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ABSTRACT

Aeod.ir".ac drag ai A stability coefficients of several
s.mple aatefl i' confl2crators are caleulateo using an apprýnxi-
sate, bit nrarly cyact. iree nolecule thbpo" . The mooets
examined are Gie cylirder sphere, pointed cone, truncated cone,
power law bony, hersiphere-cylinder and cone-cylinder. From the
vewupoin f ifa;n aerodynamic effects. favuable center-of-
-'sas locati-ns are cotaned by ccncentrating a hogIveneous
payload norward of the center-of-volume. For calcula'ion rur-
posts, the aft portion of the models are assumed to be rigid,
but •assless, shells or sklirts.

Base's upon the analys.s of satellite angula, motion, the
aerootnamio pitching moment slooe is combined with the pitching
morent of inertia to form a stability parameter which, when
'aximized, oescrit.es the optimum external geometrv ef each model
for a speeified payload mass distribution. The various optimum
configurations are shown to have low fineness rat.oc- (order of
unity), therecy pen.-lting the gravitational torque to augrent
the ateccynarc torque. Among the coiuficguritions analyzed, the
pointed and truncated conical bodies and the power law bodies
are the most stable.

The aerodynamnc daping-in-pstch derivative is also calcu-
lates for the cylinder, sphere and cone. Aerocynamie damping,
however, has an insignificant contribution to the satellite's
a•Cular motion.
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Tr.-r repot has oeen reviewed and is approved.
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iIST Di SYM.95LS

A Area

B, C truncated core rara•ters, defi.ned by Eqs. (1,31

C Photon speed

Z Reference length

CýD Diag coeffcicn. - (Drag)/ , %_ S. r
C-n Drag ccl-2f1cient based on projected frontal a-ca normdI

free-stream - (Drag)/*(V., S5

CL Lift coefficient . 'Lift)/ e.V•_ u

C. Pi tching asment coefficient (eit•teZn• /

C5,• Pitching mom.ent slope - a((Q[ 3

C", Pitching mr=nt at. zero angle of attack

C- a%]-,-I-ic deri.ativo
Cp Pressu.-e coefficient, oefinea oy Eq. 17)

Or Shear stress corffteient, defii:- oy Eq. (6)

D) Maximur or base diareter of satellite

f(r), -(4)K),() F(;) Universal free-molecule flow functions, defineuo; 3q:qs. (i,3).
(46), (41) and (h2) respectively

"free-iolecmle flow functions, defcned by Eqs. (71)
and (193)

: (I)s•-) Exact cylinder funetions, defined by Eqs. (32)

K Alti tude

.,• 1, Modified Bessel functions nf the first kind

SPrincipal mnoent of rotary inertia abs,,.,t tho y ,ody f:zcd
axis
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Principaa nonrnt of rotaey ,nerti-a a3o'.t Lhe > bodt-fixei

J, K Cone-cylinder pa'oseters, de:'sned by Eqs. (89'

S. Boly length

9c Length of cylndrscal portion of satellite

L ''rqie or mc,-ent

Y Ras,

T-I'irtia para-e -er (~
M Power law rody exponent, defined by Eq. (7h)

F•J Inw-ri nor-.•a v-ecto:- In = clcoont of s.rica area

p Pressure

CP ! DŽiensionless acrodyn-anic staollity parameter, defined by
F-q. (121)

Angular pitching velocity component.

SPosition vector, defined in Fig. 1

QN E•,act sphere runction, defined by Eq. (SO)

ecj, DL-ensionless aerodynamic damping-in-pitch parameter,
defined by Eq. (175)

A ReflecLivity

r Geocentric radius to satellite mass center

X, @, X Cylindrical coordinate system, defined in Fig. I or Fig. 2b

r' Body slooe - rfd,•

R. N-yimum or base radius of satellite V-z D

S Molecular tpeed ratio

ST Reference area

Projected oody frontA1 area normal to free-stream
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t Dwte' varl able

T Tangent vector in an eleme.nt ol murfaco art&

T A.nsolut temperature

'Y Satellite payload volume

"4r- Total satellite volume

V. Free-stream speed -
1

p, , the satellite speed relatave to
local atmosphere

W-ý Satcllhtc '~lad weight at --ea level
XY Hemisphere-cylinder parcaeters, defined by Eqs. (85)

o< Angle of attack

o~a Equilibriun angle of attack

(3 Truncated cone nose-to-base diameter ratio

F Acrodynanic stability parameter, defined by Eq. (122)

q. AerodynamiL timuing-tn-pitch parameter, defined by Eq. (176)

Cone semivertex angle

A An increment d@e to temperature differences

"4', Ae .V "y-Td O,' - 6.'n

6- Spherical payload lingth-to-diameter ratio, defined in
SFig. 32

6(S") Error incurred by a two term approximation to the Gaussian
error function, defined oy Eq. (11)

4 Dimensionless slope parameter -- r'/too

11 Ratio of payload length to total satellite length

SPitch angle, the inclination between X body-fixea axis
and local horizon

e Reference temperature ratio
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?hotor reflectioi coefficient

A( Produc o], Earth 's mass and univercali gravitatiornal canstant

Temperature distribution exporent

Dimensionless speed ratio function in exact cy!l e.er
solution

• Atmospheric density

0" Su, face reflection coefficient for tangential momentum,
defined oy Eq. (3)

T" Surface reflectien coefficient for nermcl momentm, defined
uy Eq. (h)

(T I- G.) / ? and 4

1T Shear stress

&r• Limiting azsis-th angle en surface exposed to free-stre&m
flow

Subscripts

A Aerodynamic; also average

C"M Center of mass

d, D Value ox a quantity for wholl* diffuse reflection

T Gravitational

SHemisphere-cylinder

t Incident qoantity

SQuantity evaluated on lower surfaeu; or quantity evaluated
at semi-latus rectum

NJ Component normal to surface - ( )" J

Mea Maximum value of a quantity

F' Quantity evaluated at perigee
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*ReM-(ted quar~tity

* QLPwntity evaluated cii -.1ielded or shadow side of hxo4;
also solar

T COmpcnent. tange.- to -rurface

V- Quantity evaluated o'n ii-per 3-xrface

W Quantity ovaluated at wall or surfa::e

x About X body-fixedi axis

Y About - boct-iffid axis

__ IFree-ztream cciiditions
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1

IXTROIRICTION

Alt&oagh Ame effects of rarefied aerodyna-dc forces on satellite
p-rformare (e..., orbit decay) have, by necessity, been extensively
cons2dered, there has bthen litt.e concern over the utilization of these

fXr. f. r passive attitude control and stability of satellite vehicles.
This rather mild interest app'ars t.o hace been primarily due to the
unc-rtainty of the characteractics of the upper atmosphere (say in excess
of 100 miles altitude) as well as to the reluctance to accept relatively
unproven (or unknown) methods of estimating rarefied aerodynamic charac-
teristics. With improved and more frequent experimental investigations,
le'.ever, the physics of the upper atmosphere is becoming more clearly
.nderstood. Likewise, tnrougn the ispiration of Schaaf, Patterson,
Stalder and their colleagues (Refs. 1, 3, 5, 8, 9, 12, :3. 17), tho
eyperinental and analytical determination of the mechanics of rarefied
c.ases is being conti. ually advanced. Consequently, it is expected that
satellite aerodynamics in the near-Earth regime (say less than boo miles
al titude) will warrant increased atten.ion as more sophisticated vehicles
are ••.herently utilized.

The application of rarefied gas kinetics; viz., free-molecule aero-
dynarics, has been, until recently, hopelessly complicated for all but a
few academic problems. These classical applications (e.g., Refs. 8, 17,
18), however, have proVnued foundations which have led to the development
of approxaxate free-molecule methods for estimating aerodynamic forces
and rreonts on convex bodies. One notable, but restrictive, approach is
the "Newtonian-Diffuse" method of Gustafson (Ref. 19, 20) which amplies
that the random molecular motion is insignif'mant when compared with the
vehicle's rotiun. Another .ore general free-molecule theory (Ref. 6)
was developed which considerably simplified the force and moment calcula-
tiorns itnoue seriously compromising the accuracy of the results. This
method, which is outlined and used herein, only requires that the average
normal corponent of the molecular speed ratio be greater than unity over
the portion of the body s.rfaze exposed to the free-stream. For most
satellite configurations, however, this requirement is compatible with
tbe earectea conditions. Moreover, there arp no assumptions as to the
nature of tie molecule-surface interaction process, other than the inter-
action may be described by the usual momentum exchange coefficients,
a' and a" (Ref. 5); and in fact, these reflection coefficients, as

well as the satellite surface temperature, may be regardea as variables
over the exposed body surface.

As in the case of any aerodynamic configuration, the aerodynamic
design of a satellite must consider the external shape and surfaee conca-
tion of the vehacle as well as the internal mess di "•ibvtion, or inertia

Manuscript released by the auther February 1961 for publication as a WADD
Techic- •: ieport.
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-ha:ac-erlW.ics. This, of couree, means that certain aesign ccmpronises
are inevitable among the various aevices zboard the vehicle; e g., solar
"padales" may not oe cc•mpatible with efficient aerodynamic desig. Never-"ti.eless, feasiblityt sttoles of satellite aerodyr.namc stabilization must
oe kept elesn-try arn uncluttered. It is for thi= re--=n that the
discussion in this report is primarily concerr.ed with birple, aerodramic
configurations. These basic deeigns, however, are certainly no more
idealized than the classic "dumbbell" satellite useo in gravity gradient
studies.

Althou& this stuay i. primarily concerned with the pitch stability
and orientaticn of specific satellite con.fifurations, aelodynamic force
and moment equations are presented (Refa. h. 6) which may be utilized for
calculatinr atrodynamic coefficients, both static and dynamc, of other
convex body shapes not treatea herein. In addition, the basiL free-
molecule force and moment. equations are arenable to the cai.-•-tion of th.
effects of solar pressure, as illusttated in Appendix A of this report.



1 Y. PJVIEW OF F4EE-HOLECULE AF.RODTN;j4:CS

1.1 Introduction

The purpose of this section is to review, without elaboration, thenomenclature and equations which are frequently referenced throughoutthis volume. Most of this material has been presented extensively in theopen literature, and consequently, original sources and/or more detailed
analyses will be dited uhenever possible.

1.2 Shear and Pressure Coefficientr

For a surface element exposed to a free-m.olecular stream, theimpinging molecules do not strike the rebounding molecules near the sur-face aith sufficient frequency to vary the incident momentum and energy.This hypothesis therefore permits separation of the incident momentumflux from the momentum flux due to the reflected or re-emitted1 
molezules.Usine t-he standard approximations for a molecular stream ni Maxwellianequilioriun, th- surface tangential (snear) and normal (pressure)cozponents of the incident mo.'entum flux per unit area may be written as(flefs. 1 through 5, e.g.)

,. -. r(v I+ q

S ff

where Sri and Sy are respectively the normal and tangential components
of the free-strean molecular speed ratio S_

The incident pressure and shear stresses determined above must nowbe combined with the contributions of the reflected molecules to givethe total free-molecule stresses. Tke- conventional (but not universal)

iBecause of the empirical nature of the analysis to follow, a discussion
of the con,-eptual difference between "rexlection" and "re-emission" is
not varrP,..ted.



practice . s to reP ate t] e reflected shear and pressare stre sses to the
incident stresses by th, enpiricat reflection coeff..L.ents 0 aid 0'
(Re's. 1, 2 and 5). lacee coetfiicents describe th( amiunt of mazenttm
tra.3-.r•-;a to the 'ody .'urface mr, ter. :X fepartures ;froa ccnpletely
diff,.zs reflection. At tias extreme, 'ae nolecules are assumre reflected
with 4ýwseaIan randoe .otxor. corresconding to tne surface temperature.
At the other extreme, the incident molecules are assuned to be specularly
reflect-d with the normal component of velocity unchanged in magnitude but
raversed in direction. Then, by using tiese extremes, the reflection
cceiTicients are defired by (Ref. 1, e.g.)

T- = "-"Tr()

L P- Pr
p, - pd

where the subscript r refers to the actual stress due to the reflected
molecules, and where the subscript 4 refers to the value of the
reflected stress due to wholly diffuse reflection. Then when 4: zr'z I
the reflection is diffuse, and when (r z 4T'= 0 , the reflection is
specular. The portion of the shear stress due to diffuse reflection (rd),
however, is ide..n-tcally zero .... e there is no prcferred tangential direc-
tion for molecules reflected diffusely. On he other hand, the diffuse
oressure term Pd has a non-zero value and has been derivd as (Refs. 1
and 3)

Pd=+.V (1)¶s T i erg StJ4 (5)

where T, and Tv are respectively the surface and free stream tempera-
tures.

By combining Eqs. (1) through (5), it is easily shown that the total
shear and pressure coefficients are

- -= =, = CIr -Cr -'-r
V (6)

S ... ...... . .=,; . . = s._ sT e; -" + [I -r .- _,--Sa.
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--? _ I , s - '
" "- + c, ' ( -r, ') + 6--

STj

By thw method of Reference 4 or 6, the Gaussien error functLor in
the foregoing equatonsmazy be rearranged and 2ntegrated by parts to give

J o jS,

Nh-re the last term may now be regarded as a small rer.ainder of a two-
term approximation. For a surface clement exposed to the free-stream
ilcw, subatitution of Eq. (18) into Eqs. (6) and (7), yields

=. " 2 r - r, fSp %"' i I ,/ ,I

l "'•, -•-It~A~) "•j 7•L,,5NJ
-), +- oS> 9

wýere, for S•j greater thl.o unity,
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S= , ., r i_-_ - - .

For a surface element shielded from the fret-stream, Sp and ST m;kv be
considered negative and Eqs. (6) and (7) become

CT = - 2 L. " 6 ) (12)

2_- f es" (13)

where it should be noted that

•e -•r.j( =

If the order of magnitude of Eq. (11) is utilized, then Eqs. (9) and (10)
are approximately (Ref. 6),

C,• ;Zq -a0 S _r•N0-

Likewise for the shielded or shadowed element,

s 0 (16)

cpý 0- . (11)



Fos. (1h) thrcugh (17) are based cn the forro r,)striction that 15AJI -±at everT point on tho body. For most applicatxc•s, however, it is sufft-ckent3y accurate to assume that the foregoing eqzations are valid for
the mean 5n on the body greater than unity.

