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A Simplified Stability Criterion for Linear Discrete Systems
E. I Jury+
SUMMARY

In this study a simplified analytic test of stability of linear discrete
systems is obtained. This test also yields the necessary and sufficient
conditions for a real polynomial in the variable z to have all its roots
inside the unit circle in the z-plane. The new stability constraints require
the evaluation of only half the number of Schur-Cohn determina.ntsl’ 2. It
is shown that for the test of a fourth-order system only a third order
determinant is required and for the fifth-order only two determinants are
required. The test is applied directly in the z-plane and yields the minimum
number of constraint terms. Stability constraints up to the fifth-order case
are obtained and for the nth order case are formulated. The simplicity of
this criterion is equivalent to that of the Lienard-Chipart criterion3 for the
continuous case which has a decisive advantage over the Routh-Hurwitz

. . 4,5
criterion .

INTRODUCTION

It is known that linear time-invariant discrete systems can be
described by constant coefficient linear difference equations. These
equations can be easily transformed into the function of the complex
variable z by the z-transform method. One of the problems in the analysis
of such systems is the test for stability, i.e., to determine the necessaryv
and sufficient conditions for the roots of the system characteristic equa-
tion to lie inside the unit circle in the z-plane. These stability tests
involve both graphical procedure such as Nyquist locus, Bode diagrams,
and the root-locus, and analytical methods such as Schur-Cohn or Routh-
Hurwitz criteria. Because of the higher order determinants to be evaluated
using the presented form of the Sch:;r-Cohn criterion, many authors in
the past have used either a unit shifting transformation g or bilinear
tra.nsformation7. The latter transformation maps the inside of the unit
circle in the z = eTs plane into the left half of the w-plane** and then
applies the Routh-Hurwitz criterion. This transformation involves two

* This transformation uses p = z-1
. . w+tl
%% This transformation uses Z= W

+ Department of Electrical Engineering, University of California,
Berkeley, California.
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difficulties: a) algebraic manipulation for higher-order systems becomes
complicated, and b) the final constraints on the coefficients in the z-plane
become unwieldy and require algebraic redictions to yield the minimum
number of terms. Because of these limitations this criterion is not
usually used for systems higher than second-order. '

A recent investigation by this author has shown that the evaluation
of the Schur-Cohn determinants can be simplified considerably by making
use of the real coefficients of the polynomial in 2, so that the manipulation
involved in testing for the zeros of a polynomial are comparable to those
using the '"transformed (or modified) Routh-Hurwitz criterion', thus
avoiding the bilinear transformation 89,

The study in this paper repre sents a major simplification of the
earlier work, where it is shown that only half the number of determinants
are required for obtaining the stability constraints. This si mplification
has a decisive advantage over the modified Routh-Hurwitz criterion and,
indeed, higher-order systems can easily be tackled using the proposed

stability test.
THEORETICAL BACKGROUND

In this section we review the simplifications which had been obtain-

8,9

ed in an earlier publication and explain in detzil the manipulations

involved.
Schur-Cohn ¢ rite rionl' 2:

If for the polynomials
2 n

F(z) = a + a;z + az” + .. a2z (1)
all the determinants of the matrices
0 0 0 0 n n-1°"* 3 k+l
a, . a, 0 o ... 0 0 an-k+1
A = k-1 k-2 k-3... % 0 0 ...oa
a.n 0 0 0 ao al - an-1
an-l an 0 . . .
3 k4l dn-k+2  Pnekts 2y 0 0 ...a

k=12,3...n, Ek = complex conjugate of a,

(2)



are different from zero, then F(z) has no zeros on the circle | z|=1 and
K zeros in this circle, p being the number of variations in sign in the
sequence |, lAll , lAgl see lAnl . The prooflofzthe above theorem
is quite involved and is available in the literature’ “. This criterion was
first introduced by Cohn in 1922, and since that time neither engineers
nor mathematicians have simplified it to a usable form.

For a system of order n to be stable, all the n zeros of its charac-
teristic nth order equation must lie within the unit circle, i.e., the
sequences, 1, |A1| , IAZI y e lAnl must have n variations in sign. The

stability criterion can, therefore, be expressed by the constraints4:

|a | <0, k odd
|A >0, keven, k=1, 2, ...n (3)

For a discrete or a sampled-data system, all the coefficienis of
the characteristic equation are real. Hence, the conjugate sign in (2) is
superfluous. It is the utilzation of this fact that leads to the simplifica-
tion of (2).

As noticed from (2), the highest-order determinant lAnl is of
order 2n, while the characteristic equation is of order n. Hitherto this
constituted one.of the discouraging facts in widely using the criterion for
higher-order sampled-data systems. A recourse to transfcrmation to

other planes was therefore attempted to yield easier stability tests.
SIMPLIFICATION OF THE STABILITY CONSTRAINT EQUATION® 10

%
Since all ay in equation (2) are real, the matrix can be written as:

) P _
f ef B’ @

where the superscript T denotes transpose and

* The author acknowledges the helpful correspondence with Dr. N. H.
Choksy with regard to the material in this section.



ao 0

2 2
P= |

-1 -2

It is noticed that all the diagonal terms of P, and Q are equal and both

are symmetrlc with its cross dxagonal

ak_3o oao

n

Q

(5)

0

k

a
n

n

Schur Cohn matrix that leads to the following simplification,

unitary transformation.

~-k+l

-k+2

)

It is this characterxstlc of the

using a

(6)

Let Ik be the k-order identity matrix, 1k+ the k-order permutation

matrix,
o
0
+
Ik =
0
1
and Uk

Let T

readily evident that:

0

the 2k-order unitary matrix

, (note that U

+

I

= |af| < |a

K|

°]

k

-1

-1 e e T
Ay = Uk Ak Uk » then by actual substitution for A

=U

k

K

, it is

(7)

(8)

(9)

(10)



where

Fao a, a, ... a
0 ao a1 oo a.k_2 T
= . = P, (1)
. 0 0 a
0 0 0 0 J
and F -
qn-k+l ... a3
a'n-k'-#-Z .o a'n 0
_ + _ .
Ve = Qe = ] (12)
an-l 0 0
an 0 OJ
Hence
+
Py Qe I ka Yy
+
Al =a,] = - . = (13)
I Q L P Y X
X, + Y, Y, 4 X
= (14)
Yy X
X, + Y, 0
= (15)
Yk X - Yy
=X+ Yl X -y | (16)

