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DIGEST

A theory explaining the break-p of large liquid drops by canopy
formation. has been 4erived. The theory explains the deformations that
take pJs•c. du.'ing the disintegration of a drop in terms of aerodynanic,
hydrostatic, and surface-tension pressures. The effect of liquid viscosity
has been ansumed to be negligible. Therefore, the theory will not apply
to liquids of high viscosity. This theory, insofar as it has been possible
to verify it, is in good agreement with brerkiap experiments performed with
liquid drops.
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BRFAKUP OF A LIQUID MASS I11 FREE FALL BY CANOPY FORMATION:
A THEORETICAL STUDY

I. INTRODUCTION.

When a liquid mass disintegrates in free fall in nonturbulent air,

three dl'ff.rent m.>des of breakup may be observed because uf varying condi-
tions of instability of the mass. These methods of breakup are the following-

1. Canopy formation or "bursting- ha' effect," experimentally
described by Magarvey and Taylor1 and Blanchard. 2

P r . Surface stripping. investigated by Wilcox, Pistritto, and
Palmer. 3

3. Rotaticn and oscillation, experimentally observed by
Blanchard.4

The first mechanism, canopy formation, refers to the deformation
of a iiquid -nass in such a way that the ndass first becomes flattened on its
leading side and subsequently inflated somewhat like a soap bubble until it
bursts. The second mechanism, surface stripping, refers to smna)l amounts

,of liquid being continuously stripped off the surface cf the mass by aerodynamic
forces. The third mechanism, rotateon and oscillation, consists of rotation
of the entire mass until centrifugal force causes it to split. Two amaller
masses of approximately equal miss usually are formed. This same type of
splitting occurs when'he maas oscillates into elLtpscidal shapes undulating
first in one plane and then in a plane perpernicular to it.

In order to derive a generalized theory cf liquid-mass breakup

that will account for all of the mechanisms involved, a series of idealized
situations will be presented to make it possible to analyse one mechanism

at a time.

U. ANALYSIS OF CANOPY-FORMATION MW,'"ANISM IN LIQUID
BREAKUP.

The most fundamental mechanism of breakup appears tc, be canopy
formation. By fundamental it is meant that this mechanism can %e aiinl-zed
independently of thM, others without impusminig ,aaiy iestrlction; c~r. the :dealize,



eý,periment and without making many broad assumptions. An analysis of this
mechanijm will be the first ztep in deriving a generalized theory of liquir.-
mass breakup.

A-.sume that a spherical mass (of radius ro) of a nonviscous
inela*txc liquid of density o , viscosity ýLj, and surface to.nsion y, is at rest
at time zero it = 0) when itbegins to undergo free fall in a gravitational field
g through a nonturbolent st±ll atmosphere of density Pa and of viscosity of Ja"
It is assumed that the total mass of the liquid remains constant during free
iall until the time when the canopy bursts; i. e. . the amount of liquid surface
stripped 3 or evaporated is negligible. In the case of a i-gnm spherical mass,
the evaporation is calculated to be less than 0.01% by Langmuir's equation. 5

As will be shown later, this assumption of constant mass is only
,alid for spheres in a limited 3ize range. At time zero the idealized liquid-
mass profile appears circular as in figure 1. The mass is alwaysi described
as a surface of revolution.

III ANALYSIS OF LIQUID-WIASS DEFORMATION.

As the sphere beginw to fall, the aerodynamic pressure on the -A
leading hemisphere will begin to increase;; the entire sphere will begin to be
flattened. The flattening of the leading hemisphere will be more rapid than
that of the trailing hemisphere. This can be visualized by considering the,
mo iment of the leading point as the aerodynamic pressure increases.

A. Development of Oblate Spheroid.

The profile of the liquid mass, which is always described as a
surface of revolution, may be represented on the original coordinate axes
(figure 1), which are moving with the same velocity as the entire mass
relative to the air. As the aerodynamic pressure increases with increasing
velocity, the leading point will move toward the trailing point (figure 2).
The distance travJ-d ",-' th•t leading point toward the trailing point will be
called "s. " As thc lc-dingn po.,it mivL. tw-.ord !-.a trailing point, the liquid
in the lower hemisphere will be displat ed outward r-v-' ti' waist of the
liquid mass along the path of least resistance. This will continue to occur
until the hydrostatic pressure at the waist of the mass plus the surface-
tension pressure caused by the curvature at the trailing point is equal to the
surface tension at the waist of the mass. This pressure relationship, -f the
iiouid mass may be expressed by the followin g &iUwiatical model:



