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THE ESTIMATION OF THE ERROR RESULTING FROM NUMERICAL INTEGRATION OF 
THE EQUATIONS OF CELESTIAL MECHANICS 

V. F. Myachin 

This article presents the result of the application of a general 
theory of estimation of the numerical integration error of differen- 
tial equations, proposed by Professor s. |f. Lozinsky, to equations 
of undisturbed motion of celestial mechanics.  In applying the theory, 
consideration was given to the random character of the round-off 
error.  Here, in particular, it is shown that the new theory gives 
qualitative confirmation of the well-known result of Brouwer, which 
asserts that after a sufficiently large number, k , of integration 
steps the error in the coordinates of elliptic motion has the order 

of growth **. 

Introduction 

Let us consider a system of equations of disturbed motion: 

£ = -*'£+-/?„ 
(A) 

r» = *«+!» + «•, 

As is generally known, the most prevalent method of approximating 

the solution of such equations is by numerical integration; in addi- 

tion it is known that the application of any formula  or numerical 

integration inevitably leads to an accumulation of error in the com- 

puted approximate solution, which arises in two ways: 

1) use in the integration formulas of a finite number of terms; 

2) errors in initial conditions and round-off in each step of 

integration. 



At the present time we do not have available strict, practically 

acceptable estimates of the error of numerical integration of differ- 

ential equations; however, there exist so-called rough estimates, 

which were obtained by rough reasoning. 

Thus, Newcomb (1898) regarded the error in the numerical integra- 

tion of any differential equation as the result of the sum of the 

round-off errors at each step (by analogy with the error of approxi- 

mate computation of a definite integral); counting these errors as 

independent random variables (in the sense of the theory of proba- 

bility), he came to the conclusion that the accumulation of error 
JL 

after k  steps of numerical integration is of the order of k*  for 

equations of the second order and kl  for equations of the first order. 

Applying this assertion to the estimation of the accumulation of 

round-off errors in the method of special perturbations, one can draw 

a conclusion about the advantage of obtaining the perturbations in' 

the elements compared with their computation by the method of Cowell 

or Encke (i.e., in the coordinates).  In the first case the perturba- 

tions are obtained as a result of single integration for all elements 

except the mean longitude, which requires double integration, and, 

consequently, only in this element is there a serious accumulation of 

error.  If, however, the perturbations are computed by the method of 

Cowell or Encke, then for every coordinate there will be an equation 

of the second order and the expected error in each coordinate will be 

of the order of k *. 

Brouwer (1937), however, showed that this conclusion is incorrect 

and that for elliptic motion the accumulation of errors in the 

coordinates is equivalent to an error in mean longitude proportional 

to k* , and to errors in the other elements proportional to k*  . 



Consequently, for circular motion, where the mean motion is a con- 

stant quantity, the error in the coordinates by the integration 

method of Cowell or Encke is proportional to kl  .  In this connection 

Drouwer first noticed the essential difference between the approxi- 

mate computation of a definite integral and the numerical integration 

of differential equations; in the latter case the computation of each 

tabular value uses the result of a prior integration, so that the 

error in this case cannot possibly be considered as the result of 

simple summation of errors at each step. 

Still, because of loose reasoning, the result of Brouwer on the 

quantitative side appears rough:  in particular, it does not reflect 

the experimentally known fact that the error has an oscillatory 

character; moreover, at a sufficiently large number of steps of 

integration the formulas give an underestimate, i.e., the true error 

exceeds prediction. 

At a later time Professor S. M. Lozinsky proposed a number of 

general theorems for estimating the error in numerical integration 

of systems of differential equations. 

The present paper presents the result of the application to 

System (A) of Lozinsky's so-called "linearized estimate"1, which was 

somewhat modified and adapted in the interest of our problem.  It is 

shown that if, following Newcomb and Brouwer, one considers the 

round-off errors as independent random variables, then for the accumu- 

lation of error in the coordinates of elliptic motion the indicated 
3^ 

estimate gives the order of k~ ,    and for circular motion the order 

of *s . 

*At the present time this estimate in in press.  By permission of the 
author we borrowed it from a course of lectures "Approximate Solu- 
tion of Differential Equations-", read by S. M. Lozinsky at Leningrad 
University in 1955-1957. 



This method permits one to take account not only of the influence 

of round-off errors on the error in the coordinates, but also the effects 

produced by errors in the initial conditions and by the discard of the 

remainder term in the integration formulas.  Moreover, it is possible 

to keep track of the variation of the error separately in each coordi- 

nate. 

The exposition is based upon an example of Cowell's method. 

1.  A FEW GENERAL STATEMENTS ABOUT MATRICES AND SYSTEMS OF LINEAR 
DIFFERENTIAL EQUATIONS 

Let there be given the rectangular matrix: 

/4 = 

alll   aJ2t   •   •    •!   Oin 

a21>   a22l   •    •    •»   Q2» 

<*m\t Omtt   ■   •   M Omn 

We shall use the following notation: 

A matrix consisting of one column is called a vector.  Let * be 

a vector with components x^l\  JC<*), ..., *<"). 

We shall denote: 

x m {*<", *<«>,..., JC("))J xVwm(x)V. 

By |je| we shall denote a vector, defined by the equation 

Finally, we introduce the norm of the vector x,   denoted by |*| 

and defined by the equation 

U| = max|<Jt)<U 



A vector will be considered as a special case of a matrix. 

For a given matrix A  we denote by A the matrix defined by the 

equation 

(A)„m{A)M 

it is called the transpose. 

The transpose of a vector is a matrix consisting of one row: 

J«■!*«, *»;.... *<">i. 

A matrix having the same number of rows and columns is called a 

square matrix.  The elements [A)H   of a square matrix A  form the 

principal diagonal. 

Operations upon matrices: 

1. Addition "of two matrices.  By definition: 

[A + B)tj = (A)lJ + (B)iJ. 

2. Multiplication of a matrix A by a number X . By definition: 

{\A)tj^HA)„. 

3. Matrix multiplication.  Let a matrix A  have n  columns, and a 

matrix B have n  rows; then by definition: 

[AmVm 2{A)tm{B)mJ. 

If the number of columns of A  is not equal to the number of rows 

of B,   then the product AB is  not defined.  Matrix multiplication 

possesses the associative property, and multiplication and addition 

possess the distributive property: 

(AB)C = A{BC)t 

C(A+ B)D = CAD -4- CBD, 



if all indicated products are defined. 

The operation of matrix multiplication, generally speaking, does 

not have the commutative property: 

AB¥°BA. 

