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REFULARITY OF FUNDAMENTAL SOLUTIONS OF HYPERBOLIC EQUATIONS

by

Avner Friedman

Introduction.

Fundamental solutions play a decisive role in the method of Hadsmard [11] for
solving the Cauchy problem for hyperbolic equations with variable coefficients, of
the second order. In the case of analytic coefficients, he constructed the fun-
damental solution as a series of functions, each term being determined by the
previous ones by solving fairly simple differential systems. Convergence of the
series is proved by employing the method of majorants of Cauchy.

For higher order hyperbolic equations with constant coefficients, which are
homogeneous in the highest derivatives, the fundamental solution was given by
Herglotz [12] in a closed form for m even, m >n ( m is the order of the
equation and n is the number of space-dimensions). A closed form was later
given by Petrowski [17] for m >n , and by F. John [13] and Gelfand-Shapiro [9]
(see also [10; Chapter 1]) for all m,n . More recently that form was derived by
Borovikov [2] as a consequence of a general formula for fundemental solutions of

partial differential equations with constant coefficients.

Partially supported by Contract Nonr 710 (16) (NR Okl OOW) between the Office
of Naval Research and the University of Minnesota.



Recently, Ba.bitchw[ 1], extending the scheme of Gelfand-Shapiro, has con-
structed tundamental solutions for hyperbolic equations with analytic co-
efficients of any order, by representing them as series G = zfukfkda' (inte-
gration on a parameter ¢ ). The method depends on the construction of scme special
solutions ("quasi" plane-waves) which are employed in the successive comstruction
of the sequences LY fk . Convergence is proved by generalizing the proof of
Hademard [11]. Using this construction, Babitch proved that the fundsmental so-
lution G with pole at a point (O,xo) is analytic at all points (t,x)

(0 <t <¢§, £ sufficiently small) which do not lie on the bicharacteristics through
(o, xo) (i.e., on the characteristic conoid with vertex (O,xo)). This result may
also be formulated in the following way: (The strict) Huygen's principle is

valid for the property of analyticity of solutionms.

Babitch also proved that for sufficiently smooth coefficients (and not
necessarily analytic), the fundamental solution is differentiable up to any given
order at the points (t,x) as above. Finally, he extended all the above results
to hyperbolic systems of any order.

The result about the differentiability of the fundemental solution was
previously proved by Courant-Lax [3] and by Lax [14], by different methods, for
first order hyperbolic systems.

The purpose of the present paper is to extend the results of Babitch in the
following way: We consider classes C[Mq] consisting of all the C© functions
(1n some set) whose g-th derivatives are bounded by HY M, forall g1

ositive
(H 1is a constant depending on f), where Mq is a given sequence oiammbers

satisfying
(EMM . <AM forall O<h<k<w (A constant).
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( TAﬁ:er the manuscript weas completed, it came to our attention that most of the
results of Babitch [1] were also obtained, independently, by D. Ludwig, "Exact
and asymptotic solution of the Cauchy problem”, Comm. Pure Appl. Math., vol. 13
(196Q)’ PP 473-508.
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We then prove that if the coefficients of the hyperbolic equation belong to

C[Mq] , then the fundamental solution belongs to C(ﬁq] in any set lying in

0 <t <g, which excludes the bicharacteristics through (O, xo) , where (with

'h’q defined by (3.28))

~/
' M, M
ﬁ < !‘439 + — i end if M ! then M !
a= "d ar q = ¥ Ch

For Mq = q! we thus get a new proof for the analytic case considered by Babitch.

Our procedure starts (as that of Hadama-d and Babitch) by constructing "quasi"

Plane-waves and them sequences W fk . However, we stop at a certain k =p

p

and broéeed to evaluate derivatives D or U =% ukfk (or [Ga0’) and of
k=0

& "
u = Gc' - (where G = fGo_do' ) separately. The derivation of the estimates for the

u, is technically the most lengthy step in our proof. It employs techniques

which we used in earlier works [4] - [7]). As for G , it satisfies a certain

hyperbolic equation and, to evaluate 3 we employ well known energy inequalities.

In estimating DrG , Wwe take p to be dependent on r (in fact, p=1r + do ;

do depending on m,n ).

We briefly describe the.structure of the paper:

In.. §l\we prove auxiliary lemmas to.the effect that various nomlinear opsrations
dre closed in classes - C(Mq-] .. In §2 we solve the Csuchy problol” for ‘general
first order nonlinear equations within the class c{nq) , 1.e., we prove (Theorem
1) that if all the datd and the equation belong to classes ctllq} » then the same

is true of the solution.
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In §3 we write down the formal procedure of constructing s fundsmental
solution in the analytic case and then state the main theorem (Theorem 2) of
the paper. A theorem (Theorem 3) on interior estimates for hyperbolic equations
(analogous to the main theorems in [4][5] for elliptic and pearsbolic equations) is
proved in § . The proof of Theorem 2 is given in § 5. It uses the results of
§ §1, 4. In § 6 we prove (Theorem 4) Huygen's principle for the property of
smoothness in the C{Mq] — sense, and also mention briefly the case of hyperbolic

systems of any order.

1. Auxiliary Lemmass

let D be an open set, or the closure of an open set, in the n-dimensional

euclidean space with coordinates x = (xl, ceey xn) . Let [Mq] be a monotone
increasing sequence of (positive) numbers with Ml 21, which satisfy for some
constant A and al1 0<p<qg<w»,

q
. M M < MM .
(1.1) (P) P a=p - q

Teking, in particular, p = 0 and p =1 we conclude:

(1.2) Mo2A aM ), M 2 (A)%¥q! (A constant) .

By cmq ; D} we mean the class of € (infinitely differentiable)

functions f£(x) on D which satisfy for scme constants BO'B (depending on f)

(1.3) 0 £(x)| < B EY M, (0<q< =) .
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. The class

!

q.
Here D:' denotes any partial derivative a‘l/axi

i
"
¢

C{q! ; D} consists of all the functions which are analytic in D , the closure of

D.

If f depends on & parameter \ , we say that f(x,\) belongs to C[Mq ;3 D)
uniformly with respect to M\, if (1.3) holds with HO,H independent of A .

If (1.2) is replaced by

lng £(x)| <E

o (0<q<a)

(1.4)

q N
lnxf(x)lSHOH‘“"Mq_a (a<q<ew)
for some integer a > 0, then the class is denoted by C[Mq_‘ s D). Por

a <0, the class C[Mq_‘ ; D) is defined by (1.3) with Mq replaced by uq_. .

For conveniency we set Mq =1 1f Q<O . We then can express (1.4) in

the equivalent form:

0} £(x)| < BB Moa (0<q<w).
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Lemma 1. Let uw, ..., w Dbe functions of x € D which satisy the

l)

inequalities (1 <1 <h)
r
,Dx ui(x)l < H, (0<r<a)

(1.5)

r r-a
IDx ui(x)l SHEE M, (a <r <p)

wvhere a >2, and let V be an h-dimensional open set which contains the set

{u(x) = (ul(x), ceey uh(x)) ; x €D} . Mnally, let l"(ul, ceny u.h) be a function

defined in V and satisgigg

|D: F(u).ll < Ko (0<r<a)
(1.6)

r r-e
|nu F(u)l <KK M

— (a<r<p) .

Then, if H 1s sufficiently large depending on Ko, K, Ho , the folla_w_in‘

inequalities hold:

r
IDx r(u(x))| < B, (0<r<a)
(1.7)
r r-a
Il’.)x !(u(x))' SBEE M _ (a<r<p),
vhere B is a conatant depending only on "KO’ K, Ho -

Remark. The lemma is8 not true if a=0 or a=1.
]




g

Eoo . For a =2 the proof, in a slightly different form, is given in
[6; pp. 47-50]. The proof for & > 2 is obtained by scme obvious modificatiens

of the proof for a =2 .

Corollary 1. If the u, belongto C(M _,;D), a2, and if Fu)

belongs to C(M_;V}) , then F(u(x)) Dbelongs to CM,_gsD)

In particular (with Mq = q!) , an analytic function of an analytic function
is analytic.
We shall also need a more detailed result in the special case h = 1,
Fu) = ul
Lezma 2. Let Il‘(u)=-ui u = u(x x_) and assume that
L] — ’ l’ LI} ., n

] u(x)| < B, (0<g<a)

ID:u(x)ISHqu*Mq_‘ (a<q<1i),
vwhere a >2. Then

I2? R(u(x))| < K, (0<q<a)

“10"0

i-1
g M) | < =y B aler ) (o 192) Moy gy (<0 <1

¥here K, depends only on H, .
Proof. The proof for & = 2 follows from (16), (18) of [6]. The proof

for a >2 1is very similar to the case a =2 .

C R s ks



Later on we shall deal with polynumials of the form

n
(1.8) z bi(x)h1 (x e D, D open bounded set)
1i=0

having the property: for all x ¢ D the roots M), coop N(x) of (1.8)
are real and distinct. We shall then need:

w. If a polynomiel (1.8) has the above property and if the co-
efficients b,(x) belong to C(M,_, 3 D) for some a >2, then the AJ(x)

also belongs to C[Mq_a ;s D).

m
Proof. Consider the polynomials I b ki vwhere the b, vary in a com-

Plex neighborhood N, of the bi(x) , that is, z'.lbi - bi(x)l < €. Since the
roots A\ = kt(b) are continuous functions of b = (bo, cony bn) , all the

kk(b) are distinct if € is sufficiently small. Hence, by a well known theorem,
the xk(b) are analytic functions of b e N, . Therefore, by (1.2), they belong

&

to CIMH ; l%} , for any a . Since the bi(x) belong to C(Mq_‘ 3 D) , the

assertion of the lemma follows by Corollary 1.
We next need an extension of the Implicit Function Theorem. We consider a
system

(1.9) Fi(xl, vees X3V eees yh) =0 (1<1<h)
0.0
and assume that at some point (x7,y")

0 0, .0 0o
(1.10) Pi(xl, see In; yl’ seey yh) = O (1 S i S h)



¥Fp oo Fy

(1.11)
Oyys «oes ¥yl x°,v9)

40

If the Fi are functions of differentiability class o (p > 1) , then in

some neighborhood N of (xo, yo) the only solution of (1.9) is given by scme
functions

vy = fi(x) (L<1<h)

defined in a certain neighborhood D of xo and fi are of class C¥ .

