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ABSTRACT

Aerodyramac drag a1 stab:laty coefficients of scveral
simple savelli‘e conf:gurations are caleulatea using an approxi-
mate, but nearly cract. free molccule thec,;. The moaess
examined are che cylirder sphere, poanted conc, truncated cone,
power }law tooy, hemisphere-cylinder and cone-cylinder. rrom the
viewpoini of waximmn aerodynamc effects., favo:able center-of-
mrss locations are oolained by concenmirating a horugreneous
payload Jorward of the center-of-volume. For calcula*ion pur-
poses, the aft portion of the models are assumed to be rig:d,
but massless, shells or skarte,

Basert upon the analys»s of satellite angular motion, the
zeroaynatic pitching morment slope is combivzed with the partching
rorent of inertia to form a stabilaty parareter which, when
Taximized, gescriles the optimun external peometrv ~° esch model
for a specxfied payload mass distrabution. The various octimum
confagurations are shown to have low fineness ratic: {order of
uvnity), thereuy permittang the gravitaticaal torque to augment
the asrowmaric torque. Among the coufiguritions analyzed, the
peinted and truncated conxcal bodies and th: power law bodues
are the most stable.

The aerodynam:c dasping-in-patch deravative :s also calcu-
latea for the cylander, sphere and cone, Aerodynamic damping,

however, hacs an ansignificant coniribution to the satellite's
angular motion.

PUSLICATICH REVIEW

TL > report has veen reviewed and 1S appreved.

FO2 THE COMNANDER:

. . -2
Holtlarsr & D ecllor)
WILLLAM C. NYEISEN/
Colonel, USAC
Chief, Flight Ovnamics Laboratory
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INTROVCTION

Alt*oaph Jhe effects of rarefied aerodynamic forces on satellite
performarce (e.r., orbit decay) have, by necescity, been extensavely
considered, there has bzen litt_e concera over the uiilization of these
forees for passave attitude control and stability of satellite vehicles.
This rather mxld anterest app-ars Yo have been primarily due to the
unzertainty of the characteristics of the upper atnosphere {say in excess
of 100 miles altitude) as well as to the reluctance to accept relatively
ungroven (or unknown) methods of estimating rarefied aerodynamic charac-
teristics. With improved and more frequent experimental investigationms,
hewever, the physics of the upper atmosphere 1s becoming more cleariy
understood. Likewise, tnrough the anspiration of Schaaf, Pattersen,
Stalder and their colleapues (Refs. 1, 3, S, 8, 9, 12, 13, 17), the
eyperirental and analytical determination of the mechanics of rarefied
pases is being conti, vally advanced. Consequently, it is expected that
satellite aerodynamics 1n the near-Earth regime (say less than 400 miles
altitude) will warrant incrcased atten’ion as more sophisticated vehicles
are irherently utilized.

The aprlication of rarefied gas kinetics; viz., free-molecule aero-
dynarics, has beer, until recently, hopelessly cozplicated for all but a
few academic problems. These classical applications (e.g., Refs. 8, 17,
18), however, have proviged foundations which have led to the development
of approxirate free-molecule methods for estimating aerodynamic forces
and rorents on convex bodies. COne notable, but restrictive, approach is
the "Newtonian-Diffuse" methed of Gustafson (Ref. 19, 20} which amplies
that the random molecular moiion is insignil<ecant when compared with the
vericlels roticn. Another .ore general free-molecule theory (Ref. §6)
was developed which considerably simplified the force and mement calcuia-
tions witnout sericusly compromxsing the accuracy of the results. This
method, which is outlined and used herein, only requires that the average
normal corponent of the molecular speed ratio be greater than unity over
the perticn of the body surface exposed to the free-stream. For most
satellite configurations, however, this requirement is compatible with
tre exrectea conditions. Moreover, there are no assunptions 2s to the
nature ¢l the molecule-surface interaction process, other than the inter-
action nay be described by the usual momentum exchange coefficients,

@ and o' (Ref. 5); and in fact, these reflection ccefficients, as
well as the satellite surface temperature, may be regardea as variables
over the exposed body suriace.

As in the case of any aercdynamic configuration, the aerodynamic
design of a satellite must consider the external shape and surface conax-
jon of the vehicie as well as the internal mass di ‘ribvtion, or inertia

Manuscript relessed by the auther February 1961 for publication as a WADD
Technicil rieport.
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chatacterisgtics. This, of course, means ihat cervain aesign ccmpronites
are inevitable among the various aevices zboard the vehicle; e ., sola:r
"paddles™ may not ve compatible wath efficient aerodynamic design. Never-
sheless, feasibility stucies of satellite aerodyramic stabilization must
ve xept eleseniary anc uncluttered. It i= for ihi= reason that the
discussion in this report is primarily concerned with sirple, aercdyramic
configurations. These basic designs, however, are certainly no more
jdealized than the classic "dumbbell™ satellite usea in gravity gradient
studies.

Although this stugy is primarily concerned with the piich stability
and orientaticn of specific satellite configurations, aeyodynamic force
and moment equations are presented (Refs. L, 6) whiich may be utilized for
calculating acrodynamic ccefficients, both static and dynamic, of other
convex body shapes not treatea herein. In additicn, the basic free-
moiecuie force and moment equations are bie to the calsulation of the
effects of solar pressure, as illustiated in Appendix A of this repcrt.




3

BEVIEW OF FREE-MOLECULE AEROSTNAN.CS

1.1 Introduction

The purpose of this section 1S to review, withoui elaboration, the
nomenclature and equations which are frequently referenced throughout
this volume. Most of this material has been presented extensively in the
open literature, and consequently, original sources and/or more detailed
analyses will be cited whenever possible.

1.2 Shear and Pressure Coefficients

For a surface element exposed to a free-rmolecular siream, the
wepanging molecules do not strike the rebounding molecules near the sur-
face with sufficient frequency to vary the incident momentum and energy.
Tnis hypothesis therefore permits separaticn of the incident momentum
flux from the momentum flux due to the reflected or re-emittedl rmolezules.
Using e standard approxamations for a molecular streas in Maxwellian
equiliorium, the surface tangential (snear) and normal {pressure)
coxzponents of the incident momentum flux per unit arca ray be written as
(Refs. 1 through 5, e.g.)

p=+

vhere Sn and St sre respectively the nommal and tangential components
of the free-stream molecular speed ratio S

Tne incident pressure and shcar stresses determined above must now
be combined with the contributions of the reflected nmolecules to give
the total free-rolecule stresses. The conventional (but not universal)

Lpecause of the empirical natura of the analysis to follow, a discussion
of the conceptual Jifference between "reilectron” and "re-emission" is
not warrarted.




vractice .s to reliste Ue refllected shear and pressire stresses to the
inciden? stresses by the enpirical reflection coeff.cients ¢ ard ¢’
(ke®s. 1, 2 and 5). iaese coefficients descride the amnnt of moueatum
ransT.ie?d to the cody surface in terss of cepartures iror cerpletely
dxffuce reffection. At tias extreme, ire rolecuies are assured reflected
with MacweZlian random rotion corresconding to tne surface terperature.

At the other extreme, the incident molecules are assuied to be specularly
reflected with the norral component of velocity unchanged an magnitude but
raversed in direction. Then, by using tnese extremes, the reflection
ccefTicients are defired by (Ref. 1, e.g.)

To—=Tr

T~ Ta

g =

Pi ~ Pr
Pl- Pd

vwhere the subscrapt F refers to the actual stress due to the refiected
molecules, and where the subscript d refers to the value of the
reflected stress due to wholly diffuse reflection. Then when T=¢'=14
the reflection is diffuse, and when ¢ = 0'= O , the reflection 1s
specular. The portion of the shear stresc due to diffuse reflection (7y),
however, is identicelly zers siree there is no pitferred tangential direc-
ticn for wolecuies reflected diffusely. On .he cther hand, the diffuse
oressl;re terrm p; has a non-zero value and has been derived as {Refs. 1
and 3

-y
e, v\ VT (e Ty veris } ()
P braVe (2 15.,\[;.,asm e v

where Tw and Teo are respectively the surface and free streax tempera-
tures.

By ccmbining 2qs. (1) through (5), it is easily shown that the total
shear and pressure coefficients are

= Cp =Crp =0 Cq

-5n-
Su St ('_geﬂ_ﬁ-_ + |1 +erf Su]}
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= =
L

f 5 gy ! o=y 3
+L(z-a‘)(§~ +1) *Eg\'%sul((’ﬂf\{ SN)} .

9

By the methoed of Reference 4 or 6, the Saussian error funciaon an
the foregoing equationsmay be rearranged and integrated by partc to give

—sa
3—(@. dr = )-a_p. (&)
V*rTJ Sufe

[

g“ t 5
erf{(sy) = -t

vwhere the last term may now be regarded as a small remainder of a twoe
lern approximation. For a surface element exposed to the free-stream
1lew, substitution of £q. (1€) into Eqs. (6) and (7) yields

~7

p

where, for Sy greater than unity,
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For a surface element shielded from the free-stream, Sy and Sy may be
considered negative and Eqs. (6) and (7) become

Cy,=-5 (2"\ elsn) (12)

Cp, = —{2(1-0" )'5“\ TQ(SJ L }"-_(52’)

a-¢' =S

AT 2w Sns«:"

where it should be ro*ed that

erf(~x\ = ~erf (x)

If the order of magnitude of Eq. (1) 1s utilized, then Eqs. {9) and (10)
are approximately (Ref. 6),

~ =
Cy = 2Tﬁ(_5_n:_> )

Sn\Sa,

.
C 22 z-a")lSN» + W_ﬁ_vi Sel 4 22
P ( \Sw S 1 To Sw }

Likewise for the shiclded cr shadowed element,




Eos. (1) thrcugh (17) are based cn the forra} rustriction that fsel 24
at every peint on the body. For most applicaticas, however, it is suffi-
crently accurate to assume that the foregoing equations are valid for

the mean S, on the tody grester than unity.

1.3 Force and M t Equations

Force and pitching moment integrals may now be formilated using the
stress coefficients obtained above. Referring to Fig. 1, it is not
dirficult to show that the drag, 1ift and pitching moment coefficients
for a surface element are (Ref. L)

Ui > . "'"" i See
o = —é_(%‘g’f _ s'—;',-c"d“j*N -1 Yeos« -(N k)Sw.c(J*l' -;Cq—}dﬁ
T }WI-F

4 - - > N ‘i‘\’
DR s
SORF

c.w=-1—()

lo-szofmad) 2 Cy(TxB)-%gJA
1

vhere Sy and T ave the reference area and length respectively. For
an arbitrary body of revolution, it is elementary to show thatv

€ = -(X—XM\)T - rst“'{ + rcosQ-lZ

( =S
opm ) Tt -l By

2 ¥e >
_Sz—;—cosoLt -sin k

oh ~ r{ivrT 4 4k
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where ' = <rfdx  and the normal vester N 1s alwzys direcled inwerd
(cenvex body). The substitution of ¥gs. (19) snue ¥gs. (18) yaeles the
follming general expressicns for =he force and mopent coefficierts for
a bocy of revolution:

G = "L\SJL" -Sp c rwsa +smatws&]+(r.- W‘Q rdedd

(ﬂm

o= é:i SJ_Cf - S's% (/,,H.— rsin« + wso(ws&]% rdxdf

JSURE
(20)
N [ _Sn - o
. ) Cw.. = —.S._;E (f —S:L'r Ir 4 X=Xom (M!\)
’ oF

(2= f,:?z ) reosdeos o +(X-Xw..§$w;}‘§ r'J.xJQ.

These espressicie cecome, upcn sutstitution of the approximate siress
coefficients,

[1x3

- L (A Yoyl T (T ()

S.,o ]Tn \S,,.)

+ 2;—6; ]l s +smqwsd]+ ;&TZS rixdf
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Sn
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][rr%x-xm]st

= (S )["MS.QOOSG(-I'(X'Xm)SInDZ]}PJX:‘!Q (1)

20 1
5o, (cont.)

wnere the integration now avplies only on the portion of the body exposed
to the incident molecular stream. Referring to Fig. 1 ara Egs. (19), it
nay be seen thal for the steady state case,

= \"L_r-i [r'uso( +stng acs&'] . (22)

In a similar manner, the incremental veloucaty castribution can be found
for a body prtching about itcs center of mass; i.e.,

[rr‘ + X -xm}

Vo, Yrer?

where % is the pitch rate. The effective normal compcnent of the
rolccular speed ratio is then

(= - s +stne 0§ 4_(35\2['1‘1’__1'1(&}@5& 2
(Sv)er,' Tt 4 Vo) ¢ @)

where Ci?.' / 2Vw is the conventional non-dimensional pitch rate.
The approximate static force and moment coefficients for an arbitrary

body of revolution are found by substituting Eq. {22) into Egs. (21). The
result is




EIX [4r*

22 ( Eg.z(l-o'-'r )[ws«*s‘“"*“‘&f

gcr-“rm T {rwsousmatws&]

+ :ur}{ r'esx + Sm““’s&} rdxdq

Qw(l )
2 2-r-c . *
= %g )§ 20T/ [r wscc+smeu«:sé_]l

(+ri2
0%

+o'fr fTw { l-r st +5mo(oos&]
S@"i [T To

+ ié:_—‘l{ r'si - cosat ws&}rdx &
O

-2 ﬁ {1(2 - )[r wsq-rSlMaS&.\ + }”rdr ‘rtosuﬁmusﬁ

aJ U
5 Fy S{rr +x—xm} wsd

. A
+20'§ r’owsoctsma cos&} rws:zws&-& ( X—Xam)ilnc(}) rdwdd
s £ is the body length} and where

Qo= cos! (—r'/’-to,,\dS for ' £ JHonaf
=T for 2 JHana|

1por integratic: purpcses, X is nov beirg defined as pesitive aft of the
nose.




An aerodynanic parameter frequently utilized is the static patchirg
monent coefficient slope at zero angle of attack. For bodics of revolu-
tion with r'*Y> o , the derivative of the third of Eqs. (25) yieias

R
Dcm] ~_ 2T (-0-0)  CfF
C- = R LN a2 [ Tw |f _ ]
e [ 3 od»n S"CS g[ 14012 25,.‘!'""” T-o". T
PN ° {26)

+T [r+ 2r'(x—xo.,)]} rdy

where O, @ and Ty, are taken to be independent of the azimith angle
The dazping in pitcsn derivative Cm? may be found by differenti-
ating the thard of Zgs. (21) with respect to q¢ /2Ve while using

i B {____).[r wsq+<sma+ 3:( rr'+x-xm)>“‘ﬁ

Eq. (2h); i.e.,

#r'*

+ o VT
TV ﬂ-zm{" 'x'<"“}°°s°? ()

a s '
+2 U'{roosotcosq + (x-xom)smu} { rris x-xm}ws& rdxdd

which becomes for d=0, r>o ,and q >0,

2 —__l_&jr__( i 2(9.-r-¢) 15 m\{:nl[rr +X- N"l

Cm%yvo 2 l e
o= S“c )o

(28)

+rr}[rr + x-x‘,.\] rdx -
J




The foregoing :ntegrals, Eqs. (18), {19}, {25, through {28}, wil. be
aseful an the drag and moment analy:ses to follow. Wnen possible, the
oasic Bqs. (18) and (20) will be solved using the exact shear and
pressure cosfficients Eqs. (6) and (7). Por most applications, however,
the approximate Eqs. (25) through (27) wiil saiisfy the accuracy
reguirenents.
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é. DRAG ANALYSIS

2.1 Introduction

In the expressions for satellate lafetime and atmosphere influence
on orbital elar.entf, the well-known ballistic coefficaent. CaSy/2m
inherently appears’. The problem of evaluating the coefficient may be
phrased twe ways: i3S the drag coefficient, Cp , is based on a fixed
reference area, Sy , then Cp 1is a sirong function of the atiitude of
the satellate; alternately, if an average (p is assumed for all
satcllite attitudes, then the proper reference area becomes variable.
It is this latter approach shich is more commonly takean. That is, let

Sy cqual the projected frontal area of the satellite (normal to free-
stream), and then assume a constant Cp which is based on this frontal
area. The discussion in this section is concerned wath the verification
or millification of this assumption. Three practical configurations -
cylinder, cone and sphere - are considered along with the “academic®
flat plate.

