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Preface

In this study, the iuthors have attempted to lay the groundwork need-

ed to determine the feasibility of a trajectory-match technique for inter-

cepting intercontinental ballistic missiles. In Chapter II, the ballistic

trajectory equations and rocket equations of motion are developed in de-

tail, since the authors feel that many readers, who may be interested in

ICBM defense, may not be ecmpletely familiar with these concepts.

We found the boost-phase analysis in Chapter IV to be the most

challenging aspect of the problem. As far as we know, we have developed

a new technique for obtaining good approximations to the thrust and

weight of boost-rockets required for boosting a given payload onto a

specified trajectory.

Figures are used liberally throughout the report so that the readel

can more easily follow the geometry involved in same of the more compli-

cated mathematical derivations. There is also a list of definitions

included on page vi to explain some terms which are peculiar to this

particular study. The computer programs used are included in Appendix k.

so that other investigators may reproduce any of the results or expand

this study, if they so desire.

We wish to thank Captain H.G. Pringle for suggesting this thesis

topic, and for his many helpful ideas throughout the investigation.

The authors are also indebted to their wives and children, for

their patience, understanding, and many sacrifices which have greatly

contributed to the completion of this work.

R.A.C.

C.A.M.
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Definitions

Interceptor Vehicle The final payload consisting of the

vehicle structure, and equipment necessary for detection and

destruction of the enemy warhead.

Velocity-Match Rocket An assembly consisting of the interceptor

vehicle, rocket engine, fuel tanks, etc., needed to accelerate the

interceptor vehicle to its final velocity. The velocity match

rocket is the payload for the boost-phase rocket.

Interceptor System The structure consisting of the boost-phase

rocket and the velocity-match rocket.

Excess Time The difference between the flight-times of the

enay warhead and the interceptor vehicle from their launch sites

to the intercept point.

Sub-Rocket An assembly consisting of the payload and the
.I

"'rocket stages not yet jettisoned.

vi
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A cross sectional area of rocket stage

AP aiming point

a speed of sound

b height above the earth

Cd  coefficient of drag
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m stage mass (IbM)

m interceptor vehicle mass
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rl radius at intercept point

rna radius at aiming point on corrected intercept trajectory
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p atmospheric density
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Subscripts
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f 0 final value

b burnout conditions.

I intercept point conditions

m interceptor

o initial conditions

w enemy warhead

x horizontal component

x excess

y vertical component

u velocity match stage

Other

* derivative with respect to time

- vector notation

X



GAW Mech 61-2

List of Figures

Figure Page

2-1 Coordinate System for Trajectory Derivation . . . . 7

2-2 Elliptical Ballistic Missile Trajectory . . . . . . 13

2-3 Diagram of Flight Path Angle Relationships . . . . 14

2-4 Effects of Total Energy, Angular Momentum
and Launch Angle on Ballistic Trajectory . . . . . 19

2-5 Diagram for Rocket Equation Derivation ...... 22

3-1 "tApogee Intercept" Intercept Point at
Apogee of Intercept Trajectory .. ......... ... 27

3-2 "Tangent Intercept" Interceptor and Warhead
Trajectories Tangent at Intercept Point ...... .28

3-3 Auxiliary Triangle for Solving" Equation (3-13) . 31

3-4 Vector Diagram of Velocities and Displacement
for Theoretical Intercept Trajectory ...... .35

3-5 Vector Diagram of Velocities and Displacement
for corrected Intercept Trajectory ........ .37

3-6 Geometry for Determining Correction to

Theoretical Intercept Trajectory .......... .. 40

4-1 Coordinate System for Boost-Phase Approximation . . 44

4-2 K-Stage Boost-Phase Rocket . ........... . 46

4-3a Trial Number One in Boost-Phase Approximation . . 55

4-3b Trial Number Two in Boost-Phase Approximation . . . 57

4-4 Iterative Process for Satisfying Velocity and
Position Requirements on the Interceptor
Trajectory ......... ................ ... 59

4-5 Angles for Determining Flight-Times of
Warhead and Interceptor .... ................ . 63

xi



GAW Mech 61-2

Figure Page

5-1 Position of Launch Site and Intercept Point

Relative to Warhead Apogee . ... .. . .. . . 71

6-1 Effect of Pu on Th I  ................ 77

6-2 Effect of Pu on vu 79

6-3 Effect of P on T. ................ 80

6-4 Effect of P on ThI . . . . . .  . . . . . . . . .. . . . . . . . . 82

6-5 Effect of P on T. .. . ................. . 84

6-6 Effect of n on Th 1 . . . .  . . . ... .... . . . . . . . . . ..  85

6-7 Effect of I on Th. 87

6-8 Effect of I on T ................ 88
s x

6-9 Plot of Th1 vs 0LS for Various 4w' -

m
6000 n.m. Low Angle Warhead Trajectory . .. ....... 91

6-10 Plot of Th1 vs LS for Various 4w' -

m
6000 n.m. Minimum Energy Warhead Trajectory . . . 92

6-11 Plot of Th1 vs 0 LS for Various 4w. -
14 m-

6000 n.m. High Angle Warhead Trajectory ...... . 93

0 .6-11a Effect of Time, Thrust, and "g" Limitations
on Launch Site and Intercept Point Location . . . . 94

.

6-12 Plot of T vs for Various 0 -
x LS WI

m
6000 n.m. Low Angle Warhead Trajectory .... .... 97

6-13 Plot of Tx vs 0 LS for Various wl-
m

6000 n.m. Minimum Energy Warhea(, Trajectory r43

6-14 Plot of T vs for Various 4wx LS w

6000 n.m. High Angle Warhead Trajectory....... 99

6-15 Plot of Th1 vs 0 LS for Various Ow. -

4000 n.m. Low Angle Warhead Trajectory ..I.....101

xii



GAW Mech 61-2

Figure Pae

6-16 Plot of Th I vs LS for Various 0 -

4000 n.m. Minimum Energy Warhead Trajeotory . . . . . 102

6-17 Plot of ThI vs )LS for Various 4w -

4000 n.m. High Angle Warhead Trajectory .. .. . .. 103

6-18 Plot of T* vs for Various 0 wl
x LS wX

4000 n.m. Low Angle Warhead Trajectory . . . . . . 104

6-19 Plot of T* vs I> for Various 4w -xLS-1

m
4000 n.m. Minimum Energy Warhead Trajectory ..... 105

6-20 Plot of T* vs 4L for Various w -x LS :

m

4000 n.m. High Angle Warhead Trajectory . . . . . . . 106

List of Tables

Table Page

I Warhead Trajectory Semi-Range and Launch Angles
for 6000 and 4000 Nautical Mile Ranges . . . . . .. 70

II Combined Effects of Specific Impulse and. Structural
Factor on Overall Thrust Requirements ........ ... 89

- 'iii



GAW Mech 61-2

Abstract

In this thesis, a mid-course, trajectory-match intercept of

intercontinental ballistic missiles is analyzed. The intercept

is accomplished by using a multi-stage rocket to boost an inter-

ceptor vehicle onto a ballistic trajectory in the same direction

of flight as the warhead trajectory, so that the two trajectories

are almost tangent at a selected intercept point. Near the

intercept point, a final rocket is ignited to accelerat. the

vehicle and match the warhead's position and velocity.

A simplified analysis is performed for the case of a co-planar

intercept over a spherical, non-rotating earth. Intercept

trajectories are determined from the trajectory geometry and the

rocket equations of motion. An approximate method is derived to

estimate the thrusts and rocket weights required to boost an inter-

ceptor vehicle onto these trajectories. Equations are Dro;rammed

for an IBM 1620 digital computer to obtain estimates of thrusts,

weights, maximum accelerations, and the difference in the times of

' flight of the warhead and interceptor. Various combinations of

intercept points and interceptor launch sites are used to determine

the first stage thrust required per pound of interceptor vehicle for in-

tercept of low angle, minimum energy, and high angle, 6000 and 4000

nautical mile range warhead trajectories. The effects of specific

impulse, structural factor, and thrust to initial weight ratio upon

overall thrust, time, and acceleration are also determined. It is

found that there is an optimum value of thrust to weight ratio which

xiv
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results in minimum overall thrust requirements.

A numerical solution to the equations of motion is performed on

the computer for the boost phase. For the case considered it is

found that: the actual burnout velocity is within three percent

less than desired and thrust is within eleven percent of that

required, thereby proving the validity of the original boost phase

approximations.

The computer results are presented graphically, and indicate

that this intercept technique is theoretically possible for either

a manned or unmanned interceptor system. However, a much broader

investigation would be required to definitely determine its useful-

ness for defense against ICBM's.

xv
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AN ANALYSIS

OFA

TRAJECTORY AND VELOCITY MATCH TECHNIQUE

FOR INTERCEPTING

INTERCoTINEAL BALLISTIC MISSILES

I. Introduction

General Considerations

The high speed and short time of flight of the intercontinental

ballistic missile have made the problem of finding an effective ICBM

defense system extremely complex. To successfully intercept an ICBM,

an interceptor vehicle must be positioned at or near the same !nA .

space as the ICBM, at the same time. The interceptor must also be

able to distinguish the warhead from decoys and destroy it.

One syst3m which is presently in the development and tcact ataga I

limited to intercepting enemy missiles during the re-en-try phase of their

trajectories. For this type of interoept, the interceptor vehicle

approaches the warhead practically "head on", resulting in extremely high

relative velocities. This places very stringent guidance and accuracy

requirements upon the system. Furthermore, this system is limited to

,'cint-aefense of relatively uall, strategic target areas. Silice tnd ti,

practically a "last ditch" defense, the question has arisen: Can a

successful intercept be made during the boost phase of the warhead

trajectory, while the rocket motors are still burning, or during the

mid-course, free-flight phase, prior to re-entry?

1
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It would be difficult to intercept a missile during the boost phaae

because of the very short warning time available, and the usual lack of

friendly defense bases in the vicinity of enemy launch site-. Thuzy

serious disadvantages also exist for this type of intercept.

Now let us consider the possibility of a mid-course intercept,

a method of reducing the relative velocity between the interceptor and

the warhead. This can be accomplished by: launching an interceptor

vehicle on a ballistic trajectory in the same direction of flight as

the warhead; making this intercept trajectory nearly tangent to the

warhead trajectory; and accelerating the interceptor vehicle to match

the warhead's position and velocity by igniting a final booster rocket

n the intercept point. This method offsets the disadvant gcs i-c-- r.

in the re-entry and boost phase intercepts. Available warning time would

not be as great as for the re-entry intercept, but terminal guidance re-

auirements should not be nearly as critical due to the low ro2 tivs -elo-

ioy near the intercept point. Thus, the mid-course, trajeoctory-mntch

intercept appears to be a promising solution to the proble- c. i CTn.

Statement of the Problem

The purpose of this thesis is to analyze a mid-course, trajectory-

match i.ntercept of an ICBM warhead. This analysis convistE of deterninng

+'-- iierrtion geometry, the required thrust and wsigh4 of - , .'

ccptor system, and the difference between the flight times of the ICBM

a-rhead and the interceptor, from launch site to point of intner-t.

Since for this type of intercept there is a low relative velocity

at the intercept point, there are possible advantages to having a man

2
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in the interceptor vehicle. These inzlude man's ability to make d eci&!L,

and evaluate data from short range, decoy discrimination equipment.

Therefore, the analysis includes a consideration of the maximum

acceleration imposed upon this system, and an effort is made to keep

acceleration within human tolerances.

Analysis of the Problem

The analysis of an ICBM intercept over the non-spherical, rotaing

earth, by an interceptor system of unknown performance woua be extremely

complex. However, this analysis can be greatly simplified by assuming

that the earth is spherical and non-rotating, and that the warhead and

interceptor trajectories are co-planar. Although these assumptions are

uLnrealistic, the basic concepts and techniques, when establishoK foi t_,-,

-necial case, could be extends?, to the general interna . 11-0 -1 1-'

-roisent investigation show promise

inte:',ept Analysis. The first step is the deter_7!.t- icv .. *-- th4

geometry of the intercept for the tangent trajectory. The equations

are developed to allow variable inputs of warhead trajectory, intercept

point and interceptor launch site.

Next, the dynamics of the velocity-match phase are considered. It

is shown that the equations of motion of a rocket in field free space can

>'e considered to be a perturbation to the theoretical free-]'lght

trajectory, if gravity is assumed constant during the velocity-match

phase. The required free-flight trajectory is determined by correctirr'

the theoretical trajectory for the effect of this perturbation.

Boost Analysis. With the required intercept trajectories

3
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established, the next problem is to determine the booster requirements

to place the interceptor vehicle on this trajectory. These requir;-

ments must be based upon the weight of the velocity-match rocket -hic1h

in turn depends upon the weight of the interceptor vehicle. Since ths

is an initial investigation, the weight of the interceptor vehicle iz

unknown. A vehicle weight could be assumed, but to permit greater

flexibility, non-dimensional weight ratios are used to determine rocket

weight and thrust requirements per pound of interceptor vehicle. The

boost phase analysis is further complicated by the large number of

variable rocket parameters. The thrust, weight, specific impulse and

structural factor of each stage, as well as the number of stages must be

established to continue the analysis. Furthermore, the exact sBie -i

shape of the interceptor system and the velocity profile during bo'- +

all unknown. Therefore aerodynamic drag during the boos+ pae car r+

be exactly predicted. These complications make a olosed-fo-cm soli:ti

to the boost-phase equations of motion unfeasable.

