NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; Nov 1961. Other requests shall be referred to Army Medical Research and Development Command, Fort Detrick, MD.

AUTHORITY
US Army Medical Research Lab ltr dtd 26 Feb 1970
"NOTICE: When Government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto."
EXTERNAL ENVIRONMENTAL FACTORS AND HOST-PARASITE RELATIONSHIPS

EFFECT OF ARTIFICIAL ACCLIMATIZATION TO HEAT ON THE NASAL CARRIAGE OF STAPHYLOCOCCI

Elmo S. Dooley, Ph. D.
Thomas R. A. Davis, M. D.

Studies of Physiological Effects of Cold on Man
Task 01
Environmental Medicine
USAMRL Project No. 6X4-12-001

UNIVERSITY OF ARIZONA
Tucked Valley Laboratory

UNIVERSITY OF ARIZONA
Medical Research and Development Command
3 November 1961
REPORT NO. 517

EXTERNAL ENVIRONMENTAL FACTORS AND HOST-PARASITE RELATIONSHIPS

EFFECT OF ARTIFICIAL ACCLIMATIZATION TO HEAT ON THE NASAL CARRIAGE OF STAPHYLOCOCCI

by

Elmo S. Dooley, Ph. D.
Thomas R. A. Davis, M. D.

from

Environmental Medicine Division
US ARMY MEDICAL RESEARCH LABORATORY
Fort Knox, Kentucky

Studies of Physiological Effects of Cold on Man
Task 01
Environmental Medicine
USAMRL Project No. 6X64-12-001
ABSTRACT

EXTERNAL ENVIRONMENTAL FACTORS AND HOST-PARASITE RELATIONSHIPS

EFFECT OF ARTIFICIAL ACCLIMATIZATION TO HEAT ON THE NASAL CARRIAGE OF STAPHYLOCOCCI

OBJECT

To determine the role of external environmental factors in the establishment and maintenance of the staphylococcal nasal carrier state in personnel not associated with hospitals.

RESULTS

Artificial acclimatization to heat of a group of soldiers produced significant changes in the composition of the nasal flora characterized by an increased recovery of pathogenic and potential pathogenic strains of staphylococci. The number of carriers of these types of staphylococci increased significantly in the group of soldiers undergoing artificial acclimatization to heat. A similar group of soldiers serving as controls experienced no comparable changes in the carrier state.

CONCLUSIONS

The results of this study suggested that external environmental factors, specifically ambient temperature and relative humidity, influenced the establishment and maintenance of the staphylococcal nasal carrier state in humans.

RECOMMENDATIONS

A similar study should be made on a group of soldiers undergoing artificial acclimatization to cold. Attempts should be made to relate the changes observed in the nasal carrier state with changes in the types of staphylococci carried on the skin.
APPROVED: Robert H. Poe
Captain, MG
Acting Director, Environmental Medicine Division

APPROVED: Floyd A. Odell
FLOYD A. ODELL, Ph.D.
Technical Director of Research

APPROVED: Sven A. Bach
Colonel, MG
Commanding
EXTERNAL ENVIRONMENTAL FACTORS AND
HOST-PARASITE RELATIONSHIPS

EFFECT OF ARTIFICIAL ACCLIMATIZATION TO HEAT ON THE
NASAL CARRIAGE OF STAPHYLOCOCCI

I. INTRODUCTION

The role of nasal carriers in the dissemination of staphylococcal
disease among patients and staff personnel has been studied extensively
within the semi-closed environment of hospitals (1-3). Although much
valuable epidemiological information has been derived from such in-
vestigations of the carrier problem, little precise information is avail-
able concerning the factors which influence the establishment and main-
tenance of the staphylococcal nasal carrier state in non-hospital popu-
lations.

Basically, the nasal carriage of staphylococci may be considered
as a special and often extended phase of the classical relationships ex-
sting between host and microbe preceding overt disease. It has been
repeatedly shown that nasal colonization precedes staphylococcal in-
fection among hospital patients and that such carriers represent a
threat to themselves as well as to other patients (4-6). In the case
of staphylococcal nasal carriage, however, the classical concept of the
host-parasite relationship suffers from our lack of adequate methods
for the estimation of the virulence of different strains of staphylococci
and the degree of resistance of the host to infection by these organisms.
Animal experiments designed to measure these variables in the host-
parasite equation have often proven unreliable and, in some cases, mis-
leading (7).

Reports in the literature have tended to minimize or discount
completely the role of external environmental factors in the establish-
ment and maintenance of the staphylococcal nasal carrier state (8-10)
although correlations have been established between external environ-
mental factors and the incidence of some viral diseases of humans (11).
Changes in temperature and relative humidity have also been shown to
produce local alterations in the normal nasal microflora of mice (12).

The role of external environmental factors in host-parasite rela-
tionships is difficult to assess and the correlation of changes of such
factors with alterations in the characteristics of the carrier state does
not necessarily establish a cause and effect relationship. However, be-
cause of the delicate nature of balance between opposing forces of host
and microbe immediately prior to the appearance of overt disease, it is
difficult to understand how the outcome of these interactions could be
completely independent of the influence of external environmental factors.
This is especially true when such factors are known to produce physiologic-
ical changes in the host associated with the stress phenomenon.

This study was undertaken to determine the influence of two exter-
nal environmental factors, ambient temperature and relative humidity,
on the type of staphylococci carried by soldiers and on the duration of
the carrier state. The changes occurring in the carrier state of non-
hospital personnel undergoing chronic exposure to heat are presented
and discussed.

II. MATERIALS AND METHODS

Experimental subjects. The experimental subjects were regular
US Army paratroopers from the 2d Platoon, Company E, 503d Airborne
Battle Group, 82d Airborne Division, stationed at Fort Bragg, North
Carolina. Forty-one volunteers from this unit were selected and flown
to Fort Knox to take part in a study of artificial acclimatisation to heat
prior to their scheduled participation in OPERATION SOLIDARITY in
the Canal Zone during February and March of 1961. The subjects
ranged in age from 18 to 34 years, with the average age being 22 years.
Soldiers with records of hospitalisation within the six month period
prior to the study were not accepted as experimental subjects. Upon
their arrival at Fort Knox the soldiers were divided into two groups.
Nineteen enlisted men were placed under the supervision of a non-
commissioned officer and designated as a control group. The remain-
ing 20 men and the officer in charge were placed in groups to be artifi-cally
acclimatized to heat.

The initial laboratory phase of the study began on 23 January and
continued until the departure of the soldiers for the Canal Zone on
17 February 1961. Participation in OPERATION SOLIDARITY by the
soldiers covered the period from 20 February through 10 March 1961.
The second phase of the laboratory study was conducted during the
period from 13 March through 13 March 1961.

