x, u) in active
zone of subcritical reactor (third version):

F-10 ¢ 4 (r, =073 2~y . u=0); .
Fwap Ar, w2 115); 1 -10-7 ¢ (r, t=Ug):
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Fig, 7. Division integral Q(r)for a subcritical
reactor: 1) first version; 2) second version;
3) third version,
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internal reactor.

The fission integral is takeirto mean the value

- . Uy
Q(’) = "[l j nl?du + s/t"?rL

¢ e —— : '

- b
w0 r

Fig. 8. Division integral Q(r) for critical
reactor,

~—
The ratio of the maximum flission integrals 9(3) in the sub-

ity

critic.l sections and in the ceritical internal reactor for different

K‘QK of subscritical sections 1is as follows

ejq 0,85 0935  0.97
M Ax K\ Ce 0.73 0.9 1.21
/\ 2 I b Q ~

—¢r
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As can he seen from the figures given in Figs. 7 and 8,

o)
as §Q£_in the suberitical reactor increases and approaches unity,
there 1s a considerable increase in the neutron flux in the sub-

/\
critical ammewy reactor through brightening of the high voltage
critical reactor by neutrons.

Thus, the calculations given confirm the initlal assumptions
that the use of sectionalized reactor systems makes it possible
to produce high fluxes of thermal neutrons.

The — —_ @'

/Ratio of Q to Q /where Q is the mean integral value of ;(ry
max - -

for subcritical and internal critical reactors, and also the ratios

ofva‘to Q» are as follows
- -

) - () . @ _ogr Critical
Ktp=0.88 Kegp=0"% K g FOY reactor

Qa /e .. 1o 140 1,40 2,12
M[Qer. ... LI 1.50 LM 1,00 .
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The integral values of the energy emission in the eritical
‘ reactor and suberitical sections as well as the relative values of

the specific energy emissions per 1 cell are:

Kbe0.85 K@ep0.90  KEER0,97 Critical
. . - . Teac tor_
S 1286 4840 6164 1035

k.o

Relative specific
.heat emission .
per cell ., . . 1.0y 147 1,80 1

It follows from these figures that the distribution of the
energy emissionfi;;;\in the suberitical sections may be Just as
advuntageous as in the critical sections, and this confirms the
advisability of using the sectionalized reactor system proposed
in /1/. It is juite clear that if there were a graphite reactor
on the outer boundary of the suberitical section;7z;stead of a
layer of uranium, 4he distribution of the enérgy release in the

suberitical section would be still more advantageous,
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