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Preface

In this study, the "nuthors have attempted to lay the groundvofk need-
" &4 to determine the feasibility of & trajectory-match technique for inter-
cepting intercontinental bailistic missiles. In Chapter II, the ballistic
trajectory equations and rocket equations of motion are developed in de-
tail, since the authors feel that many readers, who may be interested in
J@BM defense, may not be completely famillar with these concepts,

We found the boost-phase analysis in Chapter IV to be the most
challenging aspect of the problem. As far as we know, we have developed
a new technique for obtaining good approximations to the thrust and
weight of boost-rockets required for boosting a given payload onto a
specified trajectory.

Figures are used liberally throughout the report so that the reade:
can more easily follow the geometry involved in same of the more compli-
cated mathematical derivations. Thero is also a list of definitions
included on page vi to explain some terms which are peculiar to this
particular study. The computer programs used are included in Appendix A,
so that other investigzators may reproduce any of the results or expand
this study, if they so desire.

We wish to thank Captain H.G. Pringle for suggesting this thesis
topic, and for his many helpful ideas throughout the investigation.

The authors are also indebted to their wives and children, for
their patience, understanding, and many sacrifices which have greatly
contributed to the completion of this work.

R.A.C.

CQA.M.

i1




GAW Mech 61-2

Tavle of Contents

Preface « « ¢« ¢« ¢ o v ¢ ¢ 4 ¢ 0 0o 0 0 60w
Definitions « + + o o « o o o o o o o o o o o
List of Symbols « + & « ¢« & ¢ v ¢ o 0 ¢ o o
List of Figures « + 2 ¢ + ¢ ¢ ¢ a & o s o« o »
List of Tabies .+ + + ¢« ¢« o o o o s o o & o o
Abstract .« ¢« ¢ ¢ 4 o v v i v e e e e s e e
1. Introduction.u e e e s e e e s e e s

General Considerations . « . « . .
Statement of the Problem . . . . .
Analysis of the Problem . « « « . &
Intercept Analysis . . . « o
Zoost Analysis « e 4 s e s e s
Bffect of Variables . . . . . .

I7. Basic TheoTy « ¢ « ¢ o o o o o o o o
Free-Flight {issile Trajectory . .
Bagic Equations .« ¢« ¢« + . .« . .
Additional Trajectory Parameters
Time of Flight . + « . « « + « .
inimum Bnergy Trajectory . . .
Znergy Ratio Concept . . . . . .
Rocxet Eguations of notion . . . .
Velocity Zquationg . . . . . . .
Distarce Zquations . « « o ¢ o &
Specific Impulse of Rocket Fuels

IIT. Deternination of Intercept Trajectory
“heoretical Intercept Geometry ..
Velocity Differsnce Betwsen Warhead
CePLOr ¢ ¢ o ¢ s 6 4 s e e e e
Correction to Theoretical Intercept
SUDMETY « « « o o s o o o o o s o o

Iv. Boost-Thase Analysis « « « ¢+ ¢ & ¢ o o
Approximations . . . . ¢ . . . . .

The k=-Stage Boost Rocket . . « . .
Optimization « « o « o & « « . &

Equations of dotion . . . . . .

il

and Inter-

Trajectory

Page
ii
vi
vii
xi
xiii

xiv

i o =




GAW Mech 61-2

Ve

VI.

Table of Contents (cont.)

Thrust to Initial Weight Ratio . . .
Technique for Satisfying Burnout Velocity
Requirement « o« « ¢ ¢ o o o »

Technigue for Satisfying Burnout Posgition

Requirement + « ¢« o o o o o ¢ ¢ o o s «
Determination of Veight and Thrust Requirements

Bxcess Time « o« o o o o o »

¢ o

Maximum Acceleration . « « o+ .

Summary « « o« . . e

* o & o o @

Procedure for Obtaining Numerical Rssults
Primary Considerations .+ . « « « « « &

Basic Analysis . . .« « . .

Warhead Trajectories to be Investigated

.

. .

LI

Selection of Intercept Points and Launch Sites
Selection of Rocket Parameters
Number of Boost-Phage Stages . . . . .
Specific Impulse and Structural Factor

Thrust to Initial Weight Ratios

Summary . .« + . o o o o

Results and Conclusions . . .
Results e o o o o s s o
Effect of Bu on Thl . »

Effect of B and 3 on v

Effect of Bu on T
Effect of B on Th

= X ok

*
Effect of 3 on Tx .« v .
tffect of n on Th1 « o s
Effect of I on Th o o
s 1l

Effect of I on T* .« e
s X

Combined Effect of Changes i
X m
Effect of ¢Lsm and ¢w: on Th

> e

8

and

1

.

n .

*
and T
x

Illustrations of the Use of the Graphs .

Swunary of Results . . . .
Conclusions . . . . . . .

iv

Page

10

107




CAW Mech 61-2

Table of Contents (cont.)

Page
Ligt of Referonces « « « o+ o o o o ¢ o o o o s ¢ o o s o o o o 109
Appendix A: Computer Programs . « « « o o ¢ o ¢ o o « o o« o o 111

Appendix B: Check on the Validity of the Boost Approximations 123




GAW Mech 61-2

Definitions

Intexrceptor Vehicle The final payload consisting of the

vehicle structure, and equipment necessary for dstection and

destruction of the enemy warhead.

Velocity-Match Rocket An assembly consisting of the interceptor

vehicle, rocket engine, fuel tanks, etc., needed to accelerate the
interceptor vehicle to its final velocity. The velocity match

rocket is the payload for the booust-phase rocket.

Interceptor System The structure consisting of the boost-phass

rocket and the velocity-match rocket.

Excess Time The difference between the flight-times of the
enemy warhead and the interceptor vehicle from their launch eites
to the intercept point.

. e
Sub-Rocket An assembly consisting of the payload and the

‘ v Tocket stages not yet jettisoned.
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List of Symbols

A cross sectional area of rocket stage

AP aiming point

a speed of sound

b height above the earth

Cd coefficient of drag

D effective mass ratio of boost-phase sub-rocket

Du effective mass ratio of velocity-match rocket

Dr drag force

E total energy rer unit mass

ER energy ratio

e eccentricity of elliptical trajectory

f functional notation

Py acceleration of gravity

2, proportionality constant (1b mass per 1b force)(ft per secz)

h angular momentum per unit mass

‘IBE specific impulse

}P intercept point

K kinetic energy per unit mase

k number of stages

LS launch site

M initial sub-rocket mass (lbm), numerically equal to sea level
weight

M mach number

vii
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m stage mass (lbm)

mp interceptor vehicle mass

mé interceptor rocket mass

n structural factor

T length of radius vector from center of the earth

T1 radius at intercept point

Tla radius at aiming point on corrected intercept trajectory
T, radius to interceptor trajectory

Ty radius to enemy warhead trajectory

S distance

s! distance travelled by one-stage rocket, starting from rest in

field-free, airless space

TJ thrust force of the jth stage

™ ¥ f£light time from apogee along ballistic trajectory

Ti excess time (See list of definitions)

Thj ratio of thrust of jth stage to weight of interceptor vehicle
% time

u rocket exhauat velocity

v potential energy per unit mass

v velocity

Ze range over earth's surface

x horizontal distance

y vertical distance

a angle between thrust vector and velocity vector

B thrust to initial weight ratio of boost-phase sub-rocket
Bu thrust to initial weight ratio of velocity match rocket

viii




GAW Mech 61-2

flight path angle (angle between velocity vector and local
horizontal)

flight-path angle at termination of tip-over maneuver
angle between aiming point and intercept point

angular difference between launch site and burnout point in
rectangular coordinates

gravitational constant of the earth

maximum acceleration in sea-level "g's"

burnout angle in rectangular coordinates

angle between thrust vector and local horizontal

position angle between radius vector and major axis
burnout range angle of corrected interceptor trajectory
angle from launch site to intercept point for theoretical
intercept trajectory

angle from launch site to intercept point for corrected

intercept trajectory

interceptor launch site position relative to warhead apogee
semi-range angle of theoretical intercept trajectory
semi-range angle of corrracted intercept trajectory
atmospheric density

stage mass ratio (boost phase)

overall mass ratio (boost phase)

overall mass ratio (velocity match rocket)

thrust angle above herizon in rectangular coordinates

ix
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Subscripts

a corrected values
£ o final value
b

burnout conditions .

I intercept point conditions

m interceptor

o initial conditions

w enemy warhead

x horizontal component

x exCess

y vertical component

u velocity match stage
Othex

. derivative with respect to time

- vector notation
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Abstraot

In this thesis, a mid-course, trajectory-match intercept of
intercontinental ballistic missiles is analyzed. The intercept
is accomplished hy using a multi-stage rocket to becost an inter-
ceptor vehicle onto a ballistic trajectory in the same direction
of flight as the warhead trajectory, so that the two trajsctories
are almost tangent at a selected intercept point. Near the
intercept point, a final rocket is ignited to acceler:c*: the
vehicle and match the warhead's position and velocity.

A simplified analysis is performed for the case of a co-planar
intercept over a spherical, non-rotating earth. Intercept
trajectories are determined from the trajectory geometry and the
rocket equations of motion. An approximate method is derived to
estimate the thrusts and rocket weights required to boost an inter-
ceptor vehicle onto these trajectories. Equations are prosrammed
for an IBM 1620 digital computer to obtain estimates of thrusts,
weights, maximum accelerations, and the difference in the times of
* £1light of the warhead and interceptor. Various combinations of
intercept points and interceptor launch sites are used ic determine
the first stage thrust required per pound of interceptor vehicle for in-
tercept of low angle, minimum energy, and high angle, 6000 and 400C
nautical mile range warhead trajectories. The effects of specific
impulse, structural factor, and thrust to initial weight ratio upon
overall thrust, time, and acceleration are alsoc determined. It is

fourd that there is an optimum value of thrust to weight ratio which

v
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results in minimum overall thrust requirements.

A numerical solution to the equations of motion is performed on
the computer for the boost phase. TFor the case considered it is
found that: the actual burnout velocity is within three percent
less than desired and thrust is within eleven percent of that
required, therevy proving the validity of the original boost phase
approximations.

The computer results are presented graphically, and indicate
that this intercept technique is theoretically possible for either
a manned or unmanred interceptor system. However, a much broader

investigation would be required to definitely determine its useful-

ness for defense agai~st ICBM's.
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AN ANALYSIS
oF A
TRAJECTORY AND VELOCITY MATCH TECHNIQUE
FOR INTERCEPTING
INTERCONTINENTAL BALLISTIC MISSILES

I. Introduction

General Considerations

The high speed and short time of flight of the intercontinental
ballistic missile have made the problem of finding an effective ICBM
defense system extremely complex. To successfully intercept an ICBM,
an intexceptor vehicle must be positioned at or near the same ;-int ir
space as the ICBM, at the same time. The interceptor must also he
able to distinguish the warhead from decoys and destroy it.

One systom which is presently in the development and *uwt stages i-
limited to intercepting enemy missiles during the re—entry phase of their
trajectories. TFor this type of intercept, the interceptor vekicle
approaches the warhead practically "head on", resulting in extremely high
relative velocities. This places very stringent guidance and accuracy
requirements upon the system. Furthermore, this system is limited to
soxni-defense of 1relatively small, strategic target areas. Since tni s
practically a "last ditch" defense, the question has arisen: Can a
successful intercept be made during the boost phase of the warhead
trajectory, while the rocket motors are still burning; or during the

mid-course, free-flight phase, prior to re-entry?
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It would be difficult {o intercept a missile during the boust phape
becauge of the very short warning time available, and the usual lack of
{riendly defense bases in the vicinity of enemy launch sites. Thuxz,
serious disadvantages also exist for thie type of intercept.

Now let us consider the pessibility of a mid-course irtercept, =ui
a method of reducing the relative velocity between the intexrcertor and
the warhead. This can be accomplished by: launching an interceptor
vehicle on a ballistic trajectory in the same direction of flight as -
the warhead; making this intercept trajectory nearly tangent to the
warhead trajectory; and accelerating the interceptor vehicle to match
the warhead's position and velocity by igniting a final booster rocket
renr the intercept point. This method offsets the discdvant .gzcs 1ihe— vt
in the re-entry and boost phase intercepts. Available warning time would
not be as great as for the re-entry intercept, but ferminal guidance re-
quirsments should not be nearly as critical due to the low rol=ntive relo-
<1ty near tioe intercept point. Thus, the mid-course, trajeciory-matck

intercept appears to be a promising solution to the problew oi iCLL I: . -nze.

Statement of the Problem

The purpose of this thesis is to analyze a mid-course, trajectory-
match intercept of an ICBM warhead. This analysis coneiste of detsraining
+-~ interc ntion geometry, the required thrust and weighi of -h- .
coptor system, and the difference between the flight times of the ICBM
warhead and the interceptor, from launch site to point of intercart,

Since for this type of intercept there is a low relative velocityx
at the intercept point, there are possible advantages to having a man

2
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in the interceptor vehicle. These inzlude man's ability to make dscisic -
“gnd evaluate data from short range, decoy diserimination equipment.
'nerefore, the analysis includes a consideration of the maximum
acceleration imposed upon this system, and an effort is made to keep

acceleration within human tolerances.

Analysis of the Problem

The analysis of an ICBM intercept over the non-spherical, rotaving
earth, by an interceptor system of unknown performance wculd be extremely
complex. However, this analysis can be greatly simplified by assuming
that ths earth is spherical and non-rotating, and that the warhead and
interceptor trajectories are co-planar. Although these assumntions are
unréalistic, the basic concepts and techniques, when establishel. fox ti..
snecial csage; could be extended to the general interce-* WAnl3 {7
~ragent investigation show promise.

Inte:*cept Analysis. The first step is the determinz, iow »f thy

geometry of the intercept for the tangent trajectory. The equations
are developed to allow variable inputs of warhead trajectory, intercerpt
point and interceptor launch site.

Next, the dynamics of the velocity-match phase are considered. It
is shown that the equations of motion of a rocket in field free space can
~e congidered to be a perturbation to the theoretical free-il-.ght
trajectory, if gravity is assumed constant during the velocity-match
rhase. The required free-flight trajectory is determined Ly correctirg
the theoretical trajectory for the effect of this perturbation.

