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Abstract

Three related successive approxima-
tion schemes for determination of optimal
trajectories are developed with particular
attention to treatment of inequality con-
straints on control variables. The first
is a gradient method based upon a Eucli-
dean metric with appropriate modification
for handling of inequalities; the second
employs a Min operation without use of a
metric; and the third features a special
integral-absolute value metric. The Pon-
tryagin Principle is employed for con-
struction of successive control function
approximations. All three schemes employ
an adjoint system for computation of in-
fluence functions and a 'penalty function'
technique for handling of constraints on
terminal values.

Illustrative calculations are pre-
sented for planar Earth-Mars transfer
with rocket thrust variable between lim-
its Ty < T { Tp. The relative merits of

the techniques are discussed from the
viewpoint of digital computation.

Introduction

Recent work on successive approxima-
tion techniques for numerical solution of
variational problems involving differen-
tial equations as subsidiary conditions
has provided a clear indication of the
practical usefulness of this class of
methods when employed in conjunction with
high speed digital computation1:2:3:4 In
the present paper we report some recent
developments of techniques which are ap-
plicable to problems featuring inequality
constraints imposed on the control varia-
bles.

Problem Formulation

The basic system of differential
equations describing the process of inter-
est is presumed given in first order form

1

)Ei - gi(xl, =% xn) ylx i yZ’ t) (1)

The variables xj, i =1, - -, n, are
state variables and the variables

Yk, Kk = 1, - -, £, are control variables.
The functions gji are assumed to possess
continuous first partial derivatives with

respect to their arguments.

Initial conditions =x;(t.) = ¥; ,
o
i=1, - -, n, are prescribed. In addi-

tion some of the terminal values x;(tg) =
kif may also be prescribed. The terminal

time ¢tg will usually not be fixed; thus
its value is regarded as 'open' for opti-
mization purposes.

We wish to minimize some function

P = P(xlf’ S Ty X, tf) (2)

N

of the terminal values of the state varia-
bles and the terminal time. This is the
general problem of Mayer, encompassing a
large class of current problems in flight
performance, control, and guidance. It
has recently been observed by Hoelker5
that similarities in mathematical treat-
ment of these problems provide a strong
influence toward unification of future
efforts.

‘Penalty Function' Treatment Of
Terminal Constraints
We may relax the requirement for
meeting fixed terminal conditions on the
xi{ 1in favor of an approximation: the

addition of terms to the function P of

the form



m
P P+ 3 Z Kj(xjf - kjf)z, (3)
j=1
l(j >0

(The summation ranges only over those
variables subject to specified terminal
conditions.)

The notion underlying this approxima-
tion is that the solution of the prcblem
Min P' will, under appropriate conditions,
tend toward the solution of the original
problem as the magnitudes of the Kj are
increased. This idea is due to Courantb,
Its basis and application are discussed in
some detail in Ref. 3. We may now deal
with the problem of minimizing P' with
terminal values of the x; ‘topen.'

Adjoint System

As in earlier workl’3’7, we employ an
adjoint system of differential equations
in variables MA{ obtained from the line-
arized version of (1)

n Z
. agi agi
bx, = S;; oxy + s;; 5Y (4)
J-l k=1
i=1 - -, n

[The linearization is_in the neighborhood
of yx = yp(t), x; = x3(t), a solution of
system (1).]

To obtain the adjoint system, one discards
the control terms, transposes the matrix
of coefficients, and changes the signs of
the right members:

n

. ng

Moo ¥ 4 tthone O
j=1

0g

The partial derivatives g;i are func-
i

tions of t only, being evaluated along
Yk * Yk(t): S xj_(t) .

The most significant property of ad-
joint systems is given by

n n y/
og
d i
EZ 7\1 bx, = z Z )‘i ayk 5Y) (6)
i=1

1=1 k=1

which may be verified directly by differ-
entiation and use of (4) and (5). Inte-
grating both left and right members of (6)
between definite limits we have

n_ tf
i=1 t
o
t:f n £

Z i z dg.
1
Ki g;; Gyk dt @))

t i=1 k=1
o

*
In terms of a function H defined by

*
H (xl’ T xn: )‘1: - T )‘n:
n
y‘l, ) yz: t) - % )‘i gi (8)
i=l

this may be written:

‘- n t £
J ; N, Bx, =
‘ 1 1
i=l t
o
t £ 2
5 H:'c
<
% ayk Ay, dt (9)
£t k=l
o

We shall need a version of (9) which
incorporates higher order effects, in par-
ticular one for which linearization with
respect to the control variables is a-
voided. Our development from the proper-
ties of adjoint systems follows that of
Ref. 7. Working temporarily with finite
increments Axj = Xj - Xi, AYk = Yk - Yk’
we get from (1)



A, =g (%) + 8%y, = =, X FAX, ¥ FAY, - =, ¥y + Ay, )

- 81(;1: ) ;n: ;1: =% ;l’ t) (10)
From integration of
n n n
d . .
i % A, B, = % LS T % L (11)
1=l i=1 i=]
we then obtain
n tf Y n
g ki Axi - % Ai Axi dt
i=1 ¢ to i=]
o
t:f n
+ % )\i[gi(x1 + By, = 7 X + Axn,
t i=1
o

yl + AY]_, < ;;t + AYtJ t)

- gi(;(-].’ = ;n: ;1: = % ;l: t)] de (12)

1f we employ an expansion of the
functions gy 1in a Taylor series in the
Ax§, 1ncluding a remainder term

gi(;1 + Axl, - - ;n + Axn, ;1 + Ayl, - ;‘ + AYL: t)

- gi(;l’ A ;n: .)-'1 + A)'I; e Y[ + AY‘: t)

n
R og, _ - - -
Sg (xl’ =y xn: "1 + Ayl' =T Yy + AYt’ C)ij
i=1
n n
2
o%gy  _ -
+ 3 g——xjax (x1 + glel, e ey Xt €nAxn,
. 8
=1 s=1

AR 2 T ¥i + Ayy, C)AXijs (13)
3



where 0 < €q <1l,q=1, - -, n, then

(12) becomes

n £

0
) el -| )

[ ]

1=l - t  iel

-, X

xi[gi(xl’ n

- gi(xl’

og; _
) s e

- EEL (—
. ‘1’

3
J

ZZZ

€, i=l j=l =l

-, X

yp t A4y,

Note that the series development assumes
the existence of the second partial deriv-
atives of the gj with respect to the
sgate variables. 1In terms of the function
H defined by (8), the expression (14)
may be written:

’ ;1 + Ayls

-J ;n, ;1:

n!

) ;n’ ;1»

(§1

* -
+ AYE: t) - H (er =

y; + 8y,

+ &A%, - -, §n

= ;g + Ay, t)

s ;Z' t)] dt

) ¥y ©) bx, dt

-, ;z + Ay, t) AX yBX g dt

) ;ll t)] dt

+ ﬁnAxn,

= ;l + AYZ: t)

(14)

(15)

in which only the term of the right member
dominant for small Ayy 1is shown. Since
the functions Xxj(t), A(t) may be re-
garded as known functions of t evaluated
from (1) and (5) for the control functions
¥i(t), the function H* appearing in
(15) may be considered a function of the
Ayk and t only.

Terminal Time Criterion

We employ as trajectory termination
criterion the vanishing of the time de-

d
dc

rivative of the function

P (X T T xn;

] 1]
' 2
+ 2 E»xi Xy

'
P (xli =

t) =

=0

':xn,t»

(16)



This amounts to a one-dimensional search
for the value of tf which minimizes
P'(xlf, - Xng t¢), performed concur-

rently with numerical integration of the
basic system (1). The terminal time tg
is determinedzby a zero of (16), t > t,,

for which d

-3 Pl is negative.
dt

Effect Of Control Variations On The
Function P!

Beginning with some first approxima-
tion for the control functions y. = yp(t)
and the corresponding solution of (1),
xy = X3(t), we wish to obtain successive
decrements in the performance function
P', eventually approaching a minimum. We
assume that this first solutiom of (1) is
terminated according to (16), and we des-
ignate the terminal time ¢ty = t¢. If the
control functions are altered, producing
increments Axj(t) 1in the state variables,
a first order approximation to the incre-
ment in the terminal value of P' |is
given by

AP' - Z g%;—Axi(Ef)
=1 £
n
, \
+ g%; + ZE: gzi x, (€p) | ate (17)
=1

in which the partial derivatives of P'
are evaluated for xj = iif, tg = tg.