+

One can easily verify that P;f

Ay t_ 4 T
=L P LandQ I -1/ Qf

i



Thus the Schur=Cohn determinant lAkl is reduced to the product
of two k-order determinants ' “ which is considerably easier to evaluate
than the direct evaluation of the 2k-order determinant ,Ak, . If a, are

complex, then this simplification is no longer possiblel’ Z.
- 8
THE SYMMETRICAL PROPERTIES OF | % 47, | [ X, - Y |° ,

Now l Xk + Ykl is a homogeneous polynomial of dimension k in
the variables a,..., a_. The polynomial lxk - Y, | is identical to the
polynomial | Xt Ykl except for a change of sign of those monomial

terms which have an odd number of elements from Yk’ i.e.,

lxk+Yk| =A +B, ant

| % - Yyl =4y - B, (18)

where Ak(Bk) is the sum of all monomial terms which do not change

(do change) sign when Yk is replaced by - Yk in lxk + Yk, .
IDENTIFICATION OF Ak AND Bk(which we designate as the stability

cbnstar‘xt’s’)s. .
1) Let all the ai's in the matrix Yk in (12) be denoted by bi's;
then expand the determinant l Xk + Y,_l in terms of a, and bi'

2) After expansion, examine every term which is a product of

ai's and bi'S; if it contains an even number (including zero) of bi's,
then it is assigned to Ak; otherwise assign the term to Bk'
3) After collecting the terms of Ak and B, , replace all the

bi's by the a.l's. Hence

|al = (A +BOA, - B = A]f - Bl‘:' 19y

+ From (ll) and (12), by replacing all the a's of Y,k by b's, we obtain Ak and
Bk by first expanding the following determinant

R i WECRRL ML I N
Proktz 20*Phike3 AP page-d gth, A,
b -k+3 b -kt4 30tby kig Bk g ap-3
% + Y|
- ke : : ; : :
ks, 2,...,n-1 |b_ > b bl 0 0... & i, .

b b 0 0 00 a a (20a)
n-1 n 0 1
b 0 0 0 00 0 a
n 0




and for stability from (3) this reduces to
lAkl > lBkl » k even

lAkl<]Bk|, kodd, k=1,2,...n (20)

Therefore, the application of the Schiir-Cohn criterion now reduces
to the evaluation of determinants up to order n only for the nth order
polynomial.

It should be noted that the last simplification is useful only for
design procedures where the coefficients of F(z) are given in other than
numerical values. However, if ak's are given in numerical values, the
use of equations (17 and 18) is preferred.

EQUIVALENCE OF THE LAST. CONSTRAINT lAnl 2 B | TO A SIMPLE
AUXILIARY CONSTRAINT:
The constraint which we will introduce involves the exclusion of
certain real roots outside of the unit circle. It constitutes a necessary
(but not sufficient) condition for the roots of F(z) to lie inside the unit

circle. This constraint is given by

F(z) >0 (1) and F(z) ’ >0 for n even (2a)
(21)
z=1 2=-1< 0 for n odd (2b)
The alternate constrain F(z) < 0 and F(ZL < 0 for n even, is

z=1 =-1> 0 for n odd

also possible. However, we may exclude this, without loss of generality,
by always letting a_ be positive, in which case to satisfy (1) and (2a, 2b)
requirez:‘.11 that F(z), > 0 and F(z) > 0 for n even

Z— 00 z=-00 < 0 for n odd.

Lemma 1. If (1) and (2b) are satisfied, then there exists at least
one real root of F(z) = 0 bet\zeen plus and minus one. Also the total
number of such roots is odd”.

Lemma 2. If (1) and (2a) are satisfied, then the total number of

. . . 13
real roots that lies between plus and minus one is zero or even .




To show the equivalence of the constraint ]Anj zl Bn] to the above
auxiliary constraint it is simple to distinguish between two cases:

(a) n is odd: Suppose we satisfy the constraint constants up to
An-l and Bn-l’ then a generalization by Ma.rdenzof the Schur-Cohn
criterion indicates that there exist (n-1) roots inside the unit circle.
The arrangement of these (n-1) roots (even in number) inside the unit
circle is one of two alternatives. (1) The first alternative is that, because
complex roots appear in conjugate, the total number of real roots between

plus and minus one is either zero or even. Now if we impose the auxiliary

constraint (1) and (2b) on F(2z) we find that the last single real root from

the constraint lAn]< l Bn, should lie inside the unit circle from Lemma 1.
(2) The second alternative is when the auxiliary constraint is satisfied in
addition ta the first (n-1) constraints, then the number of real roots
between plus and minus one is either one or odd, amd thus in this arrange-
ment there exists a single complex root inside the unit circle. Since
complex roots appear in conjugate, the last constraint lAn l <l Bnl is
necessarily satisfied. Similarly if the auxiliary constraint is not satisfied,,
then this indicates a single real root outside the unit circle and thus the
last constraint is also not satisfied.

For the case where ]Anl = | Bnl this indicates a real root on the
unit circle which is also the condition of the auxiliary constraint when
written in absolute values equated to zero. Therefore, we have shown for
n odd that the auxiliary constraint is equivalent to the last constraint.

(b) nis even: Suppose we satisfy the constraint constants up to
An-l and Bn-l’ then this indicates that there exists (n-1) roots inside
the unit circle. The arrangement of these (n-1) roots (odd in number)
inside the unit circle is one of two alternatives. (1) The first alterna-
tive is that, because complex roots appear in conjugate, the total number
of real roots between plus and minus cne is either one or odd. Now
if we impose the auxiliary constraint (1) and (2a) on F(z) we find that the
last single real root from the constraint 'An l >l Bnl should lie inside the
unit circle from Lemma 2. (2) The second alternative is where the

auxiliary constraint is satisfied in addition to the first (n-1) constraints,



then the number of real roots between plus and minus one is either zero

or even, and thus in this arrangement there exists a single complex

root inside the unit circle. Since complex roots appear in conjugate
therefore the last constraint IAnI >| Bnl is necessarily satisfied. Similar-
ly if the auxiliary constraint is not satisfied then this indicates that a
single real root lies outside the unit circle and thus the last constraint

is also not satisfied.

For the case when lAnl = | Bnl this indicates a real root on the
unit circle which is also the condition of the auxiliary constraint (written
in absolute values) when equated to zero. Therefore, we have shown for
n even that the auxiliary constraint is also equivalent to the last constraint.

Therefore, for stability test it can be concluded that the first
(n-1) constraints of the A's and B's should be satisfied and the auxiliary
constraint is then equivalent to the last constraint lAnl§ l Bnl . This
equivalence has been checked for the examples discussed in this note.
Furthermore in the next sections this equivalence will be demonstrated
mathematically.

THE MODIFIED STABILITY CB\ITERION9 - - .

