UNCLASSIFIED

0 266 411

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawlngs, specificetions, or other
dete is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.




e |

Z @
Qe

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE  LEGIBLY.



& U. S. ARMY

e

o TRANSPORTATION RESEARCH COMMAND

| FORT EUSTIS, VIRGINIA
M«' | ,-é |
ﬁwmf{ f TCREC TECHNICAL REPORT 61-119
- VOLUME 111
£ ‘. THEORETICAL INVESTIGATION OF DUCTED
g PROPELLER AERODYNAMICS
~ Task 9R38-11-009-12

Contract DA 44-177-TC-674

September 1961

prepared by :

REPUBLIC AVIATION CORPORATION
Farmingdale, Long Island, New York

£ it
d 99

4
b4y
3 R

STIA

O
L onoy 24 1881 il

Fa B
IERY

£ Lol

ey n
TR

i

)

¥
i
H

e

i
294~




DISCLAIMER NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely velated Govern-
ment procurement operation, the United States Government thereby
incurs no responsibility nor any obligation whatsoever; and the fact that
the Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be
related thereto.

3¢

ASTIA AVAILABILITY NOTICE

Qualificd requesters may obtain copies of this report from
Services Technical Information Agency
Arlington Hall Station
\vlington 12, Virgiuia

Armed

lhis report has becn released to the Office of Technical Services,
Ue 5. Department of Cormer Washington 25, D, C., for sale to
the general public.

The information countained herein will not be used for advertising purposes.

The findings and recommendations contained in this report are those of the

Contractosr and do not necessarily reflect the views of the Chief of
Transportation or the Department of the Army,

iat e e nchumtie

R

=%

25
N

AL

T e R T
o e B

e e
R

S

e
SR

S o

- am -:'-{,ﬁ;'..

v
s

e




Task 9R38-11-009-12
Contract DA 44-177-TC-674
September 1961

THEORETICAL INVESTIGATION OF

DUCTED PROPELLER AERODYNAMICS
Volume IIT

by
Dr. Th. Theodorsen & Dr. G. Nomicos

Th., Theodorsen .
Director of Scientific Research

Prepared by:
Republic Aviation Corporation
Farmingdale, Long Island, New York

for

U. S, ARMY . TRANSPORTATION RESEARCH COMMAND
FORT EUSTIS, VIRGINIA




HEADQUARTERS
U. S. ARMY TRANSPORTATION RESEARCH COMMAND
TRANSPORTATION CORPS
Fort Eustis, Virginia

FOREWORD
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INTRODUCTION

As this investigation is limited to ducted propeller aerodynami.cs
the following conclusions are, in general, restricted to this field with
reference to other types for purposes of comparison or to emphasize
differences. The present treatment is perfectly general and not intended
to cover any particular design or to give elementary design data. The
purpose is, onthe other hand, to illuminate the fundamental knowledge
required to arrive at a preliminary layout which, at a later stage, does

not provide undesirable and unexpected surprises.

It is perfectly clear that such a considerable departure from the
theory of conventional aircraft can be handled effectively only by engineers
or scientistswell skilled in the treatment of complex airflow problems.

It should be noted that the actual perfozjmance can be predicted with
considerable precision since, with a few exceptions, no really unknown
factors are involved. Let us take as an example the propeller or fan
itself. In the first place,it is perfectly well known that the propeller
efficiency reaches its maximum only with 1.miform circumferential and

a prescribed and predictable radial load distribution. Since the propeller
is or may be located in a duct, it is quite obvious that, in addition, the

flow pattern of the duct itself must be known.

ix




This particular problem has been treated in detail in Ref. Al,
Chapter IV and the universal flow lines are shown in Figures I and II of
this reference. These are the exact flow lines which correspond to the ideal
case of uniform downflow velocity at the plane of the propeller. Great
confusion has existed on this problem due to a lack of basic understanding.
By inspection of the pattern of the ideal streamlines, any one of which may
represent the wall of the duct inlet, it should be noticed that any smaller
radius of curvature of the duct entrance results unavoidably in an increase
in the inlet velocity at and near the wall. A standard type propeller operating
in this inlet will thus be unloaded at the tip producing a condition quite

detrimental to the efficiency of the propeller. Conversely, the inlet must be

designed as shown in Ref. Al in order to reach maximum efficiency with a

normal type propeller, that is a propeller designed to operate in a circular duct.

The second step in the procedure is then to obtain the load distribution

on a multiblade propeller in a circular infinitely long duct. The theory of the

optimum loading of propellers has been given by Prandtl, and with more
refinement by Goldstein (Ref. A2). For counter rotation propellers which are
desirable for heavier loading, the general theory is given by Theodorsen (Ref.
A3). However, the actual case of a propeller in a circular duct, single or
counter rotating, has not been specifically treated in any of the above refer-
ences, being of no significance at the time. The single rotating case has been

treated in the present investigation in Section B, Both the loading functions




and the mass coefficients are expressed by appropriate formulas.
Numerical results and graphs remain to be processed. With such

tables and graphs available for multiblade propellers the ideal propeller

can be designed with perfect accuracy.

It may be remarked that although the duct -streamlines are
independent of the magnitude of the flow velocity, the propeller itself
has-to be designed for a prescribed velocity and thrust. As the take-
off condition requires the highest power and efficiency, the propeller
twist distribution must be designed to fit this case. If a variable pitch
propeller is employed, the loss in efficiency is not excessive as the thrust
is being reduced. However, any decrease in the angle of attack of the
propeller will decrease the loading at the tip relative to that at the root
section. This is particularly true if the design employs a relatively low

lift coefficient.

In summary, to obtain the most efficient duct-propeller com=~ -
bination, the duct, whenever possible, should be designed with internal
flow-lines so designed as to provide a uniform flow over the inlet area
at the location of the propeller. The propeller will then be designed for

the ideal load distribution. Experimental checking either on full scale or

xi




on models is not at all requiréd, if and when the ideal combination

may be employed.

If and when deviations from the ideal case of duct design are
unavoidable, it is still possible to estimate very nearly the resulting
radial non-uniformity of the inflow and correct the blade angle distri-
bution of the propeller accordingly. Only if drastic deviations from
the ideal inlet are employed r%xay it be de;irable to run a final ex-
perimental check rather than to obtain the services of an organization

sufficiently qualified to obtain the ideal combination by direct calculations.

As a further remark it is stated that the complimentary combination
always exists: for any duct design, the complimentary propeller is a
matter of proper design. This point must not be overlooked, since any
deficiency reflects itself directly in the weight of the power plant and in

the fuel consumption.

As we are not, in particular, referring to any specific design, we
shall, nevertheless, note that there exists somewhat of a difference between
the case of a propeller in a wing and the case of a free duct a-la-Doak, In
the latter case the numerical calculation of the flow velocity in the inlet
plane in the take-off condition is quite complex. However, it is possible
to estimate, at least tc the first order of magnitude, the effect of any
particular radius of curvature at the duct inlet. The velocity at the propeller
tip will be somewhat greater than the average and a corresponding correction

must be applied to the propeller twist distribution. Experimentally, if
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theoretical determination is unavailable, one need only insert the duct as

an extension of a long cylindrical pipe of the same diameter as that of the
duct exit, apply a suction at the other end and measure the radial velocity
distribution at the plane of the location of the intended propeller. With

tlhe other data available the propeller may thus be fully specified, It

should be emphasized that the duct enclosing the propeller is not necessarily

beneficial. We shall discuss thie matter briefly. (See also Volume IV,)

Favoring the duct arrangement are the following facts:

1. The propeller diameter is reduced. The theoretical
limit of such reduction as shown in the first report
(Ref.Al) is in the order of 30% based on the diameter
of the free propeller, but actually, depending on the

case, only about 10 to 15%.

ZE The RPM of the propeller and the related shafting and
gearing is (correspondingly ) higher resulting in a saving

of weight.

The adverse factors are as follows:

1. Skin friction of the duct walls has been added to that of
the assembly. Based on the area of the duct, the

golidity of the propeller and the flow velocities, it will

*iii




be found that the duct loss generally outweighs the
reduction in propeller skin friction loss. Again there
is a limit: If the propeller is heavily loaded a balance
may result, No credit should be given to the duct as
a lifting surface since the critical situation exists at
take off and in transition, in which cases any potential

lifting capacity is destroyed by stalling.

2. Adverse is, of course, also the effect of the weight
of the duct. This must be balanced against the decrease
in weight of the shafting and gearing. Adverse is also

the external drag of the duct.

The effects of transition or forward speed will be discussed
next. It is quite essential to be aware of these effects in the early
design stage to avoid later difficulties. The most essential require~
ment is an understanding of the nature and magnitude of the various

effects.

Pitch-up moments are the first in line to be considered. Large
pitch-up moment represents an inherent deficiency of the propeller-in-
wing arrangement. It has been shown in the previous investigation
(Ref. Al, Chapter II) that for a propeller inserted in a surface of area

A there exists an associated pitch~up moment equal to the full momentum

Xiv




drag times a distance equal to one half of the '"mean radius" of the
area A and, as may be noted, fairly independent of the shape. It
.should be pointed out that this moment cannot be eliminated by baffles

or any other means as has sometimes been attempted.

In the case of shrouded propeller a-la-Doak, the case is less
serious. The adverse pitching moment is reduced with forward tilt of
the propeller axis as has been shown in Ref. Al (Page 106). Also the
numerical value of the moment is srﬁaller. The momentum of the
inlet air-column attacks with an arm of approximately one half the radius
of the bellmouth at zero tilt angle. As the tilt angle is increased the arm
is reduced to offset the gradual increase in the absolute magnitude of the
momentum drag with forward speed. Also, the propeller itself has a
slightly favorable pitching moment. This is caused by the fact that the
air enters the propeller disk with more downward velocity at the front
edge and correspondingly less velocity at the rear. This contribution
to cancel prrt of the pitch-up moment is relatively more effective in the

-

case of the separate duct.

Finally, the pitch-up moment of a free propeller may be mentioned.
From the theory of a lifting surface it can be concluded that the lift force
is as always concentrated near the front quarter chord. This fact has been
confirmed by tests (See Ref.Al, Page 106 and Figures 161 and 165). The
magnitude of the pitch-up moment is quite considerable but with the lift

force maintained constant the value of the moment does not change
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appreciably with forward speed so in this hypothetical case the effect
may be eliminated by choosing the proper location of the hypothetical

free lift propeller with respect to the center of gravity of the aircraft.

To summarize: The propeller-in-wing type suffers from an
inherent adverse pitching moment of considerable magnitude. The
numerical values may be obtained with considerable accuracy by use
of the methods given in the previous report (Ref.Al). The propeller=-
in-duct case is more favorable as the acting moment arm is smaller
and is gradually decreased in transition to forward speed. The hypo-

thetical case of a free propeller is essentially free of the defect.

= Transition effects on propeller or fan efficiency is a serious
matter. The problem is closely related to the problem of propeller
operating life as function of vibratory stresses., A free propeller is
thus out of the question, and a helicopter design is necessary. The
basic intent of the duct design is, of course, to force the flow to

become more realigned with the propeller axis.

As contrasted with the case of a free propeller, the opposite
case is a propeller with a long entrance duct. The propeller would
then, if designed according to theory, reach full efficiency and would
not be exposed to vibratory stresses caused by the unsymmetric flow
pattern. As the duct may be shortened, the efficiency of the lifting fan

will gradﬁally decrease as a function of the nonsymmetry of the flow
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'plattern. The center of lift of the fan will gradually move from 'the

axis toward the rear and laterally into the advancing quadrant. Anyone
skilled in the art can calculate with adequate precision the effect of a
given travel on the efficiency of the propeller. Also, the corresponding

one-per-turn vibratory stresses can be estimated with adequate accuracy.

In regard to the required length of a duct it is again clear that the
case of the fan in the wing is again in the most unfavorable position. The
fan-in-fuselage and the separate ducts are more favorable, Another
parameter of equal importance is the ratio of forward speed to that of the
fan tip velocity. A low value of the aircraft forward speed to the fan inlet
velocity is, of course, beneficial. An example of such favorable combi-

nation is thus the GE high pressure fan type when installed in a fuselage.

To prevent excessive vibratory stresses and to improve the fan
efficiency it is desirable to employ inlet vanes, These cannot be treated
in a‘general case and present quite a difficult construction problem if they
are to give high efficiency in the entire transition range. An example of a

simple deflection grid is treated in Sections G, H, and I of the present

report.

Another effect apparent in the transition to forward flight is an
interference effect between the fan-in-wing and the wing itself. In Ref,Al,
Chapter III is presented the classical solution of a wing with a sink on the

upper surface and a line jet issuing from the lower side. These results
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are exact and show that the circulation is increased by the action of

the propeller in an amount given by the expression III-18 on Page 25

of reference report. The direct contribution of the propeller is given
by the standard expression III-19 on Page 26, Finally, the classical
expression %or the moment arm of the pitch-up moment in terms of the
half chord of the wing is given for the two-dimensional case by the

expression III-21 on Page 27.