Boost Analysis. With the required intercept trajectories

3
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astablished, the next problem is to determine the boostsr requirements
to place the interceptor vehicle on this trajectory. These requirz-
ments must be based upon the weight of the velocity-match rocket which
in turn depends upon the weight of the interceptor vehicle. Since thig
is an initial inveatigation, the weight of the intercertor vehicle ix
unknown. A vehicle weight could be assumed, but to permit greater
flexibility, non-dimensional weight ratios are used to determine rocket
woight and thrust requirements per pound of interceptor vehicle. The
boost pnase analysis is further complicated by the large number of
variable rocket parameters. The thrust, weight, specific impulse and
structural factor of each stage, as well as the number of stages must be
established to continue the analysis. Furthermore, the exach size 327
shape of the interceptor system and the velocity profile during bor~~t o=
all unknown. Therefore aerodynamic drag during the boost phase can m-t
e exactly predicted. These complications make a clossd-form soluti -~
‘to the boost-phase equations of motion unfeasable.

The following assumptions are made to obtain an approximate solution
t0 these equationsa:
(1) The structual factor and specific impulse are the same for each

stage.
(¢) Drag is negligible compared to thrust.
(3) Gravity is constant in magnitude and direction.
(4) Vertical launch and tip-ov;r maneuver can be neglected.
(5) An inertial, rectangular coordinate system can be used.

(6) Thrust for each stage is constant.

4
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(7) The thrust direction is the same (comstant direotion relative

to inertial space) for each stage.

& further simplification is made by making the thrust to initial weight
ratio the same for each sub-rocket.

With the use of the above assumptions and simplifications, a eui
of equations are obtained which give the thrust and weight ratioa
required to achieve a desired velocity and direction in space. Thess
equations are then combined with the interceptor trajectory equations
in a program designed for use on the IBM 1620 digital computer. By
means of this program the thrusts and weights of the booster rockets,
the flight times from interceptor launch site to intercept point, and
maximum accelerations are obtained.

A numerical integration is then performed on the 1620 computer
.~ check the validity of the boost-phase approximations. TFor in.
vypical intercept situation, it is found that the burnout veiociiy oy
+.28 booster rockets differed from that desired by apprcximately tkree
per cent.

Effect of Variables. The large number of variables require that

this investigation be limited to a few of the many possible enemy
warhead trajectories.

Two typical ICBM ranges (6000 and 4000 nautical miles) are selectad
Hewaver, this must be further limited since for any particu’ar warhaa’
range there are an infinite number of possible trajectories, characterized
by the height of their apogees. In an attempt to adequately consider
possible intercept conditions, a high, medium (minimum energy), and low

altitude trajectory is considered for each range.
5
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The effect of structual fact;r, specific impulse, and thrust %o
weight ratio on thrust requirements, excess time, and maximum
acceleration is investigated for a few typical intercepts. Finally.
reasonable values of specific impulse and structural factor, and sy
optimum value of thrust to weight ratio are used to investigate tks

effect of varying the intercept point and interceptor launch site on

thrust and excess time.
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. II. Basic Theory

The Free-~-Flight Missile Trajectory

Basic Equations. The motion of a ballistic missile in a vacuw.

under the influence of a central force field such as the earthfs rzavi..
tational field, can be analyzed by considering the missile to be &

point mass in a polar, inertial coordinate system (Ref 13:2-20).

; :
Fig. 2-1 ’

Coordinate System for Trajectory Denvatxm

)

Let I be a unit vector in the T direction and j a unit vector per-
pendicular to T as shown in Fig, 2-1. The derivatives of the unit

vectors with respect to ¢ are

di = dj -
= d —_— - = ~ |
dé / = de
Then the derivatives with respect to time are
47 _ di d¢_ 4 df _dj d¢_ -
4 =
e S - Jr _df 4t T
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Now the position vector of the missile is

r=ri
Its velocity i -
Yy 18 . ‘.""./_r._‘:/_.‘_
r=ri e
Fr=ri+rej (2-1)

or

and its acceleration is

- d
F = ra-té +ri +r¢d" +(r¢+r¢)J

“—/r rc;S ‘ 2F¢+r¢)j

(2-2)

or

Now j‘t_/—(raqé)-—- Prr¢ +ri¢ = r(2ré+ré)

o ,- J€ (r ¢) 2ré +r¢

(2-3)

Substituting Eq (2-3) into Eq (2-2),

Fe(r-r)T +E d_CJF(ra"S)]JT (2-1)

Now, by applying Newton's Second Law of Motion, F = ma

where F=-
r F3

m is the mass of the missile

u is the earth's gravitational constant

we get

~ ﬁF'g_L-; m[(,:-rcg;z)? +(+ JdE’ﬂZ‘PJ)Jj (2-5)

Then by equating the 3 components of Eq (2-5)
;] d 2
maE(rt¢)=0

Now, since r is not infinite,
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jd-‘g ( ri¢ ) =0

or r 2¢5 = "a constant"

But r2¢; is the polar coordinate expression for the angular momentyr: T
unit mass. Therefore, the angular momentum of the missile is a constant
during the free-flight phase. Let us call the angular momentum rer :rif

mass, h. Then

h=ro¢ (2-6)
Now, equating the I components of Eq (2-5),
ﬂ =y - ré? (2-7)

In order to solve Eq (2-7), let us define a dummy variable,

/
P=F

Then, in terms of p, Eq (2-6) becomes

h=ri¢= ;i or ¢ = ph (2-8)
Also
dr dé¢ ey I d /1
r=5gf=Ph|3s (7)) (2-9)
But
d iy L dp
d¢(P)_ p? d¢ (2_10)
Combining Eqs (2-9) and (2-10),
F=(ph) ) 35 = —h
Then f‘ = %(—-h d'c‘/‘e
d sdpy d#
= *h[a—(a‘ﬁ) =y
= _75/7 d¢2

9
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or . . d2 (2-12)
r=-p /’)23—;5'

Substituting Eqs (2-8 and (2-12) into Eq (2-7), with r = % , we got
d* / 2
~up=-p*h* 5=~ 5 (p°h)

Dividing Eq (2-13) by -p2h2 gives

(2-13)

(~4/h?) = UG’% +p (2.1,
Equation (2-14) is a non-homogensous, second order, linear differential
equation which can be solved by the method of undetermined coefficients
(Ref. 14136-41).

The solution of this equation is

p= —;:—Iz + Acos(¢-4) (2-15)
where A and ¢ ' are constants which must be determined from the bounde -
conditions.

The evaluation of these constants depends upon the fazt that th-
.otal energy of the missile must be a constant for free-flight in a
central force field. Thus,
Ee«K+ V= "a constant"
where: E = total energy of the missile per unit mases
K = kinetic energy of the missile per unit mass
V = potential energy of the missile per unit mass

By defining potential energy, V, as gzero when r is infinite. wa can w2y

that =
r
(2-16)
Also, kinetic energy is defined as K= 2_/ v2
I N . ‘o -t
or K:-é-—,\/ra+p2¢2) (e-17)

10
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Thus E____é/_( +r¢) LSO

BEquation (2-18) can be rewritten in terms of p by the use of Egqs {&-17

and (2-8). .
£ = ?’[ h*(g8)+ ()] ~up
(2.5
2[5+ 0] ~up '
Differentiating Eq (2-15) gives

dp , ,
dg =~ Asin(¢-9) (2-20)
By using Eqs (2-15) and (2-20), p is eliminated from Eq (2-19, giving

an expression for E in terms of A and h.

2A2 /ua

E— 2/72

\2-194)
Rearranging Eq (2-19a) and solving for A,

A 1/25 :gﬂ/ 2Eh®
N et - h® ZE p

Substituting Eq (2-21) into Eq (2-15),

(2-22)
But
P2 /+~%§F cos($-¢)
(2-7%"

Now if we choose our coordinate system so that r is a maximum when

¢ = 0, then ¢’ = C and Eq (2-23) becomes

11
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h%u

[=N/I+ &&" cos ¢ (2-24)

This equation is similar to the equation of an ellipse in

=

polar coordinates, which is

[
r=—
/"'C cos ¢ (2_23}
whers 1l = the semi~-lattice rectum of the ellipse

e = the eccentricity of the ellipse
Therefore we can state that the equation of the trajectory of a ballis-
tic miesile in free~flight over a spherical non-rotating earth is an
ellipse with the center of the earth at one focus. The eccentricity of

the ellipse is defined by the equation

ME {2=¢b)
and the semi-lattice rectum by

hl
= (2-27)

Thus the trajectory of a ballistic missile is completely defined if
the total energy and angular momentum of the missile are known, and is
given by the equation

/|—e cos ¢ (2281

Additional Trajectory Parameters. Figure 2-2 shows the elliptical

trajeotory plus several other parameters which are useful for analyzing
ballistic trajectories. These parameters are defined as follows:
Yy ~ the angle between the flight path and the local horizontal

Y. - theoretical launch angle at the earth's surface
°

12




GAW Mech 61-2

- Pojar Axis ;

Farthls Surface

\
\

Fig. 2-2
Elliptical Ballistic Missile Trajectory
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theoretical launch velocity at the earth's surface
range over yhe earth's surface from theoretical launch
site to theoretical impact point

radius of the earth

semi-range angle of the trajectory

angle from major axis of the ellipse to the radius

vector (measured positive clockwise)

The angle of the tangent to the trajectory, y, can be determined

from the ellipse equation and Fig. 2-3.

*tangent line
«trajectory
ar \¥
//////// rdé
r
$
v
I
“ )
Fig. &-3
Diagram of Flight Path Angle
Relationships

14
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dr _ | dr
tan 7 = rdé =T de :
(2=2:3
Differentiating Eq (2-25),
dr - _—lesin b
dé  (/-ecos ¢)* (8=3uj
Then
__~esing
tan 7=7- 0 ¢ (e-3%)

From Eq (2-31), the theoretical launch angle is defined by the equation
e sin ¢,
tan —_——r Je
% /- e cos ¢, (2-32)
Notice that the negative sign is dropped because the launch angle must
always be positive. The senge of the angle is lost when the semi-range
angle, an absolute quantity, is substituted into the equation.

The relationship between h, Yo! and AR is given by the ~mmet’ 2
h=r,y, cos 7, (2-33)

An alternate equation for eccentricity, knowing ¢

derived from Eq (2-31). The result is

/
cos ¢, + sin ¢ cot 7, (2-34)

If the desired range of the trajectory over the earth's surface is

¥nown, the semi-range angle is determined by the equ..tizn

. Xe
%=z ro (2-35)

Time of Flight. One very important parameter of the trajectory
remains to be determined. This is the time of flight during the free-
flight trajectory (Ref. 13:17-19). A4n inspection of Fig. 2-3 shows that

15
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the incremental area between two radiel lines, d¢ apart, is

dA= EL (r‘d¢)(r) = 2/“ réde

{2-34"
Equation (2-36) can be written as
JA _ i, a2deé _ | =
de czlhge =z ¢
but ri¢ =h (2-6)
and so % = -éi— h (constant) (2-37)
For one complete orbit or revolution,
/
A==hT (2-38)

where A = the total area of the ellipse
T = the period of reveolution
Since the time rate of cimnge of the area of a sector of {lc allipee is

a constant,

T* AT
T A

(2-39)
where T* is the time required to travel along the arc of a sector of
area A%,

Then

Tr_ T g
l A A RO
But, by rearranging Eq (2-38), T _ _2-
A h
Thus T ®x _ 2 A *
(2-41}

Now, since A* is the area of any sector of the trajectory, let us

16
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evaluate A* for a sector from the apogee radial line (where ¢

to the general angle, ¢ , downrange from apogee.
From Eq (2-36)

dA =—51- rédé
Squaring Eq (2-25) gives
2o 72 _ h*
(I- e cos $)°  _m*(I-e cos ¢)? (2-42)
Combining Eqe (2-36) and (2-42)
dA= 2,«2(1—/7:?: e (2-43)
Then An b * 4

A (I-e cos ¢)? (2-44)

This integral may be evaluated by the use of a table of integrals
(Ref. 8:41,42). The result is

At + it (FEn )] (g

Substituting Eq (2-45) into Eq (2-41) we obtain the equation for the

time of flight from apogee to any angle, 4’ » downrange from apogee.

Tt v e (L E)] e

Since the trajectory is symmetric about the apogee redius i{or val.r

axis), EqQ (2-46) can also be used to determine the time to apogee from
any angle up-range by substituting the absolute value of the position
angle in the formula.

The time of flight between any two points on the trajectory is

17
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» * »*
T, %= T#) - T*#.) |
(2-47)
where ¢,> 4’4 and the correct signs are used for the position angi:-,

Minimum Energy Trajectory.  (Ref. 13:1924) Previously, w have

shown that the trajectory of a ballistic missile is completely defined
by the total energy, E, and the angular momentum, h. Now we will
investigate the effect of each of these parameters on the trajestory.

First, let us note from Eq (2-48) that as the total energy increases,

the theoretical launch velocity, v, inoreases,

_ 1 Va_ﬁ
But h=rv, cos 7
°"e ° (2.-33)

Thue for a constant launch angle, the angular momentum also increases

with an increase in total energy.

Rearranging Eq (2-28) gives an equation which relates the angular

momentum and eccentricity to the semi-range angle

/ ht
cos qbo - ?(/°/7r': (2-29)

Substituting Eq (2-26) into Eq (2-49) gives

e (2-50)

Inspection of Eq (2-50) chows that as E increases with h held
constant, cos 4> o decreases or ¢ o’ and therefore range, increases
(See Fig. 2-4a).

Examination of Eqs (2-33, 48, and 50) shows that for a constant
launch angle, an increase in the total energy increases both the range

18
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Es>E, >E,
hy > hy > h,
7. cans’fiﬂt

Fig. 2-4
Effects of Total Energy, Angular Momentum
and Launch Angle on the Ballistic Trajectory

19
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and the angular momentum (Fig. 2-4b).
Now let us determine the effect of angular momentum on the total

energy required for a fixed range. Equation (2-50) can be written =g

A L] e

If there 'is a minimum energy for a given range, we can determine the
value that h must have for minimum energy by differentiating Eaq (2-51)

with respect to h, equating the result to zero, and solving for h.

e h* U ? /uz
= ° = (2-52)
oh A h’r,® cos? ¢, + h3 o
Then hZ:/u r, sin ¢, o
and —
Prge = \LMT SN 4,
(2-54)
Substituting the value of h,, into Eq (2-51)
I A N
Emin - I"o (I"’ 5l..n ¢°) (2_35)

Note that E is negative. This must be true for any ballistic trajectosy
gince positive E would be sufficient energy to escape from the earth's
gravitational field.