Combining the previous discussions we can restate the stability
criterion in a modified form as follows:

A necessary and sufficient condition for the polynomial F(z) = a,

+Az+a zz + ... + akzk +... ¢+ anzn, to have all its roots inside the

1

unit circle is represented by the constraints
[A] <|B,| for k odd

and
|A ] > B, | forkeven, k=1,2,...,n-1 (22)

and by the following auxiliary constraint.

F(z)l > 0 and F(z)l >0 n is even , fora >0 (22a)
z=1 z=-1 < 0 n is odd n
o F(l) . F(-1) >0 Deven ¢ anya (23)
<0 n odd n



MODIFIED SCHYR-COHN CRITERION?
From the above consideration we can usefully modify the Schur-
Cohn criterion as follows4:
If for the polynomial with real coefficients

2
F(z) = ag + 3,2 + a,2 +...+a.nzn,a.n>0 (24)

satisfying the auxiliary constraint, all the stability constants Ak and Bk
(k=1,..., n-l) are not equal, then F(z) has no zeros on the circle I zl =1
and (u + 1) zeros inside the unit circle for n even and u ofld as well as for
n odd and p even. (p is the number of variations of inequality sign in
thebstability constraints [1, (Al’ Bl)' ..o (An-l’ Bn-i)] . Furthermore,
when n and p are even and when n and p are odd the number of zeros

inside the unit circle is p.

REDUCTION IN THE NUMBER OF DETERMINANTS FOR OBTAINING THE
STABILITY CONSTANTS Ak,'S; and "?);'3

In this section we will show that for stability test only about half
the number of determinants for obtaining the Ak's and Bk's are required.
This important reduction is based on certain properties that exist between
the A 's and B, 's. We will indicate these properties first and then show’

k k
how they can be used for this major simplification

2> 2 > -
) AZIB 5 A AL RB B k=2,34,...,n-1 (25)

The above equivalence is established by expansion for the first
few values of '"k'" and can be generalized similarly for any other value of
k up ton-1. When k = n-1, the above equivalence is reduced to:

A% 2 gt

>
nel An <B_ ,B (26)

_>An -2 n

n-] —

-2

Equation (25) is the key identity for reducing the determinant of Ak and
Bk’ for it is noticed that by forcing certain restrictions gn>the ;‘s and
B's before and after a certain k we can dispense with Ak < Bk . This
will be best illustrated by the few examples to be discussed.

2) An = (a0 + a, + a, + "')(An-l - Bn-l) (27)

Bn=(al+a3+a5+"')(An~l-Bn-l) » n 22 (28)

10



The above identity can be easily verified for the first few values of "n"
and can be generalized for any "n"+. The importance of this property

lies in the mathematical proof of the previous section as follows:

2 > 2 2 > 2
or
2 2 > >0
A -B < 0=2F(l). F(-1) <0 (30)

A

which verifies the equivalence [A_| 2 l B_| to the auxiliary constraint.

3) (An-l+Bn-1) = An_z(a0+a2+a4+. o) -Bn_z(al+a3+a5+. ..)
n>3 (31)
From (26) we can write
>0 >0
A Ba A" Bl <o Bno28,7B 2B, <o (32)

n-1

using (27) and (28) in the right side of equation (32)

. >0
An_z(a0+a2+a4+a6. N )(An_l-Bn_1)-Bn_2(al+a3+a5. .o )(An_l-Bn_l)<0
or S 0 (33)
(An_l-Bn_l) [An_z(a0+a2+a4. g )-Bn_z(a1+a3+. .e)] <0 (34)

Comparing equation (34) with the left side of equation (32) we obtain the

following identity:
>0

>0
n-1) < 0=p-z(agtata e )-B Llatasta...) o, n>3
(35)

The above relationship can also be derived directly for the first

few values of ''n'" and can be generalized for any "n'". Furthermore

(An 1+B

the above property can also be shown as an equivalence relationship

which can be written as a recurrence equation.

(An_1+Bn_1) = An_z(ao+a2+a4. .o )-Bn_z(a1+a3+a5. .. ), n>3 (36)

The use of this property lies in the fact that one can obtain directly

(An_1+Bn_l) from the previously obtained An-Z and Bn-Z’ and also to

verify the first property for the upper limit, i.e., k=n-1 (See Appendix).
The above three properties in combination with the preceding discussion
will now be used in obtaining the new stability constraints for low order

systems and then, by generalization, to obtain the constraint for an n-

order system.

+ To establish the identity for the general case, it is easier to show
the following equivalent conditions for (27) and (28):
An+Bn = F(]')(An-l-Bn-l); An-Bn = F(-l)‘AnwlmBn-l)

11




Examples of Low Order Systems:

We will apply the reduction properties wherever they are appli-
cable ton = 2, 3,4, 5, and then obtain the stability constraint for any n.
We will assume a > 0. This can be easily done by multiplying F(z)

by minus one, if necessary.

- - 2
(@) n=2 F(z)—a.0+a.lz+azz, a, > 0 (37)
The stability constraints, using equations (22 and 22a) are given
,aol <32°r,A1|<,Bl, - - (38)
- Q
ao+al+az >0, a, al+a2 >0, or IAZI > l le (39)

One could also remove the absolute sign from equation (38) for
if a, is negative with magnitude larger than a, equation (39) will not be
satisfied. However, we may leave the absolute sign in order to discontinue
the stability test if (1) is violated. °

(b) n=3, F(z):ao+a.lz+azzz+a3z3, a3>0 (40)
The stability constraints from the modified stability equations (22) and

(22a) are given by the following inequalities:

laol <a3' lAll < lBll (41)
2 2

[ay” - a’] > laoaz-3133| 1AL [le (42)"

F(z)| >0, F(z)| <0, or |A3|<|B3| (43)
z=] z=]

* To show how to obtain A.Z' and BZ for this case:

1) Expand the determinant of Eq. (20a) for k=2 and n=3, as follows:
a, + bZ a, + b

1 3
| X, + Y, = A2, “ap, - b,
b3 a, 0 0 2 3
2) To identify AZ and BZ' follow procedure (2) on page 6, to obtain
_ . 2 2
Ap =3y -y

B, =agb, - ab,

3) Replace all the b's of A5 and B.2 by the a's to get:

2
Ay=ay” -a,

By=aga, -aa,

A similar procedure is used for obtaining the Ak's and B '(s) for
any Hkll and ll H

12



Reduction of the constraint conditions: .
From the first property of the Ak and Bk » We may write in th’ -ase
€

2 o n
A,">B,"*AA,>BB, (44)

Since Bl is positive (i.e., a; > 0), we may write for the right side

Al
—Bl—- A3 > B3 o (42a)

Using conditions {41) and (43) in combination with (42a) the new stability

constraints are:

,aol <a3 (45)
B, <0 (46)
]A3| <|Bs| , or F(1) >0, F(-1) < 0 (47)

From the second property in equation (28)

B3 = (a1 + 33)(A2 - BZ) (48)
Since a1 + a, is positive {from Eq. 47) because it is equal to ’

F(l) - F(-1) > 0, therefore B3 is negative only when A2 - B2 < 0. From
the third property of the stability constants it is readily seen that

A2 + B2 <0is i~dentica.11y satisfied from the first and third conditions.

