NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
A NOTE ON THE SURFACE INTEGRAL OF LAMINAR HEAT FLUX TO SYMMETRIC BODIES AT ZERO INCIDENCE

Nelson H. Kemp

RESEARCH REPORT 116
Contract No. AF 04(647)-278
September 1961

prepared for
HEADQUARTERS
BALLISTIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
A NOTE ON THE SURFACE INTEGRAL OF LAMINAR HEAT FLUX TO SYMMETRIC BODIES AT ZERO INCIDENCE

by

Nelson H. Kemp

AVCO-EVERETT RESEARCH LABORATORY
a division of
AVCO CORPORATION
Everett, Massachusetts

Contract No. AF 04(647)-278

September 1961

prepared for

HEADQUARTERS
BALLISTIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
AIR FORCE UNIT POST OFFICE
Los Angeles 45, California
ABSTRACT

In the study of heating problems of missiles it is frequently necessary to obtain the surface integral of the heat transfer. This is usually obtained by a numerical integration of the heat transfer rate distribution. The purpose of this note is to show that, for laminar heat transfer to symmetric bodies at zero angle of attack, this integration can be done analytically, if only a few reasonable approximations are made. The result is expressible entirely in terms of quantities which also enter the heat transfer rate distribution expression, so performing the surface integral becomes a very simple matter of algebraic combination of known quantities.
A NOTE ON THE SURFACE INTEGRAL OF LAMINAR HEAT FLUX TO SYMMETRIC BODIES AT ZERO INCIDENCE

In the study of heating problems of missiles it is frequently necessary to obtain the surface integral of the heat transfer. This is usually obtained by a numerical integration of the heat transfer rate distribution. The purpose of this note is to show that, for laminar heat transfer to symmetric bodies at zero angle of attack, this integration can be done analytically, if only a few reasonable approximations are made. The result is expressible entirely in terms of quantities which also enter the heat transfer rate distribution expression, so performing the surface integral becomes a very simple matter of algebraic combination of known quantities.

The "local similarity" theory of laminar heat transfer to bodies at zero angle of attack gives the heat transfer rate as

\[q_i = \frac{r^j \rho_w \mu_w u_e H_e}{\sqrt{2 \xi}} + \frac{g_{\eta_w}}{\sigma_w} \]

(1)

Here \(r \) is the body radius in the cross-section plane, \(u_e \) and \(H_e \) velocity and stagnation enthalpy at the edge of the boundary layer, \(\rho_w, \mu_w \) and \(\sigma_w \) the density, viscosity and Prandtl number at the wall, \(g_{\eta_w} \) the non-dimensional enthalpy gradient at the wall, and \(\xi \) a transformed coordinate related to the coordinate \(x \) parallel to the body surface by

\[\xi (x) = \int_0^x \rho_w \mu_w u_e r^{2j} \, dx. \]

(2)

The index \(j \) is zero for two-dimensional and unity for axisymmetric flow.

To integrate \(q \) over the body surface up to station \(x_i \) we multiply by the element of surface area \(dA = 2(\pi r)^j \, dx \) and integrate from \(x = 0 \) to \(x = x_i \), obtaining

\[Q_i = \int_0^{x_i} q \, dA = 2(\pi)^j \int_0^{x_i} \left[\frac{\rho_w \mu_w u_e r^{2j}}{\sqrt{2 \xi}} \right] H_e \frac{g_{\eta_w}}{\sigma_w} \, dx. \]

(3)

It is this integral which we will approximate.
First note that H_e is a constant. Second, note from Eq. (2) that the numerator of the term in the square brackets is $d\xi / dx$ so we can write

$$Q_i = 2 (\pi \frac{i}{j})^j H_e \int_0^X \frac{g_{\eta w}}{\sigma_w} d (\sqrt{2\xi}) . \quad (4)$$

The Prandtl number may be taken to be a constant, σ. The non-dimensional enthalpy gradient $g_{\eta w}$ does not vary much around the body either, since it has a weak dependence on pressure gradient and a roughly square root dependence on ρu ratio. In fact, Lees\(^2\) took it to be a constant at the zero pressure gradient, constant ρu, value in his heat transfer theory. Thus, a reasonable approximation is to take a suitable average value, say $g_{\eta w0}$. We may then integrate Eq. (4) to obtain

$$Q_i = 2 (\pi \frac{i}{j})^j H_e g_{\eta w0} \sqrt{2\xi (X_i)} / \sigma . \quad (5)$$