Now, since there is a minimum energy requirement for : give. 1ange,
there must also be a maximum range for a given amount of total energy.
This maximum range is attained with the optimum value of sngu_lar momen—
tum and launch angle. If the launch angle is either greater or lese
than the optimum value, the range will be less than maximum (See Fig.

2-4c).
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Finally, for a given range there is an almost unlimit-a wumies of
trajectories possible depending on the values of E and h. For any
particular value of E which is grsater than Emin’ there are two possible
trajectories for the same rangs. These two trajectories convarges 10 tr:
pinimum energy trajectory as the total energy approaches Emin (Gee Fig-
2-4d).

Now that we have established the existence of a minimum energy
trajectory, let us derive a few minimum energy relationships. Substi-~

tution of Eqs (2-54) and (2-55) into Eq (2-26) gives the eccentricity

of the minimum energy trajectory as

cos
Crme = °° %

I+ sin ¢ (2-56)

The optimum launch angle is determined by substitution of Eq (2-56)
vto Eq (2-32).

t —_ Cos N
an ’b/OM,g I+ sin ¢o (2-9:)

Notice for the minimum energy case,

Cue = tan

om.r

Energy Ratio Concept. The energy ratio (Ref. 6: 134) is a

measure of the onergy available for the trajectory, and is defined as,

ER =2t

If ths range, or qb o’ and the energy ratio are specified, the launch

angle needed to achieve this range is determined. The equation is

_ L [_ER _# ER ¥\ ’
tan ¥, = 2 [fcm ¢° - (‘t‘an ¢°> “4(/“ER)] (2-58)
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This equation is used to specify the high and low angle *raject-r ic.

which are investigated in the latter portion of this rerort.

Rocket Equations of Motion

Velocity Equations. The motion of a rocket can best he descrinei

by considering the case of a rocket in field-free space (no sxtarnal
forces). Let us assume that we have a rocket in this environment,

traveling horizontally with velocity, v, and- mass, M, at time, t.

(Fig. 2-5).

-
S v

Rocket at time, T

Uy~ ERASLIRE D —> V+dv

Rocket at time, t+dt

Fig. 2-5 o
Diagram for Rocket Equation Derivations

Let tb = the total burning time of the rocket
Mo = the mass of the rocket before ignition
Mf = the mass of the rocket at burnout

v = the velocity of the rocket whent = O

v, = the velocity of the rocket when t = tb

= the displacement (position) of the rocket at t = -

b

8

o

8 = the displacement of the rocket at t = ¢
i = mass rate of flow (burning rate) of fuel, a constant

c

= the exhaust gas velocity relative to the rocket
Since no external forces are acting on the vocket of Fig. 2-5, the

momentum must be a constant for the rocket system (including exhaust

22
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sases). Then the momentum at time, t, and at time, t + d*, must he eqv 7.

Mv =(M-mdt)(v+dv) - (u-v)(m dt) s
My = Myv-mvdt +Mdv-mdvdt-muydt+myd+ a0,

FAuA T

Veglecting tha products of infinitesimals, Eq (2-60) can be writha: 28

Mdv=mudt (o8

bt m = — —CCTJ%/’—
(2-62)
Then Mdv=-y2¥ dt
(2-63)
or A
dv:-—u£%¥
‘ (2-64)

Equation (2-64) can be integrated for the general situation from

2% M
|-, dM
(-} Mo

~=0tot = t.

(2-25"
V—V(,:"Uln M. (2-66)
or M
V=V, +u ln
’ M (2-67)
Por the case where the burning of the fuel is complete,
.M.
b=Vt Uln M,
(2-68)
Now let us define the ratio of the initial to final mass as the
effective mass ratio of the rocket, D.
D= Mo (2-69)

My
23
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Then Eq (2-68) can be written as
b=w+ulnD

(e=1r

Distance Equations. To determine the distance traveled duxring t ..

burning of a rocket, Eq (2-67) can be integrated from t = ¢ to t = 4.

where v = ds/dt.

J:ds =JEZV,+ uln %—"—] dt

(2-71)
¢ M
s-s,= ¥t +/uln~——°a’t
0 M (2-72)
But - -
M= M,-mt (2-13)
Then combining Eqe (2-72) and (2-73),
+ M J
= e t 0
S=s5,* vot+u/o [n Mont (214
Hence S=s,+ V,t + ut ——L:*h/\lln —g—
(2-75}
For the burnout conditions, Eq (2-75) becomes
S, =5, +Vt, + s’ (2-76)
where
/ M; M
=ut - Lt Inh
XY u b m n M{. f’;:x’?"
/ Ms
or s'=ult, - =t1n D]
b (2-18)

Equations (2-70, 76, and 78) are the basic rocket equations which .3
used in the analysis of the problem. They can be modified as necessary

to account for the effects of gravity and atmospheric drag.

24
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Specific Impulse of Rocket Fuels. The velocity and distance

gguations of rocket motion are both functions of the wvelocity of the rosn:.
sxhaust gases. Usually, the exhaust{ velocity, which is a characteristiz
of a given fuel, is not gtated explicitly. Instead, the specific
impulse of the fuel is used to define the exhaust velocity by the

equation (Ref. 10 : 20)

u =3I g (2"79)

where Is, the specific impulse, is the pounds of thrust per pound of
mass flow per second, and &, is a proportionality constant numerically
equal to the sea~-level acceleration of gravity.

The derivations which follow in Chapters III and IV have i.o
exkaust velocity, u, as a variable. However, the computer progreme ue=?

to solve the equations have I', rather than u, as an input variable.

25
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III. Determination of Intercept Trajectory

Theoretical Intercept Geometry

As a first step in determining the interceptor trajectory‘let us
compare two possible cases as shown in Figs. 3-1 and 3-2. In the
"apogee'" intercept, the point of intersection between the warhead
and intercept trajectories occurs when the interceptor is at the
apogee of its trajectory. On the othexr hand, for the "tangent" inter-
cept, the intersection is at the common tangent to both the warhead
and intercept trajectories, and this point is "down range" from the
interceptor's apogese. By comparing Figs. 3-1 and 3-2 it is seen that
for the same intercept point and interceptor launch site, the tangent
intercept will result in a smaller vector velocity difference between
the warhead and the interceptor. This is an important fact, since
the weight of the velocity-match rocket increases expomentially
with the magnitude of this velocity difference. Therefore this
investigation is limited to the tangent intercept techmigue.

The most direct approach would be to fix the desired intercept
point and interceptor launch site, and then determine the intercept
trajectory parameters. However, this leads to several transcendental
equations which can not be solved explicitly for the desired quantities.
As an alternative, the following indirect approach is considered.

From Chapter II, the equation of the warhead trajectory, over a
spherical, non-rotating earth is

hZ
zﬂ(/—ew cos ¢,,)

ri (3-1)
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Fig. 3-1
“Apogee Intercept” Intercept Point at
Apogee of Interceptor Trajectory
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Fig. 3-2
. "Tangcnt Intercept” Interceptor and
Warhead Trajectories Tangent atIntercept Point

28
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where T, is the distance from the center of the earth
h is the angular momentum per unit mass
e is the ecuentricity of ths ellipse
¢, 18 the angle measured from the warhead polar axis

Similarly, the equation of the interceptor trajectory, coplanar with

the warhead trajectory, is

ht
=/u(/-€m ces ¢,,)

Fon
(3-2)

Now at the point of intercept, the radii of both the intercept and

warhead trajectories must be equal, or
rm_r = rw.: = r} (3’3)

where Ty is defined as the distance from the center of the earth to
the intercept point. Furthermore, if we specify that the two tra-

Jectories are tangent at the intercept point, the path angles must be
the same for both, or

Vs = Ve =% (3-4)
where Y1 is the angle measured from the local horigontal to the tangent
to the trajectories (positive counterclockwise). This angle, Yp» can
be found by using Eq (2-31). Therefore

_ _~€. Stn Pus (3-5)
tan 7 = /-ey cos ¢

or

— ‘em S[H ¢mx
Tan = Cm COS Ppmy (3-5a)

Rewriting Eq (3-2) for the intercept point, and by using Eq (3-3)

we get 2

ry = hom
*  M(l-e, cos ¢%1)

(3-6)
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We can also write Eq (3-2) for the initial conditions, or launch
site on the earth's surface, for which case

ha
r,= 2
° ufl-e,cos ¢,,) (3=1)

whers ¢ mo is the semi-range angle of the intercept trajeotory.
For a fixed warhead trajectory and intercept point we know ey’ h'
®yr? 1 804 Y7o Equations (3-5a, 6 and 7) contain four variables, e,
b s ¢m1 and ¢mo' Therefore, if we fix ‘Pmo’ we have three
equations and three unknowns and the theoretical intercept trajectory.

parameters are completely determined. To find these parameters, we

first divide Bq (3-6) by Ea (3-7) to give

= _ /- en €OS Ppo
o [/-e,cos Bz (3-8)

Now solving Eq (3-5a) for o s We got

- —tan ¥
moStné,. -tan 1z cos P (3-9)

Substituting Eq (3-9) into Eq (3-8) and simplifying,

'z _ _Sin émz —tan 3z oS Pz + tarn $mr cos ¢, (3-10)
s stn @,
By rearranging Eq (3-10) we can get
t-an »rI r; mr mo
Next, let us define a new quantity which is a constant for the
intercept point. Let
/ rx )_.
tan % (r; / =5
(3-12)
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Substitute Ea (3-12) into Eq (3-11) and rearrange.

cos b, + Ssin ¢, =cos ¢,, (3-13)

Equation (3-13) contains only one unknown, ¢m1 y and this can be
solved as follows: Congtruct a right triangle as shown in Fig. 3-3.

By referring to Fig. 3-3 it can be seen that o
/=‘\//+3’z sin A (3-14)
$=1/1+73% cos A (3-15)

A= tan_'(—”—) (3-16)

Fig. 3-3
Auxillary Triangle for
Solving Equation (3-/3)

If we substitute Eqs (3-14) and (3-15) into Eq (3-13) the result is

VI+32 sin A cos . +YI+ 3% cos Asin .= cos ¢,

(3-17)
which can be rewritten as
s[n(A-f— ¢ )== €05 $me
Vi sE (3-18)

By solving Eq (3-18) for ¢m1 , and using Eq (3-16), the final result is

k)
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by = sm"(j—f’f—-?—ﬂiﬁ - tan” (¥) (3-19)

With ¢’m1 now determined, we can solve for the intercept trajectory
parameters e , and h_, by using Eqs (3-9) and {3-7). We have also
indirectly determined the theoretical launch site of the interceptor

system since the angle from launch site to intercept point, ¢’LI’ is

just (See Fig. 3-2)

¢LI = ¢mo + ¢m1’
(3-20)

Velocity Difference Between Warhead and Interceptor

With the theoretical intercept trajectory now completely defined,
we wish to find the difference in velocities between the warhead and
interceptor, so that we may determine how large a rocket is required
to perform the velocity-match, i.e. reduce the velocity difference to
zero. Ignition of the velocity-match rocket causes the actual
trajectory to depart from the theoretical trajectory, and an approximate
method of correcting for this departure is discussed later. By referring
to Eq (2-33) it is seen that the angular momentum per unit mass of the

warhead or the interceptor can be written as

hy =z Yur COS % (3-21)
and
hm = I Vmp COS % (3-22)
If we now divide Eq (3-21) by Eg (3-22) we get
Am _ Vg
Ao Ver (3-23)
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which can be solved for Voo to give

w (3-24)
The velocity difference, A v is given by

AV = Vyp = Vs (3-25)

By making use of the fact that Vot and Vyr 2Te co-lirear, and
substituting Eq (3-24) into Eq (3-25) we find the magnitude of the
velocity difference to be

= — e
ave (173 (3-26)

It is interesting to note that if the angular momentum of the
interceptor approaches that of the warhead, A v approaches zero, but
with the intercept conditions we have imposed, this occurs only when the

two trajectories are identical ... a highly impractical case.

Correction to Theoretical Intercept Trgjgcto:z.

In order to correct the theoretical intercept trajectory for
the effect of the velocity-match rocket, we must make use of the rocket
equations of motion which were developed in Chapter II. Equation

(2-70) can be written in vector notation as
v,=v,+alnD (3-21)
Equation.(2—76) can also be written in vector notation as
5,=5,+7t, +5 (3-28)

where 8' is now defined by

§'= _(t,,— —g—ﬁfn D) (3-29)
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If we let our coordinate system coincide with the point where the

velocity-match rocket is ignited, then Eo = 0 and Eq (3-28) becomes

b~

S,=Vt, +35 (3-30)

Now if we re-write Eqs (3-27) and (3-30) and assume that ths motion

takes place in a gravitational field, where g is constant in magnitude

and direction, these equations are modified to

i=v.+aln D (3-31)

5, =Vt +3+%3t;

(3-32)
Let us now refer to Fig., 3-4 and assume that our interceptor
rocket is in free-flight on the theoretic#l interceptor trajectory.
If we did not fire the velocity-match rocket, we would ccast to the
intercept point, IP, and arrive there with velocity equal to me .
But we want to match the warhead's velocity, ;'I s at the intercept
point, Therefore the velocity-match rocket must be ignited some
time before we get to point IP. Let us assume that the velocity-match
rocket has a burning time equal to the free-~flight time from point A
to IP. Then, when the rocket arrives at point A with velocity ;o’
the velocity-match rocket is fired so that the exhaust velocity vector,
u, is parallel to the trajectory-tangent at point IP. If the effective
rass ratio, D, of the velocity-match rocket is of the right magnitude,
then the burnout velocity, ;b’ will be approximately equal to ;wx , as
seen in Fig. 3-4. However, Fig. 3-4 also shows that the position at

burnout is point B rather than that desired (IP).

Suppose we correct this discrepancy by the method shown in
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Fig. 3-4 |
Vector Diagram of Velocities and Displacement

for Theoretical Intercept Trajectory

35




CAW Mech 61-2

Fig, 3-5. First we extend the tangent line "up-range" to an
aiming peint, AP, so that AP-IP is equal to IP-B. Next we adjust
the trajectory, so that a free-flight interceptor will arrive

tangent to point AP with the same velocity, s that existed at

;mx
point IP of the theoretical trajectory. Now, if the velocity-match
rocket is fired at some point A', where A' is chosen so that the
free-flight time from A' to AP is equal to tb’ the burnout position
will be at IP. The actual boosted trajectory will be along the
dotted line in Fig. 3-5.

