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ABSTRACT 

Equations are derived for the pressure rise in a 
terminal room or chamber due to the propagation through 
a duct system of a transient pressure from an external 
blast pressure wave. Numerical values for the peak 
pressure in the chamber are given in terms of the 
parameters of the blast pressure wave and the character- 
istics of the duct-chamber system. The calculation 
of the relevant characteristics of the duct-chamber 
system is described and illustrated in an appendix. 

INTRODUCTION 

A significant hazard from an air burst of a nuclear weapon arises 

from the possible penetration of the blast pressures into a structure. 

The propagation of relatively low air-blast pressures down a smokestack 

could severely damage a fire-box or boiler system. The penetration of 

blast pressures through a ventilation duct and into a protective shelter 

could do serious damage within the shelter, yet the same pressures might 

be ineffective against the outside of the shelter. In order to devise 

protective measures against such hazards, it is desirable to analyze 

the propagation of these blast pressures and, in particular, to estimate 

the peak pressure transmitted to an interior chamber. 

The anlaysis is based on a plausible generalization of the equations 

of steady flow through the duct and uses gross parameters of the duct- 

chamber system which can easily be evaluated. It is therefore applicable 

to practical situations involving real structures. An exact analysis 

might conceivably be made by a solution of the exact flow equations for 

every point on the duct at every instant, but it seems evident that 

this method would be prohibitively difficult except perhaps for 

exceedingly simple geometries. 

FLOW EQUATIONS 

In this analysis the distributed flow resistance in the duct system 

is divided into two components; a lumped, steady flow resistance, and 

a lumped inertial resistance. The steady flow resistance, is assumed to 

be proportional to the mean instantaneous dynamic pressure in the duct, 

with the proportionality constant depending only on the shape of the 



duct system. The justification for this assumption will be discussed 

in a later section. The inertial resistance is taken as equal to the 

rate of change of the total momentum of air in the duct. 

Thus, if the approach velocity of the air outside the duct 

is negligible and if 

p, is the pressure in the external blast wave, 

p_, the pressure in the terminal chamber, 

P, the average air density in the duct, 

v, the average air velocity along the duct, 

1, the length of the duct, 

A, the cross-sectional area of the duct where velocity is v, 

q = PAv, the mass flow rate in the duct, 

c, the "loss coefficient" for the duct, and 

V,  the volume of the terminal chamber, 

then 

pl 
c   „   1  1    . d(plv) _ p„ = - Pv v    + -1 : 

2      2                      dt 

cqlql         1    dq 

=        2    + 

2 PA             A    dt [1] 

The mean density in the duct is assumed to be equal to the average 

of the densities at the two ends, i.e., 

[2] 
2P = h  + p2 

The pressure at the entrance to the duct is assumed to vary with time 

in the same way as a standard free-field blast wave, and the density 

is assumed to decay isentropically from its initial shock wave peak. 



thus 

pi=po + (pio -P0) 
e"t/e (i-|)      t33 

5/7 
P   6p10 + P0 /Pl 
P0   P10 

+ P0 /Pl \ 

+ 6 po \ pioi [4] 

where p,- and 6 are the peak pressure and the duration of the incident 

blast wave and p» and P0 are atmospheric pressure and density. The total 

mass of air in the terminal chamber must increase at the rate of the 

mass inflow into the chamber. 

Mv)-. m 
dt 

The mean pressure in the terminal chamber is assumed to rise isentropically. 

This assumption is a matter of computation convenience and neglects any 

effects due to the delay in bringing the inflow to rest and the dissipation 

processes. Hence 

pi W' 

7/5 
[6] 

Equations [1] through [6 ] are sufficient to specify completely the 

time variation of the pressure and density in the terminal chamber as 

a function of six parameters,  namely, the peak pressure and duration of 

the blast wave, the shape, length and volume of the duct and the volume 

of the terminal chamber. However, by a proper choice of nondimensional 

units, the six parameters can be combined into three nondimensional 

parameters which completely specify the problem in a more economical way, 

Thus, if a new set of units for pressure, density, and time is defined by 



y=± z = 
x^ [7] 

the equations reduce to 

.2 
o d z9 

dx — (-) z1 + z2 \ dx / 

dzr 

dx 

= y0 " y2 

(YT) 2 

yi^ + ^io-1) e'x (^) 

[8] 

[9] 

Zl = 

6 y10 + 1 

'10 + 6 \j     I 

5/7 
[10] 

^2 = 22 
7/5 [11] 

where, there remain only three nondimensional parameters y-,n, 
T, and k. 

