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FOREWORD

In order that moro meaningful data can be obtained in certain
propcosed sensitivity tests associated with nuclear weapon vulner-
ability studies, a study cf 014 methods in comparison with new

ones was deemed desirable.

The results presented here will aid an experimenter in
determining the feasibility of usirg stochastic approximation
techniques. Such technigques have wide application in industry

and their use is not confined to the evaluation of weapon systems.

. Work on this report was done undar the tasks assigned by the

Bureau of Naval Weapons Instruction 5450.17.

The report was reviewed for techmical accuracy b Charles E.
Antle, Statistics Laboratory, Oklahoma State University, and

Dr. Vanamamalai Seshadri of Scuthern Methodist University.

EDWARD BAKLINI
Head, Applied Science Group
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ABSTRACT

The rates of convergence of chree stochastic approximation
estimators are studied empirically using a Monte Carlo sampling
procedure. The results are presented in tab- ~+ form and various
conclusions are made as tc the utility of each “tmator in the

light of these results.
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INTRODUCTION

Sensitivity testing deals with a continuous variable which
cannot be determined in practice. For example, suppose it is
desirable to know the amount of mass of a high explosive such
that the probability that an explosive response will occur when
the mass is subjected to a jet-fuel fire is less than some spec-
ified level, say a. There are levels of mass at which less than
-100c percent will respond and levels where more than 1G0a per~
cent will respond. Clearly, the critical value of mass at which
exactly 100a percent will respond cannot be measured. All one
can do is select a sample arbitrarily and determine whéther the
criticel value for a sample is less than or greater than the

mass of each element of the sample.

This situation arises in many fields of research. In selec-
ting insecticides, a critital dose is assoeiated with each insect
but cannot be measured. One can only try some dosc and observe
whecher cor not the preassigned percentage of insec.s are killed,
i.e., observe whethei or not che desired dose for the insect is
less than the chosen dose. The same difficulty arises in phar-
maceutical research dealing with germicides, anaesthetics, and
other drugs, in testing strengths of materials$, and in several

areas of engineering and developmental research.

In true sensitivity experiments, it is not possible ro make
more than one observetion on a given specimen. Once a test has
been made, the specimen is altered (e.g., the explosive is de-

stroyed, the insect weakened} so that a bona fide result cannot
yed,




NAVWEPS REPORT 7837

be obtained from a second test on the sa. : specimen. The common
procedure in experiments of this kind is to divide the sample of
specimens into several groups (usually, but not necessarily, of
the same size) and to test one group at a chosen level, and a sec-
ond group at a second level, etc. The data consist of the numbers
affected and not affected 1t each level. Several methods of ana-
lyzing such data (variously called sensitivity data, all-or-none

data, or quantal responses) are available (Ref. 1 and 2).

Most of the methods commonly used are applicable only in
special cases, most of which are based on various assumptions
concerning the distributions of the estimators, especially if
confidence limits are desired. A method, devised relatively
recently (and seldom used for various reasons), is available to
the experimenter in which he may estimate any critical value in
its range with some assurance that after a large number of trials
the estimator will approximate closely the desired critical value.
The method, called a stochastic approximation method, was formu-
lated by Robbins and Monro and published in 1951 in the Annals
of Mathematical Statistics (Ref. 3).

Briefly stated, stochastic approximation is cuncerned with
the regression of a variable y on a variable x, and seeks the
value x = 6 for which the regression value of y 1is some preas-
signed number, y = a. The estimation procedure for & is sequen-

tial and distribution-free. Despite its extreme simplicity in

application and the wide variety of the situations in which it
may be useful, the technique has not bzen taken advantage of bv
empirical research workers. One reason for this may be that the
existing literature is addressed primarily to the professional
mathematician. Another reason may be that the mathematical the-

ory itself is not yet complete for relatively small samples.
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A desirable feature of stochastic approximation is the lack
of assumptions required. In many problems, the researcher has
no clear picture of the structure of che relationship he wishes
to study and would prefer, if possible, not to commit himself to
hypothesize the precise shapes of the regression or other distri-
bution features. In such cases, he needs z procedure which is

distribution~-free.

Theoretically, the problem reduces to solving the regression

equation
¢y ME) = a

This problem has been studied bv Robbins and Monro (Ref. 3),

Blun (Ref. 4), Keston (Ref. 5), and others (Ref. 6, 7, an& 8).
Using the notation of Robbins and Monro, M(x) denotes the ex-
pected value at level x of the response, say Y, of a cartain
experiment., M(x) is assumed to be a continuous monotone func-
tion of x, but is unknown to the experimenter, and it is-desired
to find the solution X = @ of the equation M(x) = o where a is

a given constant. The Robbins and Monro mechod is one in which
successive experiments are performed at lcvels Xl, XZ’ ce. in

such a way that Xj will tend to © in probability.

Except for an unpublished study by Teichrow1 and an applica-
tion of the Robbins and Monro technique described by Louis and
Ruth Guttman (Ref. 9), little is available to the experimenter
to guide him in the use of stochastic approximation methods.

The purpose of this report is to give the experimenter information

1 Teichrow, D., "An Empirical Investigation of the Stochastic

Approximation Mevhod of Robbins and Monro."
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which will aid him in determining the feasibility of using stochas-
tic approximation methods; and also, if he decides to use the
techniques, in determining which of the three available estimators
he should use. The proofs that two of the three estimators con-
verge with probability one to the desired value are available in

statistical literature and will not be discussed here.