If we assume that the burning time is short, we can say that

|51 << 7| (3-33)

Then the change in directicn and magnitude of gravity between points
A' and IP will be extremely small, and by referring to the “relocity

vector diagram in Fig. 3-5 we can say that

v, tgt, = V,; (3-34)
aln D=v,-gt, -7, (3-35)
or 77l =V -V
Gln D= V7o (3-36)
However, we want ;b to be equal to V'I , and since u, 3'1 and

;mI are all varallel we can write Eq (3-36) as

uln D=v, —Vpy =4V (3-37)
where Av is given by Eq (3-26). By solving Eq (3-37) for D we

find that
Ay

D=e (3-38)
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v,-r-'ét,,:: me
Vo = \7w1

Fi g 3-5

Vector Diagram of Velocities and Displacement
for Corrected Intercept Trajectory

37




GAW Mech 61-2

In Chapter IV it will be shown that if we specify the thrust to

initial weight ratio, B, of a rocket, we can find s' such that

s'=f(u, B, D)

With D and s' known we can calculate the corrected intercept trajectory

parameters.

By referring to Fig. 3-6 it is seen that
X F=90°- 7, (3-39)

Note that Y1 is negative for intercept points down-range from the

warhead apogee. We can also show that

s'sin F
tan 5:'r~ ¢

T~ S'cos F (3-40)
or using Eq (3-39)
tan &= 5’clos“r,
=S stn ¥ (3-41)
Then with & known we can show that the flight-path angle at
point AP is
%= T8 (3-42)

where 6 is always a positive angle and the correct signs must

be used for YIa and y;. By using the law of sines we find that

_ s'sinF
Ia™ sin & (3-43)
or p oS cos?
oo sin 8

(3-44)
With Y1a' rIa’ and va known at the point AP we can prooe@e to
find the trajectory parameters.

Re-writing Bq (3-22) for the corrected trajectory at the point
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AP, we get
hma = ,}a VMI cos ]’Ia (3-45)
where hma is the corrected angular momentum per unit mass. The

total energy per unit mass of the trajectory can be found from

Eq (2-48) applied to the aiming point, in which case

u
E =2 Ve —
ma rza (3_46)

With the energy kmown we can find the eccentricity by using Eq (2-26).

_ 2E,pnahla
Cma = \// L (3-47)

The equation of the corrected intercept trajectory is therefore

2
e Tar

/u(/‘ em. cos ¢ma) (3’48)
By applying Eq (3-48) at the earth's surface and at the aiming point,
we can find the corrected semi-range angle, ¢moa’ and the angle

from the polar axis to the aiming point, ¢Ma (See Fig. 3-6).

These equations are

/ h2
cos = —f - e
moa em,(/ AUl ) (3-49)
and .
— [ — hna
€os  Fmza €ma ( / Al &.) (3-50)

The angle from the corrected interceptor launch site to the actual

intercept point is

¢LIA = moa + ¢m1‘a + 5 | (3-51)

where & is given by Eq {(3-41).
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Fiq. 3-6

Geometry for Determining Correction
to Theoretical Intercept Trajectory
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Summa;x

trajectory squations by fixing the warhead trajectory and the
intercept point, and imposing the condition that at the intercept
point the warhead and intercept trajectories had the same radius,
Trs and the same path-angle, Yre By assuming a short burning

time for the velocity-match rocket, and that g was constant in

the vicinity of the intercept point, we then corrected the

theoretical intercept trajectory for the effect of the rocket dynamics,
and obtained the parameters for the corrected intercept trajectory.

We also determined the effective mass ratio rsquired for the
velocity-match rocket. With this trajectory completely determined,

and the effective mass ratio of the velocity-match rocket kmnown, we

can now consider the boost-phase of the intercept.
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IV. °‘Boost-Phase Analysis

In Chapter III it was shown that if the warhead trajectory,
intercept point, and semi-range angle for the interceptor were
fixed, a unique, free-flight trajectory is determined. We also
found the required mass ratio for the velocity-match rocket. In
effect, we are now at the point where we have a "payload", and a
desired trajectory, and must find the booster rocket requirements
needed to get this payload omto this trajectory.

There are an infinite number of points where we can enter this
intercept trajectory, and for each point‘the required burnout
velocity and direction is different. This point must also be at
some altitude above the earth because of the time required to
accelerate to the final desired bonst-phase burnout velocity. If
we also consider the fact that most rocket launchings consist of a vertical
flight segment, a segment at constant angle of attack, a segment at
zero lift, and a constant attitude segment, it can be seen that there
are many possible flight paths from the launch site to the burnout
point. The problem is further complicated by atmospheric drag,
variable gravity, and the variation of rocket thrust with altitude.
Thus there does not appear to be a neat, closed-form solution to the
problem, although many approximate methods have been devised.(Ref 12).

In WADC TR 57-724 (Ref 2) a method for the preliminary
design and optimization of a long-range, ballistic missile is

outlined. Basically, it is a trial and error method, and while it
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is well enited to the design of one particular missile, it does
not lend itself to this investigation, where we have many

trajectories to congider.

Approximations

To proceed with the problem, let us make some assumptions
which ernable us to develop a method for approximating the required
thrusts and weights, and the available warning time for the
interceptor system. First we assume that the boost-phase is a small
portion of the intercept trajectory, allowing us to consider gravity
as a constant vector. This enables us to choose an inertial,
rectangular coordinate system on the earth's surface near the
launch site, as in Fig. 4-1. Next we neglect the vertical, tip-
over, and constant angle of attack segments of the boost-phase,
and assume that the thrust vectors of each stage are applied at a
constant direction relative to the inertial coordinate system.
Although this is not practical for an actual launching, this is a
reasonable approximation since the vertical and tip—over segments
are usually a amall portion of the boost-phase. Then we assume that
the aerodynamic drag is small compared to the booster rocket thrust,
and can be neglected. Finally, we neglect the variation of thrusts
due to altitude, and assume that the specific impulse and structural

factor are the same for each stage.

The K-Stage Boost Rocket
With these assumptions in mind, let us develop some equations
for the k-stage rocket as shown in Fig. 4-2. Some useful relation-
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ships for this rocket are listed as follows (Ref 3). The
symbols used are shown in Fig. 4-2.

Structural factor:

. initial mass of the j'2 stage
J burnout mass of the j'B stage
or f. = my
J m; )
(4-1)
effective mass ratio of the jth sub-rocket:
D, =Ll oyttt my +me M (4-2)
’ M./' Lﬂl'f"m'u +tm,+ M + m, B M.-("i")m- )
¢ Ay J itz K F I \Th; J
where W1j is the burnout mass of the jth sub-rocket.
f
stage mass ratio:
m.
)
¥, =— 43
J mr (
overall mass ratio:
M,
t, = m (4~4a)
or fo=1t4+%t+%
(4-4v)

Optimization. It can be shown that the optimum arrangement of

sub~rocket masses, which results in a maximum final burnout velocity
(vacuum conditions, constant g), for a rocket of constant overall
mass, with the same exhasust velocity of each stage, is given by the

equation (Ref 3)

D, Dy _  _ D
nl - nZ - - nk (4‘5)
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Boos?- Prase Srages

m,

M, Intercepior Yehicle
M Ve/locily-Match Rocket
m; jth Srage

Jt Sub-Rocket

Fig. 4-2
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If the structural factors of each stage are the same then the equation

for optimization becomes

D=D,= =D, (4-6)

The overall mass ratio for optimum staging, with the stage structural

factors and exhaust velocities equal, is

r‘/n_l) D k
A (4-T)

The sub-rocket mass ratios are then

K=ttt ) 1 o) ()

Equations of Motion. In Chapter II it was shown that the

equations of motion of a one stage rocket in field-free space are

v=y+alnD (2-70)
§b= 570 + l—/o tb + s’ (2_76)

If we re-write these equations in scalar form for our rectangular

coordinate system and consider the effect of gravity they become

X,= Kk, + ucosAlnD (4-9)

Y=y, + usin Xln D -g%, (4-10)

X,= X,t,+ s’ cos ) (4-11)
. ;- Sti /

Y= Yoty +S'sin A-3 . (4-12)

where s = 0
o
ib = the horizontal component of burnout velocity
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and

y = the vertical component of burnout velocity

x = the horizontal component of initial velocity

¥y = the vertical component of initial velocity

A =  the angle between the thrust vector and the horizon

§'= u[tb——g-ﬁln D]

(2-18)

Let us now find the components of burnout velocity and displacement

for a k-stage rocket, starting from rest.

Velocity:
Stage 1. X,, = U cos Aln D,
Yo = usin Aln D -gt,
Stage 2 X, = X, +ucos Aln D,
2 i
Yo, = i+ USIN Aln D, -gt,
Stage k. )'(b =X, + ucos Mln DK
K k-
Joo = Y, T U SN Aln D, -9t
Displacement:
Stage 1. X, = s/ cos A
2
/ N — st-‘l
yb, = 5' sin ) 2
Stage 2.

. - /
%, =X, + X, t"a + 5, cos A

Yo, = Yo, TN, T, + 5 sin A5
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(4-16)
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(4-19)
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Stage k. v

1]

%, X, t, + S5 cos A (4-23)

— ‘ Y . / N ) gt_fn
Yo =Y F Wb . t"x t SestinA- 5 (4-24)

K- K

If we now assume ithat we have a rocket with optimum staging

(D's all equal), and further assume that the burning times, tb,

for all stages are equal, we can say that

X, =2ucos Aln D (4-25)
Y, =2usinAln D ~2gt, (4-26)
X, = Ku cos A ln D (4-27)
y, =kusin Aln D ~kgt, (4-~3
K
X, =2s'cos A+ X, t, (4-2
‘. . 9*‘2 3
Yy, =25 8(n A Y, b —2[=5 ) (4-30)
X, = ks'cos A-f-()?b-/')ib +-~+X,,k)'['b (4-31)
K 1 2 -1
y, = ks'sin X+(y, +y, +++), )t -k(gt:)
b Yo, T X, b,/ b 2 (4-32)
FNow from Eqs (4-27) and (4-28)
X, T *sa+“‘*Xsk_,:’Es,[”Z*"'*(k"_)] (4-33)
Go# St t G, = [1F2r e el (e
i k(k-1)
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By combining Eqs (4-27, 28, 31, 32, 33, 34 and 35) we get

Xy, = ks'cos A + t,ucos A In D[—‘X%?-’-)-] (4736)

Yo, = ks'sin A+ t, (u sinAln D —gtb)[_’f.g_"_‘:i.y_
k( 2% ) (4-37)

Thrust to Initial Weight Ratio. Equations (4-27, 28, 36 and 37)

are put in a more useful form by defining a new quantity, the thrust

to initial mass ratio of a sub-rocket (Ref 11). Let

8, = 1
S (4-38)
where Bj = the thrust to initisl mass ratio of the jth sub-raocket
Tj = the thrust of the jth sub-rocket motor.

Note that at sea level, pounds-mass and pounds force are numerically
equal, and therefore P can also be used to express the thrust to

sea level weight ratio. The thrust of a rocket engine is given by
(Ref. 10:17) )

T = mj;u;

7T (4-39)

where m is expressed in pounds-mass per second.

By combining Eqs (4-38) and (4-39) we find that

= Fe éBJ-MJ
! Yj (4-40)

Now the burning time of the jth stage rocket is

N - mass of fuel in the jth stage

b, A th
J burning rate of the i  stage
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n; —1 .
or Fo= __r.:__.w)__."li_ (4-41)
L .
J m;

By combining Eqs (4-40) and (4-41) we find that

n;~1
t = U; ( nj m;
b

j - 9. 5} Mj (4"42)

But from Eq (4-2) we can show that

(J%%?i)'ni _ D -1
M, Y (4-43)

Therefore, by combining Eqs (4~43) and (4-42), we find that

b, = 9:;3 (%fl) (4-44)

We can also show that

2
¢ Cy—/—ZnE%) .
S = 9. 3; (/ D; (4-145)

From Eq (4-44) it is seen that if the exhaust velocities, sub-rocke

effective mass ratios, and thrust to initial weight ratios are all the
same, then the burning times are also all the same, This is

exactly the assumption we made to get Eqs (4-27, 28, 36 and 37). By
using Eqs (4-44) and (4-45) it can be shown that the final velocity

and displacements at burnout of the k#h stege are

X, = kuln Dcos A (4-46)

k
, . -1y .
Y, = ku ln D sin X - i;—u—- -25—' (4-47)

X = kulcos A [2(D-1~-1ln D)+ (k-))(D-1)In D
be” 29.8 D (4-48)
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Vs

_ ku®sin X [2(D-1-1n D)+ (k-1)(D-1)1n D]__
K chﬁ D

/ [ku(D—/) 2
29.L PD (4-49)

Thus, with the burning time eliminated from the equations by use2

of the thrust to weight ratio, we can say that
Burnout Conditions = f(k, u, A, B, D) (4-50)

We must now combine these equations with the corrected trajectory
equations of Chapter III, so that we may find a method for evaluating

a function of the form

D = £(k, u, A\, B, Burnout Conditions) (4-51)

Technique for Satisfying Burnout Velocity Requirement

First let us solve the problem by satisfying only the conditions
of burnout velocity and direction, and later consider what must be
done to also satisfy the condition of burnout position. Assume that
we are given a required burnout velocity, Vi and burnout angle, Ny
as shown in Fig. 4-1, and that we want to find the required sub-rocket
mass ratios, D. Ve assume also that k, and 8 are given. We can say
that

tan n, = -—51
¢ (4-52)

where ib and iﬁ are given by Eqns (4-46) and (4-47) with the
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k subsoripts omitted for simplicity. Then

D-1
tan n, =tan )= Zpi,pcesa (4-53)

If we multiply both sides of Eq (4-53) by the quantity, cos X cos u

and rearrange,; the resulting equation is

. _ ) _(b=1)cos m,
sin ) cos m ~cos Asin M, =G5} (4-54)
Then . _(D-)cos 7,
Stn(/\—n‘,)'_ 8D lnD
(4-54a)
Solving Eq (4-54a) for A,
. -1 (D=1) cos M,
)‘:: Sin [ BDIlnD ]+7Z5 (4~,.)
- ’\=775+ sin” &
(4-£%)
where _ (D-/) cos 7,
E B0 In D
(4-57)
From Fig. 4-1 the horizontal component of burnout velocity is
X, =V, cos (A (4-58)
By combining Eqs (4-46, 55, 57, and 58) we can show that
ku ln D cos(n, + sin" ) =v, cos m, = O (4-59)
or f£(D)= 0O
(0) (4-60)

Now we have an equation with one unknown, D, which would be
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difficult, if not impossible, to solve explicitly for D. A numerical
solution is found by using Newton's iteration method (Ref 14:495).
With this method, we choose a trial value for D, say Di' For this

value we evaluate f(Di) and f'(Di) where

Fi(0)==LH0d (4-61)

The equation for £'(D) can be shown to be

£10) = /w[(o-/) cois A+@7§ﬁ)(0—/—1n D) sin A ]

4-6la
D(D-1) (4-612)
Then our new trial value for D is given by the formula
D;
Dy, = D~ £829 (4-62)

(D,
This process converges quite rapidly in this particular case, and
is repeated until the required degree of accuracy is attained. Thue
we can find D, the sub-rocket effective mass ratio required to

achieve a given burnout velocity and direction.