Collection of control data. Control data concerning the distribu-
tion and types of staphylococci being carried by the experimental
subjects were collected during a three day preliminary control period
(Table 1). Both groups of soldiers were exposed to a strenuous exercise
regime in the climatic chambers at an ambient temperature of 65°F with
46 per cent relative humidity. Only cotton shorts and combat boots were worn during the preliminary control period. Essentially, the exercise regime consisted of walking 14 miles daily at a rate of 2.2 miles per hour. Appropriate physiological measurements designed to determine the status of the groups with regard to previous thermal experience were taken at 30 minute intervals. Pulse rate and rectal temperature were recorded for each member of the control and experimental groups.

Acclimatization procedure. Following the completion of the collection of preliminary control data, the experimental group was moved into a climatic chamber with an ambient temperature of 105°F with 56 per cent relative humidity (table 1) for three days. The exercise program in the heat was identical to that followed during the collection of preliminary control data. Exposure to 105°F was followed by successive three day exposures to ambient temperatures of 110°F, 115°F, and 120°F with relative humidity values of 46, 37, and 31 per cent, respectively (table 1).

While the experimental group was undergoing acclimatization, members of the control group followed the standard exercise regime in a climatic chamber with a constant ambient temperature of 65°F and 46 per cent relative humidity.

Standard stress tests. The progress of the experimental group was assessed periodically by a standard stress test conducted in a climatic chamber with an ambient temperature of 110°F and 46 per cent relative humidity (table 1). Members of the control group were also subjected to the stress tests to evaluate their performance under elevated environmental temperature. The stress test involved walking on a treadmill traveling at 3.5 miles per hour. During the tests physiological measurements were recorded every 15 minutes. Approximately 2.8 miles were walked by each soldier during the 48 minutes spent on the treadmill.

The brief exposures (table 1) of members of the control group to heat during the stress tests represented the only important thermal experiences encountered during the initial laboratory phase of the study. These experiences were not of sufficient duration to produce a significant degree of acclimatization based on physiological measurements and performance tests.

Collection of nasal cultures. During the preliminary control period nasal cultures were collected from each subject in the control
and experimental groups immediately prior to entering and on leaving
the climatic chamber. Cultures were taken from members of each
group at the end of each succeeding exposure period (table 1). Deter-
minations of qualitative changes in the types of staphylococci composing
the nasal flora were based on the examination of the pooled cultures
from each group after each exposure period. Changes in the carrier
state of individuals within each group were determined by examination
of all cultures collected from each subject during the exposure period.
Results for each exposure were plotted at the midpoint of the period.
Cultures collected during the standardized stress test were not included
in the results.

Nasal cultures. Approximately 1,100 nasal cultures were collected
from the members of the control and experimental group during the study.
Sterile cotton swabs moistened in sterile water were used to collect the
primary cultures. The swabs were inserted 1 to 2 cm into the vestibule
and rotated against the septum and the alae nasi. The swabs were with-
donstrated and streaked immediately onto the surfaces of petri dishes con-
taining mannitol-salt agar (Difco) and Staphylococcus Medium No. 110
(Difco) fortified with 1 per cent non-fat milk solids. The milk solids
were added to enhance pigment production during initial isolation. The
plates were incubated at 37°C for 18 hours and then permitted to stand
at room temperature for 24 hours to further enhance pigment production.
Colonies producing orange or yellow pigment and fermenting mannitol
were picked from the plates and transferred to culture tubes containing
trypticase soy broth. These broth cultures were incubated at 37°C for
24 hours and morphology was checked by gram staining.

Coagulase production by pigmented mannitol-positive strains of
staphylococci was determined by the slide technique. When the results
of the slide test were equivocal a microcapillary tube test was perform-
ed (13). All strains that coagulated plasma within 15 seconds by the
slide technique or within 18 hours by the microcapillary tube method
were classified as coagulase-positive reactors. Strains producing
coagulase were transferred to trypticase soy agar slants for storage
at -10°C.

Types of nasal carriers. For the purpose of this study an occa-
sional nasal carrier was defined as any individual who gave only one
coagulase-positive culture per experimental exposure. Individuals who
had a series of coagulase-positive cultures followed by a coagulase-
negative culture or vice versa were classified as intermittent carriers.
A persistent carrier was defined as any individual who had coagulase-
positive strains in every culture taken throughout the entire study.
Airborne contamination. Airborne contamination in the climatic chambers was estimated by the particle fall-out method. The method is based on the fall-out rate of staphylococcal-carrying particles onto the surfaces of petri plates containing mannitol-salt agar. The number of staphylococcal-carrying particles settling out of the air in one minute represents approximately 1/12 of the number of such particles per cubic foot of air above the plate (9). Counts obtained from fall-out plates are not absolute values. They are, however, satisfactory for comparing changes in the airborne contamination of rooms under similar flow conditions (table 2).

Statistical analyses. The chi-square test was used for comparing experimental results with those obtained during the preliminary control period. Differences were considered significant only when the chi-square test yielded $P < 0.02$. In one instance (fig. 5) the means of recovery rates for coagulase-positive strains of staphylococci from pigmented, mannitol-positive isolates were compared for significance by the Student "t" test.

III. RESULTS

Recovery of pigmented, mannitol-positive strains. The recovery of pigmented, mannitol-positive strains of staphylococci, expressed as a recovery factor (RF), from the primary nasal cultures is presented in figure 1. There was no significant difference between the RF's of the control and experimental groups during the study. Within both the control and experimental groups there were significant increases in the recovery of pigmented, mannitol-positive strains. Following the return of the soldiers from the Canal Zone there was a slight, but insignificant, decrease in the recovery of pigmented, mannitol-positive strains from the nasal cultures of members of both the control and experimental groups.

In the control group the distribution of pigmented, mannitol-positive strains in the primary nasal cultures increased significantly during the initial laboratory phase of the study (fig. 2). A similar increase in the distribution of these strains was also observed in the experimental group (fig. 3). In both groups the increased distribution of pigmented, mannitol-positive strains isolated from primary nasal cultures was accompanied by a simultaneous decreased distribution of non-pigmented, mannitol-negative strains.

Recovery of coagulase-positive strains. The recovery of coagulase-positive strains of staphylococci from pigmented, mannitol-positive
primary isolates is shown in figure 4. In the control group the distribution of coagulase-positive strains among the pigmented, mannitol-positive isolates did not become significantly different from the distribution observed during the preliminary control period. Throughout the entire study, however, the distribution of coagulase-positive strains tended to increase.