The report is divided into two parts. The first is a discus-
sion and description of the estimators. The second part is an
empirical comparison of the convergence properties of the three

estimators.

Since the form of M(x) is not known to the experimenter, the
means used here to study the convergence properties is to employ
a Monte Carlo sampling scheme to simulate a test in which stochas~
tic approximation methods will be used. Upon repeated simulations
of trials for various forms of M(x), various convergence proper=-

ties of each of the three estimators can be observed.

Tne primary interest here lies in sensitivity testing, some=~
times called quantal response testing; therefore, the empirical
study made is a simulation of this type of testing. A similar
study could be made by assigning a continuous distribution func=-

tion to the observed random variable Y(x).

THREE STOCHASTIC APPROXIMATION ESTIMATORS

For each real number x; let Y(x) be a random variable such
that E[Y(x)] = M(x) exists. Assume that the regression equation
M(x) = a has a single root at x = 8, which is to be estimated,
and that (x - 8)[M(x) - al > 0 for all x # 6. An initial value
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Z X and a sequence [cj] of positive numbers are selected. The
A (3 + 1)st approximation to © is defined inductively by the re-
cursive formula

2 saq = X + oo -y,
(2) x4 = %5+ el - yy)
where Y5 is the observed value of the random variable at

X = xj. The letter | denotes the trial number,

Each of the three estimators can be written in che form of

Eq. 2. However, the difference lies in the way the sequence
fcjj is defined.

The sequence Lc, ] which defines estimator I (the Robbins—
J

Monro estimator) is a fixed sequence of positive elements with

the fcilowing properties:

(a) e, ==
=1

(b) £cl <o
j=13

The sequence [1/j] has these properties.

The second estimator (estimator II proposed by Keston) is
defined by Eq. 1, where the sequence fcj] is defined in the
following way from the sequence

c1=a1
c2=a2
€5 T %@
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]

e t(j) =2+ % &[{(x. - -
where t(j) = 2 - [(x xl_l}(x1 1% 2)]
and E(x) =1 if x =<0

=0 if x>0

Thus every time (xj - X, 1) differs in sign from
-
(xj_l - Xj-z)’ another ay is taken. A further restriction on
the sequence :ak] other than the properties (a) and (b) is

() Be+1 = 3

It is important to note tnat the elements of [cj] for

j > 2 are random variables.

Keston's rule for selecting the members of [cj] is based on
the conjecture that in the neighborhood of x = 8, 8 being the

solution of Eq. 1, it seemed likely that frequent fluctuations
in the sign of (xj -9) - (xj+l - Q) = Xj - xj+1 indicate that
[x, - @] is small where a few fluctuations in the sign of

Xj - xj+1 indicate that Xj is far away from 9.

It can be shown that there exists a @', not necessarily
identical with 6, where fluctuations in the sign occur more
frequently in z finite nunber of trials. The value x = @' is
defined by the intersection of the line Y(x) = a and the locus
of the medians of the densities dH(y | x)/dy for any x. It
should be noted that if the density dH(y | x)/dy is symmetric,
then Keston's conjecture is obviously correct. Even thcugh the
fluctuation would be expected to occur at @' instead of @, this

does not affect the convergence in probability of

(3) xj+1 = xj + cj(a - yj)

to @, as Keston has proved.




NAVWEPS REPORT 7837

Let x. be the value such that the variation in the algebraic
sign of x, - %x,., is maximum. Suppose that x, < X.. In order
] _]1'1 J-l

J

< xj: where x,.

for a variation in the sign to occur, x, 541 is

i+l
defined by Eq. 3.

L2t U denote a random variable whose density is the point
bincmial, The variable U takes on the value unity with the

probability Px where

%) P = PriX, x., | x.

i+l < 3 j-1 < xil

From Eq. 3, it follows that
(5) P = Pr[Y(xj) > al

Clearly, U has maximum variance at Px = 1/2. Therefore,

that value of x such that
(6) Pr{Y(xj) >al =1/2
is the desired value of 9'.

1f xj_1

that the value of x such that

> xj, a similar argument leads to the conclusion

(7) PrEY(xj) <agl =1/2

is the desired 8'. Hence, ©' is the value of x defined by the
intersection of the line M(x) = a and the locus of the medians
of aH(Y | x)/dy.

Since the sequence ij] converges to © with probability omne,

there exists a J such that for all j >J

Prlsyp ng -8l <|8-0"]1=1«-" 0' #8and e >0
i

That is, there exists a neighborhood of @ which does not

contain @' such that after some trial number N almost surely
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all xj will lie inside the neighborhood. Hence, there will

exist almost surely only a finite number of sign changes in a
neighborhood of @' if © is nct in the neighborhood of €', But,
for a finite number of trials, the experimenter cannot be assured
that the sign changes are occurring in the neighborhood of ©

or ©'.

In order to obtain an indication of how this fact would
affect the sequence [ci], consider the difference between the
median and means of two rather common skewcd densities: the

triangular and the gamma.

Consider first the following form of the triangular distri-
bution:

—-_— X 0<sxX<b
cb
f(x) =
2 ,
c(c-b) {c - x) bgsxxgc

Table 1 presents values of the ratio of the median to c,
the ratio of the mean to. ¢, and their difference for various

values of b/c. Note that for small values of c, the difference
between the median and the mean can be slight.