But by our choice of tg determined by
(16), the second member on the right of
(17) vanishes.

Referring to (9) and (15) and noting
that the axj(t,) are zero as a conse-
quence of fixed initial conditions on the
xj, we see that if boundary conditions

= - P
A(tg) = oy

(18)
£

are imposed upon the adjoint variables
evaluated along Yyg(t), Xj(t), then the
following form of (15) is obtained:

adl

£
[} * - -
AP = (B (yy + 8y, = = y, + A4y, t)
t
(o)
* -
-H (yl: ST Yy t) ] de (19)

the higher order terms having been
dropped.

Modified Gradient Method

Sketching first the basic gradient
method for obtaining negative increments
in P', we employ (19) for comstruction
of control variations Ayp(t). We wish to
limit the 'step size' in some way as to
guarantee the predominance of first crder
effects. A constraint on the 'distance’
covered in the step as measured in the
Euclidean sense

te

2

sy ldeeal , k=1, - -, 4 (20)

t
[o]

is the conventional means employed. If
the constants ak are taken sufficiently
small, then (19) will be a good approxima-
tion to the actual change in P' and it
is sensible to seek a minimum of (19) sub-
ject to (20).

For this purpose we apply the Pontry-
agin theory7:8:9, the full advantage of
this approach becoming clear as we later
proceed with treatment of inequality con-
straints on the yg. The integrals (19)
and (20) are represented as the terminal
values of variables zj(t), -~ -, zgy;(t)
satisfying the system:

. 2 - 2
z, = Ay zk(to) -0 , zk(tf) - a,

k=1, - --, £ (21)
. * - -
z,0 =H (yp +8y, = =y, + 8y, t)
* - _
-H (Yl; STy Yo t) ,
2441 (Ex) = 0 (22)



Thus a statement in terms of an auxiliary
Mayer problem is obtained: Min z, ,(E,).

Introducing adjoint variables p;(t),
- - pz+1(t) and a function defined
by
£
A 2
= E Py AV
k=1

* —
+ Py Wy + Ay, = = ¥y + Ay, t)

*x — -—
- H (Yl, R Y£’ t)] (23)
we then write the conditions
P, =0 , k=1, -- 2 (20
Piv1 =0 Poyp(tp) =1 (25)
A
H(AY]_: s AYgr Pys = % Pgyye t)
A A A
2 H(Ayll ) AYz) Plx =Ty pE+l’ t:) (26)

A -
The Ayyp = Ayg(t) minimizing zgyy(tg)
are determined from (26), the Pontryagin
principle, whose alternate form is

Min ﬁ
) Ayl

(27)
IS

The expressions (26) and (27) are
equivalent to the necessary condition of
Welerstrass, and represent a generaliza-
tion thereof if inequality constraints on
the Ayyg_are operative, as will later be
the case’>9. 1In the absenge of such con-
straints, the minimum of H sought in
(27) must also be a stationary point,
this following from the differentiability
property of the functions g{ assumed

earlier. The vanishing of the partial
derivatives
A
a“ y éﬂ— -
BAyk 2P By -+ oYy o

(28) ¢

then determines the control increments as

*
- - oL OH - - -
Ayk = zpk ayk 1 k 1) ’ Y/ (29)
The constants pj3, - -, py must sat-
isfy the requirements
te
z. (t ) = A 2 dt =
K\ f Yk
t
0
tf )
L oH_ dt = a 2 (30)
4 2 oy, k
Py k
t
o
or
T }
tf )
t 1 au”
Pk = 2Ta,T | {Byk) el
t
o
k=1, - -, £ (31)

Evidently the negative sign corresponds to
a maximum of zgy (tg) = AP' and the pos-
itive sign to a minimum. Choosing the
latter, we obtain

< F)
) te )
' SH
AP = - l‘ak] *a—y;) dt (32)
k=1 t
o

We have found the direction of
'steepest descent' in the sense of the
Euclidean metric (20), and, according to
(32), the increment AP' must be negative

dH*
or zero. The functions 5;- (t) evalua-
k

ted for yp = ;k(t) assume the role of
gradient components and the 'steepest
descent' process is governed by

(33)



We now turn attention to means for
handling inequality constraints on the
control functions yi. It is assumed
that the inequalities can be converted to
the form

Y1 £ Yk S Y2 ¢

k-li--)l (34)

which is usually the case in applications.