In the experimental group the distribution of coagulase-positive strains among the pigmented, mannitol-positive primary isolates became significantly different ($x^2 = 5.76$, df = 1, $P > 0.02$) from the distribution observed during the preliminary control period following exposure of the group to an ambient temperature of 115°F with 37 per cent relative humidity (fig. 4). Following exposure of the experimental group to an ambient temperature of 120°F with 31 per cent relative humidity the increased distribution of coagulase-positive strains became highly significant ($x^2 = 11.57$, df = 1, $P > 0.01$).

After the return of the soldiers from the Canal Zone and subsequent exposure to an ambient temperature of 110°F with 46 per cent relative humidity cultures from the control showed a slightly increased number of coagulase-positive strains (fig. 4). Cultures from the acclimatized group yielded significantly fewer strains of this type.

Effects of temperature and humidity. The recovery of coagulase-positive strains of staphylococci from pigmented, mannitol-positive isolates in relation to changes in ambient temperature and relative humidity is shown in figure 5. In the control group the recovery of coagulase-positive strains did not change significantly during the study. In the experimental group, however, the recovery of coagulase-positive strains increased significantly ($t = 2.69$, df = 12, $P > 0.02$) during the initial laboratory phase of acclimatization. There was a substantial degree of positive correlation ($r = 0.70$) between the increased recovery of coagulase-positive strains and the increased ambient temperatures to which the experimental group was exposed. A substantial degree of negative correlation ($r = 0.61$) was also observed between the recovery of coagulase-positive strains and relative humidity.

Nasal carriage of staphylococci. Changes in the number of nasal carriers within the control and experimental groups are shown in figure 6. In the control group the number of all types of staphylococcal carriers increased to 35 per cent following the first and second exposure periods. Following the third and fourth exposures of the control group there was a decrease in the number of all types of carriers to 25 per cent at the end of the initial laboratory phase of the study.
In the experimental group the number of all types of staphylococcal carriers decreased from 29 to 25 per cent following the exposure to an ambient temperature of 105°F with 56 per cent relative humidity. Following exposure to ambient temperatures of 110°F and 115°F, the number of all types of staphylococcal carriers increased to 67 per cent and remained at that figure during the rest of the initial laboratory phase of the study.

Following the return of the soldiers from the Canal Zone and subsequent exposure to an ambient temperature of 110°F with 46 per cent relative humidity there was a 17 per cent increase in the number of all types of staphylococcal carriers to 42 per cent in the control group. The number of all types of staphylococcal carriers decreased from 67 to 35 per cent during the corresponding period.

Persistent carriers. The number of persistent carriers of coagulase-positive strains of staphylococci in the control group increased from 10 to 20 per cent during the initial laboratory phase of the study. In the experimental group during the same period, the number of persistent carriers increased from 9.5 to 48 per cent.

Upon return of the soldiers from the Canal Zone and exposure to an ambient temperature of 110°F with 46 per cent relative humidity the number of persistent carriers in the control group increased 17 per cent to 37 per cent of the group. In the acclimatized group during the second phase of the laboratory study the number of persistent carriers decreased from 48 to 25 per cent.

Air contamination. Estimations of airborne staphylococcal contamination in the control and heat chambers, based on calculations from fall-out counts, indicated that the rooms were comparable in this regard. Both chambers received filtered outside air at an exchange rate of 1000 cubic feet per minute. This exchange rate produced a rapid removal of particles and resulted in a stabilized fall-out rate shortly after the exposure periods were started (table 2).

IV. DISCUSSION

The effect of stressful climatic environments on resistance to infection is of particular importance to the Army as modern soldiers are rapidly deployed from temperate climates into potentially hostile environments ranging from tropical jungles to Arctic wastelands (15). Thus, the primary interest of the Army in the staphylococcal carrier
state lies in its potential relation to wound infection, especially by microorganisms carried on the soldier himself.

The most common pathogen recovered from war wounds in all theaters of operations during World War II was Staphylococcus aureus (16-18) and it is now apparent that self-infection of wounds by strains of staphylococci present on the skin of victims, as well as cross-infection, played a major role in wound sepsis. Several reports in the recent literature support the concept that nasal and skin carriers of staphylococci are usually the sources of their own infections (6, 10, 19-22).

Despite the recognized importance of carriers in the dissemination of staphylococcal disease, very little precise information is available concerning the factors involved in the establishment of the staphylococcal nasal carrier state. It is difficult to understand how some persons can resist colonization indefinitely, even in the presence of heavy contamination, while others rapidly become colonized. Factors inherent in the biology of the host and microbe, as influenced by the environment, undoubtedly determine whether staphylococci can live and multiply on the nasal membranes.

With regard to the microbe, there appears to be differences in the ability of various strains of staphylococci to colonize the nasal membranes (23-26) as well as in the cohesiveness exhibited by various types of staphylococci present on these membranes (1).

In the case of the host, various factors have been suggested as determinants of staphylococcal nasal colonization. Among the factors suggested have been anatomic abnormalities of the nasal passages, the presence of inhibitory substances in the nasal secretions, and the presence of inhibitory agents produced by bacterial commensals of the nose.

In general, however, the influence of external environmental factors has been ignored in studies of the host-parasite relationships as exemplified in the staphylococcal nasal carrier. This negligence is difficult to comprehend in view of the sensitivity of the nasal circulatory system to changes in temperature and relative humidity (27), the variations occurring in secretions of mucous membranes during changes in temperature and humidity (14, 28), and effects of changes in temperature and humidity on the virulence of staphylococci (29).

This study, although limited in range, offers a promising approach to the study of the influence of external environmental factors on the
establishment and maintenance of the staphylococcal nasal carrier state in an non-hospital population. All of the recognized variables that have complicated previous studies of the carrier state conducted within the semi-closed hospital environment were controlled within acceptable limits. Under these experimental conditions, it has been shown that two external environmental factors, namely ambient temperature and relative humidity, influence the staphylococcal nasal carrier state.

From the standpoint of the parasite the influence of increased ambient temperatures accompanied by reduced relative humidity was expressed by changes in the distribution of staphylococcal biotypes within the nasal flora. There were significant increases in the distribution of strains with biochemical properties associated with virulence in the nasal cultures of soldiers chronically exposed to heat.

In the case of the host the influence of increased ambient temperatures with decreased relative humidity was reflected by increases in the number of all types of nasal carriers of pathogenic staphylococci biotypes.

The changes in the carrier state of members of the acclimatized group could be correlated with changes in temperature and relative humidity. The interpretation of the correlated changes, however, requires caution and the establishment of such a relationship under the conditions of this experiment does not necessarily justify its extension to all combinations of ambient temperature and relative humidity. Likewise, the epidemiological behavior of the staphylococci is known to be variable and the results of studies made on one group of individuals in one environment do not have universal application.