We shall prove:

Lemma 4. Let the 17'1 satisfy, in addition to the foregoing assumptions, the

inequalities (1 <1 <h)

lDrFi(x,y)I <K, (0<r<a+1l)
(1.12)
LEACHRTIS KX S M_, (a+1<r<p),
where D' is any r-th partial derivative with respect to (x,y) , and a>2 .

Then the solution y, = fi(x) of (1.9) satisfies

,D’x fi(x)lgno (0<r<a)
(1.13)
|D’x £, (x)] <HEE "M, (a<r<p)

vhere H, 1s determined so that (1.13) holds for o<r<s and H then

depends only on xo,x,no and on a lower bound on the absolute value of

a(rl, cony l"h) / B(yl, ceny yh) .

RESRETE,



<10~
Corollary 2. If the F1 belong to C[Mq —a—1’ N} then the 1‘i belong to
c{M q—a‘ D} . :

The analytic case (M(1 = q!) 1is of course well known, but the standard
proofs are different frca the present one.
Proof. The proof is by induction on r . The assertion (1.13) for

r<s+1 is valid by the choice of H We now assume that (1.).3) holds

0 L)
for all 0<r <gq (q<p) and proceed to prove it for q . Differentiating (1.9)

with respect to x 3 we get
-( b) ari Zh oF Bfk (
1.1 = + = =0 1<i<h).
T = s

We next apply Dg-l (where D, nov means total x-differentiation) to both

sides of (1.14) and obtain

h OF qQ h gq=l oF
1 @, .0 -1 1 J P
(1.15) kfl e *x ‘& xd it kfl Jfl s )[D;j‘ &y %

Here we used Leibnjtz' rule

e q 4
prg) = = (petlg
1=0

q q
vhere (1)D11’Dq—1 y means that there are (,) terms of the form plepT? g,

D being any partial derivative.
The functions y, = fk(x) satisfy (1.13) for all r <q -1 . Hence,

applying Lesma 1 we get

oF (x)Y)
,Di(—%:——)'ganon""uh (a<3j<q-1),

ER P
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provided H is sufficiently large (depending on Ky K HO) .

Substituting this into (1.15) we find that the right side is bounded by

— ¢l ol
-8
(1.16) K K 1Mq_a + 2 (

o S J)BHO'H"""M J_anoﬁq""%

s 7

where we use the convention:

M- 12 10,8 =1 1r 1<0.

Now,
el g-1

<
<B M _,

as follows from calCulations similar to [6; p. 49]; B, ere used to denote
constants depending only on KO’ K, Ho and on a lower bound on

P(Fl) sesy Fh)/a(yl’ seey }'h)| .

Substituting (1.17) into (1.16) we find that the right side of (1.15) is

bounded by

q-e~
B,H A ]Mq_a ,

provided H is also > K . We finally solve the linear system (1.15) for

q
Dxf and get

k
9 -
[ £(x)| < By EE® qu_a :

Taking H > B, the proof of (1.13) for r =q is completed.

3

Remark. If some of the F, are linear functions in the y , then the
mE——— i k

assertion of Lemma 4 remains true assuming that these F1 satisfy (1,12) with a'+ 1

replaced by &a . Corollary 2 also remains true assuming that these F1 belomg

to C{Mq—a ;s N} .

H
H
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a Manifold S 1is said to belong to class C[Mq -a.] if it can be covered
by & finite number of patches, each having a local representation in terms of a
function, say, f(y) of class C{Mq_a] . A family of manifolds S(x) 1is said
to belong to class C(Mq-e.} if the f's are of class C{Mq_a] in the
variables (y,x) . A family S(x) 1is said to belong strongly to class C[Mq-e.}
1f (1) there exists one-to-one correspondence y(x) —y(x') between the points
of S(x) and S(x') whenever |x -x'| <8 (for some & > 0), and (i1) in the
local representation of S(x) , say ¥y = g(yl, cees Vg Yy e Ve x) , where
y =y(x), g 1is of class C(Mq-e.} in all the variables. The local representation
of any S(x) 1s assumed to be valid also for all S(x') with |x -x'| <8.

Lemma 5. Let S(x) be a family of n-dimensional manifolds with boundaries

£(x) which are (n — 1) - dimensional manifolds with no boundary. Assume that
S(x) and Z(x) belong strongly to C[Mq_a) for x € D (D open bounded set),

where a 32 . Let u(x,y) Dbelong to C{Mq-e} for (x,y) in an open set V

which contains the closure of ((x,y) 5 ¥y € S(x), x € D} . Then the integral

Ix) = [ u(x,y)as (x)
) y

belongs to C{Mq_‘; D} .

Proof. Differentiating I twice we obtain
A

D, Ix) = [ [Dulx,y) + ulx,y)alx,y)] a8 (x)
S(x) y

(1.18) + [ ulx,y) r(x,y) azg_(x) ,
£(x) y

and

I I(x) = [ (D[Du + uA] + [Du + uAl &) asS_(x)
x s(x) y
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(1.19 ([Du + wAlr + D(ur)w) dg _(x)
) + z(i) + + dzy x

where D.stxu+Dyquy and where A=A1 s T =I‘i, W=Wi ir D:-l)i . A& and
I, W can be represented in terms of the functions of the local representations of

S8(x) and 2(x) respectively and of their first derivatives. We then i .nd that

r
(1'20) |DrL| SAOA Hr-—e,-‘-l (05r<oo) for LBA,P,W,

where D° now means any r-th partial derivatives with respect to (x,y) .
In deriving (1.19) we made us of the fact that ¥(x) has no boundary.
We can now proceed to differentiate I(x) any number of times. Introducing

the notation

r+l r 0
we have:
Dg I(x) = . ,{) (Du + va)? asy(x)
a1 -
(1.21) * bl p{i(ma +wA)¥r], )+ (o) | o)

We shall prove that for any q >0
q
(1.22) |0} 1(x)| < nonquq_e
In proving it, we shall use the inequalities

(1.23) D" u(x,¥y)| < KK M.,

wvhich follow from the assumptions of the lemma.

Using Lemma 2 and (1.20), (1.23) we find that

(1.24) D7 [(Da + wa)T]| < 2%1- M e

for all r >0, where Ki are appropriate constants.

e o O el
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Next, it can be proved by induction on § that if a function g satisfies,

e

for all r >0,
(1.25) |0°e| < WM _,
wvhere b >0, then

(1.26) I0°g, | < NN e Mo

provided N 1is sufficiently large (depending only on AO,A of (1.20)).
: with b=a-l,
Applying this fact to g = (Du + wA)TIr  (which satisfies (1.25)Aby (1.20),

(1.24) combined) and to g = ul' , we obtain from (1.21) the inequality (1.22)

vith sppropriate constants H.,H (independent of q).
From the proof of Lemma 5 one can easily establish:

Lemma 5'. Let s(x,7) , =(x,7) satisfy, for each y (@ <7y <B8),

the assumptions of Lemma 5 and let 5(x,7) , =(x,7) belong strongly to C(Hq_‘]

(a >2)_. . Finally, let u(x.y,7) belong to Cth,_‘J in an Open se€t V Gon-
taining the closure of {(x,¥,7) ; x e D, a<y<B, y €S(x,7)) . Then the

integ_al b
I(x)= [ [ u(x,y,7) dsy(x,r) ay

belongs to C{Mq_‘ 3 D} .

2. Cauchy Problem for Nonlinear First Order Qu&tions

Consider the differential equation
(2-1) le’ es oy xn, z, pl’ seoy pn) = 0
where F is a C© function in all its arguments snd Py = bz/ax‘,j . The Csuchy

problem consists in finding a unique solution z = z(xl, ceey xn) of (2.1) (which

is an n-dimensional menifold) passing through a given (n—1)-dimensional manifold
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xo-w(t t ) (1L<1<n)
17 1Y T e - -
@.a)
2% =y (¢ £ )
T Tn+l'l? % pe=l ¢

In order to solve the problem, values pg of Py corresponding to
(xg,zo) must first be found or be given. These values must necessarily satisfy

the equations

0 0 0
F(xl’ seey xn,z ’ pl, voey pn) = o
(2.3)
n ov oV
i n+l
A (L<h<n=-1).
1=1 + % h

One is thus led to assume that for the initial manifold (2.2) the following

conditions hold: (i) There exists a solution P, = pg of (2.3), and (i1)

The n xn matrix

b(x(l), ceny xg) \
M, s T )

( oF
t
%y
is non-singular on the initial manifold, when p1 = pf .
We remark that if (1i) is violated, there may exist more than one solution
or no solution at all to the Cauchy problem.

The solution of (2.1), (2.2) (with p, = ° = xf, z =2 1s

M for' x

i
constructed with the aid of an auxiliary system of ordinary differential

equations (the characteristic equations)
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n
&, . SF & . B oF
’ -
(2.4) TR BT,
EIRIRIC R JCE LR
i
We solve this system with the initial values xg P z0 ’ pg .
The solution
xi = xi(B,tl, LY ] tn—l)
(2'5) Z = Z(B,tl, soey tn—l)
Pi = pi(s,tl, MRS ] tn“l) .

18 € in (s,tl, ceey b Using the assumption (ii) one finds that if s

n-'-l) '
is sufficiently small, then

(2.6) B(xl, ceuy xn)
5(8,1:1, teey En—l) F o

Hence, we cen solve s,t ceey b in terms of Xyp eees X o

Y n-1
Substituting this into z in (2.5), we obtain a ¢ function % = 8(xy, «oop X))
which can be proved to be a solution of the Cauchy problem (the p, are proved

to be az/axi) .