ZP w Ph +Pat(1

where

P a=srface-te~nsion prewsure at any point on waist

Ph=hydrostatic pressure at any point on waist

po = urface-tension pressure at trailing point

Using the equations derived in appendix A. theme paitameters may
all be expressed terms of a and o

3 3(2r a)
+, +

sw r r. L 8r 4 +Zr (2r -a) 3 3r 2(2r

4 3 2
gz[r0 + Zr (2r as) -3r (2r -

yr 0- 03Z )
1~ 0

P h =PI (Zr 0-a) g

~~ [ ~3(2r -a 2 3
at rk ' 4r 0+ (Zr 0-a)J

where

r k =radius of curvature of trailing point

rl=major radius of curvature at waist

r. minor radius of curvature at waist
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FIGURE I

PROFILE OF LIQUID MASS AT TIME ZERO
(Coordinate axes x and y move with velocity V)
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FIGURE 2

PROFILE OF LIQUID MASS WHEN a > a r
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The pressure relationship of the liquid mass, equation (1),maiy
now be written:

Zy•(" + p (2r- ,)g+a (1 a)
• rk

e T 4+ 3(2 -0 31a2 a2 +
L r 4Zr (Zr -a)3 3rZ (2r - )l

8r 4 2re (2ro- a) 3 3r 2 (Zr' - ')2

03(2r - a) J2
0

F (Z -

p1 (Zr - s) g + 2 4- (I b)

0 0

In order for the liquid mass to be stable, an aerodynamic pressure
of r a must be equal to the lesser of the two total pressures shown to be a
surface-tension pressure at the waist of Pow and a hydrostatic pressure of
Ph plus a surface-tension pressure at the trailing point of Pat. The aero-
dynamic pressure, Pa. at the leading point can be expressed by the equation
Pa z I/2pavZ, where v is the velocity of the air relative to the mass. By
solving equation (Ib) for s. the general appearance of the I 4qZaid mass can be
determined. The terminal velocity of the mass can then be determined from
the terminal-velocity equation derived in appendix B. If the aerodynamic
pressure at terminal velocity is less than the hydroiatatic pressure when
equation (Ib) .4 satisfied, the mass will not break up by canopy formation,
although at might dlsiii.. ý.:ii -ýc 'rface-.tripping mode.

In the first stage of mass deformation, an oblate spheroid is
formed. When re . > a 0, the radius of curvature. rc. of the leading point
will go to infinity. When the acceleration at the leading point, s", is
expressed in terms of the surface-tension pressure and aerodynamic press.re,

12



an equation is obtained giving the distance the leading point travels avj a function
of time:

- a) 
r r

Rewriting the equation for vZ, derived in appendix B in termns of t, r, and rO,
the following equation is obtained-

S8pr0 3 g 8r:4+ Zr (Zr - 3; -3r (Zr - -

aD 3(Zr - s)z

,3pSCD 12 Sr 4+2r (2r -as) -3!3 (Zr s)Zo D0 0 - , a 0 0 (Za)
L4p1, 3 3(Zr a~) j

The radius ot curvature of the leading point. rc, is expressed in terms of s

and rO in equation (4), appendix A. as:

-4r r (Zr -) 3+5(Zr ,s) r 3 (r - a)3 (Zr -s )

.. a . . 2 00 (b)C 3(Zr - s) (r -5)

0 0

Equation (2). which shows the acceleration on the leading point,
can now be rewritten in terms of a. ro. and t. to obtain t as a (unction of
all and s.

TLe ti-,. fnr the development of the oblate spheroid, the first
stacO of deformat:on0 can oe de,.tinir.ed in this master. If equation (2) is
rewritter. in terms of a and t, the following equzt'..v is cobtainrA-

13



4rg .3r4 +Zr (Zr -) 3- 3r2 (Zr a)21-

3(2r - IC 0 0 z
0 0 ~ 3(Zr 0- a)

4 3 Z 2

ta 3PaSCD3 ] Z FSr + Zr (Zr 0 - s) - 3r (Zr -s) 1 +
pi 3(2r - a Jz

3(r - 6) 2(r - s)
0 0

. L) 4r 5 rn(Zr t a) 3q+tirn 3(Zr t ) wh + (r -s)• > rO -t i)

00 3 2 02!