Al free-molecule drag coeffacients are calculated using the exact
methods when possable. The approximate method of Ref. 6, which is
outlined in Section 1, is used for comparisons or when the exact expres-
sions are not integrable. The reflection coefficients, ¢ and ¢', as
well as the surface temperature “Tw are assumed constant over the body
surface. If the free stream temperature e is taken from the AKDC 1959
Model Atmosphere (Ref. 7), and if the relative velocity is assumed to be
approximately the inertia) velocity. them i.e variation of the speed
ratio S. with altitude for necarly circular orbits may be calculated.
This variaticp of S, , along with a curve of (1/5a~) [Tw/Tem for
Tw = 550%,2are shown in Fig. 2 and are used in the ‘drag analyses to
follow.

2.2 Cylander
The cylinder drag coefficient must be divided into two parts: that

cdue to the blunt ends and that due to the cylindracal surface. The
corresponding {rontal areas are

Sewp = TR o5

§ = Zilismcl

(& (3

+ 1, >
S = 5-“,.-‘,_ ='n’21'[oo5o( + {'L_v'lsmo(-\

}See Aipendix C of Volume I of this series of reports.
“Gustafson (Re.. 20) also assumes T, = 550°R.
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wiere all starred symbels will now refer to the frontal asrea system. The
free-molecule drag coefficient of the combined flat rose and base is the
same as a flat plate at angle of attack. This resalt may be found as

(Ref. 2 or L) n(
* i o w?‘ Ts- o
Coros * ik + LD ,m)w%, Sl AR e | roitralfe
o

+ ws.(‘Lz -%—+ Leafu( —G‘-F).\er‘f ).w“t\'s

where the third of Egs. (29) is used for the reference area. The free
molecule drag coefticient of the cylindriczi portion may be tormulated in
a similar manner except that the integrations sre more tedsious. The exact
expression has been obt,air.ed by Talbot (Ref. 8). The result is,

- i
ooy s.:( .:":r T o %[(4—-2( OF5)-¢ 6(%3‘ el ‘rl T Y‘E sind
H%) L (31)

+ o‘(a(f 75

where = SoSmey  ; and vhere

F= 7 S5 2N (3 ) 1E

(41 7

By =fe ™ e+ DLy + £ 1,

2

If diffuse molecular roflection is assumed, then @ =u‘
and Eqs. (30} and (31) may be combined and simplified
drag coefficient.

¥

12'5& sm:+ ’r wsa(

4+ 72 +-L \Treos o
(= < Jagam) (=)

+{3F(§) \uﬁgn‘a ‘G(?)sme(‘k .
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for A=O [_3F(_O) - C‘;(O‘)\J SIPK = 6 G(Hsma — @S, and
Eq. (33) becomes -

e'3-°+<2+ —é}\er{(&o} + 4,(_‘(__‘{2)_ .

()

Now for near-Barth vibits, Seo is always in excess of $.0; therefore,
T
5> ad orf(s.y —>{.0 » and

¢ BT et
“xzo S | T Sz =

which as slaghily greater than 2 for small QlO . For large Aio ,
nowever, the cylinder "skin friction" term 4lUN) /ff S may be
donminant. It should be noted thac the arproximate theory of Ref. 6 is
not applicatle for thas «= 0o case since Sy on the cylindrical portion
is zero. rhe first three terms of Eg. {35), however, are due to the
blunt nose and would be obtained from the approximate theory.

At another extreme, o =T/z. , the reference area becoumes AD and
Eq. (33) reduces to

* "’/z o
Copog =T _“{Te + I _ L 3F) .
T4, ‘:m e &)

This eguation =ay also be simplified for large S, since 1t can be
snown that F(S.o) > 23 ; 1.e.,

3 T ﬁ (L7}
G Falil. (T g
h G i T AUS

which is seen to be near 2 for all reasonable AID and So . Conse-
quently, for large £Ip , (¢ at angles of attack of zero and 907 ~ay
be considerably & fferent.

25. {33) may be solved for other values cf angle of attack and fane=
ness .atio. Several combinations, along with the zpproximate Egs. (35)
and (37), are <uown in Fig. 3 for (pf versus Seo . It is interesting
<o note from Fig. 3 that the minimwm 7 ¥ of a cylinder cccurs fo: sore
intermediat. angle of atlack.




17

2.3 Cone

Unfortanately, the exact frae-nclecule drag coefficient has not
been explicitly determinecd for the case of a right circular cone at angle
of attack. Neverthelecs, numerical solutions have tsen obtained for
inzlined cones and are presented by Stalder and Zurick (Ref. §) for
completely diffuse and completely specular reflecticn. For zero angle of
attack, however, the 1arst of Eqs. (20) 1s easily integrated to give the
exact drag coeffacient as

( ' D) -stesd
S AP S SR w6 b
=0 SafF SEams 2531 Tw
(38)
+ 57(7-’5-'0“) st +_0—_I'_’TEYI—1 SmS+?:L“LJ +(TQ'{ l+erf(§..un§)}
- 255170 25 o~

where $ 15 the cone semiveriex angle and where tne base contribution is
neglected. For diffuse molecular reflection, = §'=}0o and Eq. (38)
reduces to

S Y I I %a’s‘:""zs
aso To@mg 2531 Tw

J =S o e} » -
#2300 T g + 1+ :_j_:(g ek S,,,smi“ 39
2501 T S D

As SeoSn%  beccmes larger than umty, the exponential and error
funcixon approach the limits zero and one respectively, as previously
noted, and

-
F 2 g 2+ L 140)
d=n S | Teo o

which is the same as the soluion of the first of Egqs. (25), for = O .
For very thin cones, Eq. (39) predicts free-molecule drag coefficients
considerably higher than calcalated by Eq. (L0), as may be seen in Fig. L.
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for ccnes at angle of attack, the approximawe theory cutlined in
Secticn 1.3 {or Ref. 6) may be ccrveniently utalized if the average Sn
on the cone is greater than umaty. This restraction may be expressed as

Sa> P& 1
(&) cosx s S

where & =tom§ /ﬁmot and

Since the fromtal area of the inulins: e must alsc be known, it is not
difficult to show that

_c* oot
Su = Sgue = TR w08 W(%) ®3)

wnere R is the radius of the base. The first of Egs. (25) may be inte-
grated and corbined witn Egs. {43) to gave

C:; - Z(z—cff‘\sm"ﬁ Loc"o(ﬁ.@ +Of \T sm‘,wdm

W e 1T WE) ()

+_7:.S‘_§+20"




wWhEly

Eq. (kk) 1s also presented in Refs. li and 6l for the case o1 Sy

For diffuse reflection, Eq. {4L) simplifies to,

C:g Z-L acs SlnSwSN%\%-&li’
For o = T/2,
)
st cos o —?‘—E-
W4)

and Eq. (47) becomes.

= ‘ﬂ';/ztosSYTw o e

‘(=f/z 4 Sa TR) S -

=TRZ,

(18}

Eqs. (39), (L0), (L7) and (LB) are plotted in Fig. L for several angle

of atlack and cone angle combanations.

12he 1ast term of the cone Cp equation in Ref. 6 should be:

(2 ™ 42 G)wso( k(z)
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2.4 Sphere

The sphere 15 an extremely sumple case to analyze since the frontal
area renains constani regardless of angle of attack. The exact free-
molecule drag coefficient for a sphere is written as (Ref. 1, 2 or L)

G =(2 —¢'+0‘)Q(S,§+ Z’:_‘S,.@-VT'_N (19)

where

< ~Sa 446t -
q&,\":'. 25+ 4545 +454 ‘er_((s‘o\ )

s . T T g4es {50)
£q. (49} for diffuse reflectaon is obviously
CB* = 206N + LF v, (51)

3%0 | T

“he approximate drag coefficient of a complete sphere may be obtained by
integrating the first of Eqs. (25) over the forward herisphere; 1.e.,

Gz o2+t + 20 Ty

St 35w i Te s2)

where the shadow area contributes very 2ittle to the total drag. The
difference between these last t#wo equations may be seen 1n Fag. 5. Her.
again, the drag coefficient approaches the "Newlonian-diffuse® value or 2.

2.5 Flat Plate

The infinitely thin flat plate is difficult $¢ w.alyze from tha
frontal area point-cf-view since at zero angle of attack the ares is zero
while the drag is finite; i.e.,
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It as snieresting, however, to calculate Cg for other angles of attack
for comparison with the hrec-direns:onal configuratiors. For arbitrary
values of tne reflec*icn coefficients, the exact (¢ mey be 2xpressed as

C; = «'ﬁsmo( {:;: + 26 + 2@".\'-‘6‘\)5["1*‘;&‘;:;'}“
Ses T 7 Sasna N S

{33)
+S.( 1w 220 ) +12 (2—5‘-6':\);16"&.% trf (Smsiner) B,
A S

whach becones for ¢ =€ =10

. —-S‘LSIY-‘LO(
. 2 o = _ﬁ siadd ﬁu 4+ 2& . +(7_(—J~;>u-({§,-.$md) (s1)
‘ Se  1Ta i S Sk L Se v
. and for Sgtmo larger than unity,
—
o FamdVin o )
Sa Ta Sa

A fla% plate normal to the free-strean (e( = 9.—,“, has an exact diffuse
- drag coefficient of .

"i-‘- Ze'sa

a=tpy ~ S‘,.'T.g S

+ {1+ —SL-:) k(s (56

which approaches, for large speed ratios,

*
n

ﬁr ﬁ:; 7 i -
= 2+ = - )
3. T, + 3 (57

Egs. (54) through (57) are plotted in Fig. 6 for several angles of attack.
The deviations zt small angle of attack, as for the case of the cylnder, Lt
are cieariy Seen. .




2.6 Surmary of Configurations

A compariscn of diffuse. frontal drag ccefficients for vae cylinder,
cone, sphere and flat plate 1s shown an Fig, 7. If omly the three-
dirensicnal shapes are considered. it may oe seen that most of the drag
ceeZficien.s 1ie in a 5% band for 211 practical molecular speed ratios.

A noweworthy exception is the cylinder rear zero angie of a‘tack. Then
1t may be concluded that the practice of assuming a constant drap
coefficient per unit {roncal area for a satellite at all altitudes is

not, in general, correct, although for some shapes it may be an acceptadle
approximavion. The problen of estimating the ballistic coefficients,
therefore, appears to deserve additional study.
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2. STATIC STABILITY AWALYSIS

3.1 General Considerations

4s noted in Volure I of this ser:es of reports, the aerodynamic
contribution an the eqrations of satellate patching motior. may be conven-
tionaily represented oy the leading terms of a Fourier series. For small
angular deviations of the body from equilibrium, it may therefore be
shown that the non-dimensional aerodynardc torque (or patching moment
coefficient) may be written approximately as

Con = Cong s + cm.o(;“-l%:} (s8)

anere, in this analysis,

La
C M

™ T INESe

The discussaons in this section are concerned only with the static
pitching morents (i.e., Cm with q= O ) and the initial pitching moment
slope Cmo - The purpose of the first of these investigations, namely
Cm versuc a wide range of angle of attack, is to examine the validity

of the linear Cm approdimation for three simple configurations: ti:
¢ylinder, sphere and cone. The analysis is subsequently extended to
calculations of Cmy  for more complex configurations: power law odies,
truncated cones, cone-cylinders and sphere-capped cylinders. Supplemental
equations and graphs are presented for the purpo  of examining miscel-
laneous efrects of surface temperature and reflection coefficient varia-
tions. The final portion of this section is concerned with the optimiza-
tion of satellite geometry for naximum aerodynanic stability. The possible
augrentation effecvs of gravitational torques, however, are not ignored.




3.2 _Aeroc*man'.c Pivchaig Mcment

3.2.1 Irtrodustion

With proper satelilite design, numerical results ¢f the motion
anaiysas {Volume I) have snown that the szall angle of attack approxima-
ticn is generally justafied. In order tu avoid any unforeseen complica-
ticns, however, 3t is advisable to examine the pitching characteristics
beyond the small angle range. Accerdingly, it is the purpose of this
section to present curves of pitchang roment coefticient versus angle of
attack for tie oasic body shapes icylincer, spgherc and cone). Initial
pitehang moment slopes for taese shapes are also presented along with the
slopes for the more sophisticated shapes (power law bodies. truncatec
cones, hem:sphere-cylinders and cone-cylinders).

Ail coefficients are referencec to the base diameter D and base
area /4 -

3.2.2 Piichaing Momeni of Baric Bodv Shapes

3.2.2.1 Cylinder

Figure 8. Cylinder Nomenclature

The pitching moment coefficient of a right circular cylinder may
be calculated using the exact free molecule flow e, ticas. For a
cylinder wathout end effects, the last of Egs. (20 2ategrates to give
(Ref. L)




wvhere § =

Sosma and F(F) 1 defined by the farst of Eqs. {32).

The nose contribution may be taken into acccunt by concidering a flat-
=late normal to the stream. The cxact woment contrisuiiaa of tnis surface
is due only to the tangential stresses and is mven by

Co = T {sing 50057 _wk[,*er; <ot & OV
MosE Se (,' ﬁ-r ( )_\
The base end effects, wi

It 1s noted that the nose contribution is positive and hence destabilizing.
hic

since

h are small, are not included in this analysis
the base will be assumed v>id for design purposes (see Section 3.4).

Co—zumng Egs. (60) and (61), the total static pitching moment coefficient

Cn =

(et gyramte - S Ran ]

D

z%(-g-)sm Zo(}[ ;z_clzv T(MX13 25 -S.:'ws"x

(62)
{ ﬁs‘n

+ sin 2 [ef{(smms«) - I-\‘Ag P

For diffuse molecular reflection, =6 =1 o

, and Eq. {62) becores

{m, = - (9“"“ l_n’ K?\S"w(* fr T“']: wsx}{l-zx—:ﬂ"’}

Ao

(63)
_ l- e_s;(os o

—ﬁ?So +ms«(er(($.ws¢) ﬂ-’i’—"‘ .




. {63) as shewt: an Fags. 11, 12 and 13 for cylinder fineness ratios of
l, ? ard 5 respectively and :‘or Tw =Tae . The temperatures are equated
to simplify the presentaticns. The effect of T, £ T., s however, is
discussed 1n Section 3.3.2.1.

It may be noticed that the last term in Eq. (63) is quite small
vhen Sacos o« 2s 1n excess of 2bout 2.0. Then for small angles of
attack this term may be neglected. The pitchang moment slope at zero
angle of attack may be formea by differentzating Bq. (63) with respect to

o and passing to the limt «>o . Accordingly, one finds,

W

o= Bl BRI 312

vhere the last term an Eq. (63) is agnored and where

fom sg—‘( SN & \C(?)y% = lzi . (6s)

>0 (

from Eq. (64) the cylander 1s seen to be aerodynamically stable for all
centers of mass forward of the geometric center. The results of Eg. (64}
will be utilized an the cylinder desagn analysis of Section 3.4.2.1.