The development up through (26, 27) 1is
identical for this case, except that the
Min operation in (27) must be performed
subject to the additional constraints
(34):

Ia)
Min H (35)

AYI, T T AYL

Yir < Yk € Yi2

An examination of the minimum prob-
lem (35) for vanishingly small step size
lag|! leads to the formulas

*

Ayk - bk 3;; s b

K <O (36)

if ;k is an interior point of the in-
terval, i.e., for

Vi < Yk < Yip (37)
At the lower limit yi = yi] ,
* *
OH OH \
ay, = b, B g M g
k k ayk byk Y
by <0 (38)
*
oH
Ay, = 0 if = >0
k 3y, 2

while at the upper limit ;k = VK2

R
oH
Ay, = 0 if ayk <0
>b <0 (39
k
* *
oH oH
A= P Sy M5y 20

Thus we arrive at a modified gradient
method.

In a descent process for which the
steps are vanishingly small, essentially
a continuous process, the governing equa-
tions (36), (38), (39) will succeed in
holding the control variables y, within
the desired range yy) < yx < Yk2- There
will be difficulty, however, if finite
steps are taken, and to avoid this, it
will be necessary to 'trim' the functions
Yk + Ay obtained for finite by to con-
form to the inequality (34) before employ-
ing them in numerical integration of the
basic system (1).

The general mode of operation for
gradient calculations has been described
in earlier publicationsl,3 for cases in
which only a single control variable is
employed. It consists of numerical solu-
tion of the basic system (1) for a number
of values of the descent parameter b,
the parameter being varied systematically
in one-dimensional search for a minimum
of P'. In problems involving a number
of control variables, an identical treat-
ment may be given to each in turn; or al-
ternatively, a more complicated multi-
dimensional search versus the by may be
implemented.

A Successive Approximation Scheme
Employing the Min Operation

A shortcoming of a gradient process
is that over intervals in which %%i is
small in magnitude, the correspondikg
changes in yi will be small. After sev-
eral steps the y, may still be far from
their optimal values over such 'insensi-
tive' intervals owing to this feature of
the gradient process. This, of course,
stems from the rather arbitrary imposition
of the Euclidean distance measure. From

an engineering viewpoint this is unimpor-
tant 1f only the value of P is of inter-



est, as is often the case in flight per-
formance work. It is inconvenient if a
family of neighboring extremals are re-
quired, as, for example, in connection
with a guidance study, because this re-
quires that additional computations be
performed to converge the control variable
histories to within the desired accuracy.

It has been speculated that an ap-
propriate procedure for treatment of this
situation is transition to a scheme for
systematic numerical solution of the
Euler equations, and this appears plausi-
ble on first consideration. One finds,
however, that the appropriate linear com-
binations of adjoint solutions do not
yield a good approximation to the multi-
plier functions of the 'indirect' theory,
and, in particular, the required initial
values of the multipliers may be suffi-
ciently in error to cause difficulty in
an iterative adjustment process.

The successive approximation scheme
of the present section was originally de-
veloped for refinement of control pro-
grams of near-minimal gradient solutions
into close approximations to Euler solu-
tions, i.e., to accelerate convergence in
the later stages of the descent process.
It appears, however, to possess merit as
a primary computational scheme, as will
be discussed later in connection with an
example.

Instead of employing the somewhat
arbitrary Euclidean metric (20), we
choose an equally arbitrary alternative:
discard the use of a metric, calculating
new control variables y,* from the op-
eration

*
Min H (y)
Y1 € Yk £ Yk2

(40)

In adopting the control yj = yk*(t)
generated by the Min operation as our next
approximation, we risk the violation of
our linearizing assumptions, for this may
represent a large step process. More con-
servatively, we may elect to replace the
large step by an exploratory series of
small ones, setting

Y = N0 + Ly, () - R (0], (D)

and evaluating P' versus ¢, a one-
dimensional search analogous to that per-
formed versus step size (the by) in
gradient computations.