For example, for the vector x s; {*<'>, xm,  .... x(">} and its 

transpose X  we have: 

«^^O' + ^t .1.1 *«*, 

but 

xx 
xw\ xwxm jvjfln 
xiW\ xw\ .... x<V 

A(", .vC'jct2) x<">8 

(1) 

4. The transpose of the product of two matrices: 

MB)« A4. (2) 

5. Matrix differentiation.     Let   A(t) be a matrix representing a 

function of the  scalar argument   t;   then by definition: 

\A{t)),j     ±-{A(t))t1. 

6.  Integration.  By definition: 

i | 

f^(/')rf/'   \{A{f))tjdf. 

Henceforth, we will speak only of square matrices.  A matrix whose 

elements are all zero is called null and is denoted by 0.  A matrix 

whose elements on the principal diagonal are equal to unity, and all 

the rest are zero, is called a unit matrix and denoted by /. 

1,0 0 

, 0, 1, .... 0 

0,0 1 

6 



For any matrix A  it ia true that 

AI-IA--A. 

The matrix S,  possessing the property 

is called orthogonal. 

Consider now the system of linear differential equations 

Introducing the vector 

9     I«/01. IP, ■ ■., .•/"»> 

and the matrix 

we write this system in the form 

P'P(t)S- (3) 

We introduce the matrices of order n Lf(t6, (),  V(/„ t),    defined 

by the conditions: 

o=p(t)U, u(t9,t0)=i, {/(*„ 0=0 
v=p{t)v, v(t0, 0=0,  ^„/,)=/, W 

which are called respectively the first and second fundamental solu- 

tions of System (3). The columns of these matrices represent the 2n 

linear independent solutions of System (3). 



t 

Knowing the fundamental solutions of System (3), one can solve the 

nonhomogeneous problem: 

Its solution has the form 

t 

There occurs the following dependence between the fundamental 

solutions: 

V{tott) = \u(l,t)df. 
U 

or 

U(t„,t) = -^V{t»t). (6) 

For the proof of these relations it is sufficient that the expres- 

sion in the right member of the first equation satisfies the second 

group of conditions (4). 

2.  THE REMAINDER TERM OF COWELL'S METHOD 

Let us consider the vector function 

C(z) = {#'>(*), GV(z) #*>(*)} 

of the scalar argument z  and introduce for it the following differ- 

ences : 

CT = G(1)-G(0), C^'^C^-CV Gf-CP-Gf», .M 

'   "'   ' (7) 

GP-T (C^i *flf) U= I, 3, 5...). 

8 



We state the interpolation formula of Sterling 

»»4-1 

where 

C(z) = G(0K jg A,{*)(ty-*-Rt (e) 

A    ' >—«'(«'-»(*'-4) ... !»■ — (/ —!)■! 
AtJ{z)= ^ , 

M^W-V-^   (/-i, 2,...). 

If the function G(z)  has a derivative of the order 2v-i-3, then 

the remainder term R can be written in the form 

(9) 

Remark.  For each scalar function entered into the expression 
<?(«). the quantities c, take, generally speaking, different values. 

We consider now the system of differential equations: 

F> = f<*>(/, *W, .... *(•>) (/=l, 2, ... n). 

Introducing the vectors 

*s{*<•), j«« x<"»), /,= (F<«>, f« FC>), 

we write the system in the form 

I =-F(t, *). (io) 

We denote by x{t)   a solution of System (10) and by A the step of 

the numerical integration, and we put for brevity 

/"(/, je (/))-/(/), t„+kh~tk, 



Then successive integration of System (10) gives 

f 

(11) 

^«^-A*« T JA f{f)dt"^ k\(tk+l-nf(?)dt'=h*\(\-t)f(tt+hz)dx. 
<*   <* '* ° 

Writing an analogous relation for the points   **-n U   and com- 

bining this with Equation   (ll),   we obtain finally 

i 

tfxk = hiJ\(l-z)G(z)dz, (12) 

where it is assumed 

G(z)=f(tk + hz)+f(h-hz). (13) 

We introduce now for the function /(/) the differences, analogous 

to (7): 

A -T(/r.f*Cf)  0=1,3,5...) 

Then, noticing that, according to (13), 

and substituting (8) in (12), we obtain 

»Jb^ptyf-JgH*/?***], (14) 

10 



where 

,m2U\-g)A,(M)dt       0=1. 2,...). (15) 

If the  function   f(t)  has a continuous derivative of order 2v-+-3, 

l,   according to   (9),   the remainder term    (ft   can be presented  in the 

form 

v*=ya«.+2    355*1      Hya»»+s    3557R    • ^ 

ICI<*-M. 

To be convinced of this, we introduce the numbers 

mt, Att,  i = l, 2, ... n, representing respectively the minimum and 

maximum  (2v-«-3)th derivative of the function G**(«)  in the interval 

[_v_l, v-4-11: 

™«< £ä7F3 <A/,. 

Further, noticing that for 0<z<Jl the factor (\ — z)AM-i(z) 

represents a quantity of constant sign (we say, positive), we multi- 

ply it by the inequality and integrate 

J (1 — x) Afc+a W J3Si*t d* 
m,<- j <Af<f 

Hence, by the known property of continuous functions, we prove 

the existence of a point C in the interval [—»—1, »-«-1], such 

that 

1 

J«- 
t rf«»+3G<ä)(C) 

1 
2 "»»+» 

J,i,±a     ' 

11 



Integration of the first term from (9) is carried out analogously. 

For sufficiently small h  expression (16) can be transformed to 

the form 

Equation (14) presents Cowell's method in the difference form. 

Corresponding to it is the following sum method 

Xt = A' [/fr-«> -+- ajk + g «,/?>-'> + ^ j , (17) 

where 

We  cite   a few  values  of the coefficients   (15) 

"4 

1 
12 

as 
7 

" 180 

1 
~ 240 H 

37 
5040 

31 
60480 °7 

199 
~ 129600 

289 1 
"8 3628800    "* 3024 

3.     R0UND-0FF ERRORS AND THE ERROR  IN COWELL'S METHOD 

If  in  the precise   formulas   (14),    (17)   the   remainder  terms   Qk, 4t> 

are omitted,   if  for all je*   their approximate  values  are   substituted, 

and   if the necessary  round-off  is  effected,   then  we  obtain  Cowell's 

difference method  and   sum method,   respectively. 

We  shall  assume  that  System   (10)   with the   initial  conditions 

x(t0)=xe,    * (/-,) = *-, (18) 

12 
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i8 integrated by the sum method with the step A ' (within the domain 

where the sought for solution exists), and as a result of the integra- 

tion we obtain the table of values 

..., X— t, Ä—J, XQ, X\,  .. •» Xk,  ..., vl9; 

at the corresponding times 

. • »# '-»» '—ii 'o> 'li • • ■• '*> • •'» 

so that 

Xk^x{U)^Xk. 