3.2.2.2 gphere

S

N

Figure 9. Sphere Nomenciaiure
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The pitching moment coefficaent of a sprere 1s easily calculable
since the resultint aercdynamic force (drag) acts through the sphere
center. Trat :s,

—{L&- B lG sma (66)

The exact drag coefficient for arbitrary molecular reflection is given
by Eq. (43) as

Co = (2- € +)Qs) + 2:22 (7 )

=3
los

where Q{Sa) s defined by Eq. (50). Then for diffuse reflection,
Eq. (66) becomes upor the substitution of Egs. (50) and (67)

=] 254t S 45 - " i
Cem [LE?_—S—; 45.‘4 4 $ou -l { Y(/S)"'ﬁi ‘:r:lgm(\‘_ ZVAT“,] (58)

which varies linearly with center of mass locataon. The normalized
versaon of Eq. (68) 1s shown :n Fag. 34 for Ty, =T. - Temperature
effects are ronsidered an Section 3.3.2.2.

The sphere patching moment slope at zero angle of attack as

= -\2shel 53 sckidsz - »
Cong ‘,zh?s,é €44 453 ed(5.) *%\(fi YL"IE_M 69

which, 3ike the cylinder, is zero for coincident centers of volume and
mss.
.




2.?2.2.3 Cone

Figure 10. Cone Nomenclature

Unlike the cylinder and the sphere, there appears to be no
straighu-lereara vethod for obteaning the exact free molecule pitching
morent of the cone at angle of attack. Ucing the last of Eqs. (25},
hovever, approximate pressure ana shear coefficients may be integrated
with 1it*le difficulty. The resulting static pitching moment coefficient
may be shexn $o be (Ref. L)

~ 1 b
Cy 8 - Ttons %[2(2-6‘-6‘)(*({)5,”0(%‘( +LY_'T[ ﬁ—; 3*(4 Sthel

25 |Ta Sing

S

(70)




35

whe'e tae parsreter 4 .5 defined as '&M;/ toamew  and

#0) =-S5 () e 2 w2 fime = e fue- 40 (¢210)
=10 (c.’ >1 o\)

f) 2t ¢ (T e lguel] - (ea

n
c

(£ 2i0) (n)

i %ws"(—:\ +—é—’T——¢_% = h(g) (¢<10)

m
|

R(s)

)

The foregoing funciicns are the result of antegrating the pressure and
shear over the surface area exposed to the incidert =oletular strean.
The contribution of the “shadov" is neglected in the approxinate theory.
I* is therefore clear that when the angle of attack is less than the
cone angle, the entire conical surface "sees" the free stream and the
funclions assume integer values. Censequently. for diffuse reflection,
Eq. (70) is expressible :n two parts:




%

e —eoicC B Y o |

+ SN s [l - -—--J} \;c( 5—3]

ot S B st st BB -]

(12

s |(0)- %"':‘f(‘)% [« 25)-

2gs. (72) arz shown plotted in Figs. 15, 15, and 17 for cone angles of
15%, 302 and 15° respectively and for Ty, = Te - It m2y be noticed in
these {igures that there is a slight dascontinuaty in the pitching moment
siope at the point. where o equals § . These discontinuities are due
to the sudden appearance of a <hadew as the angle of attack increases
teyond the cone angle. 1If exact fremr-moiecule theory were available for
these conditions, hovev.r, the shadow area would be properly taken into
aceount, and the dascontinuity, if present at all, would be snoothed.

The static pitching norient derivative at zero angie of at
may be found frem Eq. (26) or by differentiating the first of Egs. \72)
wxth respect to o and taking the limit as of apzrcaches zero. the
resalt is,

( & V.

i/

—cot § { ———m I
« z(asmsw.i f’r,.._

Cn-,d =

whicn is applicable for S, sin§  greater than unity.
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3.2.3 Pitching Moment Slopes of Cxplex Body Saapes

3.2.3.1 Power Lav Body

Figure 318, Power Law Body Nomenclature

As the result of the cylinder, sphere and cone stability
comparison of the previous section, it seems worthwhile to continue the
analysis for somewhat more practical shapes. The power law body is such
2 shape, and hence, 1s described below.

£ Power Yuw To2y OF reveluéaor is described by the well-known

Serrmla,
Gl ' .
R ¢ ("u)

where R and 2 are the maxirum body radius and 1 -th respectavely, and
where 0< n 41 . Now the slops of the yitching nument coeffiziers,
Cwe + 3t zero angle of attack for a body of revolution with r' j o

may be determined from Eq. (26) using the approximate free-molecule theory.
The resiit of substituting Bq. (7h) and its derivataves in Eq. (25) is
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Except for a few special cases, the first two integrals in Eq. (75) have
not been evaluated (at presen:) for a general value of n . For diffuse
molecular ceflection, howeve, O =0"'= 1.0 and the coefficient of the
first integral is identica;lv zero. Alsc, saugple calculations have
shown. using Fig. 2, tho. tne temperal .ue-dependent term is less than 5%
of the dominant, last ‘erm. Therefcre, if diffuse reflection is assuned,
and if the second term is neglected, Eg. (75) becomes

o = -4 [T oo o5

This integral =zy be evzluated exactly, givang the result,

Cng & —2(H)[1-% (7t

which is independent of M. . Consequently, for diffuse reflection, the
only effect of the exponent on pitching moment slope is du¢ to the small
contributicn of the reflected pressure coefficient, as treated in Sec-
tion 1. Also, it may be seen that Eq. {76) agrees with the leading term
of Ea. (7.) for the cone (n:i) .
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2.2.3.2 Truncated Cone

The stabilaty analysis of the more complex geometrical shapas
continues herein for the case of a cone frustum, The calculalions are
considerably more complicated for this configuration since the degree of
tri cation beeomes an add:tional variable. The geometry and nomenclature
used for the subsequent calculations are shown below in Figure 19.

Figure 19. Truncated Cone Nomenclature

The free-molecule pitching moment slope of this shape may be
found by combining the separate contributions of the conical surface und
the flat nose. Aitaough the exact free-molecule flow theory may be us d
for the nnse portion, it is sufficient (and convenient) to calcalate
Cmea  at zero angle of attack using the restrict” «s tha* Seo 6
and Setm$ > 1 . Then for diffuse molecular rerlection, Eq. (20}
shows that Cmq  Of the conical portion {dr/dx # o) is
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and correspondingly, the nose contribution is

Cm, % 2(%)%"‘“ g (18}

NosE

where {3 is the ratio of the nose diameter to the base diameter. The
total static pitching roment slope 1s the sum of Egs. (77) and (78).
That is,

o, 2 -af4 )% S0l [ust

s W’LL" )1+@)+ +(+-8)

It is not difficult to show for reasonable configurations with

Sesing > 2 that the tempcrature-dependent teri in Eq. (79) is
considerably smaller than the last term. Although the difference will be
showr later, it is now convenient to negiect the temperature term and
write Eq. (19) as

Cm

a

which is the same equation used in the previous section for power law
vodies. #s Eq. (80) is presented above, Cm, 13 inaependent of the
diameter matio B .




3.2.3.0 Hen:;sEhcre-Cy'..mder

The georetry of the hemisphere-cylinder as shown an Fag. 20.

s

)ll

Figure 20. Hemisphere-Cylinder Nomenclature

The pitching moment slop of a hemisphere-cylinder may be fasnd
by adding the spue..cal cap contrabution to the cylinder contribution,
both of whach have been dascussed previously. As & approaches zero the
value of Cw for the hemisphere is essentially the same as the value
ror the complete sphere since the contribution of the aft portion of the
sphere 1s negligible. Then from Eq. (69)

- - = (.2
O = Sl “““%@}L’ zer) (51)

where G5a) is defined by BEq. (50) and where daffuse reflectaon ‘s
ascumed. Likewise, Cme for the cylinder, without end effects, xay be
found by dafferentiating Eq. (60) with respect to of and passing t

the o=0 1limit. The result 1s, for ¢=5'= .o ,

Y V'S 3 WS S AT A NP v, B
R S G SRR

wnere f¢ s Xum o, are measured {rom the origin of the cylinder.
From Fig. 22 it is seen thatl




=4, +D/2

Xom = Xom, ¥ b/z .

fhese relations may be subst:tuted 1n 3g. (82) to provide a cemvon
reference basis; .e.,

7a
. xx§3 smaL Xons (83)
il hedul + +
C""‘m. (D 2 L‘F S,. %l T, i_ -2 .\ 1
where 4D is greater than 42 The combination of Eqs. {81) and (83)
gives the .o..a.] pitching moment slope of a hemasphcie~cylinder with
diffuse refiec'ion:




3.2.3.4  Cone-Cylinder

Fagure 21. Cone.Cylinder Nomenclature

The s:atic pitching wment slope of the cone-cylinder configura-
tion is easily obtained since toth portions have been previou<ly calculated.
For difiuse reflection, tne approxsmate free-molecule tlow theory gives
for the conical pocizon,

Xow b
- 35T stnfes

J'r{!- mefxf} )

o SE T
C"“'w{ “fs%és,. ’?;'L SIng

whach 18 the same as Eq. (73) except for a slignht rearrangement. The
Cing Gue %o the cylindrical port.on may be written using Eq. {82) and
fiz. 21, noting that

L= f,+( wtf

Ko = Xom, + {DJest
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where %¢  and oam . are measired aft fro= the cylinder shoulder. Thus,
2q. (52} becumes

L (1-2%) + 4ets] + 1% -

whare “D 1s greater than ¥z . “he total ccne-cylinder Cw:.( is the
sun of Egs. (84) and (67):
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3. Miscellzneous Effects on Stabality

3.3.1 Introduction

As stated several times throughout this report, the compiexily of
free-molecule force and moment calculations is reduced if the surface
temperature, Tw , and the tangential and normal mozmentum coefficients,

@ and g°f, are assumed constant for a given configuration. Although
these assumptions are reasonable for most engineering applications, it as
desirable to investigate the maguitude of stability changes caused oy
surface temperature and reflection coefficient variations. In reality,
the reflecticn coefficients may vary with surface temperature as weil as
being dependent on surface material and irregularities, For the subse-
quent calculations, however, it will be assumed that ¢~ and (' are
independent of T, . Moreover, icr the temperature inveslipevions, wne
cormonly accepted diffuse values of ¢"=(@'=).p are assigned, while for
the reflection coefficient investigations, T,, 1is assum:d to be 550°R
and Fig. 2 is assumed applicable.

3.3.2 Effect of Uniform Temperature Level on St=bility

In Section 3.2.2 equations for the static pitching moment
coefficients were presented for the basic body shapes: the cylinier,
sphere, and «one. The accompany:ing figures, howzver, were drawn for the
special case of T =Te (for simplicity only). It is therefore the
purpose oo this section to .resent equailion> and graphs for the incre-
mental pitching moment coefficient due to Tw # T . Since the basic
equations have been discussed previously, additional elahoration is held
%o a ninimumn.

3.3.2.1 Cylinder

Fron E3. (63), 1t is easily shown that
(L | -ﬂX _ x_u.]
(DB 25, Ta .ll -2 1

= 1

\{%_ |Jsmo( .

Eq. (¥0) is plctted in Fig. 22 versus angle of attack for several tempera-
ture ratios. I¢ may he noticed that for large cylinder fineness rativs,
the ‘emperature sffert may becoxe significant. Also, it should be pointed
sut that the lat nose contribriion tO wm. (shear) is independent of
terperature.




3.3.2.2 Sphere

The effect of T, % T  on the sphere Gw is shown to be,
fron Eq. (68)

Selln =—_I'T-L('_{T—_w-|’}smcl
L1 =™

which is plotted in Fig. 23. Unlike the cylinder, terperature only
slightly affects the sphere pitching moment.

3.3.2.3 Cone
As indicated preuous};,‘, the cone at angle of attack must be

treated in tWo garbs; nawely, o luse Liwn tie cone angie § , and of
greater than § . Then, frox Eq. (72),

Sl S & —ﬁ\}Tw _|ri simd [o( iS]

wss [1-2 e ar |
S A 21§
17139 [{—%—’5!—?’09;’5}

where 4(€)  is defined by the seccnd of Eqs. (T1). Egs. {52) are
shoun ;:: Fig. 24 for cone angles of 15C, 30° and 45°. Here again, as for
other bodies of revolution with non-zero slopes, the temperature effect on
stability is small as long as the fineness ratio is not large. This
small increment may de illustrated by plotting the cone total pitcning
moment slope, Cwmea , versus altitude for various levels of surface
temperatures. Such a plot is presented in Fig. 25 using Eq. (73) with 1
cone angle S = u} Tfz (an optimum value as shown in Section 3.k.2.3,.

A circular orbit is assumed so that T , 2nd hence So , may oe
wrltten as functions of altitude using the 1959 ARI. tmospaere {Ref. 7).
It is clearly seen from Fig. 25 that surface itemperature has 2 snall
{ ¥ 5€) effect on the stability of a typical cone.
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3.3.3 RBfrect of Asyrmetric "emperatire Varjatiorn on Stability

In order tc investigate the efiects of an asyrmevrac variation of
surface tempereture, the basic patchingy moment integral, Zq. (20), must
be utalized. It may be remembered that for a corpleiely diffuse gas-
surface interactaon, the only effect of temperature is on the pressure or
normal momentum component due to re-exatted molecules (Refs. 1, 3).

The "reflected" pressure coefficient may be written from Eq. (5)
{for Maxwellian re-emission),

Co =20 . (S» T t+ er §, 1
L zs..ﬁ» s"ﬁ ( ) 93)

where Tw is regarded, for samplicaty, as a fictitious temperature
corresponding to a surface frcm which the molecules reflect with complete
thermal accommodation.

Since the shear stress and the "incident™ pressure are independent
of surface temperature, the lact of Egs. (20) for a body of revolution at
zero angle of attack may be written as

Gy = SchC,»(N‘ +x- x%\rusgdxem (o)

SVRE

where Sw and T are the reference area and length, and where the other
symbols are defined in Fig. 26 below.

rd

Fagu'e 26, Body of Revclution at Zero Angle of Attack




Yow consider 2 non-spinning satellite orbiting at zero angle of
attack wath the sun darectly cverhead. For a body of revoluticn, the
upper half will be in direct sunlaght wihale th2 botlom nalf as in a
shadow. If the satellite 1s assumed corpietely insulated (no internal
heat transfer) and if free-molecule convective heat transfer is neglected
an comparison to that duc {o radiation, then the veper 2nd lower portions
of the satellite wall achieve dafferent temperature levels. The corrss-
ponding values of pressure coefficient wall likewise be different.
Consequently, Eq, (93) may be separated anto

et -Sr:' ’ 14 ‘1‘
G ~(2\E T (€2 (12eet S
~ v 25, Ta LonT 4
i (95)
G ={S\E [T [ S
Pr’\ 3 Z5. _; j._S;-V-ﬁ + (i-ﬂf{ m)]

.
vwhere the subseripts & and 1 rcfer Lo une upper and lower surfacas.

