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DIGEST

{ A theory explaining the breakvp of large liquid dzops by canopy
formation has been derived. The theory explains the deformations that
take place during the disintegration of a drop in terms of aerodynamic,
hydrostatic, and surface-tension pressures. The effect of liquid viscosity
has been ansumed to be negligible. Therefore, the theory will not apply
to liquids of high viscoaity. This theory, insofar as it has been possible

. to verify if, is in good agreement with breskup experiments pertformed with
liquid drops.
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BREAXUP OF A LIQUID MASS IN FREE FALL BY CANOPY FORMATION:
A THEORETICAL STUDY

1. INTROOUCTION.

When a liquid mzes disintegrates in free fall in nonturbulent air,
three di‘fr:rent modes of breakup may be observed because of varying condi-
tions of instability of the mass. These methods of breakup are the following:

1. Canopy forination or "burnting-hai effect, ! experimentally
described by Magarvey and 'I';ylc.':rl and Blanchard.

2. Surface stripping, investigated by Wilcox, Pistritto, and
Palmer. 3

3. Rotaticr and cscillation, experimentally observed by
Blanchard. ¢

The {irst m.echanism, canopy formation, refers to the deformation
of a iiquid mases in such a way that the raase first becomes flattened on its
leading side and subsequently inflated somewhat like a soap bubtle until it
bursts. The second mechanism, surface stripping, refers to smiall amounts

"of liquid being continuously stripped off the surface cf the mass by aerodynamic

forces. The third mechanism. rotation and oscillation, consists of rotation
of the entire mass until centrifugal force causes it to split. Two amaller
masses of approximately equal sise usually are formed. This same type of
splitting occurs when'he mass oscillates into ellipscidal shapes undulating
first in one plane and then in a plane perperndicular to it.

In order to derive a generalized theory of liquid-mass breakup
that will account for all of the mechanisms involved, a series of idealized
situatione will be presented to make it possible to analyse one mechaniam
at a time.

11. ANALYSIS OF CANOPY-FORMATION L ECHANISM IN LIQUID
BREAKUP.

Tha most fundamental mechanism of breskup appears to be canopy
formation. By fundamental it is meant that this mechanism can he annlvzed
irdependently of thy others without impusing iany restrictions on the :dealizes




experiment and without making many broad assumptions. An analysis of this
mechanism will be the first step in deriving a generalized theory of liquic.-
mass breakup.

Assume that a soherical mass (of radiue ro) of a nonviscous
inelastic liquid ¢f density n, , viscosity Hos and surface tension y, is at rest
at time zero (t = 0) when it {Jeginl to undergo free fall in a gravitational field
g through a nonturbulent srill atmosphere of density p, and of viscosity of p .
it i3 assumed that the total mass of the liquid remaine constant during free
1all until the time when the canopy bursts; i. e., the amount of liquid surface
sttipped3 or evaporated is negligible. In the case of a l-gm spherical mass,
the evaporation is calculated to be less than 0. 01% by Langmuir's equation. 5

Ags will be shown later, this assumption of constant mass is only
+alid for spheres in a limited 3ize range. At time zero the idealized liquid-
mass profile appears circular as in figure 1. " The mass is always descrited
as a surface of revolution.

1944 ANALYSIS OF LIQUID-MASS DEFORMATION.

As the aphere beginy to fall, the aerodynamic pressure on the
leading hemisphere will begin to increaec; the entire sphere will begin to be
flattened. The flattening of the leading hemisphere will be more rapid than
that of the trailing hemisphere. This can bYe visualized by considering the:
mo sment of the leading point as the aerodynamic pressure increases.

A. Development of Oblate Spheroid.

The profile of the liquid mass, whici: is always described as a
surface of revolution, may be represented on the original coordinate axes
(figure 1}, which are moving with the same velocity as the entire mass
relative to the air. As the aerodynamic pressure increases with increasing
velocity, the leading point will move toward the trailing point (figure 2).
The distaice travelad U tha leading point toward the trailing point will be
called "s." As the lewding po.at move. teward the treailing point, the liquid
in the lower hemisphere will be displa. ed outward Ir~r the waist of the
liquid mass along the path of least resistance. This will continue to occur
until the hydrostatic pressure at the waist of the mass plus the surface-
tension pressure caused by the curvature at the trailing point is equal to the
surtace tension at the waist of the mass. This pressure relationship ~f the
iiquid mass may he expressed by the {oliowing matdamadatical model:

i . .