We  introduce the  quantity   ttt   defined by the  equation 

t„ m VXk - $* - i a^V)       {k = 0, 1, ...), (20) 

where  it  is  assumed 

$ (t, x) m hlF{t, x), ** = $ (tkXt),   W m A»<5»,  etc. 

The quantity tt is called the error of the sum method. 

If System (10) is integrated by the difference method, then the 

quantity t», which is defined by Equation (<20), is called the error 

of the difference method. 

The error arises mainly due to round-off errors at each step of 

the numerical integration. 

For investigation of the question of calculation of the error we 

limit ourselves to a very simple case of Formula (17) : 

*-*[#-**-£/•-*-<]' (2D 

If one digresses from round-off errors, then the computations by 

the method, corresponding to the precise equation (21), can be pre- 

sented in the form of the following algorithm. 

13 



1. The approximation of the values of the initial conditions (18). 

Xt, X-t  are given and we enter them in the table of values (19) ; we 

compute $0, <!>_,, and also the quantities 

2. From the known <ß0, «fL, we extrapolate (we predict) the value 

of '!>, 0; we compute  <P<—■>  by the formula 

and we assume 

3.  We compute 

and we assume 

X,   . = $(-«) -I- -1 fP 

•«„ *,..) = *i. 

" 1.1 — i    12  1.1 

4.  We compute 

and we form the difference 

if it is found that 

HM<*. 

14 



where X is some preassigned number, then we finish this iteration 

process at the first step of integration and enter the value of XitX 

in the table of values (19) in place of X\.     If, however, the above 

inequality is not satisfied, then, repeating the operations analo- 

gous to those set forth in 3, we construct the following approxima- 

tions: 

until the inequality is satisfied 

l*ffc, *u»-t)-»<'t,*t.i>l-&*tKM 

then we enter the vector Xui   in the table of values (19) in place 

of Xx 

5.  if in the table of values (19) is already written all Xj  up to 

j=k — \   inclusive, then for computing Xt we find the value of $jf"!), 

defined by the equations 

*r*m8r«+k0-?+ zik-j)^ (22) 

or 

A'« = V„ (22») 

we extrapolate the value of <I>t 0 and construct the following 

approximations by the formulas 

*».„..-$('*. Xu.i),   / = 0, 1, ... 

is satisfied. 

(23) 

The iterations are continued until the inequality 

|| *». i-*»•«-. II s||X,||<*. (33') 

15 



Thus, if all X*  from (19) arc obtained in / approximations on 

the k th step, that is if 

*,=*»,,   (k=\,  2, ...), 

then it is necessary for the condition (23') to be fulfilled. 

The quantity lk   is called the error of method ('21). 

Let us suppose now, that all <!>*, (> Ot  are computed with the 

errors p*,/. p», subject to the inequalities 

HMKP      (k>-% 

where   ft   is   a   fixed  number.     This  generates   in  the   quantities   •T^-"4' 

the errors   p^,    which,   according  to   (22)   arid   (22'),   satisfy  the   rela- 

tions 

&& = h      (i>2). (24) 

Let  us   suppose   further,   that   in   the   computation  of  Xk, i,   Xt 

round-off  errors   n», j, p.», are   introduced,    satisfying the   inequalities 

lM<t»     (*>i). 

where  |i  is  a   fixed number   (for  example,    if  all   A'», i,   Xt are   computed  to 

s   decimal places,   then  it   follows that  u — — 10     . 

With  regard   for  the   errors   introduced   above,   Kquation   (23)    and   the 

condition   (23')   must be written   in   the   form 

I who re 

JM^^IT*-« P* ■• r2"V' -• i r.(^<K/)+ i*M (t>l); (25) 

or.    (£*>,,)       error in   (^jjj 

|| 1'*. i - «W, M-l   I   p*.i — p». 1+1 |l ---||X»|| .<)■ (£>1). (2RI1 

]'• 



Proceeding now to the calculation of the error 

we introduce the auxiliary quantity 

then, according to (25) and (25')» we find 

**=Pi ■*■er- (ii *»)■+■ t*■*h (**•' ~~ **•,+l) ■■ P» "•" ii fc •*• ■*■er- (re)"^ "•" 

Hence, observing that 

and applying the operator A2 to both members of the above equation» 

with the aid of (24) we find finally 

t, = p* H- I *«(>;-♦- er. (n) ** ■+- fa* ■*" ß A%  (* > 2),        (26) 

where it is assumed 

Remark.  If one makes use of the definition of It 1 -md intro- 
duces also 

~t 

then Equation   (*)   for* = 0, —1 gives 

Hence,   according to   (**)   it   is  easy to  show that  Formula   (26)   can 
be  retained for* = 0. 1,    if P0i P-i    ai 6   replaced  by the  quantities 
Poi P-n    and likewise it  ir  assumed   tnat 

and   in  the   expression er.    mM***  **   '^s  considered  that 

*o = *-i = 0. 

17 



If the integration of System (10) is carried out by the difference 

method corresponding to the exact formula 

A»JII = A»(A-4-^A«/,-I-^), 

then, repeating all of the above discussion with the corresponding 

changes, we come to the following expression fo1" the error %t 

where by p,'t are meant the round-off errors for A1^», subject to the 

condition 

and all remaining quantities have the previous meaning. 

Later we will make use of the expressions (26) and ('26') in place 

of the approximate values for the error tkl   defined by Equation ('20). 

Remark.  The quantities p* were defined as errors arising from the 
computation of the vectors $t% if in the latter the components of the 
vectors X*  are considered as precise numbers.  Following Newcomb and 
Brouwer, we will consider these errors as independent round-off errors. 

4.  THE LINEARIZED ERROR ESTIMATE OF COWELL'S METHOD 

Let us suppose that the times ..., '-j, f-i, f0, tu  ..., /*, ... 

correspond to the quantities (19) obtained by numerical integration 

of System (10) with the initial conditions (18) by Cowell's method. 

This means that these quantities satisfy the following relations: 

A%=*[/;+ £ av/y-» ] -* %    (k > o), (27) 

where   it   is   assumed 

FtmFib, Xk),       F\»^*Fk,   etc. 

18 
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and by   **   is meant  the error which  is  computed by Formula   (26)   or 

('26'). 