For a right circular sylinder, BEqs. (93) and (95) simplify
considerably since Sy and r'=irfix are zero. Hence,

- ,,_"— (x -Xm)ooxgdad'x
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As another example, consider a right circular cone at zerc angle
of attack. For this case, Sau =SSt $ 2ad for reasonably iarze
Sa  (say 3.0}, the approximate: "reflected" pressure coefficiert is
sufticiently accurate. Then from Eq. {15) or Egs. (95),

Cp, = %Slnﬂ@

—ET- $m$ "@
e AT

C?r 1

which vhen substituted in Eq. (k) yields

Cam,

<l

C“‘O(ONY-. 3f—§ i
T Sasing

Mow that the zerc angle of attack patching moments have been

formmlated for iwo simple satellite shapes, the effect of large tempera-
ture differences on the eguilibrium angle of atiack may be determined.
For the case a! hand (sun-satellite-Earth system), radration heat trasier
techniques are available {Ref. 10) for approximating the upper and lc :r
skin tesperatu-es. For example, assume the following average temperature

levels:
T, % 940°R

(99)
Tw, & 5{3°R




amd let
To = 2500°R {ait & i0%§t)
Se =174 (100)

~here the large surfsce temperature difference 1s obvaously conservativel

due to the negligence of heat transfer within the vehicle. Furthermore,
for small angles of attack, the static pitching moment coefficient is
expres sible as

L =Clm, +Cm X

which for equilibrium conditions ( Cy.\=o) may be revritten as
~ Cm,
Cineg

oy (202)

The pitching moment slope, Cmey ’ has been determined for the cylinder
and cone in Sections 3.2.2.1 and 3.2.2.3 respectively for the case of
constant surface temperature. These equations, however, are easily
modified to include the temperature difference. Consequently for the
cylinder, Eq. (64) and Eq. {96) combine to give

_IE S]]

SLFI-S" ‘Zsu\\lT':: f Yﬁ \]( ) J-%“ ZM (102)

x 208072, ccoes {4 (radians)

Reey. = 0209llo)+ 1

lP.ecc-ntly publisied results (Ref. 11 of the Discoverer program have indi-
cated that the upper and lower temperatures are quite low ana not much
different from one another. In some cases, these temperatures were below
freezing. It must be remembered, however, that the actual equalibrium
temperaiires achieved are strongly dependent upcn the emissive and abs rb-
tive properties of the surface.
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uhere the values of Egs. (99) and {107) have been used. It as apparent
frem Eq. {102} the' the cqualibriu= angle 1s very small, as expeclec, for
a cylincer with a large temperature difference between the upper and

lower surfaces. Iv rmst be remembered, howeier, that the bemperature
effz:t on reflsction toefficients has not veen considered in this analysis.

The cone equ:1ibrijum angle may now be found in a similar manner.

Using By. {73} and Eq. (98), Eg. (iO1) becomes
[(E-E e ]
(6 s,,wsi)%’»['- ] 4

{Tﬁw_x {

SMS Ta I

s ooz [1-Fies d
asg 33{1-Xemh 4 0_-%5_7 [I- -;—.’E!.‘"r'us"i]

o
Cune

smip

where, as before, Ega. (99) and (200) are used. For a reprcsentative
Xan/ L of 2/3 (fox sirplicity), Bq. (103) is

o O.0EZ sm$

% corsz
ME wtd r 0.0037 wss

which is very small for reasonable ceone angles.

Although this analysis 1s obvaously incomplete, it may be qualita-
tively conciuded that temperature diffcrences between opposite sides of a
satellite have little effect on the aerodynamic pressure difference, and
hence, little effect on the equilibrium angle of attack. Xt should be
remembered, however, that although solar radiation was considered herein,
the effect of solar photon pressure on satellite patching moments was not
included. If desired, Appendix A may be used to calculate the additicnal
roment contribution due to solar pressure. A brief check, however, has
shown that thi: contribution (for a cylinder at 1 million feet) is
snailer than the aerodynamic Cm, due to temperature wariations.

3.3.L Effect of Longitudinal Temperature Distribution on Stability

It w3y be recalled from previous discussions that the surface
temperature of a vehicle in free-molecule flow affects the surface
pressure (through the reflected molccules), and hence, aerodynamic
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stabilaty of the vehicle. It wus shown that for Large, conservative
«emperature daiferences tetween the upper and lower surfaces, the effect
o1 zero-1ift pitching moment and corresponding equilibraum pitch angle 1s
very small, Another temperature eifect ‘o be considered is the influence
of a longitudinal temverature distrabutior on the pitch characteristics

of a satellate. This distribution nay be the result of (say) conduction
due to certain "hot spots" within tre vehicle, free-molecule convection,
and/or colar vadiation. 1If 211 these rodes are considerea, either
separately or together, the resultang temperature distribution becomes 2
corpiicated function of nunerous variables; i.e., surface material, free-
stream corditions, surface orientation angle with respect to the sum, etc.
For exanple, if a radiation heat balance is considered alone, the tewpera-
tore ratio Tw /Te depends on the fourth root of a functacn of the angle
betwoen a surface element ard the sun. The square root cf the temperature
ratio, as used in the aerodynamic pressure equaticn, then Jcpends on the
eaghth root of the sun angle function.

The laborious details of @ heat transfer analysis do not seem
Justified for the rather genersl cases considered hereir, It will, there-
fore, be assumed that an average temperature distrivution may be
represented by a simpie, axisymmetric, power law expression for the
purpose of weighing the effects of temperature variaticns on the aero-
dynamic pitching moments. For czample, let

3
Yi - 16 {“%zl (305)

| To

where © is some reference temperature ratio, X/#  is the non-dimensional
body length measured from the nose, and the exponent is a consvant.

Now fecr a body of revolution. the temperature contridbution to the initial
patching moment slope, Cw, , =3y be found frem Eq. (25) as

A —
gl g e /rr '
= == e e £ X -Xom) rdx 106}
Acmd D’JDZS.. Proer ‘T“ 8 M) (205}

where the reference area and length are WB/4 ana D respectavely.
Now for a right caircular cone, r=xtm% , and tn substituticn cf
Eq. (105) into Eq. (106) and subsequent integration yield



Gy

Aln, = T8 "\!J, 2, 3301 gm_.m 3,

wne. & Susind (—TY 6(3")

2 () -NE-3)
MSg—z ‘\‘\"'%‘7—‘—;3 25.(3|) J}

1) (107)

Since realisiic values of % cannot be far different from zero (say

~12 %4 % ), and <ince the two se-ies in Eq. (107) vend to cancel each
o‘her, 3t may be seen that the const.ant, temperature { \3=O) increment
o1 pltchi:.-.g -wcxnem. slop*, which 1s amall when comparen wiw tee totas
patching siope, 1s not altered appreciably by inhe example temperature
gistribubion. As an illusiration, Fig. 27 presents a plos., of total
Cwme  versus the exponcnt § . The ) =0 conditions are noted cn

the figure.

QOther examples may be performed yieiding the same general result,
1.e., the elfect of terperature variations over the surface of a satellile
an free-molecule flow do not significantly affect the aerodynamic forces
and mements as iong as the reflection coefficients ¢ and ¢' are
assuwzed invariznt with teaperature. The effert of variations in ¢
and @' w1} be consicered 11 the next section.

-0 X X 08

igare 27. Effect of Longitudinal Temperature Distributicn on
Cone Pitching Moment Siope




65

E.fect of Asymretric Reriection Coefficient Variations cn
Sty

4s zentionea before, the effzcts ¢f variaticns of the surface
reflection coefficients ¢ and O°', are analyzed for the special case
of constant surface temperature; in particvlar, for Tw = 550%R. For
the present problem, it will be azsured that the upper and lewer portions
of a vody of revotutzon have different values of the reflection coeffici-
ents ¢ and @' . The resulting difference between the upper and lower
shear and pressure forces will then produce changes in the gatihang
noment. The magn:itude ¢f this asymmetric loading may then be analyzed
by calculating the equalihrzur angle attack, which is, to the first order
and for small angles, defined by Eq. (191,.

Uoing the approxamate free molzcule theory {Ref. i), it may ve

teha!

shown tnat the siatac patcehang morent coefficient for a convex body of
revolution 1s

¥a: ]

= - ) k3
Cm (\ {% 0 ! (r'wSx +s'na(cofﬁ}
o) |

I

£ it
S

,/n
et |

s £smacs§ )1‘ 'g(rr +x—xm)wg

+ 20! rleosa s ony oo
\

whiich 15 the same as the last of Eqs. {25) except that ¢ and ¢ are
now assumed cependent on the azimuth anzle § .

Now if § and (' are assigned different values for the upper
and iower surfaces. Eq. (108} becores, for zero angle of attack,

Cm. ’L(ﬁ-%\, .;-O'L)r +\6‘¢-61)ﬁr Tw !
o ) & P Se 1w flart

{109)

-\ -§ v, A ,
e RRICR I L
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Likewviss, the 2r tial pitching moment slope may be found by differentiating
£3. {(208) wath respect to of

> *nd taking the lamt 3s of approaches
zero. The result is,

"2
-2% " (40 -GGy~ ) '
Cm,‘ _..:\‘ u:z * )
20 e

+(0f 0 VTN 7< {re'+x-v)
G SalT

+{ 0y +0‘u_\}<££~;—. + r'(x-xw)}j rdx -

For a right circular core, r =xtwmi, Sy =To'/4 ¢ =D
Ege. (109) and (110) inlegrate to yieid,

, “
Cn, 2-2\0864a0 .f._r__'”" 22 -0 |
“btcw; 37[33. + Tooms | T 2(5«6""‘)2 (‘ k3 T(M S} (111)

(m —wiS 22(2—01—5‘«)"_.___““'{;
o 3 ZS,SWS

+36‘.~{l-—’<3"-)—}

where




The cone equil.biium angle of attack may nos be found by substatutirg
Fqs. {211) and (212) into Eq. (121); 1.e.,

e _—-—— ! Mﬁ
7(5,.{:!»\5]’ §\‘ TT“ ﬂ) a8

‘ﬁ artas’ - 25,,5»15 '

[%z(z-rrr.;)af

oy F B
o EET RN SN

..ﬂ'l‘ Tn

Fer purposcs of representing aun exlrere case, let uie iower surface
reflect in a '-cr.plﬂte specular fashicn, 02 =0’ = o , while the
upper surface reflects in a corpiete d1!‘1‘use way, 03, =0 =l.o -
Then AT=AT'=~2C and Qu=2T = 2z . Furthermore, let
Sz, M /SafTan = 0063 {from Fig. 2), tom§ = /1T

anG xmlz 2/3 . Wiln these values, Eq. (213) reduces t,o

Lot = Z*_‘;Mif—Zs: 0+ 0558 5ms + .989-}

Zawt + 0219548 +.500 ]

e o 2 .13 radian £18°

The value of Eg. (1l4) cbviously represents an improbable condition.
Owrer more practical reflection coefficaent and gecmetry -~ombinations,
hewever, msy result in equilibrium angles of attack whach may s:gnifi-
cantly affect the orientation of a sateilite. Body shapes cther than
the cone may., of course, be analyzed for the effects of ncnr-uniform
reflecticon coefficaents, In particular, the cylinder is very sensitive
to asymmet:ic loadings. especially i the ends produce & large Cmy -

Nuerous other problems may b2 devised which invelve variations
of surface terperature and reflection coefficients. Only a few of the
rore extreze (and simple) cases have been discussed. For example, it
nas been assured that ¢ ana ¢! are independent of surface texperature.
wnzle in reality, it is suspected that a certain dependence between the
rellection phenomena and surface temperature exists.

3.3.6 Effcct of Non-Diffuse Reflection Coeffisicnis - Stahility

In tnis section, the pitchirg moment slope Cmy is investigated
for the case of constant surface terperature (S50°R) with uniform, but
uhequal, values of the tangential and normal momentun exchange coeffisz-
ints, ¢ &nd @Y .
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Since the diffuse (C=¢"'= 1) values of Cma have been
presented for several configurat)_o %s in Seciion 3.2, it 15 now convenaent
tC use the ratis, Cma/Cmxp , where, in general, Cw.x is for
o+ ¢'# 1 , and where Cmy, is for T=¢'-=4 . The examples
chosen for illustration are the cylinder, sphere and cone.

3.3.6.1 Cylinder

From Egs. (€2) and (64) it 15 easily shown that the cylincer
Cng ratio is

-VR]L_\

i)

§fi\ 1

which 13 independent of the center of r2ss | location. Now if the aoproxi-
rations [Tw [$olTo £ 0.063 and Sa 274  are used, and if a
representative fineness ratio of 1.08 (a: cptirmm value, as shown later)
1s assumed, then ¥g. (115) may be wratten approximately as

~ 0%30 + {0826 -0. ! }
Gy 2 10827 ~0.i3L¢ ey

where other praciical cheices of Se , Tw and & D do not sppreciably
afiect tne numerical results. Eq. {I16) is shown plotted in Pig. 28
versus the taugential reflection coefficient ¢~ with the normai reflec-
tion coefficient @' as a parazeter. The ratis ¢'/¢” could also be used
as an effective paraxeter. If a reascnable lower limit, szy C.7, is
assigred to § and @', it may be seen that a devaaljon as much as \83

in Cma CcOuld be incurred. 4s expected, the cylinder Cmo 15 strungly
aifected by the shear term, and hence, derreases subsiantially with
decreasing ¢ .

3.3.6.2 Sphere

Seation 2, mouy 'w used to find the Cme .. %0 for the sphere
cince Cma for this confguration is directly propcrtional to the drag

~oefricieat. Then from Egs. (W9} and (51), Cim, /Cm4, may be written
exactly as




Co = (2-7+0") Q) +
12 2 20 o)
’ GG+ 35J¥

o

where from Eq. (50),

253t LS. L4t
afsa) Loty 4strast -1 ()
21 54 4.8

S

Now if the usual zssumptaons of Sa = 74  and l"T.,./g,_ £0.062
are used, then

Cmg = 2030 ~ 1017~ 0.94¢ ¢
Cing, AT

(118)

which 25 graphically presented in Fig. 29. The cphere is seen to be
different fro= the cylinder in that § and 4 ' nave nearly equal and
opposite effects on Cumy - That is, desreasing ¢ tends to decrease
stability, while decreasing o' tonds to incroase stadiiily by nearly
w2 same axount. If a 1ower 11rit of .8 1> asngncd tc the reflection
coeffacients, the maximum deviation in Cmeo is again seen to be approxi-
mately 185. For @"=¢"' . however, the deviation is very small. In fact,
the completely specular (,ma(_(rs:r‘ =0Y is nearly 35.5% of Crup -

3.3.6.3 Come

For sera-vertex angles greater than {say;j 10°, the cone pitching
morent sicce at zeru angle of attack has been written approximately by
Eq. (73} for diffuse reflection and by Eq. (112) for gencral vaiues of
the reflection coefficaents. The quotient of Bq. (73) into fq. (W12) is




. -t .
N~w 1f » 23 c10sen 35 cot” fZ , hen <o *S =2/3 | aud the center
o: mass terss conveniently cancel. Eq. (319) tnen redices to

lmg - 4 +T -i802¢"
Cmg 3098

[+]

(120}

where {Tw{ Se T 15 again assumed 0.063. Eq. (120) is shown
plotted an Fag, 3. Ualike the cyiinder and the sphere, the cone

15 seen to be affected more by the pressure forces than vy tne shear
iorces {at least for the low fineness ratio core selected here). An 18%
maximun deviation between Cwmy at 6=10, €'=08 and vice versa. is
again (by cowncadence} evident. The cone Cme for T=0'=0.2
however, 1s ncreased by only 63. From Eq. (120) the specular L,
is approxamately 304 higher than the ciffuse C,, o -
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3.k %ti:—mm Shapes

3.4.1 Review and Introduction

In Volume I of this series of reports it 1s emphasized that
successful acrudynamic stabilazation of axisymmeiric, rear-Earth satel-
lites depends upon the magnitude {and sign. of course)} cf the aerodynami.
staoility parameter (" . This parameter is defincd as

G 3 (a)

—Cmy Suc
I
f1 = atrospheric density ai semi-latus rectum
fp = perigee radius
Vi/V = relative-to-inertial velocaty ratio
i = principal moment of inertia about the y tody-fixed axds.