‘ e .
S ‘mg‘q‘%’": P, 8




2P =P, +P_ (1)

h
where
Paw = gurface-tension pressure at any point on waist
Ph = hydronstatic pressure at any point on waist
Pgt = surface-tension pressure at trailing point

Using the equations derived in appendix A, thcse patrameters may

all be expressed terms of s and r;

1
3(2r - o) F
'y - Y(—l_. + -l_) =y c +
sw n T2 8r4+ 2r ('Zr - 3)3 - 3r2 (2r - a)z /
o o o o [
Brt 4 2r (2r - o)° - 3r2 {2 ,)z.‘%
-Zro R R Tt D
Vel 32 2 J
L { r, - s)
Ph = P‘ (Zr - .)‘
20 " 3(2r -8)" 7
Pot = b * Zy: 3
k | 4r 4 (2r - 9) _|
where
' r radius of curvature of trailing point
r, = major radius of curvature at waist
£, = minor radius of curvature at waist
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FIGURE |

PROFILE OF LIQUID MASS AT TIME ZERO
{Coordinate axes x and y move with velocity = V)
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N\ - _ 7 (dotted figurc s=0)

FIGURE 2

PROFILE OF LIQUID MASS WHEN 8 >8> T




The pressure rcolationship of the liquid mass, aquation (1),may

now be written:

' 1 1} 2
Zy(—-—-+—-—=p 2r -:)g+—-x (la)
| 7 rZJ 2 o rk
1
I 32r - 0)° z
ZY( 1 3 F3 +
L 8r° + Zro (Zro - 8) - 3r° (Zro - 8)
4 3 .2 24+
r_z [ 8r° + Zro (Zro -8) - 3:0 (Zro - 8) } 2 }
° L 3(2r - 8)
°
3er - ‘)z
= Py (Zro - s)g ¢+ 2y 2 3 (1b)
4r° + (Zro - 8)

In order for the liquid mass to be stable, an aerodynamic pressure
of I, must be equal to the lesser of the two total pressures shown to be a
surface-tension pressure at the waist of P and a hydrostatic pressure of
P, plus a surface-tension pressure at the trailing point of P ,. The aero-
dynamic pressure, P_, at the leading point can be expressed by the equation
Py = l/Zpavz. where v is the velocity of the air relative to the mass. By
solving equation (1b) for s, ihe general appearance of the liguid mass can be
determined. Tho terminal velocity of the rnass can then be determined from
" the terminal-velocity equation derived in appendix B. If the aerodynamic
pressure at terminal velocity is less than the hydrostatic pressure when
equation (1b) is satisfied, the mass will not break up by canopy formation,
although it might disir..( j-awe =7 the =~rface-ctripping mode.

In the firest stage of mass deformation, an oblate spheroid is
formed. Whenr, 282 0, the radius of curvature, z., of the leading point
will go to infinity. When the acceleration at the leading point, 8", is
expressed in terms of the surface-tension pressure and aerodynamic oressure,

12
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an equation is obtained giving the distance the leading point travels as a function
of time:

X
ROp— S SV R T & (2)
pyl7r - s) 2 r, b r,
Rewriting che equation for vz. derived in appendix B in terms of t, r, and 1,

the following equation is obtainad:

-1
3 4 3 L2 2
2 Bpgrog [ 8 ¢2r (2r - i -3 (2r) - v) ] y

=
3¢ CD '. 3(2r° - 0)2

v

l .
39,8C, ] 2 8r:+ 2 (2r - s - 3::' (2r_ - o)’
unh t (2a)
4p r3 3(zr - .)z
I o
The radius of curvature of the leading point, 'c' is expressed in terms cf »
and r, in equation (4), appendix A, as:

-4r°5 - roz (Zro - l)3 + S(Zro - l)zr: + (ro - .)3 (21'o - l)z
ro * 2 P ‘ — (2n)
3(Zr° - 8) (ro -8)

Equation (2), which shows the acceleration on the leading point,
can now be rewritten in terms of s, r,, and t, to obtain t as a function of
s" and s.

Tle tima far the development of the oblate spheroid, the first
stagce of deformat:on, can ve dewca.nined in this manner. If equaiion (2) is
rewritten in terms of s and t, the following equitisn is gbtained:

13




-1

4:33 Str4 +2r (2r - l)3 - 3r2 (2r - l)Z
o = o o o' o 20 o x
ez, - 81Cy | 32r - 8)
L 4 3,2 2
o[ 39,8Cp |2 8r 4 2r (2r -8)" -2 (2r -s) )
tanh 2 3 2 2 5 2 t +
4p‘r° 3(2r° - 8) }

2 2
3(Zr° -8) (ro - 8)

2y -
p‘(Zro -8 -4:-5 - rz(Zr " l)3+ 5r3(2r - u)z +(r - l)3(2r - -)z
° o' o o' o o o
.4
y 3(22‘0 - l) I 2 R
p‘(Zro - 8) 81-4r + 2r (2r - 1)3 - 3r2(2r- - l)z .
[+] o (4] ] o
1
2 artear2r -0 - 3% - 0% 2
- o o o o' o
T 3 {2¢)
3(21‘0 - 8)

By solving the above equation for t when r, 2 8 2 0, the time to
reach any stage of deformatisn in this interval of s can he estimated.