We shall next consider another very important interference
effect. In the theoretical treatment, Ref.Al, the jet was treated as a
line jet issuing from the lower surface in order to obtain the essential
facts of a complex problem. However, the jet is of considerable
dimensions and in the present report the displacement jet on the wing
proper has been investigated. The two-dimensional pattern of the flow
around a cylinder and the pressure distribution on a flat plate perpen-
dicular to the cylinder is also known, By reference to Section E of this
wofk it may be seen that the loss of lift on the area adjacent to the jet

approaches the value CL = -~ 1 based on the area of the jet itself, This

is a theoretical fact: There is a lift reduction caused by the displacement
of the jet which has to be or may be recovered by a noticeable change in
the angle of attack of the wing. If the wing area is ten times the jet cross
section, the angle of attack of the main wing must be increased by about

one degree. This gives an indication of the magnitude of this loss of lift,
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A more serious effect is, however, that of the negative pressure

region existing behind the jet as a result of the breakdown of the air flow

‘around the jet, An investigation has been conducted under Section F to
clarify the situation, based on the theoretical study in Section E and on a
series of experiments conducted by NASA on cylinders and jets at right
angles to a flat plate and with the airstream perpendicular to the cylinder
or jet, Incidentally, the data confirm closely to the theoretical data for
the front area ahead of the cylinder. Behind the jet exists, however, a
large negative pressure region resulting in a negative lift coefficient of
Cy,= -3 and an adverse moment coefficient of about CM = 6 based on the
area and the radius of the jet, respectively, These values are, however,
obtained for low Reynolds number below the critical value of the drag

coefficient of a cylinder.

There is little doubt that the negative area behind the jet is, to a
large extent, caused by the pumping action of the jet which blows the
passing main airstream downward due to the mixing at the intersurface.
The normal negative region observed behind a solid cylinder is thus
intensified by the downward momentum imposed on the airstream by the
jet. The presence of any extended surface behind the jet will, therefore,
contribute to the magnitude of pitch-up moment. On the whole it must
therefore be stated that the fan-in-wing design is not justified from

aerodynamic reasons only.
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RECOMMENDATION ON FURTHER RESEARCH

There appears to be at least two distinct problems which might

advantageously be subject to further research..

The first field is the calculation of propeller load distribution
for a multiblade propeller in a circular duct, based on the formulas of

Section B of the present volume.

The second problem is the basic study over a wide range of
Reynolds number of the obstructive effect and the '"pumping action" of
a jet on the flow pattern and pressure distribution on the lower surface
of an airfoil or more generally on any extended plane surface parallel
to the airstream. This work would be conducted and would represent
an extension to the study reported in Section F and would serve as a
master reference for special cases and might possibly be of such
general value as to obviate investigations of individual cases as

proposed above.
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SECTION A

GENERAL METHODS FOR THE DESIGN OF VERTICAL TAKE-OFF
AIRCRAFT

In the following is given a condensed summary of the design
information that has been produced by the work of the present and the
immediately preceeding investigation reported in Ref. Al. The work
covers the aerodynamic aspects of the problem and is presented under
separate headings indicated below. The purpose of the presentation is
to provide a basis for rational design methods based on a theoretical
analysis of each problem and supported by complimentary experiments

in particriar cases.




The following types of aircraft are under consideration or may

be of interest:

1. Flying platforms or "'jeeps',
2. Lifting propellers in wing or fuselage.
3. Direct jet-lift and propulsion.

4, Combination of lifting propellers and jet propulsion
with means for conversion during transition.

The aerodynamic problem which is the restricted subject of the

present investigation may be divided into the following subjects:

1. Propeller or fan.

2. Duct design,

3. Problems of combination of propeller and duct,

4, Baffles and inlet vanes.

5. Interaction of ducted propeller and wing or fuselage.,

6. The effect of the jet on the lower surface of wing or fuselage.




It is conceivable that one or more of the four types of aircraft
indicated above may arrive at a practical stage and become generally
operational. In the meantime, it is essential to arrive at the basic
design philosophy to the extent that all the fundamental aspects of the
problems are understood. The (aerodyna.mic considerations are covered
under the above headings as other problems are of a nature common to

any aircraft. We shall briefly cover the listed subjects and give reference

to the appropriate treatment given in this presentation.

1. Propeller or Fan

The propeller design problem represents a rather straightforward
case, except that the propeller in a duct must comply with the design
iﬁstruction given by the formulas in Section B of the present report. In
contrast to the case of the normal type propeller employing the Goldstein
load-distribution or the contra-rotating type with the distribution given by
the author, the prese t case of a propeller in a circular duct requires a
radial loading which increases towards the tip. Tables for this case are
not yet available. However, anyone skilled in the art of the propeller
theory can obtain approximate graphs for the loading of multiblade

propellers in a circular duct based on the formulas of Section B,

Design Method: Comply with the condition of ideal disk loading given in

Section B. (Tables not yet available. )




2. Duct Design

Duct streamlines for an ideal duct are given in Ref, Al, Volume ],
Chapter IV, and in Figures I and II, Pages 72 and 73. It may be possible
to design an ideal duct in some cases. The ideal duct is defined as a duct
whose inlet wall conforms to any one of the streamlines shown in these
figures. Such a duct as distinguished from any other duct provides a

constant axial component of the inlet velocity at the plane of the propeller.

Any other duct design, for instance the bellmouth duct, causes deviations
from the ideal case by producing an excess velocity at the circumference

or at the tip of the propeller,

Design Method: Employ the ideal streamline shape when possible or

obtain radial velocity distribution in any other case by calculation or, if

necessary, by a model test,

3. Problems of Combination of Propeller and Duct

The ideal cases of propeller and duct defined above fit together
perfectly. If deviations are necessary, as is usually the case in the duct
aesign, calculate the resulting velocity distribution, which normally
exhibits an increase in the velocity near the circumference. Such is the
case both for short ducts and for bellmouth ducts. This work can only be
done by engineers skilled in the art and has to be done as each case will

be different, Experimental models or the electric analogy method may

also be employed. In designing the propeller, make the twist distribution




comply exactly with the particular axial velocity distribution, but

maintain the loading as in the ideal case.

Design Method: Match propeller with particular imposed axial velocity

distribution of the duct proper.

4, Baffles and Inlet Vanes

As the propeller, under no circumstances, will operate efficiently
with a non-uniform or skewed flow distribution, there are obviously cases
in which baffles or vanes of some type should be employed. While outlet
vanes may be used for control, no particular problem of efficiency is
involved. In the design of inlet vanes, it is imperative to employ the
existing potential theory. (See reference in present volume, Section G.)
Tests performed as part of the present study confirm theory and show

remarkably high efficiency. (Sections H and I.)

Design Me’ao0d: Design baffles according to potential theory as indicated

in Section G. In complex cases experimental work may be needed.

5. Interaction of Ducted Propeller and Wing or Fuselage

This aspect is of importance in regard to the required control
forces, lift, drag, and general performance of the aircraft. The first
item of concern is the pitch-up moment, Numerical values have been
given in Ref.Al, Volume I, Chapter II for a sink in a rectangular plate

and in Chapter III for the classical case of a two-dimensional line sink

in a wing.




Design Method: To obtain pitch-up moment, employ the simple formula

given in Ref. Al, Chapter II. The pitch-up moment arm is given in

Chapter III under the formula III-21,

There is also a lift increase due to induced circulation on the
wing which can be estimated with sufficient accuracy by formula III-18

of the same chapter.

6. The Effect of the Jet on the Lower Surface of the Wing or }uaselage

This subject is of more empirical nature and represents the only
area which cannot, for the most part, be covered by theory. The only
exception is the direct displacement effect of the jet on the pressure
distribution for the lower surface of the wing or fuselage. This subject
is treated in the present paper in Section E, Due essentially to the high
velocity on the lateral sides of the jet there results a negative lift in
magnitude equal to the product of the velocity head times the area of the
jet cross section and a negative lift coefficient approaching the value of

unity, if the adjacent flat area is large enough,

Design Method: Estimate extent of adversely affected area and employ

negative lift and thrust coefficients given in Section E and shown in

FiguresEland E2,

There is, however, a much larger negative contribution both to

the lift and to the adverse pitching moment, This subject has been treated




in the present volume, Section F, The deficiency i.n pressure recovery
which is the cause of the drag of a cylinder and which exists behind the
jet produces a pressure-deficiency on the lower wing surface behind the
jet. Tests analyzed in Section F indicate that there exists a
drastic decrease of lift and a large increase in the pitching moment.
However, since the drag of a cylindrical body is reduced to a fraction
of its value beyond a certain critical Reynolds number, it is probable

that the effect is less serious than indicated.

Design Method: Yet inadequate., Tests of pressure distribution at

higher Reynolds number (R > 106) are needed. In the meantime,
employ values of one quarter of the ones indicated from small scale

tests in Section F.

There exists a few cases in which the theoretical treatment is
either too laborious or inadequate. In conjunction with a design of any
consequence, certain complimentary experiments could be carried on to

considerable advantage.

The first problem concerns the matching of the propeller to the
duct. A simple experiment may be performed, the purpose of which is
to establish the flow pattern of the duct-inlet at zero forward velocity.
This test is most conveniently performed by attaching a cylindrical
extension of some length to the model duct outlet to remove the local

effect of the suction device. Measure the velocity distribution along the




radius of the duct at the proposed plane of the propeller. This is also
an excellent case in which the electric analogy may be employed. The
advantage is that the effect of the viscosity or Reynolds number is then
completely eliminated., Thus a very small model may be employed to
represent properly the condition of the actual flow at a high Reynolds
number, The matching propeller can then be designed. Testing of a
model propeller will not be necessary. The model duct should be of at
least one-foot diameter to insure reasonable Reynolds numbers in a

typical low speed wind tunnel.

The second experimental problem concerns the empirical effect
of the obstruction of the jet on the flow pattern on the lower side of a
wing., As has been pointed out, the deficiency in pressure recovery
behind the jet causes a loss in lift and creates an additional unfavorable
pitch-up moment of some magnitude. In addition, the jet exhibits a
pumping action on the lower side of the wing tending to aggrevate these
eifects, To obtain numerical values of the loss in lift and the adverse
pitching moment and to investigate means for improvements, a fan-in-
wing model test should be run at a reasonable Reynolds number and the
model should be equipped with means for measuring the pressure
distribution on the lower surface as affected by the jet in the range of

forward speeds corresponding to transition.




SECTION B

THE IDEAL LOADING OF SINGLE-ROTATION PROPELLERS

IN A CIRCULAR DUCT

I. INTRODUCTION

In this problem, the flow field of a sirgle shrouded propeller is
examined. The shroud is considered as an infinite cylindrical surface,

and the velocity potential function (P which describes the flow within
the shroud is determined. Usc has been made of Sydney Goldstein's method

in solving the boundary problem for the ideal case of a single rotating

propeller,
In this case a two-bladed propeller will be considered and the helical

surface produced by the propeller is given by

|
- K —
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vhere r, 8 and 2z are the cylindrical polar coordinates with the helix
‘axis as the reference axis. The axial displacement of the spiral is w

and the ex;ression for the slope at any radius r is
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Thus,; the velocity normal to the surface is
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The above boundary condition is given for the helix surface only for r <R

where R 1s the radius of the helix. The boundary condition for r =R

is that 3 ¢ far = 0.




Changing the variables r, 6 and z into p and g given by

. S
TN IR A (h)

and taking into consideration that 5 = constant, gives a spiral line,

the three-dimensional problem reduces to a two-dimensional one. From

Egs. (L), one obtains the relations

o 2 o
-.?i.: X a¢ ¢"_""—“ (5)

—————

- —_—
o3 Viw 85 d ag
Making use of Fq. (3), we find the following for the boundary conditions in

the (u, S ) system

20 AP Viw 26 ~
P T e e e -——-:Oa,t = = —— ) 6
08 T st @ é’a/ A &
Substituting the following function for the velocity potential
V+w
= "F = ¢ @
the boundary conditions become
d ¢ 2
SO i/ - 0 ®)
9) It 94 La,

The differential ecuation for the potentlal 95 in conventional cylindrical

coordinates is given by

2 2
z L2 3¢ 27¢ "¢
Vé=x §Z(ﬂ 8/u>+/bzaez " 852 =0 (9)

From Egs. (L) and (5), we obtain the following relations among the partial

derivatives of the function g? in the two coordinate systems:

°o_ . @ 2w C
26 a; Chs T V4w ag
az 92 az o 2 az
26% agz 852.'_ <V+W> agz

10




3 _ w  ? 22 _( w\ 3Ff
"(W>a

dn  Viw om I F V+ 5

Z

Substituting for the above relations in Eq. (9), we find the Laplacian in

the transformed (u, S ) coordinate system

/.5?/— </« -a?/:q>+(a+/u‘) ;;; = 0 (120)

Thus, the problem of the flow field of the shrouded propeller is given

by the solution of the partial differential Eo. (10) with the boundary

conditions given by Eos. (8).