*
It is alse noted in Volume I that 09 is used in combination with the
gravaty torque parameter M , which 1s cefined as

M=z I.-T (123)

I

wisre Ix 1s the principal moment of inertia about the X body axis. In
partacular, for circular orbits it is showa tha® *he dominant stadility
tern {and "spring constant") is G +3M .

If asrodynamic stabilization is to be fezsable, tnen the question
new becemes one of determining the atiainable range of Op° for any
realartic satellite shape. For a speci®isd orbit, (' becomes a function
of 1" only, and hence, the problem may be restated as being one of
determaning tre ortizum preportions of a given general shape (cylinder,
cone, etc.) which make tlie stability varameter, [, a maximum.




For the configurations consadered henceforth, favorable centoer of
mass locat.ons are cbteined by concanérating a homogenzous paylosd in Lhe
forward portion of the satellate. The aft porticngof the models are
acsumed to be rigid, but mastless, shells or skirts. It is cbvicuc that
these azsumptions ar- not realistic, bub 2t i, hoped tnrai the design
analvses 4o follow w 1l serve as guidelanes for the more sophiasticated
aes. gns ot aercdynanically stabilizea satellites.

Altnough many optamazation procedures are availaole, the technique
used herein 1s to differentiate [ while holding paylozd mass (or weight)
and center of mass consvant. MNow :f the payload density is specified,
then the payload volume is also known. Consequently .: is convemient to
non-dimensionalize Eq. (122) by multaplying both sides oy the payload
nass, m , while davading both sides by the payioad vuiume to the one-
third power, v ¥ ; 1.e..

re . o—lmEOm

(124)

" 4TI~

where the right hand side 1s :ndependent of m since I is a linear
function of mass. Acce.dingly, Eq. (22li) 1s a function of satellite
external geometry and the center cf mass location. For purposes of
coxparang several configurations, however, the center of mass location
may be conveniently written in cerms of volume ratio; i.e., the ratio of
payload volume to lotal satellite vciume, incluaing the skirt.

Since optimum geometry is to be determirea from the maximization
of ['(m/+v™") ana since the center of mass is specified, the gravitaticnal
parameter M 1s calculable and is presented in the following analyses of
the various configurations. Also, 1%t shculd be noted that the maximiza-—
tion of " tends to minimxze T , thereby tending to maximize M .

Tne vody chapes chosen for the following design studies are the
same a3 treated in Section 3.2. The basic body chapes - cylinder. sphere
and cone ~ are anaiyzea separately and critically compared. The =-ximun
's of the power law bty and the trancated cone are shown to be not
much dafferens from those for the pointed come. and conseguently, these
btodies are not extensively compared. The hemisp. re-cylinder ard rine-
cytinder are compared with the basic bodies whicn, when taken together,
me.e these composite configurations.




1§ fgstc body Shapes
Jai dej Gflinder

Figure 31. Cylander Ncmenclature

tigglecting the contrabution of the skart of the vehicle to its
rorit 0f inertia about the y axis. I is found to be

T e sz 2z
T g eyl s

and for later use, the moment of inertia abcut vhe X axis as

o=

8

For a cylindricai homogeneous payload

Yy Niur
- \

where, of cr.rse,




i30p (_w;
V= Yy

4
A
N7 g
[ 'Y; ] )

xhen by us:ing the toregomg equations for f, Xom /4 and v ana
- (6b) for Cm, , (12L) vecones,

A E AL
5, - (ot £ 1 i% [-%

Lo S8 (4 )

-

Differentiatang Eq. (229) with respect to UD and setiing equal to zero
yelds

o R B e SRR o o

For orbats of interest, the two bracketed terms in Eq. ( ) are less than
unity, and using Fig. 2 for carcular orbits and Tw = S5u°R, the magni~
tude of these terms are found to ve nearly 1/3. Eq. \13'n therefore
becones approximately,

4 \ 4 A (%)
? +5°)wr @)m 3\f\f,.,() © )

Y

which, for volume ratios of 1k, 1/2, 3/, ana 1, has the graphical
solutionss

Vive =Y (\ }m_—

T =Y2 1 (M),

- -

; N _4—A-—
: bt .‘_,_A.__...x Jy._,,..._..“'
M
,‘.93'_,,_& S ‘
.
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Yivg = ¥e 1 Qo) % log

= 4 (1(0)"_ 2017 -

shovn are the values of the gravatational parameter, M = (T«/

={I«
which correspond to the optirum fineness ratios.

nean acceieration of gravity of 32.?2 ft/sec?

Table 1. Cylinder Summary

Sutstituting the foregoinp results into Eq. (129) gives the maxs:nm values
of U{mly¥s) . Morecver, .0 the payload dens.ty is specified, I
may be found as 2 functior of payload =ass or weight. The folloving table
sumarizes these results for the case of wfvr= Y slvg (£¢ % 1.‘
)-1

U’ has the dirensicns
ef £t/slug.  Also, the payload weight W 1S evaluated at sea lerel for a

(132)
(cont. )

nax

Also

P | Wokare (M) (T (W e | M
1/ .56 L. 53.7 522 -0.269
1/2 1.80 271 12.3 12 -0.035
3/4 1.08 2.86 3.61 36.h +0.070

1 0.76 0 0 0 +0.133

The resul.s shown in Table i {except for

cant features of these resulta ara diernceod in Seatiosn 3.

2
SOCLATN Zeuedek.

“ffvi=10 ) are preserted as
plots of ' versus paylozd weight in Figs. 35, 36, and 37. The sigmfi-
)

l‘l'he payload desity of 1/2 s:b.g/ft.3 represents a reasonab
U.S. satellite payloaas launched to date.

le average of




3.b.2.¢ Sphere

Figure 32. Sphere Nomenclature

Since the "fineness ratio” of a sphere 1s ovviously umty, there
is no need to maximize the stability parameter I* for a given volume

ratio. In order to form T{m/v'3) and
determine the pitching moment of inertia, f
integration yields for this quantity,

hoewever, it is necessary to
« A laboriocus but elementary

K
= . 3 mbe 1 b 2 2 ;;
I= ZEEQE' Letge i6%¢

{ (133)

where the mass of the spherical shell aft of

ihe payload is neglected.
For a hemogeneous spherical segment,

Kam . 26 =% € Q)

b 3-2¢

The following geometrical relationshaps are also useful.




vy = € (3-28)
Y.
T -[zE)
[>} e\NT
Hcreover, the moment of anertia about the X axis is,

I= E‘:;e) '—3e+->e§

which vhen combined wath Bq. (133) leads to

| -fe+28&-+e?
M -1 = e

G223 .3
—ge te€ L

B

Substituting Eq. {59) for Cm‘,( ard Bq. (133) for 1 into Eq. (124) yields

| [0 2% fz 1t
7!-"3
(TVs (\ e

\ 'r' (;—za‘."

where the geomoirical terms are all functions of ¥{Vy since Xew/D =
{e) =€ I‘v‘lvv‘.,. . The term in thc brackets may be estimated using
Eq. (SO" and Fig. 2, and consequently has a value near 2.1:. Although
EqQ. (138) may be written in terms of ~v/vy , the lengthy expression is
quite cumbersoue.

I4 i2 .ore fon. ble to construct plots of XwwlD and ¥/VG
versus the cepth ratio ¢ . Accordingly, these curves are shown in
Fig. 33 25ong with variataon of the gravitational parameter M . It is
moted that Cor all possible values of € , M 20O and hence the gravita-
tional torgres always avgeent the aercdynamic torques in the case of a
Moezccd® sphore.
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‘fable 2 presents a summary oi the aercdynamic paraneters
developed above, Mere again, the payload dencity is assumed to be
3/2 slug/rt3. Discussion of ihe results ana corparisons with the cylinder
and cone are noted in Secticn 3.h.2.% and Figs. 35, 36 and 37,

Table 2. Sphore Suawary

*omfd [ Mt | T'm”

L2205 21.9 2.6

.3125 7.0 9.32
-399 2.55 3.72
500 ] [

AN

o)

o 2 * e .G 8
Figure 33. Sphere Inertia and Volume Characteristics
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Figure shi. Cone Nomenclaiure

For the conical eon

figuration shown in Fag. 34, the moment of
inertia about the piten {or

yaw) axis 1s found to be

, ’j:imi’(x—g'_”‘”lf%Jr

LS 1

'fvm‘ﬂ‘i = IZ_E()_(_E_,\,)1(4-+“+¢S‘> (139)

where the mass of the skiri is,

as before, roglected. Likewise, for a
homogeneous payload,

(10)

¥ (Tats (v
- = — ) .
24 \n7,4




Furthemoie it is easy to show *hat

2 H Xom\ %
L =&t E)
which leads to

2,
M= toote

2
G+ wt*

Following the procedure used for the cylinder and sphere, Eqs. (73),
(139), and (140) may be substituted iato Eq. (12h); 1.e.,

The question now becomes one of determining the optimum cone angle 3
whaich rende:s Eq. {142) maxirmum for a given volume ratio. The iemperature-
aependant term in Eq. {1:2) obvaously complicates the maximization process.
As may be seen in Fiy. 25, however, this term is small when compared with
the first lerm, and consvquenily, contributes very little in the ueter-
minaticn of an cplisnam cone angle. Then, by neglecting the temperature
term and differentiating Eq. (1h2) with respect to § , and setting equal
to zero yields,

) 5 = (i3}
oy

which is independent of volume ratio. The substitution of Eq. (W3) into
2. (il°) gives the maximum (nearly) value of ['mjfrVs ; i.e.,




Using Fig. 2 for a representative value of (”S.) rTwIT» , Eq. (Xhl)
reduces to

(Tmprts) = 358 [1- %)) / M) - s

Furthemore, the optimum cone angle, Eq. (1i3), may be suvs:ituted in
Eq. (141) to give

~

ME 7 (1.6)

which 15 positave and stavilizang. The {oregoing reslts are suncarized
an Table 3 and Figs. 35 thcough 35 for volume ratior of 1/h, 1/2, 3/k
and 1 and for the case of mfv = ¥z s!uval’-’—‘f’,

Table 3. Cone Summary

Vi | Sorr Xm/ O (0% g (P r] M
/4 3.3° 0.473 5.5 95.2 964 0.333
i/e 35.3° 0.595 29.0 8.5 362 0.333
3/ 35.3° 0.681 15.23 19.2 19k 0.333
1 5.3 | 0150 | 8.95 m3 | | 033 |

2.5.2.y Cuzparison of Basic Body Shapes

Now that the stability parameters of three basic satellite shapes
have been calculated, it is desirable to analyze the advantages and dis-
advantages of each configuraticn from the point-cf-view of maximizrang
stability for a specified payload condition. The principle used in the




&s

preceding sscticns 1s to optinize [° while holding the payload volume

(or mass) censtant, and then cbserve the variation of thas maximum as the
center ¢f rass and paylecad veight of each configuration are varied. In
other words, the question may be asked, "rhich cenfiguration has the most
aercdynamic stavzlity for a gaven payload weight and center of mass?®
This form of optimizatior, however, does not completely solve the problenm
in that maximum §' for a specified payloai volume {cr mass) and center of
355 aleo spesifies tne diameter of the satellite. Ceonsequently, the
preferred configuration from a stabilily viewpoint may have a prohibi-
tively large diameter.

The results of the stability analyses of the three basic vody
shapes are shown plotted in Figs. 35 through 38 for the four volume
ratios. Since fully loaded homogeneous cylinders and sphere are neutraily
stable only the cone appears in Fig. 38 for v/vy=] o0 . Also shown are
integer values of satellite diameter aicng each maximum {° line. In
Figs. 36 and 37, values of I’ for constant diameter are shown to illus-
trate the deviation from the optimum |7 . These curves elearly show the
difference between maximum [ for constant diameter and maxarum [° for
constant mass {except for sphere). It may be seen from Figs. 35, 36
and 37 that the core has the most aerodynamic stability for a given pay-
load weight, while the sphere has the least or nearly the least. The
cone, however, also has the largest diameter for a given payload weight.
For example, consider Y/vy=V¥z  and a weight of 300 lbs. (Fig. 36).
The optimum cone is about 6 feet in diameter while the cylinder is
only 3 ft. The sphere, which has the least su:bility, requires a L it.
diameter.

Now suppose there is a requirement that the satellite be no
larger than 3 fi. in diometer. Then at these conditions (W =300 ibs ,
vl“r=¥2, D= 34) the cylinder now appears the most stable. In fact,
the 2 ft. cylinder xs better than the 3 ft. cone. At “¥¥=3/4 and
W = 300 lbs. (Fag. 37) the optirum cone has a daameter near S ft., while
the cylinder 1s >tili neax 3 £t. The cphere, which 1s slightly more
stable than the cylinder for ihiis volume ratio, is about 3-1/2 ft. in
ddazeter. If a 3 fi. minsmum diameter mast be held for the wivg =374
case, however, the cone has the most stability. If the length of the
satellite is no problem, this example may be carraed still further. That
x5, for vy =Y4 (Fig. 35) thz 300 1b. payload may be carried by a
cylindrical satellive of less than 3 ft diameter. Furthermore, the value
of ' for this case ic considerably higher, as expscted, than for the
cther caces with higher voluxme ratios.

A few words are approp: izwe avout the combineu stability due to
aerodynamic and gravitaticnal effects; more specifically, the quantities
@ and 3M . because of the basic difference between Gpf and 3M ,

& _combination ¢ these parameters is impractical to optimize analytically.
Gp' , hoiever, is a function of T" and the orbit conditions, and there-
fore, maxirmm I° maimizes @@ for a given orbit. Furthermore, it is




&6

desirable to keep M positave (low fineness £31i9) to augrent *he aero-
dvnanic stabiiiwy. 1n the examrles atove, or ia Figs. 35, 36 znd 37,
both the sphere and optimua scre have positive walues of £1, whale for
the optimom cylinger, M _s near zero or negatave. Consequently, hefore
one selec.s a satellite shape based on maxirum 2erodynaric stability, the
effects of gravitaticnal torques shovld be corsidered. As shown vefere,
th: balance tetween aerodynamic and gravitational effects depends on the
orbit zonditions as well as the satellate shape, and that maxamum aerc
dynamic stability certainly does not recessarily prevent unstable moticns
at all near-Earth orbit concitions. These lavter cbservaticns are
particularly true at higher aitaitudes where the values of @P‘* ny becore
small, owing to the decreased awmospheric density.
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3.45.3 Coplex Body Shapes

5.1.3.1 Power Law Body

Following the analyses of previcus body shapes, the static
stamlity parameter M'm [v-¥3 as well as and M will be sxamned for
the poser law body. As defere, the body will be assured composed of a

nollow, massless skart with a homogeneous payload as shown in Fig. 39.

Figure 29. Pover Law Body Nomenclature

Tae movenis of inertia of a power law body may be determined as

e R % ]
I=mbn Lﬁ——} 4{an+y) * (2r3) n+i)?