We shall now prove:
Theorem 1. If F Delongs to C{Mq_b] (in all its variables) for scme

b>3, and if the V¥, belong to cmq_b} , then the solution 2z = z(xl, ...,xn)

belongs to CIM_,) -
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For simplicity the domains where the classes C[Mq_b] are defined has i
not been mentioned. The domain where z(xl, ceey xn) is of class C(M

o)
18 some neighborhood of (x? ) seey xg) .

Proof. Set a =b =l ; then a >2 . We can write the system (2.4) and

the initial conditions (s = 0) in the form

dvi(s,t)
(2.7) —— = (v ooy vN)
(2.8) v,(0,1) = v(i)(t) (1<i<¥)

where t=(tl, coey tn_l),N=2n+1,vi=x if 1<i<n,v =1,

i +1

Vo =Py if 1<i<n. o, are functions of class c{uq_‘) in
0
(vl, ceny vn) and v, are functions of class C[Mq_‘} in t . Indeed, in view

of our assumptions, all that remains to show is that the pg belong to

C[Mq_‘) and that follows by Corollary 2 ofji and the remark following the proof
of Lemma 4.

We next perform the transformation

wi(s,t) = vi(s,t) -vi(O,t)

and obtain

dvi(s,t)
(2.9) - - *1(B,t,vl, coey wN)
(2.10) v,(0,t) =0 (L<1<N)

vhere, by Lemma 1 (or its éorolla.ry), the y, are of class C[llq_‘} in all

the variables.
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We shall need the following lemma:

Lemma 6. If the vi belong to C(Mq_‘] for some a > 2, then the

solution w, of (2.9), (2.10) also belongs to C(M ) .

From the lemma it follows that X:,2,p are of class C[Mq_e} in

(s, tl’ seny t ) . Applying the remark following the proof of Lemma 4 (concerning

n—-1
Corollary 2) we conclude that z and p, are of class C(Mq_‘] in (xl, ceny xn)

(Indeed, we take F, tobe x, - xi(s,tl,

xJ.). Since p, = bz/Bx:l , z 1is then of class C[Mq_‘;l] = C(M

ceey tn—l) , 1.e., linear in the

q—b} , and the

proof of Theorem 1 is completed.
It remains to prove Lemma 6.

Proof of Lemma 6. We first prove that it is enough to establish the

inequalities
Ir
(2.11) |D, wi(s,t)l < Hy (0<r<a)
(2.12) |D: v (s,t)| < Hon""MH (a<r<m)

for 4 =1, ... N. Indeed we shall prove that if (2.11), (2.12) bold, then

(2.13) |0 o} w,(s,t)| < H, (0<p+r<a)

(2.14) 0P o w,(s,t) | < 'ﬁoﬁP*HMP+H (a<p+r<e)

for some H depending on Hyp E,ﬁo ; ﬁo is chosen so that (2.13) is satisfied.

We proceed to establish (2.14) by induction on p ; assuming it to hold for
all p < q we shall prove it for p =gq +1 . The case p =0 follows by (2.11),

(2.12).
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Applying DIS’D: to both sides of (2.9) we obtain

(2.15) D}:l D: v, = Dz Dz ti(a,t,vl, ceey wN) .

Using Lemmsa 1, the assertion readily follows 1if H s appropriately large
(independently of p,r) .

We remark, in passing, that the *1 are of class C(Mé] in 8 vwhere
Mf'i = 1, and we can therefore establish (using (2.11), (2.12)) the inequalities

(2.16) |oP I v, | gﬁoﬁ‘”r"u.}_a (a<p+r< m).

These stronger inequalities, however, are not needed in proving Theorems 1.
It remains to prove (2.11), (2.12). We first choose H, so that (2.11) hold
and then proceed to prove (2.12) by induction on r : assuming it to hold for all

r<q-=1 we shall prove it for r = q .

Applying Dg to both sides of (2.9) and integrating with respect to s we

get, using (2.10),

(2.17) Dfw,(s,t) = [ D} (amt,w, ..., wido .
0

Expanding Dg L J 1 by the formula of total differentiation, we see that all
the derivatives Dﬁ v appearing in the expansion are of order less than q with

the exception of the terms

9 q
(EF; ¥) Dpw .
Hence, applying Lemmsa 1, we obtain

N
q q q-a—
Iog vyl = kil g vl + A, BH qu-—e )
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where Ai are used to denote constants depending only on the ¥ 3 and on Ho
Substituting this inequality into (2.17), taking absolute values on both sides
of the resulting inequality and finally summing over i =1, ..., N we obtain

(2.18) o(8) < Ay i olo)as + ASSHOHQ_‘-]Mq_e
where
(s) : D2 v, (s,t)]
2. = |D 28
(2.19) o(s Z 1% v (s

Integrating both sides of (2.18) with respect to s and taking s sufficiently

small (2sA3 < 1) we obtain an estimate for [@(c)do . Substituting back into

(2.18), we conclude that
Q=&
o(s) < &, sHETM .
Hence, if As < H then (2.12) follows for r = q .

Remark, Lemma 6 is valid without any restriction on the smallness of s .
To prove it one modifies the last argument in the proof and uses Lesma 8 of f L,

From the proof of Theorem 1 we get:

Corol g If the initial values *1 depend on a parameter A 2& are of
class C{Mq_b) (b >3) in (t,A) , then the solution z = z(x,A) .is of class

C[Mq_b+1] in (x,A) (in fact, in class CM_p) in x and CM,pyy) 1 A ).

Indeed, the initial values of pg are then of class C(M - in (t,A)

+1)
(by using Corollary 2 and the remark following the proof of Lemma &) and we then

can proceed as in the proof of Theorem 1, slightly modifying Lemma 6.
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3. Formulas for Fundamentel Solutions

The formulas of 3.2, 3.3 are taken from Babitch [1].

3.1. Definitions

Consider the differential operator

m ko+kl+...+k
maren 2, 2o e T e nip

ko+kl+...+k =m ot obx l...ax n

and denote its principal part by Po(t,x, Kb , &b) . P 1s said to be hyperbolic
(with respect to the t-direction) if for every real vector ¢ = (';1, ceuy gn) 0
the algebraic equation Po(t,x, MNE) =0 has m real and distinct roots Ay » for
any value of (t,x) .

We shall consider in this paper only uniformly hyperbolic operators, in the

following sense:

(1) If we denote by xi(g,t,x) the roots of P, = 0, then
inf |>».1(§,t,x) - xJ(g,t,x)I >0
(g,t;x)

for all 1,3 =1, ..., m, where 1 # 3, & varies on l;|=1,05t5£° for

some éo >0, and x varies in the euclidean space .

(11) The coefficients a.a(t,x) of P and the first derivatives of a8,
|a] = m , are uniformly bounded in the strip: |t| < &» x € .
Under these assumptions and the assumptions that the a, are sufficiently

smooth, the following Cauchy problem has been solved by Petrowski [16], Leray [15]
and G&rding [8]:
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(3.1) Pu = £(t,x)
h

(3.2) 9—% = @ (x) (0<h<m-1).
ot £=0

The degree of smoothness of the solution depends on the degree of smoothness

of the &, £ and the ?, - Petrowski's work contains a gap; Lemy's work

18 complete, whereas G&rding's work is & slight improvement of Leray's results
and mostly & simplification of the methods. He considers also non-smooth data,
assuming that P satisfies only (i), (ii).

A fundamental solution G 3 (0 < §J <m —=1) of the Cauchy problem with

pole (to,xo) is a distribution G, in x, with t as a parameter, which

J
satisflies the equation PG 3 = 0 and the initial conditions
e o if h#J (0<h<m-=-1)
(3'3') —gl = o
oty 0 3(x=x") 1f h =}

where 8(x) is the Dirac measure with support at the origin.

Babitch [1] considered only the case J =m ~ 1 . We consider first this

case but in $( we discuss the general case. We set G =G , 8o that
ah am—l
G G 0
(3.3) = 0 if 0Sh<m-2, =T = 8(x-x") .
a8l o ™! o

t=t t=t
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3.2, "Quasi" Plane-Waves

If the coefficients of Po are constants, then for any real vector o = (o'l, ese ,cn)#

and for any function f there are m solutions f(y) of Pgu =0, vhere

y=vt +x0 (xo=2=L xici) and v is any one of the m real and distinct
roots of Po(v, o) = 0 . The solutions f(y) may be considered as plane-waves.

To construct an analogue of 7 in the general case ( 7 may then be viewed

as a "quasi" plane-wave) we solve the problem

(3.4) Po(t,x,g{- , ng) =0

(3.5) 7l = X -

Equation (3.4) is of the form (2.1) and the initial conditions analogous to

(2.2) cen be given by setting s =t and
(3.6) x =y, (1<1i<n), x =t =0
1|s= 1 0|s=0 |s=0
(3.7) 7| =0y,
8=0

vhere wve (sometimes) set X, =t
Conditions on the p, at 8 =0 (which satisfy the analogue of (2.3)) are
given by

(3.8) p1| = 321' =0, (1£1<n), py=V -
8=0 1 3?0
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If x on 8=0 (1<1<n) andif t =0 on s =0 then (3.5)

=Yy
i i
implies (3.7), (3.8). Conversely, (3.7) and (3.8) imply (3.5). The values

po = Vv are calculated from
(3.9) PO(O,V,V,U) =0
and there are m distinct solutions v = vi(y,a) (1 <1<m), thus giving rise
to m distinect solutions 7 =I7(i) (x,t) .
For later purposes we write down the characteristic system corresponding to

the Cauchy problem (3.4), (3.6)=(3.8):

dxi aPO(t’x’pO’ p) 9’1 ; aPo(t,x, Pop p)
= = P
(3.10) ds op, Pas Y Op, ’
dp OP.(t,x, P, P)
po. Y (0<t1<n 5p=(py-e0sm)) -

1

Solutions of (3.10) are called bicharacteristics.

