NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TECHNICAL NOTE No. 950
AFSWP No. 771

A Rugged Blast-Sensitive Switch

WILLIAM C. STANGE

DEPARTMENT OF THE ARMY PROJECT No. 503-04-002
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0112J

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
A RUGGED BLAST-SENSITIVE SWITCH

William C. Stange

Department of the Army Project No. 503-OH-002
Ordnance Research and Development Project No. TB3-0112J

Funds for this work were supported by the
Armed Forces Special Weapons Project.

ABERDEEN PROVING GROUND, MARYLAND
A RUGGED BLAST-SENSITIVE SWITCH

ABSTRACT

The design and construction of a rugged, weatherproof, blast-sensitive switch which has been tested at BRNL are described in detail. A diaphragm is used in conjunction with a small switch producing a unit which is sensitive to shock pressure as low as 0.7 psi.
INTRODUCTION

The Corps of Engineers desired that a rugged, blast-sensitive switch be designed to operate closure devices for air intake and exhaust openings in protective structures.

The following requirements were requested and accordingly, were incorporated into the design of the trigger unit which was developed.

1. Weatherproof
 a. Corrosion resistant
 b. Sun, rain, wind and snow-proof
 c. Wide temperature working range

2. Long life without adjustment

3. Simple construction
 a. Readily mounted
 b. Easily assembled and adjusted

4. Rugged

5. Sensitive to 2 lbs/in² blast pressure or less

6. Relatively tamperproof

DESIGN AND CONSTRUCTION OF TRIGGER UNIT

In the design of the trigger unit, simplicity has been stressed so that the unit can be assembled by anyone familiar with its operation. The unit consists essentially of three sections: the body assembly, the diaphragm, and the switch. Drawings 1 - 9 are attached, which show in detail the trigger unit assembly and its various parts.

A pin plunger type miniature microswitch was used because of its small size, 7 ounce operating force, 0.030 inch pretravel, 1 ounce release force, 0.010 inch contact break distance, and overall rugged construction.

The design problem was essentially to mount a diaphragm exposed to the atmosphere so that it could be adjusted to bear against the switch and to encase this working element in a protective body. For reasons of simplicity and watertightness the wires to the switch were conveyed through the body (see Drawing 2) and around the diaphragm assembly (Draw-
ings 5, 6 and 7). The diaphragm assembly screws into the body bringing the diaphragm to bear upon the switch. By adjusting the position of the diaphragm assembly a wide range of sensitivity may be obtained. A small spanner wrench is used to emplace the diaphragm assembly and also to adjust the sensitivity of the unit.

A large nut (Drawing 3) is used to hold the body (Drawing 2) rigidly to the mount (Drawing 4). The mount is threaded on to a convenient pipe support when used in the field. The diaphragm is ported to the atmosphere by means of a concentric ring of 1/2 inch holes in the body (Drawing 2).

Through the liberal use of aluminum an easily machinable and weatherproof trigger unit was designed. Tests have shown that weatherproofing was improved by applying rubber cement to the threads of the diaphragm assembly after it was properly adjusted for sensitivity. Further simplification and compactness could probably be obtained if quantity manufacture were contemplated.

RESULTS OF TEST

The trigger unit was assembled using a 0.005 inch thick brass diaphragm and mounted one foot from the end of the 24 inch Ballistic Research Laboratories Shock Tube. The following results were obtained with the apparatus as described.

<table>
<thead>
<tr>
<th>SHOT NUMBER</th>
<th>SWITCH CLOSURE</th>
<th>SHOCK PRESSURE AT TRIGGER UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>1.4 PSI</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>7.3</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>10.3</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Switch closure was obtained on all shots except for shot number 5. Failure of shot 5 was undoubtedly due to a small indentation in the diaphragm caused by shot 4 deforming the diaphragm around the switch plunger. Since successful repetitive operation is not a requirement, this failure was not considered serious.

Further shock tests have been made at intervals for a period of seven months during which time the unit was exposed to the weather. Positive operation of the switch occurred in every test with no failures.
The switch design is therefore considered adequate for the use for which it was intended.