There 1s, of course, a question of
convergence with this scheme, hinging on
whether or not the increment AP' given
by (19) is negative for some { in the
range 0 < £ <1 normally explored. Evi-
dently a suffIcient condition for AP' < 0
for small ¢ 1is

* ~ k- - * —
Lim[H (y,+0(yy -y;)s = =y HE(yy =yp), t)
60

2

= H*(;l’ ] ;,@’ t)] = z

k=1

%1;—(;1: )
k

(42)

- 3 -
Yy t) (yk - yk) <0

which requires that the directional de-
rivative of H* be negative in the direc-
tion of the minimum point vy, = y,*. This
requirement will be met globally, i.e. for
all admissible starting points yi = Yk,
if the function H"(y;, - -, yg, t) pos-
sesses no stationary points or interior
extrema in the region defined by (34),
other than the minimum at y, = y, " .

In the original conception of this
technique as a refinement scheme, only a
local version of the requirement discussed
in the preceding paragraph requires con-
sideration, and this requirement is auto-
matically met if the gradient process has
progressed sufficiently before transition
to the Min H¥ scheme. From the viewpoint
of more general applications, the require-
ments on the function H¥ discussed above
constitute a limitation; yet the class of
problems for which convergence is assured
a_priori is sufficiently large as to war-
rant considerable interest in the scheme.

A Successive Approximation Scheme
Employing An Integral-Absolute
Value Metric

A third method for computing optimum
trajectories by successive approximations
is obtained by substituting an integral-
absolute value metric for the integral
square metric of (20):



(43)

Although apparently not limited to cases
in which the optimal control is bang-bang,
this method appears to offer the advantage
in such cases that 1f the optimal control
is bang-bang and the first approximation
is taken to be bang-bang, all successive
approximations will also be bang-bang.

B; applying the Pontryagin theo-~
ry7’8' in a manner similar to that of
(21) to (27), we obtain:

zk - [Aykl, Zk(lto) - 0,

2 (t) =a, >0, k=1, --, L  (44)

and

. * - -

z£+l = H (yl+AY1: b yz+AY£: t)
* - -

- H (yl’ T Ty Yy t) , zﬂ+1(to) =0 (45)

From (19) the function we wish to minimize
is

s8R =z, (E) (46)

Thus we have a new minimum problem to
which we may apply the, Pontryagin princi-

ple. A new function H 1is defined by
£
A * -
H = Prloyi! + pyyq (H (yytay), - -,
k=1

- * - -
Y["A)u: t) - H (yl, S Ty Yy )] 4D

where pj(t), - -, pgyy(t) are adjoint
variables satisfying the system of differ-
ential equations

P =0 , k=1, -~
(48)
Ppsr =0 v Ppy(tp) =1
The Ayk are now considered as new con-

trol variables with time-varying con-
straints which are compatible with the
constraints on the control variables yy.
As in the previous cases, the constraints
on yi are assumed to be of the form

Y1 < Yk £ Yko (49)

A necessary condition for AP’ to be
a minimum is that the Ayy minimize H
for all t, < t < tf subject to (49).
This is expressed as

A
Min H

Ayl, ST AY£ (50)

Convergence is assured by limiting the
magnitude of the ay defined in (43).
However, we will see that this no longer
requires that the change in the control
variable be small at any particular ¢t.
From (48) and (49) we obtain

)
Ay : k -
H=- play ! + H Gy tayy, - -,

k=1

- * - -

YZ+AYI: t) - H (Yl, - Yz, t) (51)
where py 1is a constant (py = py) -
Since the a) were not previously speci-

fied, aside from the requirements that
they be positive and small in magnitude,
we may consider the pp as constants to
be later found by performing a search,
evaluating AP' versus py.

The function H to be minimized
given by (52) can be thought of geometri-
cally as the superposition of a cone on
the surface AH":

¥ Jo - -
AR = H (yy+ayy, = -, yyHay,, t)

-G, - - Yu, b (52)



Let us now consider the treatment of one
control variable at a time. We rewrite
(52) as

A * - -
H = pleYJI + H (Yj+AYjJ ST Yo t)

. * - -
- H (yj’ T Ty Yy t) (53)

Examining (53), we see that the minimum of
H with respect to Ayj occurs either at

a stationary point (OH/dAyyx = 0), at the
apex of the cone where Ayyp =0, or on
the boundaries determined by (49). For