Table 2 presents the ratio of the median to g, the ratio of
the mean to g, and their difference for various values of a,

when the gamma density is of the following form:

f(x) = pore 1 xae-x/ﬂ
g I'(a +1)
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% TABLE 1. Comparison of the Mean and Median for
z the Triangular Density Function

: blc Median/c Mean/c Difference/c
.5 .500 .500 .000
.6 .548 .533 .015
.7 .592 .567 .025
.8 632 .600 .032
.9 671 .633 .038
1.0 .707 667 .040

TABLE 2. Comparison of Mean and Median for
the Gamma Density Function

|
|
E
|
[ a Median/e Mean/p Difference/s
[ 0 .693 1.000 .307
| 1 1.678 2.000 .322
E 2 2.674 3.000 .326
| 3 3.672 4.000 .328
E 4 4.671 5.000 .329
| - 5 5.670 6.000 .330
: 6 6.670 7.000 .330
7 7.669 8.000 .331
8 8.669 9.000 .331
9 9.669 10.000 .331
10 10.669 11.000 .331
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From the data in Table 2, it appears that even fcr small
values of s, the difference between the median and the mean can

be relatively large.

It should be noted that the mean and the median are identical
in the binomial distribution if, and only if, p =1, 0, or 1/2
where p + q = L. The importance of the binomial distribution is

that it is the basic distribution for quantal response problems.

It is hard to justify the use of an estimatcr computed from
a small number of trials simply because it is known to converge
to the desired value as the number of trials increases without
bound. The fact that no other estimators have been proposed
and found better, in some sense could be a just reason for using
the stochastic approximation estimator. Therefore, it secems
desirable to compare the two stochastic approximation estimators
previously described with an estimator (estimator III) which
seems to be the one which would be most naturally proposed by an
experimenter who had no knowledge of the Robbins—Monro or the

Keston estimators.

An experimenter who wishes to determine an X such that

M(x) = o would most logically select an x, which he would con- .

1
sider as being close to the desired value and then compare the

random variable Y(Xl) with a.

If Y(xl) exceeded a, then X, < x; would be selected accord-

ing tou the magnitude of a - Y(xl). Similarly, if Y(xl) was less
than a, X, > %y would be selected. Clearly,if Y(xl) = q, the
experimenter would continue testing at xy- If after j tests

Y(xj-l) < o and Y(xj) > a or Y(xj_l) > a and Y(xj) < @, then it

10
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seems logical that the experimenter would interpolate in order

) to c¢btain xj¢1.

the steps that one takes after each trial in a small neighborhood

Also, it seems a desirable procedure to shorten

of the desired value of x. A modification of Keston's procedure

for shortening the step length seems intuitively adequate.

Mathematically, this procedure can be described by the
recursive formula, Eq. 1, where cj is an element of a sequence

{cj} defined by the following rule:

c, = &

1 1
€z 7 %
1f c1_1 = ak for k =2 2, then

a, when o £ (yj, yj-l)
J = - [
(xj xj_l)/(vj yj_l) when o (yj ) yj_l)

a, when cy = a and a £ (v,

Kk 3410 V3)

(xj"‘l - xj)/(yj+1 - Yj) when a € (yj'*'l’ Yj)

i+l .
_— vhen a § (y5+1, yj)

a
and cj = (xj - xj_l)/(yj - Yj-l)

When a, is an element of a sequence[ak]having the following

k
H properties:
(a) a, >0 for k=1, 2, .
(b) ay > ap41- for k=1, 2, ..
(C) i ak = o
(d) 3 ai <e

11
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is, i B vs ¥ . th .
That is, if o (yj, ijl)_ en X4

interpolation. A niw & is selected after each period of linear

is obtained by linear

interpolation. An end of = period occurs if o ¢ (yj, yf-l) but

a (Yj+1’ yj); herice, Cj+1 1: the unext unused element of the
sequence [akJ.

APPLICATION OF STOCHASTIC APPROXIMATION METHODS
TO QUANTAL RESPONSE PROBLEMS

Let the random variable Y take on orly “wo values, unity
with the probability M(x) and zero with the probability 1 - M(x).
This type of a response has been called quantal response. Let

there be iwo real numbers, 2 and b (@ < b), such that
Y(x) =0 for all x € a
and Y(x) =1 for all x > b

Assume that a = 0 and b = 1. Then the regression function

M(x) will have the following properties:

M(x) = 0 for x<0
= f(x) for 0<xx<1
=1 . for x> 1

In a neighborhood of x = 0, the root of the regression equation
M(x) = a, we know that there exists a small neighborhood of @
in which

(8) Pr[lxj+1 -0l 2 txj - o/ and (xj+1
the probability of making an incorrect decision at xj is an

- 9)(xj - 8)2 0]

increasing function of x as =x tends toward 6.
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Since Y(x.,) can take on only the values of zero and unity,
and assuming o # 1 or o # 0, then Pr[Y(xj) =q | Xj =0l =0,
or the value of the probability statement 8 is unity,

Suppose, howsver, that at sach level xj a sample of k > 1

Y's are taken. Since the sample mean

_ 1 k 0 if no response occurs
Y(xj> - E; Yi(xj) where ¥; = 1 if a respconse occurs

has the same expected value as the random variable Y(x), the

recursive formula X1 = % + cj[a - ;(xi)3 will converge with
™ 111 tmi ) = X fqg = ¢
probability one to the same limit as xj+1 kj + cha y\xj)3

for estimators I and II.