The following assumptions are made to obtain an approximate solution

to these equations:

(1) The structual factor and specific impulse are the same for each

stage.

(2) Drag is negligible compared to thrust.

(3) Gravity is constant in magnitude and direction.

(4) Vertical launch and tip-over maneuver can be neglected.

(5) An inertial, rectangular coordinate system can be used.

(6) Thrust for each stage is constant.

4
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(7) The thrust direction is the same (constant direction relative

to inertial space) for each stage.

A further simplification is made by making the thrust to initial weight

ratio the same for each sub-rocket.

With the use of the above assumptions and simplifications, a aBi

of equations are obtained which give the thrust and weight ratios

required to achieve a desired velocity and direction in space. These

equations are then combined with the interceptor trajectory equations

in a program designed for use on the IBM 1620 digital computer. By

means of this program the thrusts and weights of the booster rockets,

the flight times from interceptor launch site to intercept point, and

maximum accelerations are obtained.

A numerical integration is then performed on the 1620 computer

check the validity of the boost-phase approximations. For

jpical intercept situation, it is found that the burnout veio(Aty oL'

tne booster rockets differed from that desired by approximately Three

per cent.

Effect of Variables. The large number of variables require that

this investigation be limited to a few of the many possible enemy

warhead trajectories.

Two typical ICBM ranges (6000 and 4000 nautical miles) are s#lected

i'qever, this must be further limited since for any particu'ar ,=a.hC

range there are an infinite number of possible trajectories, characterized

by the height of their apogees. In an attempt to adequately consider

possible intercept conditions, a high, medium (minimum energy), and low

altitude trajectory is considered for each range.

5
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The effect of structual factor, specific impulse, and thrust to

weight ratio on thrust requirementsq excess time, and maximum

acceleration is investigated for a few typical intercepts. Finally

reasonable values of specific impulse and structural fatto:. andt f

optimum value of thrust to weight ratio are used to investigate the

effect of varying the intercept point and interceptor launch site on

thrust and excess time.

6
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II. Basic Theor

The Free-Flight Missile Trajectory

Basic Equations. The motion of a ballistic missile in a vauw-

under the influence of a central force field such as the earth's axi.

tational field, can be analyzed by considering the missile to be a

point mass in a polar, inertial coordinate system (Ref 13:2-20).

FI

Fi9 2-1.
Coordinate Systerm .For Trajectory £erivati k

Let i be a unit vector in the r direction and j a unit vector per-

pendicular to i as shown in Fig. 2-1. The derivatives of the unit

vectors with respect to 4 are

and di T

Then the derivatives with respect to time are

d_ do d_ S;
dt adnd dt atn dt

7t WT

7



GAW Mech 61-2

Now the position vector of the missile is

Its velocity is
r = -: r " + r --

r~rt

or r= ri + roj 

and its acceleration is

t- a A:4-(r

or r r(2-2)

Now -- (r ) 2 rr4 i+Lrz r(2r r#)

or / (ar ) (2-3)

Substituting Eq (2-3) into Eq (2-2),

r =(b:-r j)" f i(r I
+Lr

# - -r )  - (r j-(2- I'

Now, by applying Newton's Second Law of Motion, F - ma

where = _ ---r- £

m is the mass of the missile

p is the earth's gravitational constant

we get

L (-F t ~ (2-5)

Then by equating the j components of Eq (2-5)
__ /- ar _

d-_

Now, since r is not infinite,

8
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(r o0

or r -- "a constant"

But r2, is the polar coordinate expression for the angular momentu?-

unit mass. Therefore, the angular momentum of the missile is a constant

during the free-fligbt phase. Let us call the angular momentum rer

mass, h. Then

h= rc (2-6)

Now, equating the I components of Eq (2-5),

/7F r(2-7)

In order to solve Eq (2-7), let us define a dummy variable,

___ I
p-

Then, in terms of p, Eq (2-6) becomes

or (2-8)

Also d

d-O dt - r2/1 P/J (2-9)

But d / p

Combining Eqs (2-9) and (2-10),

Then =T(- h )P

9
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or 21 ( .?

0121

Substituting Eqs (2-8 and (2-12) into Eq (2-7), with r -, get
p

,V P P . (P ) (2-13)

'Dividing Eq (2-13) by - p2h2 gives

Equation (2-14) is a non-homogeneous, second order, linear differential

equation which can be solved by the method of undetermined coefficients

(Ref. 14:36-41).

The solution of this equation is

P=-- + A cos (0 -') (2-15)

where A and " ' are constants which must be determined from the bouico.

con&it ions.

The evaluation of these constants depends upon the feet that th-

.otal energy of the missile must be a constant for free-flight in a

central force field. Thus,

E - K + V - "a constant"

where: E - total energy of the missile per unit mass

K = kinetic energy of the missile per unit mass

V - potential energy of the missile per unit mass

By defining potential energy, V, as zero when r is infinite, we c a

that = --,II
r

(2-16)
Also, kinetic energy is defined as V'

or = (j/t + r,) (2-17)or /-- 1

10



GAW Mech 61-2

Thus _

Equation (2-18) can be rewritten in terms of p by the use of Eqs (2--7

and (2-8). 
[.

dip

-- A sni('-4 ) (2-20)

By using Eqs (2-15) and (2-20), p is eliminated from Eq (2-19, giving

an expression for E in terms of A and h.

h ?-2 .
E= a 22-h a

Rearranging Eq (2-19a) and solving for A,

hh

Substituting Eq (2-21) into Eq (2-15),

P L hP-h Eh 2 ,o

,, ,__.2E h C '

P= -, (4 J! (2-22)

But

Now if we choose our coordinate system so that r is a maximum when

4' - 0, then 4/ - 0 and Eq (2-23) becomes

11



GAW Mech 61-2

r-

/ 1 -9:5 CO14 (2-24)

This equation is similar to the equation of an ellipse in

polar coordinates, which is

cos (2-25)

where 1 = the semi-lattice rectum of the ellipse

e - the eccentricity of the ellipse

Therefore we can state that the equation of the trajectory of a ballis-

tic missile in free-flight over a spherical non-rotating earth is an

ellipse with the center of the earth at one focus. The eccentricity of

the ellipse is defined by the equation

,V-2Eh

and the semi-lattice rectum by
ha

(2-27)

Thus the trajectory of a ballistic missile is completely defined if

the total energ and angular momentum of the missile are known, and is

given by the equation

r= / - d co.(

Additional Trajectory Parameters. Figure 2-2 shows the elliptical

trajectory plus several other parameters which are useful for analyzing

ballistic trajectories. These parameters are defined as follows:

I - the angle between the flight path and the local horizontal

YO - theoretical launch angle at the earth's surface

12
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RoeIf

/o /

Fig. 2 f-2rt

Elliptical Oollistic Misile Trrajectory

13
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v0  - theoretical launch velocity at the earth's surface

X - range over the earth's surface from theoretical launche

site to theoretical impact point

r - radius of the earth0

o - semi-range angle of the trajectory

6 - angle from major axis of the ellipse to the radius

vector (measured positive clockwise)

The angle of the tangent to the trajectory, y, can be determined

from the ellipse equation and Fig. 2-3.

*_tangent 7ine

.,traiec tory

r

Fig. e~-3
Diagrarr of Flight Path Angle

Re/ationsh ips

14
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t r r ,drtan = -; -€ = a ( 2-;i

Differentiating Eq (2-25)9

dr -le sin'k

d~~ ~ (eCos#)

Then

ton T= -esn4
/-e Cos 0I - cos (2-3SI)

From Eq (2-31), the theoretical launch angle is defined by the equation

t sin 0.
t/- ecos# 0  (2-32)

Notice that the negative sign is dropped because the launch angle must

always be positive. The sense of the angle is lost when the semi-range

angle, an absolute quantity, is substituted into the equation.

The relationship between h, yo' and v° is given 'y th i,

h r cos -r (2-33)

An alternate equation for eccentricityg knowing 9 0 and yo can be

derived from Eq (2-31). The result is

cos qb sbi 0. cot 7; (2-34)

If the desired range of the trajectory over the earth's surface is

known, the semi-range angle is determined by the equ;..ti;:i

xo=
(2-35)

Time of Flight. One very important parameter of the trajectory

remains to be determined. This is the time of flight during the free-

flight trajectory (Ref. 13:17-19). An inspection of Fig. 2-3 shows that

15
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the incremental area between two radial lines, d# apart, is

dA rd# r) r-'d

Equation (2-36) can be written as

dtA !ra # I •

but (2-6)

dA I

and so dt (constant) (2-37)

For one complete orbit or revolution,

A= h T (2-38)

where A = the total area of the ellipse

T - the period of revolution

Since the time rate of change of the area of a sertor of the ellipse ib

a constant, T" A*

T A (2-39)

where T* is the time required to travel along the arc of a sector of

area A*.

Then T

But, by rearranging Eq (2-38), _A h

',hus T*- A*-
(2-41'

Now, since A* is the area of az sector of the trajectory, let us

16
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evaluate A* for a seotor from the apogee radial line (where ' - 0)

to the general angle, , downrange from apogee.

From Eq (2-36) c/A
dA= r" do

Squaring Eq (2-25) gives

2 ia h4

e -cos O)2  - ' * -e co- s)2 (2-40)

Combining Eqs (2-36) and (2-42)

dlA -h d. (2-43

'A 2 (I- e cos (2-43)

Then A* d~7 0___A" f, 0- e os 0), (2-44)

This integral may be evaluated by the use of a table of integrals

(Ref. 8:41,42). The result is

PI- I e sl nlt a t a-, i-et tan- (2-4.

Substituting Eq (2-45) into Eq (2-41) we obtain the equation for the

time of flight from apogee to any angle, 9 , downrange from apogee.

T -e sL-. n-(tan) (2-46)

Since the trajectory is symnetric about the apogee reaius ior (,oor

axis), Eq (2-46) can also be used to determine the time to apogee from

any angle up-range by substituting the absolute value of the position

angle in the formula.

The time of flight between any two points on the trajectory is

17
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Tt T*~(O) -T (2
(2-47)

where 2> 4 and the correct signs are used for the position a,'P,",

Minimum Ener&Y Trajectory. (Ref. 13:1924) Previously, c bve

shown that the trajectory of a ballistic missile is completely defined

by the total energy, E, and the angular momentum, h. Now we will

investigate the effect of each of these parameters on the trajectory.

First, let us note from Eq (2-48) that as the total energy increases,

the theoretical launch velocity, v, increases.

r. (2-48)

But h~rv c os r.

Thui for a constant launch angle, the angular momentum also increases

with an increase in total energy.

Rearranging Eq (2-28)gives an equation which relates the angular

momentum and eccentricity to the semi-rarge angle

COS ~~(ih')

' e 41r. (2-49)

Substituting Eq (2-26) into Eq (2-49) gives

__-____ (2-50)

Inspection of Eq (2-50) r-hows that as E increases with h held

constant, cos > o decreases or 5 o and therefore range, increases

(See Fig. 2-4a).

Examination of Eqs (2-33, 48, and 50)shows that for a constant

launch angle, an increase in the total energy increases both the range

18



GAW Mech 61~-2

Es > fla >lfI
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and the angular momentum (Fig. 2-4b).

Now let us determine the effect of angular momentum on the total

energy required for a fixed range. Equation (2-50) can be written v,

So_ No

If there is a minimum energy for a given range, we can determine the

value that h must have for minimum energy by differentiating Eq (2-51)

with respect to h, equating the result to zero, and solving for h.

" h -0 c " (2-52)

Thenh= r sin o'

(2-54)

Substituting the value of hME into Eq (2-51)

Mr I + A ) . (2-55)

Note that E is negative. This must be true for any ballistic trajectozy

since positive E would be sufficient energy to escape from the earth's

gravitational field.

No, since there is a minimum energy requirement for Lang(,,

there must also be a maximum range for a given ,amount of total energy.

This maximum range is attained with the optimum value of angular momen-

tum and launch angle. If the launch angle is either greater or less

than the optimum value, the range will be less than maximum (See Fig.

2-4c).

20
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Finally, for a given range there is an almost unlimit, -

trajectories possible depending on the values of E and h. For an&

particular value of E which is greater than Emin' there are two possible

-trajectories for the same range. These two trajectories convear, to t-

minimum energy trajectory as the total energy approaches Emin (See Fig.

2-4d).

Now that we have established the existence of a minimum energy

trajectory, let us derive a few minimum energy relationships. Substi-

tution of Eqs (2-54) and (2-55) into Eq (2-26) gives the eccentricity

of the minimum energy trajectory as

COs

1+ sri (2-56)

The optimum launch angle is determined by substitution of Eq (2-56)

,-to Eq (2-32).

t7 0 T.O 1+ St' 
-"

Notice for the minimum energy case,

e zt a n7-1M .e. = t .E.

Ener& Ratio Concept. The energy ratio (Ref. 6: 134) is a

measure of the energy available for the trajectory, and is defined as,

royv
ER-

If the range, or 0 and the energy ratio are specified, the launch

angle needed to achieve this range is determined. The equation is

ttn - Rj(2-58)
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This equation is used to specify the high and low angle +rej~ c,.%.>

which are investigated in the latter portion of this reportC.

