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- ¢ The literature cn Bluir's variational principle
for heat conduction and the thermodynamic foundations of the prine
cirle sre reviewed. An additionsl example to those presented in
8 previous paper is given. Tnis example treats the heating of slabs
exposed to time-deoendent heat fluxea and a specific example of 3
trisngular haat pulse 1ls presented in detall.



ABSTRACT
SECTION
SECTION
SECTION

SECTION

SECTION

SECTION
SECTION

FIGUREZS

1l:
I11s

IV

Ve

TABLE OF CONTENTS

LIST OF SYMBOLS
INTRODUCTION
LII1ERATURE REVIEW

THERMODYNAMIC FOUNDATIONS OF THE VARI-
ATIONAL PRINCIPLE

THE HEATING OF SLABS EXPOSED TO TIME-
DEPENDENT HEAT FLUX:S

CONCLUDING REMARKS

REFERENCES

i

37

50
51

56



ABSTRACT

The litereture on Biot's variational principle for
heat conduction and the thermodynam?c foundations of the prin-
ciple are reviewed. An additlional example to those presented
in a previous paper is given. This example treats the heating
of slabs exposed to time-dependent heat fluxes and a specific

example of a triangular heat pulse is presznted in detail.

ST Wl .

iv.



[ ®]

Fiie

SECTION I. LIST OF SYMBOLS

constant. in entropy exprecssion for neignboring tnermn-
dvnamic state, Eq. (!}

clab thickness

thermodvnamic coefficients in relations between forces
and fluxes. Eg. {4)

spec:fic hea:

veo.ume e.ement

gissipation functicn

ccerat.onal form o: s.ssigpation function
v.

exponent al function of x

detined by Eg. (26,

detined by Eq. (23)

neat transter coefficient; heat fiow from System I to

v -

System I:
neat fiow trom eneragv reservoir *tao System |
LCat flur vector fiegu

vilue ¢f neat fiow field ar *he su:rfarce

.orfficioenmt of tnerma. conductivisty

23t fiunw

surtace tempersture

. 4

prnet:ation Jept

curtzze tepperature
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w

genefalized coordinate
thermal force

generalized <thermal force
entropy: entrepy of Svitem 1
ertropy of total system
defined by Eygs. (13)

defined by Eqs. "17)

entrony infilow to System I
entropv of censtant temoerature
entropv of energy reservo:ir
time

peretriticn time

temueraturs

reservszir temgerature
:nter13’ energy

aef:ned bv Egqs. (.3;

ge*.ned ¢y EJs. ‘i3,

therma, potential function

defined ov Eqs. 13}

spatiai: coordinate

generalized thernodynamic force
defined by Ey. (26}

tnerr-! diffusivity, k/c

variation

reserveir
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n dimensicnless penetration depth:

9 temperature difference measured from equillbr;um"
’ temperatuzre ’

T dimensionless time

Tp aimensioniess penetration Lime

Ty 04 dimen;xcnless surface temperature

v surface {emperaiuxe parame+er

£ a.de
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() vector guantitv
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SECTION II. INTRODUCTION

The hign speeds of modern a:rcraft and guided mis-
si1les have :introduced new prooleas into the design of struc-
tvral elements for such vehicles, These problems sre a conse-
quence of the large heat input to the structure arising due to

the increase in temperature of the air :n immediate :ontact

with tre surface cf ¢'.e venicie, Th.s incTeags2 in tempe:r:ture

H
is caused either bvy shock compression a¢t the blunt leading edye

or oy friction in the boundarv iever. Similar type of heat in-

~

pute alwg arise na,e to the flow of nigh erargy gases in rocket

-

mctors and nuciear reactors a.thcough the source of heat is
ohvsical:v cifferent., Ir a.. of these s:®uations the tempera-

ture rice in the structura. compcnénts must pe acsounted for
ir the zsesign of tneentire structure., This requires among otner
prociems the determinaticr frcm a nea*t -onduction analvsis of

tne temeerature Jistrinutiern 1n thne structure under the known

therma. inputs,

Howeve-, tne jarge rnea* inputs 4nd the accompanying
l.igh temperatures wii. ne-essi*ate a consideration of the tem-
peralure depencdence of the thermal properties of the heated

ntroduction cf these two effects will make the

e

v2dy. The
guverning neat cerductisn ezuaticn and poundary conditions non-

iinear, a probiem which can rot be treated by the usval class!-

¢4l methods ot neat conduction anaiysises Refs. [1, 12]. 1In such
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sttuations. appfo-imate araivtiCef 2r numer:icai metnods 2a:e
requited in ord;r to ohta:” 1 so0.uticn. A discussicor cf some
~¢ ehe Lna.vt:-ca3) and numer:c . rethods of sciution was pre~
cented in Rets. [lzs 13, 14]. .

Cne -+ sne mcst 1mportant ct the ana ytical methods
r neas -eorAautticn is the variational principle
ct nas epproached the
grop.sm frem o a tund.nenta. eeanrdg. .nt 18 & " artaticna. principie
e emerrg-A ASLL.1LV WRLIN ATE3LT LOE LoLp.ed elas*i:c and ther=
ma. *.&.3% 3ire:tive 1f tne nerTaL etrects are i1gncred. the

. _3s%.c1ty Jre optained from

'
u
(.
o
’
[+
<
&>
*e
.
o
*
>
[s]
2
o
.-
(ad
3
o]
-
v
3
”n
©
e
»

erg .av.avizra. foTRel.t.on.  1f wne elaslic cffects are ig=

ve3e A wariat.CTu. oYM of cne neat conauction eguation is

18]

'

S2LT N :
e tecreren 8. e CTLTLIR.€ WNao A.erLssed for tne case 1N
we, h oeee permdare cond.ticn 1T 0.4 tre #at fluw, A mecnca

s rc.od.mg ¢ .Th opoundary l(cteltions wn.-n nad ~ct been treited

e by whe sartationa. pIin.1k.f wa> .ntroduced and *he vari-

o
]
'S
o
ve

aLiC"™a: principie waes +her app.ied ¢ 3 Number ot difterent one-

dimensional heat cenduction proriemz. The TICD.EWL treated n-

~luded non-lineax heat f,ux bcundary ConQ1%ions. time ~dependent
L]

aerodynamic heating, and the heating cf nodies witin remperatuves

dependent material prcperties. The resuits octained for these
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examples demecnstrated the appfx:ab:lity cf the variasional
princip.e ¢ prcblems with specified nea. [iux boundary con-
ditions.

In the prasent paper, which, comniements Ref. [13].
the thermodvnam:: feoundations of Biot‘s variational principle
are reviewed together with previous work on variational metnods
for heat conduct:ion. Since Biotis variational principle in-
civdes the t:éld cf thcrmo-eiaQt;cstv. a discussion of other
variationa, pr:nc:p;es ob%tained from Biot'’s formu.ation is aiso
presented. In th:.:s wav, the princ.p.e as appl:ed to the analy-
$:5 0f neat condu~t:nn prableme 1e put i1~ 41T PropeEr perspective
as 1 specia. tasée ¢f a mere general principle.

Sectior 111 zonzains a review 0f the iiterature on
Erevilous WeT emNnioving vdaridtiorai principles for heat conduc-
Lo :nad un Bicewes.variaticna. prinzipie. Section IV reviews
tre trermcdvnamic foundations ot tne genera, variational prin-
s

- -
- . @

2.2 3a~d .°& frem dor 4ne gpecia. cice of 3e§t cenduce
Trne meLtnud fur unciuwding neat f.ux poundary conditions
trnat wae :1n¢rcdu.ea in Ret. [13] 1< appiied 11 Sectinn V te the
p:co.#m 0f the neat:ng of a fini%te clab Wwith an arbitrary time-
deginzer's hLeat insut. Tnhe neating of a slab by a trianguiar

A

nezt pulse (s ther disrussed 1n desail.