;.2. Formal Construction of Fundamental Solutions

For simplicity we take (t°,x°) = (0,0) .
We shall use the formula of Gelfand-Shapiro [9] (see also [10; Chapter 1]):

(n-1)

c ® (r) (n odd)
(3.11) 8(x) = I .1 . ¢, (x-0)ds , @ (r)=)"
gl=

e r (n even)

vhere cn is a constant. It should be stresses that by r-ek we understand the

distribution defined by (see [10; p.73])



-25-

(f',¢>=£ r 2k (qr) + (=)

2 S (ae2)
—2[9(0) + 379 (0) +4io + =T O (0)1)ar

and by r o0 ye understand the distribution defined by

(f%*m)=£;%4wu>-wq)

Ok
23 (3) S (2e)
2(re'(0) + 379 (O)+...+ Foyy (0)134r.
g ~h =h-1 h
We have: T T = =hr , and the distribution r for h >0 1is the
ordinary function rh
We intend to find a solution Ga of PGo' = 0, satisfying
m-1
3% 3 6,
(3.12) —a—tE =0 (0<h<m-2), T = ¢ (x-0) .
t=0 t=0
Then, the fundamental solution G would be
(3.13) ¢G= [ G
lol=2 7
We shall find Gc in the form
" ® €)
(3.14) Gy = I Gy Oy (tx) = z un,(t.x) £, )
J=1 k=0
and, for simplicity, we write
(3) (J)
(3.15) C',j for GJU’ Uy g for Uy s 7 for 7‘? .
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(3) :
The series (}Js :uk.jfk(7 ) has to satisfy PQJ-O and m‘1 has to

satisty ( 3.12), formally. We do not consider here the question of convergence.

We introduce the operators PB by the identity

n & e
(3.16) P(uf(y)) = sfo P_(u) o

Ps are linear differential operators of order s and their coefficients are linear

combinations of products of derivatives D‘jy (3 <s + 1) with coefficients which

are coefficients 8, of P . In particular,

2. e (6270 7P e 3 A
, * 00
ko+. . .+kn-m o’ 'kn ° n '

Po(u) = Po(t,x) % ’ "%)u =

2
(3.17) pl(u)=z£.f§§i+(% = 32 A 73y + B, ’
s d i J
Z_ kO kn
B= ko+...+kn=m—l ako...kn(t’x) 70 "
where 71 = a7/axi, 71'1 = azy/axiaxj (o S i)J S n) *

Taking f, such that fk+l(r) = ffk(r)dr we conclude that u -bak(t,x)fk(y)

is a solution of Pu =0 if

(3.18) Pylug) =0, Py(ug) +Polw) = 0,0y Blu) + By ()4 4Po(uy o)
= o ) ee .
We nov make a special choice of 7 , namely, we take 7> to be one of the

m "quasi" plane-waves of 3.2. Then A = 0 and the first equation Po(uo) =0

- in (3.18) is satisfied, in view of (3.17). Also, Po(uk) =0 for any k.

Ledugwgom ¥
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If we use (3.10), then the second equation becomes
du 2
0 1 %A
& T I, Tyt %O (s =t),

and the general equation of (3.18) becomes

(3.19) o + (2= 4 + B) --; P, (
. 2t 2 E‘ij’i,j Y = oo 1 Ug—141)
provided we agree to set u_l=u_2=...=u_n+l=0.

Since we have t0 deal with m distinet 7 = 7(h) , we get the equations

2
T H_ ) z
(3.20) = t(F = a’ih 57511 Yiy By = =% Fin (g, v

where Ah, Bh’ Pih sre obtained from A, B, Pi by taking 7 = 7(h) ]
In order to satisfy (3.12), formally, we first apply 3°/t> to

[}
u= I f. (y) and obtain:
k=o“k k

h ©
(3.21) :—tg - kfo["k(7°)h $ Q) e Q) 4+ th(uH)] £ ()
where u_J =0 if J>1 . Here
ai
%t = % 3T

and % 1s a polynomial in 7 and its derivatives up to order h .

§

If we take

¢ B(n-l)(r) (n odd)
(3.22) £ gy (T -{ n
c, r o (n even),



.

then it follows that the initial conditions (3.12) are equivalent to

[‘% ukJ(y(J)) PO +%1J(uk-i J)+"' +th3(u'k-h J)]
t=0
(3.23) . {~ 1l if h=m=1 and k=0

othervise,
vaere Q, is Q, vith 7 = 9
Since 78‘1) are all distinct, (3.23) defines the w 3 uniquely in terms of

the preceding Ugy s © <k (recall our convention: Ugy = 0 if 8<0 ) .

We finally write down the sequence f, (as follows by (3.22) and the rule

k
L= ffi) .
For n odd,
Kcnb(n‘m-k)(r) if n-m-k>0
3 &lr) 1f n-m-k<0

cn(k+m—n—l)!

where &(r) =0 if r<0, &(r)=1 if r>0 .

For n even
c

n
if n+1l~-k-m>0
(k+m=1=n)... (1 =-n) e
Y €
(3.25) £,(r) ={3LL B 10g ﬁ# if n+4l-k-m=0
(=)® c Ll L

(n-l)' Kk +m—n=1)! (1°8TT+1"'“ Ay )

if n+l=~kx~-m<o .
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g.h. Statement of the Main Result
The characteriatic conoid of P with the origin as vertex is the set of all

points (t,x) satisfying the system of equations:

(3260 gm0, Frdex -0 (1sigm-1)
{

for some (0,)) , where |o| =1, 1<} <m . Bere ¥, are local coordinates on
the unit sphere.

Let V be an open bounded set of points (t,x) , or a closure of such a set,
which does not intersect the characteristic conoid, and let V“ be the set

VA (0<t<g), foramy £>0 . Let wb‘ be the set

for any 0 < p <w . Finally let R, Ro be any positive numbers such that R < Ro

€ .
and VEC W for sufficiently small & , say (for simplicity) for € < fo vhere

50 appears in 3.1.

As is vell known [15] [16] there existe € >0 such that for sy € <&
the following holds: For every f and P, the solution u of

Pu = £(t,x)

(3.27) Qfxsxi = ¢, (x) (0<hn<m=-1)
ot t=0

in W;‘ depends on f,cph and the coefficients of P only in H: , that is to
0

say: 1if one changes r,tph outside w;o in any manner and if one changes the

coefficients of P outside wg in such a way that (1), (1i) and the bounds com-

concerned are preserved ( €1 depends on these bounds) then the solution Y of the
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s
modified problem (3.27) coincides with the solution u of (3.27) in Wp . In other

&
words, WR£ conteins the domain of dependence of WR .

0
In the sequel we shall assume (see Theorem 2) that the coefficients L of P
are C° in W:o , and we shall consider the behavior of the fundamental solution
0

G in VEC W: . Hence, if & < E‘, we may modify the a.a outside WRa without
0

affecting G in VE . We can use mollifiers for this purpose and thus achieve

-]
d® coefficients for P also outside WR . Hence, in proving Theorem 2 we may
0

assume that the coefficients of P are C in w: for a1l £ <€ .

o~
Let [Mq] be & sequence of numbers which satisfy the same properties that

[Mq} wag assumed to satisfy, and in addition,

1~ ~
.28 M < (AP M M <M for all <0
(3.28) p+q-(:) Moo My S M r »a<
vhere A' 1is a constant. For instance, if Mp = (8p)! (3 >1), then we can

take M =M .
P P

We can now state the main result of the paper. ¢

0
Theorem 2. If the coefficients of P belong to C(M H;VRO} for some

A €
a > ¢(m,n) , then the fundamental solution G(t,x) belongs to C(M q_“d;v )
for some ¢ sufficiently small, where ¢ and d = d(m,n) depend only on m,n ;
¢(m,n) 2 d(m,n) , and where

A M M, .M
. 2> p
(3.29) LI -3§§3+ =7 for b >0

A
and M_=M_ 1if M_ = p!
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Corollary 1. Mq = q! 1is the analytic case and our result for this case
coincides with that of Babiteh [1].
Corollary 2. If the coefficients of P belong to C{(8q)! ; w:°] then G
' (o}

belongs to C([(38 - 1)q)! ; v"] , forany 8>1.

The proof of Theorem 2 is given in §5. An auxiliary result on interior
estimates for hyperbolic eguu.tions, which is of intrinsic interest, is proved
in § '

L. A Theorem on Interior Estimates

In this section we prove that for the Cauchy problem

(4.1) Pu="¢?
(4.2) R =0 (0<h<m=-1)
gt-5t=o -7

the following is true: If the coefficients of P belong to C(M ;ig } for
(¢]

some a >0, RO > 0, then the succesive derivatives of u in vf; can be

estimated in terms of the successive derivatives of f in W:o , provided the
latters are bounded by AN ad Here Ro is lufficienthl large, depending on
R, and P . The result is formulated in Theorem 3 below, and this theorem will
be needed in §5, for the proof of Theorem 2.

Theorem 3 is analogous to results derived by the author in [k] [5] for
elliptic and parabolic equations. It would be strictly a.na.logm if R were
to be Ro-f. for any € > 0, but such an assertion cannot be expected to
hold for hyperbolic equations. The proof of Theorem 3 is based on different tools

than those used in [k] [5], although & part of the technique is similar to [4]
[51.
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To formulate the theorem we introduce the norm
1

(e, )= (. IR e .
7 lxl<e

We assume that P 1is a uniformly hyperbolic operstor with d® coefficients in

W end that the coefficients belong to C(M_, ;W3 ), where b >0 . We further
o

assume that Rl,R2 can be found such that R <R, <R, <R, and (a) the dcmain
of dependence of W s contained in W , and (b) the domain of dependence of

R R,
&f: - Wgo is contained in Wg - vf;z .
We can now state:
%. Let the foregoing assumptions be satisfied and let u be a so-
lution of (4.1), (4.2) in W¥ . If f satisfies, far O<t<a,
a q
(4.3) Io? £(t, -)lIRO SEEM (0<agp)
then u -satisfies, for 0<t<a,
q-+Hn~-1
(.4) D™= u(e, g S kXM, (0<as<y)

where KK Mo_g EyE and on PRRy,R,R, .