Thus the simplified form of the stability constraint for n=3 reduces to

lagl<a, (49)

2 2
3, -aj; <aga, - aja, {50)
ao+a1+a2+a3>0,ao-a1+a2-a3<0 (51)

Stability diagrams for a second and third-order case are presented in

Figures 1 and 2. ¢
_ _ 2 3 4
{c) n =4, F(z)—a0+alz+azz +a3z +a4z s a4>0 (52)
The stability constraint
laol <a4, ,All <,Bll “ (53)
2 2
iao -a, l >la0a3-ala4, . ,A2,>lel (54)
3 2 2 2 2 2 2 3
]ao+ao.’=l2a4 + a1a3a4 - aoa4 - 3234 - a0a3l <l.’:xoa4+.'=l0 az+a1 34 aoaza‘l--a4

-aoa1a3l (55)

13



or || <|B, (55)

F(z) >0, F(z) >0, or |A,| >|B,]| (56)
=1 b=-1 4 4
Reduction of the constraint equations

Using property (1), we may write as in the previous case:
A
2 2 1
Equations (53), (54), and (55) are now equivalent to (53), B3 < 0 and

(55). Using B3 < 0 with (55), we finally obtain the reduced constraints:

£ <a, or [A}] < B, (58)
Ay-By;>0, A, +B; <0 (59)+
F(l) >0, F(-1)>0 (60)

++ .
It is noticed that for the fourth-order case only one determinant
of third-order for obtaining A3 and B3 is required. All other conditions

% .
are very simple.

(d)n =5, F(z) = a0+alz+a222+a3z3+a4z4+a525, ag > 0 . (61)
The stability constraints in symbolic form
|A/l<B;, B =a, >0 ©2)
]AZI > ]BZI 63) .
| A5l < |B,] (64)
Al >8] . 65)
Fl)>0, F(-1) <0, or [A | <|B.] 66)

*Constraints in (59) can also be written as B,<0, |A,] < 'B | . The latter
has an advantage in numerical testing if B 20 is vidlated. ‘}hen the test
could be discontinued without having to calculate A3.

++An alternate form which is more advantageous for design can be obtained

for the fourth order case. This form can be easily obtained by using
properties (1) and (2). It is given as follows: (1) A, <0, (2) A, < -|B,],
(3) A, - B, >0, (4) F(1) >0, F(-1)>0. €

In this case only one third order equation in (3) and one second order
equation in (2) are to be solved, while in the former case two third order
equations are to be solved. It should be noted that when (2) is satisfied,
relationship (1l ) becomes redundant.

14
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Reduction of the constraint relationship:

We may keep in this case condition (63) but we eliminate 64)

by using the first property, i.e.,

A% . g2 “>A_A, < B.B '(64a)

3% F3—"52% < BBy
With Az negative because of (62)1' the stability constraint for (62), (64),

(64a) and (65) becomes: (62), (63), A4 > 0, and Ai > Bi . Using A4 >0 !

in (65) i. e., (A4-B4)(A4+B4)>Owe obtainA4 ~B4>OandA4+B4>O.

Furthermore, since Az = Af' - Blz is to be negative from (62), it is

readily satisfied if the second constraint is equivalent to Az - BZ <90,

Az + BZ < 0. Finally, we obtain for the reduced form the following:

AZ-B2<O, AZ+BZ<0 (67)
A4-B4>0,A4+B4>0 (68)
F(1) >0, F(-1)< 0 (69)

It is noticed that in this case only the second and fourth order det erminants

are required. One may also use a different form of reduction by eliminat-
ing (68). However, this will not yield much simplification over the
Previous form because a fourth-order determinant with®a third-order
determinant is then required.

The above discussion can be generalized for an "n" which
finally reduces to the following simplified criterion.

The New Stability Criterion: .

=

A necessary and sufficient condition for the polynomial -
_ 2 k n_, .
F(z) = ag + a,z + a,z + ... +akz +eu +anz with a > 0, to have all its
roots inside the unit circle is represented by the following constraints

for n even and n odd re spectively:

T N
Note A, = A “- B,

15



+
n even n odd+

|al < B, By =a>0 . A, - B, <0, A, +B, <0
A3~B3>0, A3+B3<0 A4-B4>0,A4+B4>0
AS-B5<0, A5+B5>0 A6-B6<0,A6+B6<0
A7-B7>0, A7+B7<0 . .
A - >0 for n=4k A -B > for n-1 = 4k
n-1 "n-1 <0 for any other n n-1 n-l1 < 0 for any other (n-1)
<0 for n = 4k > 0 for n-1=4k
An--l * Bn-l > 0 for any other n An-l"'Bn-l < 0 for any other (n-l)
k=12,3... k=12,3...
F(1) >0, F(-1) >0 F(l1) >0, F(-1) <0

Alternate Forms:

An alternate equivalent method which is of advantage if the stability
constants evaluation is carried out by methods other than a computer is

hereby presented.

n even n odd
]A1|<B1,B1=an>0 |A2|>]B2l, A, <0 .
|A3|<|,,B3],B3<0 |A4,>|B4,e, A,>0
|A5|<|B5|, B, >0 |A6|>]B6|, Ag <o
|A7| < |B7| » Bo<o

) : .. <0, for n=4k ) ;0,for n-l=4k
IAn-ll < , Bn-ll ’ B.n-l >0,, for any other IAn-l I >| Bn-ll ’An-1<0, for any other
n n
k=1,2, 3... k=1,2, 3...
F(l) >0, F(-1) >0 F(l) >0, F(-1) <0

*Note that A, + B. and A, - B can be obtained directly from equations
k k k k
(17) and (18)

16
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In the above case the identification of IAkl and | Bkl from the
determinant le - Ykl could be used. This criterion can be applied

for design purposes when the ak's of F(z) are given other than numerically.