SFCTICN III. LITERATURE ZIVIZW

A discussion of variational principles in thermc-
elasticity and heat conduction is oresented ir thris section.
Aithough the present paper i: concerned mainly with reat con-
duction, the ‘discussion of the variational principles in
thermo-elasticity presented peluw provides a basis for the
discussion of Biot's variational principle. Refuve. (2 to :1].
This principle is applicable to the general field nf thermo-
elasticity and hence includes the neat conduction anaiysis as
part 0¥ the compietée formu.at:cn. Jherefoire, by presenting
the discussion in this ways. the variatiounal principle for heat

duction alone is v.:ewed in :ts proper perspeclLive as a spe-

t
Q
I3

: g,
- 2 e

case of a more generai gprin-~ipie, In gddi+*‘on to Lhese

(&)

discuss:ons reference wili be made to other approximate methods

0f solution for the heat cundu.tion equaticn.,

s - -
' .

(B

VYar:zticnal Praincig.e

B.o0te Refs. [4. "], has introduced a varictional
principle whizsn has apniizatiorn to tne {ield ~f thermn=glasti-
city ana in fact to more generai the-modynamic systems. The
field of therme=-2lactizity inziudes, In the most general sé&nc<e,
the effects of coupi.ng between the temperature and elastic

fieidse [t is tnis var:ational principie, restricted to the

. fiela of heat conduction, that will re discussed in

sperif



this paper.

The ge-~eral var:i:ationali princ.pie was deriied gy
B.ut on the basis 0f tne:rwcdveam:ca. arguments aﬁplieo to a
physical syétem. The stave of :n:& svetem was defined bv gen-
cralrzed state .ar.abies 4~d Onsager s :eciprocal relatiors
were applied 20 obtain Lagrang.an egquaticns for the time his-
tcries of tne generalized cccrdinates, Rets. [2. 3. ). This
methed of deduc.ng the eguat.ons wil. ne discuésed in Seztion

17+ On:te tne general equaticns were estasciished, a varia-

»e

ti0na: princip.e e€3:"va.ent %¢c tnese equLaticns was introduced.

Tnis vAarlatiGnal pr.ncipie was apnited ¢ <ke jeneral zasc of
thermo=eiasticity ment.oned apove, Refs. [4., "], ana to the
c3se wher2 tne elast.: eftezss were not considered. Refs.

[5+ 6+ 9]. The iazter case. 0f course, applie to the fie.d

ral fieid of application of the

[ Q]

of hear condustion, An addici
gener3. variaticnail princip.e which nas been :treated by Biot
.6 viscce.asticitve ROfS. [10. .. 1. In what $cllows in this
erelon nCWOLCOT,. NR€ DILCSCip.e W1li, De discussed :in s&¢lation
t0 thermc-,la8% -1ty wnizth (=~-judfs, 1n *ne genera, cense, the
fiejd cf neat conduction.

Biot nis snew"™ tnat tne gc-rr:,ng eguaticns for equi-
ilbiium of 1 thermo-€igcstic s$C..Ad can be expressec in terms of
8 V3riationi, PLr.NCif.P under specitied roncstrairt conditicns,

Ret. [4]). Ir garsi-u.ar., 1t tnhe eguatiun Of state together with

sed on *he .ariational *urcticn,

(&)

conservatinn ¢* energy :s im-
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the equilibrium equations and Fourier:s law of conduction
ar? obtained as the Suler differeatiai equatiens. Tre latter
equation with enerqv conservation yvields the coupled neat con-
duction equation. his principle is analogous tu the principle
of Minimurn Potential Emergy in Elasticity. Refs. [15. 16]. in
which the stress=~strain relationt are imposed and the equilib-
brium equaticns are the corresponding Euler equations.

A Compieme~tary Energy Principle was formulated by
Herrmann, Ref. [17]). and leads to the strees-dispiacement equa-

ns together with the conservation of energy expression under

' d

i

o)

2hé asswuplicn Lhat the varileo stress ana temperature tields
satisfy the equilibrium equaticrs and Fourier‘s law of conduc~
tivore Llhne emphasrs un Fourier's law of conduction is not

clearly stated by Herrmannsg this point, however. is particularly
important sirce i(* forms the pasis of the application of the
var:ational principle in heat conductien. This was noted in Ref.
Li3]. 1%t ¢ seen from wne apove %“hat this prineciple 1s analagous
to tne principie of Minimom Compiementary Fnerqgy. Refs. [15. 16].
in which the egquilibrium equations restrict the arbivrary stress
variations tc yield the compatibility equaticns.

Herrmann, in two later papers. Retfs. [18. 19]. has
ccnsidered an extension of Reissner: s variational principle,
Refs, [20. 2.+ 22], inrtc thermo=-elasticity in which all the field
equations are obtained as a consequence of a variational principle.

Tne principle has been outlined for the case of a uniaxial state
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of stress, Ref. [18], and generalized to a three-dimensional
anisotropic oody, Ref. [19].

ilowevery this extensicn to a more general varia-
tiona. principle introduced an add:tionai variable called the
"thermal dis=~equilibrium force® which has not been employed
by Biot or by Herrmann in setting up the separate variationsl
principies for thermo-elasticitv mentioned above. “~his force
has the form used in ;rreve;sible thermndynamics since it is
re_ated to the gradient of the temperature fieid. Moreover,
it provides the connecting link between the iaw of conduction
and the enerqgy ecuation whicn leads to the coupied heat con-
duction equaticn.

#ith the i-~troductior c¢f this independent variabhle,
the governing fleid equations were optainea trem the function-
al expression jiven by Herrmann in a manner similar to that
cutiined bv Heissner. Comparisorn with neighboring state;
which do not satisfy the variaticnal principle showed that the
prinziple is thoe of a3 staticnary va.ue preocblem rather than .a
true maximum or .inimums again this paralieled the dovelopment
presented by aeiséner.

An additional formulation of a variational principle
to include thermo=-elasticity. plasticity and creep deformation
has been presented by Besseling. Refs. [23, 24]. This vari-

ational principle was stated in terms of the phys.cal displace-

ment and ertropy displacement fields and ieads in the gecneral
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casa to a stationary va.ue princig.e. The entropy displacemen<

was the same as that used bv dict. Ref. [4]. Furthermore. an
appli:atior ¢f this var:at:cra! principle to a protiem of struc-

tura. damgpinrg was presented.

Variaticna® Frinzipies 1n Heat Conduzticn

Wei.rer PRet. [25]. presented a metnzd of solution for
the neat cecrducticn eguation whion combined “he standard Laplace
tecnnique witn shat cf the Ga.erkin technique {(see, for example,
Refs, [:5] a~d [161% In tr:is ¢2rmu.ation, the transformed heat
noC3uwaticn 1 the lapla.e varidua.e was scived approxi-
matelvy ov <ne Gaierxin techn.que. Tne approximate solution ob-
t3ined 1n <th:s mannar was then <ransformed back to recover the
ime variable The conciusiorn arawn by W=2.iner in applying this
metrnod tc scne s.mple evamples and to the flocw of heat in an
anj.e sect.vun was Mma*t for preoiems cf phvsical 1nterest consider-

An .l ~crmpr tasie~3l [abecr 1z reguirod.

(X}

Wain.2u. Ref. [265 nas presen-ed & variational prin-
“Lip.€ Nntor yocsroiuced 3 temreracturve fi:eid that was the mirror
image <f <ne pnvsica. temperazure Fistributicn. This artificial
‘PRELeriture (a4 ke interpretea 4s tnI%t corrcsponding to a negative
tne:m3ai c~duttivity., T8 méchud wdas app.lea ry assuming a pcly-
~cmia. temperature distribviicn 40 e used in the variational

tu-cticn ftrci which the ccefficrenss ¢f the po.ynomial were found.