0(Z - rs Zr (Zr -as) -3r(Zr-a)j

43 2 2-
ar+Zr (Zr - s) -3r (Zr -a 0 i

03(Zr - s) (Zc

By solving the above equation for t when r. 2ts 0. the time to
reach any stage of deformation in this interval of a can be estimated.

B. Development of Disk.

The development of the disk, the second stage of deformation,
occurs when s> Z a Z rO, where sm equals the value ,f s when the pressure
relationsh.p of the liqu i,- - - 'quation (Ibi is satisfied. In this stage of
deformation, the bottom oi the mams has becomoi Li&atonet and rc a oo. The
second term in equation (2) drops out, and the followual e(i.;at.on is c.btained:

2

all +1 l (3)
Zp,(Zr - a) " ri + F (Zr- s)
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Equation (3) can now be rewritten ir. terms of s, ro, ani t, and is
analogous to the acceleration equation (2). By solving these equations for t,
the time to reach aay stage of deformation in the interval a > a k 0 can be
calculated.

C. Development of Canopy.

The canopy will begin to form (the third stage of deformation)
after s = sa, as indicated in figure 3. The minor radius at the waist, r 2 ,
causes in effect a torus of tnickness 2 rT. This will determine the geometry
of the canopy. The outer diameter of the torus is 2 rI. The canopy can then
be visualised as an inflating soap bubble formed from a soap film stretched
across a ring. The ring in the case of the canopy is the torus. The body
radius of the torus, rT. is given by the following equations, which are derived
in appendix C:

r r . whenr Žs•0
T rli 0

rT 0 .. r. when Zr • s 2rT r0 0

The inner diameter of the torus, 2rw, is given by the following equation:

Zrw = ( r I- r.r)

The .nner radius of the tous, rwe is constant until sa = rw as indicated in
figures Z, 3, ard 4, where sa is the distance that the central point of the
canopy travels axter s = me. When oo_ Za--> rw, then rw = rc.

When tit, **--. eondition has been met, the torus itself will
* expand as the canopy expands. The inner zau.s of -"'vvature of the canopy,

rc# can now b, expri seed in terms of rw and sa ko oL:-..!in the R.'owing equation:

IN 2 2 2
r w r I+w a w a

r + -zc 2s 2 Zs
Sa

\1

-\



g oas cooriinates (0,0)

FIGURE 3

PROFILE OF LIQUID MASS WHEN a = sc
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S2r?

(Canopy is a heaub--lore r

su m averaf- .h i okkess oi canopv

.,SURE 4

PROFILE OF LIQUID MASS WHEN a = r
a w

(Original axes transformed so that y sa)
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The precr:ding equation shows that rc will be a minimum when
a =r. Figures Z, 3, and 4 show the general appearance of the liquid mass

en a.• >a > re, a - and sa U rwi respectively.

An equation sirmilar to acccleration equations (Z) and (3) naust
now be found to d&et-r-ib. the movement of the central point of the canopy.

The accslertttioA of the central point of the canopy is a function
of aerodynamic pressure and the changing radius of curvature. Duzlng the
major portion of the intcrval rw• *a -: 0, the canopy ha&. two surfaces with
almost equal curvatures. The acceleration of the central point is now
approximated by the following equation:

pav v r2 4y- v ra

a rc c c

where

M c mass of th. caaopy (constant)

•M r! 3  
- W (r1 - rT) r

and
1

w:erero: . 1 ,~
vZ a tanh 2 a3Dr (t +t)

ti 9 value of t when a s

Substituting the equations tlir MC and v into equation (4), the

18
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I

2r3 g 2

sit- 3r w tah 3PgcD r (t. + 0

r3 1Zyr r 2 a 2  w4a)

L 0 w T w a

By solving equations (2), (3), and (4), it is possible to determine

the time it takes the liquid mass to deform up to the time when &a = rw.

D. Development and Expansion of Torus and Canopy.

The maximum radius of the liquid mass, rw, is no longer constant

after sa = rw, but is equal to rc , and the torus begins to expand. In thAs
fourth stage of deformation, the canopy will continue to inflate until the
aerodynamic fcrces are greater than the cohesive forces of the canopy and
the canopy ruptures.

