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iV.

ABSTRArT

The litereture on Btot's variational principle for

heat conduction and the thermodynamic foundations of the prii-

ciple are reviewed. An addItlonal example to those presented

in a previous paper is given. This example treats the heating

of slabs exposed to ti-o-dependent heat fluxes and a specific

example of a triangular heat pulse is presented In detail.



SECTION I. LIsr OF SYMBOLS

1!] constantin entropy expression for neignbor .n tnerm.i-dynamic state, Eq. (

b slab thickness

b. thermodynanic coefficients in relations between- forces
and fluxes, Ea. (4)

spec:if:c heat

dv vume e-eme,)t

D oiss:pation finction

D cperatonal form o: j;ssipation function

ewD w" exoonent~dl function of x

F deftined by Eq. (26/

9etined by Eq. (25)

neat t-ar.ter coefficient; heat flow fzim System I to
3"¢Etem . :

r.n neat f.ow t:om enerav reservoir o qv;tpm

:.v e C ve t 0L f Ie U

.j'ue f ;se-t t',ow feld a- he su f -3-e

,o eff 'ent of tnerma. rornduct4:itv

.eat f u

q surta P te-.per itu r

12 rnetltlon de pt.""

-3 ,.WCA . erprature
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generalized coordinate

thermal force

Q. generalized thermal force

S entropy: entropy of System I

3' entropv of total s.stern

Sc  defined by Eq . (13)

Sr  defined by Eqs. '131/

S, entropy in'low to Sy3ten; I

entropv of constant teproprature reservoir

SI entropv of energ reservo:r

t t ,M e

t pe P.traticn time

temrter atur

reser:icr temperatire

U :nteria' energy

c aef:-ed bv Eqs. (,3i

ae.ned cv Ecs. 'i3

pie n rma *.poten*:81 Fnctton

Vdef, r-i tv Eqs. i3,
C

41 defined ov Eis. '13)

x spatial coordinate

X: generalized thermodynamic force

z defined bit E4. 26)

U tneTr,, diffusivity, k/c

6 variation



dimensionless pene~tration depth

temfperaturv differerce measured from equilibriWr
A tomperatuxe

dime~nsionless time

I aimensionless penetration vimp

TI dimensicnless surface temperature

sorface timperot.ure paramet.er

vector quanitv



SECTION II. IN&RO0D U- 7ON

T!?ie hign speeds of moie:n Airc~aft and guided mis-

silos have ,ntroduceJ new proolems into the design of struc-

tu~ral eleaients for such vehicles. These problems are a conlse-

quence of the iarqe heat input to th structure arising due to

the increase in temnerature of th-air in immediate :ontact

with t~e surface cf tl.p en." 71 . s 41r rP se a r tem p ertu re

is caused eitne: by shock compression at the blunt leading edve

ortvb fr~ction in tme toundarv idver. Similar type of heat in-

puts 3.,_ :4sp 1 e to tne f~ow of nig er :,rgy gases in rocket

motors An~d n',.;eai reactors altho,,gh the source of heat is

ohvsicilav d;ifferent. In al. cf these stuations the tempera-

tLre r- the stioJcttura. comocne:,.ts must op ac,:ounted for

,.r t!-.e acsion of t:neentire structure. This requires among other

Proclems the deterriiiiaticr from a n-pat -onduction analysis of

tne terrcer~tore 3'.strinuier ,n th~e structure under the known

Howevp-. trne large n~eat Inputs and the accompanyin~g

1.igh temperatures will rneessi*ate a consideration of the tern-

perdtJle dependence of the thermal properties of the hvated

t)3. The introciuct'on of these t.wo ffts will make the

guvterniig neat cor.ducticn qe-,atirni dnd noundary conditions non-

iinear aprobKern wh*ich car, rot be treated by the usual class!-

Ldl rnethodb of neat condiction analysis, Refs. [l, 12). In such



situation~s. approximate aP'Ivt1c,-. -: itmerical metnods ; :P

r r q u Pd i n or Jefr to0 oh t-11 1 ou t CI n A Jiscust eo Cf Somfe

-' n' a V. a n d 'I M er:' r ne t r- 0 S f s o'utiof was pre-

O)ne :' e rr%^st linportnt ct t.rip aia vtical methiods

c fc t. r cr n e& j cm t c is t t.e v a r.a t io na ' p : ip Ie

an- tv L4 t e 2 fc . 1 . E_, nr±, eprroac 1,, the

n a St'. 2v n tT r 0 'o0L ed eas;:c and tner-

itd is ff t~rP n, tf - n ri petts ae 1t.cred. the

a Y,.6 -. ado nd. t'.n ar 7 C? -. 4c;t-.v ire or ained fromi

tnt 3! cr. :f *, eldst... offects are ig-

-i '-.t.~ '' o o~ *r- t conattof ecvtionr is

T-e CA Ite 0*~ %PA* - OnktIC. in net. r.~.I

g ou ia c' o,..t t.1' cO'! jv n .aJ d t bePen tre .te d

t~efI_,:e bv t.he pat-_it P wd., .ntroducpd and the vari-

a'Ia p.rinciple wd ther app.ied to .3 nutse: of d1iftpreflt one-

dimensional heat cc-,diuct1C' pon'no. !tpc.e tr~ated -

cluded nor-lineav ineat fu), bc .nda.,y conaitofl. time-deptr-delt,

aerodynlamic heating# and the heati.ng ct todtes witn tP*rvperatrQ

dependent tuateril properties. The results octa'.ned fo tnese
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examples demonstrated the app Iica ;ttv of the variational

princip.e to prcbiens with specified neet* fiux boundary con-

ditions.

In the prasent pappr. wh.ch comnrements Ref. [13]

the tnermodvnam*.r fouidations of Biot-s variational principle

are reviewed tocether with previous work on variational metnods

for heat conduction. Since Biots ,,ariatonall principle in-

citdes the field of thcr o-elastlcitv. a discussion of other

x :atzona. pr-ncples obtained from Biotic forr.uation is also

p.-sentcod. In th.s way, the pr nciple as appl:ed to the analy-

s:s of neat rnodi -t' p :t pUt :- tnc propcr perspective

as - spec:a c 2- cf a moire gele.al principle.

S~t:or III :onta:ns a rev:ew of the literature on

pre vius wor" ePirpoving d.- o ala.ov p:inciples for heat condu'-

S. . : L on c .c t:s.variat:onaI p" irpie, Section IV reviews

!e t..e:d. .d/ fcu dat ons c t tne genera' variational p:in-

.C C and f:-'" 4 c:- te sie .a. CIse of -eat ncnduct'l .

