
IT 

UNCLASSIFIED 

An 263 838 

/ 

: /■ 

ßepaoduced 

by  ike 

ARMED SERVICES TECHNICAL INFORMATION AGENCY 
ARLINGTON HALL STATION 
ARLINGTON 12, VIRGINIA 

~   5 '> 

UNCLASSIFIED 



NOTICB: When government or other drawings, speci- 
fications or other data are used for any purpose 
other than In connection vith a definitely related 
government procurement operation, the U. S. 
Government therehy Incurs no responsibility, nor any 
obligation -whatsoever; and the fact that the Govern- 
ment may have foimilated, furnished, or in any way 
supplied the said drawings, specifications, or other 
data is not to be regarded by implication or other- 
wise as in any manner licensing the holder or any 
other person or corporation, or conveying any rights 
or pemission to manufacture, use or sell any 
patented invention that may in any way be related 
thereto. 

. 



00 
c 

itr Uii A 

PRINCETON   UNIVERSITY 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

XEROX 



1 

k 

Eeproduction, translation, 
publication, use and disposal 
in whole or in part, by or for 
the United States Government 
is permitted. 

The Views contained in this 
report are those of the 
contractor and do not neces- 
sarily reflect those of the 
Department of the Army. 

The  Information contained 
herein will not he used for 
advertising purposes. 

Agencies within the Department 
of Defense and their contractors 
may ohtain copies of this report 
on a loan basis from: 

Armed Services Technical 
Information Agency 

Arlington Hall Station 
Arlington 12,  Virginia 

Others may obtain copies from: 

Office of Technical Services 
Acquisition Section 
Department of Commerce 
Washington 25, D.C. 



■ .■ ■■ 

U.S. Army Transportation Research Command 
Fort Eustis, Virginia 

Project Number:  9-38-01-000, TK902 
Contract Number:  DA ^4-177-10-52^ 

SOME BASIC CONSIDERATIONS REGARDING 
THE LONGITUDINAL DYNAMICS OF AIRCRAFT 

AND HELICOPTERS 

by 

Howard C. Curtiss, Jr. 

Department of Aeronautical Engineering 
Pl-inceton University 

Report No. 562 July I96I 

Approved by: 

A. A. Nikolsky 
Project Leader 

9- 



POREWOED 

The research in this report was conducted by the Department of 

Aeronautical Engineering of Princeton University under the sponsorship 

of the United States Army Transportation Research Command, as Phase 1 

of work under the ALART Program. 

The work was performed under the supervision of Professor A. A. 

Nikolsky,, Department of Aeronautical Engineering, Princeton University, 

This work was administered for the United States Army by Mr» John 

Yeates. 

■  ....  ,   ..: 



TABLE OF CONTENTS 

«••OOAQOOOOOOI SUMyiAHY .... 

DISCUSSION „, 

CONCLUSIONS  

REFERENCES 

toooooeeo' 

«aaaooaooag 

• oovoeooo. 

lO.oooaottao   eoe   < a   o   »   o   o   o   ' 

O  o  o  o  «  o  o  a  o  a  o  i 

Ö    t>    C    O    O    i 

page 
1 

2 

if 

6 

40 

/ 

""■■' "; 



SUMMARY 

A discussion of the longitudinal motion of an airframe is presented. 

General relationships between the stahility derivatives of the airplane 

and the single rotor helicopter are consideredo It is shown that the 

basic character of the longitudinal motion is primarily determined by 

the angle of attack stability and the velocity stability. The variation 

in the modes of motion produced by these two stability derivatives Is 

presented. 

Consideration of the relationships between the flight variables in 

the modes of motion is included. 
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Acceleration due to gravity» 

Moment of Inertia of aircraft about center of gravity. 

Pitching moment atout the center of gravity, positive 
nose up. 

Rate of change of pitching moment with variable indi- 
cated in subscript, the others held constant. 

~TD     Pitching moment divided by moment of Inertia f "x ) * 
mass of aircraft.    

Time 

Flight velocity 

Weight of aircraft 

Horizontal force along an axis fixed to the aircraft, 
Initially aligned with the wind, positive forward. 

Rate of change of horizontal force with variable indi- 
cated in subscript, the others held constant. 

Horizontal force divided by the mass of the aircraft. (—— ) 
V YYW 

Vertical force, perpendicular to .& , positive down- 
ward. 

The rate of change of vertical force with the variable 
indicated in the subscript, the others held constant. 

Vertical force divided by the product of the mass of 
the aircraft and the trim velocity. (    S   ^ 

Aircraft angle of attack,positive nose up. 

Root of characteristic equation. 

Aircraft pitch angle, positive nose up. 

Real part of root of characteristic equation (damping 
of oscillation) „ 

Imaginary part of root of characteristic equation 
(frequency of oscillation). 

Control deflection. 
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Subscripts and superscripts 

( )o 

M ) 
C ). 

initial or tr^jn Talue. 

perturbation from Initial value. 

a quantity representing the magnitude and phase of a vari- 
able. 

derivative with respect to time. 



IHTRODUCTION 

The  general nature of the transient longitudinal motion of con- 

ventional subsonic airplanes has been well known for a number of years. 

The classical motion consists of two oscillatory modes, one proceeding 

at approximately constant velocity (referred to as the short period), 

and the other proceeding at approximately constant angle of attack 

(referred to as the phugold). However^ the restrictions on the aerody- 

namio stability derivatives for the occurrence of this type of motion do 

not appear to be well known. Many other flying machines, the single 

rotor helicopter, for example., exhibit dynamics considerably different 

from this classical pattern» Since the longitudinal motion of both 

of these types of aircraft, and other flying machines, can he described 

by essentially the same equations of motion, It would "be expected that 

there would exist a number of basic similarities in the transient motion. 