1= le‘",m(ZnH}
x

8 (4n41)
M= .- (2"'3)("*‘)1”11“': 4 (a8
I (Rnasnelg™ " 4 {ane) (£0)2

ang tne pertinent geometric relaticnships are




$2
&£ 2(.1»!_
T T 2mez 4
v Zak
%1
v = TO'L
:{-(_2»«;-!) (118}
~ ¥;
¥ vy % l_.’;)“';; .
5 = [ 3]

Using the arproxinate pitching momeat slepe, ka. {76), an vhich the
torperature depencent Sorn is neglected, the aeodynaric stabilaty
paraxeter [° m[v'l: an terms of volume and mass perarmeters is

e

MFaiv?
]

s 1%, That

q ’)Y kAt .‘ A .

R R O i

B3 =y (= m—"

The optirmm fineness ratio for
volure or rass
LiC and sstting equal to zero.

maximum stability for a piven payicad
may be found by differentiating Eq. {1u9j with respect %o
This operatjon yiclds

el
Upy = LIATHA g | 2ne3
v ),,,, ( z i "'r) ‘ 2(4n0) (150)




and vk his equatlon is snbstatuted into the lasy of Zgs. (1h7), the
anertia parameter M becomes

ME Y (151)

which 1s independent of body curvature and 7olume ratio.

Substituting Eq. {150) into Eg. (149) gives the approximate
zaximum values of Mm/v Y3 for given paylcad volume or mass. Plots of
Eq. (149), using Egs. (348), are shown in Fig. 40. It may be seen that
the value of the exponeni has lattle effect on maximum stability for given
volume ratio. It should be remcmbered, however, thst 2lthouzh 4he curves
in Fag. hO may oe extrapolated to n=o (cylinder), ‘hey become invalid
at azo ; i.e., Bq. (1,0} applies only for o<m €4 . The exast
cylinder values for ("m/™") pax  are shown on ihe ordinate. The
difference between the exirapolated values and exact cylanaer values is
due to a discontinucus shift of force center as a dacreasing {(n-30)
power law body suddenly becomes a flat-faced cylinder. slso shown are
the more accurate valves of {I'm[+V3} max for the n= 1 (cone) and
n= '(/7. )bodies; i.e., including the temperature term in the solution of
Fa. (73).

It also zppears from Fig. 4O that the value of N whicn gives
raximum fmivYs 15 something greater than unity. Since N greater than
unity represents a body with a concave surface, these configurations
cannot lozically be treated using conventic-al free-moiecule theory. That
is, the bvasic assumpticn ¢l free-molecule theory, as apuviied to gasdynamic
caleulataons, is that the incident momentum flux is not disturbed by the
presence of the body. Regardless of this difficulty, w~wever, the
"flat " of the curves in Fig. LO indicatos that the « stimum hody

protably does not have much more stability than the cone (n= 1) .

Table L shows the various maximum stability parameters along
with (/D) opr , and Xew/L as calculated from Egqs. {148}, (149) and
{170). W 1s the sea Jevel weight, m/v = Y2 slug/+t5 , and [ isin
ft/slug. From Eq. (151) the inertia pa=ameter M 1s approximately 1/3
for all power law bodies.
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Taole L. Pouwcr Law Body Summary

T H T 7
n Y‘I Vi (9.[0)0" Xom| £ (r‘m/'fv‘)m\x (rm‘l‘)mux (r\-} ’)m-\(
A 1.17 .238 59.0 .k 752
172 327 . 364 2l 30.k 308
1/h
31 678 .L9% 13.68 16.48 166
1 58 1 .80 7.77 9.80 33
! 1/4 848 .332 66.1 3.2 £h2
! 1/2 g% ! oan 26.2 B0 134
1/2
34 659 578 13.5 17.5 177
1 532 €7 8.26 |  10.1 105
/L .53 h1e 70.2 33,5 831
1/2 70 .5k 2.0 35.3 357
3/ -
3/k 415 £3% . 15.2 prn
1 656 71 8.51 10.7 o
1/h .57 a3 73.0 92.C .
i/ L1707 595 28.1 35.b 8
1
Y] .707 .55 1h.£3 18. 187
1 .07 .750 6.66 10.9 310

It may be noticed +hat the vwalues for n=4 {cone) :n Table k
are slightly (% 4%) lesy chan the cone values shown in Section 3.4.2.3.
This aifference ic again due to the negligence of the temperature depen-
dent term in Eq. {75} for Cmy .
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3.k.2.2 Truncatsd Cone

Figure 4i. Truncated Cone Nomenciature

For the case of a "loaded" truncated cone, the pitch and roll

=monents of aneriia abcut the tenter of mass are functions ol the diaweter

ratio, : as well as “he payload lengvh ratio, # . Consequently it :s
~ not difficult to show that :

it
!

s cr BT 7
o -= g0 7;(5"431(5(1-(%)+~\‘(|-6‘;"%
- 152)

i = 3"\01/\ < .%
x7 T30 ) 38+ 3qb(1-6) o (-6)"

c - Bl
FETIUDS




= a8y 4 58(14F +ionTE (-8 + 1098 (1-4) +56%

8= 10 % (147 + Sq80-0) + &g

.(%\ ?lf’% (1) +4mp(1-8) + 46 \%

and where

{l-oF s b li-¢) +26* '\
"\L»\‘U—(%) +3mp(1- -8)+36"

Likewise, *he other geometrical properties may be expressed as

v _,,|\~\\“>; +3,(5U -8) +35"1
R

"TED
l_‘ + 6 +3° j

5

5 Sln IRIG RSO 3?

D

The first of Eqe. (156) may be solved for h'( an terms of @ and the
volume ratio; i.e.,

(157)
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Eqs. (15h) 2nd {157) mzy be used, if decired, for rewrating the
equaticrs for lmg, and T dntermaof 2, Mo | and ~*/v7 . The
resulting expressions, however, are unwieldy for rapid numerical calcu-
lations. Therefore, the stability parazeter [ , as defined before, will
new be written using only Eqs. (80), (152) and {136). The resulting
corbination yxelds

160

¥or given volume ard dlameter ratios, the approximate opti»um fineness
ratio, AD , which gives maxinmum stad3ity, may be found by aifferent:-
ating £3. (154} with respect to 2D . setting equal to zerp, and
solvang for X{D . The resulting expression is

(), =

1’6‘"
i3

i
z (159)

+ of Egs. (152) to give the
i.e.,

Furthermore, Eq. (252} combines with the las
5

optirus vaiue of the inertia parameter M

M=zl (260)

which is the same as for poanted cones and power law bodiss. The maximum
value of Tm{a¥3 may now be found by substituting Zq. (359) into

Bq. {358). Ac menticned alove, C , B , X/ A , and M are only
functions ot diameter ratio § and volume ratio A/~3 ; and hence, the
maxirur  Pm/vYs  depends only on these ratios.

Fig. b2 presents plots of Eq. (158) using Eq. (159} for various
values of the volume ratic. As in the case of power-iaw bodies, the
curves arc not cxtended to the cylinder sbscissa (# =10) since the
equations tor {my used herein are jnvalid for cyl’ -ders. The exact
cylinder values for (I° ml'r"!) max  however, are show. on_the ordinate.
Moreover, representative values of the more exact (I'm/[¥Y3)wax are also
shown using Cwy £rom Eq. (79) with SuS T and (1/Se) FwiTe & 065
frem Fig. 2. It may be seen that the approximation of Eq. {80) is in very
little error. It also appears from Fig. L2 that maximum M m/vV3
occui s for configurations with non-zero daameter ratios, which is, in .act,
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s ¢ .gnificant and useful development. Then for a specified payload volune
cr nmass requiremcat, the pointed, conical satellite loes not represent the
mist stable configuration as originally suspected. The Slunted cone alsc
represents a more useful snape trom the viewpoint of re-cntry, payload
packaping, and/or anienna aesign.

The results of the stability analysis of the truncated cone are
surmarazed in Table 5. Here again, the payload density is taken as 1/2

siug/re3.
_ Table S. Truncated Ccre Summary
8 1 i Wlialy T xumpt |(ComirSae |70 10"
w | o 473 73.0 92.0 30
1/2 707 .595 81 35 0 358
° 3/u .27 .581 W5, 185 187
i L7 .750 .66 10.9 10
/4 660 .338 .4 90.0 1
» 1/2 600 48U 2.8 36.3 367 ]
— e 3/t 57 .590 .8 18.65 189
1 568 678 8.65 10.95 111
bV 952 222 69.2 87.2 882
1/2 .670 .380 27.0 3.0 i 3l
s 3/h .580 .502 .5 18.3 185
1 .528 .607 8.1 10.6 107
ik 1.55 160 57.0 7.8 726
L 172 .890 .302 23.6 29.7 301
3/
3/ L5 L0 12.95 6.3 165
! 552 2] 7.64 ¥5.¢ b




¥

It should be re-vmphasized that the pointed cone values
are slightly less than the cone valies in Table 5 due to the omission of
the temperature term in Eq. (79} for Cumg, -

Before concluding this section it should be noted that there is
2 Aafinite cimilowity hotween 4he resulis of the power 1aw body and the
truncated conc. In particular af 8 is replaced by i-n { n equals
exponent), the farst two terms of Taylor erpansions of the body profiles
about the peint x/f = 4 are identical. This similarity may be noted by
corparing the values of {m/v"s) may fOr @ given v/+7 in Figs. ho
and }i2.
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3.4.3.3 Hemsphere-Cylinder

Pigure 43. Hemisphere-Cylinder Nemenclature

As in the problem of determining the pitching mement slope, the
caleulation of the inertia and geomeirical charasteristics of the hemi-
sphere-cylinder is considerably more complicated than for the basic
shapes. The parareters shown below are written for the two conditions of
the payload fineness ratio € great=r than and less than /2. Siace the
skirt is assumed nassless, the sphere equations of Section 3.4.2.2 may be
utilized for € €42 . Consequently, it is not diffycult to snow that

- 3 ar
LA W TIPS P Je £%]
2 6 3 10
(3-2¢y (162,

T

T2 mp C( ” 2 3 96060 €2
31~ 336€ +960€7-6AC 3490€°T | €= 2]

T




(162)

which may ve combined to gave

3

e®

T
M= 1-F€+26 -te
2 3
[ o Ty

2§ -240¢ +480€7 564067 - 940t
M= i~ 236€ +960E" - C40E* +9606%

The results of tnr sphere analysis lead to

e(4 -3¢€)
2(z-zZ€

o . 24eE-|
> T e

Tne total fineness ratio and payload volume may alss be wrivten in terms
of the payload finewess ratioj i.e. .




The stabality parameter [ and its altornate forms may novw be formuiated

using Bg. (8l) for Cumy and the foregoing Eqs. (161), (164) and (166).
If desired Eqs. {155} may be solved for € _in terms of L{D and /vy
and then substituted in the equations for I, Xwm/D and ¥V~ . 4&s in
the cases of the sphere and truncated cone, however, the resulting expres-

sions do not necessarily simplify the problem. Consequently, [Pm/4¥3
is written here as,

3

y  [Ee(ao 9] X (2-20) ~Ye(z - %)

ml"f”: 2
- 3
TT-berse 3]

~
i

e %]

(167)

il 2€%1)) LA
24o[T(e-i] |3 X{ce-D Y(aae ')i roak]
7| -230€ v SL0€° ~630€3 +963€

T =
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where 2L and Y are defined by Eqs. (83). If S and { Vs T Te
are representea oy the typical values in Fie. 2, then X and ¥ are
approximacely

X = ostoldfo) +(e) - 0 4\

Y 2 0680@(0)4« {.193 (268)

vhere 1t 1s understood that LD  is always greaver than 1/2. Moreover,
1% should be re-emphasized that € , in Egs. (367), 2s a functicn of
40 and ~f4 . For reference. the solutions «£ Egs. (165) are

6'—'00551’ s"ﬂ-g(’v ( y\_«.um S +_L {é (—‘yz.-‘
C

{1 _t 1 [P
e= 23T le 2]

Because of the ovvicus difficulties involved in differentiating
Eqs. (167) with respect to LD , selving equai $¢ ieTe, and selvang fer
D) opr » no attempt has been made "¢ analytically determine tne
maximum value of [‘mlvh for hemisphere-c3.inders with total fineness
ratios greater than 1/2. The stability par ho r, may be
plotted against payload weight for constant values of rnl'V‘ ~Ivy and
either LD or D . Constant A{D curves are presenied in Figs. Wl,
LS and 46 for the usnal mir =% slvg /€3 and VIfr equal 1/2;, 1/2
and 3/4. The examples chosen are the limiting caze of A{Dz)s. which
is a nemisphere, and A{D = %6 which is equivalent to the complete
sphore with the seme paylcad vol'.::e x'at.io. Curves of constant diameter
(=2 u:':b) are aiso shown in Fips. hir, 45, and b6 for the three wolume
ratios. Since P varies along the constant diameter curves, a
graphical solutien for maxamm UmivVs , and hence WD) gpr  , may be
possible. Such a solution is shown in Fig. !xh for 47vy *Y4 in which
the optimum fineness ratio appears to be near L S. The corresponding
optamums for the olher voluwee ratios, 1/2 and 3/, are not apparent.

1ncluded in the comparisons of the hemisphere-cylinders are t e
basic sphere and optimuz flat-faced eylinder. Of the configurations
shown, it is clearly seen that the limiting case c. *he hemisphere
{Mp =Vz) is the most stable. This configuration, nowever, is probably
impraciical since the diameter requirement, as noted in the figures, is
the largest. The oplimum hemisphere-cylinder (Fig. Ll caly) is seen to
be only <lightly bettcr than the optimum flat-faced cylinder. It is also




aoted that the equivalent hem:sphere~cylinder (v/p? sare ac for sphere)
has a rucn higher value of {7 than the corresponding sphere. This is
expected, however, since the bLack surface of the sphere contributes
essent1aily nothing te the stability. Furthermore, it 2s evident that
the sphere with v{~y=V4 (Fag. kl) and the hemisphere with v{vy =V
(Fig. l)xS) have the same stability ( € 3% the same for bosh configura-
tions.
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21,3k Cone-Cylinder

The cenc-o7linder analys:s will be lamated to the case where the
cong is complevely falled with payload and the cylinder is empty. The
geozetry of this cenfiguration is shown in Fig. b7.

i
i
L Sl
>

Figure 7. Cone-Cylander Nomenclature

The principal moasent of inertia about the y 2xis 1s easiiy
found using £q. (139) of the cone analysis: i.2.,

- 2 CWATANY
To mo [y, L[ Xom) HW
go L7377 \0) | o)
and lakewise ix is evaluated as
T o= 3 W‘.i:;‘ . an)
x 40

Egs. (17C) and (171) combane to give

- _ o [RueYH €Y
Mz x4 =32 & (° . (212}
T 24 16 {Xmt (132 ’
AN AN Y




ns

For the hcuitgeneous comacal paylead swetched an Fig. U7,

xom - 90T)
U 4 g(vh)

wtf = ;{%}%‘\
) L e
. v% _ [T %o > Aw(Moy (T
3 -L9Q_FID)J - [m(ﬁ;ﬂ} '

Using the cone-cylinder (me from Eq. (#8) and the equations above,
BEq. (124) for (’ml’rY; may be expressed as

OGO ( . .
o -2 3l 1

— o o, [‘5{- l_% (’x_;:\)t(%)z]

L
{27h)
|- 3% !
tKE N 202 2
oV et (LY
1610

where J and K are defined by Eqs. {9). The first of Egs. (173), of
course, may be utilized to zake £q. (17h) independent of Xew/XA .