Rocket Equations of Motion

Velocity Equations. The motion of a rocket can best be de~cr ,,

by considering the case of a rocket in field-free space (no exteo na3

forces). Let us assume that we have a rocket in this environment,

traveling horizontally with velocity, v, and-mass, M, at time, t.

(Fig. 2-5).

Rocket at time t

U-V 4- - V+ V

Rocket at time) t+ dt

Fig. Z-S
Diagran -for Rocket Equation Derivations

Let t.b  the total burning time of the rocket

M0 the mass of the rocket before ignition0

M f the mass of the rocket at burnout

v 0 the velocity of the rocket when t = 0

vb = the velocity of the rocket when t - tb

s = the displacement (position) of he rocket at T -0

%b  = the displacement of the rocket at t = tb

= mass rate of flow (burning rate) of fuel, a constant

u - the exhaust gas velocity relative to the rocket

Since no external forces are acting on the rocket of Fig. 2-5, the

momentum must be a constant for the rocket system (including exhaust

22
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"ases). Then the momentum at time, t, and at time, t + dt, must ba eq o.

Mv = 4v-rivdt+ Mdv--+dvdt-r udt+riv, ."....

Neglecting the products of infinitesimals, Eq (2-60) can be w'itt :, as

/L'dv madt
dtbut = dM7

(2-62)

Then dt
(2-63)

or dtV= - U

(2-64)

Equatton (2-64) can be integrated for the general situation from

0 to t = t.

dv U
(2-,

V-Vo=-Uln M,V----t ( 2-6 6)

o r = V t n

V =V+u in NM (2-67)

For the case where the burning of the fuel is complete,

V, = V"+ U ir7
M' (2-68)

Now let us define the ratio of the initial to final mass as the

effective mass ratio of the rocket, D.

D = 4 (2-69)
M-f
23
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Then Eq (2-68) can be written as

v = v,-uln D

Distance Equations. To determine the distance traveled dlui.tg ,

burning of a rocket, Eq (2-67) can be integrated from t 0 to t t.

where v = ds/dt.

is JO v.4-lu ZMt(2-71)

't- o
ButS 10 Ml n ± d (2-72)

But = /11 - ht (2-73)

Then combining Eqs (2-72) and (2-73),

Hence -= zso- VO Ut : Y " in-
m (2-7.5)

For the burnout conditions, Eq (2-75) becomes

Sb, +Vtj 4-S (2-76)

where 3L tk7M'Znl

U. 1.f InM

orS= U(t ---- !' inr
M (2-78)

Equations (2-70, 76, and 78) are the basic rocket equations which

used in the analysis of the problem. They can be modified as necessary

to account for the effects of gravity and atmospheric drag.

24



CAW Mech 61-2

Specific Impulse of Rocket Fuels. The velocity and distance

euations of rocket motion are both functions of the velocity of the

exhaust gases. Usually, the exhaust velocity, which is a characteristi,

of a given fuel, is not stated explicitly. Instead, the specific

impulse of the fuel is used to define the exhaust velocity by the

equation (Ref. 10 : 20)

u M1 gs  (2-79)

where I, the specific impulse, is the pounds of thrust per pound of

mass flow per second, and gc is a proportionality constant numerically

equal to the sea-level acceleration of gravity.

The derivations which follow in Chapters III and n' have t

exhaust velocity, u, as a variable. However, the computer prngr = er

to solve the equations have Ia, rather than u, as an input variable.
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III. Determination of Intercept Trajectory

Theoretical Intercept Geometry

As a first step in determining the interceptor trajectory let us

compare two possible cases as shown in Figs. 3-1 and 3-2. In the

"apogee" intercept, the point of intersection between the warhead

and intercept trajectories occurs when the interceptor is at the

apogee of its trajectory. On the other hand, for the "tangent" inter-

cept, the intersection is at the common tangent to both the warhead

and intercept trajectories, and this point is "down range" from the

interceptor's apogee. By comparing Figs. 3-1 and 3-2 it is seen that

for the same intercept point and interceptor launch site, the tangent

intercept will result in a smaller vector velocity difference between

the warhead and the interceptor. This is an important fact, since

the weight of the velocity-match rocket increases exponentially

with the magnitude of this velocity difference. Therefore this

investigation is limited to the tangent intercept technique.

The most direct approach would be to fix the desired intercept

point and interceptor launch site, and then determine the intercept

trajectory parameters. However, this leads to several transcendental

equations which can not be solved explicitly for the desired quantities.

As an alternative, the following indirect approach is considered.

From Chapter II, the equation of the warhead trajectory, over a

spherical, non-rotating earth is

h."
w $ 1 C(3-1)

26



GAW Mech 61-2

Fig. 3-1
"Apolse Intercept" In-tercept Point at

Apolee of Xpterceptor Tr'ejectory
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rth

Fig. 3-2

'Th'n5 !nt Xnrercept'l Inteorceptor cind

Warh e ad TrajiectorieS Tangent at intercept' Point
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where r is the distanoe from the center of the earth
w

h w is the angular momentum per unit mass

e is the ecuentricity of the ellipseV

w is the angle measured from the warhead polar axis

Similarly, the equation of the interceptor trajectory, coplanar with

the warhead trajectory, is

"U 0c c s 1,)(3-2)

Now at the point of intercept, the radii of both the intercept and

warhead trajectories must be equal, or

where rI is defined as the distance from the center of the earth to

the intercept point. Furthermore, if we specify that the two tra-

jectories are tangent at the intercept point, the path angles must be

the same for both, or

-r. I= , , I -rx(3-4)

where yI is the angle measured from the local horisontal to the tangent

to the trajectories (positive counterclockwise). This angle, yI, can

be found by using Eq (2-31). Therefore

to r7 -C4'sin(3-5)-an 3jr = I-ew cos 4-

or -e,, Sin #mX

Cos (3-5a)

Rewriting Eq (3-2) for the intercept point, and by using Eq (3-3)

we get a

' 9e,, cos ()
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We can also write Eq (3-2) for the initial conditions, or launch

site on the earth's surfaoe, for which case

ro=. _ C. os 9,,,o) (3-7)

where Mo is the semi-range angle of the intercept trajectory.

For a fixed warhead trajectory and intercept point we know ew, h

4w ' r, and yI. Equations (3-5a, 6 and 7) contain four variables, em

h 9 Omi and 5 moo Therefore, if we fix - mo, we have three

equations and three unknowns and the theoretical intercept trajectory.

parameters are completely determined. To find these parameters, we

first divide Eq (3-6) by Eq (3-7) to give

rl _ I- e., Cos

ro /-, Cos ., (3-8)

Now solving Eq (3-5a) for ea, we get

- tan " C ,e ,5 in 0,:r - t cr n cos O.r= 39

Substituting Eq (3-9) into Eq (3-8) and simplifying,

r S . -_tcSn * COS #,, 4- tr - COS (3--10)

By rearranging Eq (3-10) we can get

-n " -r. -- / + Cos L, -, (3-11)

Next, let us define a new quantity which is a constant for the

intercept point. Let

(3-12)
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Substitute Eq (3-12) into Eq (3-11) and rearrange.

cos 4,, + 5 ,sin 4,,,, = co 5,,. (3-13)

Equation (3-13) contains only one unknown, ' and this can be

solved as follows: Construct a right triangle as shown in Fig. 3-3.

By referring to Fig. 3-3 it can be seen that

/= V L' ,, A (3-14)

T=-/H+ cos A (3-15)

A= tan_'(T) (3-16)

A

Fig. 3-3
4ux'llary Triang#e For

Solviny Em gat in (S-/3)

If we substitute Eqs (3-14) and (3-15) into Eq (3-13) the result is

-V/ 2sin A cos #~+cos A sinl COS (-7(3-17)

which can be rewritten as

stn(A+ cmz) - 4".
(3-18)

By solving Eq (3-18) for 40 , and using Eq (3-16), the final result is
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(3-19)

With k m4 now determined, we can solve for the intercept trajectory

parameters em, and he, by using Eqs (3-9) and (3-7). We have also

indirectly determined the theoretical launch site of the interceptor

system since the angle from launch site to intercept point, 0 LI is

just (See Fig. 3-2)

(3-20)

Velocity Difference Between Warhead and Interceptor

With the theoretical intercept trajectory now completely defined,

we wish to find the difference in velocities between the warhead and

interceptor, so that we may determine how large a rocket is required

to perform the velocity-match, i.e. reduce the velocity difference to

zero. Ignition of the velocity-match rocket causes the actual

trajectory to depart from the theoretical trajectory, and an approximate

method of correcting for this departure is discussed later. By referring

to Eq (2-33) it is seen that the angular momentum per unit mass of the

warhead or the interceptor can be written as

h= rvr Cos r (3-21)

and hm = r. v', CO-5 7, (3-22)

If we now divide Eq (3-21) by Eq (3-22) we get

2(3-23)
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which can be solved for v mi to give

h,,w (3-24)

The velocity difference, A v is given by

~= wz- v.Z (3-25)

By making use of the fact that Vin and vWI are co-linear, and

substituting Eq (3-24) into Eq (3-25) we find the magnitude of the

velocity difference to be

zv = Vz(3-26)

It is interesting to note that if the angular momentum of the

interceptor approaches that of the warhead, A v approaches sero, but

with the intercept conditions we have imposed, this occurs only when the

two trajectories are identical ... a highly impractical case.

Correction to Theoretical Intercept Trajectory.

In order to correct the theoretical intercept ttajeotory for

the effect of the velocity-match rocket, we must make use of the rocket

equations of motion which were developed in Chapter II. Equation

(2-70) can be written in vector notation as

-Vt,= -V"+ i; rD (3-27)

Equation (2-76) can also be written in vector notation as

S4S* t + 9 (3-28)

where s' is now defined by

33_D)
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If we let our coordinate system coincide with the point where the

velocity-match rocket is ignited, then so 0 and Eq (3-28) becomes

Now if we re-write Eqs (3-27) and (3-30) and assume that the motion

takes place in a gravitational field, where j is constant in magnitude

and direction, these equations are modified to

v, 7.+ uIn D (3-31)

and

(3-32)

Let us now refer to Fig. 3-4 and assume that our interceptor

rocket is in free-flight on the theoretical interceptor trajectory.

If we did not fire the velocity-match rocket, we would coast to the

intercept point, IP, and arrive there with velocity equal to V .

But we want to match the warhead's velocity, vw1 , at the intercept

point. Therefore the velocity-match rocket must be ignited some

time before we get to point IP. Let us assume that the velocity-match

rocket has a burning time equal to the free-flight time from point A

to IP. Then, when the rocket arrives at point A with velocity To,

the velocity-match rocket is fired so that the exhaust velocity vector,

u, is parallel to the trajectory-tangent at point IP. If the effective

mass ratio, D, of the velocity-match rocket is of the right magnitude,

then the burnout velocity, vb' will be approximately equal to v w , as

seen in Fig. 3-4. However, Fig. 3-4 also shows that the position at

burnout is point B rather than that desired (IP).

Suppose we correct this discrepancy by the method shown in
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.t
A

T4 eo,-,tlea/ Zxm 7; 1WedC tOr-y

v'P

Ii b

Fig. 3-4

Ilector Diagiramn o4 Velocities and Di splacement

4or The oretIcaL Intercept Trajectory
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Fig. 3-5. First we extend the tangent line "up-range" to an

aiming point, AP, so that AP-IP is equal to IP-B. Next we adjust

the trajectory, so that a free-flight interceptor will arrive

tangent to point AP with the same velocity, v,: , that existed at

point IP of the theuretical trajectory. Now, if the velocity-match

rocket is fired at some point A', where A' is chosen so that the

free-flight time from A' to AP is equal to tb, the burnout position

will be at IP. The actual boosted trajectory will be along the

dotted line in Fig. 3-5.

If we assume that the burning time is short, we can say that

<'/ /i/<< (3-33)

Then the change in direction and magnitude of gravity between points

A' and IP will be extremely small, and by referring to the velocity

vector diagram in Fig. 3-5 we can say that

Vo-1 + " t, 7 1-,, (3-34)

u Z n D = (3-35)

or L7In D= b-4Z (3-36)

However, we want Vb to be equal to V , and since u, V and

V are all parallel we can write Eq (3-36) as

u ln D = vz,. -vm, - 6 v (3-37)

where Av is given by Eq (3-26). By solving Eq (3-37) for D we

find that

D = E (3-38)
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CoArctualA

7h'eoerebcal

itb

9bavwx

Figq. 3-5'

Vector Diagram7 0 Velocities and Displacement
for Correc-ted Intercept Trajectory
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In Chapter IV it will be shown that if we specify the thrust to

initial weight ratio, O, of a rocket, we can find s' such that

S/-- f(u, D, )

With D and s' known we can calculate the corrected intercept trajectory

parameters.

By referring to Fig. 3-6 it is seen that

4F= 9o- -r, (3-39)

Note that yI is negative for intercept points down-range from the

warhead apogee. We can also show that

tan S=-r sin,- F
an - s'cso F (3-40)

or using Eq (3-39)

-tari 6~ .5 rsT-ren = csi T

-s'SnT r(3-41)

Then with 6 known we can show that the flight-path angle at

point AP is

TQ = -(3-42)

where 6 is always a positive angle and the correct signs must

be used for YIa and yI. By using the law of sines we find that

s I sin F

si n S (3-43)

or S cos 7xsi n (S (3-44)

With Yia, rIa , and v known at the point AP we can prooede to

find the trajectory parameters.