7-,e T'tuu fut -. 1%.ding neat P ux oo ndary condtions

that wac :ntrc14eo in Ret. [131 iq applied in Secttn V to the

p:co>'. of the ,eating of a finite S'&b with an arbitrary time-

de-.-dert ,.eat inzut. Tn neating of a slab by a txiangular

ne;,t vuIse is, the,, dlsoussed in dptail.
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SFCTION III. L:TeRAURE I REM

A discussion of variational principles in thtimo-

elasticity and heat conductionr Is oresented in t~is section.

Although the present paper iz ,concerned mainly with heat con-

du,.tion, the'discussion of the variationil principles in

thermo-elasticity presented beluw provides a basis for the

discussion of Blot's varidtional --inciple, Reft. [2 to :1).

rhis principle is applicable to the general field of thermo-

elasticity and hence includes the neat conduction analysis as

Yc-LL u Lhe complete formulaticn. nerefoie, by presenting

the discuss.on ir. this way, the variatiinal principle for heat

zonduction alone is fewed in :ts proper perspective as a spe-

cifi cie of a roze qeneral priniipie. Tn jddi:'on to Lhese

discuss;ons referfhce will be made to other approximate -ethods

of so'tofi for tne neat (.undu-tlon equaticrn.

B.ot. Refs. [4. -3. !as introduced a varI.:ttonal

pri.n.iple whicrh nas apnlicatior to tnz 'ld -f thermn-elasti-

city and in fd t to more general tna-modynamlc systems. The

field of tcrmc-9last::v !ncludes, in the most aeneral sen-P.

the effects of cnjp;,ng between the te~oerat-'re and elastic

fields. *t is tnls ,arationaL principle, restricted to the

s,,ecif!s fielin of heat ;onduction. that will be discussed In



this paper.

Th~e P'era, 'aratlonal crincipe was deri,-ed by

B, t on the Lb;is of trc.riJv--m c i. a-gu.meotts app:ieo to a

physical system. The state of :r.:4 svstpim was defined by gen-

cra:,zeJ state .ar-.ables and Onsaaer-s :ecllpocal relatiors

were dppiied to obta.n Ldqring.3' oquatictis for the ti-ne his-

tzTres of tn~e genera."zed cccrl.tnates. Reis. C2. 3. I. his

methcd ' f deducing tne Pqudt.o~s will ne di!cussc-d in Se:ticat

On:e tne qerner3i wqa~.~~vize estaciished, a varla-

tion~ai pr~ncp.e e-q-v.ent tc triese equitzcns was Introduced.

CtO~d Ii ?c P W h s c th.e -ee.ra1 c-asc

therrno-eiastic--tv ment.oned aoova, Refs. L[4 , ana to the

cs.se where trne ellast-. eftects were not considered. Refs.

L5, 6, 9]. 7he latter, -asee of course. applie to the field

of heat condu~tioc'. An. adudi1:,- field of application of the

gener a. -ar -at *cr. a I py:nc 4p,e oih 1 Lt r as been~ treated by Blot

.5 c~stc~v Refs. I- * ~ what follows in h.

e- n .cwc' cr. tr.e o ri nc p.e t- vi. De ad1s cusse-J in 01a

field c4 redt Conductio.

BIct rnas snow" tnat trne qc r-.r a eoiaticns for equi-

lib~um of -itl~rmo-f~ast,,c so.,d c-ir be expressed in termb of

a v~rar t:Ovi pr.-icip.P urndfr spe,.-, ed ro-trair~l condittons,

" etf. L 4J. I't.ur t te eqtjdt.;,, of state together with

conserva*An c6 Pnergy is vr-ospd on the .ariational ':,rct~cn%
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the equilibrium equations and Fourier-s law of conduction

ari obtained as the Eul e differaitiai equ tions. ThP lattcr

equation with energy conservation yields the coJpled noat con-

duction equation. :his principle ip analogous to the principle

of Minimua Potential Energy in Elastictty, Refs. 15. 16), in

which the stress-strain relations are imposed and thp equilib-

brium equaticns are the corresponding Euler equations.

A Compieme-tary Energy Principle was formulated by

Herrmann* Ref. [171. and leads to the stress-displacement equa-

tions together with the corser-ation of energy expression under

-he asL...ipt;:: i.ht the arieo stress ann temperature fields

satisfy the equ:ljbrium equations and Fourierls law of conduc-

tiurf. Ine ermphasls on Fouripr:s law of conduction is not

clearly stated by Horrmann; this point, however is particularly

important sirce it forms the basis of the application of the

variational principle in heat conduction. This was noted in Ref.

Li3]. it -s seen.from tie aroe that this prinniple is analagous

to tne princ.iple of Mini-m Complementary Fnergy. Rofs. [15. 161.

in which the eqiilibrium equationsrestrict the arbirrry stress

variations to yield the compatibility equaticns.

Horrmann* it, two later papears. Rets. [18. 19), has

cnsidered an extension of Reissner-s variational principle,

Refs. [20. 21. 22] into thermo-elasticity in which all the field

equations are obtained as a consequence of a variational principle.

The principle has been outlined for the case of a uniaxial state
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of stress, Ref. [18), and generalized to a three-dimensional

anisotropic oody, Ref. [19).

llowever this extension to a more general varia-

tIona" pr!nciple introduced an add.t.ionai variable called the

"thermal dis-equilibrium force" which has not been employed

by Biot or by Herrmann in settinq up the separate variatinnal

prlnciples for thermo-eiasticltv mentioned above. "his force

has the form used In irreversible thermndynamics since it is

re.ated to the gradient of tne temperature field. Moreover,

it provides the connecting 1.nk between the law of conduction

and thP energy ecuation whicn leads to the coupled heat con-

duction equation.

With the i-:troductlon uf this independent v -4bie,

the governing flvid equations were obtaineo tram the function-

al expression given by Herrmann in a manner similar to that

,utlined by Reissner. Comparison w-th neighboring states

which do not satisfy the variaticna" principle showed that the

pri riple is that of a statiorarv va.ue problem rather than .a

true .,xarmum or ...irnum; again this paralleled the dAvelopment

presented by 4eissner.

An additional formulation of a variational principle

to includPthrmo-elasticity. plast.cit and creep deformation

has been presented by Besseling. Refs. [23, .2A]. This vari-

ational principle was stated in terms of the physical displace-

ment and entropy displacement fields and leads in the general
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cese to a stationary va'ue p..:nc..p:.. Tne entropy displacement

W.IS the s.;me as that used by diot. Ref. [4]. Furthermore. an

appli'aror of this gar:at:cral principle to a Orot,.em of struc-

tura" damtrng -was presented.