IT. SOLUTION OF THE POTENTIAL PROBLEM

Since it has been assumed that the shroud is a circular cylindrical
surface extending to infinity, we are interested in obtaining only the

flow field in the region r < R. Changing the dependent variable into

2

- T .
4‘ = o Sr? (11).

the above Ec. (10) becomes

2)e )5 =) (B)) oo

From Ecs. (8), the boundary conditions for the function (f ) are given by
2%, _ 4 %% | . 13)
rY 0 S F O (
5 7 e
Expanding the independent variable S on the "right-hand side® of Eq. (12) in a

Fourier-series for the interval 0 g < v we find

B R Y
5— ? N ,';Fm /,%.:—o (Z.rmﬂ)z ()

11




Assuming a solution ? 1’ which is expanded in the form

7 =/7fo(/*)+m§o {M (#) cox (2m+1) ()

and substituting both Eqs. (1) and (15) into Eq. (12), we find the following

by equating the coefficients of cos(2m+1) S ,

CEV e
(/“0( )’fm (/"‘ (ZM\H (W“){ (ﬂ)"‘gm(/‘;)z(,ﬁz> (17)

Since the potential 7 1 is finite at r = 0, the above Eq. (16) gives

AR

Using for the function f (pn), the expression
m

fm(/‘ T(ZML,) {’;a = I (/A)} (19)

and substituting into Eq. (17), we find the following differential equation

(18)

for gm(p.).
(/A j—) B (Y= (mt1) (15%) gm(/)=~ emti) " (20)

A particular solution of Eq. (20) is

: YALS _ii—wr
Oy (97 oy LG)e K-, () @
where tl (z) 1is given by the series
Y 2 2 4 %Zm
— Fove
t/ (é) (2 v) _.))j (42 NEYTR (q’m 2)) (22)

and v = 2m+1 & z = (2m+1)p.

12




We define a new function T ([em+12]p).
1,2m+1

T ([ZMﬂJ/A) (") (ZM“)—Z' 2 ﬂ([?"’““]/‘) fzmglf?.mi-l]/«‘) (23)

Then the above function T1 om a1 is also a particular solution of Eq. (20).
»2m+

The general solution of Eq. (20) which remains finite on the axis, (i.e.,

w = 0) 1is thus given by

% (=T ([zm+1)s) + b, L. ([em+x) (2L)

Z'rn-l—[

Substituting into Eq. (11) for 5 fron Eq. (W), for G, from Eo. (1),

L)

for f from Fq. (18), and for f from Eq. (19), we find
0 m

?:% i.o ——z—jml-;—'j'?_— 3m(/«t)coc~(2.m+r)§

mM=0 (
(25)
© . Tim\r ([?.mwl]/) T MH([Z""\*']/"‘)
:n%b {% l) (Zj‘”‘*')Z e :EZMH(DM_H]/‘)]M(ZM-fog

Since the function § is an odd function, it is obvious that for the
interval -w < g << 0, we find the same expression for (? with the

opposite sign. At S =0 or m, the potential function ? has a

discontinuity which is given by

Taolin¥) o 2, ZnalCed)

-2 S
[9:]0‘ i Zo (ZM'H)Z PR I ([?-m-i-l:]/uo) (26)

2rmt|

The unknown coefficients am are determined from the second of the
boundary conditions given by Eq. (8). Differcitiating the above Eq. (25)

with respect to u, we get

-?i_-% _‘f_ ,‘m\f'<[:7.rm1-q,«) +a I':Mﬂ(Y.Z”"HJ/J\)
o —m:o ,7‘_ (2/"4‘1‘"]) 7m I ([ZM+B/,«°)

& i

emelonf) a7y

13




Making use of Eq. (27), the boundary condition given by the second of Egs.

(8) gives
4 TZ/M*I(EZM*)]/A") IZmﬂ(EZMHJ/“J
Cn= T T z 7 (28)
T (2 t) I, (GEmele)
Substituting Eq. (28) into Eq. (25), we get
4‘ Z / ’[’-ém+(7-m+\]/u°) ‘
?L‘ Dl n%o (Zrmﬂ)l {-[Zmﬂ(&m-*"]/“)— sz (;:Z -HJ/A«) Zm-r?l-m IJ,M) (Zmnag(29)

Thus, the velocity potential 4) from Eq. (7) becomes

o T/ ([znv\'f'l/“) cou (2
4): W /1“'.4 Z{T ([Z’W\'H]/'A> lzfm-l ([Z"’“ﬂ]/“) ___(_M\_ﬁ (30)

‘)ZMH-I I ([ mxfl_]/,( 2m+) ZM_H)Z-

mzo
Y

&

Similarly, the jump of the velocity potential at S =0 or mw, given by

Eq. (26) becomes

8L/{V*VJ) |,z§zﬂ )
[é:lo Z (2 +l IZfSE-z + /([ m-f-]l/‘l ~<gi7“+ ) (31)
me-l

ITI. VELOCITY FIELD

The velocity field within the shroud is formed by the gradient of the
velocity potential, i.e., Vv = vq) . Making use of Egs. (4) and (5), we

find the following for the velocity components in the cylindrical coordinate

system
¢ 29 _ 2%
“Ea ) %S mee) %37 o3 (32)

w © e | 8¢ w 20
 —— —— A == = U, = = ceenn
% Viw a/«’ 0 Viw 4 35 © 73T TvEw 23 (33)

14




From Egs. (33), it is obvious that

M.S:—/M (Ae

Differentiating Eq. (30) with respect to S and pu, we zet respectively

26 duliew) Z{T

BS JEC\) mz3o

Aon(Z m +) S

([2 +ll,u> llmﬂ" IZ/W\([Z ’J)} +I> (3k)

1 2wl I (& +DyQ

B/u e mzo | |, 2met [ZMH] Im+ (Zrm-H) (35)
ngn /Q

W W) © T (C2m+1)
94):4 6/+)Z{ ([Mw]/«) 2l /Q)I (F2m 9}4)}00@(2"“1")8

From Ecs. (32), (3L) and (35), the velocity components s ue and u
z

become
4 ® cow(2amti)§
wft:;—rﬁ- MZ::O /-\m(/oyO Zome] (36)
4w & i (2 31) 5
76 T nfio A“(/°%> 2 et (37)
- G = M(va\rl)s
67w L A ) 2o 1] (38)
where
. e T2:ﬂ<£2fm+’] Q
AL E W P S L
Bz T ey dzmi T2,
o) = 2+ Iyam+| P~
/M/) y2rmet| '/A) I’/ ('[m i]4,) Izmgaz H]/Q (L)




IV. LOADING FUNCTION :

The loading function K(r) is a dimensionless quantity defined by

_ el
Ko = v -

where p is the number of blades or helix surfaces and [~ (r) is the

circulation which is equal to the potential difference across the helix

surface at the radius r.

From Fq. (31), the circulation [~ (r) becomes

8w (V+w) & | e Tlim£'£zm+|:|/uo) ;
r(/")- JT ) mé (@) ® _‘;)lw(nc-rr“ 0/*) (EZ»M'H]/"O) &SE:TM“J/«) (2)
mel

Introducing the dimensionless quantity

S
TE (L3)

and making use of Eq. (41), we get the following from the atove Eq. (L2)

. T (Camtilp)
K9 =2r & el - o e

VA mzd L2 mnaty ( z"“"J/AQ) 2+
where
wik
= V*w Gl T (45)

The momentum within a volume confined between two successive vortex

surfaces become

M=€/V°‘“ e

where [~ is the circulation function for one blade and A is the area of

4>0<A = e oA (L16)
Area A

the projected cross-section of one turn of the spiral, which is equal to the

cross=-section of the shroud. Introducing again the dimensionless quantity

T , the momentum per surface per turn becomes

16




Undidl
V
M = (ohr-w_Ii"yrpz %_-J K(Z,0)TAT L& (L7)

Thus, the mass coefficient for single-rotation propellers is

2% (1 !
w= -k fK(r,eymwe: z[K(T) TolT (L8)
o > °

Substituting for K(7 ) from Eq. (LL) into the above equation, the mass

coefficient becomes

|

w=[] £ | 1. i

T 1 mze @mt)* ] 2
) (L9)
T (Lame] 22 )
I. MS,[Z’M*] o 1 mg[lzm+f] 7’) TdT

From Fas. (LL) and (L9) for the loading function K and the mass

coefficie.v 44 , we find the design relations of a propeller,

17




V. APPENDIX

So long as p 1is not too small, we might make the following approxima-

tions. The functions T given by Fq.' (23) are approximated by
1,2m+41
24 2.
A
x~ z
TI‘)Z/WH-I I+/*

Thus, its derivative will be

/ ~ I 24
I,‘(invn}-l) T 2w+ (H-/M,')z'

From the approximate relations

/ /
(Z’”‘;")Izmﬂ - TK(E . )+/“2' <2m+l+2m)

2rm 4] m
/
K
—_—n A o <
X = l'("/(A
m
we find
/
et
- — = Vlij
2rmt)
Solving the above eaquations for I , we find
2m+1
2mt|
2 {/‘WV‘% (o 150
. A_-’ e’
Zomt]

and its derivative becomes

—i’;—f—'-{/«m;ﬂxx(wﬁﬁ)}
=l e

2.mt

18

(a-1)

(4-2)

(a=3)

(a=L)

(4-5)

(4-6)




Equations (A-5) and (A-6) are approximated by

~ e 2”2“/«{&_? (A=17)

2m+]
/ Zn:ﬂ/@—z
IZ/m-H = “VA < - (4-8)

Making use of Eqs. (A-1), (A-2), (A-7) and (A-8), we find the following for

the functions Am(p.o,u) and Alm(uo’p') given by Eqs. (39) and (LO).
ol
- e (4=9)
2\% P -
SRC e -

Z
A (A) = ,ﬁ -

2+l

It
A’(/M)’-‘-"z /u_/%ez/“/“
S et {5 (&7 T ] (A-10)
e

Substituting Eqs. (A=9) and (4-10) into Egs. (LL) and (L9), we find an
approximate estimate for the loading function K and the mass coefficient
ni  of %.c propeller,

Similarly, Eqs. (36), (37) and (38) will give an approximation for the

flow field within the shroud.
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SECTION C

FLOW FIELD FOR NON-UNIFORM SINK DISTRIBUTION
IN A CIRCULAR DISK
I, TINTRODUCTION

In the Interim Report Number 7 of contract DA LL-177-TC-606, the flow
field for uniform sink distribution in a circular disk was derived. In this
paper the case of non-uniform sink distribution will be examined., For
simplification, axially symmetric cases will be considered and a step-wise

constant distribution over circular rings will be assumed,

|
|

|
-

1
I

Flgure Cl

The cas: of a uniform sinl distribution in an annulus is found as a
special case, by considering the strength of the sinks in the central region
as zero.

The flow field of a propeller in an annulus of an infinite plate is
then represented by a uniform sink distribution at the anmulus and a
superposition of a uniform flow in the semi-infinite region of the cylindrical
annulus behind the propeller.