Re-writing Eq (3-22) for the corrected trajectory at the point
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AP, we get

h,.. = rcs v,,, CO. (3-45)

where h a is the corrected angular momentum per unit mass. The

total energy per unit mass of the trajectory can be found from

Eq (2-48) applied to the aiming point, in which oase

EMO a V,,
r1a (3-46)

With the energy known we can find the eccentricity by using Eq (2-26).

e, i- 2(E).-V Z (3-47 )

The equation of the corrected intercept trajectory is therefore

(3-48)
cs

By applying Eq (3-48) at the earth's surface and at the aiming point,

we can find the corrected semi-range angle, 0 moa' and the angle

from the polar axis to the aiming point, #mla (See Fig. 3-6).

These equations are

Cos 9&,A. ° /,, (3-49)

and
COS #?Z-

e4,, (3-50)

The angle from the corrected interceptor launch site to the actual

intercept point is

56LI A 6MOa + 9#lXa + 8(3-51)

where 6 is given by Eq (3-41).
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p o * ee

Fig. 3-6

Geometry For Oetermirninq Correceion

to Theoreti cal Intercept Trajectory
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Summary

In this chapter, first we derived the theoretical intercept

trajectory equations by fixing the warhead trajectory and the

intercept point, and imposing the condition that at the intercept

point the warhead and intercept trajectories had the same radius,

rl, and the same path-angle, yI. By assuming a short burning

time for the velocity-match rocket, and that g was constant in

the vicinity of the intercept point, we then corrected the

theoretical intercept trajectory for the effect of the rocket dynamics,

and obtained the parameters for the corrected intercept trajectory.

We also determined the effective mass ratio required for the

velocity-match rocket. With this trajectory completely determined,

and the effective mass ratio of the velocity-match rocket known, we

can now consider the boost-phase of the intercept.
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IV. 'Boost-Phase Analysis

In Chapter III it was shown that if the warhead trajectory,

intercept point, and semi-range angle for the interceptor were

fixed, a unique, free-flight trajectory is determined. We also

found the required mass ratio for the velocity-match rocket. In

effect, we are now at the point where we have a "payload", and a

desired trajectory, and must find the booster rocket requirements

needed to get this payload onto this trajectory.

There are an infinite number of points where we --an enter this

intercept trajectory, and for each point the required burnout

velocity and direction is different. This point must also be at

some altitude above the earth because of the time required to

accelerate to the final desired boist-phase burnout velocity. If

we also consider the fact that most rocket launchings consist of a vertical

flight segment, a segment at constant angle of attack, a segment at

zero lift, and a constant attitude segment, it can be seen that there

are many possible flight paths from the launch site to the burnout

point. The problem is further complicated by atmospheric drag,

variable gravity, and the variation of rocket thrust with altitude.

Thus there does not appear to be a neat, closed-form solution to the

problem, although many approximate methods have been devised (Ref 12).

In WADC TR 57-724 (Ref 2) a method for the preliminary

design and optimization of a long-range, ballistic missile is

outlined. Basically, it is a trial and error method, and while it
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is well mited to the design of one particular missile, it does

not lend itself to this investigation, where we have mary

trajectories to consider.

Approximations

To proceed with the problem, let us make some assumptions

which enable us to develop a method for approximating the required

thrusts and weights, and the available warning time for the

interceptor system. First we assume that the boost-phase is a small

portion of the intercept trajectory, allowing us to consider gravity

as a constant vector. This enables us to choose an inertial,

rectangular coordinate system on the earth's surface near the

launch site. as in Fig. 4-1. Next we neglect the vertical, tip-

over, and constant angle of attack segments of the boost-phase,

and assume that the thrust vectors of each stage are applied at a

constant direction relative to the inertial coordinate system.

Although this is not practical for an actual launching, this is a

reasonable approximation since the vertical and tip-over segments

are usually a small portion of the boost-phase. Then we assume that

the aerodynamic drag is small compared to the booster rocket thrust,

and can be neglected. Finally, we neglect the variation of thrusts

due to altitude, and assume that the specific impulse and structural

factor are the same for each stage.

The K-Stage Boost Rocket

With these assumptions in mind, let us develop some equations

for the k-stage rocket as shown in Fig. 4-2. Some useful relation-
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ships for this rocket are listed as follows (Ref 3). The

symbols used are shown in Fig. 4-2.

Structural factor:

initial mass of the j th stage
nj =

burnout mass of the jth stage

or 
ny

(4-1)

effective mass ratio of the jth sub-rocket:

Dy +___ = i "l ,# ... . + - (4-2)
M14  MZjr1 ,+m.~+z +.+ihn+17 M-(J'

where M . is the burnout mass of the jth sub-rocket.Jf

stage mass ratio:

J jPr(4-3-

overall mass ratio:

or +Y+-.

(4--4b)

Optimization. It can be shown that the optimum arrangement of

sub-rocket masses, which results in a maximum final burnout velocity

(vacuum conditions, constant g), for a rocket of constant overall

mass, with the same exhaust velocity of each stage, is given by the

equation (Ref 3)

D, D, ~
P7, nl2  pT4
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If the structural factors of each stage are the same then the equation

for optimization becomes

D= D2 =(4-6)

The overall mass ratio for optimum staging, with the stage structural

factors and exhaust velocities equal, is

r I "7_-,) q 7
0/ / n (4-7)

The sub-rocket mass ratios are then

J (4-8)

Equations of Motion. In Chapter II it was shown that the

equations of motion of a one stage rocket in field-free space are

= -+ UZn D (2-7))

b OVob+ S(-)

If we re-write these equations in scalar form for our rectangular

coordinate system and consider the effect of gravity they become

x,,=A + u cos A In D (4-9)

. + u sln In D -gt~ (4-10)

tb o-, + SiCo 05 (4-11)

Y Y otb + SS' si - (4-1--)

where a = 0
0

'= the horizontal component of burnout velocity
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b - the vertical component of burnout velocity

i the horizontal component of initial velocity0

o the vertical component of initial velocity

X = the angle between the thrust vector and the horizon

and S'L/U t - 1 D]~(2-78)

Let us now find the components of burnout velocity and displacement

for a k-stage rocket, starting from rest.

Velocity:

Stage 1. U COS A Zn D, (4-13)

Yb = U &'r A ZnL D, - t, (4-14)

Stage 2 Xb = Xb, + U cos A In D, (4-15)

Ab -- -u sLri Z ri D,-gt, (4-16)

Stage k. 6 -1- U CO 05 fI D, (4-17)

b bi A fuSo ln D k tk (4-18)

Displacement:

Stage 1. - (4-19)

2 (4-20)

Stage 2. /(4-21,
x = x t , + S2 C05

Y Y t - (4-22)yba = yb, +y,, a + " ,.
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Stage k. X = x - - S Cos (4-3)
I bk- 1 C4 k

A Ybk- + k-1, tb + 5 sr7 A -9 (4-24)

If we now assume that we have a rocket with optimum staging

(D's all equal), and further assume that the burning times, tb,

for all stages are equal, we can say that

xb 2u cos Zn D (4-25)

)b= 2u sin A In D - 2gtb (4-26)

b ku cos A Zn D (4-27)

Ybf = usin1A ID k9 t,

x 2 s cs + b, t (4-

y6= 2s'-5in A 4- 2 (4-3o)

Xb, ks'CoS + ( , + x bit + + xb-) t, (4-31)

Now from Eqs (4-27) and (4-28)

Xb, " +'" -t- -- , -"-"'+k-Ij (4-33)

Y4Yh-+ 4 =[+ 2 -. +±&-/ (4-34'

But )

2(4-35)
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By combining Eqs (4-27, 28, 31, 32, 33, 34 and 35) we get

- ks'cos -- t~ucos AZriD[k(-) (4-36)

kk

kss~n A -v'- t, (U sin A lii D ~t)kl

k (4-37)

Thrust to Initial Weight Ratio. Equations (4-27, 28, 36 and 37)

are put in a more useful form by defining a new quantity, the thrust

to initial mass ratio of a sub-rocket (Ref II). Let

Ti
MV (4-38)

where - the thrust to initial mass ratio of the jth sub-rocke.

T - the thrust of the jth sub-rocket motor.

Note that at sea level, pounds-mass and pounds force are numerically

equal, and therefore P can also be used to express the thrust to

sea level weight ratio. The thrust of a rocket engine is given by

(Ref. 10:17)

j 51 (4- 3)9 )

where i is expressed in pounds-mass per second.

By combining Eqs (4-38) and (4-39) we find that

5. 8; 1i
Uj (4-40)

Now the burning time of the jth stage rocket is

tb mass of fuel in the i th stage
b burning rate of the Ji stage

50



GAW Mech 61-2

1. - /NM

or t (4-41)

By combining Eqs (4-40) and (4-41) we find that

(4-42)

But from Eq (4-2) we can show that

_____ -__ j (4-43)

Therefore, by combining Eqs (4-43) and (4-42), we find that

b .---LdD, D.j (4-44)

We can also show that

/ = U . o.--z

From Eq (4-44) it is seen that if the exhaust velocities, sub-rocket

effective mass ratios, and thrust to initial weight ratios are all the

same, then the burning times are also all the same. This is

exactly the assumption we made to get Eqs (4-27, 28, 36 and 37). By

using Eqs (4-44) and (4-45) it can be shown that the final velocity

and displacements at burnout of the kth st&.ge are

,, = kAu In D cos A (4-46)

LnZ? D -sinr' 'a/ - (4-47)

ku cos 2(0-I-ln D)+(k-)(D-I)Zn D
-k D J (4-48)
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YU' = u5i"2°/ r) D) -'O--Z (k-1) (B -,IDZ 7-

ka~~~si~~/ kA r2D(nD.Dk)( 1 1)

b9 29,0 j (4-49)

Thus, with the burning time eliminated from the equations by use

of the thrust to weight ratio, we can say that

Burnout Conditions - f(k, u, X, , D) (4-50)

We must now combine these equations with the corrected trajectory

equations of Chapter III, so that we may find a method for evaluating

a function of the form

D - f(k, u, X, P, Burnout Conditions) (4-51)

Technique for Satisfying Burnout Velocity Requirement

First let us solve the problem by satisfying only the conditions

of burnout velocity and direction, and later consider what must be

done to also satisfy the condition of burnout position. Assume that

we are given a required burnout velocity, vb, and burnout angle, T'b'

as shown in Fig. 4-1, and that we want to find the required sub-rocket

mass ratios, D. We assume also that k, and P are given. We can say

that

tart (4-52)

where : and Sb are given by Eqns (4-46) and (4-47) with the
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k subsoripts omitted for simplicity. Then

t-0 ??, t 0 D-1

tan ? b = tanZn D (4-53)

If we multiply both sides of Eq (4-53) by the quantity, cos X cos t b

and rearrange, the resulting equation is

sn A 0cos / 0
sLPn ,Co5 COS -co.& I?=n D (4-54)

Then sin (D-=( cD-)os? ?51n - 1, = eD In D

(4-54a)

Solving Eq (4-54a) for X,

-=Df(-1) cos 7

or sin-'

where (D-) cos ,
= D Zn D

(4-57)

From Fig. 4-1 the horizontal component of burnout velocity is

xb vb COS (4-58)

By combining Eqs (4-46, 55, 57, and 58) we can show that

ka7 n D cos (G W sin-'f)-v, cos -, 0 (4-59)

or B(D)= 0
(4-6o)

Now we have an equation with one unknown, D, which would be
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difficult, if not impossible, to solve explicitly for D. A numerical

solution is found by using Newton's iteration method (Ref 14t495).

With this method, we choose a trial value for D, say D. For this

value we evaluate f(Di) and f'(D ) where

P(D) = [,() (4-61)
dOD

The equation for f'(D) can be shown to be

ku(D-1) cos A 4-617ri-g)(D-Il-rt D) sin ~ 1 (4-61a)

Then our new trial value for D is given by the formula

A -[O) (4-62)D,.+,= A f'(D)

This process converges quite rapidly in this particular case, and

is repeated until the required degree of accuracy is attained. Thus

we can find D, the sub-rocket effective mass ratio required to

achieve a given burnout velocity and direction.