This formula expresses the surface integral of the heat transfer rate in terms of the transformed body coordinate ξ at the end station of the integration interval X_i. However, ξ can be expressed in terms of q from Eq. (1), so Q_i can be related to $q(x_i)$ by

$$Q_i = 2 (\pi \frac{i}{j})^j H_e g_{\eta w0}^2 \left(\frac{\rho_w \mu_w \eta_w}{q} \right)^2 \left(\frac{g_{\eta w0}}{\sigma} \right)^2 . \quad (6)$$

A more useful form for blunt bodies is obtained by introducing the stagnation point heat rate by the appropriate limiting form of Eq. (1):

$$q_s = \left[(1+\eta \frac{1}{\psi}) \frac{\rho_w \mu_w}{\psi_w} \left(\frac{du}{dx} \right)_s \right]^{1/2} H_e g_{\eta w0} / \sigma . \quad (7)$$

where $(du/dx)_s$ is the stagnation point velocity gradient. Under the approximation that $E_{\eta w}$ is constant, division of Eq. (6) by Eq. (7), and use of Eq. (1) for q yields

$$\int_{\alpha}^{X_i} \frac{q}{q_s} d\alpha = \frac{\rho_w \mu_w}{\rho_w \mu_w} \frac{A_i \eta \psi \psi_i}{(du/dx)_s} \left[\frac{q(x_i)}{q_s} \right]^{-1} , \quad (8)$$

where A_i is the body cross-sectional area at $x = X_i$. This is the principal result of the present note, showing that the surface integral of q/q_s is inversely proportional to the value of q/q_s at the end point of the integration interval. Since the total heat input to the body up to station X_i is proportional to the boundary layer thickness there, which in turn is inversely proportional to the local heat transfer rate, the result in Eq. (8) is physically reasonable.
Further simplification of Eq. (8) is obtained if the body can be taken to have a cool wall at which the perfect gas law is applicable. Then we have

\[
\frac{\rho_{wi} \mu_{wi}}{\rho_{ws} \mu_{ws}} = \frac{p_e}{p_{es}} \left(\frac{\mu_{wi}}{\mu_{ws}} \right) \left(\frac{T_{wi}}{T_{ws}} \right), \tag{9}
\]

where \(p_e \) is the pressure in the boundary layer. Finally, if the wall can be taken as constant temperature, the factor in parenthesis in Eq. (9) is unity and we have the simple result

\[
\int_{\theta_i}^{\theta_i} \frac{q}{q_s} \ dA = \frac{p_e}{p_{es}} \frac{A_i u_{ei} r_i}{(du_e/dx)_s} \left[\frac{q(x_i)}{q_s} \right]^{-1}. \tag{10}
\]

As an example, for a hemispherical nose of radius \(R_0 \) at hypersonic speeds, \(\mu_{ei} \) is practically a linear function of \(x = R_0 \theta \), and \(r = R \sin \theta \). The area and velocity factor is then

\[
\frac{A_i u_{ei} r_i}{(du_e/dx)_s} = \pi R^2 \theta \sin \theta. \tag{11}
\]

In the constant, low temperature wall case, Ref. 2, Eq. (15) or Ref. 3, Eq. (7) (with the correction of a square root in the denominator) gives

\[
\frac{q}{q_s} = \frac{p_e}{p_{es}} \frac{\theta \sin \theta}{\left[F_1 (\theta) + \beta F_2 (\theta) \right]^{1/2}},
\]

\[
\frac{p_e}{p_{es}} = 1 - \beta \sin^2 \theta, \tag{12}
\]

\[
F_1 (\theta) = \theta^2 - \theta \sin 2\theta + \sin^2 \theta,
\]

\[
F_2 (\theta) = -3/4 \left[\theta^2 - \theta \sin 2\theta \left(1 + 2 \left(\sin^2 \theta / 3 \right) + \sin^2 \theta (1 + (\sin^2 \theta) / 3) \right) \right].
\]

Thus, the integrated heat transfer becomes, from Eqs. (10)-(12),

\[
\int_{\theta_i}^{\theta_i} \frac{q}{q_s} \ dA = \pi R^2 \left[F_1 (\theta_i) + \beta F_2 (\theta_i) \right]^{1/2}, \tag{13}
\]

a result which agrees with a direct integration of Eq. (12).
If a direct integral formulation is desired, instead of an expression in terms of \(q \), we can restore \(\xi \) in place of \(q \) in Eq. (8) by means of Eqs. (1) and (7):

\[
\int_0^{x_1} \frac{q}{q_s} \, dA = \left(\frac{8}{1 + j} \right)^{1/2} (\pi)^{j} \left[\int_0^{x_1} \frac{\rho_w \mu_w}{\rho_{ws} \mu_{ws}} \frac{u_e r^{2j}}{(du_e/dx)_s} \, dx \right]^{1/2} . \tag{14}
\]