Let us consider a special application of the general stochas-
tic approximation technique, that is, the problem to which stochas-
tic approximations would be most applicable: the quantal response
problem or sensitivity testing.2 This is a test in which the
experimenter wants to determine a level of x such that the
probability of a response as defined by the problem will be
some preassigned value, say a. Let M(x) te defined by Eq. 1
where f{x) is monotonically increasing in its range. Let us now
consider the upper and lower tolerance equations, L1 and LZ’
respectively, such that 1 - 2y percent of the observed ¥Y(x) will

be expected to fall between them. Let us represent these by

2 A good example would be to determine that dosage of radia-

tion to which a specified laboratory animal can be subjected such
that the probability of his death after subjection to the dosage
would be less than 10 parcent.

13
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2

- . f£(x) - £7(x)
L1 f(x) +m *
22
Differentiating
dL m 2m
K=f'(x)[l+?-?f(x)320

when k, the sample size, and m are selected so that
Prif(x) - mos < Y(x) < £(x) + mo-7] =1« 2y

and ' is sufficiently large so that m/k £ 1. Similarly,

dLZ m , 2n

= £ T - = 2 e

T I (x)[.L x T & f(x)l1 20

That is, both ftolerance equations are monotone and increas-

ing with x as long as w/k = 1.

In order to gain further insight, consider Fig. 1 A desiz-
able quality of a vest would be conditions such that the length
of the interval I{¥) = (x(Ll), X(L2)3 be minimized. The length
of 1(P) depands upon slope and curvature of f£{x) in the neighbor-
hood of @ ani the distribution function of Y, say G(¥ | x).

Since kY is distributed as

) ueoM - meo 9

Ky
increasing the sample size %k decreases the variance
M(x)[i ~ M(x) ]

Var(Y | =) =

14
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We note that lim I(6) = 0 and that tbe density g(¥F I %)
becomes symmetrick;: k 1increases. Hence, for large samples,
we are assured that as the trials proceed we will move toward
0 with a probability of at least 1 - Y at each trial when
x ¢ I(B). 1t is only in those trials at levels of x which are
contained in I(®) that the probability the next step will be
toward © is less than 1 « Y.

Figure 1 illustrates that each sample size fixes the tolerance
equations Ll(x) and Lz(x). Note that the probability of moving
toward © at each x, exceeds or is equal to 1 - v if x ¢ 1(9).
Since cost and sample size are usually directly related, it
would be desirable to minimize k, the sample size. If |x, - O]
is relatively large, a small sample size seems to be desirable.
When {xj - 0ol is relatively small, a larger sample size requires
the length of I(8) to decrease and tie likelihood that x £ I(8) to

increase,

The effect of increasing sarmple size with number of trials

has been studied empirically. (See Tables 4—8, pp. 22-26.)

THE MONTE CARLO SAMPLING PLAN TO STUDY THE RATES
OF CONVERGENCE OF THE ESTIMATORS

Due to the number of uncontrollable parameters involved,
perhaps the most practical means available at tl.s time to study
convergence properties of the three estimators is a Montz Carlo

_procedure. The procedure used is as follows:

15
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sion in Direction.
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1. Define M(xX), a, 8k,and k, where k 1is the gize of the
sample taken at each level of x, and Ak is an increment which

will be added to k with increasing trials.
2. Letting x, = a, compute M(xl).

3. Generate k random numbers (ri, i=1, 2 ... k) from
a uniform density. )

4. Compare each random number r with M(xl). If rg > M(xl),

assign the value of zero to ¥,. If,ri.s M(xl), assign- the value

of unity to Yi' Kk

;Z: ¥i
=1

6. Substitute ?1 into the recursive formula to determine x

Fal

5. Compute")'r1 =

90
7. If (x, - x, .)(x -
( h| j-1 ( j-1
added to the sample size.

xj_z) < 0, an increment of Ak is

This procedure was programmed for the IBM 704 and continued
for a desired number of trials. - by repeating the process several

times, various conclusions can be made.

In the study, each test was composed of a simulation of
forty-nine trials. Each test was repeated one hundred times.
Average values for X0 Xyps X515 Xogs Xgc5 x42,and X9 were
tabulated (Tables 4—8) for various values of a, k, and Ak.

In practice, the form of M(x) is unknown to the experimenter,
but it was necessary to define the form of M(x) to perform the
sampling pian, Five forms bf M(x) were selected in order for
a relatively complete grid to be placed over the unit square
(Fig. 2).

17
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These were

Ml(x) = xlla 0=sxxgl
o gax? Csx<l/4
My(x) = {1 -4 -n? 3 1/4$xs1
22 §£xs1/2
M3 = V1 - 200 - 02 1/2sx<1
( 4x? /3 0<x < 3/4
M) = V14 - w2 3 s x <1

MSCX)=K4 0sx=1

The form of dH(y | x)/dy is defined by the quantal response

property as the point binomial,
p

The values of o considered here with their associated Qi for
i=1, 2, 3, 4, 5, where Gi is the x value of the intersection

of Mi(x) = a aad Mi(x), are tabulated in Table 3.