Illustrative Examples

To illustrate the stability test, we choose two problems, one
involving design and the other a numerical test of a polynomial.

l. The design problem is concerned with obtaining the maximum
allowable value of k (the gain) of a feedback sampled-data systemlz
shown in Figure 3, to be stable.

The overall transfer function is :given as:

C(z) _ G(z) (70)

R(z) ~ T+ G(z)
where

G(z) = z-transform of the forward path transfer function G(s)

_all-e T lo.ss 0.5k | 0.118k
-’ s g s+0.5] "2 (7)
: z (z - 0.882)

For stability we have to examine the denominator of Eq. (70)i.e., 1 + G(z2)

1+Gl(z) = 2> - 0.882 2% + 0.118k (72)
The above equation is a third-order polynomial in z, and thus we can
apply the stability tests obtained earlier for n = 3. In this case

a; = 1, a, = - 0. 882, a = o, a, = 0.118k, and k to be positive.
1) [ap] <aj 0.118k <1, k < 8.47 (73)
[

2) ag - ag " ag2, <1, yields k < 5. 75 or k > -13. 21 (for positive

feedback)

3) a, + a + a2+a3> 0, 1-0.88 +0.118k > 0 is®atisfied for any
positive k > 0

a; - a; +a2 -aj< 0, -1-0.882 +0.118k <0, k <15.9 (74)

17
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Therefore, the maximum allowable gain for stability is the lowest value

which is in this case kmax= 5. 75.

2. Test for stability the following polynomial:

Flz) = z°+22%-0. 52-0. 95 (75)

The above polynomial is again of third order, i.e., n = 3, thus we apply

the stability constraints for this case, a3=1, a, = 2, a1=-0. 5, a,= -0.95

1) laol < aj 0.95<1

2 .2 2
2) ag-aj<aga, -aa;, 0.95°-1>-1.90 + 0.5 (76)

or, -0.1> -1.40

The second condition is violated, thus there exists at least one root out-
side the unit circle and thus the system is unstable. To determine the
number of roots outside the unit circle from the modified Schiir-Cohn

criterion, (see p. 10) we also have to examine the sign of the last condition

3) ao+al+a2+a3 >0, -0.95-0.5+2+1>0

ao-al+a2-a3 <0, -0.95+0.5+2-1>0 {(77)

The last condition I A3| < I B3l is violated. Now the number of
changes of sign of 1, A 's and B, 's are the number of roots inside
k k 2 2o
the unit circle. In this case, the sign changes are, 1, A1 - B1 < 0,
A; - B; < 0, Ag - Bg > 0. There are two changes of sign, and since
only three roots exist, therefore only a single real root exists outside

the unit circle.

CONCLUSION

From the preceding discussion, it is shown first that in the
"
original Schur -Cohn or the modified Routh-Hurwitz criterion, the number

of determinants required for the stability is almost halved. The use of

18



the criteria for both design of discrete systems as well as for testing
roots of a polynomial inside the unit circle is illustrated. This
criterion will now be useful in many applications such as the stability
test of difference equations with constant and periodically varying
coefficients, in nonlinear discrete systems for the stability study of
limit cycles, in the design of digital computers, in the stability test
of linear systems with randomly varying parameters and in many
other applications. Thus it is hoped that this criterion will find many
applications in various fields in addition to the above and its use by

engineers, physicists and mathematicians will be greatly enhanced.
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APPENDIX

General Proof of the Properties of the Stability Constants Ak's and Bk's

In this appendix the second and the third properties of the stability
constants,i. e.,Eqns.(27), (28) and (31), will be mathematically proven
and from thesetwo properties, the limiting case of the first property,i. e.,
Eqn.(26) will be demonstrated. A heuristic argument will be presented

to indicate that relationship (25) is valid for all k = 2, 3,..., n~l.

Proof of the Second Property:

The second property as indicated in Eqns. (27) and (28) is given as

follows:

An= (a°+ a, + a,+ ag + ”')(An-l - Bn-l)

Bn = (a1 + a3+ a5+ a7+ ces )(An_l - Bn-l) y n>2

To show this property it is simpler to manipulate the following
equivalent relationship, which is obtained by adding and subtracting
the above two equations.

A +B_ = (a_+ata -B

nt By, ot tage..... n-1"Bn-1)

- - - - n -
A -Bn = (ao a1+a2 eoeo(=1) an)(An-l Bn-l)

The above can be also written as:
A * B =Fl)(A _-B_ ) (1)

A, -B_ = Fl-lA_-B_ ) (2)

n n-1]

+ The author acknowledges the aid of Mr. Jean Blanchard in
the discussions of this appendix.
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We will first demonstrate relationship (1) and following the same
procedure relationship (2)'can be similarly demonstrated. The proof

consists ofdeterminant manipulation and in particular using the follow-

ing property.

"The value of the determinant is unchanged if the elements of any

row (column) are replaced by the sums or (differences) of the elements

of that row and the corresponding elements of another row {column). "

To show relationship (1), we write first the determinant An+Bn

as follows:

A +B = [X +Y |=
n n n n

ao+a1 al+a2 ..... +aq ....... . an-l+an
a2 a_1+a3 . aq-2+aq-1 . .o an_2
B, cecttatiececans a +a e oo [@

£ gq-4+1 "qt1-2 n-f+1
a teesseseseaas a +a eees @

141 g-£+1 “qtt-1 n-{
a ceeesesesesns +a cses. @

£+2 q-£-1 “qtt n-{-1
a 6 0 ........ cessesssses0 Oa

n o

We will show the equivalence of (1) for the general row and

column in the above matrix, by concentrating only on rows {-1,

.- 22 -
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£, £+l and columns 9-1, 9 and q+l as follows:

row { -1

row £

row f+}]

aq-l+aq+l-3 ag& -l+1?a‘q +2-2 aq-1+z+a’q+1 =1
3g-1-1"3q4 -2 3g-1%3q41 -1 2q-14112q4
aq-l -2+aq+l -1 aq-l -1+aq+l aq-l +aq+z +1
column q-1 column q column q+l
(4)

with ap= 0
forpu>nor u< 0

Similarly we obtain the same rows and columns for the determinant

A .-B

= | Xn-1"Yno1 |

n=-1 " n-l -
General Coefficients inMatrix An-f%x-l
q-1 q-1+41 2q-1+2
row =] - - . -
aq+l =2 aq+1 -1 aqﬂ -1
q-1-1 3g-1 3q-141
row { - - - (5)
qq+L-1 2q+t a1+l
2q-1-2 3g-1-1 33-1
row £+1 _ _ _
2qHe 2qte+1 dqte+2
column q-1 column q column g+l
e

23 -



To demonstrate (1) we perform the following matrix manipulations:
(1) In the determinant An+Bn » add up to the last row, all the previous
rows. We then notice that all the coefficients of the last row after

this adding become,

pPen

}: ap: F(l).

p=0

The new determinant after factorization of F(l) becomes,

An+Bn = F(l) D

n rows (6)

n columns

=3

The elements in determinant D are the same as the initial determinant

A +B .
n n

(2) In (6) we subtract the columns 2 from 1, ... the column q from
q-l,... and the column n from n-1. By so doing, itis noticed that
except for the coefficients of the column n and row n which is
equal to 1, all other coefficients of the row n are equal to zero.