Further simplification for a constant, low temperature wall leads to the formula analogous to Eq. (10):

\[
\int_0^{x_1} \frac{q}{q_s} \, dA = \left(\frac{8}{1 + j} \right)^{1/2} (\pi)^{j} \left[\int_0^{x_1} \frac{p_e}{p_{es}} \frac{u_e r^{2j}}{(du_e/dx)_s} \, dx \right]^{1/2} . \tag{15}
\]

If the hemispherical nose example of Eqs. (11) and (12) is used in Eq. (15), the integration can be performed, and the result agrees, of course, with Eq. (13).

The advantage of Eqs. (8) and (10), over Eqs. (14) and (15), is that the integrals in the latter are directly related to the heat transfer rate distribution, and so have already been calculated if that distribution is known. In this case the surface integral can be found from Eqs. (8) and (10) with no further integration. If, however, one desires to find the integrated heat input without first finding the heat flux distribution, Eqs. (14) and (15) are the useful ones.

If the integral of \(q \) itself is desired, the value of \(q_s \) should be found from the formulas given in Ref. 4.
REFERENCES

<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
</table>

Asco-Everett Research Laboratory, Everett, Massachusetts

A NOTE ON THE SURFACE INTEGRAL OF LAMINAR HEAT FLUX TO SYMMETRIC BODIES AT ZERO INCIDENCE

(Contract AF 04(647)-278)

Unclassified report

In the study of heating problems of missiles, it is frequently necessary to obtain the surface integral of the heat transfer. This is usually obtained by a numerical integration of the heat transfer rate distribution. The purpose of this note is to show that, for laminar heat transfer to symmetric bodies at zero angle of attack, this integration can be done analytically, if only a few reasonable approximations are made. The result is expressible entirely in terms of quantities which also enter the heat transfer rate distribution expression, so performing the surface integral becomes a very simple matter of algebraic combination of known quantities.

<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
</table>

Asco-Everett Research Laboratory, Everett, Massachusetts

A NOTE ON THE SURFACE INTEGRAL OF LAMINAR HEAT FLUX TO SYMMETRIC BODIES AT ZERO INCIDENCE

(Contract AF 04(647)-278)

Unclassified report

In the study of heating problems of missiles, it is frequently necessary to obtain the surface integral of the heat transfer. This is usually obtained by a numerical integration of the heat transfer rate distribution. The purpose of this note is to show that, for laminar heat transfer to symmetric bodies at zero angle of attack, this integration can be done analytically, if only a few reasonable approximations are made. The result is expressible entirely in terms of quantities which also enter the heat transfer rate distribution expression, so performing the surface integral becomes a very simple matter of algebraic combination of known quantities.
In the study of heating problems of missiles it is frequently necessary to obtain the surface integral of the heat transfer. This is usually obtained by a numerical integration of the heat transfer rate distribution. The purpose of this note is to show that, for laminar heat transfer to symmetric bodies at zero angle of attack, this integration can be done analytically, if only a few reasonable approximations are made. The result is expressible entirely in terms of quantities which also enter the heat transfer rate distribution expression, so performing the surface integral becomes a very simple matter of algebraic combination of known quantities.
UNCLASSIFIED

I. Title.
II. Kemp, Nelson H.
III. AFBSR-84-61-26.
V. Contract AF 04(647)-278.

Avco-Everett Research Laboratory, Everett, Massachusetts
A NOTE ON THE SURFACE INTEGRAL OF LAMINAR HEAT FLUX TO SYMMETRIC BODIES AT ZERO INCIDENCE, by
(Contract AF 04(647)-278)

UNCLASSIFIED

In the study of heating problems of missiles it is frequently necessary to obtain the surface integral of the heat transfer rate distribution. The purpose of this note is to show that, for laminar heat transfer to symmetric bodies at zero angle of attack, this integration can be done analytically, if only a few reasonable approximations are made. The result is expressible entirely in terms of quantities which also enter the heat transfer rate distribution expression, so performing the surface integral becomes a very simple matter of algebraic combination of known quantities.
In the study of heating problems of missiles it is frequently necessary to obtain the surface integral of the heat transfer. This is usually obtained by a numerical integration of the heat transfer rate distribution. The purpose of this note is to show that, for laminar heat transfer to symmetric bodies at zero angle of attack, this integration can be done analytically, if only a few reasonable approximations are made. The result is expressible entirely in terms of quantities which also enter the heat transfer rate distribution expression, so performing the surface integral becomes a very simple matter of algebraic combination of known quantities.