Proof. Note, first, that all the derivatives of u in (k.h) exist by
[8] [15) [16]. We shall prove (4.3) for any given g, 0<q <p (without

using induction on q).
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We modify £ into & function ¥ defined as follows:

i} W
£(t,x) 1in R,
(.5) ’ ?(t,x) =q0(x) £(t,x) in wg -wg
2 1
0 i W - w°R2 ,

vhere o(x) = ¢(|x]) , and

(4.6) o (R, ~R)r +R) = t(5) .
The function {(r) is required to satisfy the conditions:
to) =1, ™) -0 1exza), tWw -0 (0120 .
Then, the ssme conditions are satisfied by {(r2) , and by (4.5) (4.6) it follows

that f 1s of differentisbility class CI in iﬁ‘

We want to find ¢(r) as a polynomial of degree 2q + 2 .
Then,
t'(r) = 41 - r)Her +7)
for some P,y Integrating and using the conditions §(0) =1, (1) =0,
wve get

;(r)=a?sq*1(1—.)qu+7?sq(1-.)qu+1
0 0 ’

vhere B,y satisfy

BB(q +2, g +1) +yB(q +1, g +1) +1 =0 .

k!
X FL) .. xsE=17 (x integer > 0)

B(x,k) =

is the Beta function.

EENNY



If we take B =1 then

1
TTTE e L, g+ 1) a8 a-e

i
2

- -

Let 7n(r) be the polynmmial
r
n(r) =S 63 (1 +8)% as 41
0

Then it 1s clear that
105 &%) < o n(e®) .
By expanding D:: t(r°) and comparing each term in the expension with thst of
D: ¢(x%) we find that
(v.7) I 8% < B (=)

k+1
The right side of (k.7) 18 'easily seen to be bounded by Bl+ qk , vhere B,

are used in this section to denote appropriate constants depending only on

PRR,LE,
Using (4.6) we get

(4.8) |2 o(x)| < B5*He (0<k<q) .

Hence,

k
(4.9) Io* £(e, O, < BE My + , (P Ivel 1079 £z, )l
At this point we introduce a new sequence {ik ) defined vy
k
(4.10) W, =M, & (0<k<q)

and notice that ﬁk >M, . Also, by (1.2) and (1.1),

Ky J + ¢k . of
() " M\ <By %f(a) Mg Mg 53‘; My BT



that is

(4.11) SRS SNES -5 (0<J<k<q)

Using (4.11), we obtain from (4.9)

ID* 2(t, )l < EoEk Moy + BEE B,
where E = max(E, 2B, B3] . Hence,

(4.12) | D% £(t, )l < EO? . (0<k<q)

where EO = Eo(l + B)‘)
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Let u be the solution in wg of

(4.13) P = f
J~
(b.14) & .o (0<y<m=-1).
3
t=0

By the choice of Rl ’ R2 we conclude:

(4.15) =0 in wg—xf;‘o, T=u 1 & .
Hence, if we prove by induction on h that
(.26) I e, Ol < kK (0<h<a)

then, taking h = q we obtain (4.4) with any K > ek, - K, and K, will be proved
to depend on io , I and on P,R,RyR,R, .
Before starting with the proof of (4.16), we need the following fact which we

state as a lemma.

1 Ivsl B,
Io"nll < W¥* H_,
for 0<k<q, then
ID*(za)l < BH K, (0<k<aq)

provided N> 235 . B6 is independent of Ro , N



Proof. We first observe that if 0< J<k<q,
— - - -

3 K
K -

(5) M gp My SA My % SA My i‘f ’
that is,

(4.17) () Mgy Byy< AR,

vhere we made use of (1.1).

Using (4.17) we get
k ;
Io*(en)ll < 2 (1059 el < BN N K,

where we made use of the fact that N > 2B_.

5
In proving (4.16) we shall make use of the energy inequality [8 ; Theorem 7.1]:
(4.18) %4, I, < B, ; 1% v(o, "), +
O|=m-1 O=m-1

* By [ lpv(s, )l ar

vhere B7 depends only on P. We shall apply it to v = D‘G. Hence, we first

have to estimate the left side of (4.16) for t = O.

We shall prove, by induction on h , that

(4.19) o™ o} B0, )M, < KT Ry o (0 < her < q).

Here K3’Kl+ depend on the same quantities as Kl,lca.
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For h = -1 the left side of (4.19) is zero. We now assume that (L4.19)
holds for all h < k and proceed o prove it for h = k.

Apnlying D: Di (k+r < q) to both sides of (4.13) and taking t = O we get

k+m . r ~ k .r O ~ k. .ro
(4.20) D, Dxu--Dth( " a.aD u)+Dthf_Il+12,
(o4 ao an
where D =Dt eoe Dx and a°<m.

n
"Il" can be estimated by using the inductive assumption, making use of the

b

assumption that a_ € C {M_.: WS ) (and recalling that u =0 in W* - W&
a g-b RO ) Ro

by (4.15)), end employing lemma 7.. ||I2|| vas already estimated in (4.12).

Combining these estimates we get

Iog™ o S0, 9, < Bg K, 5T W,

provided Kh is sufficiently large, depending only on ﬁo’ ﬁ, P, R, Ro’ Rl’ R2 .
Taking K, > Bg the proof of (4.19), by induction, is completed.

We can now proceed to establish (4.16).

Proof of (4.16). We assume (4.16) to hold for all h <k and shall prove
it for h = k. The case h = O follows from the energy inequality (4.18) applied

~
to v=nu,

Applying DX to both sides of (4.13) we get

- x-1
(4.21) P(D*F) =D°% - % <; zo (:) (07*® 3)p%-® 8y S I+, .
T < m Bm

J2 consists of two sums. The first sum, J21 » contains all the terms -

involving derivatives of U of order k + m-1 and its norm is bounded by
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K]
B, lzl 1P (e, I,
O j=m
The other sumy J, = J 12 can be estimated ubing the inductive assupption and

2 2
Lemma 7. We obtain

-] =
“Ja - J21" SBo K K: -b

Finally, ||J1|| is estimated by (4.12).

Talting x2>i, 1&>E° we get:

(1.22) LEORTIPES |qu.'.n Laank OBIIES VS 1 o W

We now apply (4.18) with v = o, Using (4.19), (4.22) we obtain, if
K,>K, sd K >K,
t
(4.23) |£.'m I o s N, < B K K: : My *+ B)p {) Z | R, )l ar

lat|wm

In this inequality D° L+ 5 1is one specific (k-l)-th derivative. (Strictly

speaking, we only obtain (4.23) with

2. il

Ial-m-l
on the left, but then (4.23) follows very easily.)

We now need:

Lesmma 8. let y(7), Q(t) Dbe continuous non-negative functions for T >0

and suppose that
y(r) <E {;' y(£ag + Q) , v>0.

Then

Ht . &
e [ Mg a.

/¥ y(e)ag <
0 (-]
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Applying the lemma to (4.23) and taking K, sufficiently large (depending on

2
B,y and a (t <a)), the proof is completed.
mrog . Using Sobolev's lemma we conclude from (4.4) that for all
(t;x) in ‘g ’
q-Hn—-1=-Vv = _q
(4.29) |p u(t,x)| <Ky K™ M, (0<a<p)
= n+2
where KocKoBl3 and v = [ 5 ] .
Corollary 2. From (4.24) it follows that if f belongs to C(M q_b;vf;o]
then u belongs to C{M _— -nn-l—'v;‘q} .
Coro . If f=f(t,x,\) depends on a parameter A and it satisfies
q . .
IBg £(t, )y < %o ¥M_,, (0<as<p) .

where ng means any q-th partial derivatives with respect to (t,x,\) , and
o0<t<a, AeA , then

10§ ule, ,M)llp <Ko KEM (0<a <») .

The proof is similar to that of Theorem 3. Indeed, ? is defined in the same

way as before. In (4.19) we replace Drx by D;‘ which means: any r-th partial

derivative with respect to (x,A) , and then proceed to prove it by induction on h .
Finally, in proving (4.16) we apply D‘é to both sides of (4.13).
Remark. Given any R < Ro we can find R1,32 as in the assumptions of

Theorem 3, provided a is sufficiently small. This fact will be used in § 5.
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4, Proof of the Theorem 2.

The proof is divided into seven steps. In 4.1 - 4.4 we only use the restriction
o(m,n) > m + k.

L.1. Estimates for Y(J)

Consider the Cauchy problem (3.4),(3.6)-(3.8) (with v= "J) for 7 = 7(").
By Lemma 3 and (1.2), the initial values Po =Yy which are determined as solutions
of the polynomial equation (3.9), whose coefficients are of class C{Mq_‘] in (y,0),
are of class C[Mq_‘] in (y,0).

We can now apply Theorem 1 and its corollary (as a >3 ) and conclude that

7('1) = 75_'1) (t,x) is of class C{Mq ) in (t,x,0). Thuws,

-a+1

(5.1) 155 79 (5| <A A My (0gr<e),

vhere D, is used in this section to denote any partial derivative with respect
to (t,x,0).

4.2. Estimates for W

WC“t b-&—3.

The coefficient
aﬁh
(5.2) (t,x) 5 % 7B)
c“ 2 § %) ayff’ w *h
in (3.20) is of class C[Mq_b} (as follows by (5.1), using Lemma 1). Hence,

5.3
-3 oy ¢, (%) <A & M (0gr<m),

vhere IL_L ’ A2 are constants,

- ST
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We next derive estimates for the coefficients of the operators Pi 3 th 3
appearing in (3.20) and (3.23), respectively.