Although the results of this investigation do not permit the precise determination of the mode of action of external environmental factors in the establishment and maintenance of the staphylococcal nasal carrier state, we feel that the confirmation of the existence of external environmental influences on the carrier state under controlled experimental conditions is important in the ultimate solution of the staphylococcal problem.

Further studies designed to elucidate more precisely the roles of temperature and humidity on the staphylococcal carrier state are presently under way in this laboratory.

V. SUMMARY

Studies of the nasal cultures of soldiers undergoing artificial acclimatization to heat indicated that external environmental factors,
including ambient temperature and relative humidity, influence the establishment and maintenance of the staphylococcal nasal carrier state. Significant changes in the composition of the nasal flora, characterized by an increased recovery of pathogenic and potential pathogenic staphylococci, were observed in cultures from the experimentally acclimatized group. The number of all types of staphylococcal carriers also increased in the experimentally acclimatized group. No comparable changes were observed among cultures or carrier rates obtained from the group of soldiers that served as experimental controls. The implications of the findings are discussed in relation to the epidemiology of staphylococcal wound infections among members of modern, highly mobile military organizations subject to rapid deployment into potentially hostile climatic environments.

VI. REFERENCES

Table 1. Regime followed by two groups of soldiers during the study of the effect of acclimatization on the staphylococcal nasal carrier state.

<table>
<thead>
<tr>
<th>Period</th>
<th>Control Group</th>
<th></th>
<th></th>
<th></th>
<th>Acclimatized Group</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary</td>
<td></td>
<td>70</td>
<td>46</td>
<td>3 days</td>
<td>65</td>
<td>46</td>
<td>3 days</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>65</td>
<td>46</td>
<td>1 hr</td>
<td>110</td>
<td>45</td>
<td>1 hr</td>
</tr>
<tr>
<td>Stress Test</td>
<td>110</td>
<td>46</td>
<td>3 days</td>
<td>105</td>
<td>56</td>
<td>3 days</td>
<td></td>
</tr>
<tr>
<td>1st Exposure</td>
<td>65</td>
<td>46</td>
<td>1 hr</td>
<td>110</td>
<td>46</td>
<td>3 days</td>
<td></td>
</tr>
<tr>
<td>2nd Exposure</td>
<td>65</td>
<td>46</td>
<td>3 days</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td></td>
</tr>
<tr>
<td>Stress Test</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td>110</td>
<td>46</td>
<td>3 days</td>
<td></td>
</tr>
<tr>
<td>3rd Exposure</td>
<td>65</td>
<td>46</td>
<td>3 days</td>
<td>115</td>
<td>45</td>
<td>3 days</td>
<td></td>
</tr>
<tr>
<td>Stress Test</td>
<td>110</td>
<td>46</td>
<td>3 days</td>
<td>120</td>
<td>46</td>
<td>1 hr</td>
<td></td>
</tr>
<tr>
<td>4th Exposure</td>
<td>65</td>
<td>46</td>
<td>1 hr</td>
<td>110</td>
<td>46</td>
<td>3 days</td>
<td></td>
</tr>
<tr>
<td>Stress Test</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td></td>
</tr>
<tr>
<td>CANAL ZONE</td>
<td></td>
<td>Ave. 1030 hrs</td>
<td>Ave. 1030 hrs</td>
<td>19 days</td>
<td>Ave. 1030 hrs</td>
<td>Ave. 1030 hrs</td>
<td>19 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td>65</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Test</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td></td>
</tr>
<tr>
<td>Post-panama</td>
<td>110</td>
<td>46</td>
<td>2 days</td>
<td>110</td>
<td>46</td>
<td>2 days</td>
<td></td>
</tr>
<tr>
<td>Stress Test</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td>110</td>
<td>46</td>
<td>1 hr</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Airborne staphylococcal-carrying particles.

<table>
<thead>
<tr>
<th>Control Chamber</th>
<th></th>
<th>1000 hrs</th>
<th>1400 hrs</th>
<th>Ave.</th>
<th>Particles †</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PC</td>
<td>PC</td>
<td></td>
<td>Sq. Ft.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>65</td>
<td>46</td>
<td>30(46)</td>
<td>19(4)</td>
<td>24(15)</td>
</tr>
<tr>
<td>Exposure</td>
<td>65</td>
<td>46</td>
<td>40(12)</td>
<td>23(4)</td>
<td>32(10)</td>
</tr>
<tr>
<td>2nd Exposure</td>
<td>65</td>
<td>46</td>
<td>5(6)</td>
<td>36(13)</td>
<td>40(14.5)</td>
</tr>
<tr>
<td>3rd Exposure</td>
<td>65</td>
<td>46</td>
<td>26(18)</td>
<td>33(10)</td>
<td>28.5(8)</td>
</tr>
<tr>
<td>4th Exposure</td>
<td>65</td>
<td>46</td>
<td>27(7)</td>
<td>48(12)</td>
<td>27.5(8)</td>
</tr>
<tr>
<td>Post-panama</td>
<td>110</td>
<td>46</td>
<td>29(12)</td>
<td>21(9)</td>
<td>25.5(10.5)</td>
</tr>
<tr>
<td>Ave.</td>
<td></td>
<td></td>
<td>32.6(18.2)</td>
<td>30.3(19.3)</td>
<td>379(117)</td>
</tr>
<tr>
<td>Hot Chamber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary</td>
<td>65</td>
<td>46</td>
<td>71(9)</td>
<td>25(8)</td>
<td>28.0(6.5)</td>
</tr>
<tr>
<td>Exposure</td>
<td>105</td>
<td>56</td>
<td>32(8)</td>
<td>17(5)</td>
<td>23.0(6.5)</td>
</tr>
<tr>
<td>2nd Exposure</td>
<td>110</td>
<td>46</td>
<td>40(15)</td>
<td>23(13)</td>
<td>24.5(12)</td>
</tr>
<tr>
<td>3rd Exposure</td>
<td>110</td>
<td>37</td>
<td>27(5)</td>
<td>39(25)</td>
<td>34.0(22.5)</td>
</tr>
<tr>
<td>4th Exposure</td>
<td>120</td>
<td>31</td>
<td>23(10)</td>
<td>42(27)</td>
<td>31.5(15)</td>
</tr>
<tr>
<td>Post-panama</td>
<td>110</td>
<td>46</td>
<td>35(14)</td>
<td>14(5)</td>
<td>36.5(13.5)</td>
</tr>
<tr>
<td>Ave.</td>
<td></td>
<td></td>
<td>32.5(13.7)</td>
<td>27.2(13.5)</td>
<td>27.2(13.5)</td>
</tr>
</tbody>
</table>