The quantity y,_ is the peak pressure in the external blast wave, measured 

in units of atmospheres. The parameter T is defined by 

T = 
I/2 w c '     V 

Y A 6 [12] 

and may be interpreted as a nondimensional "fill time" (fill time in 

units of the duration 6 ) for the duct-chamber system. Note that T 

depends only on the steady flow characteristics of the duct and is 

independent of the duct length. 



The adiabatic constant \ in Equation [8 ] could have been incorporated into 

the definition of T, but it was desired to retain the same definition 

as previously used.  The remaining parameter k is a measure of the 

relative ijnportance of the terms for unsteady flow resistance and for 

steady flow resistance and is defined by 

V    cV 
[13] 

v 

where A here is the mean sectional area along the duct. Thus k is 

directly proportional to the ratio of duct volume to chamber volume and 

is inversely proportional to the loss coefficient in the duct. 

Equations [8 ] through [11] are a set of nonlinear equations which 

must be solved numerically for each set of parameters. This can easily 

be done with a high-speed computer, and calculated values of the peak 

chamber pressure have been compiled for a wide range of values of the 

parameters. In fact, a program is available for the solution of the 

problem on the IBM 7090 computer for any set of values of y1Q, T, and k 

Typical solutions for the pres-  ,0 

sure in the terminal chamber as a 

function of time are shown in 

Figure 1. These curves were cal- 

culated for the special case of 

y  = 2 (peak blast overpressure 

= 1 atm), T =0.5, and for three 

different values of k; k = 0, 0.12, 

and 0.20. When the unsteady flow 

resistance is negligible (k = 0), 

the flow into the terminal chamber 

continues until the chamber pressure 

is equal to the external pressure. 

0 8 

\ 
<L 

External  Blast  Pressure 

^       Maximum Chomber Pressure 

Nondimeniionol TiiM   *'-%• 

Figure 1 - Variation of Chamber 

Pressure with Time for 

10 
= 2.0, T = 0.5, 

1 1U 

References are listed on page 14.      and k = 0, 0.12, and 0.20 



At that time the chamber pressure is a maximum, and the flow reverses. 

The smaller the fill time of the system, the sooner the terminal pressure 

reaches its maximum, and the closer this maximum pressure is to the peak 

blast pressure.. When the unsteady flow resistance is significant (k>0), 

the chamber pressure rises at a slower rate and continues to rise after 

the time when it is equal to the external blast pressure because of the 

inertia of the air in the duct. The chamber pressure may finally reach 

a peak value that is not very different than that with k = 0. If the 

characteristic fill time T is small enough and k is large enough', the 

peak chamber pressure can exceed the peak blast pressure. 

The manner in which the peak chamber pressure varies with the three 

characteristic parameters is shown in Figures 2 and 3, which have been 

compiled from the numerical solutions. In many practical situations, 

the inertia! ratio k has only a small effect on the peak chamber pressure, 

and it is particulary significant to consider first how the peak over- 

pressure in the chamber varies with T and with y,Q for k = 0. 

The variation of the peak overpressure in the chamber is shown in 

Figure 2. The quantity plotted is the maximum value of (y, - 1) / (y^Q  - 1) 

0.8 

£ 0.6 

0.4 

0.2 

,4.0   otii x , Blast   Ovtrprtou " 
/,2.0 

vX///0.5 

' 

2 3 
Nondimensionol   Fill   Time of System, T 

Figure 2 - Dependence of Maximum Overpressure in Chamber on Fill Time of System 

for k = 0 and Blast Pressures of 0.25, 0.50, 1.0, 2.0, and 4.0 Atmospheres 



Figure 3 - Variation of Maximum Overpressure in Chamber 

with k, T, and y. 10 



which is the ratio of the peak overpressure in the chamber to the peak over- 

pressure in the blast wave. This method of plotting reduces the dependence 

of the results on the magnitude of the peak blast pressure and makes it easy 

to interpolate the data for values of the blast pressure other than the five 

values calculated. The calculations cover the range from T =0 to 5.0, and 

for a peak blast overpressure up to 4 atm (60 psi). 

The effects of all parameters on the peak chamber pressure are 

shown in Figure 3, which is a plot of the peak overpressure in the terminal 

chamber against the nondimensional fill time T, with peak blast pressure and 

inertial constant as variable parameters. It AS clear from the curves that, 

as k increases from 0 to about 0.2, the peak chamber pressure also increases. 