By the parsgraph containing (3.16) and the fact that ,7(3) belongs to C{M q_.;l]
? s4p)) it follows, using Lemma 1, that the

(and hence D H 75(‘1) belongs to C(M

q-a+

coefficients of PB 3 belong to C{M qets +2} provided a-(s + 2) >2 . Acloser
look at P8 3 shows that if

P (v) = P (t,:«:)l)cx v

8J Ia <s8 8o

- # % X &

vwhere an(ao,al, ...,an), Ia|=mi, =Dt'Dxl ...Dxn , then
(5.4) Psa.j belongs to cmq-o.+s- ||+ 2] ,

provided a-(s-|al + 2) > 2. Here it is where our assumption a >m + 4 enters, as
l1<s<m

We turn to Q, 5 By the sentence following (3.21) it follows, upon using Lemma 1,

that x) 3t
= t, X ) —
Qg = %y S
and
(5.5) 9y 3 belongs to Cmq-aﬂn} .

We set
¢ = min (a-3,a-m)

8o that b >c > 2, and express (5.4), (5.5) in more detail, namely,

(5.6) |0} Ple <A A,’; My ave- |al42 (0<r<w)

(5.7 |o, %13'5‘3‘11;"r-c (0<r<w)
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vhere A3 , Ah are constants.

We shall now establish the desired inequalities for u.kh(t,x) (recall (3.15))
in five steps. Throughout the rest of this section, we denote by D:‘ any r-th
partial derivative with respect to the variables (x,0). D° has the seme meaning
with respect to the variables (t,x).

The first steg consists in proving that

(5.8)
q q+r-b
|2 Dz (0,x)| <H E, Moarob

for a1l 1<h<m, and all qr such that q +r >b. Here Hl is chosen in such
a way that
q
IDt Dguoh(o,x)l <H if q+r <bd.

The proof of (5.8) is by induction on q. To prove it for q = O we use

equations (2.23) for Xk = O, namely,

< -
iu (J) .{O if 0<h<m-2
3=1 0y | 1 4if h=m-l.
The u, J can be uniquely solved by using Cremer's rule, as the coefficients
matrix is non-singular. Since by Lemma 1, the product of functions in c(l ] is

again in C(M _b} and since 1/f belongs to c(uq_b] it £40 and f belongs

to c(u we conclude that the u_, belong to c(uq_b] {as 75;’) - ay(-”/ae

b} ’ oJ
belongs C[llq_b] , by (5.1)). This establishes (5.8) for q = O.
We next assume that (5.8) holds for all q < p and proceed to establish it
for q = p. We shall make use of the differential equation (3.20) for k = O, namely,

du
(5.9) oh
ac t ch Yoh ™ .




b4

Applytng DV I¥ %o both sides of (5.9) and then taking t = O we obtain
(at points (0,x,0))

8=0

r -1
_ P=ly (/T\n8 f -1l-8 -4
AR nl R E AT E T cull SN
The right side is bounded by

r -1
p-1y (ry 5 B+f-b , p-l+r-s-4
Aty E g( s ) () By A, Mgﬂ-b Mo ) iros-bob

vhere Ai are constants independent of r,p and where we use the notation:
e

ﬁeg{HJ if Q)O
1 if e<O0.
Teking H, > 24, and using (1.1) we get

r p=1l+r-b
v D] vy (0,x)| < Ag B, H, Mo24r-p

Taking H, > Ag , the proof of (5.8) for q =p follows. (In fact, we have

proved (5.8) with Mq+r-b replaced by Mq-o-r-b-l , but this will not be used in the

sequel, as it does not yield any improvement for the estimates of the ukh(t,x)')

The second step consists in proving that

————

q 3 2k+q+r-b
(5.10) 0§ o7 wy (0,%)] < Hy H) Merqir-c ,

for all 1<h<m, and all q,r,k such that 2k'+ q +r > b. Hiitchouninsuch
& way that

lngnzukh(o,x)lgu3 1f 2&k+q+r<b.

From the proof given below it fol.ows that Mk +qir-c can be replaced in (5.10) by
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Mk+q+r- o-1 ¢ Dut this will not be used in the sequel.

Since ¢ <b, (5.10) for k = O follows from (5.8) if we take 33 >H, ,

Hh > H2. We now proceed by induction on k: We assume that (5.10) holds for all

“bh with p < k and proceed to prove it for p = k. H, is fixed and Hh is

3
still to be determined (independently of k,q,r).
We employ another induction on q. We then first have to establish (5.10)

for q = 0. We make use of (3.23) and we write these equations in the form

(5.11) GOP LT
=R RN

We first need to estimate D: Qkh at points (0,x,0). This expression consists
of a finite sum (the number of terms is bounded independently of k,r), the general

term of which is

r
B (g Dy By, ) Lo ()% g Dy s, (1<1<n,x).

Using (5.7) and the inductive assumptions we get the bound

A 2(k-1)+i+s-b

A7 Z:( )Ah H Hh Mr-s--c Mk+s-c

r kK+r-b-1
(5.12) IDo qkhl < Ag H3 1, Meir-c
We are nov ready to establish (5.10) for 9= O by induction on r. For i
r =0 we simply solve (5.11) and use (5.12) with r = 0 , taking Hy > Ag . Assuming
the validity of (5.10) for D: W with s <r, we shall prove it for s = r. We
apply D:: to both sides of (5.11) and obtain

Fm -
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> (e . . 5> &5 -5, () _ 7 &
(5.13) E(n’ ) (75) = - 2 () 0 gy B 0G) - T Gy -

Using the inductive assumption and the inequalities (5.1) which hold not only
for the 7(J) but also for any power (7'('3))h (by Lemme 1) with different A sh,

we f£ind that the first sum on the right side of (5.13) is bounded by

AgHy By 2hir-1 M, .
The second term is estimated by (5.12). Hence, taking Hh > A8 + A9 s the
proof of (5.10) for q = O 1is completed.
We now proceed by induction on q. Assuming (5.10) to hold for all g <p,
we ghall establish it for q = p. We shall make use of the differential equations
(3.20) which we write in the abbreviated form

(5.14) B S A %

-1 T W .
We first estimate DE az Py 8t points (0,x6). It suffices to estimate

the general term

DE'IDZ(P D“uk_“lh (2<1<m, fol c1,x>1).

Using the inductive assumptions and (5.6) we get

1+r
pP-l4r p-lir-s a .8
LFP N Cob Ttk NN S LU

Sk4p-L4r-b p-l+r
SAoH3Hy, max ) My e s-asi- fal+2 Me-141+ ] +s-c

2k+p-1+r-b

<Ay H3H)y

Yerper-c .

Hence,
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2k+p-1+r-b

-1 ~
(5.15) |DP Dz Pl S A, Hy H,, .

t Mk-i»p-o-r-c

We now proceed to estimate Dz Dz u.kh(o,x). Applying Dz'l Dz to both sides

of (5.14) and taking ¢t = 0 , we obtain
-1 r
_ P-1l\,r =l-4 . r-8 L 8
E VTS o SR LA G Sl SRR S S0
-1 ~
- p‘t’ D:: Py -
The first sum is estimated by using (5.3) and the inductive assumptions, and

we obtein the bound

A13 H3 Hl"21:-+-I>-l+r-b

Combining this with the inequality (5.15) and taking Hh > A12 + L.\.3 , the proof_

Mk+p- l+r-c °

of (5.10) is completed.

The w stg consists in proving that, for 1 <h<m,
qQ q+r-b
(5.16) |o§ Dz u(,x)] < Hg Hg M e (g +r>0)

(note that the argument is (t,x) and not (O,x) as in the first two steps).

H5 is chosen in such a way that

ID% Dz uoh(t,x)| SH, 1f q+rgh,

The proof is by induction on q. To prove it for q = O we employ induction
on r. Assuming (5.16) with q = 0 to hold for all D: » # <r , we proceed to
prove it for 4 = r.

Applying D:‘ to both sides of (5.9) we get
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(5.17) ® (0 ug) + 0] uy) =7,
and
P
(5.18) Ir | < E (@1 05 w1557 ¢ < ay B BT m

as follows by using (5.3) and the inductive assumption.
Integrating (5.17) with respect to t and using (5.8) with q = O and (5.18),

we get

(5.19) |n§ uoh'('t,x)l <H Hzr-b Moo + Ay B H 61‘-1-b

Mo # A T I u g (n) o,
(o]

Integrating both sides of (5.19) with respect to t , we can then eliminate the
integral on the right side of (5.19) and thus obtain (5.16) with q = O, provided we
take H6 > H2 s H6 > A16' for appropriate A16 :

We proceed to prove that if (5.16) holds. for all ¢ < p ‘then it holds for.q = p .
Applying Dg'l Dz to both sides of (5.9) and using (5.3) and the inductive assumption
(in & similar way to the calculations in step 1), the desired inequality easily follows

ir H6 > Al'? » for appropriate A‘.L7 .

e fourth steP consists in proving that, for L<h <m,
q 2k+q+r-b e
(5.20) [Dd o w, (£,%)] < H, Hg Moy sqirec (&:i+:g + £ > D)
where H_ 1is chosen in such a way that

T

IDgDzukh(t,x)ISH,? if 2k+q+r<h,

The proof is by induction on k. The came k = O is step 3. In order to estsdblish
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the inductive passage from k-1 to k, we employ another induction on q. Thus, we

first have to prove the case q = 0, that is,
(5.21) [o¥ w{t,x)| < H,H H4r-D (2x +r>01).
o "'x‘ ’ - 7778 Mogsr-c

To prove (5.21) we employ induction on r. The case r = O will not be
described here since it follows by a part of the argument given below for the
inductive passage from r-1 to r.

In order to perform this passage, we apply D; to both sides of (3.20) and

obtain
r=-1
B (0 ) + 005 ) = - 33 () 0wy 20
m
(5.22) - Dz Pih(uk-iﬂ,h) ZFn .

1=2
The first sum is estimated by

2k+r-l-b
(5.23) A H7 Hg Moxtr-c

where use is bedng made of (5.3) and the inductive assumption.