B. Development of Disk.

The development of the disk, the second stage of deformation,
occurs when s, 2 8 2 1,, where sg equals the value °f s when the pressure
relationship of the liquia-. --~a aquation (1b] is satistied. In this stage of
deformation, the bottom of the mass has become tlaitoned and r, =00 . The
second term in equation (2) drops out, and the followiny eg-2tion is =Ltained:

PV ‘
a 1 1 1
- + T (3)

1 2
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Equation (3) can now be rewritten ir. terms of s, ry, andt, and is
analogous to the acceleration equation (2:). By solving these equations for t,
the time to reach any stage of defoermation in the interval 8; 2 8 2 0 can be
calculated.

C. Development of Canopy.

‘The canopy will begin to form (the third stage of deformation)
after s = 8., as indicated in figure 3. The minor radius at the waist, rp,
czuses in effect a torus of tnickness 2 rn. This will determine the geometry
of the canopy. The outer diameter of the torus is 2 r,. The canopy can then
te visualized as an inflating soap bubble formed from a soap film stretched
across a ring. The ring ip the case of the canopy is the torus. The body
radius of the torus, rp, is given by the following equations, which are derived
in appendix C:

r
> |
= | e >
r,r '1’r2 whenrOZQ__O
Zro-o
r.r=—--;_-l—-) r2 when Zroz s2 'o

The inner diameter of the torus, 2r . is given by the following equation:
er =2 (rl - r,z,)

The .nner radius of the tocus, r» is constant until s, = ry as indicated in
figures 2, 3, ard 4, where s, is the distance that the central point of the
canopy travels aiter s = 8g- When co > 8, 2 ry, then Ty = Te.

When tus ' *¢#» condition has been met, the torus itself will
expand as the canopy expands. The inner radius of ~urvature of the canopy,
Tes €N now b exprissed in terms of T and 8y W oliiin the {ullowing eguation:

2 2 2

:'w o. rw + l.
B emswrm— —
Te 2 + 2 ° 28
- a

- )
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; FIGURE 3
PROFILE OF LIGUID MASS WHEN » = 8,
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{Canopy is a hemisphere pé':,-c')
Sumaveraps thickiess o canopy
.URE 4

PROFILE OF LIQUID MASS WHEN s =T

w
(Original axes transformed so that y = sa)




The precnding equation shows that r, will be a minimum when
s, =r,. Figures 2, 3, and 4 show the gensra: appearance of the liquid mass
w‘mn 8,28 >r°. 8 = &4, and 8, = r, respectively.

An equation aimilar to acccleration equations (2) and (3) must
now be found to des->ibe the movement of the central point of the canopy.

The acceleratioa of the central point of the canopy is z function
of asrodynamic pressure and the changing radius of curvature. During the
major portion of the intcrval r, 2 sy 2 0, the canopy ha. two surfaces vith
aimost equal curvatures. Tha acceleration of the central point is now
approximated by the following equation:

ztrz 4wrz
PyY w Y w

M Mr (4
[ C C

where

uc +« mase of tha ca.opy (constant)

4.3 2 2
M ® ’.l['s' AR LR U "r]

and
: 1
3 2
e g 3p.gC \
v a2 > 1 tanh? | —2—B2. " (e, +t)
3p 2°C 3 wii
awbD o'k
where

t1 = value of t when & = %

Substituling the squations tor M. and v into equation (4), the
following equation is obtained:

18




3
2r g [ 3p_gC ]
s = 2 tanh®| |—2 -2 ro(t+t)! -
a .. (Zr3 3w tZ) L ar3p w i J
~p'*“%o w T o' 2 )
r z 7
1 lwa ] 'a
r’y 3 3 J 2. 2 (4a).
Pa| 2¢7-3r =®r r +s
o w T w a

By solving equations (2), (2), and (4), it is possible to determine

the time it takes the liquid mass to deform up to the time when s, = r .