Technique for Satisfying Burnout Position Requirement

In order to simultaneously satisfy the condition of burnout
altitude, ¥y OT radius, Ty We must resort to & second trial and
error process. To do this, first choose a trial value for burnout
range angle, 9bb, (See Fig. 4-3a). With the chosen ¢>b and the
corrected interceptor trajectory parameters, we use the general

trajectory equations of Chapter 1I to determine Ty s Yy and Yp. *
1 1 1

As a first approximation let us assume that the launch site in the
rectangular coordinate system coincides with the theoretical launch

site in the polar coordinate system. Then we can say that
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Fig. 4-3a
Boost Phase Approximation
Trial One
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' (4-63)

where .these angles are shown in Fig, 4-3a. Therefore the first

trial burnout angle in rectangular coordinates is

M, = qu', ~ €, (4-64)

!

Then by using Eq (4-59) we can find a value for D With D, known,

1° 1
Eqs (4-48) and (4-49) are used to find x, andy, .
1 1

We can now compute the actual value of Ty which is designated rb .
2
using the relationship (See Fig. 4-3a)
_ 2 2’
ry =V (rty, )+, (4-65)
Now we can remove the restriction that the rectangular and polar
launch sites are coincident by finding that
€. =tan ' (—b— (4-66)
2 ot Y, B
(]

and change from the coordinate system of Fig. 4-3a to the adjusted

coordinate system of Fig. 4-3b.  With the value of r, from Eq (4~65)
2

and the interceptor trajectory equations we can find new values of

, V. o and . Now substituting €, and into Eq (4-64) we
Y Y
b2 b2 b2 2 b2

find Ny Then again using Eqs (4-59, 48, and 49) we find values
2

for D2, X, and ¥y * The iteration process is contimued until
2 2

h+l bi (4—67)

Note that we use the previous value of € +to compute a new value
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Fig. 4-3pb
Boost Phase Approximation
Trial Two
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for nb. This introduces a small error for the first few trials

since in all likelihood the relative positions of the rectangular

and polar launch sites will be different from one trial to the

next. However, since this process is convergent, as the number

of trials increases, € will approach a constant value and thse

error will approach zero. An exaggerated illustration of how this

iteration process might converge is shown in Fig. 4-4. Thus, by

using this double iteration process, we find the effective sub-rocket

mass ratio, D, for the boost-phase rockets, and values for ¢’b and rb.
We are now prepared to achieve our objective, and deterwine

the weights and thrusts requived, and calculate the excess time.

First let us find the weights and thrusts.

Determination of Weight and Thrust Requirements

The effective sub-rocket mass ratio for the velocity-match
rocket is found by using Eq (3-38). Let us also specify a thrust
to initial weight ratio for this rocket. and call this quantity
Bu’ where the u subscript is used to avoid confusion with the
boost-rocket parameters. Assuming a one-stage velocity-match
rocket, the overall mass ratio of this rocket is found from Eq (4-7)

and Fig. 4-2 to be

¥ = r’:; _(n-1) D, (2-68)
e (n-D,) ’

where §/ is the non-dimensional mass (or weight) ratio of the

velocity-match rocket (1b of int. rocket per 1b of int. vehicle).

The thrust required for the velocity-match roclret is found from

Eq (4-38) to Ye

7; = b Ma (4-69)
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Fig. 4-4

Iterative Process for Satisfying
Velocicty and Position Requirements

of the Intercept Trajectory

59




GAW Mech 61-~2

or in non-dimensional form

Th,=8.Y, (4-70)
where Tu = the thrust of the velocity-match rocket
M, = the weight (or 1b mass) of the velocity-match rocket
Thu = the 1b of thrust required per lb of interceptor vehicle.

The mass ratios of the boost-stages are found by using Eqs (4-T)

and {4-8). These mass ratios are

Ttm-np7"
Ol Ry

¥, = 5"0[/ ~ FT‘%—] (4-T1)
Y, = (Wo— ‘V,)[/ - _K_~f17"] (4-72)

(%—‘H-%""‘%-I)[/‘/{/‘;T’] (4-73)

I

The thrusts required for each stage are, from Eq (4-38) and Fig. 4-2

T, =BM=8(m+m,+ +m +m,) (4-74)
7’2=;5’M2=;5’(m2+m3+~-+mk+m,’.) (4-7%)
Te=8M, = 6(mk+ m;) (4-76)

By dividing through by m;. and using Eq (4-68) we can write
these equations in non-diwercional form.
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Th=8Y% (Y, +¥%+ +Y¥+1) (4~17)
Th=BY,(Y+Y+++1) (4-78)

Th,.=8Y¥ (%+1) (4-19)

By using Eqs (4-4b) and (4-8) we can further reduce these equations

and show that
Th =8Y%Y,
(4-80)

Th B,

[/_1'77;] (4-81)
_BY Y.
[ -]

Therefore, the mass (or weight) and thrust ratios are determined,

Th, (4-82)

and numerical valves of weights and thrusts can be found if mp,
the weight of the interceptor vehicle, and k, the number of

boost-phase stages are known,

Excess Time

To find the excess time it is necessary to determine the flight
times to the intercept point for both the warhead and the intercepto..
The difference between these times is defined as the excess time.

Let us assume that the burning time of the enemy booster
rockets can be neglected and that the total flight time of the
warhead from its launch site 4o the intercept point is the same as

its free-flight time. This time can be found by using the warhead
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trajectory parameters and evaluating Eqs (2-46) and (2-47) at the
angles ¢wo’ and ¢w;r. as shown in Fig. 4-5. Let this time be Tw*.
The time of the interceptor from its launch site, LSm, to the
boost~phase burnout point, BO, can be found by multiplying Eq (4-44)
by K, the number of booster stages. Let this time be T;ﬂ From |
Fig. 3-5 it can be seen that the flight-time of the interceptor
from point A' to the intercept point, IP, is the same as the free-
flight time (without velocity-match rocket ignited) from point A'

to the aiming point, AP. Thus the free-flight time from point

BO to IP (Fig. 4-5) can be found by using the intercept trajectory
parameters and evaluating Eqs (2-46) and (2-47) at the angles ¢ b’
and ¢ mra Let this time be TC*. Thea the excess time, T:',

is given by the equation

7" = T - (T + T ) (4-83)

Therefore, bty assuming that the enewy missile is detected at the instant

*
it is launched, the interceptor must be launched 'I‘I seconds later, if the
warhead and interceptor vehicle are to arrive at the intercept point

simultaneously.

Maximum Acceleration

An important consideration, especially if a manned vehicle is used
in the interceptor system, is the maximum acceleration imposed upon the
system. There is a peak acceleraticn at the instant of burnout of

each sub-rocket, and this is found by using Newton's second law to be

A1& (4-84)
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LSw

Fig. 4-5
Angles for Determining Flight-Times

of Warhead and Interceptor
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where vj = the maximum acceleration in sea level "g's"
Tj = the thrust of the jth stage
Mj = the burnout weight of the jth stage.
f

Rut from Eq (4-38)

7; = /55 f%&

(4-85)
By combining Eqs (4-84) and (4~85) it is found that
A%'A4J
Vi= v (4-86)
If
But M, _
. [)j
f (4-2)
By combining Eq (4-2) and (4-26) we get

Since we have specified that the ?'s and T''s of each sub-rocket
are equal, Egq (4—87)shows us that the nesl acceleraticns Aurirg
the boost-phase are the same. Similarly, the maximum acceleraticn
during the velocity-match phase would then he
V,= /814 Du (4-88)

During an actual launching there would be other components of
acceleration (eg. anguler and centripetal accelerations during the
tip-over maneuver) but these are considered to be of secondary

importance for this investigation.

Summary

In this chapter a method for determmining the booster-rocket
requirements was developed, Thig was accomnlished by making several
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simplifying assumptions, developing the equations of motion of a
k-stage rocket and introducing the concept of thrust to weight
ratio. The equations derived in this manner were then combined
with the interceptor trajectory equations of Chapter III to
determirne thrust and weight ratios, available warning tige, and
maximum accelerations of the boost-phase and velocity-match
rockets.

Because of the many equations, and two iteration processes
involved, numerical results are very difficult to obtain without
the aid of an electronic computer. For this reason, the equations
are programmed on the IBM 1620 digital computer to permit the
investigation of many different intercept conditions. The

computer programs used in the analysis are described in Appendix A.
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V. Procedure for Obtaining Numerical Results

Primary Considerations

The overall vehicle weight, the thrust of the first boost stage,
the excess time, and the maximum "g" forces on the interceptor vehicls
are the principal factors to be determined.

The excess time is certainly the most important factor in the
analysis, for without adequate excess time, the intercepi technique
is impractical or even impossible. Therefore we wiah to determine
what intercept conditions allow the most excess time, and the effects
of the boost parameters on excess time.

The overall vehicle weight is also quite important, since as
weight increases, the thrust .zquired to launch the vehiclie increases.
Since there are limits on the amount of thrust available to perform
the intercept, thrust rather than weight is the factor which we attem; -
to minimize in the analysis.

Finally, the accelerations which exist during the boost phases
are also an important factor if the system is manned. Man is
capable of withstanding approximately ten transverse "g's'" or 322
feet per second per second applied with the pilot perpendicular to
Lae acceleration vector (Ref. 4:14). Therefore we shall indicate
the intercept conditions which result in accelerations in excess of

ten "g's".

Bxgic Analysis

The basic analysis consists of fixing the warhead trajectory,

66




GAW Mech 61-2

intercept point, and the boost parameters and then varying the
position of the interceptor launch site. This procedure is
repeated for differemt intercept points on the warhead trajectory.
Finally the complete procedure is repeated for other warhead
trajectories. Once the basic analysis is complete, the effects of
varying Is with n fixed, varying n with Is fixed, and varying I8

and n in combination are determined.

Warhead Trajectories to be Investigated

In Chapters III and IV we have laid the mathematical ground-
work for eval#ating the trajectory-match intercept. Now a decision
must be made as to what missile trajectories should be used in the
analysis.

A 6000 nautical mile trajectory is selected because it is a
typical range for ICBM trajectories. A 4000 nautical mile trajectory
is also selected because less time is available to complete the
interception of a shorter range ICBM trajectory. Now Eq (2-35)
can be used to determine the semi-range angles for these two
trajectories. For the 6000 nautical mile trajectory,

X 6000

¢, = e = = 0.87266456 radian
2r 2(3437.747)

and for the 4000 mile trajectory,

- 4000 = 0.58177638 radian

2(3437.747)
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It was shown in Chapter II, that for any given range there
‘is an almost unlimited number of trajectories, depending upon the
amount of total energy available. Thus we must stipulate more thar
just the range to define the exact trajectory. In oxrder to more
completely consider the possible intercept situations, three different
trajectories are chosen for each range. One is the minimum-energy
trajectory, and the others are a high angle (high altitude) and a low
angle (low altitude) trajectory. These trajectories can be completely
defined if we now specify the theoretical launch angle, Yo’ of the
warhead. TFor the minimum energy trajectories, we can use Eq (2-57)

to determine Yo For the 6000 mile trajectory

tany, = cosbo . 0.64218759 _ 4 16190002
ME 1+ sin ¢ 1.76604431

Y = 0.34906588 radian.
\E

For the 4000 mile trajectofy,

tan y

0.83548776 _ 0.53919520

and

Y = 0.49450997 radian.
% ,

To establish the high and low angle warhead trajectories for

each range, we can fix the total energy available for the trajectory.
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This then determines the energy ratio of the trajectory, which in turn
determines the thsoretical launch angle., Since the choice of total
energy is an arbitrary one as long as reasonable values are used, it
is more convenient to specify the energy ratio. An energy ratio of
0.9 is choszen for the 6000 mile trajectory, and 0.8 for the 4000 mile

trajectory. Then for the 6000 mile trajectory

tan ¥ _1,[ ER t.\/ IR )2-1;(1-33)‘ (2-58)
2 Ltméo \/t“¢o d

z 09 :V[ 9\ -u(1-049)
2 | 11917534 lL.2917534

= 0.58389717 and 0.17126302

0.52849701 radian (high angle)

or ¥,

asa ¥ 4 0.16961984 radian (low angle)

For the 4000 mile trajectory

o

== 28 i[Lo'a 2 k1-08)
2 065771029 (0.65771029

1.02032565 and  0.19601585

or ¥ 0.79544624 radian (high angle)

and ¥ 0.19356362 redian (low angle)
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These values of ¢>o and ' which are listed in Table"I,
are necessary inputs to the computer solution of the boost-phase
approximations (Appendix A), since the computer is programmed to

determine all other parameters of the warhzad trajectory from

thesge values,

Table I
Warhead Trajectory Semi-Range and Launch Angles
for 6000 and 4000 Fautical Mile Ranges
Warhead Trajectory Semi-Range Launch
Range Angle Angle Angle
(nem.) (radians) (radians)
Low 0.58177638 0.19356362
4000 Minimum Energy " 0.49450997
High " 0.79544624
Low 0.87266456 0.16961984
6000 Minimum Energy " 0.34906588
High " 0.52849701

Selection of Intercept Points and Launch Sites

To facilitate the discuasion of the position of intercept

points and launch sites, we will use the angular position of the

T0
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points relative to the warhead apogee in an earth-centered, polar

coordinate system. This is illustrated in Fig. 5-1.