Designating by   x(t)   the exact  solution of System  (lO)   with the 

initial conditions   (18)   and assuming x(h)^Xt,   we  introduce  the 

following definitions: 

a) the error of approximation of the  solution  X* (or the error of 

Cowell's method) 

jr,-*«*«|t?\ #\ ••-, «81» (so) 

b) the  Jacobian   /(/, x)      of System   (10) 

....       M    _dF(')(t, jr<H. -rC) «W 

(here X  represents the set of the independent coordinates); 

c) the Jacobian in the unknown exact solution 

J(t)^J(t, X(t)); 

d) finally, we obtain 

l 

0 

[The quantities Q* defined only for the condition that the segments 

I», connecting points {/», *»)and ('»» X»)  of the(«-»-l) dimensional 

space, are contained in the region of definition of the solution 

Subtracting (14) from (27) and using the obvious identity 

A»—A—QA. 

we find 

T? = QA + 2 *,/" (QA) * -> - *  <* > 0),      (29) 
•-> 

19 



where A" is the central difference operator of order 2/. 

Equation (29) is called the equation of errors. 

In order to simplify the problem, we replace thiB equation by 

the following approximation: 

Q=M)*>+b-hl (29') 

Equation ('29') is called the linearized equation of errors 

(Lozinsky). 

Let us introduce the fundamental solutions U(t9, t), V(t0, t) of 

the system t)=J(t)g,   defined by the conditions of type (4).  Then 

the general solution of Equation (29') by analogy with (5) can be 

written approximately in the form 

l»ml»,t-«-*k.t-«-fc.,  (*>1), (30) 

where it is assumed 

h*^U(t0, titt+Z&fiMtf,-«_,), (31) 
k-l 

5k,,= Vi/(/iB>/k)^( 02) 
m=0 

»*.f«-2V(l„, tk)qmh. (33) 
m = 0 

Every estimate according to the absolute value of the right 

member of Equation (30) is called the linearized error estimate of 

method (14) or (17). 

The quantity  H^t represents tho error created by the errors 

in the initial conditions (18) and is called the error of the ini- 

tial displacement. 

20 



The  quantity   ?»,,   la  the  reBult of round-off at each step   (and 

also   is  due  to the  error of the   integration method)   and   is  called the 

round-off error. 

Finally,   the  quantity    S*,f   is   the  result  of omitting the remainder 

term  in  the   integration  formulas   (14)   anü   ('17)   and ie called the quad- 

rature error. 

Substituting   (16')   in   (3?)   and  approximating  the  sum by  an  inte- 

gral,   we  find the estimate  for the  quadrature error 

-i    a 

t. 054) 

or disregarding, for sufficiently small h ,  the second term of (16') 

»fcf* W«JV(E, «qgp.dt (34' 

Usually in practice the quantities *<.'> = (%)(<> are limited 'by 

the absolute value 

HPK«. 

Taking absolute values  of   (32)   and  replacing all   |T£>|     by   t,   we 

obtain  the estimate of the  round-off error  in the  form of Lozinsky 

IV.Ki*?» (35) 

whore 

Nl"-    JIM*. Ml««. 
t. /-' 

21 



According to (26) and (26*), in the sum method t takes the value 

T~~P-4-4 er. (yä) Af *-4»i.-»--JX- 

and in the case of the difference method, the value 

T = i-p-i-4 er. ^M-f-ii'-f-yX, 

where   it   is  assumed 

MmmM^iF^if», *.) I] »max [A« |/*>(*-,, Xm)\), 
l</<-,    0</n</fc. 

Estimate (35) can be improved a little if use is made of the 

following identity 

■Mat 
(*) 

Mail 

where   im are arbitrary vectors.     Introducing the definition 

and utilizing  the  relations 

\*mV(tm, M-V(^r_„ /»)-2V'(rM, feKV«.»,, tiwWfe» M, 

V"(/», M = 0,   V(fc_„ <»)»*/, 

easily deduced  from   (3),    (4),   and   (6),   we shall  rewrite  the   identity 

(*)   in  the   form 

£V(im tk)Mm**V(t9, .»)•_,-»-[l/<f„ tt)    2V(tt, /»)]8,-4- 
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We shall now substitute (26) In (.32) and the result of the sub- 

stitution we shall write in the form 

!M«&»,»-+-*»,»•-* V *-+-"*-. *-*-**. *> (36) 

where it is assumed 

m=0 

m=0 

Let us assume in the identity (**) 6m = jim and make with its help 

the estimate W'Ji replacing all  |p£)|  by their maximum value |i; 

then we shall obtain 

where 

The estimate of the terms Stif., ?„,,„, St.x  from (36) is made 

nnalogously; thus it is revealed that (at least for equations of 

celestial mechanics) all these terms, differing from tho term ik. 

by the small factor hi1,   represent small values in comparison with 

it, so that the estimate (35) for the sum method can be written in 

the form 

UM~|«ßU<£*f». (3e) 
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As  for the  estimate of round-off error  in Cowell'e difference 

method,   substituting   (26')   in   (32)   and reasoning as  in the preceding 

case,   one  can show that here the principal terms will  have the values 

8kp,,    and 
*— l 

k,p,m S  V{tm,   M^-, (37') 

and with respect to them, the terms §»,,,., 5»,*, \,x      will give small 

corrections, so that the estimate (35) can be replaced by the 

following: 

I^IH^+^KT1^' (38-) 

Thus,   knowing the   fundamental  solutions   £/(/0, t), V('o> 0 ot the 

system   P=J(t)g    and using the estimates   (34')   and   (38)   or   (34')   and 

(38'),   we  can,   according to   (30),   estimate the error   (28)   in the 

integration of System   (lo)   by Method   (l?)   or   (14)! 

IM<|S*.O|-H8MK|SM|. 

Remark.  By integrating the equations of celestial mechanics 
always with a sufficiently large number of differences in the integra- 
tion formulas and with sufficient accuracy in the initial conditions, 
so that in the right member of the above inequality the first two 
terms have practically no influence on the estimate of the error hk, 
then this inequality, taking account of (38) and (38'), can be 
written in the form .  ... 

m*b*v (39) 
(for the  sum method)   or W\<l±£ltfl (39.) 

(for the  difference method)   where the  quantities   fry   are  taken from 
(35) • 

The estimates (39) and (39') can be improved if, as adopted in 
celestial mechanics, round-off errors $', 1»» are considered as 
independent random variables in the sense of the theory of proba- 
bility (see the remark at the end of Paragraph 3). 
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5.  ON CONDITIONS OF TTOi APPLICABILITY OF THE NORMAL DISTRIBUTION 
LAW OF PROBABILITIES TO THE ESTIMATION OF ROUND-OFF ERROR 

Some real variable 5 defined by a random quantity is called sto- 

chastic (or simply "random variable"), if for any fixed* the proba- 

bility of the inequality £<x, designated by <p(x), is known; by varying 

x  from—oo to +oowe obtain the function <f(x),   which is called the 

distribution law or the distribution function of the random variable 
I 

The relation of the random variable $ to its distribution function 

<p(x) is written in the following form: 

P(t<x) = <p{x). 

The argument of P  can be transformed to equivalent inequalities 

without changing their probability. 