1.3 Force and Moment Eouationr

Force end pitching moment integrals may now be formulated using the
stress coefficients obt-d.ned above. Referring to Fig. 1, it is notdirficult to show that the drag, lift and pitching monent coefficients
for a surface element are (Ref. 4)

S-- = - •. t ceo•-(i" )s o1\ • c (•)r -V -~- ~ 1

where S• and Z are the reference area aid length reepectively. For
an o.rbitrary body of revolution, it is eleuentar-., to ahow that

- -I, I Io I JAI I I II I I



where .r' d~ and tne norm~al ve-tor i' s alwauys difrected 2nwzxd
(ccn~ex body). The subititution of !Vqs. (19) =Lto Fqs. (18) yaclcs the
foll1"winj, generaa. erpressions for -,h fore~ and moacitt coeficlCer.ts for

abocy of' re-volution:

*L +\jcc-.Cil-+~s~jc

(20~

L

These e~presscne oacome, uron substitution of thec approximoate stress
coefficients,

ýýZt+ 'r r~IT
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XL, (21)

(cont.)

where the integration now anolies only on the portion of the body exposed
to the incident molecular stream. Referring to Fig. 1 e 2qs. (19), it
may be seen that for the steady state case,

So SC =;. I [r'cAoicK + sinoiea (22)

in a si'ailar manner. the incremental veloccity aistribution can be found
for a body p)tchiag about its center of mass: i.e.,

__ -L- [r' A-ý (23)

where 0 is the pitch rate. The effective normal component of the
roiccular sixed ratio is then

rusc ý v.) ý Z[rr x x.] (2h)

where -,Z/2 V1 . is rhe c onventional non-dimensional pitch rate.

The approximate static force and moment coefficients for an arbitrary
body of revolution are found by scbstituting Eq. (22) into Eqs. (21). The
result is
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rasox [S'chseflj

9-

CL~2 r'cosm + sinal oCCaSl

(r ~r -i r r'cGosc- tslfloLs 4
j

42 rcosof-ismot~o RoSo4 lc.ýI~ rJxJR

-he-- is the body length' and wdhere

cm =e /jo(-c'1 4or r' J-to,.4d

nI -or '[sec

lFor integratiol i prposes, XC is now' beirr defined as positive aft w: the
nose.



An aerodynanic parameter freouently utilized is the static pitchirg
meomnt coefficient slope at zero angle of attacK. For bodic3 of roevou-
tion with r' > 0 , the derivative of the third of Eqs. (25) yielos

+

5Vc 0 (26)

+- [r+ 2r'(xX )1} rj•f

where (r, 0' and Tw are taken to be independent of the azimuth angle

The damping in pitct. derivative CrM. may be fow.d by differenti-
ating the third of Eqs. (21) with reopect to qil sn
Eq. (20); i.e.,

bi .V ) J r. - ' (-

+

which becomes for o(::O > 0o and

10 )L-'a[-r+ --- - rr Xýc(=It-' a' ki. 0 1I (28)

-9r r}rr + x-X 1r]rdX

' i l



1.2

The foregoing .ntegrals, Eqs. (18), (19', (251 throui1 h (28), wil. be
iseful in the drag and moment annly.ses to foflow. Wtnen possible, the
oasic Eqs. U8) and (20) will be solved using the exact shear and
pressure coefficients Eqs. (6) and (7). For most applications, however,
the approximate Eas. (25) through (27) will satisfy the accuracy
requirements.
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i. DRAG ANALYSIS

2.1 IntroeCuction

In the expressions for satellite lifetite and atmosphere influence
on orbital element•, the weU-known ballistic coefficient. CS,,/Zr
inherently appears. The problem of evaluating the coefficient may be
phrased two ways: if the drag ceeffieiont, CD , is based on a fixed
reference area, S,, , then Co is a szrcng function of the attitude or
the satellite; alternately, if an average C. is assumed for all
satellite attitudes, then the proper reference area becomes variable.
It is this latter approach which is more commonly taken. That is, let
So equal the projected frontal area of the satellite (normal to free-

stream), and then assume a constant Co which is based on this frontal
area. The discussion in this section is concerned with the verification
or nullification of this assumption. Three practical ronfiguraAions -
cylinder, cone and sphere - are considered along with the -academic"
flat plate.

All free-molecule drag coefficients are calculated using the exact
methods when possible. The approximate method of Ref. 6, which is
outlined in Section 1, is used for comparisons or when the exact expres-
sions are not integrable. The reflection coefficients, G- and a' , as
well as the surface temperature _T. are asz-s-d constant over the body
surface. If the free stream ýemperature -'T_ is taker. fro.-a the ARLC 1959
Model Atmosphere (Ref. 7), and if the relative velocity is assumed to be
approximately the inertial velocity, then Z..e variation of the speed
ratio '5 with altitude for nearly circular orbits may be calculated.
Thds variaticon of S_ , along with a curve of (aL//.7) rT-wlT, for
r.• = 50.,Oc 2 are shown in Fig. 2 and are used in the drag analyses to

follow.

2.2 Cylinder

The cylinder drag coefficient wast be divided into two parts: that
due to the blunt ends and that due to the cylindrical surfaze. The
corresponding frontal areas are

S.,,4>= 1IT..o'•,.

'Sot Zg lnot 29)

SWL -TCLJj

iT

ISee .Apendix C or Volume I of this series of repor'ts.
2Gustafson (RP'. 20) also as.umes T7 - 550°R.
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wasre all starre: sybols wiv 1 now refer to the frontal area system. The
free-molecule drag coefficient of the combined f•at nose and base is the
s•e as a flat plate at angle of attack. This resajt may be found as
(Ref. 2 or h) 0o' fi z,',.s ++-

c', -+-_--,--- -- ,+,,-+-J~•

+ ~ ~ ) (30)

w~here the third of Eqs. (2Y) is used for the reference area. The free
molecule drag coefficient of the cylindrical portion YkV be formulated in
a si-ilar man•rr except +h-at the integration& are more tecious. The exact
expression has beer obtained by Talbot (Ref. 8). The result is,

-* SW~( C , ~ -"".-,--.
41q5) T (31)

whecre ). and ' l.ere

F~ ~ ~ 32)

,,,1 f + if 4 ), + ,

If diffuse maiecular refl"ection is assumed, then tU=0r =1.0
and Eqs. (30) and (31) may be combined and sisplified to yield the total
drag coefficient.

4 .....a" )

+4- S) 1•'•; # " "OL ;

+ I I lLlll I II)

L . . . . i i I
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vc t~o £3(~-{)s,~~and
Fq. 033) be'comss

Now for near-Earth vibits, 'S is always in excess of 5.0; therefore,

eS•_• and er•(,-'l.o and

uthch is sli&-ly greater than 2 for sall 94D . For lwge AtID
nowever, 'he cylinder "skin friction" term 4(ktU))/f, Sý may be
dominant. It should be noted that the arproxiiate theory of Ref. 6 is
not applicatle for this o4=o case since St. on the cylindrical portion
is zero. Mhe first three terms of Eq. (35), however, are due to the
blunt nose and would be obtained from the approximate theory.

At another extreme.. o( • 7/z. , the reference area becomes RD and
Eq. (33) reduces to

CD,. + i +t FC (36)

This equation -.ay also be simplified for large S, since it can be
snown that -7(S,) - 43 ; i.e.,

which is seen •o be near 2 for all reasonable ,ID and 5ý . Conse-
quently, for large ftD , C at angles of attack of 7ero and 910 -ay
be considerably d~fferent.

:j. (33) may be solved for other values of angle of attack and fine-
ness .atio. Several combinations, along with the approximate Eqs. (35)
and (37), are !',own in Fig. 3 for Cb versus S.e . It is interesting
to note fron Fig. 3 that the minimum '. of a cylinder occurs to. sore
interrediat, •rZle of attack.
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?.3 Cone

Unfortanately, the exact fr-ýe-moleculc drag coefficient has not
been explicitly determined for the case of a right circular cone at angle
of attack. Neverthelezs, numerical solutions have been obtained for

-nclined cones and are presented by Stalder and Zurick (Ref. 9) for
completelv diffuse and completely specular reflection. For zero angle of
attazk, however, the 12rst of Eqs. (20) is easily integrated to give the
exact drag coefftcient as

-3 ••j'a•^ +_ _- + '••

,38)

where S is the cone senivertex angle and where tne base contribution is
neglected. For diffuse molecular reflection, T-ý C' = I o and Eq. (38)
reduces to

+0  = IA + +i;

As S- IMS becomes larger than unity, the exponential and error
function approach the limits zero and one respectively, as previously
noted, and

which is the same as the solution of the first of Eqs. (25), for -[= 0
For very thin cones, Eq. (39) predicts free-molecule drag coefficients
considerably highe." tha- calculated by Eq. (40), as may be seen in Fig. h.



F'or cones at angle of attack, the approximaia theory outlhned in
Sccticn 1.3 (or Ref. 6) may be cc: veniently utilized if the average S
on the cone is greater tham unmty. This restriction may be expressed as

s•o> P ( i4 1

where o tc A,,i and

Cc os-,•(-,•)•+ .- ,o
-ITd

- ~LI (- ý) (42I1,

Since the frontal area of the inrlfned cone mst also be hnown, it is not
difficult to show that

wnere P. is the radius of the base. The first of Eqs. (25) may be inte-
grated and combined witn sqs. (4,3) to give

+i



St<)+ ,, ..~r:< <<.9
wi~e(---,I+

- + v I-4. [4-•io] (i,61

T1

Eq. (4h) is also presented in Refs. h and 61 for the case ol =w: ?-.

For diffuse reflection, Eq. (°h) simplilies to,

C 7- f4Si' C00 (47)

For t' = 7/2 ,

and Eq. (i47) becmes.

+ T + (48)

Eqs. (39), (40), (i7) and (48) are plotted in Fig. i for several angle
of at'ack and cone angle combinations.

lThe last tarm of the cone Cc equation in Ref. 6 should be:

: (z.•(+• C4<,< t,(.

S. . ... ~ S. .. . . . . . ., •. . . .•
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The sphere is an extremely tuiple case to analyze since the frontal
area reairns conctanL regardless of angle of attack. The exact free-
molecule drag coefficient for a cphere is written as (Ref. 1, 2 or 4)

+~ (49)

TRRS_' 4ý _r S~t(50),

Eq. (49), for diffuse reflection is obviously

ZQ(~A4V I _ (51)

T'he approxi.-nte dreg coefficient of a complete sphere may be obtained by
integrating the first of Eqs. (25) over the forward hemisphere; i.e.,

S.J NE (52)

where the shadow area contributes very little to the total drag. The
difference between these last two equations may be seen 3.n Fig. 5. Her.
again, the drag coefficient approaches the "Newtonian-diffuse" value of' 2.

2.5 Flat Plate

The infinitely thin flat plate is difficult to -. ,a2lyze from tha
frontal area point-of-view sincc at zero angle of attack the area is zero
while the drdg is finite; i.e.,

CD-l 00
O."n
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it Is interesting, how:ever, to calculate C for other angles of attack
for conparison widt the th-ec-dinenslonal configuratior-s. For arbitrary
values of tne reflection coefficients, the exact CD* may be expressed as

T 'r~jsos +r (1- SieV ; i

(53)

uhich becomes for T (-'-l.,

I T.

and for S cn largcr than unity,

:4 Fr (55)

A flat plate normal to the free-stream. ( So,- has an exact diffuse

drag coefficient of

+ + + (,6)

which approaches, for large speed ratios,

(-D = L -+ z (57)
'~~il '~T.~

Eqs. (S4) through (57) are plotted in Fig. 6 for several angles of attack.

The deviations at small angle of attack, as for the case of the cylinder,

are clear•* seen.
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2.6 Surciary of Coxf;puratxons

A conparison of d:ffuse, frontal drag cooffacients for tne cylinder,
cone, sphere and fla• plate is shavan in Fig, 7. if onlý the three-
dieensienal shapes are conýidered. it may oe seen that most of the drag
coeeficten~s lie in a t5% band for all practical molecular speed ratios.
A noLeworth' exception is the cylinder rear zero angle of attack. Then
it may be concluded that the practice of assumnng a constant drag
coefficient per unit frontal area for a satellite at all attitades is
not, in pencral, correct, although for some shapes it may be an acceptable
approximation. The problen of estimatang the ballistic coefficients,
therefore, appears to deserve addltional study.
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2. TATIC STABIITY AULMUSIS

3.1 Ckneral Considerations

&s noted in Volume I of this seraes of reports, the aerodynamic
contribution in the equations of satellite pitching -otior. nay be conven-
tienally represented by the leading terms of a Fourier series. For small
angular deviations of the body from eq,.ilibrium, it may therefore be
shown that the non-dinensional aerodynamic torque tor pitching .onent
coefficient) may be written approximately as

Cn=C.-- •.t ++ c,(..z7 (58)

ehere, in this analysis,

cý.C. = Ft,,

Lo["•VJ t(s'6C,=

o(= 0

The discussions in Lhis section are concerned only with the static
pitching moments (i.e., Cý with jt 0 ) and the initial pitching moment
slope Cmý . The purpoce of the first of these investigations, namely
Cm versus a wide range of angle of attack, is to examine the validity

of the linear C_ approaimation for three simple configurations: tU
cylinder, sphere and cone. The analysis is subsequently extended to
calculations of Cý,. for more cowplex configurations: power law odies,
truncated cones, cone-cylinders and sphere-napped rylinders. Sitpplemental
equations and graphs are presented for the purpo of examining miscel-
laneous effects of surface temperature and reflectton coefficient varia-
tions. The final por:ton of this section is concerned with the optiniza-
tion of satellite geometry for maximum aerodynamic stability. The possible
aungentation effects of gravitational torques, however, are not ignored.
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3.2 Acroaveýnantc Pitchiz& g cvcnt

3.-?. Introductzon

With proper satellite design, nunerical results of the motion
analysis (Volume I) have snown that the s•all angle of attacr approxima-
ticn. is generally ,ustified. In order t,, avoid any unforeseen complica-
tions, however, it is advisable to examcne the pitching characteristics
beyond the small angle range. Acccrdixgly, it is the purpose of this
section to present curves of pitching .ocent coefticient versus angle of
attack for ... oasic oost shapes tcyaiancer, sphere and cone). Initial
pitching mom•nt slq.es for touse shapes are also pr'sented along with the
slopes for the more sophisticated shapes (power ]a- bodies. truncated
cones, hem.ssphere-cylinders and cone-cylinders).

All coefficients are referenced to the base dsiteter D and base

area r7&/4 .

3.2.2 Pitching Moment of Barnc Body Shapes

3.2.2.1 Cylinder

-- 1-7

Figure 8. Cylinder Nomenclature

The pitching moment coefficient of a right circular cylinder may
be calculated using the exact free molecule flow e. tiens. For a
cylinder without end effects, the last cf Eqs. (20), itegrates to give
(Ref. h)
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C..,r'- 2,[1 2xf~
-_..r 3I.'2-0• +-.•- \F(i') n + -- l ,, ~I~ -j li i

'•''= D/.I• 1- S "A ý••T • J-.