Variaticn,;" Frinz:ples in Heat Condu:tcn

Weirer Ret. [25]. presented a method of soll-tion for

the teat Pcqdtt:on qtat:on wh::n comhined the standard Laplate

tecni:que witn :nat cf the Galerkin technique (see. for example,

Refs. r:5, a1 [16.. In tr.,s 'mu*aton, the transformed heat

_Cj c.t:r :__ t"e Lap VI v U was solved approxi-

matelv ov tne Gaiervin technique. The approximate solution ob-

tained in t:s mantlet was then transformed back to recover the

ti 'e .-;rable. 7he :orizcusin arawn Dy Wt.ner in applying this

metthod to scne simple examples and to the flow of heat in an

aine sect.-u:. as riat for prcolems of phvsical interest consider-

, R ef. [26- n.s presen-ep a variational prin-

_p.e N'-c ,-roiucej 3 te Pr3tL-F field that was the mirror

lir-gt- : tne pnvsica, tem pe-ra4tz.re l tributicn- This artifil~al

mF :tu:9 ., Fe interpreten is t- t corrcspondirig to a negative

tne:ma 'c-dut". tf. 7,* m-I.d Was app.leo ry assuming a poly-

cnmiAl temperature distr.bi!tcn to ze used *n the varlational,

tu-cticn tioer w":cn the cce fic*.n* cf the pol- vomial were found.

An *a.-:p'e incivi.rg the neating of a finite siab with fixed sur-



face temperatu:Ps showed poor qreerr.vnt with the exact sol, tic.n

fc- a ,  aprPcib,' me Tange° in FArticular. for short times.

Roser. Pef. [2-], formulated a v.ariational rilnciple

based opn mod:ft :aticn of Onsac-rs principe o m:niof.; dis-

sipation. The fuinct~onal expression introduced was expressed In

terms of tne temperature gradients and the time derivative o!

tri, tpmperat:re. This functionai expression was %aried with res-

pect to the tempera:Lre witn the time zrx ative held fixed.

Approprtate boundary aondit:ons were enfcrced so that the heat

.3nd,_t:c equ.ation wis ct ni~nd from the qar:ational fu:.ction.

Wn:ip trip -.i::a )a, prznc:c P .s !-'nsistent within tne frame-

wCr: Pres-te.4 d .og:.:3. :rso ency does exist if consider-

:o' - s 3z.'i t c zc sP :.' ic of P ergv. No ipplicaitions of

:p: z Aele presan :ed cv Roser sc, that no statements as

:c appi -bibi :',v f tne pr i lle :ar be made.

A -jr:.ticna! rr.-Lpie Aimost opposite to that presen-

! '- ,csr vds ;..P b'v :ambers. Ref. E28) In this varia °

4 -' le o .4vra

t:ona. fanct-:n aas cr-scd :rn :er cf tpne temperaturp, the

time rate nf h~nqe of the temrr*,r;. tho temperature gradlent

and the heat flux. Th4 .'ar.ation was perforrad with re.Dect to

the time derivativo of the temperature whilo the temperature t-

self remained Lnchanged. !-'wever. although the heat conductior

eouatirn and tne appropriate boundary conditions were obtaineo

I n formpi ma-,rer. a physical inconsistency exists in this prir.-
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cipie. This is due to the introduction of the heat flux with-

out !:onsidertng its relation to the time rate of Ch3nge of the

temperature through tne expression for energy conservation.

No illustrations of the princile are presented.

Tne above two v'ariationa. principles Illustrate the

orS:tC ': _-40S t"-'+t ".3 au' -:3rintior.3l principle is

.rtrc~uced without tri underlying physical concept. In parti-

th se..und principle is rot ccrrect frcm a ohysical

.- of -. ew. On the other hand, the variational principle

.-trcdu,:ed v~v Bio-: is mnt~v.ted by stronfi physica- reasoning.

D.niLp.e which was discus~ed above has. in addto, h

a;antage ot generat-. Howevei. as was mentioned before,

t-, .triational principle will be applied in this paper to heat

on--~tion orccesses criy. Lis ts eq%1tvalent to neglecting

t~ ~ effp:ts in the thermo-elastic variatio'nal principle.

:-.emat ivat -cn f oz the principle from thermodyntamic

w1:be presprtPJ in Sectic'- I'V. An additional

r' ~nJ ~Ref. r303

:!ie var-.tiorAl principle was discussed froir a mathe-

m~t:.ooint of r'.ew ir, Ref. [13]. That is. the mathematical

steps snowing tne equivalence of tne variational principle to

t!% ne~t o.ndwttion Pcuari-on was pieseinted. Similar discussions

of :Ine variavicnal principle were 941ven in Refs. r31. 32).
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In addition, the problem of the determination of the temperature

dist ;bution in a flange-web combinatior (angle section) which

was treated by Biot, Ref. [51]9 war further discussed in Refs.

[33,34]. An extensiorn of the variational method for this pro-

blem to two dimensions was given by Levinson, Ref. [35). These

references, with the exception of Refs. [13,35), do not present

any new formulations or results of the variational principle.

Hnwever, the principle was modified for the case of both tran-

stent and steady forced convection heat transfer in Refs. [36

to 39).

Reference [37] t Part I contains a foraulation of a

variational principle for the transient heat convection equation

analogous to that formulated by Biot for the heat conduction

equation, Gupta, Ref. [38), has extended this principle fox

convection to the case where the medium is anisotropic. Both

of these principlesrequire a modification of Biot's work to

account for ti-e motion of the medium and for the viscous dissipation.

If the latter effect is neglected, the resulting heat convection

equation is identical to the heat conduction equation for a moving

sedium. In this case the ditipation function in the principle

is modified by expressing the flux condition in terms of the velo-

city of the mdium,

I
a
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Agrawal, Ref. [37], ?art II, introduced a variational

principle for steidy heat convection in channel flow under the

assumption that the effect of axial conduction can be neglected.

Again this variational principle is similar to that of Blot's.

Agrawal, in a later paper, Ref. (36), extended his previous prin-

ciple to account tor the vanishing of the velocity at the walls

of the channel

The restriction of negligible axial heat conduction

haa been set aside in the work of Gupta, Ref. [39], and a

variational principle has been developed for the complote steady

heat convection eoua4ton for channel flows. In this work, as

well as in the above references for convection, Lagrangian type

of equations have been formulated for the thermal flow field

using the concepts of thermal potential, dissipation function

and 9#reralizae force The use of these conceptU clearly shows

the roltkon of this work on convection to the work of Blot in

heat conduction.