In the second sum, each term is a sum of terms of the form

r a
(5.24) Do(Pm D "k-1+1,h)'

Using (5.6) and the inductive assumption get (by cadculation similar to step 2)
e bound (5.23) but with a different Ag

Hence,

2k+r-1-b
(5.25) IF o | < &g By By Yoxir-c *

We now integrate (5.22) with respect to t and proceed by an argument of step 3.
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The proof of (5.21) is thus established.

Having proved (5.20) for q = O to proceed to establish the inductive passage
from q-1 to q. This is done simply by applying D%'l Dz to both sides of (5.1k).
Since a similar argument appears in step 2, we omit further details.

M. The inequalities

(5.26) If D5 w (0,2) | S B, TP

may seem more natural than (5.20). If they are true then the next step is super-
fluous and Theorem 2 can also he improved by having
M MM
A
M . < SRR, _PbP |
p-b - p! p!

However, it seems to us that (5.26) is not true. The difficulty in trying to
establish it is that the sum of the orders of differentisation and the subindices
of the u's of (5.24) 18 k+r + 1, if |a| = i, and not k + r. Therefore, in
order to carry out the inductive passage from -k-1 to k, more weight should be
given to the index k. We are thus led to establishing (5.20) with "kk +qir-c for
some AN > 1. The previous proof works well only if A > 2.

The f£ifth step (and the final one) consists in combining the results of the

second and fourth steps in order to improve the results of the fourth step.

By Taylor's formula we have:

vhere

~ ~
forsome t , 0<t<t,



- 50 -
Using (5.10),(5.20) we get
N-1 v
q £ 2k +q+r+V
|2 Dﬁ wen (&%) | < v;-o vr g Hy M rqiravec
(5.27) N
2k+q+r+N
7 H8 2k+q+r+N-c

If Mq = q! then the last term on the right side of (5.27) tends to zero
as N o , provided t <g¢ and ¢ 1is sufficiently small (i.e., 3 ¢ Hg < 1).
On the other hand, the sum on the right side of (5.27) is bounded, independently of

v, by

2k+qir (k+q+r-c)!,

20 3 HL

provided § 1is sufficiently small (say 3 ¢ H, < 1).

Introducing the notation

M if M =gq!
(5.28) Mo, ={ y 4

Mk otherwise
+8
we conclude from (5.27) and from step 4, that
+r
(5.29) 1% w60 | B BT M
for some constants Ho, H. This is the final form of our estimates for the Upen®

Note that (t,x) varies in w§ , and ¢ varies on |o| =
o

4.3. Estimates for fi(7(3))

From (3.24),(3.25) we see thst fk(x) , for k >n - m + 2 is of differ-

entisbility class C° °*2 gnd ve can write

o e i e e e iR 25
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k-n+m-l

(5.30) £,(r) ~ '(T:_n'—)'

in the following:sense: Each derivative Dg (q < k-n+m-2) of any side of (5.30)
is bounded by a constant (independent of q,k) times the derivative ng of the
other side.

From the proof of Lemma 2 it is seen {using (5.30)) that the lemma remains true

it ®u) = s replaced by

Flu) = 1! £ (u) .

i+n-m+l

Making use of (5.1) we thus get

ilxil

A Aq-&-l "l (XX -142
o)

(5.31) Iod £ (7(")| <K Knwm-1)T  Ng-1-as2

vhere i1=k-n+m-1 and a+1<q<k-n+m-2=1-1, and

(5.32) qu(7(35|<l(1 m if 0<q<a+1.

Ki are constant independent of gq,k.
Teking A > A K we conclude, from (5.31), that

LW
(5.33) |03 ¢ (7(3))l <K, m e (a4l < q < k-n#m-2).

The inequalities (5.32),(5.33) are true also for all q > O at points (t,x,e)
vhere 7('1) (t,x) # 0. Indeed, for n o044, rk(r) =0 if k<n-m, and r 40

vhereas f (r) = ck phim-n-1

if k > n-m , vhere (:k n is constemt, positive for

L4
r >0 and zero for r < 0. Hence we only have to consider the case k > n-m, 7(‘1)(1: x)>0
and we then apply Lemma 2 and derive (5.32),(5.33) for all q >0.

For n even proof of (5.32),(5.33) for all q >0 (at points where 7(‘1) 0
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is somevhat different. Let |7(") (t,x)] > r, for soms r > 0. Ve then cbserve
that (k+m-n-1)! fk(r) belongs to C((‘q-d)l}, uniformly in Xk, on any set
(rsr, < Ir| < r;). Combining this remark with (5.1) and using Lemma 1, the proof

of (5.32), (5.33) follows.

b.b. Bstinates for uy (t,x)e (7))

let g<k-n+m+1l. Then, using (5.29) and (5.32),(5.33) ve get
K
88w (6,00, (/| < gy g (G B BT A AT L

(5.34) x, gt
M 4

q-r-ul5 !E—n-m-ﬂ'. Ik,kd-q-c .

This inequality remains true for all q > O at points (t,x,0) vhere

7{B)(t,x) § 0, and then K, depends on r, vhere r_ 1s any constent < I7§h)(t,x)|-

o
Hence, for such points (t,x,0),

q N (h) K. B'ﬂ
(5.35)  |pg [g U (8x)E D < rET My, Meqec

) |
4.5. Estimates for the *remainder® G, - E “kh(t:!)fk(‘l(h))

We set
(5.36) Ty(t) = 22wy (e ot)
%
(5.37) Rph(tsi) = Gh(t.vx) - Uw(t:‘)-

We continue to use the abbreviations (3.15). Rph may be considered as the "remainder"
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o
of the (generally) divergent series § ukhfk(7(h))' We shall estimate in this

n+2 1.

subsection D-%Rph for q<p-n+m-l-v vhere v = [ — Setting

d d
P = P(%,x, v . ) it is easily seen that Rph satisfies fomlly, the equation

e, + e a ) ) 4 e

where L m-l,h(up,h)] fp-l (7(h))

ph mh(ph ,h)

+oeee By u )l (n)y

+ eea + [th(u (y

p-m+2) * Pm—l,h(up-m+3,h) p-m+2

and the initial conditions

39
(5.39) Sb_jRpht-oao (0<ygm-1).

(5.38) is an hyperbplic equation and the nonhomogeneous part is of differen-

tiability class CP™" 1in “1: (if m=1, L, = 0). By Glrding (8] and the fact

o ph

that the domain of dependence of WR is contained in WR , it follows Rph exists
[o]
in wlg and 1is of class C*'™ ™ . Using the definitions (5.36),(5.37) and (3.15) ,

it follows that G 1is the fundamental solution. Since p can be made arbitrarily

large, G 1is differentiable up to any order s at points (t,x) vhere

(5.40) U (t,x) ll {1[§ Upho(t,x)]dc

is differentiasble up to the order s , for some p > 8 +n - m.

We proceed to estimate D‘1 Rph in two steps.

The first mg consiste in deriving estimates for L oh*
In order to find a bound on D L oh it suffices to find a bound on
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(5“"'1) D2 (Pm-,j,h(“ 'i"’J’h) fp_i(y(h))] (O S i 2 J _<_ m - 2)
We first estimate
I
(5.42) Dy (B y n(¥gey ) -

It suffices to treat the general term of (5.42):

r (o
T 0 (P g,on D Yp-teg,n)

(laf gm - 3).
Using (5.6),(5.29) we get, after some (by now) standard calculation,

p+r
(5.43) Izl < B, B, M, oiree

vhere B ; are used to denote appropriate constants, and where the symbol e will be

used in vhat follows to denote various constants, all of which are of the form
e=a-e , €& depending only on m,n.

The @¢(m,n) appearing in the statement of Theorem 2 is taken to be larger than

the maximum of the various el(m,n), so that e > 0.
An inequality similar to (5.43) holds also for (5.42). Using this and (5.32),

(5.33) we £ind that each term of (5.41) is bounded by
g !&hliﬂ;g
B3 Bh !

provided g<p-i-n+m-2. Since 1i<m- 2 we conclude that
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(5.4) Io§ 1y (t,x) | < B, BF™ 5*%}-‘1-2 for (t,x) tn Wy

forall 0<q<p-n.

Using (3.28) we get

q p+q M.p-e ~
(5.45) Dy Lph(.t,XH <3, By 5;?— Mq for (t,x) in W, .

The second steR consists of applying Corollaries 1,3 of Theorem 3 to the solution
R P BaES )
ph’ g p!

of the system (5.38),(5.39) with L oh replaced by

-e)

Lph/ (Bg .

p!

Recalling the remark at the end of {4 we conclude that if € is sufficiently
small, depending only on R, Ro and P, then
-~
M M

Blp*'q ap-e q in w"

q+m-1-v
(5.46) oy Rp(tsx)| < By By i R

9
for 0<q<p-n.

4,6, Division into Cases: The First Case

- - — 0 _____________———

We are now going to divide the points (o,h) into two classes, and complete
the proof of the theorem by treating each class separately and then combining the

two results.
For every point (t°,x°) in V, the system of equations (3.26) is not satisfied.

Hence, for any given ¢ and h (lo| =1 and 1 <h<m), either
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72 (t°, x°) 40, or

72_ (to,xo) = 0 but 8I'a.d.v 7:_(to,x°) * 0 (*'—' (*l’ soo 9 n-l))"

It is clear that, for any h , we can divide the unit sphere lo'l =1 into a

finite number of smooth regions r‘hh such that for all o 1in any zuh either

(1) 7 (+%5°) 4o

or, for all o in that th

(11) grad, 7;1 (t%,x°) # o.

Both cases may occur simultanecusly.

It is clearly enough to derive the estimates on G for (t,x) in a small
neighborhood V_ of (£°,x°), vV, e v, since then we can apply the Heine-Borel
principle and complete the proof of the theorem.

We cen take V_ and the L in such a way that if (i1i) holds, but (i) does

ph
not hold, then

h
(5.47) for some 4>0, ¥ (t,x) =7 (l7l <noe e (tx)e V)
can be uniquely solved in terms of one of the *'i , and

gra.nd* 7§h)(t,x) £ 0.