William C. Stange

Wm C. Stange
Pressure Sensitive Switching Device.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Chief, Bureau of Ordnance Department of the Navy Washington 25, D.C. Attn: Res3</td>
<td>3</td>
<td>Commander Wright Air Development Center Wright-Patterson Air Force Base, Ohio Attn: WCOESP</td>
</tr>
<tr>
<td>2</td>
<td>Commander U.S. Naval Ordnance Lab. White Oak Silver Spring 19, Maryland Attn: Explosives Division</td>
<td>1</td>
<td>Commander Air Research & Development Command P.O. Box 1395 Baltimore, Maryland Attn: P-300, P-312</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Ordnance Test Station China Lake, California Attn: Technical Library</td>
<td>1</td>
<td>Commander Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts Attn: CRW, Atomic Warfare Directorate</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer U.S. Naval Medical Research Institute National Naval Medical Center Bethesda, Maryland</td>
<td>2</td>
<td>Director of Intelligence U.S. Air Force Washington 25, D.C. Attn: AFCIN-1B2</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Proving Ground Dahlgren, Virginia</td>
<td>3</td>
<td>Commander Air Force Special Weapons Center Kirtland Air Force Base, New Mexico Attn: Library</td>
</tr>
<tr>
<td>2</td>
<td>Chief of Naval Research Department of the Navy Washington 25, D.C. Attn: LTJG F. McKee, Dr. Joseph B. Keller</td>
<td>2</td>
<td>Director Project RAND Department of the Air Force Santa Monica, California Attn: Nuclear Energy Div. Mr. Marc Peter</td>
</tr>
<tr>
<td>2</td>
<td>Chief, Bureau of Yards & Docks Department of the Navy Washington 25, D.C. Attn: P-300, P-312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Director of Research & Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCS/D USAF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Combat Components Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>National Advisory Committee for Aeronautics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Langley Aeronautical Lab. Langley Field, Virginia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Mr. John Stack</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Material Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson Air Force Base, Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: MCAIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>National Advisory Committee for Aeronautics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1512 H St., N.W. Washington, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Materials Research Coordination Group</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Commanding General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFSWP P.O. Box 5100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albuquerque, New Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USAEC Construction Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. C. Beck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commanding General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFSWP P.O. Box 5100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albuquerque, New Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Tech Training Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Chief</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Army Field Forces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ft. Monroe, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Asst Chief of Staff for Dev. & Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Chief</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armed Forces Special Weapons Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 2610</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Blast Branch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Chief of Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of the Army</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: ENGB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major J. Irving, Jr. Mr. M.D. Kirkpatrick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Division of Military Application</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USAEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. Paul Fine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Weapons Development Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCAFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ft. Bliss, Texas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director</td>
<td>1</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>Operations Research Office</td>
<td></td>
<td>Picatinny Arsenal</td>
</tr>
<tr>
<td></td>
<td>7100 Connecticut Avenue</td>
<td></td>
<td>Dover, New Jersey</td>
</tr>
<tr>
<td></td>
<td>Chevy Chase, Maryland</td>
<td></td>
<td>Attn: Samuel Feltman</td>
</tr>
<tr>
<td></td>
<td>Washington 15, D.C.</td>
<td></td>
<td>Ammunition Laboratories</td>
</tr>
<tr>
<td></td>
<td>Attn: Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. S. J. Fraenkel</td>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>Division of Engineering Mechanics</td>
<td></td>
<td>White Sands Proving Ground</td>
</tr>
<tr>
<td></td>
<td>Armour Research Foundation</td>
<td></td>
<td>Las Cruces, New Mexico</td>
</tr>
<tr>
<td></td>
<td>Chicago 16, Illinois</td>
<td></td>
<td>Attn: Library</td>
</tr>
<tr>
<td>1</td>
<td>Broadview Research & Development</td>
<td>1</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1093</td>
<td></td>
<td>Jefferson Proving Ground</td>
</tr>
<tr>
<td></td>
<td>Burlingame, California</td>
<td></td>
<td>Madison, Indiana</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. Richard I. Condit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. E. B. Doll</td>
<td>1</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>Stanford Research Institute</td>
<td></td>
<td>Engineer Research</td>
</tr>
<tr>
<td></td>
<td>Palo Alto, California</td>
<td></td>
<td>Laboratories</td>
</tr>
<tr>
<td>1</td>
<td>Dr. R. J. Hansen</td>
<td>1</td>
<td>Fort Belvoir, Virginia</td>
</tr>
<tr>
<td></td>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cambridge 39, Massachusetts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. N. M. Newmark</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ill. Talbot Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Illinois</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urbana, Illinois</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. Walker Bleakney</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Princeton University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Princeton, New Jersey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Physics Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sandia Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. O. Box 5800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albuquerque, New Mexico</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>