Finally, the case of a continuous and axially symmetric sink distribution

is examined which is expressed as a polynomial of even powers of the radius Tye

oo
—




II. VELOCITY POTENTIAL

For the case of only one step in the distribution of the sinks,

we have the following

———

Figure C2

v

From the velocity potential of a point sink of strength 4 Q and

an angle o = 90° at a distance r, from the origin, we have

l
-
l
|
|
|
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In Figure C2the step=-wise sink distribution can be considered as
the algebraic summation of two uniform sink distributions over two co-

axial disks of different radius

Thus, in the above case, the velocity potential ig found as follows:

Region A: r >R1

For r> Ry, i.e., r/r,>1, the velocity potential,for the sink
distribution of strength o Ql’ along the axis of symmetry 6 = O is

found by integrating Egs. (1) from 0 to R, deeey

R1 ZTO‘V ® r n
b o= [T 3 ()R e dg 4 @
6=0,w0=90" “o o
Integrating and substituting 4 Q xw 1?12 = Ql, we find
R 2 B R
é; (r‘,o): _2_7"7 éo n+2 -:%ﬂ (3)
where
2
Q1 = 27 R1 V1 (h)

Similarly. Jor the second uniform distribution d~ Q2 from 0 to R,

we geb

- dQz 2 /r.Y
g, (ne)= e - (’r‘) R.(0) rdlr, dg (5)

Integrating and substituting Q, = JQ. x v R 2, we find
2 2 0

s Pn (0) Roh
@z (r‘,O).’: % é‘o n+z rnM (6)
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where

2 - 2
R, = 2RV, = 27 R, (v,~V,) 1)
Thus, for r > R1 the velocity potential along the axis of symmetry

becones

N O RN |

he

Since the flow is axial symmetric, the general solution of the
Laplace equation is given by
w
@ (P’e>=' Z. An " <m6)+2. Bh n+1 n (C'OQ'e) (9)
hzo
It is obvious that the velocity potential in the region r >-R1 for any

angle 6 1is given by

- o (B
@A(r‘)@_ 27Tr 5To N+ Q1< ) " (_;9,> R (0009) (10)
Region B: r < Rj
For r g R, we have that
r/r, > 1 for o< <r
/ ’ (11)
r/r, < 1 for r<r, <R,

Thus, the velocity potential, for the sink distribution of strength J‘Ql,
along the axis of symmetry 6 = O is found by integrating Eqs. (1) from

O to r and from r to Ry, respectively, i.e.,

(12)




Performing the integration, we find
r ?r R (o) 2n+1 _(.r it
@ ¢ ) z'TR" h=1 {n-rz <F?1> (23)

where

(o]
Z* =z
ns=o :01

Similarly, for the second sink distribution of strength 4~ Q2,

we get

. Qur SH o) |20t r)”"
@(PO) zﬂ?z ho n=1 \:n»fz. (R, (1)

Thus, for r < Ro _ the velocity potential along the axis of symmetry

becomes

(o) Qp" [2h+1 _ ]_

- 2%
éB (hO)- @1 _éz Z'ﬂ' Z ntz
(15)
_QQ_" 2h+1 N L""
R, [VH'Z (Q,) ]
or
d P(o) 20+ |®4 _ Rz |, [Qa (r\"1Qq [r
é (ryv)= 2T Z n+2 [EF DZ:J+l;F-€:’:(f?°) R,"(Fﬁ) :‘ (16)
where
O Qe _ 2ZR{ TR (Vo)
- Vi~ — P (a7)

R1 P RDZ - R’Z

Making use of Egq. (9), since the flow field is axially symmetric, we get

A _LGﬂ__QL;§%53§=MH
P72 \R? R4 k1 Kkr2
_ __1__ PQ(°)< Q1 Qz
Ah—_ 2T n- Rn‘l‘f ch'r‘l (18)
B,Z0

25




From the sum (see Interim Report No. 7)

g% F() 2K+l _ -1

Ko K=1 K2 ~ (19)
and from Eqs. (9) and (18) we have that the velocity potential in the

region r < Ro for any angle 6 1is given by

50

0)

n-1

|

1 Qz 2 ¥
@ (Y‘ 9}—" 2T (Rz - R01>PP1(C'M'9>"“Z=-° Elﬁ' (

N

(20)

o]

G- 2@ R e

Region C: R < r< Ry

For R,< r < Ry we have that
r/r>1 for R <r,<r
r/ro< 1 for r<r, <Ry

Thus, the velocity potential,for thesink distribution d‘Ql, along the axis
of symmetry 6 = O, is found by integrating Eqs. (1) from O to r and

from r to Ry, i.e.,

(21)
R1 2T
5 L /rY
i — dr.
Tj f ’NTV“O ‘n/_;o Po> P(O)r" t Cf
Performing the integration, we get
_ 3 R0) | 2n+t _ _r\n—1
é(")) 27F Rﬁ ,,Z (n=1) | h+z (Fﬂ/ (22)
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Similarly, for the second sink distribution 6‘02, we have

R, ra2m
8= [ [T 28 5 (LR (o) d, dlg 23)
() (o}
or
Q. & K@) RS
ég‘ (r,o):;,—%: nZ:"o ntz phtl (2kL)

Thus, for R, < r <Ry the velocity potential along the axis of symmetry

becomes

E-p =R Sk Re)fznel / r 0t
(r,o),. éi @Z Fye F?f' = Tn-1 N+ (F?1> +

(25)

-2 £ Bo B
20 +

or

n+i

§ { D)_e'rrf? (R}) ¥p(°) 2+z +

(26)

¥ B© (r n (27)
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Thus, the velocity potential in the region R < r<R1 and any angle 6

becomes

b, (0): a»«R,( )R (cov )
(28)

co - \h+
9 24 Fe) Rl (RY } -
[Z’Tﬂ no N1 (R1 27I‘F§"0 hzo Nt2 "> P"( 9)

ITI. VELOCITIES

The velocity components for the three regions, A, B and C, are given

from the derivatives
U = ——— Up = ————
r oar $ 8" ra0 (29)

Region A: r >Ry

From Eos. (10) and (29) we find

o 2, n0 (3T - (B

n=0

(30)

o= g 0 £ B2 o8 o, (2] |22

Rggion B: r Ro

From Egs. (20) and (29), we find

Wk £ B 2] e e

_eﬁ,v_@ R Q) Ek P(o) Q[ r "'_1_ Qy /r \1 AR (p
e 22 0 B0l )t (o) |

(31)




Region C: R < r<g Rl

From Eqs. (28) and (29), we find

- *nR0O/ r V! Q L +2
“p= z’)TF?,‘OM' [zprf?’-z n=~1 (’5}') '27,-;57-,,;, h«rz.Pn( )( y j’Pn(me)

(32)
56 ) QT ‘”*—P(o) - Q. R, \"| AR(K)
L {R"'{’ﬂ )" o né nt2 ('FL) olp
where
Q= 2Ry,
Qe = ZWRoz(Vt‘Vo)
TN (33)
RE R
IV, STREAMFUNCTION
From the continuity ecuation in spherical coordinates, i.e.,
A 12
= 37 () e v (4eo9)=0 (3)
the streamfunction is defined as follows
oY .
—a—F—- = - 27r “9 o 8
v (35)
—5—‘ = ZIXI"ZMr o 6
So that the flux is given by
_ oY oY
A= Sr At o (36)
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Reglon A: z‘>R1

From Eqs. (35) and (30) we have

(37)

Integrating we get

Ry R Y | AR i/
2270 25 z>[(r> (¥ ﬂ T o8)
Differentiating the above equation with respect to 6, we find

oY (o) R.Y P z
—a—é_=-z'i n(nh+2) {QK ) (—)}{ Qmeg(;n Med/f"}

+{'(6)

(39)

2 o |1 .
%=M@Zﬁiiz}t‘%(&) ()]{('/”) Z/*d}f (6) (o)

From the second of Ens. (35) and from the first of Eqs. (30), we have that

2\: 27Tt Uy Al
(L1)

= spin b £ 28 P()[QK—-L) Qz( ):]P(/A)

n=o Ntz "

Comparing Eaos. (40) and (L1) and rearranging terms, we get
2 R (o) 4B _
Z= h(nfz)[ ( ) ( )} {(' / Z Z/_,: *'“(’”’)E}‘

—fl(@ ~ adore B ’;’T’(Q,'Qz)

Since the differential eouation in the brackets 1s equal to O the above

(42)

equation becomes
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Q1 Q;:_ 0 o
o :
/@)=~ pine (13)
Integrating, we get
_Q(-Qa
£ ()= =2 (covgicy) (1)
where the constant C; is evaluated from the condition \F (0) = 0 for
8 = 0. Consequently, l
ge =t (15).

And Eq. (38) for the streamfunction in the region r > !H becomes

¥ (r6)= 2525 (oe p-1) mezn(h 2{@,( )-@ (Rfﬂ-‘%;/w (L6)

Region B: r < Ro

We follow the same procedure as that for the Region A.

From Eqs. (35) and (31), we have

oY :
-a—r—_~7.7rr ug A B

(L7)

Integrating, we find
-1 Q,

2 2 ¥ o r1) ol
mres 9[ @- Ro)no“:%’frfv[a &) -=xl& ]m}q@ (18)

Differentiating the above ecuation with respect to 6 we get

RS KL TR EANE-A O nt Qa /e Y[R
6 =-r {Z R1L —_1>+nA° (n-1)(m-1) [RL(RJ Roz. Rb> Jd/u ZWOGOQJG

(L9)

2 e R | ”"_& e sz’ !
+FM362 (n—f)(h'ﬂ) R1 <R1) in’-(R(’) O(/‘ 2(9)

o
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From the second of Eqs. (35) and from the first of Eqs. (31), we have that

aa: r’we{(Q Q:>We*,éh%9[w(ﬁ)“%( Gl }P(/*)} (50)

Comparing Eqs. (L9) and (50) and rearranging terms, we find

[*) n- 7.- (il 2P
mez*(;%g,,—fa[ﬁ; &&= ]{(m)djf Z/Lf

: (51)
/
()R m} --5(e)
‘Since the differential equation in the brackets is equal to 0, the above
equation becomes
/
6)=0
7 ) (52)
Integrating, we get
?’<9> “Ce (53)

where the constant C2, is evaluated from the condition Y (0) = 0 for

6 = 0, Consequently,

j(@)=Ca_=_O

And Eq. (LO) for the streamfunction in the region r < Ro becomes
_. Q Q2 ), 2R |91 r ! Sz ey dfy
Yl g)=-r e 9{ (RZ ) Yz, o) [F?’-<R;) R;(Rj A (53)

Region C: Ro< 1~<R1

(5L)

From Eas. (35) and (32) we have

oY _
5 =-2nr g A B

(36
:-r,m«/@{ [F?f' nz__f F:(:’)(R1>nf Qoz ':20 ,:E:Z <i°)n+i]-§;§—}
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Integrating, we gét
_ta o 2% RO _(rY Q2 2 RO By
\!E_ e 9{2R11+[R1 é (nH) n-i) (Rj) F?o‘ nzz'o “(“*7-)( ") ciu. (57)
+4(0) |

Differentiating the above equation with respect to 6 we find

§i=-r1{Q* Q1 Z%_f&( )"“_Q_;E Fe) (.%)"”:]?_(_%}zmiw)medr

o8 ZR‘ nzo (D[ \R RE* n:oh("‘ﬂs 0(/4
(58)
2 3o =x PO oy Q2 RO (RYF LR g
+r Me[f ’?‘: (n.r()( >(Ri) Ro'-’- éo n(n-rz) ( r ) 0(/,/‘2' +3( )
or
Y — 2. nl9 ¥ Pie) /r Q. © R(e) yR,\'*
__é__.-r,owe{ﬁf'fhzw (n+1)(n_,)<”;;3“1> R Z n(hﬂ)( = ) }
(59)

.{(1 LA /jﬁ} 2L g con g 1)

From the second of Eos. (35) and from the first of Egs. (32), we have that

21 - 2mr? wy ping
(60)
n=o

® N
=-r2me{§-‘zme+[3-‘=-7*~n——“P(°>(-§T) 82 5 ot p (R ]ﬁ(/*)}
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Comparing Eqs. (59) and (60) and rearranging terms, we get

2.0l8 2% P (rY1a 2 B R
7 Q{F?,z ,,Z,O (n+1)(n=t (R1) “REL n+2) ( r)

(61)

(/«> b2 Z2 (1 +4(0)=0

Since the differential equation in the brackets is equal to 0O the above

equation becomes

L] ' e
4 (6)=0 (62)
Integrating with respect to 0 we get
4(8)=Cs (63)
where the constant C3 is evaluated from the condition ‘f’ (0) for 6 = 0,
Consequently,
) (O) =C.= O
CARARE (61)

And Eq. (57) for the streamfunction in the region R < r( R) becones

2@ (T Q 2 B0 RY4R R
\F@G)"-TW" 9{[& S¥_niol (n+1)(n(i)1)(F31) = R:;‘ go n(m.z)< r ) ]544 +§1% (65)

nao

V. SINK DISTRIBUTION IN AN ANNULUS

For a uniform sink distribution in an annulus with internal radius
RO and external radius Rl the flow field is derived by putting Vo = 0

in Figure C2.
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Thus, from Eqs. (33), we have that

Q1 _ Qz,

2T R* T 2Rz (66)
Substituting for Q, and Q, from Eq. (66) into Eqs. (30), (31)

and (32), we find the following for the velocity field in the regions A, B

and C.

Region A: r > Rl

“=-vE 2 e p e

U, = =\ aim § E En_@[@i_)"" (F&)’"‘] _S/(T,ul (67)

Region B: r ¢ Ro

ey EF BT ()R (e

o, =\ ,%:{ Fi E:)[(%T)n-f_ ( F;o)n-if o 2{#) 2
Region C: R < r<Ry
o[£ BT B2 (2T eiovs]
(69)
vl B0 £ (5 T
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Sinilarly, substituting for Q, and Q, from Egs. (66) into Eqs. (L6),

(55) and (65), the streamfunction in the Regions X, B and C becomes:

Region A: r >R1

(70)

Region B: r¢ R,

. < P (o r\"" r \N"
\I/ES(r,Q):—Z?rVPzMZQZ*_JLZ__[(ﬁT) 1(?:) }M (71)

nzo (n-1)(n+i) o(/u.