We shall now estimate derivatives of th = Rphcr + Uphcr for ocel b ? in case (1)

By (5.35),(5.46) we get, for q=p - 2n - 2,

M M ¥
(5.48) |pd Ghu(t’x)l < 311(1312)‘1 [ _&%}:‘_*9 + _Sa.giﬂi‘l]



for some O = a(m,n) .

4.7. The Second Case; letion of the Proof

We next consider the case (ii) and estimate derivatives of

(5"*9) Gh, u(t’X) : e.rz hGho‘(t’x)dSV .
K

Since Gho- = Rphcr + Uphcr and the derivatives of Rpho- have already

been estimated in 4.5 (see (5.46)), it remains to estimate derivatives of

(5.5) P

We may clearly assume that (1) is not satisfied; hence (5.47) holds. Let

o° be the unique ¢ € zuh for which 7((rh)(t°,xo) = 0 . Because of (5.47), there

exists T > 0 such that

- - h
(5.51) 1t |o~d° > Nos €€y, (6,x) €V, , then 7 (t,x) 40,

provided the diameter of Vo is sufficiently small, which we may assume.

We now split the integral (5.50) into two integrals:

(5.52) Uoh, 1 = ] = + f mIatd .
cetph cgel' cel"

To define L' consider the family of surfaces

(5.53) 73(%1) =y

for -n <y <7 . Because of (5.47) this is a family of (n — 2) - dimensional

surfaces in the local parsmeters '1’ vasy the parameters of the family

Vn_l
are (t,x,7) . Denote this family by T(t,x,7) . For each 7',9" in the interval
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—% <y <% there 1s a one-to-one correspondence ¢ between the points

v = *(tl’xl’7l) on T(t',x',7') and .* = *(t"’xn,.’n) on T(t",x",y") provided

(t',x') and (t",x") belong to V and N 1is sufficiently large. We determine

o ’
on T(t,x,7) a set n(t,x,7) in the following way:
7(t,x30) 1is the intersection of T(¥,x5¢) with an (n — 1) - dimensional

sphere in the V¥ - space. If the radius of the sphere is taken to be sufficiently
emall, then nx(¥,x40) 1is a manifold. n(t,x,7) 1is defined to be the set corresponding
to n(%x30) by the mapping & . Let To(t,x,y) be the interior of

n(t,x,y) in T(t,x,y) . Then it is clear that if the diameter of Yo
is sufficiently amall and if N is sufficiently large, then n(t,x,y) and

To(t,x,‘r) belong strongly to C{Mq-a—l} (see §1). Also, n(t,x,7) has no boundary.

Note now that if we decrease V n and N remain unchanged but % in

o b
(5.51) can be decreased. Hence, without lcss of generality we may assume that the

femily (T (t,x,7) ; - i’} <y< %} contains the (n — 1) - dimensional set in the

¥ - space which corresponds to the set |o — o°| < Ny -

We define

zl

Z'(t,x) = {To(t’x:'Y) Hil INl <7< %) .

Then, by (5.51), [7" (t,x)] 21, >0 in L, -I' .

Hence, in £" (5.35) is valid, and using (3.28) we obtain

M ~
|nd Upg (x| < By, (3,)P* .2;;122 Moo -



Applying Lemms 5' , we obtaln, for the particular choice g=p -n,
q e M e
" -~
(5.54) 1% 32 (4, x)] < B)4(B)¢) el

We turn to JI" and introduce on :)th the form (see [10; pp. 272-3))

o7,(n)
do’:d,do where d0=dS7/ I—-a-v——l:

dsy is the element of area on the manifold 'I‘o(t,x, y) and Jd/dv is the normal

derivative to To(t,x,y) . We obtain

1
N 48

(5.55) Jé (t,x) =£,§ £.(7) {( Ti(t’m) gt %) | 7o\t }‘” :
N oV

Denoting the inner integral by okh(t,x,y) , we claim that for any q >0,
q k+q ~

vhere DE is any gq-th partial derivative with respect to (t,x,7) .
Indeed, this follows by employing Lemma 5 while making use of the estimates

(5.29), (5.1).
It 1s now easy to complete the derivation of the estimates for JI" » In fact,

Dqu') (t,x) = ﬁ

£ (y) D2 o (t,x,y)dy = tJ .
) k R k= &

P R

Consider first the case where n 1is odd. If k¢ n - m then, by (3.24),

_ n-m-k 4
(5.57) Jk (t,x) = ¢ D), D Ok(t,x, 7) y=0 ’
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and if k >n —-m then

B -
(5.58) IJk(t;x)l < X +m i9n == 3;1P IDq °k(t:x:7)l

Combining both cases for k , and using (5.56), we get

"~

M
(5.59) D% 31(4,%) | < Byy(By) )P Rebe Mg

For n even, if n +j-k-m< O then (see (3.25)) we obtain an estimate

similar to (5.58). If n+ 11—k —m >0 then we obtain a result similar to (5.57);

this follows by using the definition of the dictribution r (h>0) and
Taylor's formula.

Combining the estimates (5.59), (5.54) and using (5.52) we get, for
Q=p—-2n-2,

M
a P pPe Y
(5.60) |D Uph’u(t,x)l < By(Bpq)” A% M

Combining this inequality with (5.46) we obtain for G the inequality

h, u
(5.48) with different B's and « .

Since in the first case we have, by (5.48) (see the definition (5.49),

(5.61) q q Mg, 2q-eia M wa
Ip? 6, (6x)] < By (B),)Y (=TT, QIR

we find that (5.61) holds in each of the cases.
Summing over h,u we obtain the same inequality (with different Beh) for

G(t,x) . This completes the proof of the theorem.

6. Concluding Remarks

6.1. Other Fundamental Solutions

Theorem 2 remeains true also for the other fundemental solutions GJ(t,x)

defined by the initial conditions (3.3'), with to = 0, xo = 0 . The only

RPN
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difference is in the definition of the Fk' fk+l is defined as | fk , but instead

of (3.22) we now take

e 8" (r) (n odd)
(6.1) f__J(r) =‘ .
jent (n even) .

Formulas (3.24), (3.25) have to be modified accordingly.
Obviously, all the results remain true for the fundamental solutions

GJ(t,x;to,xo) with pole at (to,xo) .

6.2.  Smoothness of Solutions: Huygen's Principle

Let u be a solution of the Cauchy problem

Pu=0

2
J
ot te

(6.2)
= 9,(x) (0<y<m=1)
0
*  * »*
For any point (t ,x ) where O0<t <€ (the same € which appears in the
statement of Theorem 2), denote by C(t*,x*) the intersection of t = O with the

* *
characteristic conoid with center (t ,x ) . Let ¢ be an open neighborhood of

*  *
¢(t ,x ), and assume that

(6.3) ¢J(x) = ¢‘J(x) + ¢23(x) (0<Jy<m=-1)
where Py is of the class C[Mq_a] in some ball |x| < R' and where Y is

any function (say, bounded and measurable) which vanishes on ¢ .

Let u, and u, be the solutions of the Cauchy problem (6.2) with the

initial conditions tle and P 3 respectively.
o depends only on € and P, then, by Theorem 3, ",

is of class C{ Mq—a] in some neighborhood N of (t*,x*) .

If R!' ZRO vhere R
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As for u, , we cen represent it in terms of the fundamental solutions,

namely,
mel 0

(t,x) = & GJ(t,x;O,x ) * cpj(x
J=0

(6.4) u, 0y

¥*
Since ¢ J(xo) -0 if x°E€C , we cen apply Theorem 2 &nd conclude that u,

A *
te ongs to C{ M 1f N_ is sufficiently small neighborhood of (t ,x).

NOPLLY 0

Hence:

Theorem L. Under the assumptions of Theorem 2 and the forgoing assumptions
e

concerning the ¢ 3 the solution u of the Cauchy problem (6.2) belongs to

I *  *
c{ in some sufficiently small neighborhood of (t ,x ) .

Mq-a+d)

This theorem may be viewed as an Men's principle for the smoothness of

solutions, namely, if the initial values belong to C{Mq_a} in some neighborhood

*
of C(t*,x ) eand are arbitrary elsewhere, and if the decomposition (6.3) holds

in some ball |x| < R' , then the solution u 1is in a corresponding class

A P_—
C[Mq-e,+d} in some neighborhood of (t ,x ) .

6.:. Wrbolic ﬂstems of eguations

The most general hyperbolic systems for whom the Cauchy problem has been
solved by Petrowski [16] and Leray [15] are

n

o) k +k. +...+k
(6.5) S S 5 Ay kJ§°l P
n ) p A
Bt 01 n J at%ll...axn
ky <n, n

(L<p<N) ,



6=

where the A's are matrices of order N x N with coefficients depending on (tyx) .
The condition of hyperbolicity is the followidng:
For any real veetor ¢ # O, the matrix

k_ k k n
5 0 1...cnn-v3s

(e30) = (Zk -, Mg, ksl YO 3

i

can be transformed into a matrix

N o LR BN 4 0 .\

1 '\‘
0 N2 . e O ;
0 O L ] Nk ’l.

/

where the roots of each polynafa.ial det. ( Nh) are real and distinct.

Consider now the special case k =1 . 1If all the n 3 = 1 then the system
is the one considered by, Courant-Lax [3] ‘a.nd Lax [14].

The formalism of § 3 was extended to hyperbolic systems (with k = 1) by
Babitch [1]. An energy inequality analogouss to (4.18) is valid also for hyperbolic
systems (Leray [15]). Using these tools, Theorems 2-4 can be extended without
difficulty to hyperbolic systems. Since the proofs are quite analogous and the
methods are the same, we omit all the details. We only mention here the definition

of a fundamental matrix:

Fundsmental matrix with pole at the or-igin is a matrix G = (Gl;k) of order
N x N having the following properties:
(a) Each column is a distribution in x , with t as a parameter, which
satisfies (6.5).

(b) For 0<1<n, -1

J
ot h bh h
< = if i ; — = )
att s £=0 ° & 3P @3 £=0 O &)
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