D. Development and Expansion of Torus and Canopy.

The maximum radius of the liquid mass, r,, is no longer constant
after s, = r,, but is equal to r., and the torus begins to expand. In thus
fourth stage of deformation, the canopy will continue to inflate until the
aerodynamic fcrces are greater than the cohesive forces of the canopy and
# the canopy ruptures. ‘

The volume of the canopy remains constant if the total mass
remains constant. The canopy will become increasingly thin as it undergoes
~xpansion. The average thickness of the canopy, s, as shown in figure 4,
18 given by the following equation:

\4
volume of canopy ¢

u area of canopy Ac

The term A_ is a function of r_, shown in apperdix D, whero the following
equations are derived:




whenco 2> s 2r .
a w

When the conditions of the following equation, derived in
appendix E, are met, the canopy will rupture (figuve 5):

2 2
“rc.uch = lrc Y (5)
where ('Jh is the tensile strength of the liquid.

Simplifying equation (5), expressing it in terms of s, and r,,
and substituting Mclp for Vc in Vc = luAc, the following equation, derived
in appendix E, is obtained:

. Nl

N 2 2

2 2 2 2 2 2
BC’hr , 3 + Z) . rw§ l‘ rw¢ l. ) rw+ n‘ ) -,7-] (5a)
7 (2r) - 3wr ro Zs, Z, Zs w

Sp‘v

\
when. >s >0, and
we

N

2 2 2 2 2 2
r +s r +s r +s Z]
— A —N___a ‘,_.‘Lz.._.l.) ‘r""J (5b)
a !

8C, ¥ 3 2
2 (Zro ) 3"er) ’( 28 2s
a a

h
3p;v

when oo 2 s, 2 ry And where rpis taken at s = 84 and v is the velocity of the
mass just prior to breanus.

. « when 8,2 ry$oo, Py, ® T, and:

2 2
p v wr 4ywr
TR < . c 6)
a 2M M \

[ <
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k]
8r"gp 3p gC
Ve - -fﬁl—- tanh’ | 22} ¢ 4 t)
30 1 C 4r p e u
- »] ol

where t . i8 tae total time elapsed from s = 0 to 8 =1,
i

1
3 . 2 2 2
o -~
Zrog 2 .3pag.,D rw + aa ]
8; = tanh ('——T—— 53 (txi +t)y | -
(Zro - Brwur )CD L 4r°p! ] a -
1
r + 8
€y w a
3 i—( 28 (6a)
2r - 3r nr
o w T

IV. SUMMATION OF ANALYCIS.,

Previous sections of this report show that from the acceleration
equations (2), (3), (4), and (6) it is possible to determine the time it takes
ior the mass to reach any stage of deformation from time zero to the time

when the canopy bursts,

1f one assumes the shock of the liquid disintegration does not
produce oscillations that would cause the torus to break up (since, at this
point in the study, it appesrs that considerable energy s expended during
breakup of the canopy), then, after the canopy has burst, the torus will
remain intact until the aerodynamic and surface-tension pressures break it
up into smaller more stable pieces. E£ince the velocity of the ranass 1s known
at the time of cyneu. 'nture, 1t is possible to calculate the kinetic energy
of the torus at this instant. The surfuce siergy of the torus also may be
calculated. The torus will break up into the nui.bei »¢ meces that will gave
a minimum of surface energy. The most probable number of pieces wiii ve
found when the torus breaks at intervals of 4.5 diameters, since this wil)
give a minimum of surface area and, therefore, a minimum surface energy.




FIGURE 5

PROFILE OF LIQUID MASS JUST PRIOR TO
CANOPY RUPTURE WHEN ™ > 3 > L
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The radius of the spheres into which the torus breaks (re) is
given by the following equation:

3 ” 3 = 2 ﬂrz r - 2
37T 2T TiTY T 2T
where
2 3 volume of torus
" . . - . .
&r o - Ty ") 0 and rpis taken just

before disintegration.

If ry is less than the maximum stable drop size determined by the
acceleration equations {2), (3), (4), and (6), the system has become stable.
If rg is more than the maximum stable size, the whole process outlined in
this paper muast be repeated for each drop, taking into consideration that the
initial velocity of the air is no longer zero.

V. DISCUSSION.

When deriving this theoretical treaiment of canopy-formation
b-eakup, twc assumptions were made. First, it was assumed that the mass
of the liquid remained constant throughout the deformation process. This
assumption is valid only for relatively small liquid spheres. It follows from
the definition of surface-tension pressure that, as a liquid mass becomes
distoried into a larger shape, the surface-tension forces holding the outer
layers of liquid will decrease with increasing surface area. The time
required to reach any given free-fall velocity and the related aerodynamic
force will also decrease as the sphere be. omes larger. Consequently, at -
any given instant in the dzformation process, there will be a greater prob-
ability of strippng off of surface layers of liquid frcm the mass. For.
spherical liquid masses in the diameter rar}ge of 1.2 cm to 4.0 cm, there is
a negligible amount of surface stripping. 1,3 For diameters of over 4.0 cm,
surfi.ce strippiux .27 "0 longer be nexlected, © and the theory derived in this
paper must be coubined with a theory of lijuid-mass breakup caused by
surface stripping. A future study is contempla..d tc «how that very large
liquid masses break up almost entirely by surface-stripping effects.