Region C: R°< r<ky

' E= P (o r Y 29 Pn<°> R, ez dpu(/“2
k})(@e)z-zvrvﬁwe [nz-.f—dh_—(ﬂﬂ){(h)”)(—@?) £ "’z”fa(—’?) :) o t1 (72)

VI. PROPELLER IN AN ANNULUS

The flow field of a propeller in an annulus of an infinite plate
mizht be represented by a uniform sink distribution at the annulus with
strength eoual to twice the normal velocity at the propeller plane.

At the sink plane there are symmetric radial flow velocities and
a uniform axial velocity,

Thus, the flow field in the region above the propeller is represented

by the Egs. (67), (68), (69) and (70), (71) and (72).
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In the region under the sink plane, an annular jet emerges with an

increased total energy due to the energy added by the loading of the

propeller,
For this region, a solution to the potential flow field might be

found by adding a uniform flow of double the axial velocity, in the

cylindrical annular region with cross-éectional area equal to that of the

annular sink.
Thus, superimposing the annular sink flow field to the uniform

velocity field, we get a flow field which has an annular jet with a contraction
ratio equal to two,

At infinity, the mass flow from the annulus of the plate is equal to
the mass inflow from the cylindrical surface due to the sinks. A sketch

of the flow field is given in the following Fig. C4.
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Figure C4

Streamlines of a propeller in an
annular opening of an infinite plate.
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VII. CONTINUOUS NON-UNTFORM SINK DISTRIBUTION

For axial symmetric non-uniform sink distribution we have that the

strength of the sinks is given as a function of the radius Tge i.e.,

| Gl (re)

l r | I

& > R |

2 ! >l
Figure C5

1, Velocity Potential

The velocity potential is found as follows:

Region () : r >R

For r >R, i.e., r/ry>1 the velocity potential for the sink
distribution of strength q(ro) along the axis of symmetry 6 = 0 is

found by integrating Eos. (1) from 0 to R, d.eo,

R (2 .
o, || B E R0 e -
Integrating with respect to g) we find
o[ "3 £ (5 o ()
Expressing q(r:) as a polynomial in fo we have
9()=F o n (75)
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Substituting Eq. (75) into Eqe (7h) we get

or
n=0

R' L r < "o \NvI
§<n°>=iz/ z b (3" 2 (5P (o) etr,

where

Performing the integration, we find

F? neKe 2

@(r’o):: _1.- ;o )Z neK+2 nﬂ(rl

or
. i A © R n+Kk
- AL L A T
@(F)O) 2 £ ( )KZD hikez p"HEH
where
2
Al = 7rR|

(76)

(1)

(78)

(79)

(80)

(81)

Mekinz use of Eq. (9) for the general solution of the Laplace equation,

we have that the velocity potential in the region r >R1 for any angle

® 1is given by

§@( >=_-7’F P( )Z nHR+2 p"*'”‘ P-rK (co6)

Region : r<R1

For r<R1 we have that
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T > for o<r,<r
P
(83)
< for r <r, <R,
v o

Thus, the velocity potential, for the sink distribution of strength ary),
along the axis of symmetry 6 = O is found by integrating Egs. (1) from

0O to r and from r to &.L’ regpectively, i.e.,

é(r)c)):/r/zﬁ__)_ L_( ) P(o)r- dr, d?

/ j i1, b ("’r‘a">ne‘°’r°°("° 4y

Substituting for q(ro) from Eq. (75) and integrating with respect to gp

(8L)

we get
| r N © - I
@ <r’o)= z é QK POK nZ=° ('v'?—) P (o) 0“0
- (85)
I 2]
' %{ = %y roK DZ:—O ("r;"> R (o) dr,
v
Meking use of Eq. (78), we find
r N ©
ro \I ro \n+l
69+ 4] 20 (' L (RO
° (86)
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Interchanging sumation and integration, we get
r

© N R‘ i
*"z‘Zﬁf(")bef (=) o, (87)
' 3

(o) N
b
IO YA ﬁ(o)?oﬁz

N
t= 2 P @b (bR =hur) (88)
where

n=e nn;?wl (89)
For k = even, i.e., (k¥ = 2k), we have an even polynomial for q(r,)

and

PK |( )_ ZKH(O>=O (90)

Thus, Fq. (88) becomes
JEOE {Z Re )Z. n+zK+L+Z R )2 A-2K-1 [ i ]} (91)

And the velocity potential in the region r £ Ry for any angle 6 is

given by N u
o0 2 b oo** 2 bz
@® r,6)= z’TR LZOE\ KZQ nrzkﬂ_*‘; OV~ ]{5)[?(604—9)
o, iy
A b > by n=2K
- m‘.nZo F.?(o)KZ‘° o (F) Rac (o) (92)




where

-(Ml): Pn

(93)

The velocity components for the two regions are given from Eqs. (29)

and Eqs. (82) and (92) respectively, i.e.,

Region @ 3 r791
N

E & neikt] Q \N*2k
2'Jﬂ~2 nZo (o Z, neIKe2 Z —"'L) E”‘" (004—9)
N
2 N2k R 4 (M)
ae-———-l— QZP( )Z anK’:Z(r) 0;&

Region s r<}’{1

N - -
arz_ﬁL—-{ Py —tx—s7 " Pe) 25 Lpoeg)

2TF?|2 nz=o K=0 n+r2k+2 nzo n K20 h=2Kk=1
A, 4 % z b, (n-2 n-2Kk=|
- b2 AR SO
27TR,'ZZ POL 255 (%) > (co0)

N N
N o >
i A,M@ S bZK ’-** K
“oT e |5 ROV mim v L Re KZ 2k-

ekt )
z_,owei* P(O)Z n,_K,(T;T) iﬁ'jf_

2. Streamfunction

(9L)

(95)

The streamfunction for the two regions is found from Eqs. (35) and

Eq&. (9)4)0
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Region (@) : r>k

From Egs. (35) and (9k), we have

oY

-é—r?-:.'-—aﬂ—l‘ Uemet:

(96)

Integrating we get

A
- - 0 4 X Z sz ELanK dp 6
Y= -A A szo*ﬁt ); m(»—) 5/< )

where oo U@
Z.* = Z
% =
n=o nad
h+2KEO (98)

Differentiating Eq. (97) with respect to 6, we find

w . ® bzx n+ 2\ A Ry
N TR Y u{("/“) 35 ] {0

From the second of Eas. (35) and the first of Eqs. (9L), we have that

L 2 _
ae G 27'('?‘ MY‘ /QVNG_
L (100)
T - ' 2 o\cg‘ h+2K+) R N+2K
A|MGZ:° 4 ),é, — b,_K(—PL) P,., (cov)
Comparing Eqs. (99) and (100) and rearranging terms, we get
N
Ao GE*P@)Z}; b (Et.)””" 2 M AP
‘M noo X M (Mz.k)(h-v-zm;.i r ‘/“) /u Z/u __L.—o(/u -+
(101)

+<h+2K) VH‘Z.K‘H) ” K} ~# (9)"—;—A|b° o
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Since the differential equation in the brackets is equal to zero, the

above equation becomes

/ o )
%(Q)‘ 7 A, ko s (102)

Integrating, we get
%; (9)={,-A. b, (c0e6+Cy) (203)

where the constant Cb is evaluated fromthe condition Y (0) = 0

for 6 = Q. Consequently
Cy=-1 (20L)

And Eq. (97) for the st eamfunction in the region r > R, becomes
N

, 2 & z b nezk
Vg (6= AL, (o t-)-A 6 Ly ROL oot (8] %L— (108)

Region 3 r<R1

From Egs. (35) and (95), we have

oY _ _ -
eyl 2 r uezome

(206)

N
, E ¥ - n=2K=l
O A R S ES

Integrating, we get-

I N
yer %m*e F_ POL =+ 7P L .'15_}

N
e AL SEx S bax PR e
-r R“z R 9{; E(o)é (h-zkﬂ)(n-zK-'l) (Er) —7—:5—.,,3'(9)
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Differentiating the above equation with respect to 6, and substituting

2 2
}ZMG

sin® 6 = 1 - cos e-l-p"’, we find
% n-2K-|
zAl MGZ* R )i - z.mszKT(F;,) c (108)

N
A S
Z_\g \;:‘" Rz A [Z P(°)Z ne 1K‘r?~ n=o Z

{zﬂ—-n-ﬁ— (17) Bz } o (&)

From the second of Eqs, (35) and from the first of Eqs. (95), we have
that

Y _ .
"é"é" = 2 («ere

N
_rz-}-?-!—-,owe ZP@Z e nZn“’a(o%;%ﬁT P(cos)

(109)
A S A et
-rzﬁgme; (o); 22 (5] bay B (coed)
Comparing Eqs. (108) and (109) and rearranging terms we get
A 2 ~2K~|
rt “RI— Z Rl >% (n~2K+l)(h zk-\) (R )
(110)

(1) St 0"3/-;*‘ + (”"-“)(“'ZK*'>E.1K(/*>}+ 5 (8)=0
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Since the differential eguation in the brackets is equal to O, the

above equation becomes
/
21 (6)=0 (111)
Integrating, we get

31(9)=C5‘ (112)
where the constant Cg is evaluated from the condition ' (0) = O for

0 = 0., Consequently

j" (8)=C5=0 (113)

And Eg. (107) for the streamfunction in the region r < Rl becones

3 2
Y@‘ rz’LM e):z P(°ZRT2_£TZ-+,,Z P(o)an -2k~ 1}

(11L)

Nn-2I<~ de\-z (/u)
. GZ. P<°)Kzu (n zKﬂ)(n 2K~ l) r) d/AK
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VIII. SUMMARY OF EQUATIONS

1. One Step in the Distribution of Sinks

B, (=g, 28 %.(@—)"-Ql(f:—"—)"]a(ﬂ)

n+l

b 00 B) e & B2l flr e

(r) = gt fowt)in L fci‘?a[ (i?-f—oz(—f"-ﬂm

A

. Q:\ <% R |Q - Q -dlP,
taeesefoe iy T AR T R T2

] o

Q.

e

|ﬂ°

) 10 S RO (RYMAR QL
(nH ( ) = nZ_Q n(n+z (T) :]d/a T Rlz

2. Sink Distribution in an Annulus

s ilns-)-uf B R e 2]

Nnwa

+ (h8)=-2m\Vr e 62* nPl (:u {(R.) i (R’o)h-] &
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(10)

(20)

(28)

(L6)

(55)

(65)

(70)

(71)




%_(r,e>=_am~vr=we{[ “E L ] _ﬂz(ﬁ_”i"_f&,,} -

o (neDln=n) onhe2)L P o

3. _Continuous Non-uniform Sink Distribution

PnH.K
é@(he> Z P( °) Zo he 7_;“_1 r:o-‘l.K-ﬁ e\fzK(/LQ (82)
N o ij
A, e b ok .
B ne)= ZF@.‘[ : Faco)zo T L ROl -;-.;i-.-;](—gﬁ-)ﬁu)
N (92)
A K% 3 bay / N2
~.2-7r—"7?.,,Z° Prn("),; h=2k=] (,T?T) n-zK(’“>
N
-y a b RNk 4p
o= FAR(conbmi)-ponte T ROZ (21 = 109
A N N
. b 2 D b,
oo AN 2 5 K
@—kzzf\)l MGLZ:OH()KZW h+?_K+2. g Kionug-[}
(11L)
4
_ lﬁl_,o;,\z By i . by R A, ()
r Rlz eé} E‘( >Z <n J-K'H)( 'ZK'T (R' )

o
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SECTION D

FLOW FIELD FOR CYLINDRICAL NON-UNIFORM VORTEX SHEET
SUMMARY

In this repoft the flow field of a shrouded propeller has been inves=
tigated by considering a vorticity distribution on a cylindrical surface.

For hizh speed shrouds the vorticity distribution has been assuned on
a cylinder with constant radius o, which corresponds to the exit radius
of the shroud.

The vorticity distribution on the semi-infinite cylinder behind the
shroud is considered constant and on the cylindrical surface of the shroud
is approximated by a linear distribution and an expansion in Birnbaum series,
| The strengil of the constant vorticity dovmstream from the shrouds is
calculated from the difference of the exit velocity and forward velocity of
the shrouded propeller., The strength of the vorticity distribution along
the shroud is calculated from the condition that the shroud is a streamline,
by solvinz a system of equations for the unknowm coefficients of the terms
of the Birnb-uil ceriec,

For an approximate evaluoticn of the flow field we might consider only
e first three terms of the scories and solve a system of three equations for
the three pnknown coefficients.

Since the high speed shroud is always a smooth curve, three flow conditions
at the leading edge, at the middle line and at the trailing edge, might be
enough for a good approximation of the flow field by the first three terms
of the Birnbaum series.

Tre flpw field, the pressure distribution and the forces along the shroud

are determined from the calculated vorticity distribution.
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I. INTRODUCTION

In this report the flow field of a high speed shrouded propeller is
investigated by the method of singularity distributions. Since the hi_ h
speed shroud is a cylindrical surface with aporoximately constant radius, the
vorticity distribution is considered onAa cylinder with radius p = oo =

constant.