TABLE 3. Data for Sampling Procedure

.05 . 00006 .11180 .15811 .19365 47287
419 .00010 .15811 .22361 .27386 .56234
.30 .00810 .27543 .38730  .47434 . 74008
.50 .06250 .38763 .50000 .61237 .84u90

19
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Various sample sizes, ranging from one to twenty, were used
in simulating the test, Also,a scheme in which the sample size
increases by an increment of five as the number of trials in-

i ad . 9] . = X, - X, <
creased was considered. Whe (xJ j~l)< 5-1 xJ_z) 0, the

sample size was increased.

The sequence fcj] for the empirical study was [c/j] where
¢ = 0.250 and j the trial number. The choice of 0.250 is

arbitrary and is not optimum for all forms of M(x).

The selection of ¢ = 0.250 was based on the data summarized

in Fig. 3 and 4. Three choices of c(c = 0.125, 0.250, 0.375)
were studied empirically using estimator I. From Fig. 3, a
"sood" value of ¢ in terms of minimum error in accuracy, in

a sequence of form [c/jl, would be in the range of from 0.250
to 0.375. Figure 4 shows that the greater variability of the
estimator for a small sample size for ¢ = 0.375 may offset its
value as an estimator even though it is associated with the

minimum bias of the three cases studied here.

The rasults of the Monte Carlo simulation are tabulated
in Tables 4~8.
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CONCLUSIONS

The most significant result of the empirical study is per-
haps the appavent slowness with which estimator I converges to
@ espacially when Ixi - 6! is relatively large. For a test
which irvolves less than fifty trials, estimator I when compared
with 1Y apd III appears the least desirable in terms of accuracy.
Figures 5 and 6 illustrate and emphasize the slowness of its

convergence. A good rule is that unless the experimenter is

certain that the initial value, X is close to O, he should

svoid using estimator I (the Robbins~Monro stochastic approxima-

tion method).

On comparing estimators II and III, it is apparent that
there are cases in which II appears better in terms of average
accuracy than III, and vice versa. When a = 0.50, the data
from Table 7 indicate that TIII is slightly tbetter for all sample
sizes. Aalso, it should be noted that increasing the sample size
had little effect in inmerveasing the rate of convergence for alil
the estimators, I, IX, and I1I. This is not true for other
values of a. Héwever, with sawple size 10, estimator III gives
49 ~ e| < 0.006 for all
Qi for i =1, 2, 3, 4, 5 1f accuracy of the estimator is of

a close approximation such that Ix
first importance when estimating © for a = 0.50, the experimenter

can be assured that estimator III will on the average give

results with very good accuracy.
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FIG. 5. Comparisons of the Rates of Convergence,

28




NAVWEPS REPCRT 7837

Estimator 1

.;:Y'!!'iijll"l'!"f T'}Y!!'rz 3!!t :_fl! T"! XJ{: 11.4:1‘7!_!.{!}",».{ <1 Lg
) 0,=0.224 = trf ;;
0.20 f- bt
AVERAGE F - -
VALUE
OF Xj
k=0T iz
0.10 PO TOT ATT OTT Pee I T
Estimator II1
0.30 p rrr T TreT
0,=0.224\_[=
AVERAGE  ° N
VALUE 0.20
OF X
0.i0
ffii:t};'gm sezosszserson; T TrrYYTTYY
[ SoEt] 1
0.30
AVERAGE
VALUE ~ ©3=0.224 =
OF Xj 0.20 E
0.10

: TRIAL NUMBER (j)

FIG, 6. The Effect of Sample Size on the
Rate of Convergence when g = 0.10.




NAVWEPS REPORT 7837

On comparing estimators II and III for values of o other
than ¢ = 0.50, it is clear that II is better for sample size
one, but III becomes better with increasing sample size. The
data indicate that, for small sample sizes (1 and 5) and
a = 0.05, III overestimates (see Fig. 3). In order to explain

this, consider the following rationaie.

Recalling that for sample size one

y. = 0 if no response occurs
J
1 if a response occurs

+1

such that xj < xj+1 < xj-l or xj_1 < xj+1 < xj. Suppose that

a = 0.05, then one would expect in the neighborhood of @ that

then if ¢ e(yj, yj-l)’ & linear interpolation restricts xj

only one out of twenty trials would result in a response. Hence,
there would occur on the average twenty steps to the right for
one to the left. But when the one does occur, Xj+l e(xj_l, xj)
or Xj+le (gj, xj-l)’ which offsets the large step back to the
right which occurs in using I and II. Hence, one can expect
estimator III to overestimate toward the left in the limit for

a < 0.50 and sample size one. It is assumed that o is always
less than or equzl to 0.50. But when o = 0.50, the linear
interpolation is meaningful and apparently there is little or

no bias (see Table 7).

As the sample size increases, the error in accuracy for esti-
mator III becomes smaller, indicating that either the symmetry
of the density dH(y | x)/dy or the decrease iu the size of the

variance of Y affects the convergence properties of III to 9.
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Consider the function pk(x), which defines the probability
that the direction of the next step from x will not be in the
direction of @ (see lower part of Fig. 1).

That is
p o) = f5() x40
1 X =0
where
1 o
Ogﬂﬂsmu.[mﬁlthdu§lﬂ
a 0
which in the limit as k increases without bound becomes
pk(x) = 0. This is sufficient for the estimator X415 +
cj(a - 33) to converge in the limit to @ as k tends to =,

and j tends to «.