It is the purpose of this report to provide a general viewpoint 

for the longitudinal dynamics of an aircraft by indicating and utili- 

zing the fundamental similarities that usually exist.  The basic re- 

strictions on the aerodynamic stability derivatives necessary for the 

occurrence of classical longitudinal motion are Indicated. Root locus 

techniques (Reference 1 & 9) are used to present, in a general way, the 

influence of the static stability derivatives.  Only the terms which 

contribute to the essential features of the dynamics will be considered. 

ThUB some terms usually included in stability analysis are neglected, 

since they contribute small differences to the motion. 



Also discussed Is the variable content of each mode^ which is an- 

other property of the equations of motion.  This characteristic of the 

equations makes it possible to obtain a good physical picture of each 

modej and to determine the variables and the stability derivatives that 

are of Importance in each mode. 

The typical longitudinal modes of the single rotor helicopter are 

discussed.  It will be seen that many types of rotor lifted craft fall 

into this category, and that certain classes of. dynamics are more or 

less inevitable. 



DISCUSSION 

The conventional linearized rigid-body equations which describe 

the perturbed longitudinal airframe motions about a straight and level 

flight path, may be written In the following form: 

"X^ ALL - im ALL -*- Ji^Aoi + DC^ AU + Xe A© - WAG = X § S 

MULA\JL i- Ho« A« +    H^   A* + Me AS -  1 A( § s 

The coordinate system is initially aligned with the relative wind and 

is fixed to the body.  The X axis is taken positive forward and the 

^C. axis positive downward»  The control response will not be con- 

sidered.  Only the character of the homogeneous equations is investi- 

gated . 

In order to describe the longitudinal motion of the helicopter 

with these equations, it is necessary to make additional assumptions 

to the assumptions implicit in this form of the equations. 

1»  Coupling effects between the longitudinal and lateral motions 

are assumed to be negligible.  The helicopter differs In this respect 

from the airplane due to the fact that the rotor is not symmetric, and 

thus aerodynamic coupling is present.  The lateral motion of the hell- 

copter thus produced is assumed to have a small effect on the longi- 

tudinal motion. 



2. The rotor reacts instantaneously to changes in flight varia- 

ables; i.e.,, its perturbed position in space can be described by the 

instantaneous values of A.iX, ., AU- >  and A©  • This assumption 

is valid for investigations of the transient dynamics of the heli- 

copter^ since the natural frequency of the blade flapping motion is 

much higher than the natural frequency of the fuselage motion, 

3. The rotational speed of the rotor is constant.  It is assumed 

that rotor speed variations will not influence the basic character of 

the motion^ which is of primary concern here. 

A number of terms included In the above equations are, in general^ 

not important, and will be neglected in this analysis. These are 

"X^ AG ^ £eA© >  'X^ Ac<  and Z.^ Ao< . Also, the term in the 

moment equation {^j^ Ao< will be neglected.  The derivative v\^   con- 

tributes primarily to the damping of the short period motion and does 

not Influence the basic character of the motion. Therefore, consider- 

ation of the dynamics will be restricted to the following equations: 

"Xu.AU.  -   VYIAU. -t    "X^ACX     -   V/A©    «    O 

XUL, AU. ■+ 2^ Aö(   — rmjLo Aä  + mu,o A0 ^ o 

HLLAU.+  MocAa   4-   He AB - IAS   «    O (2) 
Por the following discussion it is  convenient to divide each equation 

by its  inertia term.    Thus equations   (2)  are to be written as: 

Xu-Aüu —   AXJU  ■+■   ^c^ACK   —    ^U-A©   "    O 

ZUL.AU.   ir    Z.£KA<X   -    AC*.     4"    A©   -     O 

TBu.AU- ■+* VOd Aoi   +   m© AB - A© -  O (2a) 



Since these differential equations are linear with constant co- 

efficients^ the solution will he of the form ^o^C^O^Oc, (2- ' , 

A©= ©, £   ,    AUL = U.|,ß.  . Suhstltutlng these expressions into 

At 
the differential eq-uations, canceling out (L , a set of algebraic 

equations in three unknowns CÄ ^ ,    © j , UL« and the parameter ^ Is 

obtained: 

uu— AjVJL,   -V-    ^0<0<| 
^ 

e, =  o 

7.ULlXt  4-   C Xa( - X^c^i    "t   X6t  =   O 

It is a property of these equations that there can be non-zero 

values of cA l > 'l and UL j lf^ and only if^ the determinsmt of the 

coefficients of these quantities equals zero,, i.e.: 

(Xu. %• 

8" 

o 
(if) 

Expansion of this determinant results in a fourth order equation in A > 

the roots of which are called characteristic values or modes of the 

system.  The Individual values of  /V > i.e., the modes Indicate the 

nature of the transient motion, e.g., a complex pair of values of f\ 

represents an oscillation. 

How to each value of A  (each complex pair in the case of com- 

plex roots) there corresponds a relationship between 0(j ,,  ©. and 

lXi '     However,, It is possible only to solve for ratios of these 



O^l quantitiesj, since equations (3) are homogeneous.  Thus the ratios --- 

and ÜU 
(referred to here as mode ratios) can be determined for each 

'     ' "75^ which^ in general^ 

/\    and do not depend upon the input. (The absolute magnitudes, i.e., 

the ©, S depend upon the input). -7=r  and 

are complex numbers indicate the magnitude and phase relationship be- 

tween the Independent variables in each mode. As a result, a good 

physical picture of the mode and an estimate of the Important terms 

In the equations of motion with respect to each mode can be obtained. 

This analysis will Indicate the general nature of A and the 

corresponding variable relationships as a function of the stability 

derivatives <, 

In the following discussion it is essential to note the distinction 

between the static stability of the aircraft, and the static stability 

derivatives, 

The static stability of the aircraft can be defined as the change 

in pitching moment due to a change in velocity, under the condition 

that the vertical force is maintained equal to the weight.  The airplane 

is statically stable If an Increase in speed produces a nose up moment. 