Technique for Satisfying Burnout Position Requirement

In order to simultaneously satisfy the condition of burnout

altitude, 7b' or radius, rb, we must resort to a second trial and

error process. To do this, first choose a trial value for burnout

range angle, 0b' (See Fig. 4-3a). With the chosen ( b and the

corrected interceptor trajectory parameters, we use the general

trajectory equations of Chapter II to determine rb, Vb, and

As a first approximation let us assume that the launch site in the

rectangular coordinate system coincides with the theoretical launch

site in the polar coordinate system. Then we can say that
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(4-63)

where these angles are shown in Fig, 4-3a. Therefore the first

trial burnout angle in rectangular coordinates is

77b = "rb - EC (4-64)

Then by using Eq (4-59) we can find a value for DI.  With D1 known,

Eqs (4-48) and (4-49) are used to find xb and Yb

We can now compute the actual value of rb, which is designated rb2.

using the relationship (See Fig. 4-3a)

-4r -y,, X (4-65)

Now we can remove the restriction that the rectangular and polar

launch sites are coincident by finding that

a- 7 -1(ro ) (4-66)

and change from the coordinate system of Fig. 4-3a to the adjusted

coordinate system of Fig. 4-3b. With the value of rb2 from Eq (4-65)

and the interceptor trajectory equations we can find new values of

(b 2 Vb2 and lb 2. Now substituting E 2 and b2 into Eq (4-64) we

find Ib 2. Then again using Eqs (4-59, 48, and 49) we find values

for D2, 'b2 and. b2 The iteration process is continued until

r r(4-67)

Note that we use the previous value of E to compute a new value
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for b" This introduces a small error for the first few trials

since in all likelihood the relative positions of the rectangular

and polar launch sites will be different from one trial to the

next. However, since this process is convergent, as the number

of trials increases, E will approach a constant value and the

error will approach zero. An exaggerated illustration of how this

iteration process might converge is shown in Fig. 4-4. Thus, by

using this double iteration process, we find the effective sub-rocket

mass ratio, D, for the boost-phase rockets, and values for 4 b and rb.

We are now prepared to achieve our objective, and determine

the weights and thrusts required, and calculate the excess time.

First let us find the weights and thrusts.

Determination of Weight and Thrust Requirements

The effective sub-rocket mass ratio for the velocity-match

rocket is found by using Eq (3-38). Let us also specify a thrust

to initial weight ratio for this rocket, and call this quantity

Pu where the u subscript is used to avoid confusion with the

boost-rocket parameters. Assuming a one-stage velocity-match

rocket, the overall mass ratio of this rocket is found from Eq (4-7)

and Fig. 4-2 to be

-= (n-=D M (4-68)

where Yu is the non-dimensional mass (or weight) ratio of the

velocity-match rocket (lb of int. rocket per lb of int. vehicle).

The thrust required for the velocity-match rocket is found from

Eq (4-38) to be

T % M(4-69)
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or in non-dimensional form

Thu- , tY (4-70)

where Tu  - the thrust of the velocity-match rocket

M - the weight (or lb mass) of the velocity-match rocketu

Th - the lb of thrust required per lb of interceptor vehicle.u

The mass ratios of the boost-stages are found by using Eqs (4-7)

and (4-8). These mass ratios are

- D (4-7)

The thrusts required for each stage are, from Eq (4-38) and Fig. 4-2

0 (4-71)

T = fv - m(4-76)

By dividing through by i'. and using Eq (4-68) we can write

these equations in non-dinerisiona2 form.
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Th ,+ (4-77)

(4-78)

Th YU= (Y"' +i (4-79)

By using Eqs (4-4b) and (4-8) we can further reduce these equations

and show that

Th, V.3% YU
(4-80)

]h2 Y (4-81)

-h (4-82)

Therefore, the mass (or weight) and thrust ratios are determined,

and numerical values of weights and thrusts can be found if mp

the weight of the interceptor vehicle, and k, the number of

boost-phase stages are known.

Excess Time

To find the excess time it is necessary to determine the flight

times to the intercept point for both the warhead and the interceptow

The difference between these times is defined as the excess time.

Let us assume that the burning time of the enemy booster

rockets can be neglected and that the total flight time of the

warhead from its launch site to the intercept point is the same as

its free-flight time. This time can be found by using the warhead
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trajectory parameters and evaluating Eqs (2-46) and (2-47) at the

angles 4,wo and Owl as shown in Fig. 4-5. Let this time be T •

The time of the interceptor from its launch site, LSm , to the

boost-phase burnout point, BO, can be found by multiplying Eq (4-44)

by K, the number of booster stages. Let this time be Tb . Fromb

Fig. 3-5 it can be seen that the flight-time of the interceptor

from point A' to the intercept point, IP, is the same as the free-

flight time (without velocity-match rocket ignited) from point A'

to the aiming point, AP. Thus the free-flight time from point

BO to IP (Fig. 4-5) can be found by using the intercept trajectory

parameters and evaluating Eqs (2-46) and (2-47) at the angles , b1

and m la, Let this time be Tc Then the excess time, Tx ,

is given by the equation

Tx T - + T (4-83)

Therefore, by assuming that the enemy missile is detected at the instant
*

it is launched, the interceptor must be launched Tx  seconds later, if the

warhead and interceptor vehicle are to arrive at the intercept point

simultaneously.

Maximum Acceleration

An important consideration, especially if a manned vehicle is used.

in the interceptor system, is the maximum acceleration imposed upon the

system. There is a peak acceleration at the instant of burnout of

each sub-rocket, and this is found. by using Neveton's second law to be

Vj-=-T
Mj; (4-84)
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where V. the maximum acceleration in sea level "gist
3

.th
T. ithe thrust of the j stage

Mi. the burnout weight of the jth stage.

But from Eq (4-38)

7 7 = 4  (4-85)

By combining Eqs (4-84) and (4-85) it is found that

Vj M 4  (4-86)

But MJD
(4-2)

By combining Eq (4-2) and (4-86) we get

V7 ----/j D.J (4-87)

Since we have specified that the 2's and P' of each sub-rocket

are equal, Eq (4-97)shows us that the rce1ih acceleraticnz urir-g

the boost-phase are the same. Similarly, the maximum acceleration

during the velocity-match phase would then be

VU -=A Dj(4.-88)

During an actual launching there would be other components of

acceleration (ag. angular and centripetal accelerations during the

tip-over maneuver) but these are considered to be of secondary

importance for this investigation.

Summary

In this chapter a method for determining the booster-rocket

requirements was developed. This was accomplished by vaking several
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simplifying assumptions, developing the equations of motion of a

k-stage rocket and introducing the concept of thrust to weight

ratio. The equations derived in this manner were then combined

with the interceptor trajectory equations of Chapter III to

determine thrust and weight ratios, available warning time, and

maximum accelerations of the boost-phase and velocity-match

rockets.

Because of the many equations, and two iteration processes

involved, numerical results are very difficult to obtain without

the aid of an electronic computer. For this reason, the equations

are programmed on the IBM 1620 digital computer to permit the

investigation of many different intercept conditions. The

computer programs used in the analysis are described in Appenaii A.
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V. Procedure for Obtaining Numerical Results

Primary Considerations

The overall vehicle weight, the thrust of the first boost stage,

the excess time, and the maximum "g" forces on the interceptor vehiclK

are the principal factors to be determined.

The excess time is certainly the most important factor in the

analysis, for without adequate excess time, the intercept technique

is impractical or even impossible. Therefore we wish to determine

what intercept conditions allow the most excess time, and the effects

of the boost parameters on excess time.

The overall vehicle weight is also quite important, since as

weight increases, the thrust i3quired to launch the vehicle increases,

Since there are limits on the amount of thrust available to perform

the intercept, thrust rather than weight is the factor which we attem;

to minimize in the analysis.

Finally, the accelerations which exist during the boost phases

are also an important factor if the system is manned. Man is

capable of withstanding approximately ten transverse "g9's" or 322

feet per second per second applied with the pilot perpendicular to

Lbe acceleration vector (Ref. 4:14). Therefore we shall indicatt

the intercept conditions which result in accelerations in excess of

ten "g1 tSIT

3gpsic Analysis

The basic analysis consists of fixing the warhead trajectory,
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intercept pointp and the boost parameters and then varying the

position of the interceptor launch site. This procedure is

repeated for different intercept points on the warhead trajectory.

Finally the complete procedure is repeated for other warhead

trajectories. Once the basic analysis is complete, the effects of

varying I with n fixed, varying n with I fixed, and varying Is S s

and n in combination are determined.

Warhead Trajectories to be Investigated

In Chapters III and IV we have laid the mathematical ground-

work for evaluating the trajectory-match intercept. Now a decision

must be made as to what missile trajectories should be used in the

analysis.

A 6000 nautical mile trajectory is selected because it is a

typical range for ICBM trajectories. A 4000 nautical mile trajectory

is also selected because less time is available to complete the

interception of a shorter range ICBM trajectory. Now Eq (2-35)

can be used to determine the semi-range angles for these two

trajectories. For the 6000 nautical mile trajectory,

X 600O

o - = 0.87266456 radian
2ro  2(3437.747)

and for the 4000 mile trajectory,

0 4000 0.58177638 radian
2(3437.747)
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It was shown in Chapter II, that for any given range there

'is an almost unlimited number of trajectories, depending upon the

amount of total energy available. Thus we must stipulate more than

just the range to define the exact trajectory. In order to more

completely consider the possible intercept situations, three different

trajectories are chosen for each range. One is the minimum-energy

trajectory, and the others are a high angle (high altitude) and a low

angle (low altitude) trajectory. These trajectories can be completely

defined if we now specify the theoretical launch angle, yog of the

warhead. For the minimum energy trajectories, we can use Eq (2-57)

to determine 1o. For the 6000 mile trajectory

ta cos 0o 0.64278759 = 0.36192092

t E I + sin 0 1.76604431

and YoM 0.34906588 radian.

For the 4000 mile trajectory,

tany 0.83548776 0.53919520
O°ME 1.54950890

and Y 0.49450997 radian.

To establish the high and low angle warhead trajectories for

each range, we can fix the total energy available for the trajectory.
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This then determines the energy ratio of the trajectory, which in tura

determines the theoretical launch angle. Since the choice of total

energy is an arbitrary one as long as reasonable values are used, it

is more convenient to specify the energy ratio. An energy ratio of

0.9 is chosen for the 6000 mile trajectory, and 0.8 for the 4000 mile

trajectory. Then for the 6000 mile trajectory

t T E .4( I & R) (2-58)tantar 4o- -' t o Vta. o/
2 L1a 5.,1

= 0.58389717 and 0.17126302

or -Z0 = 0.52849701 radian (high angle)

and -6 = 0.169619E4 radian (low angle)

For the 4000 mile trajectory

S. + 0.8 2 (1-0.8)2 0.65w 0.571

= 1.02032565 and 0.19601585

or -6 = 0.79544624 radian (high angle)0

and -'6o 0 = 0.19356362 radian (low angle)
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These values of co and y which are listed in Table I,

are necessary inputs to the computer solution of the boost-phase

approximations (Appendix A), since the computer is programmed to

determine all other parameters of the warhead trajectory from

these values.

Table I

Warhead Trajectory Semi-Range and Launch Angles

for 6000 and 4000 Nautical Mile Ranges

Warhead Trajectory Semi-Range Launch
Range Angle Angle Argle
(n.m.) (radians) (radians)

Low 0.58177638 0.19356362

4000 Minimum Energy 0.49450997

High 0.79544624

Low 0.07266456 0.16961984

6000 Minimum Energy 0t. 34906588

High 0.52849701

Selection of Intercept Points and Launch Sites

To facilitate the discussion of the position of intercept

points and launch sites, we will use the angular position of the
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points relative to the warhead apogee in an earth-centered, polar

coordinate system. This is illustrated in Fig. 5-1.

Polar Axis

A

, Down Range
UP Manye

Fi9. 5--I
Position of Launch Site an4

Intercept Point Relative to
WarheaQ/ Apoyee

An intercept point is defined by fwX and is understood

to be on the warhead trajectory. The position of the interceptor

launch site LS I is deterniined in the same manner, but its position
m

- on the earth's surface. Note that P is positive clack-wise

and the warhead apogee is at 0 = 0. With these definitions

established we can proceed with the selection of intercept points and laun-ch

sites.

The intercept points to be investigated are arbitrarily chosen
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so that a representativo sample of points on the warhead trajectory

is checked. These points are approximately equally spaced along

each trajectory between warhead apogee and atmospheric re-entry point.

The interceptor launch sites are determined indirectly by

using the theoretical intercept trajectory semi-range angles as

inputs to the computer program. Then the approximate position

of the interceptor launch site relative to the warhead apogee is

Owl- .mo" The exact position, which is 9wT - OLZA

is slightly further up-range than the approximate position (Fig. 3-6),

but this is not critical since we are mecely trying to select a

representative group of launch site positions. The up-range

positions of interceptor launch sites are limited by practical

considerations; e.g. no launch sites in enemy territory. The

down-range position of the interceptor launch sLte is also limited.

As the angular position of the launch site approaches the intercept

point, the interceptor trajectory becomes almost vertical and the

trajectory-match technique is not practical.

Uith these limitations in mind, the interceptor launch sites

are arbitrarily chosen to determine enough points to plot curves

which show the effect of launch site position on the boost requirements.

Selection of Rocket Parameters

The five remaining variables to be investigated are:

(1) k, the number of stages for the boost rocket

(2) is l the specific impulse of the fuel

(3) n, the structural factor
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(4) P3, the thrust to weight ratio for the boost-phase

(5) PUY the thrust to weight ratio for the velocity-match

rocket.

In order to continue the investigation some particular values of

these variables must be selected.

Number of Boost-Phase Stages. For this investigation three

boost stages were selected as a compromise between the decreased

reliability of a large number of stages and the large thrust and

weight requirements for a small number of stages. This reduces the

number of variable boost parameters to four.

Specific Impulse and Structural Factor. Specific impulse is

determined by the choice of propellant. Values of I vary from5

160 seconds for some old-type solid propellants, to 364 seconds

for liquid hydrogen-liquid oxygen (Ref 10: 112, 113, 312, 313).