The second assumption was that the effect of the viscosity of the
liguid was negligible. The viscosity may be neglected in the cauc of s =11




masses of relatively nonviscous liquids of high surface tension such as water,
but cannot be neglacted in general. The effect of increased viscosity will be
to slow down the rate of detormation by decreasing the acceleration of the
ieading pcint and, posaibly,to slow down the acceleration to the point where
the mass will be siable; i. e., the mass will have reached terminal velocity
before the aerodyramic force can overcome the viscosity and surface tension
of the liquid. Consequently, the rate at which a liquid mass will break up can
be decreased by increasing the viscosity, or it can be increased by decreasing
the surface tension. As a liquid mass becomes sufficiently large so that
viscosity must be considered, the main mechanism oi breakup is no longer
canopy formation but surface stripping.

This theory was chacked and found to be in agreement with the
studies reported by Magarvey and 'l‘aylorl and Blanchard.2 Tkese agreements
are shown in appendixes F ard G. The difficulty of solving acceleration
equations (2), (3), (4), and (6) analytically has made it impractical to check
the times of deformation. The predicted general gecmetry assumed by the
liquid mass is, however, in very good agreement witl! experimental results.
The coeificient cf cohesion between the liquid surfaces is uncertain since it
depends on the impurities in the liquid. The coefficient of cohesion can be
calculated by combining this theory with data obtained in canopy-breakup
experiments. This cohesion coefficient is shown in appendix G to be consid-
erably leas than 1 atmosphere, which is much lower than would be predicted
from molecular considerations. The effect of impurities on the tensile strength
of a "iquid is still not known in a quantitatine sense. Before this theory can be
tested fully or put to some practical use, more work on the tensile strengh of
liquids is necessary. A satisfactory method for solving nonlinear differential
equations of the second order, such as thosc describing the acceleration of the
trailing point of the liquid mass, must also be found. For the time being, a
numerical approximation must suffice.

In conclusion, it should be mentioned that the mathematical model
postulated for the deiormation process is certainly not an exact one. It
appears to be a very ~irn.ee approximation as shown by figures and examples in
appendixcs C and F i einipso.ds ot sovolution had been postulated as
mathematical models instead of sections of epheres, *his theo:y wculd not

24
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GLOSSARY

maximum cross-sectional area of liquid maass
area of in. >r surface of canopy
coefficient of drag

maximum aerodynamic force acting on liquii mass

acceleration caused by gravity

total masa *f liquid

mass of canopy

asrodynamic pressure on leading point of liquid mass
hydrostatic pressure at any point or at w;ie: of liquid mass
surface-tension pressuve at any point on waist of liquid mass
surface-tension pressure at trailing point

pressure of |tabiiity

original radius of spherical liquid mass (figure 1)

major radius of curvature at waist of mass (figure 2)
minor radius of curvature at waist of mass

radius of cui .«tire ¢’ cent.:' leading pnint of liquid mass
radius of curvature of central trailing point of liquid mase
one-half thickness of torus; i. e., radius of body of torus

inner radius of torus
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radius of apheres into which torus breaks

Reynolds number

distance leading point travels toward trailing point in moving
cnordinate system where trailing point moves with same velocity
as cc.rdinate axes (figures 2 and 3)

value of 8 when equation (1b)} is satisfied

distance central point on leading surface of canopy travels after
equation (1b) is satisfied

average thickness ot canopy {figure 3)

time elapsed between any given inte:vals of s or LR
value of t wheﬁ 8= L

total time elapsed from s = § to T
velocity of atmosphere relative to liquid mass
terminal velocity of mass

volume of liquid above waist of mass

volume of ligquid below waist of mass

volume of canopy

density of air

density of liquid

viscosity of air

viscosity of liquid

.
surface tension of liquid
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APPENDIX A

DERIVATION OF RADI! OF CURVATURE AT WAIST AND
AT LEADING AND TRAILING CENTRAL POINTS

In the range r, 2 s > G, where r, is the original radius of the
spherical mass and s is the distance that the central leading point travels
toward the central trailing point ir a moving coordinate rystem where the
central trailing point remains stationary relitive to the coordinate axes,
there exists the following relationship:

iurszv

3" VitV

where

Vl = volume of liquid above waist of mass

v 2 = volume of liauid below waist of mass

V. and V_, described a; sections of spheres, are volumes of
revolution and may be visualized in figure 1.

The volumes V., and V_ then are calculated readily in terms of
the radius of curvature, ry, of the central trailing point and the radius of
curvature, r., of the central leading point.