Py very large, the minimum of H occurs
at the apex of the cone for all time and
Ay = 0 everywhere. As p; is made
smaller, a point is reached where the min-
imum changes from the apex of the cone to
a boundary or an interior point over an
infinitesimal interval of time. This
value of p; we will designate as the
threshold value of p:. If we continue to
decrease p; a small amount below its

threshold value, Ay, will take on non-
zero values over finite intervals of time.
It is to be noted that the Ayy at any
time are themselves not necessarily small,
The final selection of p; 1s determined
by evaluating P' via (1; for several
values of p; below its threshold value

and fitting a parabola to the points. The
minimum of this parabola then determines
the optimal Py

To illustrate the possible advantages
of employing the integral -absolute value
metric, let us consider a system linear in
the yk and for which the optimal control
is bang-bang. For this case can be
written in the form

* - -
H = ¢1(x, A, £) + Yk¢2(x, A, t) (54)
giving for H:
A
H = pklAykl + 9, (8) + Ay, 0,(¢) (55)

If the first approximation to the control
function is bang-bang, it is easily seen
that all successive approximations are
also bang-bang since this property propa-
gates, due to (55).

For py very large (compared to
loa(t) 1), oy, 1s equal to zero for all
t. The threshold value of py 1is ob-

tained when pyp 1is equal to the maximum
value of |[¢5(t)] 1in a region where it is
possible to change 1y, subject to (55)
and (49). 1If we decrease py a small
amount beyond this threshold value, Ay

will change by its maximum value for a
limited period of time.

Low Thrust Example

For illustrative computations we
choose the problem of planar low thrust
transfer between circular orbits, which
has been employed in earlier technique de-
velopments3,10, The system of equations
governing the motion is given by:

Radial Acceleration

2

. v2 Ro T

u=g =737 - A if) + o sin 6 (56)
Circumferential Acceleration

v = g, = - %; + % cos @ (57)
Radial Velocity

R = gy = u (58)
Circumferential Angular Velocity

: v

W=84‘=R (59)
Propellant Expenditure

. T

m=gg = - g (60)

e
The exhaust velocity Ve is taken

constant and the thrust T variable be-

tween fixed limits:
T1 <TXL T2 (61)

If we assume a fully throttlable rocket,
with a control parameter 1,

(62)



then

T=T (63)

2"

*
The function H takes the form

+
o
o]
®
D

+ Au + A

ot (64)

o

and the adjoint variables satisfy the
system of differential equations

*
A, = - 2 (65)
t=1, -~ -, 5

[Note that for an optimal trajectory the
function H* becomes the Hamiltonian
function, i.e. as the successive approxi-
mation process converges, H* S H.]

The function P' {s
PP o+ LK (uo-) 2 + K (v, )2
2EMNTE YA

~ 2 ~ 2
+ Ky(Re-R)  + K, (¥4 9)

+ Ko (e 2] (66)

Where a terminal value of a variable x4
is unspecified, the corresponding Kj 1is
taken zero. In our illustrative computa-
tions, we have chosen the problem of mini-
mum time transfer, that is

(67)

We note that the function H*, (64),
is linear in 1, a feature usually asso-
ciated with bang-bang control. As recent-
ly pointed out by Lawdenll, however, there
is a possibility that the collected coef-
ficlent of n in H*

A A A
1 2 5
Y sin 6 + o cos 6 - V; (68)

D = T2

may vanish over a finite interval of time.
Such arcs satisfy the weak form, but not
the strong form, of the Weierstrass condi-
tion; therefore fall in the gap between
necessary and sufficient conditions for a
minimum. The question of whether an arc
D=0 may or may not be minimizing is
currently unresolved, and consequently we
have no a priori assurance of a bang-bang
throttle characteristic.

Some Computational Results

&
The three successive approximation

schemes described earlier were mechanized
for digital computation of planar trans-
fers between the orbits of Earth and Mars,
idealized as circular. A modified Adams
numerical integration scheme was used with
a fixed time interval of two days.

Having earlier obtained experience
with the gradient method in a constant
thrust version of this examplelO, we first
performed the modification to incorporate
the throttle variable 7. The computer
mechanization employed alternating descent
cycles on the variables & and 1. After
some experimentation to select penalty
constants Kj, a family of transfers for
various specified terminal values of the
vehicle mass were computed (Figs. 1 and
2) . Terminal values of radius and veloci-
ty components corresponding to the Mars
orbit were specified. The terminal value
of the heliocentric angle ¥ was left
open. The results indicated a bang-bang
throttle characteristic, the transfers
consisting of an initial full throttle
period, a coasting period, and a final
full throttle period.