From equations (2a) then, an expression for the static stability of the 

aircraft can be determined: 

"Vf)^ AVL.  ■+ -XDCK  Ao( - Am 

where 

thus 
m    TV) u_ ■—   fn pi 

^ 
^Du-'Xc* AtLK, j 



The  term (rnu,Zfl( —fTiiX  X.U. ^ :^s ^e C(3efi'lcieiit of /^ in the 

characteristie equation. For the sign convention used here^, the air- 

plane Is statically stable if HW ZtL. - Tfou.T-tf   y Q   -     For the 

helicopter in hovering^, this reduces to ' Tn-u. > O 

Thus the static stability of the aircraft depends on both the 

static stability derivatives, VTM,   and r>Vvx , as well as the force 

derivatives X a{     and 2* u_ . 

In the following, "^Tl^ will be referred to as angle of attack 

stability and'""YYIin as ^locity stability, whereas the static sta- 

bility of the aircraft is ^T-TJ , the total derivative of pitching 

moment with respect to velocity, with the vertical force maintained 

equal to the weight» 

Before proceeding further, various 2x2 minors in the 3 x 3 de- 

terminant (k)  will be Identified.  These minors represent limiting 

cases of the three degree of freedom dynamics, involving only two 

degrees of freedom, and may or may not represent a good approximation 

to a mode of the three degree of freedom dynamics.  The discussion 

following will indicate when these approximations are valid. Three 

minors are identified,, one closely associated with the helicopter, 

the others with the airplane, 

1.  Hovering minor. 

o 
(5 

This minor arises from, the assumption that perturbations in angle of 

attack (vertical velocity in. hovering) do not have significant influ- 

ence in the horizontal force and moment eguations. The term "hovering" 

10 
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Is used to identify this minor, since it describes the dynamics of the 

helicopter near hovering flight, hut will, of course, describe the dy- 

namics of any aircraft in forward flight that obeys these assumptions. 

The locus of roots to this minor depend primarily on the magnitude of 

the velocity stability ( THUL, ) since the relative values of >. ci- and 

the damping in pitch (rri© ) will be similar for most aircraft. Physi- 

cally, it would be expected that if the equations are uncoupled C"-Vnuj*0) 

the dynamics would consist of a rapid convergence in pitching rate (m©), 

and a slow convergence in velocity ( "Xu.) and therefore |rn@l » l)<u-| 

A degree of freedom is considered uncoupled here in the sense that the 

root associated with the uncoupled degree of freedom can be determined 

from one equation.  The term «—a-A©  is from this viewpoint, a forcing 

function in the horizontal force equation when ~YY\u.= O   , and, of 

course, influences the control response but does not effect the roots 

of the characteristic equation.  Only velocity stability (an increase 

in velocity produces a nose up moment) will be considered. This is 

typical of the single rotor helicopter. Thus the locus of roots of 

this minor is.„obtained from the characteristic equation 

11 



Figure 1:  Hovering Dynamics:  Locus of roots for Increasing 
Velocity Stability. 

Prom Figure 1 it can be seen that the velocity stability produces an 

oscillation which becomes shorter in period and unstable as the ve- 

locity stability is increased.  In general,, the region of stability 

is very small and any appreciable value of YT>u. will cause the oscil- 

latory instability typical of the hovering helicopter, A description 

of this oscillation from a. physical viewpoint can be found in Eeference 

(2). The magnitude of the POu^ above which the motion is unstable can 

be determined from. Eouth's Discriminant.  It is HfW" "Yu.^e - These 

dynamics will be characteristic of most rotor lifted aircraft in hover- 

ing_, and unsatisfactory dynamics of aircraft in hovering are more or 

less inevitable unless m-yu can be maintained at a small value. Xu_ 

provides a small stabilizing effect on the oscillation,, and a small 

range of niy^ for which the machine could be dynamically stable. The 

pitch damping ( rn© ) also acts to stabilize the motion and its influ- 

ence is dependent upon "fixx.  to some extent» 

12 



Note that although the velocity stability is stable in a static 

sense it is destabilizing In a dynamic sense.       • 

Expanding (k)  along the c^ column,the three degree of freedom 

characteristic equation can be written as: 

-y* 
^u.        A    — 

mix.   (m©->)>v 
■+(^->) 

- nu =      O 

In many cases >C<x will be small and the characteristic equation. 

In literal terms becomes 

Thus as fi^ o( -»' o t  the dynamics of the machine tend towards this 

minor• 

2,    Classical Ehugold Minor: 

()iu.—X) ""«^r 
u- > 

=   O 

This minor describes the motion of the aircraft when the angle of 

attack, influence is small in the horizontal and vertical force e- 

quatioDB, and is usually a good approximation to one mode of the 

JO 



dynamics of an aircraft or helicopter possessing a large amount of angle 

of attack stability ( VT»^ ) as can be seen from equation (6). The nature 

of the characteristic rootg of this minor depend primarily on Z.u_ since 

XUL being a function of the drag of the machine, will be of the same 

sign and of similar magnitude on most aircraft. For a subsonic airplane 

2.U- is always negative. However, in the helicopter, Z.ou may '^e  either 

positive or negative, depending upon the flight condition.  (References 

3, hf  and 5)»  If 2Lu_ is negative, i.e., a lift Increase with an in- 

crease in speed, the roots will consist of two convergences tending to 

a stable oscillation as Ztj_ increases.  If XLO. I
S
 positive, the 

roots consist of a convergence and a divergence. The former is general- 

ly the situation at low trim velocities and the latter at high trim ve- 

locities for a helicopter. The locus of roots is therefore: 

Lift increase with 
increase in velocity 

Lift loss with in- 
crease in velocity 

^u inc. 