However, for higher values of the inertial ratio, the net effect of k can 

be to decrease the peak chamber pressure. Because of the nonlinearity of 

the flow equations, the peak overpressure in the terminal chamber is not 

simply proportional to the peak blast pressure. The lower the peak blast 

pressure, the higher is the ratio of peak chamber overpressure to peak blast 

overpressure, and the more this ratio is affected by the unsteady flow term. 

STEADY FLOW RESISTANCE 

The numerical calculations show that the most important parameter 

in determining the peak chamber pressure is the steady-flow-resistance 

term, and it is important to justify the form of this term in the equations, 

For this purpose, consider a steady flow between two ends of a complex 

duct, where the area at the ends is large enough so that the dynamic 

pressure can be neglected in comparison with the dynamic pressure in the 

duct. The flow equation becomes 

PT - Po = 

> 

0 »2 04] 
•1 - *2 =      2 

2 P A 

This simple equation is in good accord with experimental observations 
2 3 4 

as reported in the technical literature ' ' for steady flow through an 

arbitrary size and shape of duct provided the pressure difference is 

small compared with the pressure at either end. 

8 



The constant C is termed the loss coefficient for the duct shape and 

has been measured for a very wide range of duct shapes and tabulated 

in the technical literature. Note that C ordinarily represents the loss 

in total or. stagnation pressure, measured in units of the dynamic pressure 

between the two points of a duct. In most cases this loss is not due to 

a frictional resistance but to an inertial resistance to lateral flow at 

changes in area or at bends in the duct. 

There is also experimental evidence that the loss coefficient remains 

constant for steady flow even with large pressure differences. For large 

pressure differences, the density cannot be assumed as constant. Instead 

we consider that the flow is adiabatic (neglecting friction) and steady, 

whence the kinetic enthalpy of the air must be constant along the duct, or 

Pi   P2 

Pl " P2 

[15] 

and, if 2P = p- + p , the flow equation becomes 

,2 1 1/2      .   , 1/2 

q = 7(>i + >2) (PI-P2) - jg= (P!2 - p2
2) 

[16] 

where T is the temperature and R is the gas constant. 

This equation may be compared with the experimental data for the 

steady flow of air through a thin-edged orifice. The experimental 

equation of Reference 5 for subcritical flow is identical with Equation 

[16] if c is taken as 2.70. The experimental equation for supercritical 

flow is within 3 percent of Equation [16] in the range of pressure ratios 
UP to P«/p-i =0.1. This range extends well into the region of supersonic 

flow. Since an equation of this form is valid for steady flow through a 

thin-edged orifice, it seems plausible that it should also be valid for 

steady flow, even with large pressure differences, through any duct shape, 

because the arbitrary duct can be considered as a series arrangement of 

thin-edged orifices. 



It is convenient to define the combination a = A //c as the 

"effective area*' of the duct. It depends on both the shape and size of 

the duct segment and, incidentally, on the direction of flow. The effect- 

ive area of a complex duct system can be calculated from the loss co- 

efficients, or effective areas, of its parts. Thus, for several duct 

sections in series, where the flow rate is the same in all sections, the 

effective area of the combination is given by 

a2     i  a? [17] 

While for several sections in parallel, where the terminal pressures 

are conmon to all sections, the effective area of the combination is 

a = E  a 
i [18] 

It is precisely because the loss coefficients, or effective areas, 

can be estimated so easily, or determined experimentally if necessary, 

that an attempt was made to formulate the transient flow equations in 

terms of these loss coefficients. 

An illustration of the practical calculation of the effective area 

and its use in predicting the peak chamber pressures are given in the 

Appendix. As a rough guide, it can be expected that the effective area 

of a duct is equal to half of the area of the smallest section. 

RANGE OF APPLICATION 

Since the analysis is not based on the basic flow equations for a 

gas, the range in which the analysis is valid must be determined by a 

careful comparison of experimental results with calculated values. A 

review of some of the assumptions shows where deviations can be expected. 

First, the numerical results are valid only if the external blast 

pressure varies in the ideal way prescribed by Equations [3] and [4], 

This variation is obviously a poor approximation in many cases of 

practical interest. For example, the blast pressures can be greatly 

10 



changed by the presence of nearby reflecting surfaces or diffracting bodies. 