Axioms of probability impose on the distribution function of any 

random variable certain limitations: 

1) <p(jc) monotonically increases in the interval —oo <JC< + °°; 

2) <p(— co) = 0, <p(-t-oo)=l, etc. 

Knowing the distribution function of the random variable 5, for 

the given quantities xlt x%  one can find the probability of the 

inequality x, < l< je, by the formula 

whence, in particular, it follows that 

p(m <•<)=? (*)-?(-*). (40) 
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The random variable C, having the distribution function 

*     l   • 1   r —r G(z) = -=-  e        dz,      is  called normal,   and  the  function C(z) *s 

v'S« J W 

— 00 

called the normal distribution law of probabilities.  According to 

(40), for the normal random variable C we have 

P(|C|<*)««(«)«^|J.  ■ "dz. 
0 

(41) 

We cite a few values of the function ^(2): 

• W *(«) 
0.03 0.0239 0.674 0.5000 
0.1 0.0798 1.0 0.6826 
0.2 0.1586 1.5 0.8650 
0.3 0.2360 2.0 0.9544 
0.4 0.3108 3.0 0.9973 
0.5 0.3830 4.0 0.9999 

(42) 

For the random variable 5, the distribution function of which haa 

a continuous derivative p(x),   the following definitions are intro- 

duced: 

l) expected value 

E I = j xp{x)dxma; 

2)   variance 

3) third absolute central moment 

If X is a constant quantity, then 
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The random variables („ ?2  ?* are called totally independ- 

ent if the probability of the inequality $„<* for any fixed mis 

not dependent on  the values  the  remaining  random variables take. 

1 

THE CENTRAL LIMIT THEOREM OF THE THEORY OF PROBABILITY 

Let S„ ?„,.., 5» be some totally independent random variables, 

possessing the expected values E 5m = a„,  the variances b„  and the 

third absolute central moments cM(l^/n<J&). 

Then the distribution law of the quantity 

tu 
2 ft"-«-) 

whe re Bk— ^,bm    tends to the normal law G(z)   for £-»oo, if Is satis- 

fied the following condition of Lyapunov. 

2< 
%^' 

Bl 
0 for k-* aa. 

The theorem signifies, that 

2 (5m— o.) 

7% <z h*G(z), 

or, according to (4l), 

p{ 2<*.-«J <z\lBk\ •»•<*). 
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Returning now to the notation of Paragraph 4, we shall consider 

the round-off errors pM> from (37) as independent random variables 

having  the   same distribution   functions 

?(JC) = 0 for *< — p, 

TW-^jp for—P<-»f<P, 

f(x) = 1   f or x > p 

(uniform distribution of a random variable). 

The quantity p( appearing in the definition <p(x), must satisfy 

the inequalities 

\M\<*- (43) 

Applying the theorem to the  random variable By ,      we  find  succes- 

sively 

1-^ = 0,    D (rift «$•    0<,n<fc-lj 

I p, »-.    ■ 1   ■• 

in —0 >=l 

whi>re   it   is assumed 

<K    - 

flW = 1— "V "V «» it     *\m 1 i\ru) 

AV-JS^I1»'»)* (44) 

The   above  theorem  leads  to  the   following   statement.     if the con- 

dition 

if  " 
J2K(«.'»)|* ,,, 

^=ki=L_  __     _*0 for/t_»00t 
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i B  fulfilled,   then to  the  round-off error    o(>>       we  apply the  normal 

distribution  law of probabilities 

»(|lflf|<«tf»V)-»*«. (45) 

Remark.     In  all  cases,   which we  subsequently encounter,   the  con- 
dition   (*)   is  fulfilled,   and we will not  dwell on  it further. 

Let us  introduce the coefficient  of overestimating of Formula   (45) 

which  is  itself a random variable vfeT' 

P(r,<y)=p(-iy#/><|8yj)= !--*(.!). 

The  quantity  d,   defined  by the equation d~ P(*|< 1) = 1 — *(z), 

represents  the  probability of underestimating  and must  be considered 

as  the  defect of Formula   (45)   for a  given t. 

Of greatest  interest   is  the  quantity 

P(«/)as P(l< 1 < y) = * («)- * (±) , (46) 

which characterizes the probability of "cleanly" overestimating given 

by Formula (45) . 

For z = 3 Formula (45) gives 

IWf|<*T *W (47) 

with a probability of 0.9973, where, the quantities P, N^     are deter- 

mined according to (4o) and (44) . 

With regard for the observation made at the end of Paragraph 4, 

one can write the following probability estimate for the error of the 

sum method (17) : 

(48) 
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The probability of underestimating will be  </ = 0.0027. 

With the help of  (42)   and   (46)   one can determine the limits of 

"cleanly" overestimating,   given by Formula   (47)   or  (48)   and the 

probabilities of their realization. 

v pi«) 
6 0.6143 

10 0.7613 
30 0.9175 

100 0.9734 

Thus,   for example,   according to  the  resulting data,   one  can 

assert that with a probability of 0.7613 Formula  (47)   gives a "clean" 

overestimate by less than a factor of 10. 

Remark.     Repeating the above discussion,   we can write the proba- 
bility estimate  for the  terms l»-,lfc,#« from   (36)   if the errors 
(*'*• P!"

)
   

are considered independent  random variables and use  is made 
of the  identity   (*)   from Paragraph 4  [here  are obtained  small correc- 
tions to  the  right members of the   inequalities   (47)],   and also the 
estimate of the  term   (37')   if the  errors s^f    are considered inde- 
pendent  quantities.     Hence,  making the  estimate of  (37')   together with 
(37),   we  shall obtain the  approximate estimate of round-off error  for 
the difference method   (14) 

A' 
which, according to the observation at the end of Paragraph 4, can be 
extended then to the error ik. 

6.  ESTIMVTI0N OF THE ERROR OF NUMERICAL INTEGRATION OF THE PROBLEM 
OF TWO BODIES (ELLIPTICAL MOTION) 

Let us consider the system of equations of undisturbed motion 

-75-=0, f + T?«0, *-. -^=0, (4g) 

r* — JC'-I- y1  + z* 

and let us assume that  it  is  integrated by the  sum method.     The gen- 

eral solution of System (49) has the form 

x — a [Px (cos E — e) -*-• V 1 — «*& sin £], 

y = a [P, (cos E — e) -+■ v'l — e*Q, sin E], (50) 

z = a [P. (cos E - e) -+ \/l - e'Q, sin E], 
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where 

E — e sin E = n {t — T),    n^Ka    2 ' 

Here     Pit Pt, P„ Qx, Qt, Q,      denote direction cosines   (Subbotin, 

1941). 