*Average colony counts from duplicate settling plates.
**Collected positive strains in parentheses.
† Calculated from settling plates.
Fig. 1. Recovery of pigmented, mannitol-positive strains of staphylococci from the primary nasal cultures of soldiers undergoing artificial acclimatization to heat.
Fig. 2. Recovery of two types of staphylococci from the primary nasal cultures of soldiers exposed to an ambient temperature of 65°F with 46 per cent relative humidity. Values are plotted at the midpoints of the exposure periods. Bottom scale shows elapsed time.
Fig. 3. Recovery of two types of staphylococci from the primary nasal cultures of soldiers undergoing artificial acclimatization to heat. Values are plotted at the midpoints of the exposure periods. Bottom scale shows elapsed time.
Fig. 4. Recovery of coagulase-positive strains of staphylococci from pigmented, mannitol-positive primary isolates. Values for each exposure period are plotted at the midpoint of the period. The distribution of coagulase-positive strains became significantly different ($\chi^2 = 5.76$, df = 1, $P > 0.02$) in the acclimatized group following exposure to an ambient temperature of 110°F with 46 per cent relative humidity. Bottom scale shows elapsed time.
Fig. 5. Relationships between the recovery of coagulase-positive strains of staphylococci from pigmented, mannitol-positive isolates, ambient temperature, and relative humidity. Values are plotted at the midpoints of the exposure period during the initial phase of the laboratory study. Bottom scale shows elapsed time.
Fig. 6. Changes in the carrier state of subjects during artificial acclimatization to heat. Values are plotted at the midpoints of the exposure periods. Bottom scale shows elapsed time.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name of Distributor</th>
<th>Address</th>
<th>Attache's Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Armed Services Technical Information Agency, Arlington Hall Sta, Arlington Hall, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Aberdeen Proving Ground, Director, US Army Ordnance Human Engineering Laboratories, Aberdeen Proving Ground, Maryland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Adjutant General, Department of the Army, Washington 25, D.C., Attn: AGTL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Armed Forces Institute of Pathology, 8425 16th Street, N.W., Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Army Attaché, Box 75, Navy 100, Fleet Post Office, New York, New York, Attn: Col John C. Crewsler, Ass. Army Attaché</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Brooke Army Medical Center, Physical Medicine Branch, Hq., MHS, Fort Sam Houston, Texas, Attn: Capt. Rachel Anson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Brooke Army Medical Center, Component, Army Medical Service School, Fort Sam Houston, Texas, Attn: Publications Branch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Brooke Army Hospital, Medical Library, Box 151, Fort Sam Houston, Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Brooke Army Hospital, Radiosotope Clinic, Brooke Army Medical Center, Fort Sam Houston, Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Chief Chemical Officer, Department of the Army, Washington 25, D.C. Attn: CCCS/SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Chief of Engineers, Department of the Army, Washington 25, D.C., Attn: JENSD-SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Chief of Life Sciences Division, Office of Chief Research and Development, Room 3D-442, The Pentagon, Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Chief Psychiacty and Nortology Consultant, Directtore of Professional Services, Office of The Surgeon General, Department of the Army, Washington 25, D.C. Attn: MEDPR-NP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, US Army Medical Research and Development Command, Main Army Building, Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, I Corps Group, APO 354, San Francisco, California, Attn: Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, 7th Infantry Corps, APO 62, San Francisco, California, Attn: Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, Eighth United States Army, APO 301, San Francisco, California, Attn: Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, US Army, Powel, APO 957, San Francisco, California, Attn: Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, US Army, Japan, APO 343, San Francisco, California, Attn: Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, US Army, Midway Islands/IX Corps, APO 331, San Francisco, California, Attn: Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, US Army, Pacific, APO 958, San Francisco, California, Attn: Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Fitzsimons General Hospital, Medical Technical Library, Denver 30, Colorado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Fitzsimons General Hospital, US Army Medical Research and Nutrition Laboratory, Denver 30, Colorado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Letterman General Hospital, Medical Library, Presidio, San Francisco, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Madison General Hospital, Medical Technical Library, Tacoma, Washington</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Picatinny Arsenal, Commanding Officer, Dover, New Jersey, Attn: CDAV-DS3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Quartermaster Food and Container Institute, Library Branch, 1115 West Pershing Road, Chicago 9, Illinois</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Quartermaster Research and Engineer Field Evaluation Agency, Commanding Officer, Fort Lee, Virginia, Attn: Technical Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Quartermaster Research and Engineering Center, Commanding General, Natick, Massachusetts, Attn: Technical Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Redstone Arsenal, Commander, Redstone Arsenal, Alabama, Attn: OCED-IH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Valley Forge Army Hospital, Commanding Officer, Phoenixville, Pennsylvania, Attn: Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>US Army, Alaska, APO 949, Seattle Washington, Attn: Chief Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>US Army Chemical Center, Director of Medical Research, Army Chemical Center, Maryland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
US ARMY - CONTINUED