In that case, it would be necessary to modify Equations [3] and [4] accord- 

ingly, but the resulting equations could still be solved numerically if the 

proper modifications were specified. Equation [1] also assumes that the 

incident blast wave has no appreciable velocity component into the duct. 
2/ 

Otherwise it would be necessary to replace p1 in Equation [1] by p, + Pv, '2 

where v, is the approach velocity. 

There are also some obvious approximations in the boundary conditions 

for the terminal chamber. The isentropic assumption neglects heat flow 

to the walls and irreversible processes in the duct, but this is estimated 

to have a minor effect on the peak chamber pressure so long as the peak 

is less than, say, 2 atm. It is also assumed that the flow into the 

chamber is in immediate equilibrium with the air in the chamber. In 

reality, large currents and large pressure gradients may exist in the 

terminal chamber, and the peak pressure which is computed would only be 

a fair estimate if the relaxation time of these currents were small com- 

pared with the fill time of the chamber. 

The major approximation is probably due to the lumpimg assumption. 

This assumption immediately implies that we cannot deduce the pressure 

distribution in the duct itself. The flow in the duct could be unstable 

for certain terminal conditions whereas the analysis tacitly assumes 

stability. The flow pattern in the duct, the appearance and location 

of shock fronts, etc., will all depend on the instantaneous terminal 

conditions and whether the local flow is subsonic or supersonic, but the 

use of a single lumped effective area and single lumped longitudinal 

inertia term obviously disregards these complexities. One justification 

for this is that, in practical cases, the major contribution to the 

effective area is due to the entrance geometry of the duct and to the 

exit geometry, and both of these are analogous to thin-edged orifices 

for which the effective area is valid experimentally.  The lumped 

inertia term is difficult to evaluate because it is uncertain how much 

of the total air in the duct participates in the average flow. Fortunately, 

so long as the duct is small compared with the chamber volume, the peak 

chamber pressure is rather insensitive to the precise value of the 

inertia term. 

11 



APPENDIX - SAMPLE CALCULATION 

As an illustration in the use of this analysis, we consider the duct-chamber 

system shown in Figure 4 and calculate the peak pressure transmitted to the 

terminal chamber when an ideal blast wave with a peak overpressure of 20 psi 

and a duration of 0.8 sec passes over the entrance to the duct. 

We first compute the effective area of the duct. Consider the 

four sections, labeled (1) to (4) in Figure 4, at which there is a change 

in area or direction, and tabulate the loss coefficient and section area 

for each. The loss coefficient is determined from Tables 2 and 3 of Ref- 

erence 2. We next include the effective loss coefficients due to friction 

and assume that it is sufficiently accurate to take these as 

c _ 1  length of duct 
f  39 diameter of duct [19] 

as is customarily done for steady flow at low velocities. 

30 

-© 

Circular   Duct 
—2.0 tq.U. 

Circular  Due! 
3.5 sq.lt. 

I    & M 

-10- 10'- 

Chombar 
V-760 eu.fi. 

Figure 4 - Duct-Chamber System 
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TABLE 1 

Computed Values for Duct-( Chamber System of Figure 4 

4 

Section Area 
A 

Loss 
Coefficient 

C 

A2 
sq ft c 

Entrance (1) 2.0 0.85 0.212 

Bend (2) 2.0 1.30 0.322 

Expansion (3) 3.5 0.50 0.041 

Exit (4) 3.5 1.00 0.082 

Friction in 2.0 0.64 0.160 
small duct 

Friction in 3.5 0.12 0.010 
large duct 

For the entire duct 

1      c 

-7 - L  -T = °'827 
a      A. 

i 

and the equivalent area a = 1.10 sq ft which is 55 percent of the area of 

the smallest section. The system fill time, in nondimensional units, is 

0.845V 
T = 

a a 6 
= 0.58 

where a is the initial sound speed in the duct. 

The inertia! ratio is 

r cv 0.22 

Now from Figure 3 when the peak blast overpressure is 1 atm,T = 0.58, 

and k = 0.22, the peak overpressure in the chamber is about 61 percent of 

the peak blast overpressure. While for a peak blast overpressure of 

2 atm, T =0.58, and k = 0.22, the peak overpressure in the chamber is 

about 54 percent of the peak blast overpressure. Hence, for a peak blast 

overpressure of 20 psi (1.34 atm), the peak chamber overpressure would be 

about 59 percent of the peak blast overpressure, or 12 psig. 

13 
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