The results support the following rules: For small sample

sizes and a large number of trials, avoid using estimator IIL.

For sample sizes larger than five and a small number of trials,

estimator 111 gives greater accuracy.

The direct relationship between small error in accuracy and
large sample sizes poses a problem of efficiency of estimators,
that is, the resolving of the problem of whether larger samples
with a small number of trials is more desirable than unit sample
sizes with a large number of trials. The solution depends on
the nature of the test and must be solved for the specific test,

hence, will not be considered here.

Increasing the sample size sequentially by increments of
five (see Ta.le 8) does not, in the cases studied, increase

significantly the accuracy of the estimators, especially when
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the comparisons are based on sample sizes larger than one. This
method can be used when sample sizes are not restrictive and
relatively good accuracy is important. However, it was observed
that sample sizes will in some cases exceed one hundred experi-
mental units at the forty-ninth trial. The accuracy of estimator
IiI is increased perhaps the most from such a scheme. It is

important to note that increasing the sample size has little or

no effect on the rate of convergence of estimators I and II.

The main results of this study are that estimator I,
although of historical and theoretical importance, appears
impractical for purposes of application, and the choice of using
I1 or ITI depends upon the cundiiions surrounding the tests and
must be determined for each test,
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Appendix

PROPERTIES OF THE SEQUENCE [ch ASSOCIATED WiTH ESTIMATOR IIX

Let H({y | x) be a family of distribution functions depending

on the real parameter x, and let

0
(9) M(x) =f ydi(y | x)

be the corresponding regression function. It is assumed that
M(x) is unknowvn to the experimenter, who is, however, allowed to

take obtservations on H(y | x) for any value of x.
The recursive formula

(10) xj+1 = xj + cj(a - yj)

defines a sequence (x. ] which in the limit would be desirable
to converge with probability one to O, which is a root of the

equation
(11) Mx) = a

The value <y is an element of a sequence defined by the

following rule:

(12) e =2y
c, = a,
1f cj-l = a, for k > 2,.then

a when a ¢ (yj, yj-l)

(xj“"l - xj)/(yj+1 - Yj) when a € (Yj’ Yj-l)
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-

ay, whernt ¢y = 3 and a ¢ (Yj+1, Yj)

(Xj+1 - xj)/(yj""l = Yj) when o € (yj+1a Yj)
j+1
J a1 when o f (yj+1, yj) and

Cj = (xj = xJ'l),(yj - y.-,__l)

When a, is an element of a sequence, [ak], having the following

properties:
(a) a > 0 for k =1, 2, 3,
(t) ay > a1 for k=1, 2, 3, .
c fa, =o
(c) L ay
(d) Tal<cw
1 ]

it is assumed that M(x) is a continuous function and
H(y | x) is such that

Priy>c I x <@l <prly>a | x = 6]

and PrlY>a | x>0l >pPrly>a | x = 6]

These conditions and the restrictions listed below are the only

restrictions placed on M(x) and H(y | x).

(a) IMx)] = ¢ + |dlx c and d are

re .1 constants
w [ 2 Y < o2
(b) ly = M(x)|“aH(y | x) £6° < =

(¢) M{E) <« for x< 9, M) >a for x > 0
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(d) inf IM(x) - al >0
6, <|x-0]x 3,
for every pair of numbers
(61, 62) with 0 < 61 <8, <=

-

The properties ol the sequence [cj] will be presented in

the form of seven lemmas and a single theorem.
Lemma 1

1f the elements c, and ¢, , of the sequence [c.] are such
that ¢, , ¢© [ajJ and ¢, = (= - xk-l)/(yk = ¥.1)» then

0 < Sy < Cpo1"

Proof. Since ¢, ;¢ [aj], pep > 0 Iy <a <y g,
L - <
then ¥ < X 1 Similarly, if V1 € @ < Vi then X1 < X, .

i~ follows immediately that ¢, = (x -~ x )/ (y - Y1) > 0.

It remains to be proved that o < Cha1® Since T +
ck_l(a - yk-l)’ we can write ¢ = ck_l(a - yk-l)/(yk - yk-l)‘
Noting that both T <a < Vi1 and Vi1 <g< Vi imply that
0< (o - yk_l)/(yk - yk-l) < 1, it can be concluded that

C C

<
k k-1°
cannot ve true, This follows immediately from the recursive

It should be noted that if X S X1 then Vi1 Vi

formula, Eq. 10.
Lemma 2

For every k such that ¢, = (xk - xk-l)/(yk - yk-l) and
et = Frr T ¥ Orar - s Skt < Sk

Proof. From the proof of Lemma 1, we know that Crtl =
C O yk)/(yk+1 - %), since ¢, > 0 and 0 < (a - yk)/

yk) < 1, it follows that ¢ <€

Cegr - k+1 - Sk
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It should be noted that in general Cipl is not less than cj
for all j = 1, 2,

Lemma 3

For each k and J the probability that ¢y = 3 for all j
= J is zero.

Proof. Let 5 7 Ay for 211 j 2 J, where j =1, 2, ... .

The sequence Exj] is monotone which converges to a finite value,
say A, if the sequence is bounded, and diverges to either ~ =

or + « if unbounded.