Therefore the matrix in An+Bn can be written as:

-24 -



n-1
A +B = F(l) D n-1 rows
n n .2
!
%2
. LI B ) L ) . LI B ) al
B Bicaseinnsns 0 0 1

n-1 columns

Now if we expand the determinant with respect to the last coefficient

in rows.n weobtain a determinant of order n-1 for Dl.
The general coefficients for Dl' are as follows:

%q-1"%q+e1-2 2q-1+1"3q+1 -1
row f -1 + +
’5;;)-3'aq-1+1 ) (2q+e-2"2q-g42)
2q-1-1"%q# -1 3q-1"2q+e
row { + . +
<aq+[m2-aq-l’ L Fq+e-1"%-141)
2q-1-2"2g+1 2q-1-1"2q+e+41
row f+1 + i +
aq+z-1'aq-z-1h 2q+e "2q-y

column q-1 column q

- 25 -



To identify D1 with the matrix An-l'Bn~l’ in (5), we have to

eliminate the encircled coefficients in the determinant D..

1

(3) To show the above we rewrite for simplcity only the coefficients

in the column q of the Dl determinant as follows:

row 1l

aq-l-aqﬂ

row 2

row 3

row f{

aq_l -aqﬂ

+
(aq+[ -17%g-+1)

mow n-}

0, if g0, or n-l,

when q=0, it is equal to
an-r when g=n-1 it is equal to a,

aq+n-2-aq-n"+2 .

aq-n+1-a‘q+n-'l =

column q

- 26 -



To cancel the encircled coefficients in D1 or in above,we
perform the following operations: Add up row 1l to 2, we cancel out
the encircled term in (2), then considering the new row 2 obtained
and adding this row to-row 3, we cancel out the encircled terms in
row {(3), we continue this process to cancel all the encircled terms.

Finally we obtain the column q in Dl as follows:

Column q in Dl

row 1 aq-l-aqﬂ
row 2 a -a
q-2 q+2
row 3 a -a
3-3 q+3
row [ a -a
q-4 qHe
row n-1 0 , if q# 1, when q=1, itis equal to
(-a )
orq# n-l1 q=m#l, it is equal to
a
o

Comparing this column with column q in Eqn. (5), we readily
establish the equivalence which is valid for all q columns and ({
rows: Thus the identity between An-l-Bn-l and Dl is established.
Therefore Eqn. (l) is verified.

Following the same procedure with the appropriate operations,
Eqgn. (2) can be similarly verified and thus the second property is

demonstrated.

- 27 -



Proof of the Third Property of Ak's and Bk's:

The third property as given in Eqn (31) is represented as follows:

A +B

n-17B,.1 = (a°+a ta,t ... a2p+. .e) An_z-(a1+a3+ . B +a2p+1+. .e )Bn-Z

2 74
The above relationship is also equivalent to the following,

An-l + Bn-l = 1/2 {F(l) (An_z-Bn_z) + F(-l)(An_2+Bn_2)}

In this discussion a rigorous proof of the above relationship will
be obtained from which the above property is established. Furthermore
by combining the third property with the second, we will establish the
limiting case of the first property, i. e., k= n-l

The proof will be based on determinant manipulations, by using the
same properties as in the previous case.

The determimant of A  +B can be written as:
nt]l " n-l

L]
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n-1+ Y

For the determinant An

column 2q+l column 2q+2

+
3otay  atag 3, tayie 2q41%2q43 2p-2te,
23 3gtay 2p4-1%%20+3 : %n-3
a a a ta a
4 5 2q-2 "2q+4 n-4
row 2L faggyy ceees " 32q-2041 2qt2e+2
row 2Ltlia,, ., 32q-21" P2qt24+2
row 2442) a,,, 32q-20-1"22g+24+3
a_ 0 0 vevrrrnnnnnn. 002000 a

-l -

.+ Bn 2» We can write in a similar

fashion, however we concentrate on the general rows and columns

as shown:

row 21
row 24+1]

1< L <

row 24+2

Matrix of An

22

., Bn-Z

CITHTINSSINININITSNITtII 11 o6 u v

column 2q+l

= R

column 2q+2

32q-2041 T 22g+2442

32q-20+42 ¥ 22q+24+3

+
82q-2 T 22q+2143

+
an-ql +1 - an+2!.+4

32q-20-1F 22q420+4

32q-20 T 22q+2045

with ap= 0 ifp

-29 -
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FProcedure for the Proof:

1. Using the matrix A 1
n-1if n=2p \~

3,5 17... 21+1,(n if n=2p+l)l'
of the new matrix obtained becomes:

+ Bn-l’ we add to row 1, the rows

It is readily seen that the first row

column 1 column 2 column 2q+] column 2q+2

+
row 1 Z azp E 2ptl Z a2p Z aZp+l

i = ta_+ cee +...
with Zazp ao a2 a4+a6+ +a2q

= t... +o..
z a2p+1 al-f-a3+a5-9-a7 +a2q+l

2. Then subtract from the columns 2q+l, 22 g: g-ilfifn-r:g;l
the columns 2q-1. Similarly we subtract frem the columns 2gq,
the columns 2q-2, this operation being performed step by step.
For instance if n=6, we first subtract the column 3 from the
column 5. Then the column 1 from 3. Similarly we subtract the
column 4 from 6 and then the colymn 2 from 4. By performing this
operation, we notice that the first row contains all zeros except for

the first and second columns, where the coefficients are now

Zazp and Za?-p'f'l » and by noting that

t
)
'

71 [F(1) + F(-1) ] = Zazp, and 71 [F(1)-F(-1) ] = Zazpﬂ,

the first row of A +B becomes:
n-1 Tn-1

- 30 -



columnl column 2

A _*B__ | { Row]l —;[F(1)+F(-1)] = [F(1)-F(-1)] | 000...000...00

3. Add column 2 to column ], then in the new determinant multiply
column 2 by 2, and divide the determinant by 2, and then subtract

column 1 from column 2, we get for the determinant An+1+Bn-1:

D ‘

" column 1 column 2

1
A__*B_, ‘{E} ’ F(1)

L —

/\

in the determinant A, the following coefficients in the general row

F{=1) ‘
|
1

-
L
-

and column appear:

column 2q+l column 2g+2
a +a a +a -
2q-24+1" 22q+21+1 2q-24+2" 22q+2i+2
Row 21
"22q-21-1"%2q+21-1 © “82q-21"22q+24
1<t <
+
0<q< 22q-201%2q+210+2 22q-20+1%2g+24+3
Row 24+1]
"82q-21-2"%2qg+21 “32q-20-1"22q+21+1

We expand the previous determinant with respect to the first

row to obtain:

1
A, * B, = 3 [F) D, + F(-1) D,]

- 3] -



where D2 and Dl are the appropriate determinant obtained from A.