Polar Axis

¢+

Down Range

Up Range

Fig. 5-1
Position of Launch Site and
Intercept Point Relative to
Warhead Apogee

An intercept point is defined by Séwx and is understood
to be on the warhead trajectory. The position of the interceptor
launch site, ¢>LS : 1s det=2rmined in the same manner, but its position
“2 6n the earth'smsurface. Note that & is positive clockwise
and the warhead apoges is at <¢ = 0, With these definitions
2stablished we can proceed with the selection of intercept points and launch

sitas,

The intercept points to bhe investigated are arbitrarily chosen




GAW Mech 61-2

go that a representative sample of points on the warhead trajectory

is checked. These points are approximately equally spaced along

each trajectory between warhead apogee and atmospheric re-entry point.
The interceptor launch sites are determined indirectly by

using the theoretical intercept trajectory semi-range angles as

inputs to the computer program. Then the approximate position

of the interceptor launch site relative to the warhead apogee is

¢

is slightly further up-range than the approximate position (Fig. 3-6),

¢ o The exact position, which is ¢WI - ¢LIA

WL
but thisg is not critical since we are mecely trying to select a
representative group of launch site positious. The up-range
positions of interceptor launch sites are limited by practical
considerations; e.g. no launch sites in enemy territory. The
down-range position of the interceptor launch site is also limited,
As the angular position of the launch site approaches the intercept
point, the interceptor trajectory becomes almost vertical and the
trajectory-match technijue is not practical.

Vith these limitations in mind, the interceptor launch sites
are arbitrarily chosen to determine enough points to plot curves

which show the effect of launch site position on the boogt reguirements.

Sclection of Rocket Parameters

The five remaining variables to be investigated are:

(1) k, the rumber of stages for the boost rocket
(o) I+ the specific impulse of the fuel
(3) n, the structural factor
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(4) By the thrust to weight ratio for the boost-phase

(5) B,» the thrust to weight ratio for the velocity-match
rocket.

In order to continue the investigation some particular values of

these variables must be selected.

Number of Boost-Phase Stages. For this investigation three

boost stages were selected as a compromise between the decreased
reliability of a large number of stages and the large thrust and
weight requirements for a small number of stages. This reduces the
number of variable boost parameters to four.

Specific Impulse and Structural Factor. Specific impulse is

determined by the choice of propellant. Valueg of Is vary from
160 seccnds for some old-type solid propellants, to 364 seconds
for liquid hydrogen-liquid oxygen (Ref 10: 112, 113, 312, 313).
Instead of selecting a particular fuel, a reasonable value of Is’
250 seconds, is selected for the basic analysis. Later in the
investigation the effect of different values of Is for a few
typical intercept situations is determined.

A similar approach is used to determine the value of the
structural factor since it depends upon the density of the fuel
and the detailed structural design of a rocket. A valus of n equal
to ten is selected for the basic analysis.

Thrust to Initial Veight Ratios. The choice of numerical

values for 8 and ﬁu appears to be completely arbitrary. Then to
determine the valuss to be used in the analysis, it is necessary to

fix the value for one at an arbitrary value, and determine the effect

13
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of the other on overall weight and thrust requirements. Once thes:

effects are known, the most promising values are used in the basic

analysis.

Summary
This chapter outlines the general approach used to obtain the
desired data from the digital computer solution of the intercept

analysis. These results are presented in Chapter VI.
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VI. Results and Conclusions

A numerical integration was performed using computer program
CM-12 (Appendix A), for ome particular intercept trajectory. In
this integration, the effects of drag and the vertical, constant
angle of attack, zero lift, and constant attitude flight segments
of a rocket launching are considered. This was accomplished to
verify the validity of the assumptions made in the boost-phase
analysis. For the case considered, the actual burnout velocity
came within three percent of that required. The results of this
integration are summarized in Appendix B.

Since tne resuits are only good approximations to the actuail
2lues because of the many simplifying assumptions made, the cozpuid:
data is presented in graphical rather than tabular form. This &lsc
gives a better overall picture of this intercept technique, and
allows important trends to be interpreted more easily. Angular
inputs anl print-outs of the computer are in radians and therefore
all angles are plotted on the graphs in radians.

In order to avoid complicating some of the graphs, a code
is used to identify the intercept conditions. For example, 6H:45:30
i3 interpreted as follows:

6H 6000 nautical mile, high angle warhead trajectory

45 intercept point on warhead trajectory is 0.45 radians

down range from the apogee

30 semi-range angle of the theoretical intercept trajectory

15
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is 0.30 radians
The theoretical semi-range angle is selected for this code rather
than the corrected valus, because this is the angle used as the

computer input to obtain the numerical results which are plotted.

Results

Effect of Bu on Thl' Figures 6-1, 2, 3 were obtained for

two intercept conditions: 6H:45:30 and 6H:45:60. Thrust to
interceptor vehicle weight ratio, Bu, was varisd while the other

rocket parameters were held constant. These values are

I = 250 seconds

8
n = 10
8 = 1.5
k = 3

For the case, 6H:45:60, B, has a negligible effect on Th; (Fig. 6-1).
thus little advantage is gained by using a mores powerful engine for
the velocity-matck rocket. The top curve shows that a reduction

in thrust, Thl, of approximately 3.5% can be obtained by increasing
Bu from one to three; however, since the curve appears to be
leveling off, little will be gained by using a more powerful engine.
A comparison of the curves in Fig. 6-1 shows that Bu has more effect
for the intercept trajectory with the smaller theoretical semi-range
angle (.3 vs8 .6). This is due to the larger difference, Av , betwean
warhead and interceptor velocities. A larger ﬁu decreases fhe
distance s' (See Eq 4-45 and Fig. 3-6). This also decreases T._ an

la
therefore we can say that
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lim (corrected int. trajectory) = (theoretical int. trajectory)
By > oo

In other words we can say that as rIa approaches T1y the total energy,
E, of the intercept trajectory approaches a constant value (E of the
theoretical intercept trajectory), thus explaining why the curves

in Fig. 6-1 level off.

Effect of B and Bu on V. The computer data indicated that for

the values of 3 used, the maximum acceleration during the boost-phase
ranged from approximately 3.0 to 4.5 '"g's", and thus this acceleration
is not considered to be a problem. Therefore no graphs are plotted
for this data.

Pigure 6-2 shows that the maximum acceleration of the velocity-
match rocket is a linear function of ﬁu. This is also apparent

Jeom By (4-88),
vu:—'ﬁuDu

where Du is a constant for a particular intercept point. Since Du
is a function of Av, and Av increases with decreasing semi-range
an.les, the maximum acceleration can be a limiting factor on a
choice of du for intercept trajectories with small semi-range angles,
especially for a manned interceptor vehicle. For the two cases
shown in Fig. 6-2; it can be seen that for a given B2 the
acceleration is more than doubled, when the semi-range angle is
halved.

an o *
Erfect of p, On Tx' The same reasoning that was used to

»*
snzlyze the effect of ﬁu on 'I’h1 is used for the effect of Bu on '1‘x

(Fic. 6-3). Here again, the effect of Bu is more pronounced for
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the smaller semi-range angle, and both curves will eventually
approach a maximum value of excess time. An inocrease in Bu from
one to three results in an increase in T:'of only about 3% and 2.5%
for the upper and lower curves respectively. Although this small
percent change might be important in some cases, we can safely say
that in general Bu is not an important factor as far as time is
concerned.

Effect of B on Thl. Figures 6-4 and 6-5 are plotted from

computer data obtained by varying P and holding the other variables’

fixed as follows:

Is = 250 seconds
n = 10

Bu = 3.0

k = 3

Figure 6-4 shows that for each set of intercept conditions there is
an opivimum value of B which results in a minimum value of Thl'

These minima are 1.8 and 1.6 for the upper and lower curves
respectively. However, since the curves are quite flat in these
regions, a value of 1.5 was arbitrarily chosen as a representative
value of the optimum 8. The existence of these optimum values can de
explained by considering Eq (4-44), which shows that the burning
times of the boost-phase stages are inversely proportional to 8,

and the equation

Th,=p0Y%"Y (4-8¢)
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As B is first increased, the burning time shortens, and the

velocity loss due to gravity ( étb ) decreases, thus less fuel

is required to reach a given velocity and V/o decreases. However,
a point is reached where 3 increases faster than V/o decreases. At
this point the thrust required, Thl’ is a2 minimum.

*
Effect of B on Tx' Figures 6~5 shows that an increase in B

results in a larger excess time, and that this time approaches some
limit asymptotically. The same explanation that was used in

digscusgsing the effect of Bu applies here also. We can say that

lim (interceptor flight time) = (free flight trajectory time)
p—>ao

which means that for an infinite acceleration we can attain the
theoretical launch velocity at the earth's surface and "coast"
along the trajectory from the ground up. An increase in f from 1.2
to 1.5 results in increases in T; of approximately 10% and 287 for
the upper and lower curves respectively. This means that a
considerable advantage is gained by using a high value of'B, for the
intercept trajectories with larger semi~range angles, 4>mo’ where

¥

Txf wight be critical.

Effect of n on Thl. The data used to plot the graphs of Th1 vs

n (Fig. 6-6) was obtained by holding the other variables fixed as

follows:
IS = 250 seconds
Bu = 3.0
B = 1.5
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k = 3
The curves show that advanced structural design technicues (highexr n),
result in a great reducticn in Thl’ but that a point of diminishing
refurns will be reached, and the curves approach a limiting value.
This limiting value is unattainable since as n approacihes infinity,

the stage weight is equal to the weight of fuel. This assumes that

no structure is required to carry this fuel. The structural factor

has no effect whatsoever on excess tine.

Effect of Is on Thl' The curves in Figs. 6~7 and 6-8 were

obtained from computer data with the other variables fixed as follows:

Bu = 3.0
B = 1.5
n = 10
K = 3

Figure 6-7 clearly shows why great emphasis is placed upon discovering
new and exotic rocket fuels. For example, an increase in Is from 200
to 225 seconds results in decreased thrust requirements of approximately
50%, and an increase in Is from 225 to 250 seconds results in a further
decrease of approximately 40%.

* *
Effect of Is on Tx' Figure 6-8 shows that Tx is practically

a linear function of Is' This can also be seen from the equation

&= ;’5?3" { 25;1) (4-44)

; 4 F(%Y
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Thus as Is increases, burning time increases which results in a
greater velocity loss due to gravity, and therefore causes a
decrease in Txf. For the intercept condition 6H:45:60, an increase
in I8 from 200 to 225 seconds decreases T;e by approximately 2.5%,

but this small change is insigpificant when compared to the 50%
saving in Thl'

Combined Effect of Changes in IB and n. For comparison

purposes, the effect of combinations of optimistic and pessimistic values
of Is and n upon Th1 for the 6H:45:60 intercept are determined.

These results are shown in Table II.

Table II
Combined Effects of
Specific Impulse and Structural Factor

on Overall Thrust Requirements*

Specific Structural
Impulse (sec.) Factor Thy
8 796
200
20 251
8 45
350
20 30

* Note:  For 6H:45:60 intercept, B = 1.5, By = 3.0 .
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*
Effect of ¢ IS and ¢ onTh) and T_.  Figures 6-9, 10,

and 11 show ths effect of launch site position, ¢ Ls * o0 'I‘h1 for
m

various intercept points on the 6000 nautical mile warhead trajectories.

*
Figures 6-12, 13 and 14 are the curves of Tx vB #’LS which correspond

L

indicate

to the Th, curves. On the Th, graphs, the dotted lines (°"""'"")
t

*
he approximate position of lines of congtant T (isechrones):

X

The points marked with a star ( * ) are those points where the
maximum acceleration of the velocity-match rocket reached 10 "g's".
For all points above the star on each curve, Yu is greater than 10
"g'g".

Many of the Thl curves appear to approach horizontal and vertical
assymptotes. As the launch site is moved up-range from the warhead
apogee, ¢>moa approaches 4’wo and the interceptor and warhead
trajectories will eventually coincide and determine the horizontal
limit for Thl' The vertical limit occurs when 4>mo is equal to zero.
Bowever, this is simply a vertical trajectory. The interceptor
velocity, Vor ? at the intercept point therefore approaches zero as
¢’mc approaches zero, which results in a high Av, and consequently z
much larger velocity-match rocket is required. Thus a much heavier

boost-phase rocket with higher thrust is required for these cases.

Illustrations of the Use of the Graphs. To illustrate the use

of the curves, let us suppose that we have a 10,000 pound ( m )

manned interceptor vehicle, and desire to intercept a 6000 n.m.

minimum-energy warhead trajectory at a point 0.45 radians ( ¢>'I )

down-range from the apogee. We also select a launch site that is 0.23

redians ( ¢ up-range. By entering Fig. 6-10 at -0.23 on the

\

Ls /
m
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abscissa, proceeding vertically upward to the curve labeled 0.45,

and then horigzontally to the ordinate, we find that Th, = 105. We

1
also see that the maximum acceleration is less than 10 g's and that
the excess time is between 300 and 600 seconds. By using the same
procedure, and Fig. 6-13, we find that 'I‘;e = 410 seconds. The first
stage boost thrust required is

T, = Tyom o= (105)(10,000) = 1,050,000 1b

The overall weight of the interceptor system is

7
M - .B_l - 3 0105000 = 700,000 1b

As a second illustration let us suppose that our restrictions
are T:' = 600 seconds and v = 10 g's, and we want to intercept
a 6000 n.m. high-angle warhead trajectory. Then by referring to Fig.
6~11 we see that we are restricted to operate in the area between the
€00 second dotted line and a curve joining the stars. This area
defines the possible combinations of intercept point and launch site,
and the corresponding values of Thl that meet the restrictions.
Furthermore, suppose we have a 5000 pound interceptor vehicle, and a
first-stage booster rocket with 1,000,000 pounds of thrust, giving us
a Thl of 200. We are then further restricted to launch sites and
intercept pointe below this horizontal line on Fig. 6-11. Figure

6-11a shows how these restrictions can limit the choice of intercept

points and launch sites.
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By comparing Figs. 6-9, 10; and 11 it is seen that as we
progress from the low angle to the minimum energy to the high angle
warhead trajectories, time and g-limitations become less restrictive
but kigher values of 'I'h1 are required. The curves of T: (Figs. 6-12,
13, and 14) are also useful for determining the possible launch sites
and intercept points for a given time restriction. If, for example,
we detected an enemy missile on a 6000 n.m. minimum energy trajectory
immediately after it was launched, and we required a minimum of 700
seconds to launch our interceptor system, then we are restricted to

use values of cﬁwx and ¢LS on the portions of the curves above
m

a horizontal line at 700 seconds (Fig. 6-13).