^-ssE-glg ^i -». ^a 

Xu- 

too 

)(u-cJsc-. 

cr 

Figure 2i     Classical. Phugold Dynamics 

Ik 



Variation of )<.Uw from its original value moves the roots on the arc 

of a circle centered at the origin, when the initial roots are oscil- 

latory. 

This case is fundamentally different from the hovering minor al- 

though in both cases the angle of attack influence was assumed to be 

small. This is due to the fact that different equations are involved. 

Thus even though the angle of attack variation is small, one must be 

careful to choose the equations in which the forces or moments pro- 

duced by the angle of attack change are small compared to the other 

terms in the equation. The selection of the proper equations for an 

approximation follow directly from determination of mode ratios, 

3. Classical Short Period Minor; 

= o 

This minor describes the short time dynamics of an aircraft, that is, 

the motion prior to the time that the velocity change has increased 

to a sufficient magnitude to influence the dynamics.  In general, if 

the frequency of this motion Is high and well damped it will represent 

a good approximation to one pair of roots of the three degree of free- 

dom, characteristic equation, since the oscillation would ensue before 

a significant velocity change occurs.  If the frequency is low this 

minor may not be a good approximation to roots of the characteristic 

equation but may still approximate the short time dynamics of the air- 

1? 



As mentioned line wlU In general be considerably larger than 

^u_ for a majority of aircraft and helicopters. The lift curve 

slope of the aircraft ( X«  ) will be of a similar magnitude as rn© 

representing in an uncoupled situation, a rapid convergence in angle 

of attack. Thus the roots of this minor will depend, to a large ex- 

tent, upon the magnitude and sign of VY)(X as shown on the following 

root locus. Also indicated are the influences of variation of "^oC 

and VT)@ in an oscillatory case. An m© change moves the roots on 

the arc of a circle centered at Xot and vice versa. 

ffi 
Zcx  n^n© 

ttO 

cr 

■- angle of attack instability 

angle of attack stability 

Figure 3;  Classical Short Period Dynamics 

16 



For large values of angle of attack stability the roots will be 
I 

the typical short period heavily damped motion of the subsonic air- 

plane providing X« and YT^© are of sufficient magnitude. If there 

is angle of attack instability^ then the roots will be two convergences, 

one tending towards a divergence as the instability increases. 

Now the over-all dynamic characteristics as obtained from the 

3x3 determinant will be investigated. Certain basic relationships 

between the derivatives exist that are utilized to make the root locus 

diagrams quite general with regard to the influence of other deriva- 

tives. One would expect, in particular, that for similar types of air- 

craft, e.g., single rotor helicopters, the force equations would be 

similar since the derivatives would largely Result from performance 

considerations. There may or may not be similarities in the moment 

equation depending upon the type of aircraft and the configuration 

under consideration, and upon the degree of control that can be ex- 

erted in the design. As previously mentioned, the stability derlva- 
j 

tives along the major diagonal of the determinant (4), from physical 

considerations can be expected to bear a general relationship to one 

another. These terms determine the dynamics when the degrees of free- 

dom are not coupled. Thus in this situation, it would be expected that 

all aircraft would possess similar dynamics.  If the velocity stability 

( HluuJ-and the angle of attack stability ( PHQC ) are equal to zero 

the pitching mode is uncoupled from the angle of attack and velocity 

modes. 

s 
r. - 

17 



When     tiTiu,™ rOeX ^   0 (k)  'becomes 

-1 

(me - >) > 

O 

and the characteristic equation is: 

>v(me-XJ | tz^-^C^-X) - ^Zuu] ~ o (7) 

The angle of attack and the velocity are coupled due to Z.u_ and 

y*o{    '    K will he found that as long as  XUL and /Lot    are well 

separated;, this coupling between angle of attack and velocity is 

usually weak and can be neglected.  This is generally true of both 

the airplane and the helicopter, and is determined by the condition 

that the roots of  CXuL" Xy ( Zc< ~ ^J~~   %*, Z. u_ — O    are 

approximately Xu». ana- X-o{     •  In this case, the characteristic 

equation will be   }^ (, YTIQ - X) C2-« - X) (,^U„— X^ ~ O 

Thus the dynamics of any alrframe with no angle of attack sta- 

bility and no velocity stability will be essentially uncoupled and 

will consist, of: 

a) In pitching rate,, a rapid convergenceo 

b) In. angle of attack, a rapid convergence. 

c) In velocity,, a slow convergence » 

This basic relationship is inherent in the classieal approximations as 

will be seen. There will,, of coarse, be some interaction between the 

equations due to the gravity and inertia terms. For example, the 

weight component term in the horizontal force equation (—NN/A© ) will 

act as a forcing function in the evaluation of control response in the 

uncoupled situation. 

18 



The dynamics of the helicopter or airplane will he largely con- 

trolled hy the magnitude and sign of flPu an<3- Wft    >  s^d the root 

location for the uncoupled situation is typical of most aircraft, 

appearing on the complex plane as follows from equation (7)» The zero 

root arises from the fact that the moment equation is uncoupled and 

has no dependence upon pitch angle. 

; . 

LCO 

MUtsotju. Yno^$, 

Figure k:     The dynamics of an aircraft with no velocity stability 
and no angle of attack stability ( '(X\&  =   rTiuu = O ) 

Generally these time constants will be well separated as shown. 

( "^Q^ may be greater or less than VfiQ   )• However, the typical heli- 

copter usually has smaller values of  'Z^ and VC\ Q   than the air- 

plane. For the helicopter through the level flight speed range this 

configuration will remain approximately the same. ["Xu^lwlll increase 

with speed while WQ  and Z.^   will remain approximately constant. 