+ i 2ocx (60)

where • - and F( i) s• defined by the first of Eqs. Z32).
The nose contribution may be taken into account by considering a flat-
"ilate normal to the sLreca. The cxact -,usent cont.xizution of tnis s-irfaco
is due only to the tangential stresses and is given by

e-- + E , • • ...• _ . (611

It is noted that the nose contribution is nositive and hence destabilizing.
The base end effects, which are small, are not included in this analysis

cine the base will be assumed v)id for design purposes (see Section 3.b).
Conoining Eqs. (60) and (61), the total static pitching moment coefficient
is

''(T"
+ 2 T. T" j(D)

1ýflts.(62)

+ oieZl [e4( s.o) - i -

For diffuse molecular reflection, q-= 6 ' , and Ea. (62) becores

'63)

_ S .
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Eq. (63) is shcwTn in Figs. 1, 12 and 13 fox cylinder fineness ratios of
1, ? ard 5 respectively and for T, =-T"• . The temperatures are equated
to snli!o the presentations. The effect of 7r #T_ , however, is
discussed in Section 3.3.2.1.

It may be noticed that the last term in Eq. (63) is quite s~all
when S•.cos. is in excess of about 2.0. Then for small angles of
attack this term may be neglected. The pitching moment slope at zero
angle of attack may be formcn by diffes•ntiating Eq. (63) with respec, to
rC and pesinr to the limit cK-•o . Accordingly, one finds,

I) T, ~ (64)

where the last term an Eq. (63) is ignored and where

1. j % = (65)

From Eq. (64) the cylinder is been to be aerodynamically stable for all
centers of mass forward of the geometric center. The results cf Eq. (

6
4)

will be utilized •n the cylinder design analysis of Section 3.4.2.1.

3.2.2.2 Sphere

Figure 9. Sphere NomenclaLure
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The pitching moment coefficient of a sprere is easily calculable
snr.ce the resultint aerodynamic force (drag) acts through the sphere
center. That "s,

Cvl CSMo( .(66)

The exact drag coefficient for arbitrary molecular reflection is given
by Eq. (4.9) a-

(z- (+ alq(S2 + ILI",- - (67)

where (m is defined by Eq. (501. Then for diffuse ieflection,
Eq. (66) becomes upor Uhe subrtitution of Eqs. (50) and (67)

4 ÷ ý4-4S . -I ,•'5 .) _, _ + El j- (68)
5Z-146 3S~j1.- e(\~~(

which varies linearly with center of mass location. The normalized
v rsbon of Eq. (68) is shown =n F•g. 1h for 1T, =-'T . Temperature
effects are 'onsidered an Section 3.3.2.2.

The sphere pitching moment slope at zero angle of attack is

4+ 4S etf(5. ±J+45"11-±f (69)

which, liie the cylinder, is zero for coincident centers of volume and -

rnss.

S... . . . . . . . -- - - " . = .; • _ • _ -" __ _- _- - - _ __-- _ = _4:



3i.

"•..2.3 Cone

Fipure 10. Cone Nomenclature

Unlike ths cylinder and the sphere, there appears to be nostzhrt-for-ra ..etI.oi for obtaining the exact free molecule pitching
wne.nt of the cone at angle of attac,:. Ucing the last of Eqs. (2-),
hrwover, approxinate pressure ana shear coefficients may be integrated
uith lit-le difficulty. The *esulting static pitching moment coefficient
may be sh=.n. to be (Ref. 

fi

c, • (M-C- WX + 51'h

(70)

4.+ z-• il') 7[I z]

+_ z

_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,o _r: - -:•im m m mmm m a•
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!.he'c tie parmmter f s defined as *e.,/ a and

The foregoing functions are the result of •ntegrating one pressure and
-- shear over the surface area exposed to the incident molecular strean.

-- = ,The contribution of the "shadow" is neglected in the approxinate theory.
Iti therefore clear that when the angle of attack is less than the
cone angle, the entire conical surface "sees" the free stream and the

I funitions assumc integer values. Consequently, for diffuse reflection,Fo. (70) is expressible sn two parts:

T-1+-
•i I II I I I I I

SI I I I I I I I I I I • I I II I I II • • I I I I I0

The foeon fn.isaeterult of interaing me pessure landm iii
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! •= -_-_. _. . (J.. . _. -_ 1

Ca &SI• 1.1i[ aT •"j

(72•

FEqS. (72) are shown plotted in Figs. 15, 16, an'
1 

1?, for zone angles of
i•0, 300 2nd 1•0 respectively and for Tw , • It ra" be. noti.ced
these figures that there as a slight discontinuity- in t'ie pitching sonent
slope at the point.• where oe equals • . These discontinuities are due
to the sudden appearance o.± S •haicw as tho angle of attac?- increases
bcyocnd the cone angle. if exact fre•-aolecule theory wer available for
these conditions, hot'ev .r, the shadow are'a would be properly taken into
account, and the discontinuity, if precent at all, would be ennothed.

The static pitching nonent derivative at zero angle of attack
say be found from Eq. (26) or by differentiating the first of Eqs. (72),

-- wlth respsct to aC and taking t.he ui£t as o( anuroaches zero. The

res,•lt is,

w'hich is appli.cabl- for S• sin £ greater than unity.

C= Gotm == = = . . . .
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3.2.3 Pitching ,Moment Slopes of CaNplex Bodr Shapes

3.2.3.1 P•wer Lau Body

iFigure 18. Poeer La. Body Ncomenclature

As the result of the cylinder, sphere and cone stability
comparison of the previous section, it seems worthwhile to continue the
analysis for somewhat more practical shapes. The power law body is such
a shape, and hence, is described below.

fit . l .a b r-vcilv5.w is described by the weUl-known
fcr.als,

whV c R and R are the maximum body radius and I ,th 'espect.vely, and
where 0 < VN !L . Now the slops of the pitching LL,¶ent coeffizienr,
Cvn * . at zero angle of attacK for a body of revolution with r' ) o

nay be detercined from Eq. (26) using the approximate free-molecule theory.
The res'lt of substituting Eq. (7h) and its derivatives in Eq. (26) is



S= _" _ _- .= • •

45

CM - -'-I

A- kx/

Except for a few special cases, the first two integrals in Eq. (75) have
not been evaluated (at presen.) for a general value of f . For diffuse
folecular .7eflection, howeve,-, 3 g'= 1.0 and the coefficient of the
ffrst integral is identically zero. Also, s,..ple calculations have
shown, using Fig. 2, tha. toe temperat•.re-dependent term is less than 51
of the dominant, last term. Therefore, if diffuse reflection is assuned,
and if the second ter-. is neglected, Eq. (75) becomes

r IYNN- -le Xu .11r,'°

This integral =y: be evaluated exactly, giving the result,

which is independent of fTL . Consequently, for diffuse reflection, the
only effect ýf the exponent on pitching moment slope is due to the small
contribution of the reflected pressure coefficient, as treated in Sec-
tion 1. Also, it may be seen that Eq. (76) agrees with the leading term
of Eq. (I;) for the cone ( t •
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,.2.3.2 Truncated Cone

The stability analysis Df the more complex geometrical shapas
continues herein for the case of a cone frustum. The calculations are
considerably xore complicated for this configuration since the degree of
tri cation bmuomes an additional variable. The geometry and nomenclature
used for Lhe subsequent calculations are shown below in Figure 19.

Figure 19. Truncated Cone Nomenclature

The free-molecule pitching m,,o-ent slope of this shape Wa be
found by combining t~he separate contributions of the conical surface and
the flat nose. Although the exact free-rolecule flow theory may be ub d
for the nose portion, it is sufficient (and convenient) to calcalate
C r * at zero angle of attack using the restrict' -s t.•a So > 6

and S.S5nc '> I . Then for diffuse molecular r6tlectlon, Eq. (20)i1 !shows that Cmkt of ,U,e •onical portion (dr/Ax PI 0) is

il L .,, . ,, , ,, , , , .. ,. ,, .,F -,- ., , , . . ."
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and correspondingly, the nose contribution is

where A is the ratio of the nose diameter to the base diameter. The
total static pitching ronert slope is the sum of Ecs. (77) and (78).
That is,

. T. 7. ,

*IbTAL IV ~ /~ i~z2+~~'3

It is not difficult to show for reasonable configurations with
So nC , 2 that the te.apcrature-dependent tark in Eq. (79) is
considerably smaller than the last tern. Although the difference will be
uhow, later, it is now convenient to neglect the temperature term and
"write Eq. (09) as

C, Z--2(-i)TI v (80)

which is the same equation used in the previous section for rower law
bodies. As Eq. (80) is presented above, Cm• is independent of t.e
diameter ratio



3.2. 3.:. ieshcre-Cy•.nder

The gconetry of the hemisphere-cylinder is shomn irn Fig. 20.

F M I

Figure 20. Hemisphere-Cylinder Nomenclature

The pitchLfg moment slo., of a hemisphere-cylinder may be fc, nd
by adding thie spx-, ýcal cap contribution to the cylinder contribution,
both of which have been discussed previously. As o( approaches zero the
value of Cm for the hemisphere is essentially the same 2s the value
for the complete sphere since the contribution of the aft portion of the
sphere is negligible. Then from Eq. (69)

where O(KS-) is defined by Eq. (50) and where diffuse reflection Is
azv.•,ed. Likewise, Cm.< for the cylinder, without end effects, X~y be
foind by differentiating Eq. (60) with respect to et and passing t
the amo 'imit. The result is, for O---" = l.O

wnere 21 w.," xo.ý are measured from the origin of the cylinder.
From Fig. 9, ic is seen that



1:9

= + D/Z

Xý 'C + 012t.

rhese relitions ray be subst-t,.td in -q. (82) to provide a c-rnon
reference basis; i.e.,

where LID is greater than VZ The combination of Eqs. ý(81) and (83)
gives the total pitching sioment slope Tf a he-msph,,6-aylinder with
diffuse reflec',ion:

S y ? (8-)

where

X +., T. I.'cN fTr.N
M -.

ll (IIi
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3.2. 3.4 Cone-:;yl~ider

Figure 21. ConeCylinder Nomenclature

The s-atic pitching zceit slope of the cone-cylinder configura-
tion is easily obtained since both portions have beer. Drevio,-1y calculated.
Fi. difjuse reflection, tne approx3o ate free-molecule 1low t'eory gives
for t-he conical porLion,

IThL L, (86)

which is tVe sae as Eq. (73) except for a slight rearrangement. The
C-, dite to the cylIndrtcal portion may be written using Eq. (82) andSii . 21, notins, that

. D I,

S..... ' " '- '"-'"'--'='"--= -- " ' il iis1
.~~~~~~~~~~" -+• n r [Hi'iinielna lmlni
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where 9 and <ý, are neasLred aft from the clinder shooulder. Thus,
Eq. (,12) bec'ries

*•..C, -[•' _)"L-r • -i -zL~r +p+ (8"

where 1 iD is greater than VE . The total e¢m.e-cylider • is the
stim of Eqs. (86) and (67):

rK.,•<,-- , ýt + C ,,- 42- ,-.,i
T k C .lD) 4 .. 6'

where

(89)

ri-T jfT
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3.'. Miscellaneous Effects on Stabfiity

3.3.1 Introduction

As stated severil times throughout this report, the ccmplexity of
free-molecule force and monent calculations is reduced if the surface
temperature, Tw , and the tangential and normal momentui coefficients,
T and T' , are assuaed constant for a given configuration. Although

these assumptions are reasonable for most engineering applications, it is
desirable to investigate the ,aa.Lditde of stability changes caused by
surface temperature and ref3ection coefficient variations. In reality,
the reflection coefficients may vary with surface temperature as well as
being dependent on surface material and irregularities. For the subse-
quent calculations, however, it winl be assumed that Cs and r' are
independent of Tw . Moreover, icr tne temperature inve.stigavions, the
comrtoly accepted diffuse values of c=T '= j.o are assigned, while for
the reflection coeffiient investidgation3, T- is ascumri,, to be 550°R
and Fig. 2 is assumed applicable.

3.3.2 Effect of Urdform Temperature Levfl on Stpbility

In Section 3.2.2 equations for the static pitching moment
coefficients were presented for the basic boc' shapes: the cylinder,
sphere, -,d .one. The accopa4y•ig figures, however, were drawn for the
special case of Tw= -T (for simplicity only). It is therefore the
purpýý ý: th.s section to ,resent equatious and graphs for the incre-
mental pitching moment coefficient due to -- w : T. . Since the basic
equations have been discussed previously, additional elahoration is held
to a miniumr-.

3.3.2.1 Cylinder

-R.ou Eq. (63), it is easily shown that

or

Eq. (90) is plotted in Fig. 22 versus angle of aftack for several tempera-
ture ratios. It may he noticed that for large cylinder fineness ratios,
the teuperature ,ffelet may beromie significant. Also, it should be pointed
on, that 'the lat nose contribttion to , (shear) is independent of
tenperature.
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3.3.2.2 Sphere

The effect of T,, * "T.o on the sphere C. is shown to be,
from Eq. (6B)

S(91)

D-z t -f -L [T

which is plotted in Fig. ?3. Unlike the cylinder, temperature only
slightly affects the sphere pitching monent.

3.3.2.3 Cone

As indicated praviously, the cone at angle of attack must be
treate. in two paxs; raaeli, ., I-, U:.x Ui• cone angle j , and ot
greater than . Then, from Eq. (72),

ST,.

S___A_.________ _ r 
(92)

-~~ -I, [sine-e

where • is defined by the seccnd of Eqs. (71). Eqs. (92) are
shc=. •i-F~g. .24 for cone angles of 150, 300 a.4d 450. Ifere again, as for
other bodies of revolution with non-zero slopes, the temperature effect on
stability is small as long as the fineness ratio is not large. This
small increment may be illustrated by plotting the cone total pitoning
moment slope, Cv., , versus altitude for various levels of surface
temperatures. Such a plot is presented in Fig. 25 using Eq. (73) with i
cone angle S =ca-' (?-- (an optimum value as shown in Section 3.h.2.3..
A circular orbit is assumed so that 7- , and hence ; , may oe
written as functions of altitude using the 1959 ARI tmospnere (Ref. 7).
It is clearly seen from Fig. 25 that surface teMperature has a W9a3l

5 Cg) effect on the stability of a typizal cone.
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3.3.3 F-fect of Asyrmetric "eaperattre Variation on Stability

In order tc investigate the effects of an asjrstr•erc variation of
surface temper~ture, the basic pitching moment integral, Eq. (20), e:St
be utilized. it may be remembered that for a corpletely 'HIiPase gas-
surface interaction, the only effect of temperature is on the pressure or
normal momentum component due to re-emtted molecules (Refs. 1, 3).