Let {xj] be non-increasing and bounded below by its limit A.
Then for each j > J there exists an ej > 0 such that xj = A+

ejak. The sequence [ej] is a non-increasing seguence of positive

elements such that lim e, = 0.
J—*(D
Clearly then,
< - A<
(13) 0= xj+1 AL ejak

Simplifying,

< - -
0 < xj A+ ak(a yj) < e.a

-

0s ejak + ak(a - yj) = ey

0 e, + L vy.) L e,
P lasy) Sey

aLy. £a+e,
yj J

Let us now consider the probability of such an event, that is,
Prla < Yj.s a + ej]. If H(y | x) is continuous, then,as
j - = and ey = 0, Prlc =< Yj Za+ ej] ~ 0. However, if H(y ! x)

is discrete, Pria S Yj Lo+ ej] may not necessarily converge to
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zero as ej - 0. But [a < Yj <a+ ej] must hold for all j
greater than that one for which the inequality 13 holds. Clearly,

as ej tends to zero, the probability of such an event is

I PrlY, =al < E{ max (prly, = a])} =0
1 J 1{A =x 2 x, J
A similar argument holds when the sequence [xj] is non-decreasing

and bounded.

Suppose the sequence [xj} is unbounded, then either lim X, =
or lim x, = ==, 1In order for these events to occur, ¥j < a or
-

y. > a for all j > J, respectively. Let us investigate the prob-

] ;

ability of such events, that is, Pr[Yj > a, Yj+1 >a, oo

= Pr{lim x, = -=] and PrlY, <aqa, ¥... €a, ...] = Pr(lin x, = +=]
joe 3 3 i+l joe ]

Consiéer the latter of the two cases.

PrlY. <a, Y., <a, ...] =PrlY, <al PrlY.,. <a | Y. €aj ...,
i j+1 j j+l h|
Pr[Yj+L <a ] Yj < qa, "’Yj+L-l < al
=10 v < 5]
1}3 Pr[1j+L )

There exists only a finite number of L such that x <@, It

follows then that

b d
IA

Pr[Yj <a, Y, < a,

nerly, <a | > 9]
S41 erly; <alx, >0

1 3

snPrlYy<a | x=8)
1
=0
A similar argument holds when iim xj = =, and the lemma is
J-om
proved,
Lemma 4

Ifc, = s - X, s = Y. for all j > J, then lim
57 Oy =% )Gy - yyy) i>J, o
(xj - xj-l) = 0 almost surely is true for all cj.
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Proof. Suppose Xy > x2j-1 and o < ij' In order that ¢

3

have the form restricted by the hypothesis of the lemma,

y2j-l < qa< y2j for all j > J. The sequences [ij-lj and szjj

are monotone; the first is increasing, the second is decrezsing.

Since X4 is obtained by a linear interpolation between xj end

J
xj-l’ both sequences are bounded above and below. Let
lim x,,, = A and 1lim »,, = B. Let B - A = A, where A 2 0. Then
j_;u 2J'1 J'_.q; ZJ

i > t i > =

for every j > J, there exists an er-l 0 such that x2j-1
A - e2j-1' The sequence [ezj_ll is monotonically decreasing and
converges to zero. With each i there exists an ey such that
Xo5 = B + ®93 The sequence [erJ is monotonically decreasing

and converges tc z=ro as j increases without bound. Consider

(14)

= x2j + [(xzj - xzj_l)/(YZj = ij_l)](Q = ij)

X241

B+e,,+B+e

2 - A+e

2j 2j-1)

]

B +Ai.(a - ij)/(ij - Y2j_1).l + e2j
*(egy * o500 - 30 (g - ¥p5.0)]
Taking the limit of both sides,

%igl x2j+1 =B - A[}}g} (ij - a)/(ij - YZj-l)]
it is clear that

Pr[J};xE (¥yy = a)/(¥y; = ¥y, 4) =D] =0 for any D

Since the left side of Eq. 14 converges and {%2@ (YZi - a)/

(Yoz - Y2j 1)] almost surely does not exist, &4 = 0, that is A = B,
l—J -

It follows immediately, then, that for almost all cj 1lim (xj -~ xj 1)
j= -

= (0, the desired result.
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Lemma 5

Let the sequence [zk] be the union of all subsequences of
ka3 such that %Ez z, = =, where Zk is the number of times that
the kth element of [ak] appears in the sequence [cj]. Then,
Pr[%ig z, = ®] = Q.

Proof. From Lemma 3, we know that for each k, Zk is almost
always finite. Since the sum of a denumerable number of sets
of measure zero is also of measure zero, we can conclude that
the probability of at least one element of the sequence of
infinite terms in [Zk] being infinite is also zero. This still
does not assure us that the sequence [zk] is almost always

bounded.

Let lim z ®, Then for sach L > 0, there must exist a

k-ow k=

k such that z)

event, that is,

> L. Consider the probability of such an

Pr[zk > L] = Pr[Y1 >y vea, YL > ql

or Pr[zk > L] = Pr{Y1 Uy v, YL < a)

But, from the proof of Lemma 3, we know

1lim Pr[Y1 > QA ., Y] >al =0
L= ”
i L <o, ..., < =
or %ig PrLY1 a, 5 YL al =0

Hence, we can crnclude

n
8
—
f
o

Pr[%&g z,

That is, the sequence [zk] is almost surely a bounded sequence.
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Lemma 6

For every J, the probability that c, = (x, ~ x. . " Y.

y J, p y 3 ( 3 J_1)/(.'>'J yJ_l)

for all j = J is zero.