Citron, Ntef- [40, 611, has discussed Biot's pr*nciple

with reference to ablation problems. In Citron% work the varia-

tional principle was expressed In terms of a functional expres-

viut, i,.wn'q,,9 the heat ?lux and the temperature gradient. The

vartatiop was carried out wth respect to the heat flux with the

tszpetrat ure gradient held fiwod This particular method, howevvt ,

..,,~ ~ ...... ..... l I i i i D ! l
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Is not consistent with conservation of energy. That is, any

variations in the heat flux must be related to variations in

the temperature qradients as a consequence of conservation of

er-g .

Citron, Ref. [40], also presented an appliration of

Ga)*rktn's method (see above) to the ablation problem. This

method was also presented in Ref. [32], and it is an extension

of the Galerkin technique to the case where the approximate

solution is presented as any function of the time-dependant

3bitrary parameters, An illustration of this method is given

in Ref. [32).

Other Approximate Methods tn Heat Conduction Analysis

Thc rao.asaf9g portion of this section will discuss

additiondl approximate metnods that have been used in heat

conduction anAly%&b. Although numerical methods have been

most useful far the determination of temperature distributtos,

they wia no' be discussed here. However, specific numerical

methods were discussed in Ref [13) together with applications

of Blot's variational principle to prescribed physical pro-

blems. hilte those numerical methods may have certain advantages

if computational assistance is available, they require 0

in any subsequent thermal stress calculation, for example*

the contined application of nuemricalnthods. This, together

with the temperature prublem may become a formidable under-

taking In addition$ if an analytical solution i- possible
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it may not be in a convenient form for numerical evaluation.

Therefore, it may be desirable in these cases, for the purposes of

practical computations to obtain a simple approximate analytical

expression for the temperature distribution.

Goodman has introduced an approximate method called the

heat balance integral technique for the solution of the heat con-

duction equation; this method has been uned In many studies of

heat conduction problems, (see Ref (13] for a list of references.)

The essential idea of this technique is to sitisfy the integrated

heat conduction equation with an assumed spatial temperature

pzofile that must satisfy the prescribed boundary conditions,,

Many of the result% ootained in Ref. [13] using Blot's vanis-

tional printiple were compared with thit heat balance We'nIque.

Green, Ref. (42), has prostnt-d an expansion method

for a wrrl form of the heat conduction equiation which io

similar to the Galerkin method, An application of a modifi-

cation ot this method, Ref. [32), was mentioned pweviovsly with

reference to the Gale- in technique,



SECTION IV. THERMODYNAMIC FOUNDATIONS OF THE

'A;IATIONAL PRINCIPLE

The thermodynamic foundations, Ref. (7), which lead

to the general form of biotqn variational principle are re-

viewed in this section, Aftox Libe qvf.e,1 form of the pxxn-

dipi. is developtdp the discussion will be restricted to the

foundation of the hfiat conduction variational print.ipl#.,

The major points in the development of the general

variational principle are the introduction of Onsager's reci-

procal relations, Refs. (43 to 45J9 and the determination of

the expressionh for and the meanings of the dispation func-

tion *nd the thermal potential Of particular importance ts the

determination of the entropy of the '.otal system in terms of

the entropy and the Internal energy of the primavy sub-system

dnd the temperature of the heat rservoir Thi~s leads to an

expression for the generalization of the Helmholtz fite energy

for a system at & non-unifole teeperatures this expressio" Is

called the W(isnraltrod Free WAergy* or 61Thermal Pottntial4

but the latter toe will be '.seo irn the subsoqent disc%,,$

wio"I. The equations for the v*.ate variables of t~o system

are first developed for an isolated system and theni for a

system u'der external towc*$. The type of forces corsidered

will be of a thermal Pature since the rindt objective ts to



apply the results to the a'alysis o~f heat conduction problems.

However. the applicabil-ty oi the method for the determination

af forces in other stuaionu is apparent an~d this has been dis.-

cussed by Diot, Refs. (3,7-1 Once the formulation for the system

has boa; *tablluhwd~ ii t,;t bense that tne L..granqian equations

for the time histor.*s of the state .ariablos have beer, found,

a variational principle equvalent to these equations Is is-

mediately obtained 1T~s 'war-tatioal pripc~p~t restricted to

the special ca7se of t~e~aa' f~~ leads to the heat conduction

equation fc: the tomporat, ir 1;' Pt~s Pjav a variational princi-

ple motivated by c~roirw:agm~t ar, be established ij' a

consistent mapror tot tteat .on~ctton prac#%os

Thormodvraoc SVVvs

The #rtire sy~tom to be corsidered consists of a pri-

%try subsystoum cat'1# $,v.f to * wich a heat 1#*tVVygr§

:oiled Syste 11, ot a ;o1-stAf't temperature T is cvoonctod

7*'* *Iettot Svisteoft ~ s- *0 tot to orimary systemt Ard the

heat reservoir ~sassed to tbe tLolitId,

tritiolIv, tt,* swo* . to A" 04.Iibrluth state tot,

*pith the vatuest or? tpe #trcpw trd 1kra 'rq r ae

as oq%"6l t6 me LDeviati4*4 from the oq :ti r st~w ore

epssd terms of Ot*)to#i~o tootd~oato lhChloar

also to 1f, %.'o 0ew 1ttm tot* 1#-#%* qerrt*4o :0-

Grainastos are state Ver'.40104 @P4'&Irg the $tat* of Itte ot~to
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system at any instant of time. The valia of the equilibrium

temperature iS and the local deviat ons from ti qii

brliwm value will be denoted by 0; these deviations are con-

sidered as state variables The system in addition assumed

to he linear rthe sense of irrevers~bie thermodynamics

7h is requires th-at tne flu--e5 in the system are linearly

related t, the corresponding forces$ for example, that the heat

flow is related to the temperature gradient i'addition,

proaIuct~on cl; entropy in the sy~tem must be written as a pro.

duct of tle ;Tu'~~r the corra?.,onding torces. A review

or these bAs- mac rocsop> -Ln,,Pp~ tIor tne t~iermodyramic

the' rv ot irreversible p~ocesses was qiven by Miller ir Ref

I4~ M~ r d Is C Us~sed the41 f r'-.a o ns o f i rr v or b 19 thermo,-

dyram:.cs, wrn-_;h krP Alo di %ussed it, Refs L43 to 451, and

p r P seted tie tas.c as-rtio", ar'u motivation of the theory

'e 't em at r, rt w,. I Ie fre toefrcim anv e'terr',31

dppl ea tvi~e FIS ~ Z ~ e"ttopv 01?f *p.y~t~ft at CiU1-

hin a max'mum v~aiuf' W!, 'h I 'Q~nvee.tlv s*et Oqual to~

ze. thp arltrop, v~ ne',gh' r r,$ statf- wll be, lev tha~n

zero ! is value c' i-rtrop." car' 1 0 x~kx 9s s d i fl, torMV Oft !-h#

t at ~be it ~~iL t Va *rtropv at a n V P -1 #)