As in the case of the hemisphere-cylinder, the naxamization of
Eq. (17h) by analyticzl methods is not practical. It . possihle, acwever,
to plot versus payload weight (say) for constant val.es of m [V, ¥Tvy
and D . The optimum fineness ratio may be found by drawing a constani
2D 1:ine tangent to the constant diameter curve. The optimun 4D  line
oo then represcin: ine comm-cylinder configuration which has the maxiomum [0

for a specisied payload weight and volume ratio. This graphical optimiza-
tion procedure is itlusirated in Figs. k8, L9 and 50 for a payload density




e

of 1/2 slag/ft.s-, volure ratios of i/k, 1/2 and 3/L; and & diareter of

2 fest. Also ploitea in these {igures axe tre equivalent curves for the
optamum cone and the optimum cylander. It saould be remenbered that the
cone-cylinder configuration used in these comparisons s composed of a
2ully loadea cone and a rassless, cylindrical skirt. When ¥iVy= Ve,
it 1s seen from Fif. 48 that the opti=un cone-cylander has the lowest
vaiwe of T' for a given weight; howeves, when "ivy= Y2 or /4 the
eptimun ecne-cylinder has a higher vaiue of " than the oplimm Sylinder.
1% 35 2150 seen Irom there figures that for a gven diameter and volume
ratic, there ic a range of sea-level weighos for vhich the cone-cylinder
has the highest value of |’ of the three configuratlons shown. For
~je =l O , the cone and cone-cylinder are obviously coincident.
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L. DINANIC STARILINY ANALYSIS

4.1 Genecal Corsideratjsas

in Volume 1 of this series ol reporis, it is azrgued that the aero-
amamic damping-in-prtch of near-Earth satellives produces, for all
practical purposes, a negligible effect on the satellite's oscillatory
motion. Even if the dawring-in-pitch derivative Cmg, is considerably
larger than its static counterpart C,..q » the non-dimensional pitch rate
g€ /2 Ve , Which miltiplies C""lr’ is an extremely small quantity when
compared with the expected angle of attack. This is more gleariv illus-
trated by a sirple cormparicon of the domping paramcier op with the
static moment parameter Op . Accordingly, from Volume I, in which the
satellite crientation angles and rates are expressed in terms of the
orbit parameters,

¥ _ . bV,
= R

2 2
= -GS [ 474

[ R/s!ug (123)

By anspection of Egs. {175) and (122), 3t s seen that if I3, and T ¢ e
of the same order {as will be shown), than Qg" and Of* differ in magni-
tude by at least the ovder of Z/r, ; i.e., the ratio of the satellate
reference dimensicn to the perigee radius, which for . ascnable satellites
{witn dimensions of at most 102 £4.) is of crder 16=5, a very small number.

Although the resulta of wie nurerical analysis in Volvne I adequately
show the insignificance of the zeredymaw ¢ damping insofar as the satel-
lite's angvlar notion is concerned; it 1s the purpose of this section, in




part, to justify the original hypothesis that \".' is not significantly
larger than . Although thas anwestigation wmay, at first czem super-
flucus, there aia applications in which aerodynanic damping-an-pitchk may
conceivably be a useful inpnt; e.g., the design of a sensitive aclive
stabilizobion system. Accerdingly, the analyses to follow investigate
the variations of the damping-in-pitch derivative, Cmg. , throughout the
acute angle of aitack range for the three basic body shapest the cylainder,
spheve and cone. The purpose of the angle of attack variataon is to
determine 1f there are any large discrepancies totween Cmge at angle of
attack and the usual definition of C“\’ 5 1.e., in Eq. (176), Gm, is
definea as, for simpiicaty, ¥

4.2 Damping-in-Pitch of Basic Body Shapes

k.2.1 Introduction

Due to the complacated nature of the antegrals, the damping-in-
pitch derivative Cma is c..culated using the approximate thecry of
Ref. 4. Consequently, it mey be shown that ..e evaluation of Cm as

4. approaches zero incurs very lattle error since for diffuse reflec-
ticn, the approximate theory yields a linear variation of Cm. wWath 2.
n addition, th2 various I3 's are calculated using optimum body
geometry as determined from the static stability analyses. Due to the
generally second-order xmportance of aerodynamic damping as pertaining to
trmis study, the optimization of body geometry for maximum aerodynamic
damping does not seem justafied.

nffuse reflection 7o = 0"11) is assumed, and as before, the
refcrence area and length are TO'/4 and D respectively.

4.2,2 Cylindor
The danping-in-pitch deravative for a cylinder, without end effects

a:a for daffuse reflection, may be evaluated using the apprerdmate fre. -
molecule flow theory (Rer. 4 or 6). Then, irom Eq. {(27),

301 205 \fTw 10, _ 2 Xem , 2%}
i.) [ﬁsmd‘}' i-—3—1—- f3\

O '(° 3ol || (18)
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whe~¢ ire cylirder geometry is de’aned an Fig. 31. Lakewise, “he contricu-
vicr of =he {iui-faced nose jortien ray be fo'na as

e

( {5‘1"3' oS - (379)

I'd
"“‘Q'NJ{E \

since there is assumed to be no inweraction between the two surfaces,
Bas. (178} and (179) may be added to zave

s o = =
RS A4 £ PRI L | PP SR Y7 L
S & o) T Y g T Y YT

(130)

Eq. {180) 15 presented for the simple case of Tw=Tew 2n Figs. 51, 52
and 53 for cylinder finen2ss ratios of 1, 2 and § respectively. The
associated temperature correction tem is seen to be, from Eq. (280),

By = Cng =ng £ - “;'j‘glf;: ﬂr‘ ZXT,.,.*;(X_F}I-]

<~

or

SouBCms g -zfw ['{:‘E - i]
Q/D;“[( _352_,_,+ 3(%\’1" 31 Tn

(81}

which 1s independent of angle of attack, and is shown in Fig. 54 for a
wide range >{ temperature ratios.

Unlike the case of static pitching moment . ~pe, the noa-linear
variation of Cm with center of mass location 1s clearly evident. It
may also be noted from Figs. 51, 5¢ and 53 that Cm tecomes more
negative (more damping) as angle of attack initially increases.



138

For purpcees of evaluating T4 or the cylancer, Eq. (167) for th
zero angle of attack case “equces to~

28 ﬁ; {g_ ['—-ZX“'WZ(&#‘J

5*‘1

2 e ML
R RICouE

The darping-in-patch parameter, Y':, « ma¥ now he formed usang Eq. (182)
and Bq. (125) for the pitch moment of inertia. Hence,,

o =G T0O?
s Sy 1
s_ﬁ “_ W( gxm+g T“’{"
2. [ Tar L

e

£ ey )

\D

or for the czse of an off-center, homogeneous payload, Eq. {183) may be

written in terus of payload volume ratio anc weight using Eq. (127)
the assurption that mfvs ¥ slv:,{én 5 3.€..

e 1 (S st esy] o]

(o
A
PREY iru 7 o
AR ]

fvy]
1%t |

374 22 rea

3o re2ds -3d that the "shadow" area on a cylinder may have a signifi-
cant contribution to Cr¢ for o near zero. For the practical case of
low #{D and lagn % , however, this contridution does not alter
£q. (182) apprecial.ly.
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For a sarple calculatien, ot Y% equal 1/2 and /4, and ieuv the
respective fineness raiios be 1.80 ana 1.08, as taxen from [able

L. Then
Bq. (18U} becomes for fss) (Tuffa = . C65,
~ loi . i / ¥l
NE T (it 4, Ko = g
(285
el 1
fy £ %s [riv =%, 4p = 18] -
¥

Plots of Zgs. (385) are presented an Figs. 61 and €2 alonz
varigtions of for une sphere and ccne. Dasc

with sumlar
rscucsicn of
is reserved for Section 4.2.5.

these figures
Lh.2.3 Sphers

found

The approximate damping-in-pitch deravatave of a sphere may be
by integrating Sq. (27) cver tie front (or windward) hemisphere.
For diffuse reflection, the result is readily found to e

2 207 Tw | 2% 1y 2 2=\ | s
Cuy 2 -2 [T YR (- %) vesa)(1- 757 a9
Eq. (186) is shown in Fig. 55 for To=Te . The normalized temperature
correstion term, wnich 1s
S.uACm £ - f_TT- r I:.' - ‘
r Xeamat 3 l Ta (187)
Meme ] - 2
[r-2%]

is

plotted in Fig. 56. Unlike the cylinder, the sphere damping is seen
to decrease with ancreasing angle of attack.

Evaluating Zq. (186) at zero angle o2 attack loads to the usual
definition of c...,‘, y

Bl

it

2]

Gy 2 -3

[y 2%y ] -2
e BVE -2e) nft-2%) - aee




For *he case of a3 "loadea” »phere neo2s Mayloan. the substi-
tution of Eq. (138) and Bq. (222} } results in an expression
sor the sph»’re 13 1.e.,

G

,“1 2 (328 i T
e oo
Sw [x (’5_ +

(135)

e oonbe

e conber of mass may oe written an terms of depth ratio € , and the
arameter may be expressed as a function of payluaa w‘s-gu? for a specaraed
vayload density. Then by usine kgs. {13i1) and (13} and :-—.,'v--:
'/Zf"lﬁlﬂ", 2q. (189) becowes

F25 5. toe
gt Bt (9T vz

/’3 V3 (g M O 7-_‘-
w3 e”3 (3-2¢) [; et & '—:—(’]

¥
53

where € 15 a functaon of ine payload voiume ratio from the first of
2gs. (135) or Fig. 33. For the sample volure ratios of 1/2 and 3/k, tne
sphere i‘,b 1s approximately

[’Y/dﬁ— = '/2}
{‘V-"b’y':’/?]

P
where_(V/92) 1Twl Too is luren vo ve .065. Tne foregoing expressions

for \"1 are piotted in Figs. 61 and 62. A discussion of tnese results
i5 1m Sectaon L.2.5.

L.2.L, Cone
Following the example of conc rtatic patc.ing =e ~<n%, tre damping-

in-pitch derivative Cm\, nay be estimazed using the same arproximate
“hecry. Then, for dyrfuce reflestaicn, the inlegrawisn of 24. (27) yields




Concequertly, for £ &4 , Eq. (1%2) simplifzes to
Come £ — 1 'Tw qu <]
Ing, o3 \.smx vt 1-4& ‘;3

{29k,

and for of identically equal to zero,




Due to the assurpiions inherent 6 the approsimate theory, a rlot
of Eq. (19?) for the ontire angle of atizex range wall show a sharp vroak
in tae ocurvg of Cm, Ve sus «  at the points where 0= & . These

treaks are due to wi€ rather

Aorupt veriation of Lotk #*(5} any p(e)

as o becomes slightly groater ihan S 3 S.e., as tre shadow area becozes

finite, Although the assumpt.

ion of negligacic snaded corttsoution is

knoen Lo be fairly accurate for the calculation of cone 2ift, drag wnd

siatic pitching morent, an a

tempt ix mace aeredn o cwwoth the variataen

of C;..,i with « by consider:ng the effects of the snadow. This refine-
ment 15 accomplished by first 4ssuring an average normal corponent of
=olecular cpeed ratio over the chadow; and then substatuting this Guantity
{assured constant) into the exavt arpression £for Gem {derivative of the
thard of Egs. 20); ang finally incegrating over the shadow porticn. The

recuiting ingremental Cmf
2q. (192) for the ranre ot's
written as

dve {o the shadcw = - then be added to

$ . Without elaboration, the result is

g = {Q’S"L“‘ s P £%) \
Cm‘b-— 3;»3-5_‘\ R {-n li,)] + 2[«»\540;« +5E 1% J[(H"‘%‘:}
AY
q . N 1
+("“(<"A$‘)m*("“ * Pﬁ/‘;’}ﬁr,:.'u;ﬁ{/x‘“fgu&%b-%’%"m‘ﬁj
<, (156)
‘-;:"%'Q'Lofzs H —%%‘ﬁ-“us"s-)% ¢ [|- m‘{()-\
1 ‘fi Sn

+fF

=4

a

?“'((,’imd

. 3\
+ K; FZ‘- {'{i‘rtn" SNA;) f(l— 4 “m;) m"(f.’)]*P Time (I—V{fw.es)%,!
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where

SHADOR -

———
2‘\_4

/.&..,.

(197)
Samb ws YLI -H‘)]
Su“ - — .
1 - pl&)

T £q. {197}, SN 1s expressed by Eq. (22), K{4) oy Eq. (L1) and
P(;) by Eq. (L2). Also, the shadow angie m 15 equal to <os'(-9)=

Tp(s).

The final cone Cmy equatacns - Bq. (19k) for K €5  and
Eq. (196} forev 2 % - ~re platted in Figr, 57, 58 and 59 for cone
angles ¢l 157, 309 and L5° respectively. As before, Tw is set equal
te To for siwplicity. Fig. 50 presentis the corresponding varaation
cf ACvngr {normalized) due tc T, dafferent from T, . %The equations
for these curves are

Sadln 3§ = —EL\E - |1 [0( gs]
[1-gmag +2emes’s } AN
(198)
SesBlomg 173§ : fTT« 1 ]
S L | Y T W ORW TR W
?I'%Z‘{—”w”ﬂz("_r.‘)‘w;‘s] 0 ‘. T lJ[(w S #{1-ert Sy} r¥18)
i - [« iS] .

It may be seen ir Fiys. 57 through 60 that the breaks in the curves at
o= $ are still evident, especially an Fag. 60, and for Se=eo an
Figs. S7 through 59. The use of the shadow corre.ticn, howewer, defin-
jitely :mproves the smoottness of the C""V curves at the lower speed
ratics.
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tew that  Cws has

oeen formulated, the dazping-in-pitch parameter
Ta may be written using Eg. (195) and Eq. (139). Accordingly, Ec. (176)
becones

I'd
z I5V0 — \YS'V\S +. L ﬁé “! - %’%ﬁws"{l
47 amats L5 (et ‘)_L 250 1= 1 3

Usang the cpismum cone angle, $ ot 1z
the relaticn, Xew/L = (3/4)(vlvs) v

. from Secticn 3.4.2.3, and
terns of the payload voivwe rotic.

s Eqg. (199) may be expressed in
Hence,

r 2
"V oomie e
e }l
"7

o B

ere mfv = Vaslug (£ . For the prescnt exaxples. the substatution
~ive = 1/7 and 3/l antc Eq. (200) yields

ooz 19 L,
£ 9

L3
V'V’ , Yivy T e

. 91 - %71
ryz 2l [ = |

ts cf Egs. {2Ui) are shown in Fags. 63 and 62 along with the corres-
ponding cylinder and sphere expressions.
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h.2.5 Compa~ison of Basic Body Snapes

A5 noted previcusly, Figs. 61 and 62 present plets of the dynamic
li.y varameter Ie  versus satellate payload weight for the special
ase '.. 1ere the “luaded” ~ouliguraticnn hovt payload velume ratios of 1/2
and 5/L. The puyload 2g assumed nomogeneous wWith a mass density of
1/2 slg/fe3. The x‘xgn‘e«: clearly indicate, as expected, *hat the cone
nas more aercoynar:t derpivg than eithier e cylander or sphere; at least
for the optirum geuretry (for maxamum [ ) assumed for these examples.