1 US Army Chemical Corps Biological Laboratories, Fort Detrick, Maryland, Attn: Library
2 US Army Chemical Research and Development Laboratories, Coramnding Officer, Technical Library, Building 335, Army Chemical Center, Maryland, Attn: Library
3 US Army Command and General Staff College, Library Services Branch (Archives) Fort Leavenworth, Kansas
4 US Army Map Service, Springfield Armory, Springfield, Massachusetts
5 US Army Engineer Research and Development Laboratories, Fort Belvoir, Virginia, Attn: Technical Documents Center
6 US Army Environmental Hygiene Agency, Coramnding Officer, Army Chemical Center, Maryland
7 US Army Europe, Medical Division Plans and Operations Branch, APO 403, New York, N.Y.
8 US Army Europe, Medical Laboratory, Department of Microbiology, APO 160, US Forces, New York, New York
9 US Army Hospital, Coramnding Officer, Fort Lee, Virginia, Attn: Medical Library
10 US Army Infantry Bureau Research Unit, Director of Research, Post Office, Box 2046, Fort Belvoir, Georgia, Attn: Library
11 US Army Leadership, Human Research Unit, Library, Post Office Box 787, Presidio of Monterey, California
12 US Army Medical Command, Japan, Medical General Laboratory, 4001 APO 343, San Francisco, California, Attn: Colonel Carl F. Tessner, Coramnding Officer
13 US Army Medical Liaison Branch, Office of the Chief Surgeon, Corps Hospital, Balboa Heights, Canal Zone
14 US Army Medical Research Unit, Europe, Coramnding Officer, APO 160, New York, New York
15 US Army Medical Research Unit, Coramnding Officer, Panama Field, Fort Clayton, Canal Zone
16 US Army Medical Research Unit, Coramnding Officer, Fort Detrick, Maryland
17 US Army Medical Research Unit, Coramnding Officer, Institute for Medical Research, Kuala Larup, Malaysia
19 US Army Ordnance Test-Autohtive Coramnd, Detroit Arsenal, Center Line, Michigan
21 US Army Signal Research and Development Laboratory, Office of the Coramnding Officer, Fort Monmouth, New Jersey, Attn: SIREM-1109
22 US Army Standardization Group, Canada, Senior US Army Standardization Representative, at US Army Attaché, 1259 upstairs, Citadel, Ontario, Canada, Attn: Colonel Joseph N. Blair, MC, US Army Liaison Officer
23 US Army Transportation Research Coramnd, Fort Eustis, Virginia, Attn: Research Reference Center
24 US Army Tropical Research Medical Laboratory, APO 851, New York, New York
25 US Continental Army Coramnd, Medical Section, Fort Monroe, Virginia
26 Walter Reed Army Institute of Research, Department of Entomology and Medical Affairs, Walter Reed Army Institute of Research, Washington 12, D.C.
27 Walter Reed Army Institute of Research, Director, Walter Reed Army Medical Center, Washington 12, D.C.
28 Walter Reed Army Hospital, Armed Forces Reserve, and Speech Center, National Capital Section, Washington, D.C.
29 Walter Reed Army Medical Center, US Army Medical Service, Historical Unit, Washington 12, D.C., Attn: General Reference and Research Branch
30 Walter Reed Army Medical Center, US Army Prosthetics Research Laboratory, Coramnding Officer, Washington 12, D.C.

AGENCY - US NAVY

2 Bureau of Medicine and Surgery, Director, Research Division, Department of the Navy, Washington 23, D.C.
US NAVY - CONTINUED

No. of
Copies

1 Bureau of Naval Weapons (DL); Department of the Navy, Washington 25, D. C.
1 Chief of Naval Air Technical Training, US Naval Air Station, Memphis 72, Tennessee, Attn: Staff Medical Officer
1 Chief of Naval Air Reserve Training, Staff Medical Officer, US Naval Air Station, Glenview, Illinois
1 Naval Air Material Center, Director, Air Crew Equipment Laboratory, Philadelphia 12, Pennsylvania
1 Naval Medical Research Institute, National Naval Medical Center, Technical Reference Library, Bethesda 14, Maryland
1 Naval Medical Research Laboratory, Technical Library, Code S111, Box 100, Naval Submarine Base, New London, Connecticut
1 Naval Research, Code 454, Department of the Navy, Washington 25, D. C.
1 Naval Research, Code 404, Special Assistant for Medical and Allied Sciences, Department of the Navy, Washington 25, D. C.
1 Naval Research Branch Office, Commanding Officer, Navy 100, Box 94, Fleet Post Office, New York, New York
1 US Naval Air Development Center, Simulation Branch, AIL, Johnsville, Pennsylvania, Attn: Dr. R. A. Bradley
1 US Naval Air Development Center, Aviation Medical Acceleration Laboratory, Johnsville, Pennsylvania, Attn: Librarian
1 US Naval Civil Engineering Laboratory, Commanding Officer and Director (Code L31), Port Hueneme, California
1 US Naval Medical Neuropsychiatric Research Unit, San Diego 92, California
2 US Naval Missile Center, Commander, Point Mugu, California, Attn: Technical Library
1 US Naval Medical Field Research Laboratory, Commanding Officer, Camp laurene, North Carolina, Attn: Librarian
1 US Naval Medical School, Commanding Officer, National Naval Medical Center, Bethesda, Maryland
1 US Naval Ordnance Test Station, Medical Officer (Code 54) Station Hospital, China Lake, California
1 US Naval Radiological Defense Laboratory, Commanding Officer and Director (222), San Francisco 24, California
1 US Naval Research Laboratory (Code 513) Washington 25, D. C.
1 US Naval Research Laboratory (Code 527) Director, Washington 25, D. C.
2 US Naval School of Aviation Medicine, Director, US Naval Aviation Medical Center - 54, Pensacola, Florida
1 US Naval Supply Research and Development Facility, Clothing and Textile Division, 3rd Avenue and 25th Street, Brooklyn 32, New York, Attn: Library
1 US Naval Emission Plants, Experimental Diving Unit, Washington 25, D. C.

AGENCY - AIR FORCE

1 Air Force Flight Test Center, Human Factors Branch (5799), Edwards Air Force Base, California

AIR RESEARCH AND DEVELOPMENT COMMAND

1 Air Research and Development Command, (ACORL) Andrews Air Force Base, Washington 25, D. C.
2 Wright Air Development Division, Bio-Acoustics Branch, Wright-Patterson Air Force Base, Ohio, Attn: WAFMA
1 Wright Air Development Division, US Air Force, Wright-Patterson Air Force Base, Ohio, Attn: WAFMA (Library)
AIR FORCE - CONTINUED

No. of Copies

1 Aerospace Medical Library, Wright Air Development Division (WADD) Wright-Patterson Air Force Base, Ohio
2 Air Force Command and Control Development Division, Operational Applications Office, 4000 Lawrence G. Hanscom Field, Bedford, Massachusetts
1 Air Training Command (ATC) Randolph Air Force Base, Texas
2 Arctic Aeromedical Laboratory, Corvallis, 390-731, Seattle, Washington, Attn: Library
2 Brooks Air Force School of Aviation Medicine (SAMC), Brooks Air Force Base, Texas
3 Langley Research Center, National Aeronautics and Space Administration, Langley Field, Virginia, Attn: Librarian
1 US Air Force Aerospace Medical Center, (ATC) US Air Force Hospital, Lackland Air Force Base, Texas
1 US Air Force Strategic Air Command, Offutt Air Force Base, Nebraska

GOVERNMENTAL AGENCIES

1 Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, Attn: Raymore D. Young
1 Central Intelligence Agency, 2430 E. Street, N.W., Washington D.C., Attn: 1321 R and S Building
1 Civil Aeromedical Research Institute, Federal Aviation Agency, Post Office Box 10162, Oklahoma City, Oklahoma
1 Library of Congress, Science and Technology Division, Washington 25, D. C., Attn: Dr. A. J. Jacobius
1 National Library of Medicine, Library, Building 22, Room 2210, Bethesda 14, Maryland, Attn: Acquisitions Section
1 National Library of Medicine, Washington 25, D. C., Attn: Acquisition Section
1 National Institutes of Health, Division of Research Grants, Information Office, Bethesda 14, Maryland
1 National Research Council, Division of Medical Sciences, Medical Records, 2101 Constellation Avenue, N.W., Washington 25, D. C.