~t te t. t t.~l~ wr rl t, t q to ?I
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-" :,= 1/2)a q q

a a ()

where S' .s the entropy of the entire svytem, the a are the

values of the dppropriate dertvatives of the entropy evalua-

St.id at the equi-ibxium state and the q are the state variables

Thp sommat.on -oiventor of summing over repeated indices is

,,e .," this equatinn and in the equations to follow,

As a consequen.e of tho deviation from the equili-

br'.,m stite, r.s tori.ng forces are set up within the system

It is assvmed that these forces are linearly related to the

trme rate of change of the state variablesq the fluxesv q,

In addition it is ats.umed that the linear relation- -atlefy

t e Onsage: 'vpotheses, Pet% [43 to 45) This requires that

tie entiopv prodj,;t'or in r-e system which arises as the sys-

tem -. ret--rni-g to the equilibrium state be written in the

form

T (dS'/dt) = XIq 1  (2)

or that
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r A(S'/Aq) X 1 (3)

Thts latter equation states that the forces are

equal to the corresponding gradients of the entropy in the

non-equiiibrium state, the factor T is introduced for con-r

ver. ierce. If the f,,rces X are now evoressed in terms of

te fluxes qin tme following formt

S r '4 ) b q (4)

Or, ager's pr:: :p. rfads to the result

b : (5)

These relatix.,s intercorrect the various thermodynamic pro-

:esse_ taking place within a thermodynamic system and they

are called the Ongager reciprocal relations, RPfs, (43 to

45) The limitations ot these relations are also discussed

in the dbove references A review of the experimental evidence

tor these reciprocal relat.ors in macroscopic linear relations

Is given ir. Ret [471, The experimental evidence given indi-

cates that the Onsager reciprocal relaticns are satisfied in

2ost applications

I
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In view of Eq. (5), a quadratic function D exists such

that

X b q

where

D (i/2)b q (6)

'he physical significance of the function D follows immediately

from Eq (21 which ?-.presses the xdte of entropy production as

a f r. ctIor, of h I v i.v d,-U fI uies q ,

,dS'/dt) X, q = b q q = 2D

1Th.eretore, tho fljiction D is (1/2)1 times the rate of entropyr

production in tle systemi this function is called the dissipation

function The quadratic form of D expressed by Eq. (6) is then

positive dt .n'to since the rate d eitropy production is always

positive

In addition to expressing the force X as a derivative

of the dissipation fur ction, the entropy of the system is set

equal *o a function V callea the thermal potential buch that
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V = . TrS' = (1/2)a 1 1 O q. (7)

Therefore, Eq. (3) together with Eq (6) can be written in the

following tormi

av = 0 (8)

Thege equatiors are in Lagrangian form for the n state variables

q Tney are avalogous to the Lagrangian equations for a mechanical

system in which V is the potential energy, D is the dissipation

t,_,Pctlon and the qI are the geeralized displqcements. The ex-

tern-i forces acting on the mechanical system in this case are

equal to zero however, the right hand side o& Eq., (3) is not

zero .t external fcrros axe applied A similar result would

be expected by analogy for the thermal system under external

torces However before starting on that case a discussion of

t - , , :care of the f,-uction V will be presented..

Tne signiftctnce of the thermal potential function

V tan be found by wr ,ig the entropy of the entire thermo-

dvnamic system in terms of the entropies of the two subsystems.

That is, +he entropy S' of the total system is

V = ()
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where S is the entropy nf the primary sub-system and S is the

entropy ot the constant teamerature reservoir. During the pro-

cess of reaching the equtlibrium state, heat will flow in general

between the primary system and the reservoir. If this heat flow

from System I to System II is h, then conservation of energy

for System I gives

u -- (10)

where U is the internal energy of System T. At equilibrium

both t and U are erijal to zero If external forces are acting

on System I, Eq (10) will be modified by additional work terms;

this will be treated subsequently,

Since the heat flow into the constant temperature

reservoir ib knowr the entropy SII is found in terms of the

nvt=rnai enerqv of *he primary system, that is,

1I T T
r r

Therefore, from Eqs (7), (9) and (11), it follows that the

thermal potential function V c€n be written in the form

V = TS' = U - T rS (12)



26,

Equation (12) is similar to the form of the Helmholtz free energy

for the System I except for the oresence of the reservoir tempera-

ture Tr, Since the temperature of the primary system is not speci-

tied, and may have any arbitrary distribution, this form has greater

appllcability than the usual free energy. Biot, Ref. [2,7 J, calls

this tunctzon the grneralized free erergy. This form of the-thermal

potential will be used later in the discussion of external forces.

An ;dditional form of the f",,ction V in erms of tem-

perature can altio be found and it has a more convenient form for

physicdl applications than that given above. In this expression

the thermal potent,,4 iA -omsldered as the sum of two partsi

(1l a value obtained when all the state variables are varied

except tht tomperature w.'ich is held fixed anu (2) a value ob-

tainod when the temperature is varied and the remaining state

v.riatles are helo fiv,., Thii Pl itt.ing of the fnnction V

int- two part, can be writion in the torm

v v V (13)

where

V U r S
t r I I

V U -T S
c r c
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These latter eqLati.ons express efich componentof V in terms

ot the correspofldinci values of the internal energies and

en~tropies for isothermal changes, U rand S r and for con-

stant state variable changes, U Cand S That is, V ris

vi" value of t'he thermal potential for an ;.snthermal pro.-

cess at temperature T Iwhile all the other state variables~

are variedi an aralogous statement applies forV

The term V, cat, be evplicitlv expresse d in terms

of tte temperature T r G o* System I This value of V

tor the ertire System is~

V SCU~ T TSldv

'rO So SI-- dv (14)

hfbe ', q Pa 44t's of tht. ".' c *d . btifud Whe sit

state variables except the temperature are neld fixed. The

!irst pArt of thts ewpit-st-on foivo tram tihA internal energy

Iprm onlia~ t % se,-en. te:= el-al to the entrc.py of the system

thq 'kl te9fdl of tte t~eat ji'pJt ove.- ti-,e temperature- The

teq2'3t~or is performed over the volume of System I. Equa-

i~r(14) ;4 also be written in the form

o d d2v
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if 9 <<( that is, small d.-Partujres tf-om the ei-uilibrium