Yaking use of non-dimensional variables, we consider the shroud extending

from x=-1 to x= 1, Fi-, DI,

Fizure DI

The vorticity distribution +(x) on the cylinder o = o, from x=-1
to x = i3 not known and it will be determined from the boundary conditions
and the flow at x = + o0 .

From the strength of the vorticity distrituticn, we determine the flow
£icld, the pressure distribution and the forces along the shroud;

Tre evaluation of the vortex distribution is facilitsted by an approximation

for the representation of the flow due to the propeller by a semi-infinite
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vortex sheet of constant strength y = Yo from x= + 1 % x =+ and

v
a linear distribution vy = 59 (1+x) in the interval x=-1 to x=+ 1

Flgure D2

In addition to the above vortex sheet, the effect of the shroud is
represented by expanding the vorticity distribution in Birnbaum series
of normal functions in the interval -l< x <+ 1,

Thus

‘*_ _ o
¥ (x)—zl ¥, (%) 1)

where
Y, (0= ¢ (B2
\62(“): C?.\J“'x
(2)

Tor an approximate evaluation of the flow field we might consider only
the first three terms of the above series, and the vorticity distribution

becomes
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Y (%)= ;;LCH-x)«- c —:—‘% + czdl-x5+cﬂ\/|-x‘ fo’u -1 & X<t

¥ (%)= ¥, %44 | < X € © (3)

II. FIOW FIELD OF A VOTEX RING

The velocity for the flow of a vortex filament of strength 'Yd? is

given by P

oAdT<R 4
3
R o )

> X
AV=

=%
vhere R 1s the polar vector from the vortex filament to the point P.

For a vortex ring with radius 0o at the plane normal to the x-axis

at the origin, we have

Figure D3
2r
7: ¥ o5xR
R (5)
(o}

where
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Thus,, ‘the velocity becores

2, g
- 58 ey R
V= M-/ ?R3 49, (6)

Figure D4

From Figs. D3 and D4 we have,

R=r-¢ Fep+x

(7)
¢ _ 2 z z 2
= X = - -~
R ToaE X Pt re - 20 p, e (¢-6)
Thus, tic cross-product in %.. (6) becomes
— pec S A - - — e e d
= XX + - T e, XA + s =€, X
6. R=< [ ¢ f’°] % 6,7 C 7% G
or
—y — o~
é; xR == 'e-}o ~p v (¢-¢) e + o &x ==X eeo*[ﬂ‘f “‘((f«'(f)]ex (8)
] .
where gf’ ) g(f’ Ej; are the cylindrical unit vectors and
—y -r _ - -y =5 _ = - e -~
& % e = x> e X & =¢g $ Ex X € = &
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Substituting Eo. (8) into Faq. (6), we zet

ar
oo [ Frlee mGoflE,
V=i 7 % (9)
z 2 2 2
| Tttt
Since
&, & = o (%-9)
and
-
V (l\o)é)'X) = A ZX T ‘U‘ge
we have that
.\7 . é; = WU $ v- —é’e = v
And the velocity components in the x and e direction are
" e,x/” .- £ e Gu-9)] "
e ; oo T
o l:’xz-'.ez +€° - Z() (°°m<9o-?):' (10)
y 2
U = %—-f x_coe($.-9) 3/ o(qo
o [ttt zp oG9 T (1)
From the identities of Bessel functions (Appendix), we have
® -s|x|
e J, (sp) JI (sp,) sds =
29 (12)
= j G = @ cov g "y
=) [€z+ e+ % - 20 0, me’] 32
and
® g%
ij e J(se) J(sg)sds = g:t: for :zgg
° (13)

n
_sz e oAé'
27 ) [G‘z*(%z*- % 2 ("’WQ]SE
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Making use of Egs. (12) and (13), the Egs. (10) and (11) for the velocity
components due to & vortex ring of constant strength y and radius po

at x = 0, becone

[+ o)
g (% sl
w( ,><>=—-—- e J;(sf)I(se,,)so(s
2 ). | (1)
eaﬁ = -.sfxl
v(em=t 2 e J, @) J (so) sels
(15)
ITI. SEMT-INFTITE VORTFY SHERT {Y = Yo}
For a semi-infinite cylindricel vortex sheet of constant radius 0,
and vorticity strength y(x) = v, in the interval 14 x <, the flovw
field is found by integraiing Ees. {1L) and (15) for u and v from 1
to @ with respect to %,
Thus,
@D (o o] /
Y, -5 |%- x|
(/((e)')(>;/ €o e \]-D(SP)J-(S(DQ)Sde’(’
R | (16)
| °
(o] «® /
) e.¥, -5|%X-%| ,
Y (p:x) -/ t=—| e J, (50)J, (spo) sdks ol
1 o (37)

(!l+ t for (;(..y_") )O, et for (X'X,)<O)

-

Tron tle evaluation of the inte;rel with respect to x' we have (Ref.D1),
P s(x=1)
60 —.Slx'x" / —3"‘ e %ﬁﬂ/ 7451
e o' =
f, N SR
3¢ =f=4), for(v) %"‘ 14%

Substituting into Fqs. (16) and (17), we find

(18)
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@
S

“ (@X): fsz_".[ e (X-J)ID (Se) I,(SPO)OLS’ b&y' X =

0

P e(x- (19)
M((a)x):.. %E_o_j [e s( ')_2]3‘0 (56)3" (se,)ds 3@4- X % |

ind

'U(Efx): = _fgz_‘.iq/ e‘s(%")J'l (5@) J.l ($€°) os {M‘ X< |

-5 (%=

. o0 )
v <€’X)'-' - E‘%ﬂ-[ e J, (s(n)J] (5(’0) ds j&a X2 |

' Trom the above Egs. (12) and (20}, we see that for x—»to the velocity

becomes
U_op = figif e-w Jo (50) J',(S(:) ds =0
- - (21)
Upoo™~ -"—g‘ij e, (sp) T, (sp)ols +p. KOJ J, (5£) ) (spa)ets
or

U = Yoot 0 ¥y 7'(7 f“ ¢ =Co

IV. TINITE TRIANGTLAR VOTFX SKEET {:g = l;f— (1 + x}}

For a finite vortex sheet of constant radius P, and strength ¥(x)= %—(Hx) '

in the interval -1 < x < 1, the flow field is found by integrating Fos. (L)
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and (15) for u and v from -1 to + 1 with respect to x.

Thus,

* ey, [° , -sjx-w| ,
u(pyx) = -T-[ (1+x') e J;(s(ﬂ) J'<s(o,,) sd so -
-.‘ 'y )

oy ,
V(f”‘)[ [(Hx)e J (se) J(spo) sl s x (o)
| .

(" " for x =-x'>0, "e" for x -x!'<0)

Fron the evaluation of the integrals wit: resgect to x' we have (Ref. D1)

{ZQE:MX} b@txs—l

Hoog|x-n] '52'3-5/’"”“'2‘“ adC)
/e dy' = f fm-:sxsﬂ (25)
-

And

{Z‘i;[-é-mj\.s-m}is]} %4 X < -|

r+ / 5% - , ;['x-e's(ws—')m,ﬁ sx} - («) ’
xe ol = foru-isx<)  (26)
, 2l-++e(t g m,&sx] - ()

i) [m}s - %—Mis]} %014 | <X
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Substituting into Fqs. (23) and (2L) for w and v we find

fc,/ (H’ ,ow/XS m}sJJ’(SE)J'(SF)aM foﬂ,xsﬁ

o

o0

X
"
‘:o
Ll
o%\

['x +1- e,-s [(1 +) pin b sx +coel sx]} To(se) I‘ (5@)0(5 (27)

-l %<4

EsYs
T2

° 8

-s%
L e [(:-g-)mﬁs +co-n.,sz T (s) J, (sp,)els

gm,:sx
And

U:-—eﬁgi’-f eﬂ[(u—s';)m,ﬂs—cw}s}:ﬂ(s(’)ﬂ(5(%)0(5 fbteﬂ'Xﬁ-l

v = _9_0%. I {6'5[(“- .é_)C-OQ'ﬂ* AX +Ah'nvz£$9(]- 'SL'} J.| (5(’)3] (SG;)O[S (

| fn-ko« +

e_sx[<|~ -'s-)anj s rcoa-js]fl (s JI (spo) s {i’«, 1€ %

V. FIVITE VYORTEY SHEET {K(x) = cl‘/-l;;'r% }

Tor a finite vortex sheet of constant radius p and strength
)
\

y(x)=c \/ ; - in the interval -i¢x<+4| the flow field is found by
intezrating Fgs. (1) and (15) for w and v from =1 to +1 with

respect to x.

Thus,

/ &C‘/ (2= e HSNCSC’)S s oy (29)
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#l ®
[ =X - - 'l
7,=/ +%-‘Lj (B e T 00 s o ar

! (30)

("+ " for x -x' >0, "M for (x - x')< 0)

Trom the evaluation of the integral with respect to x' we have, (Ref,D1)

t

T
{_’ig_ ef"r:o (-5) ﬂﬁn X<~

r

e-sx[g 2_' F, (5)(|+?2)'"+ F (5)(3{. o ! g)] JZ,», %<1

H
/_}L"%_C‘SIX‘W"#/:: < , : )(31)
| -ll ies;\[g'g F;,‘ (_5)01_%:.)-"* = (-\S)Taw\.'?] {\\iﬁ(u)}

]

=S

where
"—‘ — _o"—n 2<n+K +|
g = \f‘/%_‘,)? B’r‘n- 'Qo 2("+K5
- o
= - a = el
Frri=4e [H-MZ:‘ K .( )A»] Am K(l 2 (K (32)

_ ~-a 0 ()8 . (Za)'” -~
F (2 =4e ;z%;—fﬂ K = [:- }

Substitutis: into Fgs, (29) and (30) for v and v the velocity field
becories
o
C.e S%
Uz == /e T™F, (-3) J'o(se):)"(seo) sds 1% -]
(o]
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(o]

W= figLJm{e—sx[ﬁ(s)(%—fm\"‘f)‘rf z_: F, (s)(l+%z)-h:‘
'f'esx[a('S)tﬂm-)gf' § 2' F (-s><,+gz)'“]}.

‘Io (Sf) 3‘ (560) sds %M-fé%éﬂ (33)

u=—e}?-j e-sx’h‘ F‘o(s)]-o(s@ J" (S@,)sols —fo"- |4 %

And

e - .@_it.j . F (-s) J"(se) J" (s@,) sols 7204- X L~

[

e 5 ] [T ReE e £ m o))
-reontes £ oyl

.J‘I(sg)T' (Ss) sds %-,SKS, (34)

ec‘c' = -5s% .
vl e ™k () Cf, (sp)J, (5g.) sds ’D&"- =%

Vi, TIUITE TORTRY SUERT {‘({ (®)=¢c z‘fl _»,(1}

For a finite vortex sheet of constant radius po and strength
a/(x)=c,z_\fp-x’-in the interval -{&x€ +| , the flow field is found by
intezrating Egs. (1h) and (15) for u and v-from -1 to +1 with

respect to x.
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J

+

/-7(/2' & =

Thus,

+l
/ f\/ 7 e ICS@)J‘(seo)Sdsdx (35)

/ j -2t e (s(>) ,I‘ (sgo)sdt sd. x' (36)

("+" for x -x'>0, "M for x -x'<&0)

From the evolwalion of the integral with respect to x! we have (Ref. DI)
T

{'rrA (-s)e™ ‘j/"ws"

= {A ()& +M-'7< +x/1=x*) -(;—x‘)a/"'g B, (s) "}
£ T o 1 ) (o)A S, B9x] oo

-s[x-x'[

(e ® for x - x! >0, "M"for x -x'<0)

%«—/éxs!
I?r/\(s) e
l XZA I %

L
vhere
I i & aLM Bmm
Al L _
Ala)= = [H- tZ
o ah"H—ZK |
ay= Z_ R
Bn< ) k= (n=1+2K)] hrzk,., na PR K (n odol)
a)= d _
) f:o (nrek+i)! nrak+3 A%+KK (“~€ven> 30)
)
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_ B 2 (m-m) 4
Bm K L 2 (et fm‘Kﬂ Bm,l:'!