19 



low consider in what manner the variable phase and magnitude re- 

lationships are dependent upon the characteristic roots.  It Is neces- 

sary to use only two of the three equations of motion»  Since the 

character of the force equations is typical and the static stahillty 

derivatives will be varied^ relationships between the variables for 

any location on the complex plane are obtained from the force equations,, 

The  force equations are: 

'ÄU "Q" +  ^ '^-^ ~ ^} "0~ ~ *" A (8a) 

and 

^j  ___   — ^zuJ. —■ X (x 'u, - A") /Q-g) 

9,    (Xa - A) ( 2^ -- X) ~ y* ZKX. 

determlnas a value of —=-  and  -^r-  „ These 
fen      c?! 

quantities can be considered as vectors on the complex plane and com- 

puted from this viewpoint. For the approximations ~~ ^^ \ and 

that the roots of ( XuJ" X ) (Z.?< - A ) — X« ^«J- =* O are 

approximately X «.i, and Xc?$ ^ the velocity to pitch angle relation- 

ship reduces to -wr =• y<w'I^;""V\ and for any valua-s of y^ large 

compared to }< ^ this simplifies further to -g- ^ -^- « This 

approximation is easily interpreted physically» It represents the 

fact that the major terms in the horizontal force equation are the 

horlaontal force produced by the weight component along 

20 



the )C  axis and the acceleration resulting therefrom.,  In this case, 

the horizontal acceleration^ and the fuselage pitch angle will always 

he approximately out of phase» As the modes become faster and faster,, 

loe.j, as /\   increases, the velocity content of the mode becomes 

smaller and smaller. 

The numerator of -SlL  is the classical phugoid, and therefore 

as A   approaches the classical phugoid —I —♦• o  i.e.» there will 

be no angle of attack variation in that mode. When "Zo( y  Xu-, and 

the classical phugoid is oscillatory, the mode ratios on the complex 

plane are shown in Figure 5° For any given roots, the variable re- 

lationships are fixed. The magnitude and phase of a derivative is de- 

termined by changing the magnitude by M COx-f- CT^-  and advancing the 

rector counter-clockwise by the angle "lou-n   ——■    . An estimate of 

the significance of the terms in various areas of the complex plane can 

be made by comparing the product of derivative of interest and the 

magnitude of the variable, e.g»,  rYl^ —-^  to  '"^u. —-— » Also the 
©I Oi 

phase relationships are Instructive as to similar effects from differ- 

ent- derivatives.  For example at (a) where the angle of attack and the 

velocity are l80o out of phase it would be expected that a change in 

velocity stability (+•) or a change in angle of attack stability (-) 

would have a similar Influence on the dynamics. At (b) where the ve- 

locity and angle of attack are approximately in phase, their influence 

would be opposite.  This is verified by the root loci later. Now the 

variable content as dependent upon the frequency and the damping of the 

mode can be seen. The lightly damped mode Involves primarily velocity 

and pitch angle perturbations^ angle of attack variations are of the 

21 
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1 

order of l/2 the pitch angle variations, generally enough such that 

the influence of angle of attack cannot be neglected except when the 

static stability with angle of attack is large and the classical 

phugoid roots are approached. The heavily dsunped motion consists 

primarily of angle of attack change and pitch angle change and the 

velocity change is essentially ■unimportant. Note that the associ- 

ation of these mode characteristics with the roots is due only to the 

force equation characteristics,  The variable content of convergences 

and divergences depend upon their location with respect to the un- 

coupled dynamics., ( ^UL.,"Z0< ,   Ti Q ),  e.g.. slow convergences will 

have a significant velocity content, while fast convergences will not. 

This property of the equations can be used in more complicated 

problems to determine the composition of each mode. 

Now the manner in which the dynamics vary with the velocity 

stability ( Tfiu. ) and the angle of attack stability ( <Tla ) will be 

investigated.  These two important terms In the equations of motion 

vary considerably on helicopters and aircraft and may^, to scene extent,, 

be controlled in the design. Four situations are considered for angle 

of attack stabilitys.  the Influence of angle of attack stability and 

Instability when Xu, Is negative (the classical phugoid is oscillatory), 

and when 2iu-. is positive (the classical phugoid is a convergence and 

a dl.vergence)| one for velocity stability:  the influence of velocity 

stability when —^  is not negligible compared to 1. The effect of 

velocity stability when 2j?i <<  |     is indicated by the hovering 

t 
minor as the horizontal force and moraent equations are not coupled to 

the vertical force equation and ( A "*" 21cX ) is a factor of the 
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characteristic equation as indicated by etiuatlon (7)° These cases in 

elude the consideration of the sobsonlc airplane (i.e.;, negligible ve- 

locity stability) and the single rotor helicopter„ 

The characteristic equation for the following root loci is ob- 

tained by expanding (h)  along the moment row: 

X(rne-X) | (Xa.-X )(z^ - >) - Ya'Z-v^] 

- ma |> ( XUL~X) ■+- <^. xou]" - YTW cj. ( X ( \ - —;)" z^ } = 

Assuming the term Xcx-Zu- negligible and ^cx "^ ^-js'     as discussed 

previously the characteristic equation becomes: 

> (ma~ X)(Xvx.- X)( ^CA ~ X) - Wd ((XUL- X) X + ^ z ^j 

m LA- ^   { X~ ^-c^ ] = o 

DynamicF as a function of angle gf attack stability 

Case 1:  Phugoid oscillatory| angle of attack stability 

The locus of roots of the characteristic equation for all values 

of fn^ less than 0 will present the range of dynamics of the subsonic 

airplane.  The aeros of  tT^ are of the classical phugoid roots^ and 

the root locus is obtained from the characteristic equation 

'iino Ir- A)( Xw XX'Zof- X) - Woe   [ X C X IX,' + CKZUU i = o 

2k 
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Figure 6a: The dyoamics of an airframe as a function of angle 
of attack stability.  Ehugoid oscillatory.. {YX)o(  <0) 