The volume of the canopy remains constant if the total mass

remains constant. The canopy will become increasingly thin as it undergoes
-xpansion. The average thickness of the canopy, su' as shown in figure 4,
is given by the following equation:

volume of canopy cV

u area of canopy Ac

The term Ac is a function of rc, shown in appendix D, whoro the following

equations are derived:

I

A UZW wZ aj wZa (r 4$.sazW& \Z" 14c 2s 2 4

when r > s > 0.
w- a

19



A + rZ2 r 4rZ+ r4+ ZesZ r2 + a ) ]A =w 2w + r
c Zw r -ss - w

a a s•

a

whenooa >sa > rw

When the conditions of the following equation, derived in
appendix E, are met, the canopy will rupture (figure 5)-

= wr p v 2  (5)

where Ch is the tensile strength of the liquid.

Simplifying equation (5), expressing it in terms of *a and rw,
and substituting M /p for V in Vc = suAc. the following equation, derived
in appendix E, is obtainedU

e 2
8Gw 3 r w a r w+aa rw s

(Zr -3wr r ____ r~ (5a)
3pavv 2a 0 .T .Ia *a -

wheov. > s > 0, andw• a•

a

when Žo Z sa 2 r,, and where rTis taken at s se and v is the velocity of the
mass just prior to breoue...

.. when &a rw A.o, r. a rc and:

Z M

20



II
where

T
v - tanh, r tgC + t)

3p& D rcCtp1

where t. is tae total time elapsed from a = 0 to -a r

-Zrg 3 3pgD 2 r s

all 0__ _ __ _ _ tn a 'Ar-W a (1 +. )
a (Zr 3o- 3r itr 2 )C tanh 8Zs (t1i

0 w D o

Zr 0" 3rwirrT a

IV. SUMMATION OF ANALYEIS.

Previous sections of this report show that from the acceleration
equations (2), (3), (4). and (6) it is possible to determine the time it takes
ior tl'e mass to reach any stage of deformation from time zero to the time
when the canopy bursts.

If one assumeR the shock of the liquid disintegration does not
produce oscillations thatwould cause the torus to break up (since, at this
point in the study, it appears that consideraible energy 4.a expended during
breakup of the canopy), then, after the canopy has burst, the torus will
remain intact until the aerodynamic and surface-tension pressures break it
up into smaller nrbore stable pieces. since the velocity of the rmass is known
at the tine 01 , "-t,ire, it is possible to calculate the kinetic energy
of the torus at this instant. The burfacc ar.arg; of the torus also may be
calculated. The torus will break up into the nui.,'... r, nieces !.tat will give
a minimum of surface energy. The most probable number of pieces wi.A :e
found when the torus breaks at intervals of 4. 5 diameters, since this wil).
give a minimum of surface area and, therefore, a minimum surface energy.

21
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FIGURE 5

PROFILE OF LIQUID MASS JUST PRIOR TO

CANOPY RUPTURE WHEN' > a > r
a w
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The radius of the spheres into which the torus breaks (r e) is
given by the following equation:

4 3 a 3
-Wr r -r_ Ir ; r =-r3 a Z" T 2 'T

where

2  3 volume of torus
&rcrT - rT w2 0 and rT is taken just

before disintegration.

If r. is less than the maximum stable drop size determined by the
acceleration equations (2), (3), (4), and (6), the system has become stable.
If r. is m.iore than the maximum stable size, thewhole process outlined in
this paper muot be repeated for each drop, taking into consideration that the
initial velocity of the air is no longer zero.

V. DISCUSSION.

When deriving this theoretical treatment of canopy-formation
b-eakup, two assumptions were made. First, it was assumed that the mass
of the liquid remained constant throughout the deformation process. This
assumption is valid only for relatively small liquid spheres. It follows from
the definition of surface-tension pressure that, as a liquid mass becomes
distorted into a larger shape, the surface-tension forces holding the outer
layers of liquid will decrease with increasing surface area. The time
required to reach any given free-fall velocity and the related aerodynamic
force will also decrease as the sphere be.omes larger. Consequently, at
any given instant in the d2formation, process, there will be a greater prob-
ability of stripp:.ng off of surface layers of liquid frem the mass. For .
spherical liquid masses in the diameter range of 1. 2 cm to 4. 0 cm, there is
a negligible amount of surface stripping. 1, 1- For diameters of over 4. 0 cm,
surf;.ce strippiiq, a-i -n longer be neglected, 3 and the theory derived in this
paper must bt cotubilied with a trary" of li.4uid-mass breakup caused by
surface stripping. A future study is "contempl0 .. d to 'how tha+ "ery large
liquid masses break up almost entirely by surface-stripping effects.