Figures 6-15 through 6~20 show basically the same information
for the 4000 mile warhead trajectories that was shown in Figs., 6-9
through 6~14 for the 6000 mile trajectories. The dotted-line
isochrones are for T:' equal to 300 and 450 seconds. The absence of
stars on some of the curves indicates that 10 "g's" was never exceeded
for these cases. These curves show three important differences for
the shorter range warhead trajectory : maximum acceleration is not
ag restrictive; lower thrusts are required; and time is much more
critical. Figures 6-18, 19 and 20 show that for some intercept
points near the warhead apogee, T; becomes negative. This means that
the interceptor flight time is greater than the warhead flight time,
and that the interceptor must be launched before the warhead for these
cages. Since this is nuite impractical we can say in general that
for shorter range enemy missiles, the intercept points must be located

further down range, than for longer range trajectories. It is also
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reasonable to assume that the interception of an 8000 mile missile
would: impose more severe g-limitations; require higher values

of first-stage thrust; and increase the excess time.

Summary of Results

1. The thrust to initial weight ratio of the velocity-match
rocket, Bu has a negligible effect on overall thrust reqguirements.

2. Bu has an appreciable effect on maximum accelerations for
trajectorieé with small semi-range angles.

3. Bu has a negligible effect on excess time.

4. There is an optimum value of thrust to initial weight ratic of
the boost sub-~rockets, P, for each intercept condition which
minimizes overall thrust requirements.

5. For values of p close to the optimum value, maximum
accelerations are well below human tolerance limits.

6. A small increase in P causes an appreciable increase in excess
time, especially for small semi-range angle trajectgries.

Te Small increases in both structural factor and specific impulse
greatly decrease overall thrust requirements.

8. Specific impulse has a much larger effect on thrust
requirements than structural factor does.

9. An increase in specific impulse causes a negligibly small
decrease in excess time.

10. Structural factor has no effect on excess time.

11. Excess time decreases as the launch site and infercept

point are moved up-range.
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12. Thrust and weight requirements increase as the launch site
is moved down-range and intercept point is moved up range.

13. Thrust and weight requi;ements increase as the warhead
trajecfory altitude increases.

14. Excess time increases as warhead trajectory altitude increases.

15. Higher thrusts and weights are required to intercept longer
range trajectories.

16. Excess time decreases as warhead range decreases.

17. Maximum acceleration increases as warhead range increases.

18. Time, thrust, and "g" limitations determine the possible
intercept points and launch sites for a given warhead trajectory.

19. The validity of the assumptions made in obtaining the numerical
results was verified for a typical intercept trajectory. This
makes the graphs a useful tool for obtaining aporoximate thrust
and wsight requirements for any size of interceptor vehicle,
for the intercept conditions considersd.

Conclusions

The trajectory-match intercept technique appears to be

theoretically feasible:

1'

If first stage rocket engines of sufficient thrust to boost the
interceptor vehicle onto the intercepyt trajectory are made
available. Minimizing the weight of the interceptor ?ehicle is
a major factor in satisfying this requirement.

If sufficient warning time is available from ballistic missile

radar or satellite reconnaissance vehicles.
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3. If low reaction times are possible for the interceptor system.
One major requirement to meet this restriction is the use of
golid or storable-liguid propellants.

4. If guidance systems are developed which can meet the requirements

cf this intercept technique.

Therefore it is recommended that further study of this technique
be made for other warhead trajectories and for different combinations
of the boost and velocity-match stages. This study could also be
extended to the more realistic situation of a non~planar intercept
over a rotating earth.

In addition, if the interceptor is to be manned, a stady should
be made of the methods which could be used for recovery of the vehicle.
Two possibilities are a controlled skip-glide re-entry or a parachute
recovery.

Even if all of the above requirements are met for this system,
the final decision as to whether or not this intercept technique is
the answer to the ICBM defense problem must be based upon an
operational analysis, in terms of cost, technical and military
manpower requirements, logistics, and many cther factors. Thus,
the trajectory-match, ICBl intercept technique appears to be
theoretically feasible, but a more comprehensive sfudy is necessary to

determine if it is militarily practical.
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Appendix A

Computer Programs

The computer programs used in this analysis are written in IBM
1620 Fortran Language (Ref 5) for use on the IBM 1620 digital
computer. The instructions for the use of these programs are given
in this appendix. The actual Fortran Language Program follows eacﬁ
set of instructions. The p#per tapes for these computer programs
are on file with the Mechanics Department of the Institute of
Technology, Wright-Patterson Air Force Base, Ohio.

The values of r_and u used in these programs are (Ref 7:430):
T (average) = 3437.747 nautical miles
p = 62,628, (nautical rm'.lezs)3/(second.)2

Program: CM-3 General Trajectory Evaluation

This program gives the values for r, v, and y for any desired
position, ¢ s on the ballistic trajectory. It also gives the time of
flight between apogee and ¢ .

Operating Instructions.

1. Vhen the computer prints the number (1), the inputs are ¢ o
and Yo of the trajectory.

2. When the computer prints the number (2), the inputs are the
general angle Sb s which defines the point to be investigated,
and A CP s which allows the computer to automatically increase
¢ by 4 49 after each computation. This gives the option of
determining the values for regular intervals on the trajectory.

However, if only one point is desired, make A ¢ greater than
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<¢ o’ since some value of A Y must be inserted into the computer
TMemoxy. When ¢> beccmes greater than qbo, the computer sgets qb
equal to«¢ o’ calculates the values, and then returns to the start of
the program (ready to accept new values of ‘#’o and Ya%

3. The results are typed in the following order: ¢, T, f; yy and v.

4. To change either ¢ or 0¢ at any time, turn "Sense Switch 1" on.
The computer will then print the number (1), and new values can be

inserted in the memory.

"3
P
b
¥

<

.y ™ o~ - M
sanouise Teoacpsn (a3

U=62628,
RO=3437 747
5 M=1
PRINT M
ACCEPT.P0,GA
IF(POY 1,2,1
1 E=1,0/(COS(PO)+(SIN(PO))*(CNOS(GA))/(SIN(GA)))
HS=U*RO* (1 ,0-E*(COS(PO)))
H=SQR(HS)
Wl 0= (E**2,)
Gm (H**3, )/ ((U*¥*2,)*W)
P=(H**2 ,)/U
Z=(SQR(W))/ (1,0-E)
Q-z 0/ (SQR(W))
6 M=2
PRINT M
ACCEPT,X,DELTX

(
/
W

8 Swm(- E)*(SlN(X))/(l.O-E*(COS(X)))
Y=Z*(SIN(X/2,))/(COS(X/2,))
T-G*(-S+Q*(ATN(Y)))
ReP/(1,0-E*(COS(X)))

A=ATN(S)

v=H/ (R*(COS(A)))

PRINT, X, T,R,A,V
IF(SENSE SWiTCH 1) 6,7
7 1F(X=P0O) 4,54

L XeX+DELTX

IF(Xx-P0) 8,5,3

3 X=P0O

GO T0 8

END
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Program: CM-11 Combined Boost-Phase and Intercept Analysis

This program contains the intercept and trajectory geometry,
Tocket equations of motion, and boost-phase approximation equations.
These equationsg are'combined as outlined in Chapter IV to give the
complete solution to the intercept problem.

Operating Instructions.

1. When the computer prints the number (1), the inputs are n,
. LB and Bu.
2. When the computer prints the number (2), the inputs are B and k.
3. When the computer prints the number (3), the inputs are <# wo
and ono
4. When the computer prints the number (4), the input is ¢>w1 .
5. When the computer prints the number (5), the input is quo.

6. Now the computer solves the problem. The results (for k = 3)

will be typed in the order listed below:

¢ moa Ymoa ¢b <#mla ‘PL:A

tb ktb Y Vu )N
u
wu Yo wl w2 V3
Thu 1 Th2 Th3

Te The computer will pauge after each line, and the start button
must be pushed to continue the computation.

8. When the computation is complete, the operator has several
options as to which pari of the program the computer will go

to for the next set of intercept conditions to be investigated.
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Tnese options are controlled by the sense switches as follows:

Change SW 1 SW_2 SW
¢ oft _— -
mo
P wr. On Of £ -
B or k On On off
P o OF Yoo on On on

Program: Ci-12 Runge-Kutta Integration

This program is designed to numerically integrate the boost-phase

rocket equations of motion for a three stage rocket as a check on the
(o]

results of the boost-phase approximations.

Operating Instructions.

when the computer prints the number (l), the inputg are Is, By

and tb.

When the computer prints the number (2), the inputs are Thyy A

3? and A3.

When computer prints the number (3), input tv (duration of

Th2’ A2, Th

vertical flight segment), a (angle between thrust vector and
velocity vector during tip-over phase), and I' (flight path angle
where tip-over is complete and a is set equal 1o zero).

‘“when computer prints number (6), input initial conditions for:

t (usually zero); ¢ (usually zero); t (usually zero);

¢LS (usually - ¢

Turn Sense Switch 1 on.

. 7 . ~ E
moa)’ r (usually ro), and vy, (usually Tpé).

“hen computer prints number (4), input At, the incremental time

interval of the integration.
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7. When computer prints number (5), turn Sense Switch 1 Off.
Then input At (again), and h, (the factor which determines
the print-out interval). The results are printed out for
time intervals equal to hA t, and are in the following order:

t, 75 sy Ty ¥y and v.
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Fortran Langvage Trogram Cl-11 -

D=3,
TD=‘ QOE-! 2
TR=1.0
U=62628,
RE=3437,747.
PIE=3,1415927
Ma |
PRINT,M
ACCEPT,F,Z,BU
21 M2
PRINT,M
ACCEPT,B,Q
20 Me3
PRINT,M
ACCEPT, POW, GOV
SPOW=S IN(POW)
CPOW=COS(POW)
SGOWs=S I N(GOW)
CGOW=COS (GOM)
AA=SPOW*CGOW/ SGOW
Ew=1,0/ (CPOW+AA)
HWS=U*RE* (1 ,0-EW*CPOW)
HW=SQR (HWS )
AB=HWS/ U
19 M=l
PRINT,M
ACCEPT,PW|
b SXA=SIN(PWI)
CXA=COS (PW1 )
AC=1.0-EW*CXA
AG=EW*SXA/AC
R1=AB/AC
GI=ATN(AG)
CG1=COS(GI)
VWi=HW/ (R1%*CG 1)
16 M=§5
PRINT M
ACCEPT,PO
ZZ=((R1/RE)-1.0)/AG
CPO=COS (PO)
ZA=SQR(ZZ*Z7+1.0)
CAZ=CPO/ZA
SAZ=SQR(1.0-CAZ*CAZ)
AZ=-ATN(SAZ/CAZ)
ZB=ATN(22Z)
Pl=AZ-ZB
SP1=SIN(PI)
CP1=COS(P1)
E=AG/ (AG*CP 1 +SP 1 )
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HS=U*RE*(1,0-E*CPO)
H=SQR(HS)

Vi=H/ (RI*CGI)

DV I=VWI-V!

GC=U/ (RE*RE)
EV=Z*GC
DLU=DVI/EV

DU=EXP (DLU)

WOU= (F-1,)*DU/ (F-DU)
WUsWOU-1

TBU=EV*(DU-1,)/ (GC*BU*DU)
QQ=EV*EV*(DU-1,-DLU)/ (GC*BU*DU)
AJ=(P1E/2,)-G!
SAJ=SIN(AJ)

CAJ=COS(AJ)

TAK=SAJ/ ((QQ/R1)~CAJ)
AK=ATN(TAK)

DP1=P | E-AK—-AJ

SAK=S IN(AK)
RIA=R1*SAJ/SAK
GlA=AK-(PIE/2,)
CGI1A=COS(GIA)
HA=V | *R I AXCG | A

HAS=HAXHA

REC=HAS/Y
ET=(VI*V1/2,)-(U/RI1A)
EAS=1 .+ (2 *ET*REC/U)
EA=SQR(EAS)

AL=U*RE

AM=UXRIA

CPOA= (AL-HAS )/ (AL*EA)
CP | A={AM~HAS )/ (AMXEA)
SPOA=SQR(1,~-CPOA*CPOA)
SP1A==SOR(1.~CPIA*XCPIA)
POA=ATN(SPOA/CPOA)
PIA=ATN{SPIA/CPIA)
AFL=POA-P | A+DP |
TGO=EA*SPOA/ (1,.-EA*CPOA)
GO=ATN{TGO)

PB=0,9*POA

DA=0, 1 *POA

SPB=SIN(PB)

CPB=COS(PB)

12 ANe={ ,-EA*CPB
TGB=EA*SPB/AN
GB=ATN(TGB)

CGR=CONS(GBR)

GBR=GB~DA
SB=SIN(GBR)
CB=COS(GBR)

RB=REC/AN

VB=HA/ (RB*CGB)
VX=VB*CB

8 DD‘D"‘ [
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DL=L0OG(D)

UK=EV*Q
UU=EV*UK,

Qw=(Q-1,

DB=D*B

YY=DD*CB/ (DB*DL)
YZ=SOR(1,~-YY*YY)
AP=ATN(YY/YZ)
A=AP+GBR

SA=SIN(A)

CA=C0OS(A)
FD=UK*DL*CA-VX

|F (FD*FD~TD) 1,1,2
2 DFA=DD*CA+YY*(DD~DL)*SA/YZ
DF D=UK*DF A/ (D*DD)
D=D-(FD/DFD)

GO 10 8

1 AU=2 . *(DD-DL)+QWXDD*DL
AR=UU/ (2 ,*GC*DB)
XC=ARXCA*AYQ
YC=AR*SA*AU-AR¥Q*DD*DD/DB
DA=ATN(XC/ (YC+RE))
SDA=SIN(DA)
RBA=XC/SDA