If we can show that D2 = An-Z-Bn-Z and Dl = An-2+Bn—2 » then

we complete the proof of the third proparty.
4. We will demonstrate first the equivalence between An~2+Bn-2
and D1 as follows: D1 is obtained from A as,

column | column 2 column 2q column 2q+]

Row 1 (ao+a3)+a4 al+a5-a3

Row 2 (a4)+a.5 ao+a.6-a.4

Row2t-l(a,, 1) )*ay, 1012304273204 2q-20+1"2q+20+1| P2q-20+2"32q42¢+2

P2q-20-1%2q+20 -1 22q-21 “82q+21

Row 2t (azz+z)+azf+3a21+4'azz+z 3q-20122q+2142 22q20+1%32q+21+43

2q-20-2"2q+21 | B2q-20T%2q+2441

n-2)+an-l a'n-a'n-Z
a3 -(a -1)+an “%n-1 1
n-2 (a) -a_

It should be noted that the elements in column q and row # of
D1 are identical to the elements in column g+l and row f+l1 of

A orof A +B .
L n-1 "n-]

-32 -



5. We subtract row n-2 from row n-3, then after simplifying
the new row n-3, we subtract it from row n-4, and proceed in the
same fashion up to the first row. Then we add column 1 of the new
determinant to column 2, then after simplification, we add the new
column 2 to column 3 and repeat the same process. We finally obtain

for Dl the following:

column ! column 2 column 2q column 2q+l
+
row 1 a°+a3 al+a4 an-l+a2q+2 an a2q+3
+ +
row2 Ja, tas | 29-2%2043 | 22q-1t%2qe4
row2t-Ya,, 1) 32042 ®2q-2041"%2q420 | 22q-2442
tasqtat+l
Tow 2L fay, .o 321+3 32q-21+ 32q-24+1
3 oqt2e+l ta gt

It is noticed that the new expression of Dl is identical to the

expression of An-2+Bn-2’ as shown earlier on p. (29). Therefore

Dl = An-ZM-Bn

n-2°
Therefore with this equivalence we have verified the following

Similarly we can show the identity of D2 = A

=2° n=-2

identity:

n-1 "n-l

LT
A *B = {F(l)(An_Z-Bn_Z)+F(-l)(An_2+Bn_2)}

or equivalently the third property

- 33 -



An-1+Bn-l = (ao+a2+a4+. cea, to.l) An_z-(al+a

3+a5. .o )Bn-l

is established.

Discussion of the first property:

The first property as given in Eqn. 25, can be also written as:

2 .2 )
A "B = A AL - B B s k=2,3,4,5...n1

We can readily verify the above property for the limiting case,i. e.

when k = n-l, by combining the second and third properties discussed

earlier as follows:
The third property gives:
An-l+Bn-l = (ao+a

2+a4. .. +a2p+, ")An-Z-(al+a3° oo ) Bn-Z

The second property gives:

A

+... ‘e -
n (ao+a2 a2p+ )(An-l Bn-l)

and

B
n

(a_l+a3+. . +a.2p+l+. . )(An-l-Bn-l)

if we multiply the third pProperty by An

l-Bn-l and use the second
property we obtain:

An-l - Bn-l = AnAn-Z - Ban-Z

The above is exactly the first property for the limiting case,i. e. ,

when k = n-1. By actual expansion, the first property has also been

verified for k= 2, 3,4,5. In order to complete the proof it has to be

- 34 -



shown that it is valid for any k between 5 and n-l. This proof
could be achieved in one of the following two procedures:

a) By determinant manipulation as has been done for the other
properties, if we write for the first property the following equivalent

form:

1 %
(A B NAEB) =5 (A =By (HAL #BL )+ (A By A By

b) By induction method, i.e., to show if it is valid for k_-l_, it is also
valid for k.

Both the above procedures involve difficuit and complicated
manipulations which were not attempted in this report. However, we
may present a simple heuristic argument to indicate that the first
property holds for all k. This is based on the following observation.

If we assume a certainn, i.e., n = 5, then the stability constraints
are given as | > 0, A1< 0, A2> 0, A3< 0, A4 >0, A5 < 0. Now if
we assume any general n >5, the stability constraints are given by
1> 0, A< 0, A2> 0, A3< 0, A4> 0, A5< 0, A6> 0, A7< 0...

The A's for the general case up to A5 are the same as the A's for

n =5 except for replacement of the specific n = 5, the general n in
computating the determinants. Furthermore, any relationship that

holds between the A's, i.e., AZ-BZ= AetAri "By By k=234,

for n= 5, also holds for any n. Thus one may deduce that. "If

the first property is verified for any specific n, it also holds for any n. "

Based on the above deduction, we can use the limiting case of the
first property to extend the range for n=6, 7... For instance if n=7,
then the first property verified for k=n-1, becomes also valid for k=6
and for all n. Similarly we may proceed step by step in the same

fashion to cover all the intermediate cases of k.

*By showing that this equation which holds for k=5 and n=6,
to be valid for k=5 and any ''n", then a rigorous proof has been
constructed by using the limiting case to extend the range of k.
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Admittedly, the above argument doesn't constitute a rigorous
proof but only indicates a convincing argument that the first property
cannot be violated for any k between 5 and (n-l). One can also
use the expansion method to verify the results for higher 'k", however,
this again involves a complicated procedure.

In summary, the material of the appendix yields rigorous
proofs for the second and the third property and from these pro-

perties a heuristic argument for the validity of the first property

is indicated.

- 36 -



ADDKEND )

v pate ¢
® ol hienntie Mrsseoun
Ky

Meotingtom 3 I €

Cuonpng sobe o
B0500 Kot Duoctugoness Duoresin
A% mwmAD

Bgss Purteeen Ao Dus o Daee Ona.