The second assumption was that the effect of the viscosity of the
liquid was negligible. The viscosity may be neglected in the cauc of so'll

23



masses of relatively nonviscous liquids of high surface tension such as water,
but cannot be neglkicted in general. The effect of increased viscosity will be
to slow down the rate of delormation by decreasing the accelerati.n of tha
leading point and, possibly, to slow down the acceleration to the point where
the mass will be stable; i. e., the mass will have reached terminal velocity
before the aerodynamic force can overcome the viscosity and surface tension
of the liquid. Consequently, the rate at which a liquid mass will break up can

be decreased by increasing the viscosity, or it can be increased by decreasing
the surface tension. As a liquid mass becomes sufficiently large so that
viscosity must be considered, the main mechanism oi breakup is no longer
canopy formation but surface stripping.

This theory was checked and found to be in agreement with the

studies reported by Magarvey and Taylor' and Blanchard.?' These agreements
are shown in appendixes F ard G. The difficulty of solving acceleration
equations (2), (3), (4), and (6) analytica\lly has made it impractical to check
the times of deformation. The predicted general geometry a6sumed by the
liquid mass is, however, in very good agreement witi experimrental results.
The coefficient of cohesion between the liquid surfaces is uncertain since it
depends on the impurities in the liquid. The coefficient of cohesion can be
calculated by combining this theory with data obtained in canopy-breakup
experiments. This cohesion coefficient is shown In appendix G to be consid-
erably less than I atmosphere, which is much lower than would be predicted
from molecular considerations. The effect of impuities on the tensile strength
of a "iquid is still not known in a quantitative sense. Before this theory can be
tested fully or put to some practical use, more work on the tensile strengh of
liquids is necessary. A satisfactory method for solving nonlinear differential
equations of the second order, such as those describing the acceleration of the
trailing point of the liquid mass, must also be found. For the time being, a
numerical approximation must suffice.

In conclusion, it should be mentioned that the mathematical model
postulated for the dei.rmation process is certainly not an exact one. It
appears to be a vcry r1 ,..e approximation as shown by figures and examples in
appendixo;s C and F D; e~ii.pso_-. el ':-.,olhtion h-.d been postulated as
mathematical models instead of sections of spheres, 0,,i theozy would not
have been in as good agreement with experimental results as it is.
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GLOSSARY

A - maximum cross-sectional area of liquid mass

A - area of in. tr surface of canopy
c

CD - coefficient of drag

S- maximum aerodynamic force acting on liquii mass
max

g - acceleration cauased by gravity

M - total mass -f liquid

M - mass of canopyC

P - aerodynamic pressure on leading point of liquid massa

Ph - hydrostatic pressure at any point or at waie. of liquid mass

Pa - surface-tension pressurve at any point on waist of liquid masssw

Pat - surface-tension pressure at trailing point

Pa. - pressure of stability

r - original radius of spherical liquid mass (figure 1)
m

rI - major radius of curvature at waist of mass (figure 2)

r 2 - minor radiu~s of curvature at waist of mass

r - radius of cui .&re c" cent. ,.' leading pnint of liquid mass

r k - radius of curvature of central trailing point of liquicL mass

rT - one-half thickness of torus; i. e. radius of body of torus

r - inner radius of torus

2
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r - radius of spheres into which torus breaks

R - Reynolds number0

a - distance leading point travels toward trailing point in moving
coordinate systerr. where trailing point moves with same velocity
ais cc..rdinate axes (figures Z and 3)

w - value of * when, equation (Ib) 1i ratisfied

s a - distance central point on leading surface of canopy travels after
equation (Ib) is satisfied

a - average thickness oz canopy (figure 3)
u

t - time elapsed between any given inteivals of a or sa

tI - value of t when s = a

t.. - total time elapsed from s x 0 to s = r11a w

v - velocity of atmosphere relative to liquid mass

' t - terminal velocity of mass

VI - volume of liquid above waist of mass

V - volume of liquid below waist of mass

V - volume of canopy

Pa - density of air

p1  - density of liquid

P4a - viscosity of air

I& I - viscosity of liquid

ly - surface tension of liquid
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APPENDIX A

DERIVATION OF RADII OF CURVATURE AT WAIST AND
AT LEADING AND TRAUILING CENTRAL POINTS

In the range ro k s 2 0, where ro is the original radius of the
spherical man* and a is the distance that the central leading point travels
toward the central trailing point ir a moving coordinate system where the
central trailing point remains stationary re•ative to the coordinate axes,
there exists the following relationship:

4 3if ro =V I+ V

where

V1 volume of liquid above waist of mass

V = volume of liouid below waist of mass

VI and V2 . described a.; sections of spheres, are volumes of
revolution and may be visualised in figure 1.