One such transfer was adopted as a
test specimen for experimentation with the
three successive approximation techniques.
The initial approximation consisted of
circumferential thrust at full throttle in
all three cases. Penalty constants were
set at 'intermediate' values for the first
sixty cycles, then increased by a factor
of thirty. It was intended to divorce the
effect of penalty constant manipulation,
which has a pronounced effect on conver-
gence, from the characteristics of the
successive approximation methods in this
way. This was not very successful because
of strong interaction effects — the pen-
alty constant adjustment technique should
be 'tailored' to the method and to the

11 problem under attack.



Successive approximations produced
by the modified gradient method are shown
in Figs. 3A and 3B. The decrease in the
function P' versus number of descent
cycles is illustrated in Fig. 3C.

Corresponding results for the Min H¥
scheme are shown in Figs. 4A, 4B, and 4C.
Increments in the control variables ¢

and n were generated simultaneously dur-

ing each cycle. Values of the interpola-
tion parameter ¢ corresponding to local
minima of P' in the one-dimensional
search process were found to be on the
order of .0003 to .10, the smaller values
arising in conjunction with large penalty
constants.

In the first attempts at performing
computations with the integral-absolute
value metric, a difficulty was encoun-
tered: the procedure failed to continue
to produce decreases in P' after six or
seven cycles. This was traced to the fact
that the search for a variation in throt-
tle history is 'quantized', this arising
from the finite number of numerical inte-
gration steps. Thus the 'smallest varia-
tion' in throttle history admitted by the
integration procedure is 'An! 1 over
one integration interval. If such a vari-
ation cannot produce a decrease in P',
the one-dimensional search fails. This
difficulty was overcome by reducing the
integration interval to one-tenth of that
previously employed, i.e. from 2 days to
.2 days. The increase in computing time,
by a factor of approximately five, indi-
cates a need for employment of a variable
integration step feature in conjunction
with this method.

The results of Figs. 5A, 5B, and 5C
were obtained using alternate cycles of
the integral -absolute value scheme on
and the Min H* scheme on #. As ob-
served earlier, the bang-bang character
of the throttle history is preserved
throughout the process, this being a fea-
ture of the method.

N>

Concluding Remarks

It is felt that the numerical results
obtained are too limited to provide con-
clusions on the relative merits of the
three methods. The differences in speed
of convergence exhibited in Figs. 3, 4,
and 5 are insignificant in comparison to
improvements attainable by modest amounts
of experimentation with penalty constant
adjustment procedures.

12

Perhaps the most significant fact
emerging from the experiments reported
herein. is that several successive approxi-
mation techniques can be successfully
adapted to problems featuring inequality
constraints on the control variables. The
three methods examined are workable and
possess the 'hammer and tongs' quality so
desirable for engineering applications.

On the other hand, it is clear that
continuing research in the class of suc-
cessive approximation methods is likely to
be fruitful, perhaps not only in the evo-
lution of more efficient computational
schemes, but also in contributing to the
understanding of the various phenomena
arising in variational problems of flight
performance, control and guidance.
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Symbols
Xy state variables
yk‘ control variables
) derivative with respect to time
84 functional representation of basic
system right members (Eq. 1)
to initial time
tf terminal time
) initial conditions



function of terminal values to be
minimized

modified function including penalty
terms (Eq. 3)

pusitive weighting factors for pen-
alty terms

state variable perturbations
control variable perturbations
function defined by Eq. 8

total change in state variable
total change in control variable

(0 < ﬁq < 1), constant

variable for nominal trajectory
1
total change in function P

system variable used for evalua-
ting AP'

adjoint variables for 2z system
function defined by Eqs. 23 and 47

total change in
direction

Yk for gradient

positive constant

(0 > by,
gradient method

search parameter for

lower limit on control variable

*
%

upper limit on control variable

© < E < 1), searching parameter
for Min H* method

%
control function for Min H

search parameter for integral-
absolute value metric method

generic functions

radial velocity
circumferential velocity
radial distance

thrust

initial radial distance 13

Am

P

gravitational constant
mass

thrust direction angle
heliocentric angle
exhaust velocity

throttle control variable

increment in throttle control
variable

final values

*
coefficient of n in H
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