The "reflected" pressure coefficient may be written from Eq. (5)

(for Maxwellian re-emdssion),

N(W 0 - erf (3

where Tw is regarded, for simplicity, as a fictitious Lamaerature
corresponding to a surface frcm which the molecules reflect with complete
thermal accommodation.

Since the shear stress and the "incident" pressure are independent
of surface temperature, the lact of Eqs. (20) for a body of revolution at
zero angle of attack may be written as

- (pc,.(rr' ( 9h)

where Sw and Z are the reference area and length, and where the other
symbols are defined in Fig. 26 below.

Figu"e 26. Body of Revolution at Zero Angle of Attack



Now consider a non-spinning satellite orbitinr' at zero anrle of
,ttack with the sun directly overhead. For a bottr of revolution, the
npper half will be in direct sunlight %hile the bottom calf is in a
shadow. If the satellite is assumed completely insulated (no internal
heat transfer) and if free-molcaule convPctive heat transfer is neglected
in compafison to that duc to radiation, then the eoper and lower partions
of the satellite will achieve different temperature levels. The corr-s-
pending values of pressure coefficient will likewise be different.
Consequently, Eq. (93) may be separated into

r-rc)-.# m --V -I . - (, I* -f--

and (95)

where the subscripts At end & refor tO wne upper and lower surfacs.

For a right circular c"ylinder, Eqs. (93) and (95) simplify
considerably since S,. and r'"Jrl/x are zero. Hence,

%:It

-4 '4L

where, ar usual, r = 1T•/4 and Z LD
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As another example, consider a right circular cone at zero angle
of attack. For tnis case, $,_ = S• , _d for reasonably large
S.N (say 3.0), the approximat- "reflcted" pressure coefficiert is
sufliciently accurate. Then from Eq. (15) or Eqs. (95),

ri '

which when substituted in Eq. (94)' yields

_0oIT®i

-
Ix (

.." t the eo ngle of attack pitching moments have been
formsulated for two simple satellite shapes, the effect of large tempera-
ture differences on the eq.uilibrium angle cf attack mea be determined.
For the case at hand (sun-satellite-Earth system), rad)ation heat tra ,sler
techniques are available (Ref. 10) for approximating the upper and lc :r
skin te-peratu-es. For example, assume the following average temperature
levels:

94o°R.

5 1 (99)
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and let

'_=25000P1(f

5. =74 5 (1oo)

when' the large surface temperature difference is obviously conservative
1

due to the negligence of heat transfer within the vehicle. Furthermore,
for s2all angles of attack, the static pitching moment coefficient is
expreosible as

which for equilibrium conditions ( CM = a) may be re-ritten an

The pitching moment slope, Cmow , has been determined for the cylinder
and cone in Sections 3.2.2.1 and 3.2.2.3 respectively for the case of
constant surface temperature. Those equatiocs, however, are easily
modified to anc2,de the -- --- ratre difference. Consequently for the
cylinder, Eq. (64) and Eq. (96) combine to give

eCfl _ 7 (102)

a 0009 (iIJ) (rakians)

1
hecently pablished results (Ref. 11) of the Discoverer program have indi-

cated that the upper and lower temperatures are quite low ana not much
different from one another. In some cases, these temperatures were below
freezing. It must be remembered, however, that the actual equilibrium
temperatares achieved are strongly dependent upcn the emissive and abs 'rb-
tive properties of the surface.
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uhtre the values of Eqs. (99) and (10D) hNve been used. It ir appaxent
fre' Eq. (102) t"L', the cqu--lzbriuz. angle is se.y small, is expec,'tec, Vur
a cylinder with a large temperature difference between the upper and
l(oer surfaces. It, mist be remembered, howe-er, that the temperature
elffezt on reflection coefficients has not seen considered in this analysis.

The cone equtlibrium angle may now be found an a similar manner.
Usuig Eq. (73) and Eq. (98), Eq. (101) becomesSo]L

L 1' t

where, as before, Eqqs. (99) and (100) are used. For a representative
x.It of 2/3 (foi sirplicity), Eq.' (103) is

O~ (104)

which is very small for reasonable cane angles.

Although this analysis is obviously incomplete, it may be qualita-
tively concluded that temperature differences between opposite sides of a
satellite have little effect on the aerodynamic pressure difference, and
hence, little effect on the equilibrium angle of attack. It should be
remembered, however, tnat although solar radiation was considered herein,
the effect of solar photon pressure on satellite pitching moments was not
included. If desired, Appendix A may be ueed to calculate the additional
moment contribution due to solar pressure. A brief check, however, has
shown that thi.r contribution (for a cylinder at I million feet) is
ua.aller than the aerodynamic Cm, due to temperature -ariations.

3.3.3 Effect of Longitudinal Temperature Distributioa on Stability

It mxay be recalled from previous discussions that the surface
ter.erature of a vehicle in free-molecule flow affects the surface
pressure (through the reflected molccules), and hence, aerodynamse
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stability of the vehicIt. It wts shown that for large, conservative
t.,emperature differences tetween the upper end lower surfaces, the effect
ui zero-lift pitching moment and corresponding equilibrium pitch angle is
very small. Another temperature effect to be considered is the influence
of a longitudinal temperature distribution on the pitch characteristics
of a satellite. This distribution nay be the result of (say) conduction
due to certain "hot spots" within the vehicle, free-molecule convection,
and/or colar radiation. if all thece rmdcs are considorea, either
separately or together, the resulting temperature distribution becomes a
conplicated function of nunerous variables; i.e., surface material, free-
stream conditions, surface orientation angle with respect to the sun., etc.
For example, if a radiation heat balance is considered alone, the tempera-
tAre ratio T- /Tý depends on the fc.urth root of a functon of the angle
between a surface element ard the sun. The square root of the temperature
ratio, as used in the aerorynamic pressure equation, then depends on the
eighth root of the sun angle function.

The laborious details of a heat transfer analysis do not seem
justified for the rather general cases considered herein. It will, there-
fore, be assumed that an average temperature distrioution may be
represented by a simple, axisymmetric, power law expression for the
purpose of weighing the effects of temperature variations on the aero-
dynanic pitching monents. For example, let

__ _ (105)

where G is some reference temperature ratio, X/• is the non-dimensional
body length measured from the nose, and the exponent ý is a ouistant.
Now for a body of revolution, the temperature contribution to the initial
pitching moment slope, C,, , may be found fr-n Eq. (25) as

-i 'IT I - X 1;r _ _ r -

where the reference area and length are 701/4 and D respectively.
Now for a right circular cone, r = x-tomn% , and tn substitution of
Eq. (105) into Eq. (106), and subsequent integration yield
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T z [ ,ý 5( 3 (17

Since rcalsisLc vlues of N% cannot be fai different from zero (say
- 1 4 ?ý ) and ýinca the two se-ies in Eq. (1071) end to cancel each

o.-her, J t rma' b& seen that the constant temperature ( 4 = 0) increment
oi pitching moment slop,, which is zmall when compared wit', tne totai
pýtching slope, is not altered appreciably by the example temperature
aistribuwion. As an illustration, Fig. 27 presents a plo,. ,' I total
C-.. versus the exponent T . The o = a conditions are noted on

the figure.

Other examples may be performed yielding the same general result,
i.e., the e•feet of teoperature variations over the surface of a satellite
in free-molecule flow do not sign-ficantly affect the aerodynam• c forces
and moments as long as the reflection coefficients 9' and q' are
assumed invariant with teaperature. The effert of variations in (r
and V "-.ll be consicered 21 the next section.

.0f

-12 -o6 -o.. .@o-17

Figore 27. Effect of Longitudinal Temperature Distribution on
Cone Pitciing Moment Slope
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3.3.5 ELfect of Asye-etric Reflection t'oefficient Variations ec

Stability

As zenttnneG before, the efft.cts cf vaaraticns of the surface
reflection coefficient- 4- and T'I , are analyzed for the special ca~e
of constant turface temperature; in particular, for Tw - 550°R. For
the present problem, it will be assumed that the upper and lower poi tions
of a body of revoluti-on have different values of the reflection coeffici-
ents T and 0-' . The resulting difference between the upper and lower
shear and pressure forces will then produce changes in the pitJhing
moment. The magnitde of this asyrmetric loaýUng may then be analyzed

by calculating the equilhhrz:sr -ngle attack, which is. to Uhr first order
and for =all angles, defined by Eq. (lal,.

1..... I!,_- arprox;m.ate free olecule theory kF'f. h), it maa 1,e
shown teat the static pitcbing nce.ent mcofficient for a Lonvex body of
revolution is

J.-% exettht• ndz r

wVach is the same as *he last of Eqs. (2-) except that 0- and G are
now, ass,.red ,ependent on the aziecuth anxle 4

Now if " and (r0 are assigned different values for the upper
and lower surfaces. Eq. (108) becores, for zero angle of attack,

-"' _-6-r It'''"• ,7fr+
ZC4 ( C &

(109)

-+ z.(o--) rrI rJx-
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ti'kevie., 'he i, t,.al pitchinE rocment slope nmay be fc,.nd by difftrent~aAnp
Eq. (108) with respect to oi , xnd taking the 12imit is cA approa-hes
zero. The resull, is,

-'5

+, (T T. -

For a right e:rcular cone, v le4 Z 0~ and
-,C. k.l(9) and (110) Integrate to yield,

W2 &hI - 1- (111)

(112)

whore

(6 + ~/Z
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The conM eq-lbi 3mist angle of attacK rsxy no,' be found by substit.,tirg
Fqs. (311) and (112) into Eq. (I12); i.e.,

V5-' r' -it) + -
Lcz£.+, -7. •\ "z j

For purposes of representing &u o-cerne case, let tie iowcr surface
reflect sn a -cnplete epecular fashion, 0-. = £' -- o , while the
upper surface reflects ;.n a coirplete diffuse way, T.j,,- = .
Then &AC-=a -=--.1o and q-ýý --= 1z . Furthermore, let
S.&ý74-, M,5f~fT= 0 OcG; (from Fig. 2). -ta&e --1/z
ana x.1 h'At, these values, Eq. (113) reduces to

, . + 891

0 ( IS S i , z s n ~+ . ,,9~ . . . ~

The value of Eq. (IIJ.4) obviously represents an improbable condition.
Otner more practical reflection coefficient and geometry -ombinations,
hcutver, say result in equilibrium angles of attack which may ssgnifi-
cantly affect the orientation of a satellite. Body shapes other than
the cone ray. of course, be analyzed for the effects of non-uniform
reflection cocfficientrs. In particvular, t-he cylinder is very sensitive
to asysmet:ic loadings. especially if the ends produce a large C".,

11verous otter problems mky be devised which involve var ations
of surface temsperature and reflection coefficients. Only a few of the
rore extreme kand simple) cases have been discussed. For example, it
n-s teen assumed that 9- ana T' are independent of surface taemerature.
wnile in reality, it is suspected that a certain dependence between the
reflection phenomena and surface temperature exists.

3.3.6 Effect of Non-Diffuse Reflection ro'rf!_.cnts - s•bality

In tnis section, the pitchiog mo.-(nt slope Cm. is investigated
for the ease of constant surfaLe temperature (550

0
R) with uniform, but

i.nequal, values of the tangential and normal momentun exchange coeffici-
i-nts, T ;.nd 1 .



68

Since the diffuse (c-=-' a ) values of C--t have bee.n
presented for Eeveral configuratio-s in Section 3.2. it is now convenient
to use the ratio, Cr./Cm/ , , where, in general, C-.c is for
r-# o"r ± , and where Cm 0. is for rT r' i . The exampieb
chosen ror illustration are the cylinder, sphere and cone.

3.3.6.1 Cylinder

From Eqs. (62) and (64) it is easily shown that the cylinaer
Cm, ratio is

[, 4.- 2qr+r + qf- T

which is independent of the c:enter of mass location. Now if the appron•-
maticoc [ff/is.FC O.oi• and 5, P4 are uscd, and if a
representative fineness ratio of 1.08 (so. opt•n value, as shown later),
is assuned, then Eq. (115) say he written approximately as

Ie oo + I I8w -0L 31 + '

where other practical ohotocac of S , lT and Now do not appreciably

affect toe numerical results. Eq. (fl6) is shown plotted in Fig. 28
versus the ta~pential reflection coefficient Cr with the normal reflec-tier coeffjcientS aE a para0;eter. The ratio ? "/" could also be used
as an effective paraeeter. If a reasonable lower limlt, sasy la, is
assigned to he and E. , ( t may be seen that a deviation e a much as
in ,, .L could be incurred. As expected, the cylrner -,0, 1Is rtr'1gly
awfecred by the shear term, anad hence, decreases substantially with
decreasing C•

3.3.6.2 Sphere

versus the tue! t . - sed to find the Cf.l .f to for the sphere
cince coef for this conaapuratirn is dhrectly propoIrtonsl to the drag
aoeffiieat. Then fron Eqs. (1,9) and (51), ,r, Itmg, may be sritten
exactly as

Se__clii i! 'i n " ""se "t ' find" "" th I•i cteshr
.ofii•t hr fro Es 09) and ll) n m, /n II III l ii(
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c1% CDP 2G&'.-2L T (117)

uhere fron Eq. (So),

z= +1 .s 4•.a+ 4s. -I f '•

No' if the Lsual assumptions of 1 14 and •!(Jf -• O.Ot3
are used, then

Cm' - Z OG3 - .,, a- z.94q.-(

which -s graphically presentea in Fig. 29. The cphere is seen to be
different fzran the cylinder in that ;r and ) ' nave nearly equal and
opposite effects on C .• That is, d'ereasing Q- tends to decrease
stahility, wi!le decreasing t -" tcncs to increase stability by nearly
thŽ s~ne zzount. If a lower il•t of 0.8 im assigncd to '2he reflection
coefftcients, the maximun deviation in C is agaiii seen to be approxi-
mately 18%. For ls'=rf . however, the deviation is very sall. In fact,
the completely spucular Cg, (r-. T' "=O is nearly 9i.5% of t

3.3.6.3 Cone

For serx-vertex angles greater than (say) 100, the cone pitching
morent slc=c at zero angle of attack has been written approximately by
Eq. (731 for diffuse reflection and by Eq. (II?) for gencral values of
the reflection coefficiaents. The quotient of Eq. (73) inrto Eq. (112) is

., T .I-oj1 ,r 3 J(Il'-')

; (t1sý+ 'MI



N'w it ; 2-s ciosen -s e" t-' 1z ',!.en •.'S =z/3 , an• the center
o, m3a.s ter.rs c'.,n-e•itntly ca'cel. 1•q. (119) tnen redices to

4. +r r o7 r (120)

where ffi i s again assumed 0.063. Eq. (120) is shown
plotted in Fig. 3C. Uilike the zylnder and the sphere, thj conc
is seen to be affected nire by the presuvr. forcos than Dy tee shear
iorces (at least. for the low fincness ratio core selected here). An 18%
maxin•ui deviation between Cw, at 0 0= I 0 1 S=O 8 and vice versa, is
again (by coxncadence) evident. The cone C•rý* for U-= T'= O-Z ,
however, is tncreased by only 6%. Fron Eq. (120) the specular C_,.
is approximately 30% higher than the ciffuse C,
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3.A, Opti''m Shapes

3.L.1 Review and Introduction

In Volune I of "thit. series of reports it is emphasized that
soccesaful acrý&fn-unc stabilization of axisnretric, rear-Earth satel-
lites depends upon the nagnitude (and sign, of course) cf the aerodyna.sn
staoility pararneter 6  

. This parameter is defincd as

r i

"vhere

p XM5 1 1C(122)

P1 = atnospheric density at z-i-latus rectum

r, - perigee radius

ALJV = relative-to-inertial velocity ratio

I= principal moment of inertia about the y body-fixed axis.