) 7z

r‘f.l 2(m-—f+l! %dl K> 0 A

m . 2(mr)t3

)

Substituting into Hqs. (35) and (36) for u and v the velocity field becomes

c, ® X - |
u:fﬁzh/ & o A (-5) Iy (sp) J, (sg) sds %13(5-! ‘

ws ot ] {e-sx[A(S)(i}drM"me)u(t-x’*)a/l% B, ()"

. esx(:A('s)<ZE _M-l‘x_x W)*(l _xz_)3/z§ Bn (—S)X'j? T

~

J, (sp) J, (spe) sdls jﬁm -l € %<t
szﬁ’—}j e AG J, (sp) Il (sp) sds Tfmlls'x
eocz N s
ve=-=2 e TA(S) T ()], (sgo) sls ?ﬁmxs—l

ve &:LI' {e-sx{:A(s)<%+M" me)—(l-xi)% h% B, (s) k”]
e [:A(rs)(%_:—M”x—x\//-x"%(l-x‘fﬁ' i Bh (-s)xh]}-

J,60) ) (sge) sks %«—-ls'xélfl),
V= f—“;c-"'—/ e A T (sp) J| (sps) s s ‘OQ”“ J< %
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(Ref, D1) . _
{'ﬂ‘ P(—S)esx Béyt'xg-[
| =52 - .= 2 3/7_ b n
f . e {P(s)(-; +o4m x+xﬁfx_i)-(:—'x ) AZO Q, ()% }

VII. TINITE VORTFX SHERT {‘6 ('x) \’ I}

For a finite vortex sheet of constant radius Py and strength
K(X)=C3X‘/—_—l-’x" in the interval -/¢%<+| , the flow field is found by
integrating Fqs. (1L) and (15) for u and v from -1 to +1 with
respect to x.

Thus;,

+H 4 _Slx_.xll
“u =/ %0..3_/ <\[[-x"* e Io(56)3-|<5€°) sol sd %/ (1)
-l A

x|
/ L P ] <5€)J—g (sps) s sdl x! (12)

M for x=-x'>0, ""for x -x'<0)

From the evaluation of the integral with respect to X' we have

te“{P(—s)(% —aion. -KW) +(| '7‘2)3/2,% Qp (=) Xn} (L3

("4" for x -x'>0, "-" for x -x'< Q)

Wﬂn-lsxst

e P(s)e-% fﬁ- | € %
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Where

P(a) =

Qn(a)= ;<Z=o (n+z2k)! (n+2K+3) A%_+K.,K (k)
o r\f-Z.K Z

anq> % (M’ZK 25/(’“'“‘;;- B

2 +K)K

And B 4 are given by Fos, (38),
mk mk

Substituting into Fos. (L1) and (L2) for u and v the velocity field

becémes
U= 553-/ e ™" P(s) T (sp) J (spy sds Azgnxs-l

/

" fﬂ-zij {e-yﬂ [P(Q('%-' +'/0‘:4\,_!'X + % ,_xz)_(l_xzf/lnzz Qn (S)’Xri]
e [Pes) (£ -sin xn i) o (1x ) 2, Qn<'5>*"]}‘ 4

-J'D (sf)Jl (5¢0) sds BQO"——/‘S’X\’.H

U= %E_}_j e—S'X'F P(S) J'OCSC)J](ng)SOG %«I;(’X
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ve- 82| T pe-s) T 60T (sp) s foex =

]

-

e &% {e-s'x [P(s)(—'z: i +xsf/‘-7<t)‘(' “7(2)3/2 go Q"(s)yn]
-7 [P(-s)(-’?- ol T (10 Z @, ('S”‘h]}‘ (16)

J, (sp) J (s@s)sds bém,-{sec._:;

w

. fg_::l. e"s’(m. P<5>3-| (sp) J'l (seo)sAs ,«gm-'xél

VIIT. MON-IPITROPY: UQOTTY SHERT

Ter the representation of the flow field cf a shrouded propeller by
singularity distributions we determine the strength of the vortices froz tle
fact that the shroud should be a streamline of the flow.

Siner only hizh epred slrouds are considered in this paper, the vorticit;
dietrib tion has been asmmed on 2 cylindrical surface of constant radius
fs wilch corresponds to the exit cylindrical radius of the flow,

Tie strength of the semi-infinite vortex cheet % is evaluated fronm

the forward and exit velocity u, and u INNERY

e?

The coefficients c¢q; ¢, and ¢y are evaluated from the satisfaction of the
boundary conditlons on the shroud. Thus, for a number n of coefficients, we

need a system of n boundary conditions.
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In our special case with n = 3 we need three boundary conditions.

It might be recommended to take the cond.‘_itions at[ ==l fzfs (—n)] )

['X’O) f=g_.,(°)] , and [xsl,(::(s(l)] with the corresponding slopes.

ole (%0) _ v (%,0) .
ol u(*,@) (L7)

where the velocities v(x,Q) and u(x,p) are given by

w(®,p) = oy (%,0) + Uy (P + Uy (x,€)+uu(x,(>)+ up(x,(o) + U

/].8)
\
v (e = v (%0) + U, (% 0) + U5 (%) by (%0p) + 4 (%)) ‘
Thus, we have
D . - p (-
e, @ xsl § o e=pe(t)
Xz -x, at X =0 3( o= s (0) (19)
“Eo%, 50 of et 0 =0 ()
Making use of Tgs. (L8) and (L)), Ee. (L7) becomes
(Vu+Y3) £ € V| + S Uy + C3 Uy = -
(u°+c¢°<+u@)+c.l U e, uy ey Ug -1
7‘:") e“‘("s(")
(Vo + U8) T & ’Ulng_Uzﬁ-Cg'Ua I
(4, + ad+ué)+~c‘ W+ ¢, U, TCy Uy 0 (£0)

%z 0, €=€5(o)

== =0

+1

(Va1 ¥p) +C) Y +Ca Yy + O3 U3
(Uot tpy+Ug) + Uy TC, U +C5 Uy

CEEIN C=€5 (+1)

Solving the system of Egs. (50), we find the values of °ys ©, and ¢
which determine approximately the flow fleld of the high speed shrouded

propeller,
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IX. APPENDIX

IDFNTITIES OF BESSEL FUNCTIONS

]

|

From the identity of the Bessel functions we have

(sb) ds a>o0 (51)
fa.t +lo?' ]

Differentiating with respect to a, we find

2 !

| .
= . Q z -
oo ek - T [ )

Substituting a by x and b by r, we have

"7 (sb) sdbs (52)

o0

—_— s e—slle (sr) sds (53)

[r7'+7(z_]3/1 - °
vhere the "4 " ef v “c for x>0 and the "-" eimfor x«0
and

2 2 /|
= + -2 e
Qe TR GO (51)

Multiplying Fo. (53) by cos &' »nd integrating from 0 to 2r with respect

w 9t we %

2r Q 2 (o ‘SlX]
J Farl® j e LGnssme]ad s

[ + % ]%‘

Jalking uvse of the following identity for the Bessel functiions

[+

S0 =0, GO T ()12 Z GO T (e e ntl (59

and of the orthoponality property of the trigonometric functions, we perform
the interration with respect to 0! and we find

1 = % coa @ I ® -3l
—Z'—?—r m df = T e J-‘(s(b) I‘(SG,)SdS
A .

(57)
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Similarly, subétituting a by flxl and b by r in Eq. (51), we have
| @ -si
X +r

Differentiating Eé. (58) with respect to p,s ve find

) g 0 e(fmp o) = ‘5‘*’_05_ (
e T 2T G S A" [T.¢en)] s (59)

Integrating from 0 to 2r with respect to ' we et

. ew»e ".I_ i -s|x| d I )o(.S
Af = e ;%; [O(SP] (60)

[oc 1"‘ 3/2'

Substituting Fq. (56) and interchanzing the integration and differentistion

o

in the right membor of the above ervation, we perform the integration witl
'respect to G’ and making use of the orthogonality property of the trigonometric

functions, we find

2T I f = -s[x| .
€.mP con @ A0 20 d [
- = e 2 1T, (sp) T, (spo) fols (61)
/ [%"wz]s/" deo L° S
> °
Performing the dilferentiation with respect to po, we get
oJd =
:;E: Jo (sg)= - s], (5¢0) (62)
Substituting Fo. (62) intc ™. (6l), we find
Wi 5 ® -sfx|
! eo-e co ! = )
— de=| e T (sp)J (sp,) sds
A o [’ﬂz + r?_] '3/2_ 0 6 | C ' (63)
(2} °
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SECTION E

VELOCITY FIELD AND FORCES ON A FLAT PLATE
DUE TO A CYLINDRICAL JET

I. Elliptical Cylinder With Major Axis Parallel to the Flow

In this section the pressure is found on a plate parallel to the

flow and normal to a cylindrical jet with elliptical cross section.

Since the velocity of the jet is very high in comparison to that of

the flow field around it, we consider that the jet is a rigid cylindrical body.

The potential flow field around a cylinder with an elliptical cross
section is calculated from the theory of conformal mapping, making use of

the complex potential for the flow field.

For an ellipse in the =z (x, y) plane with major semi-axis a and

minor semi-axis b the transformation

5=§*§’2 i
2.

7%
0[ = Z/—(f@m—ély = Z‘C—-’— (2)

where

maps the ellipse into a circle with radius R = 71'- (a+b)

(5)

\

v /D
\J

i i
1
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The complex potential for the flow velocity in the Z-plwe is given by

F(gjzu(5+§f) (3)
where g is given by Equation (1).

Solving Equation (1) for g we find
3 V3% c?®

3’ = = (4)

2
< b (5)

C = O —

where

Substituting from Equations (4) and (5) into Equation (3) we find

U — (cz+b) (6)
F(z)- 5+i5Ee +;+r’7~“c'i—

Making use of the elliptical transformatmn

5= 7(+L'y = C cosh (f*“?) (7)

we get
A= ook e y=csnh Fsorg @

Substituting Equation (7) into Equation (6) the complex potential for the

flow velocity becomes

F(3)= g C mé(fﬂ’o/) +\E~’-m4%nf7)_.cl

1 (OL+6)2 '
Cmg@ﬂ'?)_/, Vcbwzgﬂw_ca
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Performing the algebraic manipulations and making use of the identities

of the hyperbolic functions, the above Equation (9) becomes

P01, Gy

v/

Separating the real and imaginary part of the complex potential we find

a -+ “f
Fﬁ):%{‘”g QL“AQ j)m7 N

e (5 @ )
+L —Zége ST fs»;7

Thus, the velocity potential and the stream function in elliptical coordinates

are given respectively by

7)== f = %Lé?W -
5)(5), = cheg (0‘ Z’) -_‘gj)&cn7 (13)

The velocity components become

/>CI> /B\ID Ucfg @‘_f__) /)coa7 (14)
ng o
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where
ey e k7]

Since the flow is isoenergetic, the Bernoulli's equation gives

P o U comsdant
FrPE R T
where
vE = u(g’_;. ML (18)

The pressure field on the plane normal to the elliptical cylinder is given by

4 === £UY) a

Making use of Equations (14), (15), and (18) the above Equation (19) becomes

o2 Ly? —2%
46:.—__% Uc— e e§+%)e

et

The force on the plate is found by integrating the pressure field given

(20)

by the above equation all over the plate outside the ellipse.

For an elliptical plate with the semi-foci distance ¢ as that of the

jet and with major semi-axis A and minor semi-axis B the force is given by
€, 2T
: 2
L:i//AdCJS/C/gZ =// df%&/jo( (21)
0 /

fo

14




Substituting for Af from Equation (20) we get

_ Fa+
,29/4 c_@

(22)
+2(w [ -cos /)] i
Performing the integration with respect to 7 we find
el
[ =2£ uzvr ch“"“ﬂf”
< (23)

4 )
2 Ly’ -2
o+
C
Expanding the integrand in Equation (23) and making use of the identity

._23’:

2 ;] ° /
2 50 f 5‘—/»{—-?—& —’—26 (24)

Equation (23) becomes:
5
/ . _Zf
L—~fiu ch—Z— [(o‘+) ]Q— AF (s

Integrating with respect to S‘ we find

—2F, ‘251 (26)
= UJTC ﬁ?t_f_) {]f 2k
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Since we have that:

_z‘g _ ] \,:ZZ’_; A-B
Ob-fb ) A+8B
(27)
(OL+6-) {] —A - OLZ)
4‘ o+ b

the above Equation (26) yields

L:—-‘Zﬁuzxaé{j—(:—i—}é)? (28)

And the lift coefficient becomes

_ d
C = = = o6 1-(—4——3) (29)
fuzs AB-obd Qe

where S is the reference wing area

= W’(AB—OLA)

*
Taking as reference area S the area of the elliptical cylinder,

. B
the lift coefficient CL becomes

x [ A—)Z .