The volumes VI and V then are calculated readily in terms of
the radius of curvature, rk, of the central trailing point and the radius of
curvature, rc, of the central leading point.

In general:

Vz f rk 3 r

(rk.r

Whenr rOz0:

0

3r

V1 = W r (1)0
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r.
-r 0

FIGURE 1

APPkARANC.E OF LIQUID MASS IN INTERVAL r > s > 0
0
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In general:

2 c " yZy 3

V2  y I - dy y 3 - (r - s)
C. 0

When r _ s > 0.:
0

v =vr (r -)12 3] (2)

Since the maso of the liquid is assumed constant and

4 34 ff ro = V + VZ, the following relationship exists:
3 o I

3 3• • s)34 3o 2" 4 3
(r -r ) - asV -- +-0, V -t-vro

When Zr a a r

rk [r - a)r-

4r , w( r v3 w - a13

"0 1(r k ,k( o33
[r - (2r -a] Lr

k 0
4r 3  + (2r - a) 3

k 3(2r 2
0

.2 3 0.1 +r --E asi r
S3(Zr 2 3 3 c 0 .

0
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-4r - (2r - a)3 r2 + 5r3 (Zr -"a) 2 + (r -s)3 (Zr - a)2
0 0-- 0 0 0 -0 0(4r = r .. z ar ) (4)

C3(Zr - a) 2(r - a)
0 0

r1 i maximum radius of the mass (figure 1)

By expressing rk in terms of its position in the moving coordinate system,
the following relationships are obtained:

x +y zr x r- yxr -r

ko 0

•ok a

.. "rl -rk"(rk" o

1

After substituting equation (3) for rk. the following expression
for rI is derived: 1

Br 4 + Zr (Zr - a) 3-_3r 2 Or -v)Z ajz

1 L[ 3(2r 0- ) 2j()

r. minor radius of curvature at the waist of the mass

Whenru ro, r. r andas r --- 4.z. r -- P 0.

Therefore, by symmetry, the following expression for r is' derived (figure 2):

r r
0o

r rko o) 2 (6)
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rland r2

FIGURE .

PLOT OF rI AND r2 RELATIVE TO s
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APPENDIX B

DERIVATION UF VELOCITY Ui" AIR RELATIVE TO FREE-FALLLNG MASS

7'e total acceleration acting on a mass maybe expressed by the
following equation:

dv pav A CD

where

Pa = density of air

g = acceleration due to gravity

v = velocity of air relative to mass -

2
A = wr = maximum cross-sectional area

t a time elapsed after beginning of free fall

CD = coefficient of drag of mass (assume constant)

4 3M = p w r0 = total mass of sphere (assume constant)

By solving equation (1) for v, the following expression is obtained:

2t/k

where

a2 X 2 ME
p a A C

p• A GD

Pa AD
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By rewriting and squaring equation (2), the following expression is obtained:

v =a tanh 2(at/k) (3)

By sabstituting the original values for A and k in equation (3), the followirg
expression for the . ",uare of the velocity is obtained:

r3 1

2 8P-r 0 tanh [ rat (41

3p 2 -' adtj
ParlD o

where

4 3 2,8r + Zro(Zr -oa) 3r Zr a)
r2 0 0 -0 0 _ 0

r 3(Zr - a)2
0

r = original radius of spherical masso

a = distance traveled by leading point toward tzailing point

P1 = density of liquid

The coefficient of drag, CDo is not constant for a sphere, but
dec: ,ases with increasing Reynolds number at low Reynolds num'uers. The
mass, however, does not remain spherical. It assumes the shape of a section
of a sphere and then becomes parachute-shaped. It is, therefore, convenient
to assume a constant coefficient of drag of about 0. 4, which should give a
fairly good approximation of the terminal velocity of masses whoie Reynolds
number is about 10, 000 at terminal velocity. The assumption of a drag
coefficient of about 0. 4 is justified and can be seen by checking a graph of
drag coefficients versus the Reynolds numbers of spheres, cylinders,
hemispheres, a.nd ,isks: shapes that approximate the geometry of the deform-
ing liquid mass. The i., vcet '.rag _-.. ficient e*rnr will be encountered
when the Reynolds number is less than 100. (This e-,,r is vc.y smnll at
Reynolds number greater than 100. ) Consequently, the equation derived
above should yield reasonable values for masses that have a Reynolds number
of loes than 100 for a relatively short period of time (less than 10%) during
free tall.
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APPENDIX C