This locus presents the characteristic roots of the longitudinal motion 

of the subsonic airplane« Two oscillations are produced for any ap- 

preciable stable Talue of Vf\o(    ,  one arising from the coupling of the 

pitching rate mode and the angle of attack mode^ the other arises 

through coupling of the zero root and the velocity mode. These two 

modes will be referred to as the heavily damped mode and the lightly 

damped mode to distinguish them, from the classical airplane modeso As 

rn^i is increased the classical picture is approached of a lightly 

damped long period mode, (the limiting case is the classical phugoid 

motion) and a heavily damped short period motion.  Therefore, the 

classical approximations depend upon a significant amount of angle of 

attack stability and the re.lat.ionship originally assumed that 

ITOQ]. tejj» j'AuJ - When these quantities are not well separated the 
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classical approzimatlöas will become less successful^ and the tendency 

towards instability will increase in the light damped branch» The 

classical approximations became exact as '"Tyi« —»—oO   „ njie 

actual damping of the phugold is less than the classical phugoid ap- 

proximation of 2-Üt.  due to coupling between the two modes and is 
«SA 

difficult to approximate in a simple fashiono By examination of 

Routh's Discriminant^ a criterion, for the occurrence of instability 

then there will can be obtained o  If  t ''Tie -fr Xx 1^1. 2-,-JV- 
u. 

be a range of angle of attack stability in which the lightly damped 

oscillation is dynamically unstable. 

Case 2;  Phugoid oscillatory; angle of attack instability 

'The locus of roots is obtained from the preTlous characteristic 

ecuation by changing the angle conditiono 

LCD 

^—- CT 

Figure 6b ° Dynaales of an airf'rame as a function of angle of 
attaCk instability „ Phugoid oscillatory« ("TH.^ > Q) 
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Here we obtain a heavily damped oscillatory node,, .referred to as the 

"third mode" in (Reference 6) and a eonTergence and a diTergence» The 

divergence is a result of the static instability of the airplane <,  It 

is Interesting to note that^ in. this case^ a large ya-lxie of angle of 

attack instability also tends towards the classical phugoid. modeo 

Case 3:  .Ehugoid non. oscillatory;  Angle of attack stability 

The locus of roots is again obtained from the prerious character- 

istic equation with new r.eros due to the difference in Ziuu . 

1 LCJO 

Q&- 
Zo< m© 

^--s-a-*-e (T 

Figure 6c: Dynamics of an airframe as a function of angle of 
attack stabilityo Pbo.go.id non oscillatory»  ("rn^ <0 



Here there is essentially no cliange in the heavily damped branch» 

Howeverj, the lightly damped branch is quite different. The aircraft 

v o 
is statically unstable }  i.e.,, the coefficient of A     in the charac- 

teristic equation has changed sign due to Zuu .  Increasing the 

angle of attack, stability increases the rate of divergence of the 

instability.  It is interesting to note,, however,, that for reasonable 

values of TT^ the classical approximations still apply. 

Case h:     Phugoid non osclllatoryj angle of attack instability 

This root locus is similar to case 3_, except that the angle con- 

dition is changed. 

-SE- 
7o{  m© 

a- 

Figure 6d: Dynamics of an airframe as a function of angle of 
attack instability.  Phugoid non oscillatory. 

refloc > O) 
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Here,, as in Gase 2ß  the heavily damped branch in .non-oscillatory., 

while the lightly damped branch is oscillatory^ and surprisingly,, 

may even be stable for small values of tY^ o .For large values of 

angle of attack instability a severe oscillatory instability occurs.;, 

tending towards a rapid divergence. 

Dynamics asa function of Velocity Stabilityo 

Hais situation differs from the hovering case as a result of ^^ 

being significant (if ^p^3* YW&—   O  then angle of attack vari- 

ation appears only in the vertical force equation. The oscillatory 

mode is described by the other two equations). This root locus is 

obtained from the characteristic equation in the form. 

A)(Xuu-V)C2Lo(->) V  nriviL  | X^+X^)^"^} ■= o 

-% SB 
7oi  r'»9 
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// 

/       I  
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cr 

Figure 7t    The äjmmlca  of an airframe as a function of 
Velocity Stability, Ttlu. > O 
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The lightly damped or unstable hranch is quite similar to the hover- 

ing situation,, -while the heavily damped branch may either consist of 

a heavily damped long period oscillation as shown or two convergences, 

depending upon the sign and magnitude of XcH « Thus when DHicK ~*' O 

the._ "hovering" dynamics represent a good approximation to the dynamics 

of the helicopter in forward flight.  The actual dynamics differ from 

the "hovering" dynamics primarily due to angle of attack stability,, 

.Also note that in the situation when 22!L<< | p V!\cA~   O    »   (\~-'Z™) 

is a factor of the characteristic equation. 

Thus the manner In, which the dynamics of the alrframe vary with 

angle of attack stability and instability and with varying degrees 

of velocity stability has been shown. 

Comparisons of .Figure 6a with Figure 7 demonstrates the differ- 

ence between the longitudinal dynamics of an aircraft when the static 

stability of the aircraft is due to angle of attack stability^ and 

when It is due to velocity stability. There is one region of simi- 

larity when the velocity stability is very small,,, its ■variations 

affect the lightly damped mode in a similar fashion to the variations 

of angle of attack stability. This region is restricted approximately 

to the period of dynamics where classical phugoid is oscillatory and 

the period of the lightly damped motion is longer than the classical 

phugoid period. The roots indicated on these two Figures by an aster- 

isk^ are a comparison of dynamics when the static margin of the air- 

'i plane (Reference 7) Is the same^ but. arises from these two different 

sottrees„ 
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Mow the Influence of combinations of these two  derlmtives will 

be considered c  In Figare 8a the influence of angle of attack sta- 

bility and instability for rarlous values of Telocity stability is 

indicated^, and in Figure 8b}  the influence of velocity stability at 

various values of angle of attack stability is presented. Only the 

situation where the classical phugold is oscillatory is considered 

here,. 