An e,amp.e 1nveliving the neatxnd of a finite siab witn fixed sur-



face temperatures shcwed pocr :greement with the exact soluticn
fer an appreciat.e time range. 1n particular. for shert times.
Roser, Ref. [2-]. formuiated a variational Erincipie
based upcn a meodificaticn cf Onsacer's principie of minjiwey dis-
sipation. The functional expression 1ntroduced was expressa2d In
terms of tne temperz2ture gradients and the time derivative of
ﬁna :empefa::re.‘ Thiq fyuncticnai expression was iaried with res-
pect %o the temperazire witn <he %ime ueritative hela fiaed,
Acpropriate boundarv conditions were enfcrced so that the heat
~ondLltiir fquation was cbtainad from the var:atioral fu:iction.
Aniie wne L ariat-ana, princic e 15 ~ansistent within the frame-~
Worx presented 4 .0Qgica. inconrsistency does exist if consider-~
1t:127 15 given to occnsersatien of eneragve.e No appliications of

were presented cv Hoser so tnat no statements as

A rariaticonadl pr.nciple aimost opposite to that presen—

véid £y <CSEn wg4s 31N by Chamters. Ref. (28] In this varia-
¥ . o . R "~ .
Y1073l ot o Lpiv Ldased upct woia Sf verivel. Ref. 1271, 3 varia-

t12na. functicn wae capmepsead 1n terms cf the temperature., the

te »f hange of ¢the <empe ratuvre., the temperature gradient

e
»o
A
[ ]
14 ]
w

and the heat fluxs The “var.ation was perforraed with respece to

the time derivative 5f the <~emperature while the tumperature .t~

ior

ad

seif remained unchanged. VY:wever. although the heat conduc
equaticn and *ne 4ppropriate beounddary conditions were obtainea

in : formel marner, a physicai incensistency existe in this prir-
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cipie. This is due to the introduction of the heat flux with-
out ~onsidering its relatior to the time rate of change of the
temperature tnrough tne expression for energy conservation.
No :ilustrations of the pr;ncipie are presented.

Tne above twc variationai principles iliustrate the

.

sur owlhen a varlational! prianciple is

-

b
’
]
D
"

istoencies that may
irtrcduced without sn‘underlying physical concept. In parti-
*uiary the se.ond principie is rot ccorrect frcm a shysical
cn.nv of ,.:ew. On the other hand, the variational principle
inerogduced ov Biow ie mstivated by strong physica. reasoning.

prin.ip.e which was discussed abnve has. in addition, the

"

aovantage ot general:itvs. However. as was mentioned tefore,
tne sariaticonal principie will te applied in this paper to heat

ienduition precesses Criy. 1nis is eguivaient to neglecting

- -

tee clasti. offecte in the thermo-elastic variational principle.
Tne-metivaticn for the principle from thermodynamic
“es-sideraticre wil. be precented in Sect:io~ IV, An additional
theumodvinanic paincipiss in Diol's Lheovsy van
The variagtiorai principle was discussed from a mathe-
mati1-4: point of v.ew :rn Ref. [13]. That is. the mathematical
steps showing tne equivalence ot tnhe variational principle to
emne nea* :onduction 2quation was presented. Similar discussions

o¢ Lne variaticnal pr.ncipie were given i1n Refs. [21. 32].
)

+
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In addition, the problem of the determination of the temperature
dist .bution in a flange-web combination (angle section) which
was treated by Biot, Ref. [5], was further discussed in Refs.
[33,34]. An extension of the variational method for this pro-
blem to two dimensions was given by Levinson, Ref. [3%]. These
references, with the exception of Refs. [13,3%]), do not present
any new forsulations or ;esults of the variational principle.
However, the principle was modified for the case of both tran-
stent and steady forced convection heat transfer in Refs. [36

to 39].

Reference [37], Part I, contains a formulation of a
variational principle for the transient heat convection equation
analogous to *hat formulated by Biot for the heat conductioﬁ
equation. Gupta, Ref. [38], has extended this principle fox
convection to the case where the medium is anisotropic. Both
cf these principles require a modification of Biot's work to
account for tire motion of the medium and for the viscous dissipation.
If the latter effect is neglected, the resulting heat convection
equation 1s identical to the heat conduction equation for a moving
medium. In this case the di:sipation function in the principle
is modified by expressing the flux condition in terms of the velo-

city of the medium.
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Agrawal, Ref. [37], part I1, introduced a variational
principle for steidy heat convection in channel flow under the
assumption that the effect of axial conduction can be neglected.
Again this variational principle is similar to that of Biot's.
Agrawal, in a later paﬁer, Ref. [36], extended his previous prin-
ciple to account ror the vanishing of the velocity at the walls
of the channel.

The restriction of negligible axial heat conduction
has been set aside in the work of Gupta, Ref. [39], and a
variational principle has been developed for the complete steady
heat convection equation for channel flows. 1In this work, as
well 2s in the above referenceg for convection, Lagrangian type
of equaticns have been formulated for the thermal flow field
using the concepts of thermal potential, dissipation function
and gereralizes force The use of these concepts clearly shows
the relation of this work on convection to the work of Biot in
heat corduction.

Citron, Rets. [40, &1], has discussed Biot's principle
with reference to ablation problems. In Citronh wozrk the varias- '
tional principle was expressed in terms of & functional eXpres-
sive invelvaing the heat fiux and the teBperature gradient. The

variation was carried out with raspect to the heat flux with the

te2pc rature grediont held fived  This particulaer aethod, howeve.,
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is not consistent with conservaticn of energy. That is, any

variations in the heat flux must be related to variations in

i,).
1
%
¢

the temperature gradients as a consequence of conservation of
en. .3y.

Citron, Ref. [40], also presented an application of
Galerkin®s method (ses above) to the ablation préble-. This
method was also presented in Ref. [32], and it is an extension
of the Galerkin technigque to the case where the approximate
solution 1s presented as any function of the time-dependant
arbitrary parameters. An 1llustration of this method is given

in Ref. [32].
Other Approaxiwmate Methods in Heat Conduction Analysis

Th: remeinang portion of this section will discuss
sdditianel approximate methods that heve been used in heat
conduction analysis. Although numerical methods have been
most useful for the determination of temperature distributionrs,
they xiil nc* be discussed here. Mowever, specitic numerical
methods were discussed in Ref [13) together with applications
of Brot‘s variational principle to prescribed phvsical pro-
blews. While these numerical methods -iv have certain advantages
1f computational sssistance 1s avatilable, they requare '

_An _any subsequent thermal stress calculation, for example,
the continued application of numericalmethods. This, together

with the temperature prublem may become & formidable under-

taking In addition, i1f an snalytical solutisn 13 possidle,
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it may not be in a convenient form for numerical evaluation.

Therefore, it may be desirable in these cases, for the purposes of

i
‘
X
¢
|

practical computaticn, to obtain a siipla approximate analytical
expression for the temperature distribution.

Goodman has introduced an approximate method called the
heat balance integral technique for the sclution of the heat con-
duction equation; this method has been used in many studies of
heat conduction problems, (see Ref. [13] for a list of references.)
The essential idea of this technigue 1s to satisfy the integrated
heat conduction eguation with an assumed tbatlai temperature
profile that must satisfy the prescribed boundary conditions.
Many of the results ootained in Ref. [13] using Biot's varia-
tional principle were compared with this heat balance technique.