It is also noted in Volume i that 6%P is used in combination with the
gravity torque parameter M , which is cefined as

Ms= Ia- I (123)
I

wnere 1. is the principal moment of inertia about the ?C body axis. In
particular, for circular orbits it is shown tbat *h- dominant stability
tern (and "spring constant") is (Pf+.EA -

If aerodynamic stabilization is to be fecsible, tnen the question
now beco-es one of determining the attainable range of W) for any
reali:-tic satellite shape. For a sreriied orbit, Gr* becomes a function
of I' only, and hence, the problem may be restated as being one of
determining tlhe optiu=m proportions of a given general shape (cylinder,
cone, etc.) which make the stability parameter, r , a mximm.
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For the configurations corn.sdered henceforth, favorable center of
rass locat.ons are obtained by ccnczntratsng a hro-geneouo payload in the
forward portion of the satellite. The aft porticzof the models are
assumed to bc rigid, but maseless, shells or skirts. It is obvious that
these a.sumption; ar- not realestac, but )t i., hoped tiat the design
analvses to ionlow 11 sc rve as guidelones for the more sopiasticated
ces.gns ot aerodynan:cally stabilizea satellites.

Altnugh, many optimization procedures are availaole, the technique
used herein is To differentiate r while holding payl=da mass (or weight)
and center of mass constant. Now -f the payload density is specified,
then the payload volume is also known. Consequently .i is convenient to
non-dimensionalize Eq. (122) by multiplying both sides ny the payload
mass, me , while dividing bath sides by the payload vulume to the one-
third power, ,'s ; i.e..

'Yv. 4- 1Y,/,(124)

ehere tne right hand side is "ndependen' of rA since I is a linear
frnction of mass. Accc.dingly, Eq. (12) is a function of satellite
external geometry and the center of mass location. For purposes of
comparing several configurations, however, the center of mass location
may be conveniently written in cerms of volume ratio; i.e., the ratio of
payload volume to total satellite volume, inclining the skirt.

Since optimum geometry is to be deterrisen from the maximization
of r(•/•/v4) ano since the center of mas3 is specified, the gravitational
parareter M is calculable and is presented in the following analyses of
the various coniogurations. Also, it shcld be noted that the maximiza-
tion of FI tends to minimise I , thereby tending to maximize .14 .

Tne oody shapes chosen for the following design studies are the
same as treated in Section 3.2. The basic body shapes - cylinder, sphere
and cone - are analyzea separately and critically compared. The dximum
Fr' of the power lag bocy and the truncated cone are snown to b, not

much different from those for the pointed cone- and consecuently, thý-e
bodies are not extensively compared. The hemisp, re-cylinder ard r-sne-
cyiinder are compared with the basic bodies whicn, then taken together,

L.,e these comkposite configurations.
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p ij l IJtcod V2 Shaps

Jill 61 (~U-1ner

I•1t ,t I t__________

Figure 31. Cylinder Ncnenclature

itglezting the contribution of the skirt of the vehicle to its
.tormtIt ior inertia about the y axis, I is found to be

+I~~i 5 (125)

and for later use, the momant of inertia about The X axis xs

I1MD (126)

For a cylindrical homogeneous payload

×•/ = I/i ",, (127)

v.here, of cr- se,
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Then by un;,IL tfle foregoang equations Sor p, X fi. and •( andEq. (4%) for Cg , Eq. (l2Ij) becones,

= *fi~i~ sjT D+1.LI~'~.] (123)

Dyfferentiatenl Eq. (129) vith respect to D ard setting equal To zeroyields

16±ii 'ZS -r. j( 4 ~.i -4 , (3

For orbit• of interest, the two bracketed terzs, in Eq. ( ) are less thanunity, and using Fig. 2 for circular orbits and Tq 535u)R, the magni-tude of these terms are found to be nearly 1/3. Eq. (2) thereforebecomes approximately,

which, for voluz.e ratios of I/l, 1/2, 3/i. and 1, has the graphicalsolutions-

( op} 0 (132)
"-,-tr.. = M )•(t go
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-4/4- 108

(cont.

"bu•tituting the foregoine results into Eq. (129) gives the ma=,aum values
of "ebv&l- Moreover, -f thu payload density is specified, rF...say be found as i functiorn of payload nass or weight. The fonloiing tablesumar;izes these results for the case of Y. slut/.(+7 1. Also... mn are the values of the grav;.tational Parameter, M. F./I/ -1which correspond to the optasimu fineness ratios. C' has the dirensicns
of ft/slug. Also, the payload weight W is evaluated at sea leiel for a
mean acceleration of eravity of 3.?- ft/sec2.

Table 1. Cylinder Summary

1 h/ .56 hl. 51.7 152 -0.269
1/2 f .en 4 -. 12.3 124 -0.036

3/h 1.08 2.86 3.61 365. +0.070

1 0.76 0L 0 0 +0.133

the resuls shown in Table 1 (except for -/rvr =I 0 ) are presei.ted asplots of r versus payload .eight in Figs. 35, 36, and 37. The sigrafi-
cant features of these re.Itý a - A , L. Sec,.io ,..

'he payload dE isity of 1/2 sltg/ft
3 

represents a reasonable average of
U.S. satellite payloac~s launched to date.
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3.4.2.e Sphre

Figure 32. Sphere Nomenclature

Since the "fineness ratio" of a sphere is ooviously unity, thereis no need to maximize the stability parameter r fo., a given volumeratio. In order to form r(I,/'t,') and r' however, it is necessary todetermine the pitching moment of inertia, ± . A laborious but elementary
integration yields for this quantity,

2 (~ y t. s io -(133)

where the mass of the spheric.' a-hcl-o aft of the payload is neglected.
For a homogeneous spherical segment,

= Ic -- 4 e, (134)

S3-2e

The folcr.-ing geometrical relaticnships are also useful.
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-b- L "(135)

Horeover, the moment of inertia about the X axis is,

rs - F)e!-- (136)

which .-hen comebined with Eq. (133) leads to

? W.
I -_-_ +A

'ubstituting Eq. (69) for m ari Eq. (133) for i: into Eq. (124) yields

r 1 - L -1, .t- )'•' (138)

where the geomctrical terms are all functions of W-Vr since X-/0 =
.4Ce) "= 41YrrTN . The term in tho brackets may be estimated using
Eq. (50) and Fi. 22, and consequently has a value near 2.1L. Although
Eq. (138) may be written in terms of -YI[j , the lengthy expression is
quite cumbersome.

It • ..ore fr, .ble to ,or.struct plots of X-,O and v'iV9T
versus the depth ratio E . Accordingly, these curves are shown in
Fig. 33 along with variation of the gravitational parameter M . It is
noted tiv.t for all possible values of 6 , M >- o and hence the gravita-
tional torq.ues always auwent the aerodynamic torques in the case of a
"!oadcd' sphsis.



31

Table 2 presents a sumary ol the aeredynaic parameters
developed above. Here ags'n. the payload den.ity 3s assumed to be
i/2 slug/it

3
. Discussion of the results ano cozparisons with the cylinder

and cone are noted in Section 3.4.2.L and wigs. 35, 36 and 3?.

Table 2. Sphire Steaarr

I • ! •- X.-"D a/.• l-Yv, Vv, M !
1/. .326 .205 21.9 27.6 I 279 .740

.4 .

- 3 - -.

,!__ 37 3 .5 .

0O .2 .1 - f _. _ . 0 L

Figure 33. Sphere Inertia and Volume Characteristics
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3.-.2.3 rone

I ' I''41

Figure 5.. Cone Nor-enclaLure

For th~e cont4cal configuration shown in kag. 3ha, the motoent ofInertia about the pitch (or raw) axis Is found to be

2(Y ++ j"( = ~' (139)
_ i3- 7 ,• I

where t.he r-- Of thC skirL is, as before, n1gVYc3ed. Lakewise, for ahomogeneous payload,

4V'4,) (140o)

24.1
• "w~ ~i-/ Y"
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Fucthemot, it is easy to show 4hat

- D!

which leads to

V\= 4- - ••('n

Following the procedure used for the cylinder and sphe.o, Eqs. (73),
(139), and (14O) may be substituted into Eq. (124); i.e.,

+• r- -("#'• .ý . l , j d(,40 - (Jm2)

The question now becomes one of determining the optimum cone angle
which renders Eq. (Jh2) maximum for a given volume ratio. The temperature-
aependent term in Eq. (142) obviousl]y complicates the maximization process.
As may b seen in Fi?. 25, however, this term is -s1al when compared with
the fir6t Lerm, and consuquenQly, contributes very little in the aeter-
ni-naticn of on cpti;rm cone angle. Then, by neglecting the temperature
term and differentiating Eq. (142) with respect to ' , and setting equal
to zero yields,

whlch is independent of volume ratio. The substitution of Eq. (113) into
Eq. (ih4) gives the maximum (nearly) value of rm!-", ; i.e.,



Using Fig. 2 for a representative value of (Is.) f7i. , •q. (v-4)
reduces to

Furtheno•oe, the optimum cone angle, Eq. (113), may b, s-,ibiAtuted in
Eq. (lTh) to give

r- '/ (1.6)

uhlch is po•itive x-,d stau:.tzin. The foregoing results are suwearized
in Table 3 and Figs. 35 th-ough 33 for volume ratior of 1/4. 1/2, 3A
and I and for the case of rn/y-= kz s-ui'tý.

Table 3. Cone Summary

"H / -r1YT 4. 1R, I( r A./ • ,, (N Na) J ,,.,, (r w % 9 , M

1/4 35.30 0.4s73 j 75.5 95.2 96  0.333

V/2 3 1 29.0 '6L•5 1_6_ 0333

3/ls 35-30 0.681 15.25 19.2 19h, 0. 33

1' .621 J 0.750 8__95 1.1.3 1lt 0.333j

S.1 .2.s C ,arlson of Basic Body Shapes

Now that the stability parameters of three basic satellite shapes
have been calculated, It is desirable to analyse the advantages and dis-
advantages of each configuraticn from the point-of-vie'i of maximi-.2ng
stability for a specifi-d payload condition. The principlf used in tlhe
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preceding sucticns us to optilnlle 1I while hold:ing the payload volume
(or mass) constant, and then observe the variation of this maximum as the
center of rms and payload weight of each configuratlnn are varied. In
otner words, the question may be asked, 'Which ccrf:"guration has the most
aerodynaric stability for a given payload weight and center of mass?'
This form of ontimizatior, however, does not completely solve the problem"in that maximum r for a specified payloal voluae (or mass) and center of
ra•s also spesifies tne diameter of the satellite. Consequently, the
preferred configuration from a stability viewpoint nay have a prohibi-
tively large diameter.

The results of the stability analyses of the three basic body
shapes are shown plotted in Figs. 35 through 38 for the four volume
ratios. Since fully loaded homogeneous cylinders and sphere are neutrally
stable only the cone appears in Fig. 38 for rlvj = 1 a - Also shown are
integer values of satellite diameter alung each maximum line. In
Figs. 36 and 37, values of r for constant diameter are shown to illus-
trate the deviation from the optimum P . These curves clearly shuw the
difference between maximum r for constant dianeter and maximum P for
constant mass (except for sphere). It may be seen from Figs. 35, 36
and 37 that the core has the most aerodnamic stability for a given pay-
load weight, while the sphere has the least or nearly the least. The
cone, however, also has the largest diameter for a given payload weight.
For example, consider iT-/rT = 's and a weight of 300 lbs. (Fig. 36).
The optimum cone is about 6 feet in dianetor while the cylinder is
only 3 ft. The sphere, which has the least stability, requires a I ft.
diameter.

Now suppose there is a requirement that the satellite be no
larger than 3 ft. in diameter. Then at these conditions I /W= Se0 lbs
ý--rf m 1/11 D = 3 4.) the cylinder now appears the most stable. in fact,

the 2 ft. cylinder us better than the 3 ft. cone. At *r1rT=I/4 and
W = 300 lbs. (Fag. 37) the optimum cone has a diameter near 5 ft., while
the cylinder is ,tlll± :eax 3 ft. The sphere, which is slightly more
stable than the cylinder for t.ia volume ratio, is about 3-1/2 ft. in
dis=etor. If a 3 ft. minimum diameter must be held for the rl-er=S1°
case, however, the cone has the 'ost stability. If the length of the
satellite is no problem, this examole may be carried still further. That
"is, fer riv;-CT 14- (Fig. 35) tha 300 lb. payload may be carried by a
cylindrical satellite of less than 3 ft diameter. Furthermore, the value
of P for this case is considerably higher, as expected, than for the
other cases with higher volume ratios.