state, V_ can be written~ as

V c 2 T ov 1lb)
r

Therafore, the function V can be written iii the, f orm

r 2 2
r

where V ris the. v~i, e of V f or ar isothermal procti b 0r *1XAmpl1e,

ir thermo-elasticity the value of V w iIl be the -v ilue o f th -s

isothertoal free energy or strain energy integrated o vcr th e v ium a

and c w2li be thie vaiue ot the specific heat. at cornstarst st aln,

It, ti is way, th e ef fecti ot the tempera ture and the rey~aining

3tate va:.iables ce, oe i.dered sepat at I v

Now thvat the s i g i firi of the therma I potSltAii has

beor dis-Lsed, the rtrodlictior of external disturbirt' for~ces

z~a be considered it, order to formulate the comp1*t,; 'Laqr~ng1an

equd t w i, 7'A P t# t r ab!es ,r the mos t go/ferii I -aso

Tnormndvn 4m. Sy, too Pternal Foxco., Arpl td

, 9 iitot ir the t ime h s.to~i 0e of he r.ttj-

vart~e ot t - ,vio~retom were 9,.vsr. fir t h 0."t s

'wj' ctn ~b Eqs 8~ In order to obta:,n the

f-rm of troe quat tc?-5 for the case whore 9%tt'rnal forces ar.,

d,.t~ Q; ew SV tm i, ttc Cnt1r,)Pv f the total *.ystom i%.', Igi

te omprts -I: :r terms of the entropy and tho intornal e1)Lr,9V.

-f System W'.~ 11 parailoi he~ discussir of the tg-

PA~ ;..d 0 tt !ho '.-roal Potont,l fturtior 4 i'owoe.er, i t



this case ;onservatjon of enexq-y will introduce the effect, of

the external for;zes Cn;,e heat reservoir at temperature

r G adjoining the primary System I and let the heat flow from
this reservoilr be equal to h2 Conservation of energy fir System

s thei expressed bv

U h,2(6

f, e n 4 9 J t 0 ~at t low from System 1 to the Syst,om 11,

An Artroiv 1, o. t ,e t ota~ sv st em ai

o ,e re tt,, ert~rpv of tho ro~rvolr at the tempetature

D) "i *,ut a-~ be wr,,tter~ inl te form

rw~oe 1 0~/ d )

't tl olc tha entrop O t the~ tot-.N
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2 r

The last term in this expr~sior' *111 be dlenoted as S 2

where' the term

52 2T r

*wI! be zaled trte enr!:pv 'rnflow to SYstem I Therefore,

trie expressior for tne entropy S' of the total system can be

w tto-i t P t r 2

r r, V0 201

V U T S

.P ~Se ter a. 1t o a goneral.iad work ex-

p .r t,* '. ra,1ia t ormI 6 tom o I the o or nVingoq *U-

Otnrq. #) .a Z.Vstom The quart ity S 2 is the toree

*- ;t.,jr *ra 0 -ht lrttgate d.sp!4 emot c. wilar vwpres-

%,ostor t',v work~ q .ar'ttt m f 41 tmrval vitem .n terms )f

pry% ,.fl tor -vsv cocnt~~~qad,*t.-,, * , zsr~ be doter-

v, .?Ioc inoe of t. 0i odd t io~ ai :q~ ae%- t ov t i nod "n Pet

v,.ew 'tn , to wrte I'q I I" n i qonrald
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r S' - V * Qlq,

.wnere Q is the generalized force conjugate to the qeneralized

displacement q1. For example, the generalized force conjugate

to the temperature, as outlineu above, is the entropy flow,

Onsager's relations can be applied to the complete

system consisting of the primary system, the heat reservoir at

the equilibrium teeperaure Tr and the.energy restrvo'irs equi-

valent to the applied external force., This application is

similar to the :ase where no applied forres are rting on the

system., Ir v:ew of Eqs (4, and (6), the equations for the

state var.ables take the form

Aq. .

o~r

q Iq

Equatiop arf 4r e goveorv-g equations for tho state

varables qt of the therma) sistem These equations arog to

repeat the statrments made *bove, similar to the equations of

a Mechaorcal svstea in wtichn V is tho potential tnergy, D is

t?,e dissipat -r functior and the I. are now the external tr-

ces act *g one system Ar additional way of riting Eqs" (18) is

-_(..L ..
Aql .q, 2 dt

&PI0, #vprtsse ;"v torces, both e ~teaa an* Intertal, ir tern

ot t4e entropV prodvctior ir the Systeu Adoitioral propettioe
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of Eqs, (8) are also dizcussed in Refs, [2, 39 73 but these

will not be discussed here, Instead, the equivalence of the

equations to a variational principle will be shown with a view

toward obtaining a variational principle for heat conduction

analysis,

The function D can be written in the following

operatinal form 1<

D -(1/2) pb j q1q

where

p i/dt

1! t.e d.sipjtion flunction is written in this form, iqs. (18)

car be writ t er ir t'te variatioral form

7"e vtriition is with respect to the generalized coordinaete

q1 int' T@ ,ooeretor p ts treated as a constatt when calcu-

jst"'q the vaV 40t1o 'his form of the variational principle

is .onvenjprt ir some cases$ but the variational principle can

Le.at~e;s&d also nV, the tasi% o' the definitions of the

4ISSptior tuvrt;or *Pd thermal potential, Pof t4) This

*,Il ke tl metlod tot tho determination of the form of the

$-iat~e a. prenctpie it, heat cond ictior aralyti% to bo
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Hei Flow

The Lagrangian equatio,,s obtained above are equiva.-

lent to the variational principle o~ven by Eq. (19), Instead

of contin~uing ths study of a thermodynami. .ystea in complete

generality, the paxtL cular case for heat flow alone will be

studied Tt is, the main ,ontterr ws.1 be with the thermal

tield 0 Ir particula~r, the expressions for the dissipation

furztor and ttermal poten'til w.ill be iotnd.