OTHER AGENCIES

1 Arctic Health Research Center, Library, Box 960, Anchorage, Alaska
2 Aero-Space Division, Chief, Space Medicine Section, Boeing Airplane Company, Seattle 24, Washington, Attn: Dr. R. A. H. L. P. Box 18-29
1 Boeing Airplane Company, Library, Wichita Division, Wichita I, Kansas
1 Boeing Airplane Company, Central Medical Library, Box 11-40, Post Office Box 37097, Seattle 24, Washington
1 Chrysler Corporation, Box 1110, Engineering Research Department 521, Detroit 31, Michigan, Attn: John Verrier, Engineering Psychologist
1 Division of Radiological Health, RH Department of Health Education and Welfare, Room 3269, South Hix Building, Washington 25, D. C.
1 Ford Motor Company, Technical Information Section, Scientific Laboratory, Post Office Box 201, Dearborn, Michigan
1 General Electric Company, Advanced Electronic Center, Cornell University, Ithaca, New York, Attn: Library
1 General Electric Company, Technical Military Planning Operation, 725 State St., Santa Barbara, California
1 John Crane Library, 66 East Randolph Street, Chicago 1, Illinois
2 Kings County Hospital, Department of Anesthesiology, Brooklyn, New York, Attn: Dr. E. V. Weltman
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>OTHER AGENCIES - CONTINUED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lehigh Hospital, Division of Research, Lancaster and City Line Avenue, Philadelphia 31, Pennsylvania</td>
</tr>
<tr>
<td>1</td>
<td>Mayo Clinic, Rochester, Minnesota, Attn: Dr. Kenneth K. Ogle, Section of Biophysics</td>
</tr>
<tr>
<td>1</td>
<td>Mercy Hospital, Anaesthesia Research Laboratory, Pittsburgh 19, Pennsylvania</td>
</tr>
<tr>
<td>7</td>
<td>National Aeronautics and Space Administration, 1520 Park Avenue, Washington 25, D.C., Attn: Herbert R. Nalebuff, Assistant Director for Technical Information</td>
</tr>
<tr>
<td>1</td>
<td>Rand Corporation, 1760 Main Street, Santa Monica, California, Attn: Library</td>
</tr>
<tr>
<td>1</td>
<td>Space Technology Laboratories, Subcommitte on Noise, 27 South Alvarado Street, Los Angeles 37, California</td>
</tr>
<tr>
<td>1</td>
<td>Systems Research Center, Lockheed Electronics Company, Post Office Box 37, Bethesda, New Jersey, Attn: Mr. Robert E. Kater</td>
</tr>
<tr>
<td>1</td>
<td>York Laboratories of Private Biology, Incorporated, Orange Park, Florida, Attn: A. J. Bisello</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDICAL COLLEGE/SCHOOL, LIBRARIES AND DEPARTMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
I