In general:

r r
k 3 k
- 2 2 . 2 y
Vl tj (rk-y)dy w[rky- 3]

[Fie = %) Ty~ %l
Whenr 282 0:
o
l_3
2 ) -
v = (rkro - —T) : (1)
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In general:

r 3 rc
2 2 2 Y
V‘z:w{rc-y)dyxwl.cy-s}
rc»-(ro")

WhenrOleo:

3
_ 2 (ro - .)
Vz =wr (ro -8) - I — (2)

Since the masr of the liquid is assumed constant and

-;- 'lr: = Vl + VZ' the following relationship exists:
r3 {r .)3

4 3 2 o ' 4 3

3r°=rkx°-—3-§rc(r°-l)- 3 anvz-—)o,vl—o-sﬂro
When 2r 282r:

° o
r 3
4 wr3=w k(rz--yz)dytt r.(2r - l)zo(zro- ?
3 o - k ko 3
[rk - (Zro - ufl
ards(2r - o) |
. o o
ery = 3 (3)
3(2r° - 8)
) .2 3 3
1 3 4r . - & lo l'o , “ (l'o - 8)
3%° Z* 3 ‘—?*rc"o o 3
3(2r - »)
o

Appendix A 32

[ - . . . .
. ¢ . . ' . . )
. . S .
. . ) » . ) .!. ) . .
- . ' . ~ N .
-~ RN . "R T




5 3 2 3 2 3 2
-4r° - (Zro - 8) T, + Sro (Zx-o -8) ¢ (x'° - 8) (Zro - 8) )

r b1

¢ 2 2
3(21-0 - 8) (ro -~ 8)
ry # maximum radius of the mass (figure 1)
By expressing r) in terms of its position in the moving coordinate system,
the following relationships are obtained:
2 2 2 2 2

x +y =:'k x=rl y:rk-ro
e 2 2 _ 2
.rl-rk-(rk-ro) -Zrkro-ro
1
212
L3 ={2tk.° A

After substituting equation (3) for T the following expression

for r, is derived:
1

P

4 3,2 22
) ".Or°02r°(2r°-o) - 3 (2r - 0]
)

(5)
3(21-0 - .)2 J ‘

rz = minor radius of curvature at the waist of the mass
When o ro. rz = ro and as r, — S, rz - Q.

Therefore, by symmetry, the following expression for r, is derived (figure 2):

2 2
Yo l'o
poox e s (6)
2 r 2. 1/2
1 (Zrkro - ro)
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APPENDIX B

DERIVATION OF VELOCITY OF AIR RELATIVE TO FREE-FALLING MASS

;e total acceleration acting on @ mass may be expressed by the
following cquation:

dv "a"ZA °p ‘
a - 8- 2 M (1)
where
L density of air
g = acceleration due to gravity f
v = velocity of air relative to mass . “
A = wrz = maximum cross-sectional area
t = time elapsed after beginning of free fall
CD = coefficient of drag of mass (assume constant)
M = G r: = total mass of sphere (assume constant)
By solving equation (1) for v, the following expression is obtained:
l’ XU S
vz ‘l__—7——.-2 e J (2)
where
'Z . 2 Mg
Pa A CD
2 0
k Fa A (4;- H {
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By rewriting and squaring equation (2}, the following expression is obtained:

v = az tmhz(at/k) {3)

By substituting the original values for 4 and k in equation (3), the followirg
expression for the . quare of the velocity is obtained:

1
3 \=
8p,r g 3p gC, 12
Vo422 iamn? a DI, (4)
3p r. C 81'3 !
Pa"1¥D °
where
4 3 2, 2
2 &ro + Zro(?.ro -8) - 3r°.2r° - 8)
nc 2
3(2r0 - 8)
r, = original radius of spherical mass

s = distance traveled by leading point toward trailing point

Py density of liquid

The coefficient of drag, C_, is not constant for a sphere, but
dec cases with increasing Reynolds nimber at low Reynolds numbers. The
mass, however, does not remain spherical. It assumes the shape of a section
of a sphere and then becomes parachute-shaped. It is, therefore, convenient
to assume a constant coefficient of drag of about 0.4, which should give a
fairly good approximation of the termiral velocity of masses whorve Reynolds
number is about 10,000 at terminal velocity. The assumption of a drag
coefficient of about 0. 4 is justified and can be seen by checking a graph of
drag coefficients versus the Reynolds numbers of spheres, cylinders,
hemispheres, and disks: shapes that approximate the geometry of the deform-
ing liquid mass. The ;.ca.caot ‘rag .. fficient error will be encountered
when the Reynolds number is less than 100. (This er»nr is ve.y sinall at
Reynolds number greater than 100.) Consequently, the equation derived
above should yield reasonable values for masses that have a Reynolds number
of less than 100 for a relatively short period of time (less than 10%) during
free zall.
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APFENDIX C