DERIVATION OF BODY RADIUS OF TORUS

figure 1, rT is the radius of the body of the torus and r 2 the
eifective radius of curvature at the waist of the mapo.

By trigonometric analogy, when r e- a Z 00

rT r

When a > r , the liquid-mass profile has the appearance shown
in tigure 2.

Figure 2 may be approximated by the mathematical model shown
in iigure 3.

By trigonometric analogy rT may be expressed as:

rT 0 r when Zr 0 >rT r 0 0
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2r-i

FIGURE 1

PROFILE OF LIQUID MASS WHEN r _ s > 0
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FIGURE 2

ACTUAL APPEARANCE. OF LIQUID MASS WHEN Zr > s > r
0 0
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FIGURE 3

APPROXIMATE APPEARANCE OF FIGURE 2
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APPENDIX D

DETERMINATION OF CANOPY AREA

Tc, determine the area of the canopy, the profile of the ci~nopy
is given in figure I as a section of a circle of radius rc.

2 2r +5
w a

rc a , where rw-- r - rT when aa t0 (sa is the distanct
a

traveled by the central point of the canopy in the moving coordinate system;
a =y after s = a ).

The area of the canopy, Ac, is obtained by rotating a section of
the circle around the y-axis.

dA c z2v x ds, dso 40 :dy2
C

x 2+ (y- = r2 (equation of a circlo
a c c

y ac a yic a)
2 r c- a -

2 rdx 2 c

and -dyZ = x2dx so thatd=2 2 ,othtd =c2 2

r - x r -xc c

When r 2sa >0
jwra

r .41A- ~2wr J w ,, r ) dci

r

A -z•" r jj~-x 2 10
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Ac - 2,rI(r - ) -r

r + a• w* a r + s

OCa a 2

Whens •>r
a w

Ac L

A a wr 2 + 2w' fC( -x dx

r
w

A = + -ir (r r,2)
c c

C a2a[ -zS a

Ac is the area of the inner surface of the canopy. The area of

both surfaces is approximately 2 Ac. As a oa. this approximation
becomes exact.
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FIGURE I

PROFILE OF CANOPY WHEN r a > 0
w a
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APP.NDIX E

DETERMINATION OF DISINTEGRATION POINT

The canopy will rupture when the aerodynamic force becomes
greater than the tensile-strength force holding the canopy intact. The point
of equilibrium between the two forces is given by the following expression:

2

Zwr sC alrr when a Z r
c uh c 2 a w()

where

r c v radius of curvature of canopy

s = average thickness of canopy

Ch a tensile strength of liquid

Pa = density of atmosphere

v a velocity of atmosphere relative to mass

Simplifying and solving equation (1) for re, the following equation
is obtained.

4s Cuh
rc 2Pay

2 2
5 +r
a wSicl- c a , it is possible to find the value of a at

'awhich the canopy will rupture if s is also expressed as a tun,;tion of a&.

V

Sinces c volume of canopy
u Ac area of canopy
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4V Gh 4VC h
Ac r = or A c r -- L. letting 2 = L.

From appti-d4" D, when a > r :
a w

rc c As Cs + ~ a

obtaned: By solving equation (1) in terms of r , the following equation is

22 L r 3
rr 4 + -L 0 ()

[r .: ][ 2  2 2

r rw w

If equation (2) is solved for r and then substituted in the equation for sat
the point of canopy rupture iedobtained. The velocity. v, can be assumed2 '1

3pr r
aw w

constant at this point and is approximated by the followin4 equation:

vs I
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APPENDIX F

SAMPLE CALCULATIONS OF CRITRION FOR STABILITY OF DROPS

Consir.r a -spherical drop of water for which ro = 0.45 cm,
z surface tension = 72 dynes/cm, and pj = I gm/cc. Solving the &cceler-