No. of

MEDICAL COLLEGE SCHOOL LIBRARIES AND DEPARTMENTS - CONTINUED

1 New York Academy of Medicine, Library, 2 East 103rd Street, New York 29, New York
2 New York University, College of Engineering, Research Division, 252 Seventh Avenue, New York 1, New York. Att: Assistant Project Director
3 New York University Medical Center, Medical Library, 355 First Avenue, New York 18, New York
4 Northwestern University, Department of Psychology, Evanston, Illinois. Att: William A. Hunt
5 Northwestern University Medical School, Archibald Church Library, 303 E. Chicago Avenue, Chicago 11, Illinois. Att: Librarian
6 Ohio State University, The Chemical University News, Columbus 12, Ohio
7 Ohio State University, Research Center, Psycholinguistics Laboratory, 1114 Kinsey Road, Columbus 17, Ohio
8 Ohio State University, Tupper Library, School of Optometry, 330 West 10th Avenue, Columbus 12, Ohio
9 Rush Medical College Library, 1752 East Harrison Street, Chicago 11, Illinois
10 Stanford University, Lane Medical Library, 36 Pasteur Road, Palo Alto, California
11 Stanford University, Department of Physiology, Stanford, California. Att: J. W. Chazan, M. D.
12 St. Louis University, Medical School Library, 1427 South Grand Ave, St. Louis 4, Mo.
13 State University of Iowa, College of Medicine Library, Medical Laboratory Building, Iowa City, Iowa
14 State University of New York, Downstate Medical Center, Department of Anesthesiology, 450 Coney Island Avenue, Brooklyn 2, New York
15 State University of New York, Upstate Medical Center, Medical Library, 450 Clarkson Avenue, Brooklyn 12, New York. Att: Librarian
16 Texas Medical Center Library, Jesse H. Jones Library Building, Houston 25, Texas
17 Tufts University Institute for Applied Experimental Psychology, Medford, Massachusetts
18 Tulane University School of Medicine, 1475 Tulane Avenue, New Orleans 12, Louisiana. Att: J. S. E. Rahn, Professor of Medicine
19 Vanderbilt University School of Medicine, Nashville, Tennessee. Att: Dr. George R. Young, Director, Psychiatric Center
20 West Virginia University, Medical Center Library, Morgantown, West Virginia
21 University of Alabama, 1117 Twenty-fourth Avenue, Birmingham 3, Alabama
22 University of Arkansas, Medical Center Library, 4711 West Market, Little Rock, Arkansas
23 University of Buffalo, Health Sciences Library, Buffalo 14, New York. Att: Librarian
24 University of Buffalo, Department of Psychology, Buffalo 14, New York
25 University of California, Medical Center, Biomedical Library, Los Angeles 24, California
26 University of California, 1523 South 4th Street, Bakersfield, California. Att: Field Defense Research Project
27 University of Chicago, U.S. Air Force Institute Laboratory, 320 54th Street, Chicago 59, Illinois
28 University of Cincinnati, Kerckhoff Laboratory, 700 N. Anderson Avenue, Cincinnati 19, Ohio
29 University of Florida, College of Medicine, Department of Physiology, Gainesville, Florida. Att: Dr. Melvin J. Freely
30 University of Illinois, Anatomical Laboratory, 305 S. 400 Street, Chicago 12, Illinois
31 University of Illinois, Training Research Laboratory, Department of Psychology 45 Lincoln Hall, Urbana, Illinois. Att: Lawrence M. Slawson
32 University of Illinois, Toxology Division Library, Urbana, Illinois
33 University of Illinois, Medical Center, Clinical Medical Library, Kansas City 2, Kansas
34 University of Louisville, School of Medicine Library, 131 E. Chestnut Street, Louisville 2, Kentucky
35 University of Minnesota, Health Science Library, Social Science Department, 111 South Greene Street, St. Paul 1, Minnesota
36 University of Michigan, Social and Economic Section, General Library, Ann Arbor, Michigan
<table>
<thead>
<tr>
<th>No. of</th>
<th>MEDICAL COLLEGE SCHOOL LIBRARIES AND DEPARTMENTS - CONTINUED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University of Minnesota Library, Serials Division, Minneapolis 14, Minnesota</td>
</tr>
<tr>
<td>1</td>
<td>University of Kansas, Medical Library, Room 210 Medical Sciences Building, Columbia, Missouri</td>
</tr>
<tr>
<td>1</td>
<td>University of Nebraska, College of Medicine Library, 40th and Dewey Avenue, Omaha 2, Nebraska</td>
</tr>
<tr>
<td>1</td>
<td>University of North Carolina, Division of Health Affairs Library, North Carolina, Memorial Hospital, Chapel Hill, North Carolina</td>
</tr>
<tr>
<td>1</td>
<td>University of North Carolina, Department of Medicine, Physiology and Environmental Medicine, Chapel Hill, North Carolina, Attn: Dr. Richard L. Dobam</td>
</tr>
<tr>
<td>1</td>
<td>University of North Carolina, Department of Physiology, School of Medicine, Chapel Hill, North Carolina, Attn: A. T. Miller, Jr.</td>
</tr>
<tr>
<td>1</td>
<td>University of Southern Medical Center Library, 421 N. E. 13th Street, Oklahoma City 4, Oklahoma</td>
</tr>
<tr>
<td>1</td>
<td>University of Oregon, Medical School Library, Portland 2, Oregon, Attn: Librarian</td>
</tr>
<tr>
<td>1</td>
<td>University of Pittsburgh, John P. Wilson Library, Of The Health Professions, Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>1</td>
<td>University of Pennsylvania, Graduate School of Public Health, Pittsburgh 13, Pennsylvania</td>
</tr>
<tr>
<td>1</td>
<td>University of Rochester, Atomic Energy Project, Technical Report Control Unit, P.O. Box 360, Section 9, Rochester 20, New York</td>
</tr>
<tr>
<td>1</td>
<td>University of Rochester, School of Nursing, 760 Crittenden Boulevard, Rochester, New York, Attn: Irene A. Sabion</td>
</tr>
<tr>
<td>1</td>
<td>University of Rochester, Strong Memorial Hospital, 260 Crittenden Boulevard, Rochester, New York, Attn: T. Robert L. Foster, Inst. of Surgery</td>
</tr>
<tr>
<td>1</td>
<td>"University of Southern California, School of Medicine Library, 6115 Zonal Avenue, Los Angeles 35, California, Attn: T. Robert Foster</td>
</tr>
<tr>
<td>1</td>
<td>University of South Carolina, Medical Library, Charleston, South Carolina</td>
</tr>
<tr>
<td>1</td>
<td>University of Tennessee, College of Medicine, Clinical Physiology, Institute of Clinical Investigation, 77 South Main, Memphis 3, Tennessee</td>
</tr>
<tr>
<td>1</td>
<td>University of Tennessee, Medical Library, University Hospital Library, 62 South Linden, Memphis 7, Tennessee, Attn: Librarian</td>
</tr>
<tr>
<td>1</td>
<td>University of Tennessee, Department of Surgery, Nashville, Attn: Dr. N. F. Rice, Jr.</td>
</tr>
<tr>
<td>1</td>
<td>University of Tennessee, Department of Microbiology, 406 Womack Avenue, Knoxville, Tennessee, Attn: H. Floyd C. Grimes</td>
</tr>
<tr>
<td>1</td>
<td>University of Texas, Medical Library, Galveston, Texas, Attn: Librarian</td>
</tr>
<tr>
<td>1</td>
<td>University of Utah, Medical Library, Salt Lake City 11, Utah</td>
</tr>
<tr>
<td>1</td>
<td>University of Virginia, Psychological Laboratory, Psychology Hall, Charlottesville, Virginia</td>
</tr>
<tr>
<td>1</td>
<td>University of Vermont, College of Medicine Library, Burlington, Vermont</td>
</tr>
<tr>
<td>1</td>
<td>University of Washington, Health Sciences Library, Seattle 5, Washington, Attn: Librarian</td>
</tr>
<tr>
<td>1</td>
<td>University of Wisconsin, Medical School Library, 526 Ely St., Madison 6, Wis</td>
</tr>
<tr>
<td>1</td>
<td>University of Wisconsin, Psychological Abstracts, 660 W. Park Street, Madison 6, Wis</td>
</tr>
</tbody>
</table>

FOREIGN

1. British Army Staff Office, Army Medical Libraries Office, Benjamin Franklin Station, Post Office Box 1051, Washington 15, D.C., Attn: F. W. Ellis, Surgeon Captain, Royal Navy

2. British Army Medical Libraries Officer, British Army Staff, British Embassy, Washington 6, D.C., Attn: Colonel Price

4. Defense Research Officer, Canadian Joint Staff, 240 Massachusetts Avenue N.W., Washington 6, D.C.

6. Instituto de Toxicologia, Av. Gen. Eleazar E. R. 13, Montevideo, Uruguay, Attn: Dr. Jose A. Benedetti, Director

7. Parques Institute, Department of Horticulture, Stockholm 63, Sweden, Attn: Dr. Jan Jersell

8. Section de Pathologie et Therapeutique Generale, E cole de Medecine, Liege, Belgium, Attn: Professors E. V. Brey
No. of Copies

1. Oxford University, Department of Human Anatomy, South Parks Road, Oxford, England. Attn: Dr. A. R. Lima
1. Royal Society of Medicine Library, 1. Wimpole Street, London W.1., England
1. University Di Fizia, Institute of Physiology, Pisa, Italy. Attn: Professor Giuseppe Peruzzi
2. University of Western Ontario, Department of Biochemistry, Medical School, South Street, London, Ontario, Canada, Attn: Dr. Allen C. Burton
1. University of Western Ontario, Medical School, Department of Physiology, London, Ontario, Canada, Attn: Professor J. A. F. Stevenson
Studies of the nasal cultures of soldiers undergoing artificial acclimatization to heat indicated that external environmental factors, including ambient temperature and relative humidity, influence the establishment and maintenance of the Staphylococcus nasal carrier state. The implications of these findings are discussed in relation to epidemiology of Staphylococcus disease.
END
DTIC
6-86