Green, Ref. [42), has present=d an expansion method
for a qeneral form cf the heat conduction eguation which is

>Qtn:1|r to the Galerkin method. An application of a modifi-

cation ot this method, Ref. [32], was menticned previously with

reference o the Gale *in technigue.
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SECTION IV. THERMODYNAMIC FOUNDATIONS OF THE
VARIATIONAL PRINCIPLE

The thermodynamic foundations, Ref. [7], which lead
to the general form of Biot's variational principle are re-
viewed in this section. Afteir the general form of the prin-
ciple is dovglopod,‘tht discussion will be restricted tc the
foundation of the hcat conduction variationalprinciple.

The major puints in the development of the general
variational principle are the introduction of Onsager's reci-
procal relations, Refs. [43 to 43), and the determination of
the expressions for and the meanings of the dissipation funeg-
tion and the thermal potentiasl Of particular importance is the
determination of the entropy of the “otal system (o terms of
the entropy and the internal energy of the prisary sub-systes |
end the temperature of the heat reservoir This leads to an
expression for the gerneralization of the Helmholtz free ohorgv
for a system at a nen-unifors temperature; thxs_o:proutxon‘1:
calied the "General:zed Free Frergy® or ??hornal‘Potcnizol“
but the iatter ters will be uses ir the subsequent discus- S '
-xéns. The wquations for the tsate vniscblds of the systes

are f;rsi developed for a0 1solated system and then for a

systes u~der external forces. The type of forces corsidered

will be bf '] thermal nature since !hi {inel objective 1s to
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apply the results to the aralysis of heat conduction problems.
However. the applicability i the method for the determination
>f forces in other situaticns is apparent and this has been gdis-
cussed by Biot, Refs. [2,7] Once the formulation for the system
has been esteblished i1 the sense tnat tne Lagrangian equations
for the time histor.es of the state cariables have boon found,
a4 variat:onal prinrciple equivalent to these equatiors is 1m-
mediately obtained This variartioral prirciple restricted to
the special c3se of thermal ‘.21ds %pads to the heat conduction
equation foo the temperature In this wav a variational princy-
ple motivated bv trermodvram.: argumerts car be estadliched ir 3
consistent manrer tor neat Lonductioh processes
L Thermodyrasic Sysive
The ertire Aystes to be corsidered corsists of a pri-

morv subsystem, c31la3 $v.tem I, 2 which & heat reservoir,
tailed System 11, §t 4 iotstort tooporaiuto !l e coonpctod
The etire SYSlee L078I8Ti%G oY BOUR the primary system ard the
heat zeservoir is Msuned to te solated. | | |

' xn;zzAxav.'fr. sYseem L4 gn aﬁio;yxlxbixdn ‘tl!§>!at;
iE:éﬁ thc_vaiuk‘ ei the entrepy ard intercal oﬁotév art.ta§if
8 equal t3 reve pov:aiae'~ from the equiilibriu® stele ore
expressed fﬂ terms of 90a¢~a:,r§¢ toordirates qiﬂyh:chiir'

8180 2076 17 1ne egqutlibrive wtats ihese r‘uoréxglxztd 6

OrOiNnates ATe STate varisbles des:~1rg the state of the v tire
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state viriable- q  Th3t 1s, the antropv at any. nsighbering

system at any instant of time. The valuz cf the equilibrium

temperature is Tr and the local deviat-ons from this equili-

brium value w:ll be denoted by G; these deviations are con-

sidered as state variables The system i 1in additiocn assumed
to be 1lﬁear ;éfthg'sénse of irreversible thermodynamics

A?hxs rgqu1;es thgt the fluxes in the éystem are lineariy
relaféd-tc tbg4correspond1ng;forces, for example,’thal the heat

v

fLoﬁ is related to the temperature gradient in addition,
production of.entropv 1n the system must be writter as a pro-
duct of tte ¢luxes 3rd the corre.oonding forces. A review
ot these bas:: macrdsfopzc Lorcepts tor the tnermodynabzc
thenry 0t yrrevers:ible precesses was given bv Miller 1r Ret
[a8]. :M;ller discusced the [.umjations of i1rreversible therme-
d?ﬁamxﬁs, whiin are also distussed 1n Refs {43 to 43), and
preseﬁted the pasi¢ assmptions ang mongatxon of the theory
The system gt 'xrﬁn w:kx Le !reev}rcm any exterr)y!
dppl- ea fu:ces Hinue the ént¥9ﬁv of *89'5Vstém»;t equilt-
brium r3as 3 mawimum valn& thchiiijéﬁﬂvehieﬂt}y:§at'uﬁual 1o
zern. the entropy ot 4y Deiqhbux;ﬁgrst;tz qxlllﬁeiiisQZthinf;

zero  Inis value ' PLIOPY caf be expressed in termi ot rhe

State w.oth o Lte variahles . Laf PE written 16 the torm:
P A : L
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(1)
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™
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where S' .5 the entropy ot the entire svstem, the ‘1j are the
vaiues of the dppropriate derivatives of the entropy evalua-
ted at the equilibiium state and the q, are the state variables
The summation -~onvent.,on of summing over repeated indices is
neez 1~ this equatinr and 1n the equations to follow.

Ac a conrsequence ot the deviation from the equili-
br-um ctate, rectoring forces are set up withan the system.
It s assumed that these forces are linearly related to the
t.:me rate c¢ change of the state variables, the fluxes, 51
In additiorn 1* :s assumed that the linear relations satitfy.
tre Onsager rypothesec, Rets [43 to 45). This requires that
the entiopvy praoduct:or :n whe system which arises as the sys-

tem .s retirni~g to the eguili:brium cstate be written in the

Trde'/dt) = X.q, (2)

‘or that
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rr(as'/aqi) =X, (3)

v

This latter equation states that the forces are
ecqual to the correspondinrg gradients of the entropy in the
non-equii.brium state, the factor Tr 18 i1ntroduced for con-

ver ienrce. If <he frrces X1 are now exoressed in terms of

the fliuxes q, 10 tre ¢ollowing form:

= T ‘agr /3, = 4
X 88773 ) = b a, (4)

Orcager®s prirzipiv i1kads to *he result

3 = Db (5)

These relatiuns intercorrect the various thermodynami¢ pro-
cesses taking place within a thermodynamic system and they

are called the Onsager reziprocal relations, Rets, [43 to

4% The limitations ot these relations are also discussed

in the above references A review of the experimental evidence
tor these reci'procal relatiors 11 macroscopic linear relations
1s given ;r Ret [47] The experimental evidence given indi-

cates that the Onsager reciprocal relaticns are satisfied in

rost applications
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‘In view of Eq. (5), a quadratic function D exists such

that

s

X = = A ?‘

where

<
]

(1/

A1,2)bl.1 a9, (6)
The physical signiticarnce of the function D follows immediately
trom Eq. (2) which espresses the rate of entropy production as

a furgtion of Lhe forees and fiuves q

¢

T ' = = : =
,fas /dt) X q sz 4,4, 2D

-

Theretore, the function D 1s (1/2)Tr times the rate of entropy
proguction in tre system; this function i1s called the dissipation
furction The quadrat:c torm of D ewpressed by Eq. {6) is then
positive detinite since the rated entrcuy production i1s always
positive

in addition to expressing the force xi as a derivative
of the dissipatior furnction, the enticpy of the system is set

equael “0 4 turction V called the thermal potential such that
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V= -T15">= (1/2)a13 0,9y (7)

Therefore, Eq. (3) together with Eq (6) can be written in the

following torm:

v, ., (8)

These eguatiors are :‘n Lagrang:an form for the n state veriables
Q, Trey are analogous to the Lagrangian equations for a mechanical
system :n which V 1s the potent:al energy, D is the dissipation
tunction and the q, are the generalized displacements. The ex-
ternal forces acting on the mechanical system in this case are
equal to zero nowever, the right hand side o. Eq. (3) is not
zero 't exterral fcrces axe applied A similar result would
be expected by analogy for the thermal system under exterral
torces However before starting on that case a discussion of
the szgﬂ:fzcsrce of the function V will be presenrted.