DERIVATION OF BODY RALIUS OF TORUS

7 figure l, rq is the radius of the body of the torus and r; the
cifective radius of curvature at the waist of the maes.

By trigonometric analogy, when T 2820

When s > r the liquid-mass profile has the appearance shown
in tagure 2.

Figure 2 may be approximated by the mathematical model shown
in figure 3.

By trigonometric analogy rr may be exprussed as:

2r -2
X r 8|t
r|

when 2r 282 r
1 o o

2
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FIGURE 1
PROFILE OF LIQUID MASS WHEN r, 2520
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FIGURE 2

ACTUAL APPEARANCE OF LIQUID MASS WHEN Zro >8> r,
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FIGURE 3

APPROXIMATE APPEARANCE OF FIGURE 2
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APPENDIX D

DETERMINATION OF CANOPY AREA

To determine the area of the canopy, the profile of the canopy
is given in figure 1 as a section of a circle of radius L

rz+lz
w

r =

a
, wherer =rpr_ -
c Zl‘ w

r..whens 20 (s is the distance
i T a a ‘
.traveled by the central point of the canopy in the moving coordinate system;

s =Y after » = 'o)'

The area of the canopy, Ac. is obtained by rotating a section of
the circle around the y-axis.

i

d.Ac=ando. 4.'1|=¢:lxz~clyz

2

2 2
x +(y--a+rc) -rc

(equation of a circle

2 2 2
X +y = Zu‘rc - la - Zy(rc - .a)
2 xlax’ 2 ": ax’
and -dy = 3 3 80 that ds = 3 3
ro-x ro-x

Whenr 28 20
w a

' r )
A = 2%r
< ¢

o
4

¢

S
3

17w
A =z2vy |- (rz - xz) 2
c [ < ' 0
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1
2 2
r2+-2] e P24l 2
A = 2n w 2 W ; ( w a) oy
c 23 J 2s 2s w
a L a a
Whens 27r
a w
52
A =erz+21rr j,cx(rz-xz)z dx
c c c c
r
w
2 2 2.2
Ac-Zwrc«thrc(rc-rw)
1
2 2, 2
Ac=2:rc[rc+(rc-rw) ]
1
2 2

r‘z"+ li r2w+ lf r:’# l: 2
At 2 28 2s + “ 2e “Tw
a a a

A _ is the area of the inner surface of the canopy. The area of

both surfaces is approximately 2 Ac. As . -=%» oo, this approximation ® :

becomes exact.
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PROFILE OF CANOPY WHEN LI > s >0
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APPENDIX E

DETERMINATION OF DISINTEGRATION POINT

The canopy will rupture when the aerodynamic force becomes
greater than the tensile-strength force holding the canopy intact. The point
of equilibrium between the two forces is given by the following expression:

2
2 Pav
znc.uch =nr = when .‘z L (1)

where
rT radius of curvature of canopy
s, = average thickness of canopy
Ch = tensile strength of liquid

Py density of atmo-ph.rQ

v = velocity of atmosphere relative to mass

S8implifying and solving equation (1) for L the following equation
is obtained:

uuch

Stace L 2 itis possible to find the value of s, at
a
which the canopy will rupture if L is also expressed as a tun:tion of s,

Since s = vc voluine of canopy
e Ac area of canopy
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4v Ch

Ar = ——-—.}3— , or Ar = L. letting _..2..._.. = L.
cc 2 cc 2
PV PV

From appendia D, whens 2r
a w

1
22 4 Z .
w

2 4
r?'#sz r2+.2 r ¢2r 9 +38 2
A =2n w a w a + w a a .
r s 2 w
a “a

¢ ¢ 28
a

.. rcAc = f(la)

By solving equation (1) in terms of r the following equation is

obtained:
2Lr 2
4 L
rc - 3 + 3 =0 (Z)
r r
w w

If equation (2) is solved for T, and then substitutad in the equation for s,
the point of canopy rupture is obtained. The velocity, v, can be assumed
constant at this point and is approximated by the followinyg equation:

1

2

3
o

2
3Pa?ch




APPENDIX F

SAMPLE CALCULATIONS OF CRITZIRION FOR STABILITY OF DROPS

Consic.r a spherical drop of water for which ry = 0.45 cm,
.Y = surface tension = 72 dynes/cm, and pgy = 1 gm/cc. Solving the icceler-
wation equation {1b) of the téxt for s, and then substituting e, into the appropriate
equations derived in appendixes A and C, the following values are obtained.