A few words are approp, ia~e aiout the combineý stability due to
aerodynamic and gravitational effects; more specifically, the quantities
0',? and 3M . because of the basic difference between ', and SM ,

a combination of these parameters is impractical to optimize analytically.
Wp , ht.;ever, is a function of r and the orbit conditions, and there-

fore, naxismam r naximizes 6', for a given orbit. Furthermore, it is
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desirable to keep M pcsitjvw (low fineness ra&tio) to augsent the aero-dynamic ntabali-,y. In the exam les above, or i. Figs. 35, 36 and 37,
both the sohere and optaraso tore hene positive v.alues of rtl , while forthe optjmn cylaner, M -s near zero or negat2ve. Consequently, beforeone stieec's a satellite shape based on maxzimu aerodynamic stability, theeffects of gravstaticnal torques s!'ould be corsidered. As shown before,tha balance between aerodynamic and Rravitational effects depends on theorbit zonaltlons as well as the satellite shape, and that maximum aero-dynamic stability certainly does not recessarily prevent unstable motionsat all near-Earth orbit conditions. These latter observations areparticularly true at higher altitudes where the values of (?i$ msy beconesmall, owing to the decreased atmospheric density.
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3.4.3 Co0-p)ex Body Shapes

U. .3.1 fower Law Bodk

Following the analyses of prev% or.s body shapes, the static
staoil•ty pararoeter rm/v-'/3 as well as r and V will be exainned for
the pooer law body. As before, the body will be asso.ed conposed of a
"nollow, .rassleos sklrt with a homogeneous payload as shown in Fig. 39.

?arurc ?9. Power Law Boty Nomenclature

Tie no-.en's or znert:a of a power law body may be determined as

8 (4n+l) (Vh7)

- A-- t (r3X" +1)'I + 4 ) Z

and tre pertinent geometric relationships are



" 2n- ~

.hroxinate pit-h-ng 'omeat slope, Ex!. (161, in vhich thet-.-perturc denenczt tcr• is negle:ted, the aeodynamit stab,.Ixty
parampter fr jr[.'3 in terms of volume and nass jarameters is

+ 4 Inl

Thp optiram fireness ratio for maxirmum stability for a given payloadvohlue or mass may be found by differentiating Eq. (Mz:9) with respect to
1L anrd setting equal to zero. This operation yIclds

T. -I (-" 4n+ IN (150)



and "htr. this eqcation is s'bstituted iito the last of Eqs. (.4.7), the
inertia parameter M becenes

which is independent of body curvature and volume ratio.

Subrt'litung Eq. (150) into Eq. (149) gives the approximate
MAxteu,' values of In/r ! for i ve,, pvlod volume or mass. Plots of
Eq. (019), using Eqs. (I148), are shown in Fig. IO. It may be seen that
the value of the exponent has little effect on maximum stability for gi-en
volume ratio. It should be remembered, h•wever, thit al-though the curves
in Fig. hO may oe extrapolated to nzo (cylinder), they become invalid
at, r.=o ; i.e., ET. (1O) applies only for oc-. d j . The exact
cylinder values for (Prm/-rws) ., are shown on the ordinate. The
difference between the extrapolated values and exact cyliror values is
due to a dascont-nuous shift of force center as a decreasing (1n-o)
power law bocy suddenly becomes a flat-faced cylinder. Also shown are
the more accurate values of Z(rnqrvt ,. for the rt z i (cone) and
nz 'Pa bodies; i.e., including the temperature term in the solution of

Pz. (75).

It also appears from Fig. 4O that the vahue of t. whicn gives
axi•m% .Mrml-,"$ is something greater than unity. Since n greater than

unity represents a body with a concave surface, these configurations
cannot lonýicaily bp treated using conventic-al free-molecule theory. That
is, the basic assumpticn oZ free-molecule theory, as apulied to gaslnamic
calculations, is that the incident momentum flux is not disturbed by the
presence of the body. Regardless of this difficulty, hrwever, the"flatness" of t~he =ar-cez In FiF. 1.O indiCtcate that the .t.-'- boý_•
protibly does not have much more stability than the cone (C n z) .

Table 4 shows the various maximum stability parameters along
with (I/D)oPr , and X,./. as calculated from Eqs. (W), (1I9) and
(!50). W is the sea level weight, mi-" = '/t slut/ftv , and r is in
ft/slug. From Eq. (151) the inertia va-ameter 14 is approximately 1/3
for all power law bodies.



Til l. ?o,.cr Law Body Sumia-ry

rfIi

1.17.
L32 .3 59.0 744 5

L31l -_7__ .L95 13.06 6bS 16

.i 5 8. i .60 7.77801 9 I

1/ 6 33i66.1T 83.3 5422
1 / 2 I .72...8 . ..1/ 78 .4171 26.2 33.0 'h

A.659 ' .57 , 13-9 17.5 7

1 .612 .667 8.26 10o. 1051

/4 hC 70.2 88.5 831

1/2 .70lU .545.3~ 357
31 "-- - i i • o.

3/i .675 .63,6 Th5 1 51.2 181,

S.6-,6 .71h 8.51 10.7

1/h .7 a7 .. 73 73.0 92.

1/2 .737J 2. 35.4 8~

rf 'IlA .707 61 14.6,5 1-8. 5 18

.707 , .750 I .66 10.9 i-c

it may be not.ced +'st t+e !aLues for v -- 1. (cone) -n Table
are sl:ghtly ('-li4) less -han the cone values shown in Section 3.4.2.3.
Thgs nifference is again due to the negligence of the temperature depen-
dent term in Eq. (75) for L,ýC
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3.L.3.2 Truncated Cone

gp- D

'I Ii
II

~PK

Figure hl. Truncated Cone Nonrnclature

For -he case of a "loaded" truncated cone, thF pitch and roll
mornentz of inertia about the center of mass are functions of the diameter
ratio, .. as well as .he payload length ratio, 1 . Consequently it ;s
not difficult to show that

1 0=

(152)

1A=



where

01, (1%53)

and where

~ 1 (154)

Likewise, the other geometrical properties may be exp1ressed as

r ,,. +, -.1 ,_)~~~~ 3,1M " t• , -+ +

T D

The first of Eqs. (156) ray be solved for i •n term. of and the
volume ratio; i.e.,

L
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Eqs. (154) ?nd (157) any be used, if decired, for rewriting the
equat-crs for '- and T in termn of S , PIP , and .,'- . The
resulting expressionE, however, are unwieldy for rapid numerical calcu-
lations. Therefore, the stability parateter r' , as defined before, will
now be written using only Eqs. (80), (15?) and (156). The resulting
combination y-selds

PT~ ~ ~~~ MC: + ,, 7 ld

For given volume ard dianeter ratios, the approximate optimum fineness
ratio. tID , which gives max-mum stability, may be found by different:-
ating Eq. (150) with respect to 1ID . settin P enal to zero, and
solving for . . The resulting expression is

(9(D) = 1I,_
" i z 1; (159)

Furthermore, Eq. k159) combines with the last of Eqs. (152) to give the
optimum value of the inertia parameter M ; i.e.,

M s 14 (160)

which is the sane as for pointed cones and power law bodies. The maximum
value of Insr -V3 may now be found by substituting Eq. (159) into
Eq. (158). An =entioned a;.Wve, C , r , e..IJ. . and 't are. only
functions ol diameter ratio j and volume ratio ir'Vv ; and hence, the
maxinum Fmin/-V, depends only on these ratios.

Fig. L2 presents plots of Eq. (158) using Eq. (159) for various
values of the volume ratio. As in the cane of power-law bodies, the
curves arc not extended to the cylinder abscissa (& = 10) since the
equations ior Cwe, used herein are invalid jfor cyr -ders. The exact
cylinder values for (P m10") m&-A however, are sho.. on the ordirate.
Moreover, representative values of the more exact (f'm-I-rm.• are also
shown usipeg Cw.z from Eq. (79) with '_:Z I and (i/7.)IrT. L E .O04
from Fig. 2. It may be seen that the approximation of Eq. (80) is in very
little error. It also aopears from Fig. 42 that maximum 11 /10-'•
occu s for configurations with non-zero diameter ratios, which is, in .act,
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Sz-gnificant and useful developm.ent. Then for a specified payload volune
c.- nass requore.'It, the pointed, conical satellite loes not represent the
re~st stable configuraticn as originally suspected. The blunted cone also
represents a more useful snape Irom the viewpoint of re-entry, payload

~a~ro~;itg a zurfl azniza ubign.

The results of the stability analysis of the truncated cone are
smmrxzed in Table 5. Here again, the payload density is taken as 1/2
slug/ft.

Table 5. Truncated Cone Summary

.707 1 .73 73.0__ 92.0 930__

V o /2 .707 .595 98.1 35' 35h58
18. 1- _____ _ 7____

3/uL .707 .581 2h4.65 185 17

.707 1 .750 8.66 10.9 n10

1/li .660 .338 71.i, 90.0 , 9

1/2 .6CO uuu 28.8 36.3 367

3/4 :;76 -5901 1.8 18.65 189

1r l .568 .673 8.69 10.95 1 Ill1

I/b .952 .222 69.2 87.2 t 882

1/2 .670 .380 27.0 34.0 344
1/2 --- 18.3

3/4 1.550 .502• 1.5 7.0 ____

1 1 .528 .60 i i8 i 10.6 107

1/b 1..160__ 57.0 1 71. I 726

3 1/.12 .89o .302 23.6 29.7 I 301

3/4 .665 4!.10 .12.95 16.Y 165"

i .'5 .5'' 76 I _____ f7-



1(5)

It should be re-rpassized that the pointed cone values
are slight]y less than the cone vanes in Table 5 due to the oamission of
the tenoerature tenr in Eq. (19) for C, .

Before concluding this section it should be noted that there is
a ,c4.€.. ., . . th. results of the power law bod1 and the
t.-.ncated cons. In part•cular if 3 is replaced by i -n ( n equals
exponent), the first two terr of Taylor eypansions of the body profiles
about the point x/I = ± are identical. This similarity may be noted by
co paring the values of (rml-v-Ys) ma for a given r/•v-T in Figs. 1,0
and h2.
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3.h. 3.3 Hemisphere-Cylinder

Figure 43. Hemisphere-Cylinder Ncmenclature

As in the problem of determining the pitching moment slope, the
calruletion of the inertia c-nd geoaetrical charazteristics of the hex4i-
sphere-cýtlindpr is considerably more complicated than for the basic
shapes. The parareters shown below are written for the two conditions of
tne payload fineness ratio e great-r than and less than 1/2. Since the
skirt is assumed nassless, the sphere eqtations of Section 3.4.2.2 may be
utilized for ESIjg . Conseqcruntly, it is not difficult to snow that

:- . . . . .- ,, . . . .. '- • !! "" -

!/I
(7, g 10 1

D' +904GIL-4400+940C



103

and

MD 3e_ .2~ ~~~ (162)

"•hih =ay be combined to gave

M, 
+

(163)

The results of tn.- sphere analysis lead to

--p - ___

S- (16h)
,_C -: -

The to~al fineness ratio and payload volume nay also be writ.ten in tersM
of the payload fine-,ess ratio; i.e.,



lohz1/2

... _ • - ,-
D F

Y7~ (165)

and

(66)

The stability paramater F and its altcrnantr forms may now be formulated
using Lq. (S8) for (Cw. and the foregoing Eqs. (161), (16h) and (166).
If desired Eqs. (165) nay be solved for E _ in terms of t(P and -rt'V-T
and then substituted in the eqvatJons fo- I, K< ! D and Nr-. As in
the cases of the sphere and trncated cone, however, the resulting expres-
sions do not necessarily simpli y the problem. Conseqoently, Pe/•.y 3
is written here as,

F~ ~ 2 Z~a j(: ((-E) ~~z~er4 .Y-,",- LG•'- (_[ ]

-- = (167)

E -J , - -
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where X and Y -j'u defined by Eqs. (85). if S and ( V,.) fF[w7T
are representea cy ilc typical values in Fie. 2, thcn 7 and Y are
approxinately

"y ; 0 8o o0) + 1.193 (168)

where it is understood that VD is alays greater than 1/2. moreover,
it should be re-emphasized that F , in Eqs. (167), is a function of
24 and 'fr'., . For reference, the solutions (f Eqs. (165) are

+SOO[I3Wýtr f2 ! I/[
(l9))

Because of the obvious dtfficulties involved in differentiating
Eqs. (167) with respect to IO , se•tang equal ta :co. end solving fr
(AID)OVT , no attcnpt has been made -,o analytically determinp tne
maxtnun value of Pm,,,yr for hemisphere-c3ýxnders with total fineness
ratios greater than 1/2. The stability parameter r , however, may he
plotted against payload weight for constant values of y/fr, -drT and
either £I1 or D - Constant I(D) curves are presented in Figs. sh,
h5 and 46 for the usual wu-r = ',j Ileg f+ and ri-Cr equal 1/s, 1/2
and 3/i. The examples chosen are the liniting ease of IID•:Y. which
is a Iaemisphere, and I0 = S?4 which is equivalent to the enoplete
sphere with the seme payload volu-m-e ratio. Curves of constant diameter
(= 2 fe-e) are also shown in Firs. hh. 15, and 46 for the three -ol-ue
ratios. Since fIt varies along the constant diameter curves, a
graphical . l..t..... for =an m j. , and hence WO).pr , may be
possible. Such a solution is shown in Fig. 44 for /'Yt1/4. in which
the optimum fineness ratio appears to be near 1.5. The corresponding
optimms for the oter- vuluas r'atios, 1/2 and 3/4v are not apparent.

included in the comparisons of the hemisphere-cylinders are i e
basic sphere and optimn flat-faced cylJnder. Of the configurations
shown, it is clearly seen that the limiting case c. 'he hemisphere

V(ID. =Vz) is the most stable. This configuration, however, is probably
impractical since the diameter requivnrent, as noted in the figures, is
the largest. The optimum herisphere-cylinder (Fig. 44 only) is seen to
be only slightly better than the optinisi flat-faced cylinder. It is also



noted that the eqraivalent hemisphere-•eyJinder (lID
7 

saw- ag for sphere)
has a rYcn hl Aer value o I' than the corresponding sphere. This is
e.xpected, however, since the back surface of the sphere ccntributes
essentially nothing to the stability. Furthermore, it is evident that
the sprere with •-Y--r 1/4 (Fig. W1) and the henisphere with vY'fvrr 12.
(Fig. 45) have the sane stabilitv ( C j- the sane for both configura-
tions.)
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3.4.1.4 Cone-Cylinder

The cc-n-cyIlinder analysis will be l1m-ted to te case where the
cons in. completely filled with payload and the cylinder is empty. The
geo-.etry of this ccnfiguration is shown in Fig. h7.

-4 - -4 I D

Figure L7. Cine-Cylander Nomenclature

The principal mo,2int of inertia about the y axis is easily
found using, Eq. (139) of the cone analysis:

A[ý,D; +(ID(170)

and liklcwse I is evaluated as

Eqs. (3?0) and (171) co.bine to give

• --5 •)D (172)v.= IX., "-/•?