Proof. Suppose each element of the sequence [cj] takes on
the form defined by the hypothesis of the lemma. Then the
sequences [xzj] and [ij-L] are monotonically decreasing and
increasing sequences, respectively, when y2j-1 <ac< y2j for
all j 2 J. Similarly, the sequences are monotonically increasing

and decreasing, respectively, if y2j <a for all j = J.

< Y3541

By lemma 4, we know that both these sequences converge to a
common limit, A. Consider a neighborhood of A, say v(A), such
that at least one of the following probabilities is less than
unity for all x € v(A): Pr[ng >a | x € v(a)] and
Pr[xzj_1 <a | x € v(A)]., The existence of v(A) is assured by
the continuity of M(x). Suppose that at least one of the proba-
bilities above is identically equal to unity, or at least in the
limit equal to unity as j - ® and x - A. It is assumed that the
variance of the random variable Y is finite for all values of
x and that M(x) is continuous., Then if

i{z Pr[Y2j > q | Xy3 ev@l=1

j

this must imply

1im Pr[Y2
=

and vice versa.

5-1 <q | x2j-1 ev(A)]l=0

Tlet there be a J such that ¢, = (x, - X, 2
j ( 3 J-l)/(yj JJ_l)

for all j 2 J. Consider the probability of such an event, that is,
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Pr[Y1 <a, ..., YZj-l <a, ...] Pr[Y2 > 0y e, YZj > Gy easd
< lim( max Pr[Y,. , < a])j lim( max Pr(Y,. > a])j
J—am xie\) 2_]‘1 J—vo: x_.le\) ZJ
4 -

This is true since in v(A) either max Pr[Y2j~1 < al or
max Pr[YZj > a] must be less than unity, Therefore, at least

one of the limits will be identically zero.

Lemma 7

let the sequence Ezk] be the union of all subsequences of
[Zk] such that lim z) = = where 2 is the number of elements of
the sequence Ecj] having the form (xj - xj_l)/(yj - yj-l) which
lie between any two successive members of the sequence {aj].

Then Pr[%}g z, = =] = 0,

Proof. Let lim zj = =, then for each 2L > 0 there exists
-
a j such that z, > 7L. Let us now consider the probability
of such an event, that is, Pr[Y1 < a, YZ > a, ""—2k-l < a,
Y2k > a, "”Y2L-l < a, YZL > a]. But, from tne proof of
an < > “ee
Lemma 3, we know tha %EE Pr[Y1 s vens Y2L-1] Pr[Y2 a, s

Y..]= 0. 1t follows then that Pr[lim z, = =] = 0.
21 j~ 3
Theorem 1

Any given sequence [c,] is almost surely a member of the

class of sequences [bi] where [bj] is defined by the following

properties:
(a) bj >0 for all j
b %b.=m
(b) £ b,
2
c Epi<o
(c) 2 by
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Proof. Consider any sequence fci] as defined in rule 12.
By Lemma 1, each element of the sequence is necessarily positive.

Condition (a) is satisfied,

Lemma 3 Lemma 6, and Lemma 7 assure us that every element
of the sequence [aj] is almost surely contained in [cj]. There-

fore, since Cj > 0 for all j,

$ec. 2% a,, but $a, = @, then $ec,. ==
1 1 1 ] 1 3 1 3

Hence, condition (b) is satisfied.

In order to show that the sequence [cj] satisfies condition

(c), consider the following infinite sum:

2 2 2 2 2 2 2 ~ 2
% Cj = a + a2 + ... + a2 + c11 + c12 + ... + blMl + a3
+ + a2 + c2 + + c2 etce
.o 3 21 ves 2M2’ .

where a, occurs once, a, OCCUTS k2 tines, ay occurs k3 times,
etc. By Lemma 5, the sequence [k,] is almost surely bounded.
By Lemma 7, the sequence EM13 is almost surely bounded. Let

k = max k, and M. = max M.,
j - J 3

If the sum b C.

5

~

is convergent, it is absolutely convergent,
J
The rearrangement of terms will not affect the convergence or

the sum. Hence,

o @ 2 ® 2
<kZa,+M a, = (k+M a, <=
: §= G+ §al

i b3
1 ¢ 3 1 J

e PO
3

which is the desired result, condition (c).
What is unusual about the theorem is that the conditions

2
{a) cj >0
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2 2
b £ef<cw

) (b) T
) Te ==

(c T °

are identical to those required by Blum (Ref. 4) in his theorem
which proves that the limit point of the sequence ij] is ® with
probability one for estimator I. The theorem can be stated as
follows: Let M(x) be the regression Ffunction correspouding to
the family H(y | x). Assume that M(x) is a Lebesque-measurable

function satisfying

(a) IM(x)| = ¢+ d |x]
co ) 9 . 2
(b) fi}’-M(h)! dH(y | x) £ 0° <=
(c) M(x) <o for x < 9, M(x) > a for x > 6

(@) inf &) - ol > 0

for every pair of numbers
ith 0 < 5, € o
(51, 62) with O 61 < 02

Let [bjl be a sequence of positive numbers such that

variables recursively by

e §b.=m
(e) 153
: ) Ebvlco
1
§ Let Xy be an arbitrary number. Define a seaquence of random

X.,,. =X, +b, -y,
(8) 541 = X5 + 50 - 3y)
where Yj is a random variable distributed according to H(y | x).

i

- Then x, converges to © with probability one.
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