Hevecoon bortd
Pelesd Mesesiteans

$ O fee ta

Comatein Agea.
Adiogron TReo, 9840
R R AT IR
Beemer. 8 ol uns e
ehyasitate .y
LR
oo
IR N .
Do g0t
TIN
o0
e

ae 3 1ge

AL B gnt Teat Contes
o7
Foeoe Baer it e

AT Sie 12 Bespins s ertes

e Moay s

o4 Al 0 e Tlaee
Cotnmendes AT Mieste Desvelupmert € smier
ATTN A
Talloman Avt Fonee Base, Now Moror o

der, Aemy Rurkel & Cuded M,y
OROXR.OTL
Pedetore Avesnal, Alatams

Agrney

Commandant
A bote Iretotute of Techrolugy

(AUN Litany, MCLI-LIN, Dldg 125, Area B
Wrght- Fatte 1eon Aty Forie Nase, Ohio

Commarder
At Research snd Development Comnmand
ATTi RDR

RDRA

RDAR

Andrews Air F.rce Base
Washington 25, D.C

WADD {WWRMC M)
Aacospice Mechanics Branch
Flight Control Laboratory
Wright-Patterson AFB, Chio

RIAS
1712 Bellons Avenue
Balmore 12, Maryland

PO CIET A Y

_—————

LoITR DR ATEN AIR FORCE
PEZE3N AL 3 BRI SRRECTORATE

TRUBNILAL ANG BINAL K3 POMY DISTRIBUTION LIST

COMPSACE Ay 1400} 152

Al dnat e NO. COPIES
T aminarbty Gase ey

L3 Nems hegues Cospe Beo
ANI% MTIWAL s

Fooo Maminas, %en feage, )

& Dev, Lab

a0 s & tpsee Adenint stration

Weliiad Bes
- LI ®

Agtan.

Abated Bargens Fosmire Aypenc,
Mortugra i1 2 ]

Y P
TYIE Man Negena
iite Wia e -

[ET YN 1

[ RNPE
2 o0 Jinp
H L
Aaatge

LeheB o Jonn twan
nke

LIS PO

SN Beann W M
S 1

NN M CMues e NaU
Sapie b T Entenecia,

Sefae muye e i
A4S sy Bae
Bdoms byaeey Wise sheeed '

FOe T 8 Lailegt See.etent Meofessor
Set Teaitee B e diinigs

o Bugaaee 1y Tugecoman

T ohe 1

Sm e
LA e
BT W i & maevae H

[Vl TN

CMas Bmate Sucnrse e,
Dupmermret d 8 40 o Trg saer ay

Lo .

toaganae

14t es o Riaean e
. Y

R N L T
i1 Mamees B,

Caldds rey. 1

VH bmers
Laive
e Youm 17 Yea Yoo |

Profresus T 1 Migger s
Univeroity of Wieconen
Stadienn,

Mr Juhn € Lane
Beli Telephane Lavaratar
Whippany, New Jevee, 1

Central Institute lor Induetrial Resesrch
Blindern
Oslo, #orway 1

Univeraity of Penneylvania
Moore School of Electsical Enginerring
Philadelphia 4, Pennsylvania 1

Renaarlier Polytechnic Institute
ATTN: Library (Route to Dr, B.A. Fleishman)
Troy, New York 1

Johns Hopkine Univereity
Department of Mechanics

ATTN: Libréry {Route to Prof. F.H. Clauser)
Baltimore 18, Meryland 1

Stanford Research Institute

Documents Center

(ATTN: Acquisitions)

Menlo Pirk, Csllfornia !

ADDRESSEE NO, COPILS
Commander

Air Research and Development Command

Andrews Air Force Base

Washington 25, D, C.

ATTN: RDT 1

The Mitre Company
P.O. Box 208
Lawungton 73, Massschusetts 1

Professar F. J. Mullin
Depsrtment uf Electricsl E: Rineering

Calilornia Inatitute of Technology

Pssadens, California 1

Applisd Mechsnic s Revisws
Southuest Researeh Insntate

#5700 Culetrs Road

3an Antunio 6, Teaas 1

Mitute of
AT Lt

fLimer G Gitbens
mant ol Arvarautiesl Enginessing
of Micrigan
Ars Artor, Moemigon '

D0 Jusepn Otte spe,
Bell Telepnine Lons
Boiyrme s - Jeegr, 1

Bertis Avistovm Curps
Jueteme Diasaoon

Asa Arser M.os gon
Mrs Fa, »

Reily, Lase

Beraiia To002agee Conatt polinms 1 Arms

nerles DOL

Bes Sostens Moune;

1Y, Yeeeus 1

Perutey S or
teresi e Lave
Vacforg Loue
Mertoed Casolarany 1

eee i p Bejeeties

TNaftes Derman. ) armase
SE Darmytar Avrnipr
Tooncnstat

Vassrinty «of Mivtane
Tmgartener o b1

ool Drgireaaing

reomarg 1

.
g Bwaciee
Yorn

STette £F Dymrler
Ten lnetilote

11 Jadeecn Mteees
: . Tiee
Tro0e1 '

S0niY Lataeetury
Cortridge 14 WUaerscruients
ATT% § terag '

Siegtee Auriaatt Coempansy
Fisterie s Sereer
Cutent City. Coitlnrees
ATTN Do emesate Gross, LT Y

Ren X301 '

TV B S

Poeratcn O arrinn

e lrosrpsested

LA ET % 7]

G “o. Floeids 1

Eiectronic $voteme Decrlopment Corporation

1484 Faot Maon Sereeq

farm

farbers J Large t

Prctessaor K K Vowets

S<hosl of Electescel Enginearing

Unieersity ol feew South Weles

Rrosdasy

Sew South Waler. Agetrelia 1

Dr  Jutiue Tou

Elacteical Engineering Department

Purduer Universiny

Latsyette, Indians 1

Americen Systems Incarporated

M. D. Adcock, flesd

1625 . 126 Street

Hawthorne, California 1

Aerospace Diviston
Aeronca Mig. Corp.

P.O. Box $3b

Baltimore 3, Maryland

ATTIN: Dr. R.W. Bass 1

Boeing Scientific Resaarch Laboratary

ATTN: Research Library

P.O. Box 3981

Seattle 24, Washington 1

Instrumentation Enginaering Programs
Univarsity of Michigan
Anr Arbor, Michigan 1

Profaseor Maaerve
Cornall University
Ithaca, New York 1

Major Gengral C. miro Montenegro Filho

Cantral Téchnico da Aeronautica {CTA)

Sio Jos€ das Campoa

530 Paulo, Braril 1




'UNCLASSIFIED

UNCLASSIFIED