Let us  introduce  the vectors 

x*(t)^{a(cosE— e),    a vT17?  »in £, O) 

and the orthogonal matrix 

SssU, 

P*,  Q,,  ±I/I-P;-Q: 

P„ Q„ ^l/l-^-C?; 
ft, Q„ *vi-/»-c8 

(50') 

(51) 

The signs in the third column of the matrix 5 are taken in such a 

way that the orthogonality condition is fulfilled, i.e., 

SS=l. (52) 

Then Formula (50) can be written in the form 

*(t) = Sx*(t). 

In the notation of Paragraph 4 we find 

/a, *)=£ 
3xt-r\       3xy, 3xz 

3*i/,       3y*-r\       3yz 
3xz, 3yz,       3z2~- r' 

(53) 

Desiring to simplify the algorithm for computing the fundamental 

solutions U{t0, t),   V(f„, t)   of the system 

S = J(t)y, 
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we introduce the matrix 

/•('WO. **(*)) 

and the fundamental solutions U*(t0, t), V*(t0, t)   of the system 

g* = J*(t)g*. 

Then according to (l), (2), (52), and (53), we find successively 

U(t0, t)=SU*(t» t)S, 
V%, t) = SV*(t„ t)S. 

(54) 

Proof of the relations   (54)   is  immediately  and  sufficiently con- 

vincing by the   fact  that,   using   (53),   their right members   satisfy the 

conditions of Type   (4). 

Matrix   J*(t)   has  the  form 

/•(') = 
A, B,   01 

B, C,   0 
0,    0,   D 

whe re 

M ,(3 — e') cos* E — 4e cos E -t- (3e' — V 
A       * (1-ecos^ 

D _.    J 3^1 — g (sin ff cos g — g gin E) 
°      " (1 - i cos £)» 

p t (2«' — 3) cos» g -f- 2e cos E ■+- (2 — 3e») 
C   " (l-ecos£)* 

D -1 
(1 — econEy ' 

Hence 

t»;,(/0, t)   0,      v,jtn, t)   0, 
«;,(#„ /)-o,     <,(/„, /)=■---o, 
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—I 

and   the  quantities v'til, v*ti, v\_,, v\v v's3 satisfy the  equations 

t>;,, = ß<,,-* Cvlj (/«I, 2). 

The  solution of these  equations has  the   form 

X cos* £0 -♦ [(e2 — 1) cos" £ +■ (e* — e) cos £ + 2(1 — e2)] cos £0 sin £0 -+- 

-+- [(e — e3) sin £ cos £ -+- 2 (e2 -*  1) sin £] cos £0 ■+■ [—e cos2 £ — 

-2(C
2
+1)COH£ ^ 5e]sin£0+ |—2(1 — e2) sin £ cos £ — 5c sin £] — 

— 3 sin £sin£0(£ — £0)}; 

'     <ifa ')^<t(1_;JI^rl<C0.^(Ico.'£>«co.£-2Jco.'£.-<- 

H |sin £ cos £ ■+ e sin £] sin £u cos £0 ■+■ [—c cos2 £ ■+- 2 cos £ — <•] cos £0 -+- 

-+■[—e sin £cos £ • 2 sin £]sin £„ + [cos2£ ■+ e'cos £— 2] » 

-» 3 sin £ cos £„(£-£„)); 
(55) 

f»i('o. ')■=—ii    ■■, ,f" *-» (I—cos2 £ + c cos £ — l]cos2£0 i- '. Iv "'     '        n (1—«Coac)(l—ecosf.0) " J " 

-I [—sin£cos£f esin £]sin£0cos £0 l-{—e cos2 £—2 cos £ — e]cos£0-f- 

■4-[—esin £cos £ — 2sin£]sin£0-+■ [2cos2£ i ecos £-»-2] < 

■+■ 3 cos £sin £0(£— £„)}; 
I 

v« ,('o. 0= ~n FTTI F~i Us'n £cos £   - e sin £]cos2£„ -*- !i'' »     '        n(\ — ecost)(l—e cos cu)   l J ° 

• [—coss£ *-(e3 I-«) cos £ ■— l]sin£ncos E„ ■»-[—(«f • e)sin £cos £ »-2 sin £]co9 £0-+- 

» [ecos2£— 2cos£ » e|sin£„  i- [sin £cos £ — e sin £] — 3(1      e2) cos £ cos £0(£— £„)}; 

wj,$('f»0==—[sin£cos£n • (-   cos £ -i e) sin £0      e sin £]. 

The correctness of Equations (55) la ascertained by direct sub- 

stitution of their right members in the above equations and verifica- 

tion of the appropriate initial conditions [see (4)].  Here by £0 is 

meant the initial value of the anomaly 

£„ — esin£„-- n{tu      T). 
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Passing now to the definition of the matrix U*(/„, /)»  we have 

according to (6) 

»;,, «o. o={\-,.»B)\\-...,Ej> i3 s5n £ <cos £« -e) <£ - £°) -*-••• )• 

<•<*. 0 - (Pi; o £>n -: cos gy '3 sin £ sin E» <£ ~ £») -» ■ ■ ■), 

«;.,Co- ') = (T^rTc^ö-'co.Eo)' ("3cos£(cos£«~«)<£-£o) +...), 

"l.C. /)=j1_tfC0,ig)|1 -V^FT^ 1-3(1 -cJ) sin £0cos £(£-£„)-»- ..,), 

where the dots denote periodic  terms,   which for us have no importance. 

The relations   (54)   give 

"., t ft» ') ~ <■ 11*» ft '*, i s>, i ■' T'* 3 Co- 0 */. i »j, «■' «ft . Co- 0 •«, ■ »/, i  ' 

-f <»<*.. ')*,.»*>., »-<,(<» 'KS«M 

and the analogous .equation for ''<,/('0> '). whence, introducing the 

quantities 

Y — s<. i«'» ft— Vl — •* $tA cos f», 

rr"s »#<, (cos Ek — e) ■*• v/1 — ? ■,, 3 sin £t       (/ = 1, 2, 3), 

where 

E„ ■•- <>sin AV     "(/*      7"), 

according to (55) and (56) we find to within the secular terms 

t*. i Co. M = „fl——frfl—«»flj <£*  £«)' 

"<. ,('n. *»)= Tnrrzznrnr- —TTT(£»- &)< (1—  rrns/;»)(!-   r cos A.,,)>   ' "' 

(57) 

Substituting   (57)   in   (3l)   we obtain the expression  for the error 

of the   initial  displacement 

5,1 

-9# 

(1 - ! cos /■:„) (i - -«™< /•;,)' IT« "«   ' To «i   ' T« "o I (A;»     £„) • 

*A(1   -rcosA:»)(l~V^T/;n) 
|0"   K '■   <>   *   «"   (°n R-iJ   I   °n   K   -   M)| (£» — £„). 
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Equation (34') with regard for the relations (53) and (54) gives 

the estimate for the quadrature error 

|»,, m -*„,S J V* (t, fc) ^^gff di 

Hence with the  aid of   (50')   and   (55)   we  find to within the  secular 

terms   (for simplicity the  formulas are written for  e = 0) 

We turn now to  the  calculation of the quantities    Nt,    defined by 

Equations   (44)   and appearing in the estimate of the  round-off error 

(47).     For thiß we notice,   that  these  quantities  form the main diago- 

nal of the matrix VV, which,   according to   (54),   can be represented  in 

the  form 

VV = SV*V*S. 