Discussion will be restricted to oscillatory chameterlstics „ 

Corresponding roots on the two branches can be estiiaated from the 

fact that the sum of the damping of the two modes is a constant when 

only the static stability derivatives are varied. 

The poles for the following root loci are obtained from previous 

diagrams and, the zeros are the same as before. For example, the poles 

for Figure 8a are obtained from Figure 7 for various values of VYlu_ $ 

and the zeros are; the same as in Figure 6a. 
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Figure 8a; Hie dynamieß of an airplane as a function of angle of 
attack stability for different Telocity staMllty» 
(Ehugoid oscillatory) 

There are two regions to consider "with regard to the lightly 

damped mode; One previously mentioned, when the frequency of the 

motion is less than the classical phugoid, and the other when the 

frequency is greater than the classical phugold frequency„  In the 

former region_, the motion Is of long period and slightly stable. 

Both flPic^ and VTl yu produce similar Influences upon the dynamics, 

reducing the period and the damping» As the Yeloclty stahility in- 

creases;, the period hecomes less than the classical phugold, and the 
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Influence o:f angle of attack stability becomes more and more Tbene- 

ficlal, decreasing the Instability and lengthening the period^ always 

tending towards the classical phagold. The influenee of angle of 

attack instability becomes more and more severe., strongly Increasing 

the dynamic Instability and lengthening the period somswhat.  In- 

creasing the velocity stability is rarely beneficial^ except in 

regions where there are large amounts of angle of attack stability» 

Even in this condition it is hardly desirable since it primarily re- 

duces the period of a lightly damped oscillation,, changing the damping 

very little. 

/ 

<- 

-tru^o 

The üjsmslcs  of an airplane as a- function of velocity 
stability for various values of angle of attack, 
stability and instability. 
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If the phagoid is not OBcillatory the  sitoatdon wi.1-1 lae stmllar.    The 

sigEi,:fleant difference occttrs due to the fact that increasing the angle 

of attack stability "Will eTentual'ly cause a divergeaee to occur ■when 

the eoefficieirfc of A    changes slgn„ Instability occurs -»hen 

inn!5{Zui|>h'T0iui, Zc^   the influence of both derlTratiTes is similar to 

the previous case except that there 1B no region of similarity in the 

ll^itly damped mode-  Increases In TOKU, result in oscillatory Insta- 

bility and reduction in period. Angle of attack stability stabilises 

the motion and always increases the period, and a large degree may 

cause static instability of the airplane» 

'Uhus desirable characteristics of the long period motion are ob- 

tained by maintaining TTH , as small as possible^, and obtaining a 

large amount of angle of attack stability« Howeverj, in the situation 

where Xuw. is such that there is a lift loss with Increase in speed 

mainlining Iriluu X,3/1>l'nflß!, ZUL^J ■■  In this latter situation it may 

be desirable to increase the velocity stability to prevent this dy- 

namic instability,, This is perhaps the only situation in 'which an. in- 

crease in velocity stability is desirable„ 

low the heavily damped mode will be considered.  If Tfsjg, and 7^4 

are not large then, a, la,rge degree of angle of attack stability may 

make the damping ratio of the heavily damped mode small, enough to be 

■undesirable,,  If the criterion, of Reference 8 is  satisfied with re- 

gard, to %TiQ ,  then, this should not be a problems Inereasing angle 

of attack stability always raises the frequency of the heavily damped 

mode. An increase in velocity stability lowers the frequency and 

generally increases fche damping of the heavily damped mode» 



From, these ctsnsiderAtions it can.  be seen that the conraents of 

Reference 9 -with regard to the modes of the H0-3S helieopter would 

he geaerallj- true for asy al;re'.T8tft with a significant amount of Ye- 

locity stahllity and instjfrflcient angle of attack stability. 

The inflttenee of other stahlllty deri-vatlres xmy he determined 

from root locus techniques „ However;, for an over-all view we can 

see the primary influences from the previous root loci.  )C«ju provides 

damping of the lightly damped mode,.  ( —i"  in most cases is the 
JA 

maximum, amount of damping).  It has little influence OH the heayily 

damped mode,,  Tn@ and X©«,  govern the damping of the heayily 

damped mode and Influence the lightly damped mode. Increase in pitch 

damping ( TU Q ) Is always helpful with regard to the lightly damped 

rnode^, increasing the period, and damping o  However^ extremely large 

values will he required to stabilize this mode unless 7*'U~  is large. 

The influence of Z. Q^ on the lightly damped mode depends upon the 

values of 'TDyu and rn OJ since the minor of Xof  is the "hovering" 

minoro  If angle of attack stability is present, the damping of the 

lightly damped mode is better than the hovering ease and thus an In- 

crease in "Z-cx will be destabilizing „ For angle of -attack lasts,- 

bility, an increase In tZ.o{   will he stabilizing, The importance of 

this effect depends upon the size of ffW • 

.to. estimate of the importance of derivatives such as iHßoC may 

be determined by noting the root of TTV^ X +■ ff^.^ O  . If 

this root  X- ""■ J-y   Is  of the order of the roots under consider- 

ation on the root locus ^ then 1;he- Influence of 'Cfl^     should be taken 

into sccounto If It is much larger than, the magnitude of the roots 
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under consideration., then. fTl^ may oe neglected.  It is on this "basis 

that terms such as XQ  caxi "oe neglected» 

The mode ratios for all the foregoing root locus diagrams are indi- 

cated on Figure 5» 

It has been shown that the character of longitudinal motion, of an 

aircraft is largely determined by the static stability derivatives 

( HDIUU and  fYl c*S, ). The characteristic roots normally fall into 

two groups: 

1. A well damped oscillation or two comparatively fast convergences. 

Whether or not this mode Is oscillatory depends primarily upon angle 

of attack stability. The damping of this mode is governed by the lift 

curve slope of the aircraft ( Z-^x ) and the pitch damping ( YT) @  ) 

2 o A lightly damped or unstable oscillation^ or a slow convergence 

and divergence» The character of this mode depends to a large extent 

on both ffliu and HIQ^ .  The maximum, damping of this mode is dependent 

upon the drag. 