Instead of selecting a particular fuel, a reasonable value of I ,

250 seconds, is selected for the basic analysis. Later in the

investigation the effect of different values of I for a fews

typical intercept situations is determined.

A similar approach is used to determine the value of the

structural factor since it depends upon the density of the fuel

and the detailed structural design of a rocket. A value of n equal

to ten is selected for the basic analysis.

Thrust to Initial Weight Ratios. The choice of numerical

values for P and P u appears to be completely arbitrary. Then to

determine Lhe values to be used in the analysis, it is necessary to

fix the value for one at an arbitrary value, and determine the effect
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of the other on overall weight and thrust requirements. Once thes,'

effects are known, the most promising values are used in the basic

analysis.

Summary

This chapter outlines the general approach used to obtain the

desired data from the digital computer solution of the intercept

analysis. These results are presented in Chapter VI.
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VI. Results and Conclusions

A numerical integration was performed using computer program

CM-12 (Appendix A), for one particular intercept trajectory. In

this integration, the effects of drag and the vertical, constant

angle of attack, zero lift, and constant attitude flight segments

of a rocket launching are considered. This was accomplished to

verify the validity of the assumptions made in the boost-phase

analysis. For the case considered, the actual burnout velocity

came within three percent of that required. The results of this

integration are summarized in Appendix B.

Since tne results are only good approximations to the actuai

--alues because of the many simplifying assumptions made, the cosput.:

rata is rresented in graphical rather than tabular form. This also

gives a better overall picture of this intercept technique, and

allows important trends to be interpreted more easily. Angular

inputs and print-outs of the computer are in radians and therefore

all angles are plotted on the graphs in radians.

In order to avoid complicating some of the graphs, a code

is used to identify the intercept conditions. For example, 6H:45:30

i.3 inte-preted as follows:

6H 6000 nautical mile, high angle warhead trajectory

45 intercept point on warhead trajectory is 0.45 radians

down range from the apogee

30 semi-range angle of the theoretical intercept trajectory

75



GAW Mech 61-2

is 0.30 radians

The theoretical semi-range angle is selected for this code rather

than the corrected value, because this is the angle used as the

computer input to obtain the numerical results which are plotted.

Results

Effect of fu on Th-. Figures 6-1, 2, 3 were obtained for

two intercept conditions: 6H:45:30 and 6H:45:60. Thrust to

interceptor vehicle weight ratio, P I was varied while the other
U

rocket parameters were held constant. These values are

I 250 secondss

n = 10

3 = 1.5

k = 3

For the case, 6H:45:60, Pu has a negligible effect on ThI (FiE. 6-1).

thus little advantage is gained by using a more powerful engine for

the velocity-match rocket. The top curve shows that a reduction

in thrust, Thl, of approximately 3.5% can be obtained by increasing

Pu from one to three; however, since the curve appears to be

leveling off, little will be gained by using a more powerful engine.

A comparison of the curves in Fig. 6-1 shows that Pu has more effect

for the intercept trajectory with the smaller theoretical semi-rangr

angle (.3 vs .6). This is due to the larger difference, Av , between

warhead and interceptor velocities. A larger P u decreases the

distance s' (See Eq 4-45 and Fig. 3-6). This also decreases ria ar-

therefore we can say that
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lim (corrected int. trajectory)= (theoretical int. trajectory)

In other words we can say that as rIa approaches rI, the total energy,

E, of the intercept trajectory approaches a constant value (E of the

theoretical intercept trajectory), thus explaining why the curves

in Fig. 6-1 level off.

Effect of P and ju on v. The computer data indicated that for

the values of P used, the maximum acceleration during the boost-phase

ranged from approximately 3.0 to 4.5 "g's", and thus this acceleration

is not considered to be a problem. Therefore no graphs are plotted

for this data.

Figure 6-2 shows that the maximum acceleration of the velocity-

match rocket is a linear function of Pu. This is also apparent

Z.,.'.m S (4-38),

V= =,6,D

where D is a constant for a particular intercept point. Since DuI U

is a function of Av, and Av increases with decreasing semi-range

ariJes, the max imum acceleration can be a limiting factor on a

choice of u for intercept trajectories with small semi-range angles,

especially for a manned interceptor vehicle. For the two cases

eaown in Fig. 6-21 it can be seen that for a given u the

accelteration is more than doubled, when the semi-range angle is

halved.
T*

Effect of pu on T*. The same reasoning that was used to
U*

-nalyze the effect of Pu on Th is used for the effect of ju on T

(Fi.. 6-3). Here again, the effect of Pu is more pronounced for

78



GAW Mach 61-2

T. 2 . 3
TTrus to Itta e~tRtoo

VeloityMatH Rock'30
11i 14+11 642

The E T -4oL

791



GAWl Mech 61-2

:4L4

94021-

9300



GAW Mech 61-2

the smaller semi-range angle, and both curves will eventually

approach a maximum value of excess time. An increase in Pu from

one to three results in an increase in T * of only about 3% and 2.5%
x

for the upper and lower curves respectively. Although this small

percent change might be important in some cases, we can safely say

that in general (u is not an important factor as far as time is

concerned.

Effect of P on Th Figures 6-4 and 6-5 are plotted from

computer data obtained by varying (3 and holding the other variables

fixed as follows:

I 250 seconds
S

n = 10

-- 3.0

k - 3

Figure 6-4 shows that for each set of intercept conditions there is

an optimum value of P which results in a minimum value of Th V

These minima are 1.8 and 1.6 for the upper and lower curves

respectively. However, since the curves are quite flat in these

regions, a value of 1.5 was arbitrarily chosen as a representative

value of the optimum P. The existence of these optimum values can be

explained by considering Eq (4-44), which shows that the burning

times of the boost-phase stages are inversely proportional to (,

and the equation

7h, =. P8 (4-8,
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As P is first increased, the burning time shortens, and the

velocity loss due to gravity ( ib ) decreases, thus less fuel

is required to reach a given velocity and P decreases. However,
0

a point is reached where P increases faster than Y decreases. At
0

this point the thrust required, Thl, is a minimum.
.

Effect of 3 on T . Figures 6-5 shows that an increase in PI

results in a larger excess time, and that this time approaches some

limit asymptotically. The same explanation that was used in

discussing the effect of Pu applies here also. We can say that

lim (interceptor flight time) = (free flight trajectory time)

which means that for an infinite acceleration we can attain the

theoretical launch velocity at the earth's surface and "coast"

along the trajectory from the ground up. An increase in P from 1.2

to 1.5 results in increases in T of approximately 10% and 28% forX

the upper and lower curves respectively. This means that a

considerable advantage is gained by using a high value of P, for the

intercept trajectories with larger semi-range angles, moI where

T might be critical.
I

Effect of n on Th . The data used to plot the graphs of Th vs

n (Fig. 6-6) was obtained by holding the other variables fixed as

follows:

i = 250 secondsS

U = 3.0

= 1.5
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k = 3

The curves show that advanced structural design techniques (higher n),

result in a great reduction in Thl, but that a point of diminishing

returns will be reached, and the curves approach a lirciting value.

This limiting value is unattainable since as n approaches infinity,

the stage weight is equal to the weight of fuel. This assumes that

no structure is required to carry this fuel. The structural factor

has no effect whatsoever on excess time.

Effect of I on Th . The curves in Figs. 6-7 and 6-8 were
a 1*

obtained from computer data with the other variables fixed as follows:

Pu -- 3.0

= 1.5

n - 10

K = 3

Figure 6-7 clearly shows why great emphasis is placed upon discovering

new and exotic rocket fuels. For example, an increase in I from 200s

to 225 seconds results in decreased thrust requirements of approximately

50%, and an increase in I from 225 to 250 seconds results in a further

decrease of approximately 4C,.

Effect of I on T . Figure 6-8 shows that T is practically

a linear function of I . This can also be seen from the equation

tb - J (4-44)

or I /n-J

8(D-/
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Thus as I increases, burning time increases which results in as

greater velocity loss due to gravity, and therefore causes a
,

decrease in T . For the intercept condition 6H:45:60, an increase

in I from 200 to 225 seconds decreases T by approximately 2.5%,
8 x

but this small change is insignificant when compared to the 50%

saving in ThI.

Combined Effect of Changes in I and n. For comparison5

purposes, the effect of combinations of optimistic and pessimistic values

of I and n upon Th for the 6H:45:60 intercept are determined.

These results are shown in Table II.

Table II

Combined Effects of

Specific impulse and Structural Factor

on Overall Thrust Requirements*

Specific i'rctural

Impulse (sec.) Factor Thl

8 796
200

20 251

8 45

20 30

* Note: For 6H:45:60 intercept, 3 = 1.5, Pu 3.0
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Effect of 'LS and 96 on Th and T Figures 6-9, 10,
m

and 11 show the effect of launch site position, P LS ' on ThI for
m

various intercept points on the 6000 nautical mile warhead trajectories.

Figures 6-12, 13 and 14 are the curves of T vs which correspondx LSM

to the Th1 curves. On the ThI graphs, the dotted lines ( .)

indicate the approximate position of lines of const.n+. -p (T nnh'nee)

The points marked with a star ( * ) are those points where the

maximum acceleration of the velocity-match rocket reached 10 "gIs t".

For all points above the star on each curve, v is greater than 10U

Many of the Th curves appear to approach horizontal and vertical

assymptotes. As the launch site is moved up-range from the warhead

apogee, 0 moa approaches 4,wo and the interceptor and warhead

trajectories will eventually coincide and determine the horizontal

limit for Th1 . The vertical limit occurs when 0mo is equal to zero.

However, this is simply a vertical trajectory. The interceptor

velocity, Vml , at the intercept point therefore approaches zero as

me approaches zero, which results in a high Av, and consequently a

much lazgor v-Clccity-match rocket is required. Thus a much heavier

boost-phase rocket with higher thrust is required for these cases.

Illustrations of the Use of the Graphs. To illustrate the use

of the curves, let us suppose that we have a 10,000 pound ( m )

manned interceptor vehicle, and desire to intercept a 6000 n.m.

minimum-energy warhead trajectory at a point 0.45 radians ( 4w) )

down-range from the apogee. We also select a launch site that is 0.23

radians ( LS ) up-range. By entering Fig. 6-10 at -0.23 on the
m
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abscissa, proceeding vertically upward to the curve labeled 0.45,

and then horizontally to the ordinate, we find that Th 1 105. We

also see that the maximum acceleration is less than 10 g's and that

the excess time is between 300 and 600 seconds. By using the same

procedure, and Fig. 6-13, we find that T = 410 seconds. The firstI

stage boost thrust required is

TI1 = Th1 m = (105)(10,000) = 1,050,OO0 lb

The overall weight of the interceptor system is

M TI 1,050,000 = 700,000 lb
0 P 1.5

As a second illustration let us suppose that our restrictions

are T - 600 seconds and v = 10 gts, and we want to intercept

a 6000 n.m. high-angle warhead trajectory. Then by referring to Fig.

6-11 we see that we are restricted to operate in the area between the

600 second dotted line and a curve joining the stars. This area

defines the possible combinations of intercept point and launch site,

and the corresponding values of Th that meet the restrictions.

Furthermore, suppose we have a 5000 pound interceptor vehicle, and a

first-stage booster rocket with 1,000,OOO pounds of thrust, giving us

a ThI of 200. We are then further restricted to launch sites and

intercept points below this horizontal line on Fig. 6-11. Figure

6-11a shows how these restrictions can limit the choice of intercept

points and launch sites.
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By comparing Figs. 6-9, 10, and Ii it is seen that as we

progress from the low angle to the minimum energy to the high angle

warhead trajectories, time and g-limitations become less restrictive

but higher values of Th are required. The curves of T* (Figs. 6-12,
1 X

13, and 14) are also useful for determining the possible launch sites

and intercept points for a given time restriction. If, for example,

we detected an enemy missile on a 6000 n.m. minimum energy trajectory

immediately after it was launched, and we required a minimum of 700

seconds to launch our interceptor system, then we are restricted to

use values of q6wx and 9 LS on the portions of the curves above
In

a horizontal line at 700 seconds (Fig. 6-13).

Figures 6-15 through 6-20 show basically the same information

for the 4000 mile warhead trajectories that was shown in Fijs. 6-9

through 6-14 for the 6000 mile trajectories. The dotted-line
*

isochrones are for T equal to 300 and 450 seconds. The absence ofI

stars on soMe of the curves indicates that 10 "g' s"o was never exceeded

for these cases. These curves show three important differences for

the shorter range warhead trajectory : maximum acceleration is not

as restrictive; lower thrusts are required; and time is much more

critical. Figures 6-18, 19 and 20 show that for some intercept
.

points near the warhead apogee, T becomes negative. This means thatI

the interceptor flight time is greater than the warhead flight time,

-and that the interceptor must be launched before the warhead for these

cases. Since this is quite impractical we can say in general that

for shorter range enemy missiles, the intercept points must be located

further down range, than for longer range trajectories. It is also
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reasonable to assume that the interception of an 8000 mile missile

would: impose more severe g-limitations; require higher values

of first-stage thrust; and increase the excess time.

Summary of Results

1. The thrust to initial weight ratio of the velocity-match

rocket, 1u has a negligible effect on overall thrust requirements.