,ation equation (1b) of the t4xt for sa and then substituting s. into the appropriate
equations derived in appendixes A and C. the following values are obtained.

a 6 0. 435 cm (Zr - s) 0. 465 cm rk 0. 719 cm
a 0 CL

rI = 0. 656 cm r T 0. 216 cm rwa 0. 440 cm

z1 I + 2] p,(Zr* - sz)g + 2k (1)

0.656 1144
or 144 + (0.45)21 a 0.465 g + 0.719 a 656 dynes/cm

All the spherical masses being considered have Reynolds numbers
in the neighborhood of 10.000. Therefore. insofar as a spherical shape is
cc, :erned, CD = 0. 4 is a good general value for the coefficient of drag. By
using the equation derived in appendix B. the terminal veloc.ity for a spherical
mass may be determined. This velocity is not the terminal velocity that the
mass actually reaches, but is the velocity that the mass would reach if it
retained its original spherical shape. The criterion for stability is that the
hydrostatic pressure. Ph' at the leading point of the spherical mass be
greater than the aerodynamic pressure, Pa' of the spherical mass at terminal
velocity. This relationship may be expressed in the following manner:

-it Pi s
S(2.ro) g 1_ -0 (.blity cr-i4terion)
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where

r = radius of sphere

p, = density of liquid

C = 0. 4 drag coefficient (when Re = 10. 000)

The stability criterion has the following appearance when r 0 0. 4!

p, 1: p,(2r)g = 883 dynns/cm 2 = Ph

4r2
40 pis 756 dynes/cm2 = P
3C D a

A 9-mm-diameter mass of water is then seen to be stable and will

not disinte rate by canopy formation in agreemett with the finding of
Blanchardl and Magarvey and Taylor. I This does not, however, preclude
disintegration by rotation or oscillation.

Magervey and Taylor experimentally determined that the minimun
waterdrop size that would disintegrate by canopy formation was about 1. 2 cm
diameter. Applying the stability criterion to a I. 2-cm drop. the following
relationships are obtained.

2pZrsg - I.175 dynes/cm = P

4ro2ptg
0 s 1. 175dynes/cm2 x P
IC D a

This -s in ext.cllenL &,,'cc.n-ent w'ith Magarvey and Taylor.
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APPENDIX G

SAMPLE CALCULATION OF SIGNIFICANT
PARAMETERS FOR WATERDROPS

Using the formulas derived in the previous appendixes and in the
•,.idy )f the report and applying therm to -- -aterdrop 15- mrn in diameter for
which ro = 0. 75 cm, the following values for the significant parametere are
obtaine"

Zr - s z 0.490 cm equation ,Ib)

rk 2. 5 cm appendix A

rl 1.79 cm appendix A

r. = 0. 314 cm appendix A

rT a 0. 086 cm appendix C

r a r rT a1. 704 cm

The torus will begin to expand when a a 1. 704 cm.
a

2 2

Whena 6cm, r . a w • 3.24Zcm
a I

! ro3 gp t

When rc *3. 242 cm, Vm*au 9 c/e

3 a c

Maximum aerodynamic force (F a ) is given by th- followinb expression:
max

F v pawyraxz • 1.8X10 3 dynes
max

T,,d a i tntn! force availaLl for disrupting the canopy.
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From appendix F, F = 2wr c Ch
maxF

amax dynes/cm2
Ch r2,,r a

C: U

V
volulme of canopy C

$ U arua of canopy AC

4 3 2 2
V r Zw r wrT

V = 1.77 cc - 0.242 cc 1. 528 cc
c

2 1

A 2wr 'r + (r2- r 2) apperndix E
C C C C W

A 1Z22 sq cm

V c 1.528 1.ZSXlO 2 cm
u A 1. 22 X 102

1 103 dns3
C. =T03dyne. 7.06 X 10 dynes/.q cm

h [6.28 (3. 242)1 (0. 0125) sq cm

This value of Ch is seen to be much lower than would commonly

be oredicted by quantum mechanics for water. It might be explained that a

t, .,, in the canopy begins around a nucleus that could he an impurity in the

liquid.

The point of ba eakup was chosen from the photographs in Magarve

and Taylor. 1 Th"- , -Icu-lod 3arameters are in very good agreement

with the photographs, ruproduced in triz. ,ve-mentioned article.
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