,-If there are two oscillations^ then except in the case where n\uu 

is very smallj and the influence of rHu. and npiigj  on the lightly 

damped mode is similar^ their effect on the frequency of these two 

oscillations is opposite. An increase in angle of attack stability 

raises the frequency of the heavily damped mode^, and lowers the frequency 

of the lightly damped mode.  Increase in velocity stability raises the 

frequency of the lightly damped mode and lowers the frequency of the 

heavily damped mode.  It appears then^ that unless a large amount 

of angle of attack stability is present, if two oscillations are 

present, they will tend to be of similar period» 



Mar the motion of the single rotor helicopter will he examined. 

The single rotor helicopter will hsve  Bimller ralues of U\Q    and 

1SLQ(,    than the airplane o Bam&ter? tram the foregoing root loci^ 

this is not a fundamental difference„  The fundamental differences 

lie in the static Btahlllty derimtiTes and the fact that at high 

speeds there can be a lift loss with increase In epeed.  One view- 

point,, since the single rotor helicopter will us-oally possess a sig- 

nificant amount of velocity stabilityj, is to consider the hovering 

motion described by the hovering minor as basic„  (As a rough approxi- 

mation,, niy^ and fY] @ may be considered constant with forward 

speed)o The  äynamlcs in this case will consist of an ancoupled con- 

vergence in angle1 of attack, a convergence in pitch angle and angle 

of attack, and an unstable oscillation involving all three variables» 

Now the Influence of angle of attack stability on this motion raust 

be considered,  The typical ■variation of angle of attack stability as 

a fonctlon of forward speed, on a helicopter is as follows {.References 

h  and 9)° Normally at very low speeds the angle of attack stability 

will be negligible a .At a somewhat higher' speed. In the optimra» con- 

figuration i- possible to obtain some ang attack stability 

andj, as speed increases „ this will develop into a strong angle of 

attack instability with no horizontal tall. A horizontal tail of 

sufficient sl?,e, can reverse this trend and provide a large amount 

of angle of attack stability (Reference 4-), With no tail_, at low 

speeds there may be two oscillations present^, asqa.Uy of similar 

freqwsB&jj,  since Vf\ Q^ IS not large enough to ssake the heavily damped 

mode of the high fnaceency typical of the airplane. Ihe lightly 
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damped mode say be approxismtely neutrally stable« At high speeds,, 

there will be two convergences, one considerably faster than the 

other, and an unstable oscillation» With the horisoatal tail the 

situation can be altered to produce two oscillations at high speedy 

one well damped and o;f somewhat shorter period than the other.  The 

lightly damped motion may even become two convergences, or a eon- 

rergence and a divergence for sufficiently large Tf)^    when a lift 

loss with speed is present„ 

It is difficult to determine a second order approximation to 

the lightly damped motion when there is a significant amount of ve«- 

locity stability present.  Ihe approximation suggested in Reference 

10 applies only when the period of the motion is very .'long or when 

there is a large degree of angle of attack stability and is misleading 

particularly with regard to the influence of velocity stability on, the 

damping of the motion in the case of the typical helicopter.  Regions of 

validity of various approximations can be rapidly estimated by In- 

spection of the characteristic equation in factored form.. For example 

the characteristic equation of (h) may  be ■»ritten as; 

:' !w      •: r  c.,    ■       -     .■_   ;:,■■■       .,)"¥■ >uj^ Zi 

+• m^cj A - z^j = 
« j 

and. in the region of the heavily 'damped mode  in Figure 

Al nju        and X|    »   Icpu therefc 

- z^)t Ola Ä 

simpiifylng the equation to some degree, and indicating the influence 
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of TDix* on th-6 heavily damped mode. Mow if   I A 1    is large 

and, I y\, | 's 2^ (A      this reduces to the short period approximation 

In this ii>?ay the coB.s.lstancy and range of application of various ap- 

proximations for various roots can "be quickly estimated and the im- 

portant terms contributing to the mode can be seen. 

Thus, in conclusion^ a convenient viewpoint for the longitudinal 

dynamics has been presented which makes it possible to obtain a good 

physical basis from which to consider the dynamics of the airplane^, 

and in particular to visualise in a general way the influence of the 

static stability derivatives on airplane motion. 
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CONCLUSIONS 

1,)    The longitudinal dynamics of an aircraft consist of a heavily 

damped oscillation  (or two convergences) and a lightly damped 

I Me 
or unstable oscillation in the usual case where  j ~, : ■ 

 .—    > x 1133^  !  and the aircraft is statically 

stable. The validity of the classical short period and phugoid 

approximations depend upon the above relationship and upon angle 

of attack stability. The larger the angle of attack stability^ 

and the greater the separation of ——  and  —   from -—- , 
X      vnUo      m 

the better the approximations. 

2o) The presence of velocity stability tends to invalidate the 

classical approximations and influences^ In particular^ the 

lightly damped motion, decreasing the period and making the 

motion unstable. 

3.) Both modes of motion occur in all three variables. The velocity 

and the pitch angle predominate in the lightly damped motion^ 

and the angle of attack and pitch angle predominate in the 

heavily damped motion. As the classical approximations are 

approached, the velocity change becomes negligible in the 

heavily damped mode and the angle of attack change negligible 

in the Lightly damped mode. 
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