%*
where S is given by

Sx—z.ﬂ'bcb
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II. Elliptical Cylinder With Major Axis Normal to the Flow

For an ellipse in the z (x, y) plate with major semi-axis a and

minor semi-axis b, the transformation given by Equation (1) maps the

1
ellipse into a circle with radius R =3 (a+b)

A

PN

(3)

@ Q>’X
KL

Making one more transformation given by Equation (31)

g* - 3'\';[% = -.C(S' (31)

we find that the velocity U is turned by 90°

()

Dy
N

U

57

*

The complex potential for the flow velocity in the 5 -plane is given by

F@’v: U(gﬂ%z) = —L'U(5~ %Fi) )

*
where 5 and 5 are given by Equations (1) and (31).
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Substituting from Equations (4), into Equation (32) we find

e

Making use of the elliptical transformation given by Equation (7)

2z
Fs)=-" qué'*\/?‘:; N j (33)

and performing the algebraic manipulations, the above Equation (33)

becomes

-‘ Ue ( 549 tar)t 77
Fao=—t 5 7¢ = %‘2‘ & (34)

Separating the real and imaginary part of the complex potential we find

the velocity potential and the stream function in elliptical coordinates
; = =
O+b .
é g)ﬁ) = Ue )ty (b)) 0 o (38)
2 o =-bt

r ) = - We 5 @:—) - m (36)
51 Z

The velocity components become

q@ /}\P Uc gg._ @L@_ Stm (37
LA T RS /

w2 DY w08 e e
] /@7%7 B £F - 24 c” 7
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Making use of Equations (37), (38), and (18), Equation (19) becomes

_ﬁ 2 Uc f a+b -2§
=z 4@2[

(39)
et (W/_ 7)}

Substituting for AJO from Equation (39) into Equation (21) we get

o2 i or ',
L_"EU‘TJ/ [ (40)
fo ©

2 “"77'““7)] 44

Performing the integrations we find Equation (26).

Thus, the force on the elliptical plate and the lift coefficient are given

by the same Equations (28) and (29) as in Section EI.

For major semi-axis b and minor semi-axis a Equations (28),

(29), and (30) become respectively:

L= fUabi- Tﬁ)} ot
_ -A
CL" AB oLé Z( (é Dc)j (42

* (B"A
<& = g )j (43)
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III. Circular Cylinder

In the case of a circular cylinder, the complex potential for

the flow velocity is given by

‘ 7
F(ﬁ):§+i&b=l]@+—§—°): Umé(fm—% (44)
+C’U$W@(’t—%ﬁl)

Thus, the velocity components become

T
RE < e (- )

Making use of Equations (45), the pressure field on the plate normal to the

cylinder given by Equation (19) becomes

4 :——P-UZR‘} Re _ 5ermzs (20)
00 Z MY | et

The force on the plate is found by integrating the pressure field

outside the circular jet. Thus we get,

Re 27T
L :/ Aéﬂ fZ‘,’C{"cc{@ (47)

PU 7*° o2 026 e dicd
AV
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Performing the integration we find
2r®

= ? - R R — 22 | (48)
'! ___Zn-fu?—o[ - Usr R, ( =

and the lift coefficients become

L L R0 |\
CL = U?‘S B Ut 2 52 =T (R) i
Pz pg R R)
and
* L L Ro ZZ
C = = =—{{ ‘( (50}
Cogutst YRS )

£
Lift coefficients CL and CL for cylinders with elliptical

cross-sections are shown in Figures El and E2.
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SECTION F

EXPERIMENTAL DATA ON
JET INTERFERENCE EFFECTS ON VTOL AIRCRAFT

The jet issuing from a VTOL aircraft such as the fan-in-wing
type, induces pressures on the lower surfaces of the aircraft which in
most cases cause a loss in lift and a nose-up pitching moment during
transition. Simple experiments designed to study the effect of a jet
emerging normal to a flat plate placed parallel to an air stream, and
six;nilar tests on a solid circular cylinder normal to the plate were
carried out at the 7' x 10' tunnel at Langley Field. These data have not
been published and were obtained through a visit by Republic personnel.
The pressure distributions found on the plate are shown in FiguresF1 and

F2 for the jet and the cylinders, respectively,

Positive pressures are produced ahead of the cylinder with rather
high negative pressures to the side and rear. Similar results may be
seen for the jet with the exccption that the negative pressures are higher
and extend to a greater distance from the center of the jet., The result is
a predominance of negative pressure to the rear of the jet which in the
case of a VTOL aircraft in transition would produce a loss in lift and an
increase in nose-up pitching moment. Q/uantitative results for the two

pressure distributions are given in TableH in coefficient form for the

front and rear halves of the plate area.
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In the case of the cylinder the lift on the front half of the plate (Ll)
is negative (CL1 - -0.61) and acts at a point 1,18 radii downstream from
the cylinder center. This checks reasonably with potential flow theoxry
which indicates a lift coefficient of somewhat below -1. The lift on the
rear half of the plate '(Lz) is much more negative (CL2 = -5.59) and the
center of pressure of this lift is at a point about two radii behind the center.
The total result is a negative lift of CL = -3,1 acting at a point two radii

behind the center, thus producing a nose-up pitching moment.

The case of the jet is similar with the exception that higher values
of the negative pressure peaks at the sides of the jet predominate to the
extent that the .pitching moment of the front half of the area (Ml) in this
case becomes negative. Also, the total negative lift is about twice that of
the cylinder and the total force acts at a point about 1 2/3 radii behind the

center, producing also a larger nose-up pitching moment.

The bhigher negative pressures induced by the jet as compared to
the case of the solid cylinder is attributed to a downward ""pumping'' action
in the mixing region of the jet. Measurements taken at static condition
indicate a total thrust loss on the plate of only one percent of the jet thrust.
The pumping action of the jet increases with forward speed due to the mixing
action which is also responsible for the drag on the jet. The coefficients
Cy, and Gy, are obviously related to the drag coefficient Cp of the jet

as they are all produced by a negative region behind the jet. The effect of
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Reynolds number may be inferred from Figure F3 where the pressure
distribution on the plate near the cylinder is compared with that on a
cylinder taken from Reference F1. The drag coefficients (Cp=21.3
based on cylinder length and diameter) obtained are characterisfic of

a laminar flow separation. This is to be expected since the Reynolds
number is below the critical value of about 3,6 x 105 (based on forward
velocity and cylinder diameter). For most VTOL applications, the
Reynolds number will .be above this value and consequently a turbulent
separation will produce a smaller area of negative pressure behind the
cylinder. If this reasoning is applied to the case of the jet, smaller lift
losses and reduced nose-up pitching moments are to be expected with

larger forward speeds.

In conclusion, the values of lift and moment coefficients determined

from integration of the pressure distributions shown in this report and
the lift and moment coefficients from the momentum theory outlined in

Reference F2 have been computed and the results are presented in Figures

F4 and F5., Also, some experimental values from Reference F3 are shown.

The losses in lift and the increase in nose-up pitching moment caused by

the jet interference are sizeable and could easily explain the actual effects

observed.

The conclusions concerning jet interference which may be drawn

from this study are:
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The jet issuing from a VTOL may be regarded as a
solid cyiinder with a downward pumping action in the

mixing region.

The flow on the front half of a plate normal to a
cylinder resembles a two-dimensional potential flow

about a cylinder.

The losses in lift and increase in nose-up pitching
momment caused by the interference of a jet are large
and do explain the deviations from momentum theory

observed in experiments.
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TABLE Fl

_-L” lb/ 2 05
CIRCULAR CYLINDER - R =3 §on 174 /g RN=2xl

FRONT REAR TOTAL
HALF HALF
L L
CLli%-Tr_éLaz "'0061 "5- 59 CL‘ =37TR1 "3. 10
) 4 = [
Go= Mal 42 11.68 =M
Ml,l %7%} CM go'ﬂ-Rg 6. 20
Nl_— -1.18R -2.09R _/12_ -2.0R
JET -Vo/v, = 0.3 90 = 27.2 Wiyt
RONT REAR
%F HALF | HALF TOTAL
L, L
CLzp=% | -2.34 S11.66 |0 =, x| -7.0
I,zfoﬁ_é j,ﬁ“l?
0, = Lha| o g 22.68 =M1 1
M;lﬂv_§3 ' ¢ (/)"/ %7,?3 .
%‘ 0.29R. -1.95R. _Z-/\j- -1067R
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SECTION G

DESIGN OF DEFLECTION VANES

The design of a grid of turning vanes constitutes a part of
the general VTO problem. In particular, it is understood that it
is entirely undesirable to expose a propeller or fan to a flow at an
angle with the axis even for a short period. A system of baffles
or turning vanes may, therefore, be required in any practical
solution of the VTO problem. We shall not, in the present paper,
specify when or where such a baffle system is or may be required
but merely give the design information required for the proper

solution. The proper use of deflection vanes is taken up in Section I.

The basic conformal transformation for cascades has been
known for some time. (See Ref. Gl.) We shall in the following give
the direct routine method for the solution of any given case based on

methods given in Ref. G1.
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In Figure Gl is shown a set of turning vanes. Inlet velocity
is w, at anangle shown as X, and an outlet velocity w, atan

angle X

) In general, it is desirable to provide at least a small

acceleration of the flow through the vanes, which means that WZ is

to be a little greater than w. or the angle X | is tobe alittle

1
larger than C(z . This also means that there is a small overpressure

on the upstream side of the grid. In fact

prmos = 2p (W)

This may also be written

(1)

fpa= g (W v4)

where P is the tangential component of W, and Wi is the

t

tangential component of w (See Figure G2.) The resulting pressure

1"
force as can be seen is normal to the grid. The force along the grid

axis is further

f)wn(wzt'" Ww:) (2)

where w is the velocity perpendicular to the grid axis and common

to inlet and outlet,

The right-hand section of expression (1) can be written:

':?L/o (M‘{?t"‘"‘//f >(Wzt s Mt)
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‘The geometric addition of the forces (1) and (2) therefore is:

/O(Wnt —'V\/p-¢> \1\/-h + Wae + Wie
- <
From Figure G2 it may, however, be seen that the bracket expresses

the mean value of the velocities Wy and Wy Let the vector

W-m:: \A/I'f"z\/\/ﬁ.

Then the force on the grid for a single element of width t and unit

length is

F=pC (Mt“M-t)V\/M (3)

This force is seen to be perpendicular to the mean or average velocity

W, as shown in Figure G2.

It is interesting to note that the circulation l—l can be read off

Figure Gl as

[M= (W.zt"W/t>'t (4)

This is true since the elements cancel everywhere except at plus or
minus infirity. Note that the force Foin Figure G2 points downward.

Hence a counter clockwise circulation r' c

Thus, finally P = P F W\m

P=/JFWW, and P L1 W, (5)
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with Wy = W)+ Wz

It is at this point interesting to make the remark that this
result is true regardless of the shape of the grid elements. Since
the force is perpendicular to the mean velocity the center of gravity
of the vortex aystem is located behind the semichord of the elements
in Figure Gl However, the exact location is not of importance as is

the case for a single wing or wing section.

It is desirable to know the value of the 1lift coefficient CL
since experience shows that excessive values are not allowable. We

may write:
2

! .
p= C_ E_P W £ (6)
where ,g is the chord of the element (FigureGl). In contrast to the
expression (5) which is an exact expression regardless of the shape
of the element, the value of C; as defined by Equation (6) is strictly

accurate only for small deflections and infinitely thin elements.

In Fignre(2it is seen that the value W is very much smaller
than the velocities W and Wy o In actual practise the value of W

would be made slightly greater than Wy and smaller than w, to

provide continuous acceleration through the channel. The expression

(6) where CL is based on sz would, therefore, give the wrong

impression of the realistic value of CL . Since nevertheless we shall,
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for convenience, adopt the use of Equation {6) we shall remember
that the real value of CL is very much lower for large angles of
deflection, In fact, the velocity in the representative point may be

defined as
wo= Wl 4w
4 2

and one may write with the realistic value of CL

2
P=CL, 5P [l—v—d'—)%—'—“—/iqf (7)

where l wl l and \ WZ’ represents the numerical values of the

vectors w1 and w2°

Consequently, the "realistic'" value of the lift coefficient is
in terms of the fictional value
¢ = (| we 1%
o [WJ (8)
The rativ of the real C; to the fictional value is thus given by the
square of ratio of the geometric sum of the vectors Wy and w, to
the square of the arithmetic sum of same: Since the angles (Xl and
O(Z in the cases of importance in VTO design are of approximately
the same value, we shall employ the mean or average value O(m .

- We have then approximately

' 2
CL./L: CL §eS I_"—O(m)
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where thus ( JL — ©(,,) is one half of the total deflection angle. In
A

o
the two cases shown in the following the deflection angles are 27
and 550 and the '""real" values of CL are therefore lower than the

. er s 2 o 2 0

given artificial values by factors cos 13.5 and cos 27,5 or
0.94 and 0.79, respectively. Inthe second case shown there is an

indicated value of CL = 1.04, the ""realistic" value with uniformily

contracting channels is therefore only

C - . ° 0.7 = 0.
L = 1. 04 9 82

Reverting to the artificially defined value of CL (Equation (6)) and

using Equation (5) one has the relation for CL (without correction)

C = Z Z WZ-& - W/-t_
L - —
A W,
IEXAMPLES

As experimental checking is proposed,we shall show two
examples obtained by routine method from Reference GL Figure G3
shows a grid for a total deflection of 27°, The angles with the n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>