IF ( RB"RBA) 3 07 ’9

3 RC=RBA-RB

GO TO 10
9 RC=RB-RBA

10 IF(RC=TR) 7,7,11
11 RB=RBA
CPB=(1,~REC/RB)/EA
SPB=SQR(1,-CPR*CPB)
PB=ATN(SB/CPB)

GO TO 12

7 TB=UK*DD/(GC*DB)
G00=GO

PBB=PB

PlAA=P | A
AFL I=AFL
PRINT,POA,GOO,PBB,P|AA,AFLI
PAUSE

DBB=DB

DBU=DU*BU

ALF=A
PRINT,TBU,TB,DBB,DBU,ALF
PAUSE
AWs (F-V,)*D/{F-D)
WOB=AW*AV/
ASel.—(1./AW)
AU=B/AS

THU=BU*WOU

IF(Q=-2.) 13,13,1k4

13 W1B=WOB*AS
W28=(\IOB~WI1B)*AS
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WO=WOB*WOU .
W1xW1B*\/0U '
W2=W2B*WOU
PRINT, WU, WO, W1, W2

PAUSE

TH1=WO*B

TH2mAU*W2
PRINT, THU, THY', TH2

GO TO 15

14 WOB=WOB*A
W1B=WOB*AS
W2Bm (WOB=W1B )*AS

W3B= (WOB—W1B=W2B ) *AS
WO=WOU*WOB

W1wWOU*W1B

W2=WOU*W2 B

W3=WOU*W3B
PRINT,WU, WO, W1 ,W2 ,W3
PAUSE

TH1=WO*B

TH2mAU*W2

TH3mAU*W3
PRINT, THU, TH1,TH2, TH3

15 PAUSE

|F(SENSE SWITCH 1) 17,16
17 IF(SENSE SWITCH 2) 18,19
18 IF(SENSE SWITCH 3) 20,21
END




e oram Cv-12

EL=L0G(10,)
U=62628.
FM=6080,2011
RE=3437 ,747
DIMSNSION A(Lk),E(4),C(H),TH(3),Q(5),X(5),Y(5),S(3)
AL=0, .
GC=U/ (RE*RE)
M=1
PRINT,M
ACCEPT,Z,B,TB
EVeZ*GC
ZB=2/B
M=2
PRINT M
DO 3 Km=1,3
3 ACCEPT,TH(K),S(K)
17 Me=3
PRINT,M
APPCDT

(V% V% ai SN

DD=0,
AZ=SQR(0,5)
A(‘ )"005
A(2)=1,-AZ

TV ,AA, AP

PRINT,M
DO 80 I=1,5
80 ACCEPT,Y(I)
ACCEPT,GM
L=11
K=1
Ne
Me=1y
PRINT,M
ACCEPT ,H
J=1
37 V=SQR(Y(3)*Y(3)+Y(5)*Y(5)*Y(2)*Y(2))
GO 70 (52,53,54),N
53 D=0,
TF=GM~Y (4 )
Ne 3
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GO TO &

5S4 TA=TF+Y (k&)
GO TO 70
52 VV=V*FM
HT=Y (5 )-RE
HA=HT-86,67
HB=HT-6,0855
HC‘HT"] 3 ol+87
HD=HT-26 ,658
HE‘HT"280783
HF=HT-43,586

IF(HA) 18,18,19

18 RH=1 ./ (EXP(EL*(2.624+,10818048*HT)))
GO TO 20

19 RH=1,/ (EXP(EL*(12.,+.01142854%HA)))
207 IF (HB) 21,22,22
21 AM=,18362-.,0040095*HT
GO TO 40

22 IF(HC) 23,23,24
23 AM=,15922
GO TO 4O

24 IF(HD) 25,26,26

25 AM=,15922+.0018602%HC
GO T0 &0
26 IF(HE) 27,27,28
27 AM=,18186
GO TO 40

28 1F(HMF) 29,30,30
29 AM=.18186-.0028798*HE
GO TO 4O
30 AM==,13023
LO AN=V/AM

IF(AN~,6) 31,31,32
3! £ New ')5
GO TO 4
32 IF(AN-1,6) 33,34,34
33 CD=AN-.35
GO TO L)
34 1F(AN-2,9) 35,36,36
35 CD“ 073—03*AN
GO TO Ly
36 CD=,86

41 D=, 5*XCD*RH*VV*YV*S(K)
44 TA=AL+GM

70 ST=SIN(TA)
CT=COS(TA)
SG=S IN(GM)
CG=COS(GM)
X(1)=1,
GO TO (73,74,75),K
73 Ts=Y(1)
GO TO 76
74 TS=Y(1)~TB

GO TO 76




AV we 1 '
\r:\‘.i CEM ) l))._-e

75 TS=Y(1)-2,%TB

76 X(2)mEV*(CT-D*CG/ (TH(K)))/ (Y(5)*(ZB=TS))=2,*Y(3)*Y(2)/(
X(3)=EV*(ST-D*SG/ (TH(K)) )/ (ZB=TS)+Y(5)*Y(2)*Y(2)-U/(Y(5)*Y
X(h)=Y(2)

X(5)=Y(3)
DO 1 1=y 5
w1=A J)*(x(i> ~E()*Q(1))

I)-Y( Y+H*W

1 Q4 )BQ(I)+3 *WZ-C(J)*X(1)

IF(Y(2)) 71,72,7"
7V TG=Y(3)/( (5)*Y(¢))
GM=ATN(TG)

72 J=J+1

IF(J-b) 37,37,5
5 J=i

'F(Y(')-TV) 607:7
7 IF(GM-AP) 8,8,9
9 AL=AA
GO T0 10
8 AL=0,
10 IF(Y(IQ-TB) 6,11,11
11 1F(Y(13-2.%18% 97,98,98
97 K=2
IF(L-22) 95,6,6
95 L=22
G0 TO 99
98 IF{Y(1)-3.*TB) 96,93,93
96 K=3
IF(L-33) 94,6,6
94 =33
GO TO 99
93 Kmh
Lelply
99 PRINT,L
6 IF(SENSE SWITCH 1) 12,13
12 M=§
PRINT,M
ACCEPT,HG,HH
H=HG
HP=mY (1 )+H* (HH-1,)
13 IF(Y(1)-HP) 14,1
15 PRINT,Y(1) Y(MS z .GM,V
HP=Y (1 )+H*HH
14 IF(K-3) 50,50,16
SO 1F(N-1) L9,49,37
49 IF(D-DD) 38,3939
39 DD=D
GC N 37
32 7 (D/(TH(K))-.0001) 51,37,37
51 -2
GO TO 37
16 IF(SENSE SWITCH 3) 3,17
END
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Appendix B

Check on the Validity of the Boost~-Approximations

A numerical integration of the equations of motion Sf a rocket
was performed for cne intercept trajectory to determine the validity
of the many approximations made in Chapter IV.

The intercept point was chosen to be 0.45 radians down-range
from apogee on the 6000 n.m. minimum-energy trajectory. For this
point the following information was obtained by using computer
program CM-3 (Appendix A):

I = 3917.301 n.m.
Y1 = -0.23128 radian
Voo = 3.3681 n.m. per sec

The design program, ClM-1l1l, was used to obtain the following
information:

Computer inputs.

Is = 250 sec

n = 10

By = 3.0

B = 1.5

k = 3

¢mo = 0.5C0 radian

Computer print-outs.

¢ = 0.50139 rad

moa

123




GAW Mech 61.-2

Yooa = 0.50623
¢ b = -.41069
¢mn = 0,18201
tbu = 32.498
ktb = 319.87
v = 4.1637
Vu = 4. 9178
A = 0.73021
Wu = 0.76462
Y, = T2.974
‘Pl = 51.872
Wz = 15.000
W3 = 4. 3376
Thu = 5.2939
Thl = 109.46
Th2 = 31.654
'I‘h3 = 9.1534

By inputting the corrected semi-range
angle (Ymoa) for the intercept trajectory,

for points along this trajectory, by using

rad
rad
rad
rad
sec
sec
Hg"
"g"

rad

angle (Sbmoa) and launch
a print out was obtained

program CM-3.

An interceptor vehicle weight of 10,000 pounds (mp) was chosen,

and by using the above data the boost-stage thrusts, stage weights,

and overall system weight were determined to be:

T = 1,094,600.

T a 316,540,

1v

1
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T, = 91,534. 1b
M = 729,740, 1b
m = 518,720, 1b
my = 150,000, 1b
my = 43,376, 1b

The burning times of the three boost stages are equal, and are

b = 106.62 sec
3
The total impulse can be calculated by multiplyirg the thrust

of each stage by the burning time of each stage.

Stage 1. 5.84 x 104 ton seconds
Stage 2. 1.68 x 10t ton seconds
Stage 3. 0.49 x lO4 ton seconds

Total €.01 x 104 ton secends

The equations of motion used are (Ref 2:17)

> ; / : A
r‘-—r#’a:-—M—(Tsm €+ Lcos v-0, sin ‘o:)"?‘z

ré +2f*4'>—-ﬁl—(’7_cos 68 —Lsin¥ -D, cos ‘r)

vhere T = radius from center of earth
¢> = angle from launch site to radius vector
M = instantaneous mass of interceptor system

T = thrust




GAW Mech 61-2

L = lift (neglected for this investigation)
D = drag
= earth's gravitational constant
e = angle between thrust vector and local horizontal

Y = angle between velocity vector and local horizontal

These equations are broken down into four, first-order, simultaneous

differentiel equations for the computer program (Ref 9: 110-120).
Some estimate of the drag is nesded for these equations, since

the shape and size of the interceptor system is unknown. A curve

of C; vs M (mach number), (Ref 2:43), for a cylindrical rocket with a

40o apex nose cone, was approximated by straight line segments which

resulted in the following estimate for C

a
C, = 0.25 0 < M < 0.6
Cq = 0.25+ (M -~ 0.6) 0.6 < M < 1.6
Cg = 1.25- (M - 1.6) 1.6 < M < 2.9
c; = 0.86 2.9 < M

The drag is given by the equation
/ 2
D=5 CaPv A

where D

aerodynamic drag, 1b
o = coefficient of drag
o} = atmospheric density, slug per ft3

v = velocity, ft per sec

A = cross sectional area, ft2
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Now since the coefficient of drag is a function of mach number,
and mach number is a function of the speed of sound, we need an
estimate for the variation in speed of sound with altitude. This
was cbtained by fitting straight line segments to a curve of a
versus b, where b is the height above the earth (Ref 1:24). By
doing this we find that

a = 0.18362 - 0.0040095 b 0 <b < 6.0855

a = 0.15922 6.0855< b < 13.487

a = 0.15922 + 0.0018602 (b - 13.487) 13.487 < b € 25.658

a = 0.18186 _ 25.658 < b < 28.783
a2 = 0.18186 -~ 0.0028798 (v - 28.783) 28.783 < b < 43.586
a = 0.13923 43.586 < v

where a is the speed of sound in nautical miles per sacond, and b is
the height above the earth in nautical miles.
In a similar manner a curve of log10 p versus b (Ref 1:21) is
approximated by
logyg # = - (2.624 + 0.1082 1v), b < B86.67

logyy P = - { 12,0 + 0.01143 b), b > 86.67

The remaining factor in the drag equation is A, the cross
sectional area of each stage. We must obtain estimates for all three
stages since burned-out stages are jettisoned. To do this, first we
assume that the propellant density is 0.06 1b per in3. This is an
average of densities for some commonly used solid propellants
(Ref 10: 312, 313). With this density, and the data on stage weights,

the approximate volume of each stage is found to be:
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Stage 1. . .  5,000. £t
Stage 2. . . 1,445. £t

Stage 3. . . 420. £t

With the volumes known we can now agsume some dimensions for the stages

and estimate the cross sectional areas. These dimensions are as

follows: -
Selected Approx. Approx.
Arvea-tt® Diam. £t Length ft
Stage 1 5 10 67
Stage 2 50 8 29
Stage 3 40 7 11

The velocity-match rocket and interceptor vehicle are, of course,
mounted on top of the three boost stages but it is assumed that their
cross sectional aréﬁs are equal to or less than the third toost-stage
area.

The approximate equations for speed of sound, coefficient of
drag, and atmospheric density are built into computer program CM-12
(Appendix A), along with the equations of motion. With this program,
and the calculated rocket parameters, a trial and error method was
used whereby different values of the launch parameters were selected.
The values of rb, Vi and Yy Were then compared with points on the
desired intercept trajectory printout, to determine new trial input

values. After several trials, the following results were cbtained:

Launch parameter inputs

tv = 24 seconds
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@« = -0.08 radian (4.6°)
I = 0.8 radian (45.8°)

where tv is the duration of the vertical flight segment
a is the angle betwesn the velocity vector and the thrust
vestor
r is the ﬁngle where tip-over segment ceases, and the

zero-1ift (thrust along the velocity vector) segment
begins. That is, when y reaches a value of 0.8 rad,

a is set equal to zero.

Computer printouts

C¥-12 (actual) CM-3 (desired) Approx.
Error

T, 3637.12 n.m 3639.22 n.m. 0.06%
Yo 0.44583 rad 0.4)464 rad 2.57’{
v 3.0322 n.m. per sec  3.1342 n.m. per sec 3.3%

The approximate error in overall weight (or thrust) due to the
error in required burnout velocity can be found as follows. It can

be shown that for a k-stage rocket in field free space,

am v k
Y, [ n-De™™ ]

%3 q[(n-Dl)e_'%:'_‘i

where 9’0 is the overall mass (or weight) ratio corresponding to
1
Dl,
Dl is the sub-rocket effective mass ratio required to reach

burnout velocity L
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9/0 and D, correspond to burnout velocity Ve

2

If we use the preceding computer results, and the above equation, with

n =
I?l =
v, =
v, =
u =
k =

it is found that

19

v 401621
‘E‘ - 1.5 = 2’7758

3.1342 n.m. per second (desired burnout velocity)

3.0322 n.m. per second (actual burnout velocity)

Isg = 2 (6)0802.2 = 1_.325 n.m. per second

3

l"/ol - 0.8987 = actual weight
_"4/ 5 required weight

2

This indicates that thare is an approximate error in the overall gystem

weight of 11%.

Since the first stage thrust is eimply B times the

overall weight, this means that 11% more thrust is required to reach

the desired burnout velocity, or approximately 1,220,000 1b instead of

1,094,600 1b.

It is felt that after several more trials, a more nearly optimum

flight path could be determined, and that the velocity error could be

reduced. However, these results indicate that the assumptions used

in the mathematical development of Chapter IV de not invalidate the

numerical results of Chapter VI. In any case, for heavy interceptor

vehicles, where thrust is probably much grester than drag, the graphs

in Chapter VI can be used to determine excellent estimates of the

thrusts required for different intercept conditions.
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