The significance of the thermal potential function
VY ran be found by wriling the entropy of the entire thermo-
dynamic system 1r terms of the entropies nf the two subsystems.

That 1s, the entropy S' of the total system 1is

€' = 8 + § . (9)
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where S 1s the entropy of the primary sub-system and SII is the
entropy ot the conitant temgerature reservoir. During the pro-
cess ;f reaching the egquilaibriue ;tate, heat will flow in general
between the primary systea and the reservoir. If this heat flow
from System 1 to System Il :s h, then conservation of energy

for System I gives

U= -h (10)

where U 1s the internal energy of System . At equilibrium
both h and U are esual to zero I¢{ external forces are acting
cn Svstem I, Eg (10) will be modified by additional work terms;
this will be treated subsequently.

Since the heat flow into the constant tempcrature
Teservoir 1s knpuq the entropy S;; 1s found in terms of the

1nternal energy of *he primary system, that is,

(e

(11)

|

R «
S11 ° Toc

-y

Therefore, from Eqs (7), (9) and (11), 1t follows that the

thermal potential functiorn V csn be written in the form

= ' o -
V= .- rrs =Y TrS (12)
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Equation (12)>xs similar to the form of the Helmholtz free energqy
for the Syste; I except for the oresence of the reservoir tempera-
ture T . Since the temperature of the primary systém is not speci-
tied, and may have any arbitrary dxstrlbution, this form h;s greater
applicability than ihe usual free energy. Siot, Ref. [2,?J, cé}ls
this tun¢tion the Qﬁhera11zed free enerqy. This fﬁiﬁ cf the thermal
pogential wiil-be used laﬁer :h the discdsston of éxternal forces.

‘ Ar iddirtional form of the fuacuion V in werms of tem~
perature can also be found and 1t has a more convehiént form for
physical applications than that given above.  In this expressiosn
the thermal potent al i considered as the sum of two parts:

(11 a value obtained when all the state variables are varied
except the temperature wiich is held fixed anu (2) a value ob-
tainéd when the temperJture 1s varied and the remaining state
variacles are hela fivad This =plitting of the fnnchon~v

1RrS two parts can be writzen in the torm

VsV eV _ (13)

where




27.

These latter equations ewpress each componentof V in terms
ot the correspondiny values of the internal energies and

ertropies for 1sothermal changes, Ur and Sr’ and for con-
stant state varisble changes, UC and Sc That is, Vx 16
the value of tne therial potertial for an .snthermal pro-
cess a3t temperature Tx while all the ;ther state variables
are varied, an aralogous statenentnapplies for Vc_

The term ¥ _ car be e»plicitly expressed in terms

-

0¢ the temperature Tr + G o* Svystem 1 This value of Vc

tor the ertive System I it
; = U - T_.s_Tdv
»c 5[ ¢ rve

= §049 cdo 0 504y 4, (14)

‘o T so T,.+0

where ¢ 1o tFe uslus 6f the spesifcc xeat obtashed when ail
state variables except the temperature are neld fixed. The
t1rst part of this express.on follows trom ths 1nternal energy
larm wnile tne cecend term edsal to the entropy of the system
< the antegral of the neat :nput cver the tomperature. The
.ntegratior :s performed over the volume of.Svstem I. Equa-

tior {14) :q7 also be writter 1n the form

A do
vz [’i ?f~:—31 dv
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It 6 << Tr, that 1s, smwall departures from the equtlibrium

PRI

state, V_ car be wrttten as

Vo= % § cO av B . .'{‘( flﬁ)_ i ‘i;ﬂ 

Ther=fore, the function V can be written in.;héifbfm.‘
| 1 el o
= -
Vo= /r7~2‘5 T dv

RS

;u _ 7 E k‘; . where \'r 15 the value of V for ar 1sothéfﬁ§i procéé;~-&?oiié;;h§1?;:
in thermojelasékcxty the value of V will be\the-ygfﬁe 6f:§ﬁe‘l ‘
1sotherwal free energy or §txa15 energy 1nte§}atcdvsvc:rthe]v5lume
ard ¢ will be the vaiue ot the specific heqtlatreéhstantisf;aina
Ir this way, the efre§ts ot the temperature and the réﬁéining
state variables c¢er- pe sidered sepatatelg‘

Now thaf the sigriticarce pf thebth§rm{} pOteﬁttaifh;i
beer dis:Lsied, the :ntroductior of external dxsfurbihg ib?ées

can be corsidered ir order to formulate the completv'lagrangian

@yudt.urs 1a1 the state variables ir the most gerneral case

Tharmodvnam:. . Syctemy Esternal Forces Appled

The s3uatior: tcr the time histories of *he state . S

varieties of tre thermoderamic system were g:ver fnr the taswe e
e PR |

Of 2erz retertal toroes by Eqs {8). In order to sbtain the o
form ot tre equaticry for the case where extornal forces are :
a.t1i g an Sy-tem i, the vntrapy ¢ the total system w.il egain’ i L

te expres-ed in terms of the entropy and the internal encrgy. .'ﬂ" -

¢f System ! Tnis wrli parailel ‘he discussiur of the vig- -

ritiiance vt the *-ermal potential tunctier ilowswver, 1n
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this case conservation of energy will introduce the effects of
the external forces. Consider ~ heat reservoir at temperature

Tr * & adjoining the primary System 1 and let the heat flow from

this reservoir be equal to h? Conservation of energy fuor System

T is then expressed bv

u

i
-
b

r~

(16)

where n 15 agatt the heat tlow from System I to the System [[.

IThe artropy 8 of tre total system 1.

o
i
o
+
7
<

atere S,zw "6 the ertropy of the reservoir at the temperature

T+ D Thus wquation can be written in the form

o
i
5

\ -
“ +

(h./T  « 0) (h/’t!'x)

wirlh Leiomes Lpur sotrod.otior of Ey (15)

LV tey L w .




30.
S5 = R ir H *
S S (U,..r) f\hQQ/»‘r)
The last term in this expressio™ wili be denoted as 529
‘where the term
. = (p, /T
S2 Py Tr
will be Cailed the entrspy :nflow to System I Theretore,
the express:onr for tne entropy 5’ of the total system can be
writter r the torm
S Ve s0 W17

where

P

Tre term $,.0

&

imrlar to a generaliced work ex-
press.on ir tre Lagrergra® tormulation of the governing equa-
tians tavr 3 Mechart 3l svsiem The quantity 82 is the force
torct.or ard O L the (ortugate displacement S milar evpres-
s10re 'Or Yhe work Quadrtities af a therval svstem ir terms of
Prys.cAi tOrCes, concentration gredients, wii , can be deter-
P.rec en! <ome of thess add:tior al cases are outiined in per [

Tr view (¢ tris, T Li pots.bLie to write Eq (1T in the general

torm
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L s R TR WS -

¢ - =
T8 =~V rQq

.

wnere Qi is the generalized force conjugate to the generalized

e

displacement ;- For example, the generalized force conjugate
to the temperature, ac outlineu above, 1s the entropy flow.
Onsager's relations can be applied to the complete
system coﬁsisting of the primary system, the heat reservoir at
the equilibrium temperature Tr and  the energy reservclrs_equi-
vaient to the applied exterral t‘orce:f This application is
simi\ar to the 2ase where no applied forcec are acting on the
o system. Ir view of Egs (4! and (6), the equations for the

state var.ables take the form

+ 83 8D

rAq, T Aq,

ar

) aXe ] 1
) 1
Eguatiors f1R) are the goverrirg equaticns tor the state
variables q, of the therma) s/stem  These equations are, to
repeat the statements made sbove, similar to the egquations of
2 mecharical system 1n whiceh V 1s the potential energy, D is
tre dissipatiuyn furctior and the Q‘ 4re now the external tor- '