By comparang Figs. 61 and 62 with Fags. 30 and 37, it 1s a1s0 nctaced, as
hypothesized prevacusly. that My is of the same orcer of nagmtude as
thu static parameter P » especially at the lower weignts. (onsequently,
1t Tay be conclnded ‘haf sxnce F'y 1 not sigmaficantly larger than
(say by a factor of 10%), the assertzon in Volure I of essenti al-y nesli-
gible aerodynamic damping may be rerarded as fully substaniiated.
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CCHCLUSIONS

Recent devzlopments in the application of free-mclecule thecry {Ref. 6)
have permitted a rather detailzd aeru\.cmamic araliysis of near-Barth satel-
iites. This theory, although restricted to convex bedy shapes, has Leen
utilzzed tc yield rapid and n2arly exact aerodynamic force and moment calcu-
latione for most satellite configurations and orbit conditions. Moreover,
tnere are no restractions as to the variance of either the tangential or
normal ucwentum exchange coefficients, & and ¢ '. As shown, the surfaco
terperature, Tw , may also be treated as a variable over the body. In view
uf the general nature of this approxiisate theory, numerous calculal:zons
{wnich nav be too detailed for some readers) and charts have oeen presented
22 exapples of the applicability of the theory. Although the foregoing
swudy was intended %o "stand alone®, tne primary purpose of tins repor was
to auyment the conclusions of Volune I of this series of reports. That is,
asrodynanic stabilization and oraentaticn of near-Earth salelaites is
foasible as long as proper (but not nresscnable) aerodynamic design and
anternal mass distraibution conditions are met.

A suppiemental but significant part of the situdy was concernred with
estanating drag coeffacients of simnle configurations. Ine calculations
showed that x£ the drag coefficients are based on the projected frontal
area (quite often a randem variation) of the sateliite, a unified drag
coefficient variaticn cculéd be approximated f£or =65%, 16w finenes: ratic
(order of one) confisurations. For long cylineers or very sharp cones,
Lowever, the quasi-umriorw drag variation wath molecular speed ratio could
be in considerable error.

Since the pramary purpose of this study was to investigate the effcsis
of asrcdymamic torques, suvsequent portions of this volume wers ceoncerned
with zmethods for estimating aerodynamic static and dynamic pitclxi"g moment
coefficients as well as the incorporation of these coefficients in the
design of practical salellite con 'gurations. Although the calculation of
agrodynamic coefficients in fre¢~-molecule {iow are inherently dif"nren’ from
»hat in continuum flow, the conventional "airplane” definiiions of L. .
Cmy 2nd Cmy vwere conveniently utilized throughout this velume. Expres-
sione for the static pitching moment coefficient, (m , were presented for
tk: three basxc eylindrical, sphierical and cenieal body shapes. In adoition,
charts ¢ Cm versus angle of attack were preseated for these shaves, whic
nay be useful in other free-moiecule design studies nct related to this
repert. These charts werc alse used *c substantiate the Vinear £, approxi-
matien for emall angle of attack rangec; a basic and corm assumption.
Consequently, expressions for the inj tia} pitching moment slope, Cmgy , Were
forrulated for the basic body sh , and quently for the rmore complex
shapes of the power law body, the truncated cone, the nemisphere- -cylinder,
and the cone-cylinder. For simplicity purposes, the usual assumption of
diffuse molecular reflection was utilized for these Cm, calculations.
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Since ¢he {ree-molecule theory used in this study was not restricted
to specific values of the 1eflection coelficients, o and ¢' , a2nd the
surface texperatures, T,, ; examples were preserted whicn 1llustrated the
effects of ooth unmiform and non-uniform variations of ¢ , ¢' and Tw .
It was shown that the surface temperature Jevel as w:ll as longatudinal
and axial variacsions of temperature have 1ittle effect on static stabilaty
or orientaticn, at least for the simple configurations cons:dered. On the
other hand, the magnitude of the reflection coefficients was shown to
2ffect the pitching moment slope by varying amounts, depending on the
contiguration and the reiative domanance between pressure and shear. for
nearly diffuse molecule-surface interactions ( ¢ and @' between 0.9
aud 1.0), hovever, the example pitching moxment slopes were shown o be
only clightly different {rom completely diffuse valu3s.

Based upon the satellite motion analysis in Veluse I, tht aerodynamic
stability parameter ' was investigated for the threc basic body shapes
as wcll as the more complex configurations., Since I’ wzs defined as
being the pitching morent simwa. times its reference dimensions, divided
by the pitching moment of inertia, the maximization of I established
certain optirmue body geometry for each set of constrainis. The satellite
models selected for the investigations had homogeneous payloads concen-
trated in the forward porticn with rigid, bu¢ massless, shells or skizts
comprising the aft portions. The skirts, which could logicaliy be fairings
between the payload and booster, augmented tne zercdynsmic stacility with-
out affecting the pitching moment of inertia. ‘ccordingly, the optimiza-
ticn precese tended to maximize the aerodynamic contribution while
minimizing the mass centrabution. For a specafied payload wolume to total
satellite volume ratic and 3 specified payload mass density, the maxixiza-
tion of ' 12rulted in optimun confizurawons which had rather low {and
practical) lergth to diaweter ratios. On this basis, it was shown that
the pointed corc, the pover law body, and the truncated cone were generally
the nost statle for 2 given payload weight. For other constraints, however,
such as a specified maximum diameter, the cylinder and the cone-cyiinder
showtd premice an bring uwsefvl and practicsl aerodynamic sharez, The
sphere with its impracvical si2il was, as expected, the poorest configura-
tion. fThe optimun sphere-capred cylinder, however, was showr to have
nearly the smme static stability as the optimum flat-faced cylinder.

Since the spproximate free-molecule theory used in this study per=matted
rapid calculations of the aerodynamic damping-in-pitch derivative, and si .e
pitch damping was necessarily considered in the satellite motion analysis
(Volure I}, the aerodysanic investigation —vas concludr? with a brief study
of the davring-in-pitch derivative, Cmg , 2nd 1ts cou. ‘erpart, T'y , for
the basic cylander, sphere and cone configurations. As in the case of
static pitching moment, Cwm. , design charts of Cmg. were presented for
the baxic body shapes. Since it was argued in Volume I that aerodynamac
darping is negligible if "7 is of the same order of magnitude as [* ,
guwola calenlations of .. vere made for the cone, sphere and cylinder
-1sihy oplims. statc stohflity gecmetry (for maxdimm I' ). The insignifi-
cance of aerodyn:sic damping, as portaining to this study, was verified.
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Althcugl. this study has pravided a foundation for satzllite aero-
dynanic desigr, several fmporvart and unanswired questicns remain. For
exanple, the lack of a general, three-dimensional tacory for prediciing
ithe effects of nolecular reflections betwezn sarfaces has prevented L-e
aerodynamic analysis of concave bodies; 2.g., configurations with flared
clirts or inflatable, spherinal stabilizers. Thas lack of a usabie
surface-surfac? interacticn theory has also excluded investigations of
complex, "winged" satellive confagurations, especaally fro» the viewpoint
of orientation an¢ orbit control. Iin additicn, acrodyramic analysss of
satellites and sarelloids in the near f{ree-moiecule or itrangsitional
regume are $4a1ly non~cxaetent. Consequently, it is clear thai the
practical applicaticns of rarefied gasdynauits have been only kriefly
explortea. Zven with the €xte; 3 analysis contaidned herein, the free-
molecvle aerodynanic investigation of simple, convex body shapes is by
no means somplete. For instance, the simplifying a2ssumptions of homo-
geneous pavloads and massless skirts leave mucn to be desired. Alge, no
altempt was made to anaiyticdily delermine an optimum configuration, by
thie methods of variaticnal calcclus techniques, whick wowld provide an
absolute marimum for the static stability parameter ' .

Insofar as passive aerodynamic stabilization and orientation of
near-Sarth satellites has been found to be feasible, it is recormended
that concentrated effort be given to the advancement of applied rarefied
gasdynamics in order to lay the fcundations for acuive aerodynamic
satellite control. It is rezlized, of course, that a conceptual under-
standing of basic gzas kinetics is a prerequisite to the development of
a useful and accurate method of prediciting .. density, aerodynamic
characteristics. This also requires increased study of the molecule-
surfece jinteraction phenomenon, especially at satellite encrgies.
Accordingly, numercus problems remain which both research and engineer
rust solve af aerodynamic control and stability is to be incorporated in
sophisticated satellite systems.
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APPENDLY A

THF EFFECT OF SOLAR RADIATICN PIESSURE ON SATELLITE TORQUE

e to tne (nearly} exponential decrease of atmosphsre density with
aliitude, indications are that the magnitude of satellite torques aue to
sojar radiatacn precsure may approach ihe magmtude of aerodynamsc and
gravitational torques at alliiuces wear 4u0 miles. Jn oruer to estimate
these solar torques more previsely, it 25 necessarv to develop expressions
for photon pressure and shearing {orces cn a body surfzce of gzaneral shape.
The qualatative analys:is tu follow assunes that the free-stream photon
¥y2s 3< ancicgeus Lo a unidsrecticnal particlc ficid. ani 4hot the
pheions have a mass density and travel with the speea of laght. Accord-
angly, this amalogy permits utilization (wut slight mn ificaticn; of txe
£ree-molecule aerodyvnamic expressions an Section i.

The presesurc

sancxdent apon 2

(a-1)

T, = Pw 9’_21
Co

where Ps. represents the free-stream radiaticn pressure {one-palf of
the raximum measurzble pressure) and where <m and G are the nermal
and tangential ccormponents of the free-siream photen velscrty Ge . I
211 the ancident phetonc are rcfliccted from the surflace specularly, then
normal and tangential ferees por anat area due 4o the rebounding photons

4are

.
Pr=Pi = Prat,
Pea 255 rllo absorption, (4-2)
Lspecular teflectioxﬂ
v =9 = P, o
r ' - ?
o0

and hence, the total force components per unit & :a become




k3
Cp
P=P~Pr = 2B, 2

—

No absorption, i

=TT, = * -
T ° spesular reflection) (a-3

T

which are analogous to the Newhonian equations used in zersrwacs if
Psa is replaced by the free-siream dynamic pressure. Eqs. {4-3),
suwevos , pSuBlasdy 40 1vi régiesent the photon refiection process exasting
or. most satellite materaals. That is, {1) some of the photons are not
reflected but may te ahsorbed and transmitted through the material, and
(2) the reflected photons may not reluund in a specular rashion. An
extrere of tue lavter is the case of completely diffuse reflection in
which there is nc preferced direction for the rebounding pnotons. Then
if the actual reflectlion process is asmumed %o vary linearly between
specular and difiuse, £qs. (A-2) may be more correctly vritten as

b, = AlE=A)D, +xps
" ! (A-k)
% =AY 4aT)

where the subscript d refers to completely diffuse reflection; the
reflectavily A represents the percentage of incident pheionc

and A 23 2 measure of the diffusivity; i.e., A= 4 is for completely
diffuse reflection while A= O is for completely specular reflectior.
Since there is nc preferred direction for diffuse reflection, Yizo
Furthermore,

dent photonc reflecied;

Eas. (A.h) now beccec

{4-5)

and the total pressurc and shearing stress may be written as




oty

l+h.——'5"l)‘] ‘.’s.-c—;_

A CnC
..)L4h)‘h>,px.2£ R

For completely cpecular reflection, A= O , and Egs. {4-6) necone
\ ot
p= (1+Aa)p S
Co

T Lenp. oG
Ca

Lakewise, for diffuse reflection, A=4%i ,

2 -~
p=(1+5Mp, &,
Cs
= PS. CuCr

T
For the exarples to folloa; i.e., the effece of solar radiation
u

prossure on satellite trrmes, the specular equations. Bas. (A7) will e
assumed for simplicity.

With ihe foregoing equations, the solar torque on a body of revolu-

ticn may oe calculated asing the lest of Eqs. {20), vhich is rewritten
fnere as,

( \
LS = --‘\ {[P - %?-’T][Y‘l"*- X-X(-\]uost?

ZsuRf

(4-3)

e ,ﬁgr. por] i'rus('wm" #(x- xm)smq;}}réz.dﬁ
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wnere “he integraticn \s over the sunay surface only and wnere (g s th-
selar 'angle ot attark. Auso, from Bq. (22),

_99_-; __: ‘I‘F«GSC"SLC"‘N" Q.i

Co» ‘,_,_.-"L
g

For the present study, 1t is of more interest to calculate the initial
vorque siope (1.2., a meacire of the stabilarty) ratner than the totdl
torque. Then by comparing tne solar torque slope with the aerodynami. and
gravitational torque slopso, the “homing® cparacterastics of a satellate
may oe evaluateld. S.nce 4he cylinder, sphere, and cone have been exten-
sively itreat=d in the aerodynuamic arelysis, 2t is convinleni vo calculate
the soiar torque slopes for thrze bedaes. Thus, the cylindes. sphere and
cone cvalaations of the deravative of Eq. \A-F‘a with rospech, to o5 in
the imat <=3 o are
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wiere cylinder nose effects are included and wheve the specula phetua
reflection expressions, Eqs. (A-7), are used.

The correspocding eerodynamic torque slopes are, from Eqs. {(Gii},
{62) and ((3)




where

G

1s the free-strean dynamc pressure.

Finally, the gravitaticnal torque slopes may be found from Appendix A
27 Volume I. For a Loyy of revolution, the initaal torque slope s
/ey R (a-3)
b=t o= cA(T-1) 2 -3AMT
\ ¢O ! R / r?

wWitere

rnqstant
=

r

€ = :n

The mom.uus of ine:tia

mned in Section 2.4.2.

itationdl
J. Uc x i

distance from Zarth's center to satellate mass center

cliraticn of the satellite X axis to the 1local horizos.

of the cylinder, sphere anc zone hav: teen deler-
Consequantly, Eq. (A-12) becomes
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(a-13)

A - qwD (R [ 4 - S ;
£g L) =~ 4D [Keed [
\%—6—7/‘)1/»4& 200> LR ) a

wnere & 15 the sphore paylead fineness ratzo aad a function of Xm[ 1y

As an exanple, Bgs. (A-10), {A-11) and {A-13) are compared -- ”
Figs, A-1, A-2 and A-3 for the special case of

payload voluze, v~ - 10 £t3
payload volume ratio, V/Vy = 1/2
payliad densaty, miv- = 1/2,

The optirmun aerodynanic geonetry from Section 3.Lk.2 13 seiected for these .
condztions. Also, a circular orbit is assumed so that 4= may be written

or attituda {Ref. 7). The reflectivity /. -s taken to be 0.5,

free-stream solar pressure Psa IS assumed constant and equal

ibs/fte (an average of Refs. i, 15 and 16). As before, Tw 1s

acsured Lo be S€00% an? hance, Faz. 2 1s applicable.

Tae curves an Fags. A-1, A-2 ard A-2 clearly show, at least for these
sample configurations, that solar torques are small wnen compared with
aerodymamic torques for altitudes below 2 million feet (say). Moreover,
1f the aerodynamic and gravitational torgue slcpes are combaned (2 "gasuw
of Gg* ). *ien the 1vportance ol the gravity gradient at the higher
altitudes is clearly illustrated. That is, the sohere and cors (Fags. A-2 ™.
ana % 3) have stable gravitational tourque .lopes ‘at © = © ,, and hence,
augment the avrogynmamic stabilaty., Ascordingly, the dominance of sular
torgques is delayed 2rtil higher altiwdc~ are reached. The opposite effect
is evadent in the case of the cyiinder (fxg. A-1) which has an unstable
gravitational org.c slope (for this example); i.2., the solar torque
becumes dsmnant at a lower altitude due to the reduction of the combined
aerodynaric and zravitatioral stabiiity.
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