11i

"For the hr"m:geneous conical iaylcad saetched in Fig. 4j,

. 9 '(173)

Using the cone-cylinder C.( from Eq. (88) and the equations above,
Eq. (121) for r lrY3 may be expressed as

m =180pTIklr~y 
,r

"•"+> .(174z,

+Q ýY- i-'- Dr

i 9 IS•- D,

"-hcre J and JC are defined by Fqs. (89). The first of Eqs. (173), of
course, may be utilized to make Eq. (17h) independent of c.A"

As in the case of the hemisphere-ylix.,der, the smax zation of
Eq. (l14) by analytical methods is not practical, It . pcsible, low•ver,
Splot p versus payload weitht (say) for constant val~es of m•PV-,'v"
and D . The optiram fineness ratio may be found by drawing a constant
11D line tangent to the constant diamter curve. The optimamm VD line
then rep-ec-c'-ý the cje-cylinder canfig•ration which has the ma•i:,m4 r
for a specilied payload weight and volume ratio. This graphical optimiza-
tion procedure is illu•trated in nigs. b8, 49 and 50 for a payload densit,



of' 1/2 sl2agt
3 ; volume ratios of i/4, 1/2 and 3/L; and a &dreter of

2 feet. Also plottea in these figure' are tUe equivalent curves for the
crtirn- cone and the optisee cylinder. It onould be rememberei that the

cone-cvlindcr configuration used in these comparisons is composed of a

fully loadee cone and a massless, cylindrical skirt. Vhen r'lqrr. I/+,
it is seen from Fit. 4B that the optimma cone-cylinder has th.e loweet

value of r for a &i7en weight; ho•reve;, when "€•-fT - Vz or 5/4. the

opt.Mums cene-cylirnder has a higher value of t' thani the optia cyinder.

It ac -- so seen from there figures that for a given diameter and volume

ratio, there .o a range of sea-level heighos for i.hieh the cone-cylinder

has the highest value of r of the three configurations shown. For

"w0r • 1 o , the cone and cone-cylinder are obviously coincident.
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b. D!tANIC STABIL1VY ANALYEIS

h.l General Cornsiderations

In Velun- I of tnis series of reports, it is argued that the aero-
ciam.iic dumping-in-pitch of near-Earth satellires produces, for all
practical purposes, a negligible effect on the satellite's oscillatory
motion. Even if the da =In.-In-pitch derivative Cmv is considerably
larger than its static counterpart Crm. , the non-dimensional pitch rate
i F/Z V. , which z-,!ltiplies Cmrb,, is an extremely small quantity when

compared with the expected angle of attack. This is more clearly illus-
trated by a sirple c or i f the dancpIz e rg cur a c t -4th the
static moment pareseter trp . Accordingly, from Volume I, in which the
satellite orientation angles and rates are expressed in terms of the
orbit parameters,

P.rn, J

where
S- __ _ _[ t,, ],

15J (176)

and, frec Eq. !1221,

~~vs F -ce(~ (122)2 l

where

r Ci [ (123)

By inspection of Eqs. (175) and (122), it -s seen that if rf, and r "e
of the same order (as will be shown), than 2p* and G'g;' differ in magni-
tude by at least the order of Mlrp ; i.e., the rat.o of the satellite
reference dimensicn to the perigee radius, which for , -tsonable satelltes
(witn dimensions of at most 102 Pt.) is of order 10-5, a vtr" snall number.

Although the resultq of uie numerical analysis in Volume I adequately
show the -fsi nifi cnc- 'f th-r" c damp.ng insafar as the satel-
lite's agvlar notion is L.Teur-d, it is tue purpose of this section, in



part, to 3ustify the original hypothesis that i. is not significantly
larger than [" . Although this :etg at A ci A first Cnan super-
flulus, there as applications in which aerotyntic damping-rn-pitch may
conceivably be a uselul n1ipnt; e.g., the design of a sensitive active
etabilization system. Accordirnly, the analyses to follow investigate
the variations of the donng-in-pitch deri-.tive, Cm4ý , throughoat the
acute angle of attack range for the three basic body shapes! the cylinder,
shepre and cone. The purpose of the angle of attack variation is to
determine if there are any large discrepanose. czstwecI. Cm. at angle of
attack mnd the uua- definition of Ck,.r ; i.e., in Eq. (17o), . is
detinea as, for siirn- it ity,

(177)

t.2 Da.ping-in-Pitch of Basic Bo,,y Shapes

h.2.1 Introduction

De to the complicated nature of the integrals, the damping-in-
pitch derivative Cmt, is c .s.ulated using the approximate theory of
Ref. 4. Consequently, it msy be shown that .,e evaluation of Cm as

e. approaches zero incurs very little error since for diffuse reflec-
ticn, the approximate theory yields a linear variation of C._ with aý.
Zn addition, the various Pa, 's are calculated using optimum bocy
geometry as determined from the static stability analyses. Due to the
generally second-order importance of aerodynamic damping as pertaining to
tnis study, the optimization of body geometry for maximum aerodynamic
dagping does not seem Justified.

Diffuse reflection la- q--rJ) is assumed, and as before, the
reference area and length are WDt/4  and D re.pcetively.

41.2.2 Clno

The danping-in-pitch derivative for a cylinder, without end effects
aaa for diffuse reflection, may be evaluated using the apprerimate fre. -
molecule flow theory (Ref. 4 or 6). Then, from Eq. (27),

~ (1? ~ + Z~IR 3~f3(X. 4 l (178)
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whe-v the cylirder ;:eometry is de ned In Fig. 31. Likewise, the erntrxcu-
Lic4, of -.he CI.t-faced nose jorticn rmay be ro-na as

-Z-4 W , I 'Y7;
D ), fDTj wo -(1

-ince tnnrc is ssstned to be no in'.eracticn between the two surfaces,
Bos. (178) and (179) may be aeded to ?ive

'~'4, ~ ) L ~ I 3I T -2 +
- - ' F- "'+ 4( 't (9 o

Eq. (180) is presented for the simple -ase of Tw =T.- n Figs. 5!, 52
and 53 for cylbnder fineness ratios of 1: 2 and 5 respectively. The
associated temperature correction term is seen to be, from Eq. (180),,

or

which is independent of angle of attack, and is shown in Fig. 54 fur a
wide range )f temperature ratios.

Unlike the case or static pitching moment . npe, the noa-linear
variation of Cwy with center of mass location is clearly evident. It
nay also be notes from F1gs. v 1, 52 and 53 that C. - becomes more
negative (more damping) as angle of attack initially increases.



?or purpoces of ev.aluating .Y of the cylaner, Eq. (180) for the
rero angle of attack case -eauces L,2

TtI ( 3•

TIe darping-in-pitch parameter, r ,y low he for•ed uscng Eq. (182)
and Eq. (125) for the pitch nor.cnt of inertia. Hence,

I (183)

or for the case of an off-center, homogeneous payload, Eq. (183) may be
written in tends of payload volume ratio anc weight using Eq. (127) and
the assurp tion that mpr,- 1/2 ~I 7 ff7 ; I.E..

L3- Ti- kJL ' DI 'i T( iL

1
1 x real, .- d that the "hhadow" area on a cylinder maV have a signifi-

cant contributian to Cý$ for 0( near zero. Por the practical case of
low 1(D and hign " , however, this contribution does not alter
Eq. (182) appreciazOy.
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For a sarple calculation, let t'fIl eqaal 1/2 and -3/4, and lee the
respective fineness raios be 1.80 mau 1.03, as tanmn from fable 1. Then
Eq- (181t) becontes for (1/5.)(if. .C6

101.

(185)

Plots of Eqs. (3855 are p'eserted in Figs. 61 and 62 alang -ith sl•ilar
saclat..vs Of ;, for ccc sphere and cone. Dtcr-csxcn if these figures
is reserved for Section h.2.5.

4.2.3 Sphere

Thc appr-Otiate da•ping-an-pitch derivative of a sphere sisy be
found by integrating Eq. (27) over the front (or wxndward) hemisphere.
For diffuse reflection, the result is readily found to be

c.. - j•_4I .!(i--a) . -' 2I I I _ 2

Eq. (186) is shown in Fig. 55 for T., T. . The normialized tenperature
correction term, wnich is

(187)

is plotted in Fig. 56. Unlike the cylinder, the sphere damping is seen
to decrusse with increasing angle of attack.

Evaluating iq. (186) at zero angle ei attack loads to the uasual
definition of C,.

C.,° 2 - a- All ZX 1 2-) - Y(I - Z (188)
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For -I, case of - "',adia" ,pheze with a homogeneois py!,a,,, thý :rbsti-
tution of Eq. (1.98) ani Fq. (13," mmntr Eu. (176 i results an so expression
lor the sphere -; .e.,

2T + l- "I

Th netx : ass may oe written in terms of depth ralio E , and the
diamter may be expressed as a function of pa'-oy , wsiiitt Zo, a specified
oayload density. Then by using Eqb. (13ih and (135) and ý,;•v-
V2Sjvvj+I 'Eq. (189) becoi.es

. .. r• I-r- ,• ... • szj
n . o .r L2S.•0 yT- ' (190)

where E- is a function of 1tne payload vclume ratio froa the first of
Eqs. (135) or F:g. 33. For the sample volh-e ratios of 1/2 and 3/h, tne
sphere r, is approximately

k1 T (191)L -'W

wher• ('/S.) ITwfT 0  is :.eeen to be .065. The foregoing expressions
for j are plotted in Figs. 61 and 62. A discussion of tnese results
i2 -, Section L.2.5.

,.2.L Cone

Following the example of cone :rtatic pit c..ing -q, -nt, toe dampin,~
in-pitch derivative C.,., nay be estimxaed Lsing the same arproximate
'hieo-ry. Vhen, for diffu•za reflection, the ;Ltegrr-icn of -4. (27), yields



i J

-4x (19?)

wh1ere 4 ,as before, antl

a l F- S1' 01

(13)

ConreTiS~tlY S'r C 6'ý Eq. t192) sixsplift-C to

- -- 1 ~ 2t5. oS ý

3 :Ft'lj2SI4 T

and for a( dentica11Y equal to zero,
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42C

[7 .J -) (135)

Whe to the assurptton,•n i'herent in the apprnxtigate theory, a plotor Fq. (19,) for tho "ntre angle of attack range wall show a sharp Broajst toe rure" of C•. v--sus 'c at tie points -.hore c< S * Thoartreaks are due to t:e rather abript variatic,, a both Y5
(C' an=d pt

(q)as 4< beees slIh&.• " z grear týhat ; i.e., as t?.e ehaov area becot-frn1t.t Although the assusnraion of nep1 e .. adew co,.t,±oution 3$kro.7, to be fa~rly accurate for the calculation of cone lift, drag tidstatic pltching norent, an attcmpt is %aoe nereln to auoth the variationof with -' by considerang the effecto of the anadow. This refine-n.no.ih ascomplished by first issuning an average normal component, of-oMccu2ar speed ratio over the rhadow: and then substituting this quantity(assumed constant) into the exoit e-pressbon for- 4,, (derivative of thethard of Eqs. 20); and finally Integrating over the shadow portion. Therecultang ancrenental Ch, due to the shadcw~' then be added toEq. (152) for the ranre -c ihuteaoatote euti
written as

tJrf .Jrft, , -- • , VLo A-

- i
+~[o Žt K -I'

i-rt 5N) + 5";) -100 7i; -S



l2lh

where

=sw -_',.,...

.2\

(197)

I - P(4)

:n Eq. (197), S•i is expressed by Eq. (22), )[iW oy Eq. (4i) and
p(4) by Eq. (U2). Also, the shadow angle k. is equal to
iep'<).

The final cone Cmv equations - Fq. (194) for o( S 5 and
Eq. (196) for e - % - -re plntted in F- r. 57, 58 e-nd 59 for cone
angles c.^ 15", 30° and L50 respectively. As before, -rw is set equal
to T- for slmplicity. Fig. 60 presen-.s the correspond:nF variation
of &Crm (normrlizcd) "tne to T. different fron T_ . 'he equations
uor these -rves are

(19h)" + " 2"

it may be seen in Figs. 57 through 60 that the breaks in the curves at"( = r are still evident, especly in F) C. 60, and for S -=-o in
Figs. 1:7 through 59. The use of the shadow corr-tien, howeser, defin-
itely :rproves the smootimess of the C- curves at the lower speed
ratios.
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New that Cwe has seen forMulated, the daxperg-xn-pitch paramet4er
rr ,may be written using Eq. (195) and Eq. (139). Accordingly, Be. (176)

becomes

151 D . W dI~lZ

Ucang the op~t~nu cone angle, CSae -- lIT . from Section 3.h.2.3, and
the relation, ocIL = (.'3I+ •')trr7  3 , Eq. (199) .say be expressed in
t
erns cf the payload vcuome r,'tio. Hence,

"" 'T' • % I' S ••!
r~ ~~ 262 ( RTW_ tL

".here lair, s'AI f3 . For the present examples, the substitution
of +Iro = p/l and 3/h nnto Eq. (200) yields

M _ _(200)
9211

"Plcts cf Eqs. (2ji) are shown in Figs. 61 and 62 along wath the corres-
ponding cylinder and sphere expressions.
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b.2-5 Cor.pa-son of Basic Hot'r Snapes

As noted prevsouslv, Figs. 61 and 62 present plots of the dyna'nc
s-.ahillty varameter r- versus satell1ite payloaa wuight for tbe special

- se hore the luvadtd oniurt"e ha-z payload volcite r7 U-atios cC 1/2
an,, "14". Thle P-yluad 2-s asswzed hozogeneous with a mass density of
112 slvg/sft

3
. The fjgsxes clearly indicate, as expected, that the cone

r,az miare aercc~yrar'" '"--ýp bh=, ClthtI cie cylinder or sphere; at least
for the optLine rgett'etrv (for tantrmum r ) assunmed for the ce cxarsples.
By aconparang Figs. 61 and 62 with Figs. 36 and 37, it is also noticed, as
hypothesized orevie-isly. that r~v is of the sane orcar of sagn,-tude as
the static parannter r , especially at the lower hejg~hts. Consequently,
At rav b.- eoncl,,ded that, rinc fc is not sir-:fncatly larger than r
(say by a factor of 10"), the assertion in Volune I of essen~tially neoli-
gilue aerodynamic damppang may be rerarded as fully substanttated.
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CCIUCLUSIONS

Mecent dev-lopr.ents in the application of free-mclecule theory (Ref. 6)
have pernutted a rather detaile:d aerodynamic analysis of near-Earth satel-
lites. This theory, although restricted to convex b-dy -hapes, has been
utilized to yield rapid and nearly exact aerodynamic force and momert calcu-
lation_- for most satellite configurataons and orbit conditions. Moreover,
tnere are no restrictions as to the variance of either the tangential or
nor.al u:zuantum exchange coefficients, T and T' . As shown, the surfaco
temperiture, Tw , may also be treated as a variable over the body. In view
uf the general nature of this approximate theory, numerous calculation.
(wntic• nav be too detailed for some readers) and chartz have oeen presented
as exarples of the applicability of the theory. Although the foregoing
s-udy was intended to "stand alone", tne primary purpose of tins report was
to aunment the conclusions of Volune I of this series of reports. That is,
anrodvnanic stabilization and orientation of near-Earth sateliites is
.easibal as long as proper (but not ,unreasorable) aerodynamic design and
internal mass distribution conditions are met.