Hence, introducing the notation 

(, = i, 2, j=\, 2), 

we find 

<> =/v;,,',,<,-. MCV««.. ■ <(a'X, • <(:,'X,-   u-u% 3).   (58) 
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Elementary calculations according to (55) lead to the following 

expressions for the quantities A'*1'"" (which for simplicity were 

written for e = 0): 

A^'H = ±- j3sin4£»(Ek- £0)
s ■+- 6sinEkcos £»(£*-£,)' ■*- 

-*~[y-*- J sin8 £* +12 sin2Ekcos(£*-- £0)■+■ 12 sin £»sin £0](£* — £0)"»- 

H-l 24 cos8 £* sin (£* — £0) — 32 sin (£t — £0) -+- 3 (sin Ek cos £» — sin £0 cos £0) — 

-1 (sin8 £t+l) sin 2 (£*-£„)]), 

/\T<». 8> = 4p {-3sin £» cos £*(£, - £0)J - 3(cos8 Ek - sin8 Ek)(Ek — £0)»-»- 

-+-1 —-j- ■ in Ek cos £t — 12 sin £t cos £» cos(£J; — £0) — 6(sin £»cos £0■+- sin£„cos £»)] X 

X (£» — £0) 4-1 24 sin Ek cos £k sin (£k — £0) — y (cos* £t — sin' £*) -+• 

■*■ -r (cos8 £0 — sin8 £0) -+- j sin Ek cos £» sin 2 (£* — £0) J j, 

A^» 8> = -L {3 cos8 £t (Ek - £0)
3 - 6 sin E„ cos £t (£* — £0)

8 ■+■ 

"*" L 2" "*" ~2 cos2 ^* **~ ^ cos2 ^*ros (E* — ^o) "•" 12 cos £* cos £0 J (Ek — £0) -*- 

-+-   24sin8£*sin(£t — £0)— 32sin(£»— £0) — 3(sinEkcos £i —sin £0cos£0) — 

-T(cos»£» ♦ l)sin2 (£»-£„)]}, 

Af;*3) = ^T J J (ft - £o) - J sin (£* - £0) cos (£t - £„)} . 

Hence, having used the quantities 

of1 = s, . sin Et — s. , cos £t 
"        '*' * -        ('=1. 2, 3), 

|W = ,v(    cos Ek -+- s, , sin Ek 

from   (58)   we   find 

<' - 7{*4*<£» - £o)3 • «WW - £o)2  •" [~ - 6s?.3 r V5 °*)S * «4* cos (£* -£,)♦- 

«- 12-4'H0 ] (*» - fo) * [ -8(1 - <3) sin (Et - £0) - 24^' sln (^ - £,) + (Dg) 

-4- 3 («>- o^(0) - (_ * ^ _ j .4. jsj s) sin 2 (£| _ £o)]j       (/ = lf 2f 3). 
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For «T^O , Equations (59) must be replaced by the following 

(for «<,a = 0): 

"*■ r=7- f 7 •' <! - •'H"' c°8 2f o + 0 - •') [24 (cos Eh ■+■ e) tf— 

-12 eta £»#>#>] co, £„ -i- (1 - «>) [6 (ei + 4) lin £,# + (6o) 

-^ *2 cos £kW] sin £0 •+- [2.* cos1 £» -4- 5« cos E„ +- (7 - y «*)] TV^T^- 

-♦-[(•'-9V) cos* £»-•-(4a - 8«') cos £*-+ (— f«4- j^ + u)]^»*-»- 

-1-18«' sin £» cos £> -♦- (8es -t- 4e) sin f.HM'Utö - MJ+[.. .]}, 

where 

o^'sss,,., sin£» — \/l — e2si, J cos £n 

T
(

k" n [(1 -4- c2) cos Ek — 2e] s,, 1 -♦- \/l —e's«, 1 sin £». 

Here  the  dots denote periodic  terms differing by a  small   quantity  from 

corresponding terms of   (59). 

inversion of Keppler's equation   [see   (50)]»   gives 

£= M-t esin A/+ 2' e1 sin2M +-..., 

where 

Mwmm(i-Th 

hence 

knh A/0 •+- Mu Ei — £0 sä /fcnA 1 2c sin -y cos —^—■■ ♦ t* sin fcw/i cos(A/„ •  M^ I- . 

If k  corresponds to an integral number of revolutions, then 

E„ — h0 — knh. 
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For a  sufficiently large value of knh   and for  o^'^O Formulas 

(47)   and   (60)   give  the  following approximate  expression  for the 

round-off error: 

3p K<>I    1 
iei<*°~n^äta*T' (61) 

where 

ot° m si, 1 sin Ek — Vl — ca »«. a cos £»■ 

One can compare this result with the well known estimation of 

Newcomb, which in our notation can be written in the form 

||S»,l,||<0.225pfc
!. 

From the standpoint of the theory, stated in Paragraph 5, the • 

probability of such an inequality will be equal to 0.1780 [see (42) 

and   (46)]. 

If use  is made of the estimate of round-off error in the form of 

(35),   then we obtain  the  following  results: 

Remark  1.     Let us consider the  case  of circular motion described 
by the equations 

*«)-+-n5rf«) = 0 (/ —1, 2. 3), 

2^')' = ^=--const, 
t 1 

where   **   is a constant. 
Let us  suppose  that  this  system  is  integrated by Cowell's 

method.     The general   solution of the  system has the  form 
.*{') = r\«<(i cos nt -+- ««,2 sin nt) (1 = 1, 2, 3). 

Calculating the estimate  of  the error of numeric.il  integration of 
this  system by Formulas   (47),   we  find  successively 

i.     .v       *'n n (t — /n) ,        > 
»MCO. ')"= — . v^jUo, t)~0, i+); 

(nh)1 
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This result was predicted by Brouwer. 
Remark 2.     Let us consider at the  seme time the equations of disturbed 

and undisturbed motions 
*• — R, 

K*x = 0, 

where R is the disturbing function.     We  shall denote  respectively by 
Xt, ^the results of integrating these  systems by Cowell's method with 
the  same  initial conditions.     Then because of the  small value of the 
disturbing function R one can put JT, — JT,mX— *      and estimate the 
error of numerical  integration of the  system of disturbed motion by 
the  formulas of Paragraph 6.      (This hypothesis  is a supposition of 
S.  M.   Lozinsky.) 
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THE ACCUMULATION OF NUMERICAL INTEGRATION ERRORS IN SOME 
PROBLEMS OF CELESTIAL MECHANICS 

A. S. Sochilina 

The results of the application of estimations of errors in numeri- 
cal integration (Myachin, 1959) to numerical examples are presented. 