Ces actingonthe svstem  Ar additional way of writing Eqs (18) 1

T
F T VR S T L ,
3q‘ <. 8q1 Ag, "2 dt

which dvpresses tne torces, baoth exteiral and internal, ir terms

bt the entraopy productior ir “he system Adoitiaral properties
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of Eqs. (18) are alsc discussed in Refs. [2, 3, 7] but these
will rot be discussed here. Insteac, the egquivalerce of the
equations to a vartaticna! principle will be chown with a view

toward obtaining a variational principle for heat conduction

analysis,
The tunction D can be written in the following
operaticnal form L
» / - -
D = (1/2) psz q,4, -
where

c = d/at

It the d.ssipat,on tunction 1s written in this form, &Eqs. (18)
¢ar be writter r the variatioral form

*

BV o+ 3D = Q Ay (19)

H

The varialion 1s with respect to the generalized coordirates
3, ard tYe oneretor p s treated as a tonstent when calcu-
istiry the var-ation ‘ais form of»tho veriational principle
1% convenient 17 soBe cases, but the varistioral principle can
bo‘exz;blzsnad al30 ot the basis o the definitions of the
dissipation turctior ard thermael potential, Ref [4) =1

» 11 te the method tor the determination of the form of the

vatiationgl principie if. heat conductior atalysis to be

discussen “wa? _ : ]
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He:* Flow

The Lagrangian equatio:s obtained above are equiva-
lent to the variat:onal principle o2.ven by Eq. (19). Instead
of contiruing the study of a ther-odynal}g system in complete
generality, the particular case for heat flow alone will be
studied Tazt 15, the main conzerr w,!l be with the thermal
tield © Ir particulaer, the expressions for the dissipation

fur:tion ard thermal potertial will be found.

The * srma) potertia! feor this restricted case fol-

iows immediateiy rrom Eq. 1IN, and s

TRe J:iiucpation Fucitier Ty seprested v the form
P e 17T 0w TRave nt Ererapy Fred rivtion)
*Reretore® 1t 1% Feceisary Lo ewprassy the rate of eALIOpY 9ro-

g vinn ;@'iq:xﬁ-«? bnrmr quantititeas of the therms! syctem.

™hox et Be doce tv applviry the firet .nd_sécqnd lews of ther-

Scdyram it 19 vuch g syites  The firat law is

& B de‘ 12




where U 1s the internal energy of the system and H is the heat

flux vector fleld, that 1s, the heat flow per unit time. The

second law gives

9s _ du _ _ .

where T :¢ the Lemperature and S is the entropy. Equation (20)

car be writter 1:n the form

Q.
(]

- div (H/T) = - (H/T?) T (21)

(>
(2 g

»"he ieft 'hand s'zde of this equation i1s interpreted as the chamge

:r entropy of a unit volume plus the entropy flow across the sur-
¢3ce of trhis volume The ret change i1n entropy for the unit wlume
:¢ then giver by the right hand side ot Eq- (21); this term is the
entropv productian in the volume. Furthermore *¢ the thermal force,

VT, *s linearly related to the flux field such that

the ertropy production term s proportional to the sgquare of

the heat flux field The minussigr. .= the abova evpressian

arises since the heat flow must be opposite to the te-poraturo



gradient Therefore, the diss:patior tunct:ion can be expressed
in terms of the squire of the neat rtiux tield

The remainring term discussed with reference to the
gereral thermodynamic system was the generalized force Qi'
Th:is $farce, 1n the case of a purely thermal field, 1s immed:iately

vrown from tne previous ciscussions and 1t 15 egual to the heat

tlow field a:v.ded by 'r lhe facicr Tr vsed above can be drop-
ped sinze 1t 1s zommon tu all terme :n Eqs 18) .

The f.rcrtiors in the Lagrangian sguations can now
b? evprassed 1r terms of the temperature field and the time
rate of chanqe of the heat tlow field Once so expressed, as
was dsre 1n the above paragraphs, the d:iscussion for the general
trnermodyram.: system :rdicates tne form of a variational principle.
whizn 15 applicable fto 4 thermal system, 1n particular, to the
€~ Av At marxe camg sesem s tm g L iewm Th:s variational prin-
- ple was giver by 20+, Refs [5, &, 3] ard 1t was shown to
be equivaler*t te Lh€e heat Londuitior equation Once this equt
vilerce was establishred, *he heat fiow field related to the tem-
perature f.eld by corservat,or ot ercrgy was expressed in terms
of gereralized cusrdirates The variatiunal pranciple was then
shown to lead to Lagrangian equations for the generalized co-
ord'nates c¢f *hre tecmperature field Ir this wav the motivation

behird the heat cordustion variational pranciple as being related
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g to the Lagrangian representaticn of a general thermodynamic
; system is shown
Further discussions of the principie for heat ¢on-
duction were gitven 1n Ref. [13] together with a number of ap-
plications. A further application uf the principle will be : .
giver 1n the next section.. : ‘ o _ .
<:> 2. . »'—/, ’,‘/(‘:
5 - g . -
. L »
’ > M 4
;. ‘}--\ ). .
‘., A . ’
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SECTION V. THE HEATING OF SLABS EXPOSED 73 TIME-DEP!
HEAT FLUXES

The problem of the determinat:on of the temperature
distribution in one-dimersiconal slabs heated bv arbitrary time-
4 A ‘l:\_ .‘2; o dependent heat fluxes has received much attentior inr the last
few years. This interest has been ergendered Dy problems aris-
irig 1n the desi1gr of structural componunts for ra-entry vehicles,
.i‘} 3-_‘ (6 these design situatiers, the .1face temperature :1: small
- i: ;Qmparedi;o the stagration temperature ot the air ard thus coo
”\bé;}égleéged in the usual aerodyramic *eating rate This ag-
 sum5t}96 ﬁ&eﬁ reduces the neatirg rate at the surface to an
‘éé;br;;&gy fpnctzdﬁkaf time
| | Tre éiacifsolqiiﬁn tc tre problem of the hoating
5{fflnmt;éslab%'éndbégﬁl-fﬁf}n\&e>bodxos by ar arbitrury
ktimeéd&peﬂdgygugéq; tlﬁx x;l%&ﬁunibﬁets [48 to 53], ard this

:r*ﬁérms 38
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ar approximate method of solutior 1s useful for obtaining the

requ:red temperatu-e A:ctribrtions :n an expedient way.

ihe method to be employvyed here 1s Biot's variational
pr:rciple for heat conduction Tris prainciple and 1ts applt-
catior to problems with heat filuwxw boundary conditions was dis-
.ussed :» detail ir Ret [13)] The present discussion of the
prir:iple appl.ed *c tne problem of the heating of slabs with
+.me dependert heat flives will ne haced upon Ref. [13]. It
. il be ass_mey tFat the reader ;s tamiliar with the method
c* soluvt:o: outi:nea i1n Ref. [13].