2. Pu has an appreciable effect on maximum accelerations for

trajectories with small semi-range angles.

3. Ou has a negligible effect on excess time.

4. There is an optimum value of thrust to initial weight ratio of

the boost sub-rockets, 1, for each intercept condition which

minimizes overall thrust requirements.

5. For values of P" close to the optimum value, maximum

accelerations are well below human tolerance limits.

6. A small increase in 0 causes an appreciable increase in excess

time, especially for small semi-range angle trajectories.

7. Small increases in both structural factor and specific impulse

greatly decrease overall thrust requirements.

8. Specific impulse has a much larger effect on thrust

requirements than structural factor does.

9. An increase in specific impulse causes a negligibly small

decrease in excess time.

10. Structural factor has no effect on excess time.

11. Excess time decreases as the launch site and intercept

point are moved up-range.
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12. Thrust and weight requirements increase as the launch site

is moved clown-range and intercept point is moved up range.

13.. Thrst and weight requirements increase as the warhead

trajectory altitude increases.

14. Excess time increases as warhead trajectory altitude increases.

15. Higher thrusts and weights are required to intercept longer

range trajectories.

16. Excess time decreases as warhead range decreases.

17. Maximum acceleration increases as warhead range increases.

18. Time, thrust, and "g" limitations determine the possible

intercept points and launch sites for a given warhead trajectory.

19. The validity of the assumptions made in obtaining the numerical

results was verified for a typical intercept trajectory. This

makes the graphs a useful tool for obtaining approximate thrust

and *Bighit requirements for any size of interceptor vehicle,

for the intercept conditions considerBd.

Conclusions

The trajectory-match intercept technique appears to be

theoretically feasible:

1. If first stage rocket engines of sufficient thrust to boost the

interceptor vehicle onto the interceot trajectory are made

available. Minimizing the weight of the interceptor vehicle is

a major factor in satisfying this requirement.

2. If sufficient warning time is available from ballistic missile

radar or satellite recomaissance vehicles.
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3. If low reaction times are possible for the interceptor system.

One major requirement to meet this restriction is the use of

solid or storable-liquid propellants.

4. If guidance systems are developed which can meet the requirements

of this intercept technique.

Therefore it is recommended that further study of this technique

be made for other warhead trajectories and for different combinations

of the boost and velocity-match stages. This study could also be

extended to the more realistic situation of a non-planar intercept

over a rotating earth.

In addition, if the interceptor is to be manned, a st. should

be made of the methods which could be used for recovery of the vehicle.

Two possibilities are a controlled skip-glide re-entry or a parachute

recovery.

Even if all of the above requirements are met for this system,

the final decision as to whether or not this intercept technique is

the answer to the ICBM defense problem must be based upon an

operational analysis, in terms of cost, technical and military

manpower requirements, logistics, and many other factors. Thus,

the trajectory-match, ICBM intercept technique appears to be

theoretically feasible, but a more comprehensive study is necessary to

determine if it is militarily practical.
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Appendix A

Computer Programs

The computer programs used in this analysis are written in IBM

1620 Fortran Language (Ref 5) for use on the IBM 1620 digital

computer. The instructions for the use of these programs are given

in this appendix. The actual Fortran Language Program follows each

set of instructions. The paper tapes for these computer programs

are on file with the Mechanics Department of the Institute of

Technology, Wright-Patterson Air Force Base, Ohio.

The values of r and p used in these programs are (Ref 7:430):

r (average) = 3437.747 nautical miles

p - 62,628. (nautical miles)
3  (second)2

Program: CM-3 General Trajectory Evaluation

This program gives the values for r, v, and y for any desired

position, 0 , on the ballistic trajectory. It also gives the time of

flight between apogee and 0 .

Operating Instructions.

1. When the computer prints the number (1), the inputs are 0

and -y of the trajectory.

2. Vhen the computer prints the number (2), the inputs are the

general angle , which defines the point to be investigated,

and A 4, which allows the computer to automatically increase

9b by A after each computation. This gives the option of

determining the values for regular intervals on the trajectory.

However, if only one point is desired, make A 0 greater than
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90 ,since some value 'of A 0 must be inserted into the computer

memory. When 0 becomes greater than (k the computer sets (

equal to 0 , calculates the values, and then returns to the start of

the .program (ready to accept new values of 0 0 and y .

3. The results are typed in the following order: 0, T*, r, y, and v.

4. To change either j or A#P at any time, turn "Sense Switch V' on.

The computer will then print the number (1), and new values can be

inserted in the memory.

U-62628.
RO-3437.747
5 M-1

PRINTM
ACCEPT PO,GA
IF(PO) 1,2,1

1 E-1 .O/(COS(PO)+(SIN(PO))*(COS(GA))/(SIN(GA)))
HS-U*RO*(I .O-E*(COS(PO)))
H-SQR(HS)
\W-1 .O- (E**2. )

G-(H**3.)/((U**2.)*W)
P-(H**2.)/U

Z-(SQR(W))/(0 .O-E)
Q-2.01 (SQR(W))6 M-2..

... .... .... k ) -IN t 0", ... . .. .

ACCEPT,X,DELTX

8 S,(-E)*(SIN(X))/(I.O-E*(COS(X)))
Y-Z*(SIN(X/2.))/(COS(X/2.))
T-G*(-S+Q*(ATN(Y)))
R,,P/(I .O-E*(COS(X) ))

A-ATN(S)
V-H/ (R*(COS(A)) )
PRINT,X,T,RAV
IF(SENSE SWITCH 1) 6,7
7 IF(X-PO) 4,5,4
4 X.X+DELTX
IF(X-PO) 8,5,3
3 XwPO
GO TO 8
END
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Program: CM-li Combined Boost-Phase and Intercept Analysis

This program contains the intercept and trajectory geometry,

rocket equations of motion, and boost-phase approximation equations.

These equations are combined as outlined in Chapter IV to give the

complete solution to the intercept problem.

Operating Instructions.

1. When the computer prints the number (1), the inputs are n,

i s and Pu"

2. When the computer prints the number (2), the inputs are P and k.

3- When the computer prints the number (3), the inputs are < wo

and y wo

4. When the computer prints the number (4), the input is w"

5- When the computer prints the number (5), the input is mo

6. Now the computer solves the problem. The results (for k = 3)

will be typed in the order listed below:

moa Ymoa b ' mIa #LXA

tb kb V bu

u

Th ThI  Th2  Th3

7. The computer will pause after each line, and the start button

must be pushed to continue the computation.

8. When the computation is complete, the operator has several

options as to which part of the program the computer will go

to for the next set of intercept conditions to be investigated.
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These options are controlled by the sense switches as follows:

Change S~IV SW 2 SW 3

4) mo Off

4W1. On Off -

Por k On On Off

wo or Ywo On On On

Pror am: CM-12 Runge-Kutta Integration

This program is designed to numerically integrate the boost-phase

rocket eauations of motion for a three stage rocket as a check on the

results of the boost-phase approximations.

Operating Instructions.

1. ' ihen the computer prints the number (1), the inputs are I, P,

and tb .

2. When the computer prints the number (2), the inputs are Thl, Al,

Th 2 , A2 , Th3 , and A3 '

3. When computer prints the number (3), input t (duration ofV

vertical flight segment), a (angle between thrust vector and

velocity vector during tip-over phase), and r (flight path angle

where tip-over is complete and a is set equal to zero).

4. Yfhen computer prints number (6), input initial conditions for:

t (usually zero); (usually zero); i (usually zero);

LS (usually- moa) r (usually ro); and y (usually -I/2).

9. Turn Sense Sw;itch 1 on.

.. Then computer prints number (4), input At, the incremental time

interval of the integration.
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7. When computer prints number (5), turn Sense Switch I Off.

Then input At (again), and h, (the factor which determines

the print-out interval). The results are printed out for

time intervals equal to h A t, and are in the following order:

t9 95 , r, y, and v.
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D=3.
TO-i .OE-12
TRm 1 .0
U-62628.
RE- 3437 .747-
Pt E-3. 141 5927

Mini
PRINT,M
ACCEPT,F,Z,BU
21 H-.2
PRINT,M
AC CEP T pB3

20 M4.3
PRI N-TM
ACCEPT 11POW GOV!
SPOW S I N (P 6W)
CPOWnCoS( POW)
S GOW- SI N (GOW)
CGOW-COS(CGOW)
AA-SPOW*CGOW/ SGOW
EW-1 .0/ (CPOW+AA)
HWS=UJ*RE*( 1 .0-E W*C POW)
HW=SQR(HWS)
AB-HWS/U
19 M-4.
PRINT,M
ACCEPT PWI
4 SXA-SiN(PWI)
CXA=COS(PWI)
AC-i .0-r'W*CXA
AG- EW*S XA/ AC
RI=AB/AC
GI-ATN(AG)

CGImCOS(GI)
VWI=HW/(RI*CGI)
16 M-.5

ACCEPT,. PO

CAZ-CPO/ ZA
SAZ-SQR(1 .0-CAZ*CAZ)
AZ--ATN(SAZ/CAZ)
ZB=!ATN(ZZ)
P I-AZ-ZB

SPIMSIN(PI)
CPI-CoS(PI)
E-AG/(AG*CPI+SPI)
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HS=U*RE*( 1 .OE*CPO)
H-SQR(HS)
VI H/(Rt*CGI)
DVI=VWI-VI
GC=U/ (RE*RE)

EV= Z*GC
DLU=DVI/EV

DU=EXP (DLU)
VIOU-(F-1 .)*DU/(F-DU)
VU=WOU-1.
TBU-EV*(DU-1 )/ (GC*BU*DU)
QQ-EV*EV*(DU-1 .-DLU)/ (GC*BU*DU)
AJ-(PI E/2.)-GI
SAJ-SI N(AJ)
CAJ-COS(AJ)
TAK-SAJ/( (QQ/R1 )-CAJ)
AK=-ATN (TAK)
DPI-P IE-AK-AJ
SAK-S IN(AK)
RIA=RI*SAJ/SAK
GIA=AK-(P IE/2.)
CGIA-COS(G IA)
HA=VI*RIA*CGIA
HAS-HA*HA

REC-HAS/Ij
E T=(V I*V4 1/2. ) -( U/ RIA)
EAS-1 .+(2.*ET*REC/U)
EA±:SQR( EAS)
AL-U*RE
AM=U*RIA
CPOA- (AL-HAS) / (AL*EA)
CP IA=(AM-HAS)/ (AM*EA)
SPOAmSQR( 1.-CPOA*CPOA)
SPIA-SQR(1 .-CPIA*CPIA)
POA=ATN (SPOA/ CPOA)
PIA=ATN('SPI A/CP IA)
AFL=POA-P IA+DP I
TGO=EA*SPOA/ (1 .EA*CPOA)
GO-.ATN(TGO)
PB-0.9*POA
DA-O. 1*POA
SPB-SIN(PB)
CPB-COS (PB)
12 AN-I . EA*CPB
TGB-EA*SPB/AN
GB-ATN(CTGB)
CGB-COS (GB)
G BR-GB- DA
S B-S I N(GB R)
CB-COS (GBR)
RB-RE C/AN
V BmHA/C RB*CGB)

VX-VB*CB
BDD-D-1.



DL-LOG(D)
UK' EV*Q
U U-.EV *U K
QwmQ- I

DB-D*B
YY--DD*CB/(DB*DL)
YZ-SQR(1 .-YY*yy)
AP=ATN(YY/YZ)
A AAP+GBR

SA-SIN (A)
CA::COS(A)
F D:UK*DL*CA-VX
IF (FD*FD-TD) 1,1,2
2 DFA-DD*CA+YY*( DD-.UL)*SA/YZ
DFD-UK*DF A/ (D*DD)
D-D-(FDfDFD)
GO TO 8
I A0=2 .* (DD-DL)+QVW*DD*DL
AR=UjU/(2.*GC*DB)
XC-AR*CA*AQ
YC:AR*SA*AQ-AR*Q*DD*DD/DB
DA-ATN(XC/ (YC+RE))
SDA-S IN( DA)
RB A=XC /SD A
IF(RB-RBA) 3,7,9
3 RC-RBA-RB
GO TO 10
9 RCwRB-RBA

10 IF(RC-TR) 7,7,11
11 RB-RBA
CPEB=(1.-REC/RB)/EA
SPB=SOR(1 .-CPB*CPB)
PB=ATN (SB/CPB)
GO TO 12
7 TB-UK*DD/(GC*DB)
GOO-GO
PB B=:PB
PIAA=PIA

AFL I=AFL
PR! NT,POA,GOO,PBB,PIAA,AFLI
PAUSE
DBB=DB
DBU=DU*BU
ALF-A

PR! NT,TBU,TB,DBB,DBU,ALF
P AUS E
AW-- (F-1 )*DI (F-D)
W0OB::AW*AVJ
AS::1 .- (I JIAW)
AU-:B/A S
TH U=:B U *W~U

1 3 Wl B=WOB*AS
fjzB= (\IOB-~WB)*AS



9 "'~ , 6) -2

WO=WOB*WOJ
Wl W1 B*V1IOU
W2=W2 B*WOU
PRINT,WU,WO,W1 ,W2
PAUSE
THI=WO*B
TH2=AU*WZ
PRPNT, THU ,TH 1, 1H2
GO TO 15
14 WOB=WOB*AWl
WI B-WOB*AS
W2B-(WOB-Wl B)*AS
W3B- (WOB-wi B.W2B)*AS
WOrnwoU*WOB
WlumWOU*Wl B
W2mWOU*W2B
W3aWOU*W3 B

PRINT,wu,WO,Wl ,W2,W3
PAUSE
THIrnWO*B
TH2-AU*W2
TH3'.AU*W3
PRINTTHU,THI ,TH2,TH3
15 PAUSE
IF(SEN4SE SWITCH 1) 17,16
17 IF(SENSE SWITCH 2) 18,19
18 IF(SENSE SWITCH 3) 20,21
END



PI=3.1415927
EL=LOG( 10.)
U=62628.
FMm6080.201 1
RE-3437 .747
DIMENSION A(4),E(4),C(4),TH(3),Q(5),X(5),Y(5),S(3)
AL-O.