'tie !,@erma 1 vtert.a! for this restricted cose fol-

lQOS ,Mvodlatviy trom E,. ills. 3-1is

tn o ovorssq# the tet ot vt .tipvf yr o-

1% ;i qth~f s9t' of the, thersol ayaff*

!t 41, be dc, t- App Iv; 4, r f 1.r t and %*Con4law I Of tnai-L

#tv"9' ~ ~ a vv*t. e rt law it
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where U ib the internal energy of the system and H is the heat

flux vector fieldg that is, the heat flow per unit time. The

second law gives

T dS = = - d1v H (20)dt dt

whore T .s the Lemperature and S is the entropy. Equation (20)

car be written .n the form

d_S div (H/T) = - (H/'T ) VT (21)

The ieft ha-d side of this equation is interpreted as the change

-r ertropy of a unit volume plus the entropy flow across the sur-

+3,e of this volume Thv ret change in entropy for the unit volume

:s thpn giver, by the r.ght hand side ot Eq- (21); this term is the

entropv prdurc.tinn in the volJme, Furthermore if the thermal force,

'VT, ,s linealrly related to the flux field such that

H VT

tne ertropy produc6tion term is proportional to the square of

the heat flux field Tne minu. igr -,- the abov4 oypresnton

arises sirce the heat flow muct be opposite to the temperature
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gradient Therefore, the disspation tunction can be expressed

in terms of the squire of the ne3t 'lux tield

The remaining term aiscussed with reference to the

gereral thermodynamic tystem was tre generalized force Q1 "

Th-s fnr.p, in tVe case o A purely thermal field, is immediately

-own from tne previous discussions and it is equal to the heat

1.3w felo a.d~ed bv ' Ihe factor T used above can be drop-r r

ped since it is :ommo, to all terms in Eqs '18)

The t'ctior in tne l.agrangian aquations can now

he eypresse" _r terms of the temperature fielo and the time

rate of chanqe of tte heat flow field Once so expressedg as

wab do-e in the above paragraphA, the discubsion for the general

tr er,odv.am.: systpm .rdA.dtes tne form of a variational principle.

wr-: 5 "; app zabe to d thermal system, in particular, to the

, .,, .. -. .... -- 7"'b variational prin-

-pe was ,e- t'v , Refs 5, 6 , ard it was shown to

be eqt.7val-r ' to tie heat ^.ondu:t:or% equatl.o" Oncc this equi

v~ience was estab.'shed, the heat flow field related to the ter-

pe:a.re t1.eld hy corservatior oi enrrgy was expressed in terms

of generalized co.3rdir~tes The variational principle was then

shown to lead to Lagrangian equations for the generalized co-

ordnates of tie temp-rature field In this %ay the motivation

behird the heat conduction variational principle as being related



to tho Lagrangian representaticn of a general thermodynamic

system is shown

Further discussions o~f the principle~ for heat icor-

duction were given~ in Ref, [13] together with a number of ap-

plications. A further application uf the principle vwillbe

giver. .n the nr.xt section,
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SECTION V. THE HEATING OF SLABS EXPOSED T,3 TIME-DhPENDENT
HEAT iLU)ES

The problem of the determination o' the temperature

distribution in one-dimersional slabs heated bv arbitrary timTe-

dependent 'eat f luxes has received much attention in the last

few years. This interest has been ergendered )y problems aris-

1ry n the design of structural comhponents tor re-entry vehi.I,

In these design sit-uatior~, the .1face temperature iz small

c mp a r e,'to the stigr~ation temperatute ut th.e air and thus c'..

be rele, td in the u~sual aerodynamic Opating rate This as-

sumpti ;n then reduces t~e neatirng rate at the s'urf ane to an

a. itr ?y i un rt~o 'f t m e

Tre exact solj.i~tn t: t'.e problem of the h~ating

011 f inlttp slabs ~ C1~ m.eI-i I nite bodies by an .irLitrjrV

time d4. pordQ@\,t kltt R~et [48 to 50), and this

*I tution ~a re *'I eed' fntrsc! ' or a anr-

0 r*to% by:Yiv0 ;jio ,in Re f wh i tt'h.*Qt P'ie t 1 t

0'r~ *)t~ I~ e S 0, ~ -a [' I Re fh !5 i e:! S

am a h# P~j W*r. s tj 91 t d Pof: Ij4

*7Yi~~~.w.' 4t~~g *M~e fy S r..- C~1
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ar approximate -ethod of solutiorn is useful for obtaining the

required temperatu-e , -stribtionA !n an expedient way.

'he method to be employed here is Biot's variational

pr-rciple for heat conduction Tnis principl and its appli-

catiop to problems witt, heat f'u, boundary conditions was dis-

u.3sed .r detail ir Ret [133 7he present discussion of the

prir,:iple appled to the problem of the heating of slabs with

'.m.e *Jeperdet 'at flives wi.l -e based upon Ref. [13]. It

*11 b- ass-meu :-at the reader Ls tamiliar with the method

o! soiut:o: oi,; ned in Ref- (13].

"he problmo will te formulated for an arbitrary heat

*.,pu. and ther, oarttcular:zed to the case of a triangular heat

p,,., As %a% d:sc~ssea ir Ref £13), the formulation of the

proo.em for the heating o slabs proceeds in two phases.

€=¢. if r t e SolId

"Ie f r;t phase of heating coxiespo,',ds to the semi-

-*e portior 'rnis phase ends when the penetr-tion depth

s equal to the slab t,-ikness The temperature distribution

:z, as.%i ied to paraboli., rg I .ard expressed in the form

) %: q ' q 2

1 q 2

.- ere ,4 , tIh surface temperature anid q2s the penetrationi2
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depth- The generalized coordinate q2 is selected s the in-

dependent coordinate related to q, through the expression for

overall energy balance, Ref., 13]. Evaluation of the appropriate

derivativ.es for the thermal potential and disspation function,

together with the thermal force and surface heat flux leads to

the ollowing exprissions;

2/1V/lq 2  2

D/k) 11 q 2 [/a 1/42) 1 q 2 + (13/315)q,4 2]

-
2

cn = c/3) qq I qjq2 )

Intzoductiop of the flux cot ition

wne:c .4( i s a J mpn onlesc function of times and the par&-

at/b
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will reduce the governing variational equation and flux condi-

tion to the following dimensionless equationst

lSj2+ 26$* = 147$ .(22)

d~*.dr 3q(r) (23)

Equation (23) can be integrated immediately for the initial

conditions 0, at T 0 and the function 4 eliminated

between Eqs. (22) and (23). Tho resulting equation is

2lln 5, 9a)g-r (0)] 14? (24)

where

arid g(0, is tne ialut of g at T z 0. If the substltutlonz

2

F (')9q~/(~ (0) (26)
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are made, Eq. (24) will reduce t the equation

+ (30/11)zF(-c) = (294/11) (27)

The solution to Eq. (27) under the initial condition z = 0 at

T C=0 is

z 2 b Sexp(a SF(-)d-rd/exp(aSF(t)d-r (28)

where a - (30/11) and b = (294/11).

This solution gives the penetration depth as a function

of time for arhitrary heating rites. Once I = 1(-) is found,

the surface temperature history can be found from Eq. (23).