¢ ©0.435cm (2r -8 )=0.465cm r, 20.719cm
a o Qe k
r, = 0.656 cm o 20,216 cm T 0.440 cm
1 1 2 .
T, T, 2" o a L _
1 0. 656 ‘ 144 2
or l“[-o.ésé + " 492] =0.465g + 79 ° 656 dynes/cm

All the spherical masses being considered have Reynolds numbers
in the neighborhood of 10,000. Therefore, insofar as a spherical shape is
ccr cerned, Cp = 0.4 is a good general value for the coefficient of drag. By
using the equation derived in appendix B, the terminal velocity for a spherical
mass may be determined. This velocity is not the terminal velocity that the
mass actually reaches, but is the velocity that the mase would yeach if it
retained its original spherical shape. The criterion for stability is that the
hydrostatic pressure, P, at the leading point of the spherical mass be
greater than the aerodynamic pressure, P_, of the spherical mass at terminal
velocity. This relationship may be expressed in the following manner:

4r;p 8
o'l
9,(21'0) g§2 3¢

{atab.lity cwiterion)
D
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r, = radius of sphere
Pp © density of liquid
CD = 0.4 drag coefficient (when Re= 10, 000)

The stability cricerion has the following appearance when = 0. 4

= 1. = 2 -
Py 1: p‘(Zro)g 883 dynes/cm P,

2
4r° p‘g

Xp

= 756 dynel/cm2 = Pa

A 9-mm-diameter mass of water is then seen to be stable and will
aot disintegraie by canopy formation in agreemert with the finding of
Blanchard® and Magarvey and Taylor. 1 This does not, however, preclude
disintegration by rotation or oscillation.

Magervey and Taylor experimentally determined that the minimun
-waterdrop size that would disintegrate by canopy formation was about 1.2 cm
diametor. Applying the stability criterion to a 1. 2-cm drop, the following
relationships are obtained:

p‘Zrog = L175 dynul«:mz =P

h
2
47, Py 8 2
~caee % 1,175dynes/cm = P
K‘D a

This :2 in exccllent ayocement with Magarvey and Taylor.
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APPENDIX G

SAMPLE CALCULATION OF SIGNIFICANT
PARAMETERS FOR WATERDROPS

Using the formulas derived in the previous appendixes and in the
Lody of the report and applying then: to = waterdrop 15- mm in diameter for
which ry = 0. 75 cm, the following values for the significant parameters are
obtained: :

Zro - l° 2 0.490 cm equation {1b)
LI 2.5cm appendix A
r: 1.79cm appendix A
T, = 0.314cm appendix A
To® 0.086 cm appendix C
R I 1.704 cm

The torus will begin to expand when L 1. 704 cm.

2 2
s+
Whens 3 é6cm, r = == = 3.242cm
a c 2s
a
1
i Br:gp‘ 2
When r.*® 3.242 cm, Vomax * ‘ - rz ) = 298 cm/sec
ac

Maximum aerodynamic force (F. ) is given By the followin, exprassion:
max

2 2 3
a ¥ max” Fc * 1.8 X107 dynes

Tais 12 *h» total force availall> for disxupting the canopy.
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From appendix F, I"a = ZurcsuCh
F max

2 max 2
. Ch = .Z-;rTi_u— dynes/cm

v
volume of canopy . c
u  arua of canopy Ac
4 3.2 2
Vc--iwro emr Tp
Vc = 1.77cc - 0.242 cc = 1.528 cc
1.

- . 2 2,2 :
AC = Zﬂrc ;rc + (x'c - rw) - appendix E
Ac =122 8qcm

v
e 1‘57‘82 =1.25x10 2 cm

c 1.22 %10

C = l.BXlosdynel
h ~ [6.28 (3.242)] (0.0125) sqcm

a 7.06 X l()3 dynes/sq cm

This value of C, is seen to be much lower than would commonly
be oredicted by quantum mechanics for water. It might be explained that a
t. .- in the canopy begins around a nucleus that could be an impurity in the
liquid.

The point of bieakup was chosen from the photographs in Magarve
and V'aylor. 1 Th- <tics « wlculsted narameters are in very good agreement
with the photographe reproduced in tac . nve-mentioned article.
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