The prob.em wil! ke formulated for ar arbitrary heat
.mpLx and ther particular:zed to the case of a triangular heat
puil<e  As way discussed ir Ref {[13], the formulation of the

prob.em for the heating or slabs proceeds 1n two phases,

Cag. Infir-te Scolid
Tre first phase of heatirg corsesponds to the semi-
iréan e portior Thnis phase ends when the penetration depth

s equai to the slab trickness The temperature distrikbution

15 assumed to parabolyr:, Fig | ard expressed in the form

0 = qlfl j;\z

wTere 3 s the surface temgerature and qQy 15 the penetration
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depth. The géneralli?dyccord;na:e q, is selected as the in-
dependent ¢coordinate related‘to Q through the expression’fOr
overall energy balance, Ref. [13]. Evaluation of the appropriate
derivatives for the thermal potential and disdpation function,
togsther with the tﬁermal force and turface heat flux leads to

the following exprissions:

. X
W/, = ¢35/10

B/AYy.
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Irtioduction of the flux cordttion

. - o
H = hq(t;
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wiere glt! i1s @ d.mercignlesc function of time, and the para-
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will reduce the governing variational equation and flux condi-

tion to the following dimensionless equations:

15902 + 269nn = 147¢ (22)

d{ne)/dt = 3q(1) l ' ' {23)

Equation (23) can be integrated inuediatoly for the initial

conditions n = $ = 0, at T = O and the function ¥ eliminated

between Egs. (22) and (23). The resulting equation is
san + 150%al-)/g() - 9(0)] = 147 (24)
where
glr) = { q{t)dr ' (2%)

and (0, 1s the value of g at v = 0. If the substitutinng

F (t) = gle)/o(r) -~ 9(9) (26)
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4],
are made, Eq. (24) will reduce tu the equation
z + (30/11)zF(x) = (294/11) (27)
The solution to Eq. (27) under the ini;iél condition z = © at
T = 0 is . |
2 T V |
z 20" =b fexplafF(t)dvldt/explafF(t)dr]. {28)
: o

;hore a = (30/11) and b = (294/11).

This solution gives the penetration depth as a‘function
of tXme‘for arbitrary heating rates. Once 0 = n(x) is found,
the surface temperature history can be found from Eq. (?3);

The resull can be written in the form
S vlt) = 3[g(t) - g{0))/q , (29)
If the heating rate is such that g (0) equals zero,

for 2ximpie, a polynomial function, then [y. (28) reduces to

the torm

n? = b7 [g02)]® 4v/[o(~) ] { 30)
(]




In this case the socluticns for the penetraiiun depth and surface
temperature, Egs. (28) and (25), assume a simpler form. A parti-
cular form of interest for the heat input is the case¢ where the

heat input'is of the form
... n
q(z) = ¢t

that is, @ heat fiux dependent upon a power of the time. Evalua-

tion of n° from Eq. (30) yields
n® = 294t/41 + 30n (31)

7ﬁ_Ihis¢t§sult shows that the penetration depth is independent of

thé‘éonst§q§ C in the heat input and varles as the square root

&f,time« :Tho factor of proportionality ls dependent on the power

f&f';hé time of the heat flux. Etquation (31) is an interesting-
/- oo R B
resGlt that compares with the result obtained by Bict in Ret. [9].
in this reference, Hiot found that if the sur}péo

Lemperstuxe variqg'as w”, the penetration doﬁth relqtion>1s

~

é

These tw> r»uuits,ﬁqs. (31) and (12), show that the p2netraticn

depth varies as the =auare root «f time 7or twu casesy -urface

T = 147¢/13 + 150 S (a2
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temperature dependent on a‘pgﬁer of time and heat flux dependent
on a power of time.

If n =0 in Eq. (31), that is, a constant neat flux
.‘and‘n = (1/2) in Eq. (32), also a constant flux, the penetration
depth relation is

0 = 294v/a]

This result fcr constant heat flux was als~ noted in Ref. [13].

If n = 1, a linesr heat input
qla) = v/~ {33)
wheri'wl equals 2 constant, the penetration depth relation is
2 A
" = var/7] T (34)
Thov{nrrespond}pg curface tewperature history f:pn Eq. (29) 1
w(w) (3/21 )(11/294)’/2 vz LT ()

Tqustivn (33) corrosponds te tho ftrst 1”9 ot trianqular hoct

pulse and Eqs.‘(34) ond (35) are the cortnspondtnq p'h&ttdtl&ﬂ‘

deptr and &urf;co eonpe:atura h\stor:ts Ihoh n =5}a ‘he

Yy
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penetration depth equals the slab thicikiness b. The penetration

time from Eq. (34) is
c = 71/294 (36)
and the surface temperature at the pehetration time is

; 2
T < \3/2¢ T 37
ERERCENIEN (37)
Equation (3/) givec the surface temperature at the penciration
time which is to pe used for the initial condition for phase 2,

the {inite sleb.

Finite Slab

N

The temperature distribution for the second phase
corresponding to the finite slab is shown in Fig. 1 and is

written in the form

If the analysis given {n Ref. [13] for finite slabx {s applied

together with thas parameter:
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2]

T = at/p”
- '
®1,3 = 9,3 k/hb
the variatjonal equation and flux condition become
109, + 329, = B4(9; - 4)
®, * 29,5 = 3q(7) - (38)

The flux eguation, the second of Eqs. (38), can be
integrated, and the function 9, eliminated between the equa-

tions to find
9, *+ 2lo; = 8qglr) + 21[g(~) - 9(79)] - 701(1p) (39)
Ejuation (39) cean be integrated t> yielo

v,“vl(fp)*feﬁpi2lr)iﬁn(r2*21[9(t)€§(tp)Ji7g;(1;)}dt/txp(21w) {40)

This result gives tnoagurfvaltinpquturo as 8 function of time

for an arbitrary hoat,ﬁﬁﬁﬁt. The rear temperature history cen

be found‘xma.gxato{y“fxa-'tho flux condtt};ﬂ;r ;f &hi fiux is o
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kolynomial, tor example, Eq. (40) can te integrated in closed
form for the surface temperature.

In summary the, the basic eguations for an arbitrary
heat input are given by Egs. (23) and (29) for the semi-infinite
solid and by Eq. (40) for ths finite solid. Those-oquatlons
show that the solutions for an arbitrary heat input can be ob-
tained in closed form for many cases. An example of the
use of this method will be indicated tz show how the surfacs
temperature histaries are fnund. .

The example to be treated is the heating of a finite
slab by a triangular heat pulse. This example wqs txociod’tn

Ref. [54],
iriangular Heat Pulse

" The heat Pulse to be considered is

L 150 BRI 08 1 i

s

s 752 - {a1)

VRN

W',,a . - 2 -

N . Ny

The ssrlece temperatures of e finite slab of thickness b are

requirea for +22. (he rasults for the semi-infinite portion

A

are QXvin*by Eqs- (34) to (237) for T, @ 1. The pdnotrctxbnv

time from Eq. (36; 1

. . e

-
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T = 71/2%4
P

This time correspongds tc the starting time for the second phase.

Equation {3G9) in this case reduces to

= ‘rz - w ~
®, 2Xol = 10,57 8r , .>Tp

The solutior s

S «5- t - ds - 1coseexpl-21t) - (a2)

3
3 © Ly
. <%, 1.9~ .1
ar
19 o » . ’
A .7 . de delp - ¢
| 0y = 41 6T 17¢ "¢ %028exp(-2i7) (43)
. , : R
. > . : . » . ‘
, fiaatisns 143 ¢ng (43 are the surface temperature
‘ hMistories These solutices +pply until o x| ot which time .
the fiuv condition id«es e ditferent form from Eq. (41). At
iy time,
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and tne govern.ng equaticns, Egqs. (38), are again integratec
for the :rit:al conditions corresponding to - = 1. These c-n-
ditiors are evaluated trom Egs {(42) and (43) at t = 1. Evelua-

*1on ieads to the valuses

2,010 = 0 8i746
py{ll = 0 34127

to e used as the . t:ial cord.tions  Solution of Egs. (38)

et these (Citial conaitions, vields

2. L 4 29 fonte F.9)1¢a 'y v
7. 3T T s . At tébexp! -21(~ 1)) (44;‘
and
v ??f'- ?v - %%5 v 0 0ioEt deap(-2if{r-1) ] fass oy

Equations £4dy 4rd - 4%) G- ve the artace rtemperatures of the

]

SEAb tou rhe tume vangs U ody while Eqs 1470 any (43) give

the s.rtace Tempergtores for the time sanne 1o - - The

)
ve - p
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. AL :
inhner surtace temperature .o ot coorse equal to zero until the
penetration time

The above ieauit: fuor the surface temperature aifs show:

in Fig 2 togertie: with the resileséirem Ref [94] It 15 een

from *th:is ¢tigqure %r3t the present method 1% accurate as an ap-

proximate metrad ot solution for the ¢ase ¢ a trianguiar hea:

pulce

! ) I
; : ,
N t
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SECTION VI CONCLUDING REMARKS

A Jdiscussion and eppl{cat1on of Biot's variational
principle for heat conduction was presenied in a previous
paper, Ref. [13] This reference contained a discussion of
the princ%ple from a mathematical viewpoint together with a
discussion of tne msthod of solution using the principle
A number of different one-dimensional heat condurtion problems
were treated to show the appliczability of the method.