The result can be written in the form

*(T) = 3[g(T) - g(O)3/w (29)

If the heating rate Is buch that 1 (0) equals zero,
for exampieg 4 polynomlil function, then C4. (28) reduce% to

the torm

0
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Tn this case the rolutions for the penet.UdiU; depth and surface

temperature, Eqs. (28) and (29), assume a simpler form. A p.-rti-

cular form of interest for the heat Input is the casc w-here the

heat input is of the form

n~

that is,- a heat flux dependent upon a power of the time. Evalua-

2tion of 11 from Eq. (30) yields

=294,-/41 + 30n (31)

This"-result shows that the penetration depth is independent of

the constant C in the heat input and varies as the square root

of time. The tactlor of proportionality Is dependent on the pnwer

of thi tims uf toehat flux. tquation (31) is an interesting

rorult that comnpat-.s with the result obtained by bic-t -Ln Rtt. C

ln thi-, reference, iot found that If the surface

tempe:jiv.1ze vsritd as the penetration depth reletien is

These twi ros,4tsEqs. (31) and (U. how tha4t th e en tr at i n

depth varlof. iis the -'2u,;re root tims 'ior twu .&%out ,-urfdc'4
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temperature dependent on a powertof time and heat fluy' dependent

on a power of timt.

If n 0 in Eq. (31), that is, a constant heat flux

and n=(1/2) in Eq. -3)also a constant flux% the penetration

depth relation is

r 294Tr/41

This rebult -or constant heat flux was alvs, noted in Ref. £13].

if n 1, a 1inea&i" hobat input

(33)

where T 1 equals a constant, the penetration depth reolation is

12 4 7 (34)

The reorreispondi.ng P-lowfce torptratu're history frpm Eq., (29) -is

~(~) (3,'r 1)(4/29.)1/a 3/2 -

U'kail (33) corresponds t6 the f Ir-s. t ie 9 o triangular heat

pulse and Eq%, (34). and: o3 re the corre*spondinq ;poneiirdti% n

ribptt and surface tempe'rature !istor-Aos Uheh ~ I h*
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penetration depth equals the slab th;kit., b. The penetration

time from Eq. (34) is

T= 71/294 (36)

and the surface temperature at the penetration time is

p (3/2r I)(-T ) (37)

Equation (31" gives the surface temperature at the penv ration

time which is to oe used for the i,,itial condition for phase 2,

the finite slob.

Finite Slab

The temperaturo distributiorn for the second phase

corroponding to the finite slab is shown in Fig. I and is

written in the !orm

If the analysis given in Ref. C13] for finite slah% Is applied

together with thA parametexi
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= t/b
2

"1,3 q 1 3 k/hb

the variational equation and flux condition become

101 .I+ 3293 = 84(i -V3)

91 1 293 = 3q(-) (38)

The flux equations the second of Eqs. (38)2 can be

integratedl and the f~nction 4 eliminated between the equa-

tions to find

+ 1 -;e.r + 21[((T) -9(.r )J + ,* (39)

E4uatln (39) car, be inteqrated t'. yielo

J' '7 xIr/x(2, (40)

This result give% theL'lrfoce t@mporature as a function of time

for an arbitrary heat Aput. The rear temperature history can

be foupJ- lmaedi4tely from the flux conditbI.. If the flux Is a
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Polynomials tor example, Eq. (40) ciin be integrated in closed

form for the surface temperature.

In summary the' the b~*sic equations for an arbitrary

heat input are given by Eqs. (28) and (29) for the semi-infinite

solid and by Eq. (40) for the finite solid. These equations

sho%. that the solutions for an arbitrary heat input can be ob-

tained in closed form for 'many cases. An example, of the

use of this method will be indicated to show how the surface

tomperaturo hist.nries are fo~und,

The example to be treated ii the heatinq of a fin~ite

slab by a triangular heat pulse. This example was. treated-in

Triangular Heat Pulse

The heat pulso to be considered is

: L~ 2 (41)

The ifaetemperatures of a finite slab of thicknoss 6 are

required fort 12. 1he results for the sooki-ilnt portion

are gi46- by Eq.. (34) to (37) f or -r I . The penetration

t iftteljrp Eq. (36; Is-
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71/2'4

This time corresponds to the starting time for the second phase.

Equation (39) in this case reduces to

2

The solutL"' t',

33 63

'roe which the ,,n, .surface temperature is foun,~

3 2 6 2

hl~t~rle* The*e splutto' *pply unt& -l at whicb AtiO

trio flu% r.or iaton ia #% a 4ilferent form fto Eq, (41). At

t t t 9e



q) 2 r

and the govern-.nq equatlGs, Eqs (38), are aqain integratec

for tbe x ata1 covdttions correspondiog to -r = I These c-n-

ditior- are evaluated teom Eqs f42) and (43) at c 1. Evalua-

t:on leads to the values

z.' = 81V46

" 0 34127

to u used a- ,.e t aI corl. t on 5 Solution oi Eqs. (38)

r i 'r thes irt a cor'u t o v ields

-3 T , r 13.1t46,,D[-21(-. .2l (44\.

t . 44 o 4, e " " f act tompord tb 4Yf ttd (

IIYIP43) q



..nner sLrface temperatute ,)f r,: r-L equal to zero until V

pernetrat~on time

2tog~' ~ e~it 1 r thfrom Re f '54] It ser

from t .S ±iqure tr -j trP present methoc i accurat~e as an' ap -

p ro x': mte Metr':A ot Olkltiof-, f0 tthe cast?~ a triang~ular hea:

pul-. e
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SECTION VI. CONCLUDING REMARKS

A disciission and dpplication oF Biot's variational

principle for heat condiction was presentod In a previous

paper, Ref. [13] This reference contained a discusior, of

the princip1e from a mathematical viewpoint togather with a

discussion of tne method of solution using the principle

A number of different one-dimeu*onal heat conduction problems

were treated to show the applicability of the method.

In the present pape:, the literature discussing

Biot's variational principle is reviewedg in addition to

other variational pr:nciples and approximate methods of solu-

tion for heat conduction problems. The thermodynamic founda-

tions of the variational principle are reviewed in Section IV

showing that the variational principle for heat conduction has

its basis in the physical concepts used in irreversible ther-

modynamics. The latter oart of Section IV then shows how the

form of the principle'for ,eat conducticn follows from the

general formulation

An application of the method employing the ideas

given in Ref. i3) is presented in, Section V. This application

involves the heating of nalhs expospd to time-dependent heat

fluxes.. For this type of heat flux, the present method of solu-

tion admits, in many cases, a closed form solution for the sur-

face temperaLures The case of a triangular heat pulse is thor

presented In detail to show how the method is applied for pro-

blems of this type
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