A supplemental but significant part of the study~t was concerned with
estimating drag coefficient,, of siunle configurations. ine calculations

nnwed that :f the drag coefficients are based on the projected frontal
area (quite often a random variation) of the satellite, a unified drag
coefficient variation could be approxrmat.-d fzr va•st, I0- finenes.s ratio
(order of one) confieurations. For long cylirocers or very sharp mones,
however, the quasi-unizorm drag variation with molecular speed ratio could
be in considerable error.

Since the primary purpose of this study was to investigate the effcrts
of a-r•-wd •rvic torqves, subsequent portions of this volume were concerned
with methods for estimating aerodynamic static and dynamic pitching moment
coefficients as well as the incorporation of these coefficipnts in the
design of practical satellite configurations. Although the calculatilon of
aerodna-mic roefficients fn frc-molecule ýIow are inherently different frem
that in continuum flow, the conventional "airplane" definitions of .. .
C a and C,, were conveniently utilized throughout this volume. Expras-
sions for the stiatic pitching mom'ent coefficient, Cnn , were presented for
th" three basic cylindrical, spherical and c..t..l body shapes. In adaition,
charts of' C_. versus angie of attack were presented for these shames, whit
may be useful in other free-molecule design studies not related to this
report. These charts werc alec u"sed to substantiatc thr linear C, approyi-
mathn for -. 11 angle of attack range-; a basic and coratt assumption.
Consequently, expressions for the intial pitching moment slope, Cr,c , were
fornulated for the basic bocy shapes, and suosequently for the more complex
shapes of the power law body, the truncated cone, the hemisphere-sylinder,
and the cone-cylinder. For simplicity purposes, the usual assumption of
diffuse molcuL!ar reflection wan utilized for these Cý,, calculations.



Since the free-solecule theory used in this study was not restricted
to Spectfic values of thte zerlection coefficients, cr and a' , and tne
surface te_ eratures, Tw ; examples were presented whion illustrated the
effects of noth =nafon. and non-uniform vaiiations of T , r' and Tý -

it was shown that the surface temperature level ss we!! as longtu.dinal
and naal vsrintions of temperature have little effect on stattc stability
or orientation, at least for the simple configurations considered. On the
other hand. the magnitude of the reflection coefficients was shown to
affect the pilthing moment slope by varying amounts, depending on the
cýrrtlguration and t.h relative dominance between pressure and shear. kor
nearly diffuse molecule-surface interactions ( T and 0' between 0.9

A:d to), however, the example pitching moment slopes were zhown to be
only slightly different from completely diffuse valuts.

Based upon the satellite motion analy3as in Volume i. tht aerodynamic
stabillty parameter r was investigated for the three basic body shapes
as ;c1l am the mere complex cornfigurations. Since r was defined as
being the pitching moment slope, times its reference dimensions, divided
by the pitching moment of inertia, the maxmization of P established
certain optimum body geometry for each set of constraints. The satellite
models selected for the investigations had homogeneous payloads concen-
trated in the forward portion with rigid, buc. massless, shells cr sk•-ts
comprising the aft portions. The skirts, which could logically be fairings
between the payload and booster, augmented toe aerodynamic stability with-
out affecting the pitching moment of inertia. Iecordingly, the optimiza-
tion process tended to maximize the aerodynamic contribution while"iýnimizing the mass coitrobution. For a specified payload volume to total
satellite volume ratio and a specified payload mass density, the maximiza-
tion of r c.nlt in onpt

4
-n--- confi--rar-ons which had rather low (and

practical) lergth to diameter ratios. On this basia, it was shown that
the point-d core, the power law body, and the truncated cone were generally
the most stable for a gt*-en payload weight. For other constraints, however,
such as a specified naximja diameter, the cylinder and the cone-cylinder
showdet prvor;e :u b?-ng "safu! and practical aerodynamic shoe:. The'
sphere with its impractical s,,ell was, as expected, the poorest configura-
tion. The optimun sphere-capped cylinder, however, was shorn to have
nearly the same sta*1c stability as the optimum flat-faced cylinder.

Since the approximate free-molecule theory used in this study per=ittad
rapid calculations of the aerodynamic damping-in-pitch derivative, and s1 _e
pitch damning was necessarily considered in the satellite motion analysis
(Volu•s 1'), the aerody.amic investigation "ms concludr' with a brief study
of the dam.ing-in-pitch derivative, Csw , and its cou. f.eprt, rb. ,or
the besic cylinder, aphoraandcone�� configurations. As in the case of
static pitching moment, C. , design charts of CrA, were presented for
the baic body shapes. Since it was argued in Volum-e I that aerocnmamic
danpitig is negligible if r-. is of the same order of magnitude as r ,
.- n-1 eel-et-rns of r-. -are made for the cone, sphere and cylinder

"lsind optim,. satt.c stahliity gecmetry (for maximum r i. The insignifi-
cance of aerodyn;sdc damping, as pertaining to this study, was verified.

-- I



Althousg. this study has provided a fourndation for satallite anro-
dyna•ic desigr, several Important and unansw, ree questtons remain. For
exanDle, the lack o' a general, three-dimensinmal tneory for predirlng
the effects of nolecular reflections betw(en sarfaces has prevented tt.u
aerodynamic analysis of concave bodies; a.g., configurations with fla-red
-!irta or inflatable, spheri.al stabilirers. T.h.is lack of a usable
surface-surfac3 interaction theory has also excluded investigations of
complex, 'winged" satellite configurations, especially froe the ,iewpoint
of orientation and orbit control. in addition, aerodynamic analyses of
satellites and sacelloids in the near free-molecule or transitional
regime a-e easentially ncn-ncxitent. Consequently, it is= clear that the
practical applieations of rarefied gasdynraxcs have been only briefly
exploiteo. Even with ahe ecenst.. -analysis cont--.ned beren, the free-
-olecrole aerodynamic investigation of simple, convex body shapes is by
no means co=plete. For instance, the simplifying assutions of homo-geneous pavioads and massless skirts leave macn to be desired. Klee, no
attempt was made to analyticlly dterminde an optimua configuration, by
the methods of variationas calcodus techniques, which would provide an
absolute mayinus for the static stability parameter f' .

Insofar as passive aerodynamic stabilization and orientation of
near-Earth satellites has been found to be feasible, it is recommended
that concentrated effort be given to the advancement of applied rarefied
gasdtynamics in order to lay the fcianoatmons for acivo aernoynsamic
satellite control. It is realized, of course, that a conceptual under-
standing of basic gas kinetics is a prerequisite to the development of
a useful and accurate method of predictin& I.- density, aerodyzviu
characteristics. This also requires increased study of the molecule-
surface interaction phenomenon, especially at satellite energies.
Accordingly, numerous problems remain which both research and engineer
rmust solve if aerodynamic control and stability is to be incorporated in
sophisticated satellite systems.



SPPP•IN.h( A.

TiH EFPECT Ox' SOLAR RADISION PISSUSVE ON SATELLITE TORQUE

Due to tue (nearly) exponential aecrease of atmosphere density with
altitude, indicat-,ons are that the magnitude of satellite torques cue to
solar raddaticn prezsse may approach the magnitude of aerotnamir and
gravitational torques at altltid- ihea. $ msles. Tn olxte to estimate
tiese solar torqaes more preiiseiy, it rs recessarv to develop expressions
for photon pressure and shearong forces on a body s-urfase of -Inexal snape.
The qualitative analys,.s tL follow assures that the free-stream photon"-gas is anclogous to a un.Arecticial partirlr ficla. anr ttat the
photons have a mass density and travel with the speea if light. Azcord-
tn-ýny, 'h~s analogy permits utilization (out slight wr.tfacat=on; of trhe
fe e-molecule aeroetnanic expressions in Section 1.

The pressure xnd shcrharig stresses due to an oncoming photon stream
'ncxdent apc. a unit surfacc area may be respectively written as

= (A-1)

where s.. repiesents the free-stream radiation pressure (one-half of
the maximum measurable pressure) and where cw and Cr are the nurmal
and tangential csr..nents of the free-stream photon velcc,.ty c- . If
all the ancident photcn -ac -cfectcd L-m thc surface specularly, then
normal and tange.tial. foreco per in area dje tc the rebounding photons
a re

PrPL . 54.,~ u absorption, 1 (A-2)

,e = ' Ps = -C.T [pecular reflectionj

and hence, the total force c•popentns per unit a. ia become
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P = P, - - Cc•"
rP r

I t= "'f: -TrNn absorpton, (A-)
-specular reflectionj

ihich are analogous to the Newtonian equations used in aero±a-tics if
Pso, is replaced by the free-stream dynamic pressure. Eqs. (1-3),

--- , •e.±.r,±.y do nA rep:eset. the photon reflection Prceess exnsting
or. sost satellite materials. That is. (•) some of the photons are not
reflected but rmay he aacorbcd and transmitted through The materiel, and
(2) the reflected photons way not rcL-nd in a specular fashion. An
extrer•e of t•a latter is the case of completely diffuse reflection in
which there is no preferred direction for the rebounding pnotons. Then
if the actual reflection process is assumed to vary linearly between
specular and diffuse, £qs. (A-2) may be more correctly vritten as

Pr = 'j(-' tj 4xj
(A-b)

where the subscript d refers to ecmpletely diffuse reflection; the
reflect'iviLy A represents the percentage of incident photon- reflected;
und A s a m=as-ure of the diffusivity; i.e., X I is for completely

diffuse reflection wkilc A = 0 is for completely specular reflection.
Since there is no preferred i-nrect.on for diff,,se reflection, '• =a 0
Furthermore,

oos. (k.41), now becoc

PL

S(A-5)
T r =lt(-XT

and 'the total pressure and shearine stress may be written as

I
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? , PtPr L:

I t. -+ C 0.
1' = Pt"+Pr = [vI•- 4 ,,X 5t.Q c--Ž

For car.lstely zpccUar reflection, X= 0 , and Eqs. (A-6) oeca-'c

pt

Likewise, tor diffuse reflection, X= i , and

C ý (A-8)p C!+ Gr •
" ps c.,.

For the exaples to follod; i.e., the effec't of solar radiation
prossure on satellite *rrqnen, the specular equations. Bas. (A-7) will ic

assumed for simplicity.

•Wi4th the foregoing equations, the solar torque on a body of revolu-
tion may oe calculated using the la=t of Eqs. (20), which is rewritten
nere as,

LS -(j 1-41 rr+x-X. A (A-E

+ Ir r
+'r c. i "
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wnere the integratzcn -s ove, the sunny surface only and wnere cf'5  is th-
solar 'angle el atta,','. AisO, from ,q. (22).

C,3  zrcc4C~uS)

For the present stn@, it is of core interest to calci'-ete the initial
torque slope 'i.e., a eeasjre oi the stacility) ratner than tnc total
torque. Then by comparing tne solar torque slope with the aerodynqii and
gravitationai torque slop., the "homing' cnaracteristios of a satellite
nay oe evaluateS. S-nc- the cylindzr, sphere, and cone have been exten-
sively treated in the aerodynurnc erelyris, it is eonv ent to calculate
the soiar torque slopes for thbse bodies. Thus, the cylinde:. sphere and
cone cvaliattons of the derivative of Eq. %A-2) with rispect to c4 in
the inlet , -- i o are

(A-i0)

wacre cylinder nose effects are included and whpe- the specula phct-.
reflection expressions, Eas. (A-7), are used.

Thu correspo.ding aerodynamic torque slopes are, from Fqs. (&±,
(S2Y and (73),
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(A-Il)

ITO CO+ -,r-

where i is the free-Atream dymaruc pressure.

Fiinally, the grav2taticnal torque slopes mea" be foud from Appendi.x A
of Volume I. For a bcýu cf retrol.Aton, the initial torque sl.-.pe s

40 1 i~ i 0-),o

wnere

,I - product of Earto.s mass end un,-e..-ral P

eunstant 1-U x~~ iua 1U-' Le,/oc

r - distance from Earth's center to satell1teo mss center

- •nclinaticn of the satellite X ax-is to the local horizon.

lhý , of in: tLia of the cylinder, sphere ant zone hay, tcec deler-
mined in Section 1.4.2. Conseequntly, Eq. (A-12) becomes
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-I cre C- is trc cphcrc ;ylcad fineness ratio s-d a function of xý"[

As an exanple, Eqs. (A-I0),, '(A-li and (A-3131 are compared
Fips. A-l. A-2 and A-3 for the special case of

payload volumee, ýr - I0 ft)
payload voliese ratio, 'v"/'•r - 1/2
puy'-,ad density, .[v- -/29.

The optimum aerodynazic georetry from. Section 3.h.2 is selected for these
conditions. Also, a c-rcu!:L orbit is assumed so that 4_--. may be wrtten
".rn c-.s or a-tttuda ".Ref. 7). rhe reflectivity /t :s taken to be 0.5,
and tl'e free-strea'i solar pressure Pfs is nssumed constant ar,nd 'ooua,
to -0-1 lbs/ft. (an average of Refs. 3.4, 15 and 16), As before, Tw is
aasu:ee to be 550°1 a=4 h,-nce, Fig. 2 is applicable.

The curves in Figs. A-1, A-2 w.d A-3 clearly show, at least for these
smple fcnfigurations, that solar torques are small wmen compared with
aerodynamic torques for altitudes below 2 miillon feet (say). Moreover,
2f the aerodynamic and gravitational toroue slopes are ceotined ta e•usre
of (Qý* . ' en the importance o2 the granity gradient at the higher
altitud"es is clearly illustrated. That is, the cDhere and corq (Figs. A-2
mna n ) have stable gravitational txrque ýlopes 'at 9 z o , anI hence,
augent the aerodynar.sc stability. Accordingly, tho dominance of sular
torques is delayed zrtil higher altiuwdc. are reached. The opposite effect
is evident in the case of the eylio;der (big. A-I) which has an unstable
gravitational orq..c slope (for this example); i.e., the solar torque
bec,7.es dominant at a lower altitude due to the reduction of the combined
aerodynamic and gravitatioral stability.
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