In the present papexz, the literature discussing
Biot's variational principie 1¢ reviewed, 1n addition to
other variational pr:nciples and approximate methods of solu-
‘t;on forlheat conduction problems. The thermodvnamic founrda-
tions of the variational prirciple are reviewed in Section IV
showing that the variational principle for heat conduction has
1ts basis 1n the physical corcepts used in irreversible ther-
modynamics. The latier part of Section IV then shows row the
form of the principle for reat conducticn follows from the
general formulation

An application of the method employing the ideas
given in Ref. [13] 1s presented in Section V. This application
involves the heating of slabs exposed to time-dependent heat
fiuxes. For this type of heat flux, the present method of solu-
tion admits, in many cases, 8 closed form solution for the sur-
face temperatures The case of a triangular heat pulse is then

presentaed in detall to show how the metheod {s applied for pro-

blems of this type
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Callfornia Inst. of Tech. Baltinore 18, Maryland (1)
ATIN: JUL Library
4800 Oak Grove Drive Massachusetts Inct., of Tech.
resadena 4, Cillifournia (1) ATTN:  Library (Route to Dept.
of Aero & Mech. Engrg.
California Inu., of Tech, and Dept. of App.Mech,.)
Guggenheim Aerc. |ab. Cambridge 39, Mass. {:)
TiN:t  Aero lio. {(Route to
Prof. How. Liepmann) Midw-st Renvarch Inctitute

Pasadena 4, California {1) ATTN:  Library

425 Volker boulevard
Colorade Jtate University kancas Clty 10, M!,sourl {")
Dep . Wi UYVIE Lngig.
ATINY FProf, J.E. Cermak, North Carolina State College

ASC Civiciua of kngrq. Research

Fort Collins, Coloradn (1) ATIN: Technlcal Library

Ral~iqh, North Carolina (1
Columbia Unfversity

Dept. ol Tl.s Engrg. & Va.ytechnic Institute ¢ Bklyn.
fngrg. Mech, fhiNe libiary
ATIN: Lib. (Route ‘o 133 Jay Street
Frof., =, g smynn? i iyn 4y e Y.
Yew York 27, N. Y. ()
Cennsylvania State University
University of Flozida Uept. of Aeron. Engirmering
Frttnenring Mecn, Dept. AilN: Llibraty .
ATIN:Y Livrary Intver<ity j‘arx, Pa. (1)
Gagnevii.le, Florida (1
) the lames Forrestal Res. Canter
Hatvard Unive:sily rriaseton Ualversity
vept. of Tnnrg. Setle - St ik, (Raute tn Praf. ,
ATINY Library +o Boydonntf)

Cambridge 38, Ma«:, {1 brlnoetan, N, S, )




Princeton University
Dept. of iero. Engrg.
ATTNs Library
Princeton, N. J.

Rensselaer Polytechnic Inst.
Departaent of Aero. Engrg.
ATIN: Library

Troy, M. Y.

Stanford Research Institute
Documents Center

(ATIN: Acquisitions)

Menlo Park, California

Stanford Unjversity

Dept. of Aeronautical Engrg.
ATIMN: Library

Stanford, CTalifornia

Defense Research Laboratory
University of Texas

P. O. Box 8029

‘Avstin 12, Texas

New York University

Institute of Xath. Sci,
ATIN: Library

New York 3, N. Y.

Yale Unlversaty
Dept. of Mech. Engrg.
ATTN: (Llbrary (Route to

Or. P. Wegener)
New Haven 10, Conn.

ND RGAN 1JONS
Allied Ressarch Associates
ATIN: Library (Route to

Dr. T.R. Goodman)

43 Leon Street
Boston 3, MKass.

Bell Airosystem
ATTNs Library
P. O. Box 1
Buffaslo 5’ Ne Yo

(1)

”~
b~
~

(1)

(1)

(1)

(1)

(1)

(1)

-

Boelng Scientiflic Res. 'labs.
ATTN: Res2arch Library

©.0. Box 3981

Seattle 24, Washington (1)
Chance-Vought Aircraft, Inc.
ATTN: Library

Dalias, Texas (1)
Convalir

Forth Worth Division

ATTN: Library

Forth Worth 1, Texas (1)

Convalr - San Diego

ATIN: CEnyineering Library

San Diego 12, Calif. (1)

Convalr Scientific Res. Lab.

ATTN: Library (Route to
Chief, Appl. Res.)

P. O. Box 950

San Diegu 12, Calif. (1)

Cornell Aero. Labs., Inc.

ATTN: Library

242% Cenésee Jlivet

Buffalo 21, Ns Y. (1)

Douglas Aircraft Co.y Ince.

ATTN: Library

27 Lapham Street

El Sequndo, California (1)

Douglas Aircraft Co., Inc.

ATTN: Library

3000 Ocean Park Blvd.

Santa Monica, California (1)

Flight Sciences lLaboratory

ATTM: Library (Route to Dr.
J. Isenberg)

1969 Sheridan Avenue

Buffalo 23, N. Y. (1)

General Electric Company

Aercsciences Laboratory - MSVD

(Library)
3750 "D" Street

Philadelphia 24, Pa. (1)



General Electric Company
Research Laborastory

P. O. Box 1088
Schenectady 35, N. Y.

Grumman Aircraft Engr. Corp.

ATIN: Library
Bethpage L. 1., N. Y.

Hughes Aircraft Company
Research R Develop. Labs.
ATTNs Library

Culver City, California

Lockheed Alircraft Corp.
ATTIN: Library

P. O. Box 551

Burbank, California

Lockheed Alrcraft

Missile Systems Division
ATTN: LiGzary
Palo Alto, California

The Wartin Company
ATIN: Library
Baltimore 3, Maryland

The Martin Company
ATIN: Library
Denver, Terlurad:

McDonnall Alrcraft Corp.
ATIN: Library

P. O. Box 5)6

St. Louls 66, Missour}

(1)

(1)

{1)

(1)

(1)

(1)

(1)

Ncith American Aviation, Inc.

Missile DPivision
ATIN: Library
12213 Lakewood Blvd,
Downey, Californis

Northrop Alrcraft, Inc.
ATTN: Library
Hawthorne, Californis

(1)

(1}

Rand Corporation
1700 Msin Street

Sants Monica, Californis (1)
Reputlic Aviation Corposation
ATIN: Library

Farmingdale, L. 1., N. Y. (1)

Unites Alrcraft Corporation
Rescarch Dept. (Library

400 Main Stcreet

East Hartford B, Conn. (1)
Unified Science 3¢ nciates, Inc.
ATTNs €, M=iovite~, Prestdent
926 S. Ar.oy~ “arbwey

Pasadene. Caliifornita (1)