GC=UI (RE*RE)

PRINT,M
ACCEPT, Z,B,-TB
EV-Z*GC
ZB- ZIB
M=2

PRI NT,M
DO 3 K-1,3
3 ACCEPT,TH(K),S(K)
17 M3
PRI NT,M
ACCEPT *TV1 AAA
D D=0.
A Z-SQ R(0.5)
A(1 -0.5
A(2)=1 .-AZ
A(3)=1 .+AZ
A(L,)= .16.

E(3)-l.
E(4)-2.

C(1 )0.5
C(2)-A(2)
C(3)-A(3)
C(4)-0.5

DO 2 111 5
2 Q(Iu.

M-=6
PRI NT,,M

DO 80 1-1 ,5
80 ACCEPT,Y(I)
ACCEPT ,GM
L=1 1

K= 1
N=1
M-4
PRI NTJM
ACCEPT ,H
J= I
37 V=SQR(Y(3)*Y(3)+Y(5)*Y(5)*Y(2)*Y(2))
GO TO (52,53,54),N
53 D=0.
TF=GM-Y(4)
N= 3



C A%' (-I -,

GO To 4
54 TA=TF+Y(4)

GO TO 70
52 VV-V*FM
HT-Y(5)-RE
HA=HT-86 .67
HB-HT-6 .0855
HC-HT-13 .487
HD-HT-25 .658
HE=HT-28 .783
HF-HIT -43 .586
IF(H-I) 18,18,19
18 RH-1./(EXP(EL*(2.624+.10818048*HT)))
GO TO 20
19 RH-1.f(EXP(EL*(12.+.01142854*HA)))

20 IF(HB) 21022 22
21 AM=.18362-.*0640095*HT
GO TO 40
22 IF(HC) 23,23,24

23 AIM.i5922
GO TO 40
24 IF(HD) 25,26p26

25- AM-.15922+60018602*HC
GO TO 40
26 tF(HE) 27,27,28
27 AM=.18186
GO TO 40
28 IF(HF) 29,3000

29 AM-.18186-.0O28798*HE
GO To 40
30 AM-.13923
40 AN'.V/AM

IF(AN-.6) 31,31o32

Go TO 41
32 IF(AN-1.6) 33934,34
33 CD-AN-.35
GO To 41
34 IF(AN-2.9) 35,36P36
35 CD-1.73-.3*AN
GO TO 41
36 CD=.86

41 D- .5*CD*RH*VV*V V*S (K)
4 TA-AL+GM
70 ST=SIN(TA)

CT-COS( TA)
SGmSIN( GM)
C GmCOS(CGM)
X(1 )u1.
GO TO (73 74975)tK
73 TS-Y(15
GO TO 76
74 TS-Y(1)-TB
GO TO 76



75 TSmY(1 )-2.*TB
76 X(2)uEV*(CT-D*CG/(TH(K) ))/(Y(5)*(ZB.TS) )-2.*Y(3)*Y(2)/(Y(5))
X(3)sEV*(ST-D*SG/(TH(K)))/(ZB-TS)+Y(5)*Y(2)*Y(2)-U/(Y(5)*Y(5))
X(4)-Y(2)
X(5)mY(3)
DO 1 1-1 5

Y( I)-Y( I)+H*WZ
I Q(I)mQ(I)+3.*WZ-C(J)*X(f)
IF(Y(2)) 71,72,71
71 TG-Y(3)/(Y(5)*Y(2))
GM=ATN( TG)
72 J-J+l
IF(J-4) 3793795

5 J-1
IF(Y(l)-TV) 6,7,7
7 IF(GM-AP) 8,8,9
9 AL=AA
GO TO 10
8 AL-O.
10 IF(Y )TB) 6 11,11
11 IF(Y(1)-2.*TB) 97.98,98
97 K-2
IF(L-22) 95,6,6

95 L-22
GO TO 99
98 IF(Y(l)-3.*TB) 96,93.93
96 K-3
IF(L-33) 94,6,6

94 L';33
GO TO 99

93 K-4
LL4
99 PRINT,L
6 IF(SENSE SWITCH 1) 12,03
12 M-5
PRINT, M
ACCEPTHGoHH
H-HG

13 IF(Y(1)-HP) 14 15 15
15 P)RINT,Y(1),Y(41 0Yt5),GM,V
HPmY (I )+H*HH
14 IF(K-3) 50950,16
50 IF(N-1) 49 49,37
49 IF(O-DD) 36,39*39
39 DD -D
Gf C M 37
3F~ F(D/(TH(K))-.OOO1) 51,37,37
51 i-2
GO TO 37
16 IF(SENSE SWITCH 3) 3,17
END
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Appendix B

Check on the Validity of the Boost-Approximations

A numerical integration of the equations of motion of a rocket

was performed for one intercept trajectory to determine the validity

of the many approximations made in Chapter IV.

The intercept point was chosen to be 0.45 radians down-range

from apogee on the 6000 n.m. minimum-energy trajectory. For this

point the following information was obtained by using computer

program CM-3 (Appendix A):

> = 0. 45 radian
WT_

r = 3917.301 n.m.

Y= -0.23128 radian

vW - 3.3681 n.m. per sec

The design program, CM-lI, was used to obtain the following

inf ormat ion:

Computer inputs.

I M 250 sec

n M 10

- 3.0

- 1.5

k - 3

0 mo 0.500 radian

Computer print-outs.

moa 0.50139 rad
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Ymoa 0.50623 tad

b = -.41069 rad

= o 0.18201 radmla

9LIA = 0.68583 rad

t bu 32.498 sec

Rt = 319.87 sec

V = 4.1637 "g"

V U 4.9178 "g"
U

x 0.73021 rad

P = 0.76462u

W o  = 72.974

(PI = 51.872

( 2 15.000

S3 = 4.3376

Th u 5.2939
U

Th 1  , 109.46

Th 2  = 31.654

Th 3 9.1534

By inputting the corrected semi-range angle (moa) and launch

angle (Ymoa ) for the intercept trajectory, a print out was obtained

for points along this trajectory, by using program CM-3.

An interceptor vehicle weight of 10,000 pounds (m p) was chosen,

and by using the above data the boost-stage thrusts, stage weights,

and overall system weight were determined to be:

T= 1,094,600. lb

T-2  316,540. lb
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T 3 91,534. )b

M = 729,740. lb0

mI  518,720. lb

m 2  150,00. lb

m 3  = 43,376. lb

The burning times of the three boost stages are equal, and are

kt b = 106.62 sec

3

The total impulse can be calculated by multiplyirg the tht

of each stage by the burning time of each stage.

Stage 1. 5.84 x 104 ton seconds

Stage 2. 1.68 x 104 ton seconds

4
Stage 3. 0.49 x 104 ton seconds

Total 8.01 x 104 ton seconds

The equations of motion used are (Ref 2:17)

~I

r i--r'O=-R--(Tcos G Lsin 2r Dr Cos )

where r W radius from center of earth

0 angle from launch site to radius vector

I1 a instantaneous mass of interceptor system

T thrust
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L - lift (neglected for this investigation)

D r dragr

= earth's gravitational constant

0 angle between thrust vector and local horizontal

Y angle between velocity vector and local horizontal

These equations are broken down into four, first-order, simultaneous

differential equations for the computer program (Ref 9: 110-120).

Some estimate of the drag is needed for these equations, since

the shape and size of the interceptor system is unknown. A curve

of Cd vs M (mach number), (Ref 2:43), for a cylindrical rocket with a

400 apex nose cone, was approximated by straight line segments which

resulted in the following estimate for Cd '

C = 0.25 0 < M < 0.6

Cd  0.25 + (M - 0.6) 0.6 < m < 1.6

c d 1.25 - (M - 1.6) 1.6 < M < 2.9

Cd = 0.86 2.9 < M

The drag is given by the equation

Q=-= / Cdev 2A

where D r aerodynamic drag, lbr

Cd  = coefficient of drag
a

p = atmospheric density, slug per ft
3

v velocity, ft per sec

A W cross sectional area, ft
2
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Now since the coefficient of drag is a function of mach number,

and mach number is a function of the speed of sound, we need an

estimate for the variation in speed of sound with altitude. This

was obtained by fitting straight line segments to a curve of a

versus b, where b i h height above the earth (Ref 1:24). By

doing this we find that

a 0.18362 - 0.0040095 b 0 < b < 6.0855

a = 0.15922 6.0855<b < .13.487

a 0.15922 + 0.0018602 (b - 13.487) 13.487 < b < 25.658

a 0 0.18186 25.658 < b < 28.783

a 0.I,18,o 0.002870/8 (D 28.783) 2.73 < b < 43.58

a = 0.13923 43.586 < b

where a is the speed of sound in nautical miles per second, and b is

the height above the earth in nautical miles.

In a similar manner a curve of log1o p versus b (Ref 1:21) is

approximated by

log10 p - - (2.624 + 0.1082 b), b < 86.67

loglo p = - ( 12.0 + 0.01143 b), b > 86.67

The remaining factor in the drag equation is A, the cross

sectional area of each stage. We must obtain estimates for all three

stages since burned-out stages are jettisoned. To do this, first we

assume that the propellant density is 0.06 lb per in. This is an

average of densities for some commonly used solid propellants

(Ref 10: 3129 313). With this density, and the data on stage weights,

the approximate volume of each stage is found to be:
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Stage 1. . . 5,000. ft-

Stage 2. • • 1,445. ft 3

Stage 3. & • 420. ft 3

With the volumes known we can now assume some dimensions for the stages

and estimate the cross sectional areas. These dimensions are as

follows:

Selected Approx. Approx.

Area-ft2  Diam. ft Length ft

Stage 1 75 10 67

Stage 2 50 8 29

Stage 3 40 7 11

The velocity-match rocket and interceptor vehicle are, of course,

mounted on top of the three boost stages but it is assumed that their

cross sectional areas are equal to or less than the third boost-stage

area.

The approximate equations for speed of sound, coefficient of

drag, and atmospheric density are built into computer program CM-12

(Appendix A), along with the equations of motion. With this program,

and the calculated rocket parameters, a trial and error method was

used whereby different values of the launch parameters were selected.

The values of rb, Vb, and 1b' were then compared with points on the

desired intercept trajectory printout, to determine new trial input

values. After several trials, the following results were obtained:

Launch parameter inputs

t = 24 seconds

v
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a 0 -0.08 radian (4.60)

r - 0.8 radian (45.80)

where t is the duration of the vertical flight segmentv

a is the angle between the velocity vector and the thrust

veetor

r is the angle where tip-over segment ceases, and the

zero-lift (thrust along the velocity vector) segment

begins. That is, when y reaches a value of 0.8 rad,

a is set equal to zero.

Computer printouts

CM-12 (actual) CM-3 (desired) Approx.
Error

rb 3637.12 n.m 3639.22 n.m. 0.06%

0.44583 rad 0.43464 r 2.5%

vb 3.0322 n.m. per sec 3.1342 n.m. per sec 3.3%

The approximate error in overall weight (or thrust) due to the

error in required burnout velocity can be found as follows. It can

be shown that for a k-stage rocket in field free space,

,, -A, 6

n - D,e~ 7k

where is the overall mass (or weight) ratio corresponding to01

Dj,

D1  is the sub-rocket effective mass ratio required to reach

burnout velocity v1 ,
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Y 0 and D2 correspond to burnout velocity v2 .

If we use the preceding computer results, and the above equation, with

n 10

V 4.1637 - 2.7758
T1.5

v 2  3.1342 n.m. per second (desired burnout velocity)

V1 - 3.0322 n.m. per second (actual burnout velocity)

u I g (250)(32.2) . 1.325 n.m. per second
u -6080

k - 3

it is found that

Wo - 0.8987 actual weight
-F required weight

This indicates that there is an approximate error in the overall system

weight of 11%. Since the first stage thrust is simply A times the

overall weight, this means that 11% more thrust is required to reach

the desired burnout velocity, or approximately 1,220,000 lb instead of

1,094,600 lb.

It is felt that after several more trials, a more nearly optinim

flight path could be determined, and that the velocity error could be

reduced. However, these results indicate that the assumptions used

in the mathematical development of Chapter IV do not invalidate the

numerical results of Chapter VI. In any case, for heavy interceptor

vehicles, where thrust is probably much greater than drag, the graphs

in Chapter VI can be used to determine excellent estimates of the

thrusts required for different intercept conditions.
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