Recently in connection with the rapid development of computing 

equipment, methods of numerical integration for the solution of the 

problem of n  bodies have become most effective.  Such enormous works 

of calculation as "Coordinates of the Five Outer planets 1653 - 2060", 

"Coordinates of Four Minor Planets 1940 - 1960", and others, were 

accomplished by methods of numerical integration.  However, the 

accumulation of errors in integration essentially reduces the quality 

of the numerical methods. 

Errors arise'due to limited precision of the calculating machine 

(round-off errors), neglected differences in the integration formulas, 

and inaccurate values of the initial conditions. 

Errors duL to neglected differences can be reduced to a minimum by 

a suitable choice of the interval and the number of terms in the inte- 

gration formula.  The calculation of errors in the initial conditions 

does not present great difficulty:  if the initial conditions are com- 

puted with the precision with which the computations are carried out, 

then one can consider these errors as round-off errors in the first 

step of integration. 

In the majority of cases it is important to know the dependence 

between the number of steps and the number of lost digits, in order 

to provide for the necessary precision in advance or determine with 

what error any or all quantities were obtained. 

With this aim B. F. Myachin (1959) investigated the formulas for 

estimation of the accumulation of round-off errors in numerical 

integration of the equations of motion of the two-body problem. 
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1" 

If the eccentricity,    e,   is neglected and the  true error at the Jeth 

step  is  indicated by     Si'' ,   we can write these  formulas  in  the  following 

form; 

|lß|<4>      <*=1, 2, 3...J   / — I. 2, 3), 

where k  is the number of steps, / is the number of the coordinate 

■V3 

(nh) " 

N*a 3°[<»{E„ - £0)3 ■* H"Tl°(A - ^o)J + [y _ 6s* ■ "*" J ^ ' 12oi-"2 c°s (£» - £„) •■ 

--.- 12o(Oo(')](£,- £„)-H[_8(1 -<,)sin(£v - £„)- 24°<<>2 sin (£>-£„) ■+■ (D 

■+• 3 HM" - «>) »- (- J °i°2 ^ T +■ T <•) sin 2 <£* ~ £«>] • 

°V'= s/, ] sin £t — st 2 cos £,., 

Ti°=•«, jOos£t-»- «j,, »in £», 

s(,i. •*,«! s<,n are the direction cosines (in general denoted by 

l*i Q» #)» " is the diurnal motion of a body, h  is the integration 

step, £» is the eccentric anomaly (in the given case the mean, since 

e = 0), and p is the maximum round-off error in the computation of 

the right members of the equations at each step. 

We used the formulas in this form for numerically comparing the 

error |M(  obtained by numerical integration, with the predicted 

1.  We shall carry out the indicated comparison in the examples, 

which were specially computed for this purpose (the examples were 

computed on the electronic machine BEHM AN-SS3R).  The problem of 

plane undisturbed motion is solved with various initial conditions 
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(orbital elements).  The value of the interval of integration and 

the elements are selected in such a way, that one revolution is 

accomplished in exactly 100 steps.  In all, three examples, each 

having 1100 steps, were computed; the initial conditions were defined 

by the following elements: 

1st example  2nd example  3rd example 

A/,,  0°                         0° 0° 
u  0°                                0° 0° 
<>  0.04825380 0.04825380 0.2 
n  299/128376                      648" 648" 

Integration  step/.. 43^35258794                20<*0 20*0 

Integration was conducted by Cowell's  sum method  taking account 

of  fourth differences 

where 

and X is a vector with the components X,  Y, Z. 

The results of the integration 

Xu X.,,  ..., Xif, ... 

were compared with the values 

computed beforehand by the formula of elliptic motion to the 6th 

decimal place, and the difference 

*»-*» = & I 

was  taken  as  the net  accumulation of  round-off errors,   since the 

influence of the higher differences  in  the   integration   formula,   in 

the  given  case /(,),    was computed  with  the maximum precision 

f    %Ls,/W<l • 10-"). \ 2i!809600 •'        ^ / 
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In the future we will not take these errors into account, since 

in all of the works considered their influence lies beyond the limit 

of precision with which the computations are performed. 

For the round-off error, .,, the adopted value is 0.5 x 10~°; that 

is, the precision with which / was calculated at each step.  One can 

note that Formulas (l) are considerably simplified if the estimates 
it    % 

are computed for the points Ek— E0    aB multiples of 0,-s, «, s-u. 

In our case, since the problem of plane motion was solved 

(S|l ;=Sja= 1, s,2 = s2l=0) and integration began from the point of 

perigee (£„ = 0),  Formulas (l) are simplified still further and 

become 

5(0|<E(0 = J^pV7wW       (/=1, 2; fc«l, 2, 3... ), 
{nh) 2 

/V(" (£») = " Ek,   N
{,)(£*) = 3£? -+ 38£*   for Ek = 2m*, (m = 1,2...) 

#("(£») = 3£? . 14£-k —32,   7V<2) (£») = ^-£> - 8       for £» = (2». f-I)*, (2) 

N{])(Ek) = ™Ek,    /V!2,(£,)-3£?-10£*      for £»=<2m-MK 

/V(1)(£*) = 3£?-. 14£»H~32,     N[2)(Ek) = jEk .-8      for'£»=• (2m-*-})«. 

Beginning with    /fc>200,   the   ratio -f is of the order of _L_: 
£* 100 ' 

therefore,   neglecting the  first power of   Ek in comparison with  £jj 

and  letting    Ek-= nhk,   we   shall  obtain 

i. ' 
^»>a= 70.3f>*r2 ,    s<2' = 3?k*        tor £»= mit, 

» ! /i (3) 

a0) =3p/ts, ij" = 704p* -        for £» = (m -»   y)it. 
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1 

We note that  for all three of the examples under consideration   d$ 

are the same.    This is stipulated by the  fact that the product nh  in 

all the examples is one and the same (i)   and,   in addition,   the 

influence of eccentricity is excluded in the cited formulas. 

However,   the eccentricity does not very strongly distort the 

result.     For   fc>200  the formula of estimation   (Myachin,   1959)   is 

written  in the form 
2 

.'2 

In Table 1 are cited the computed |Sy)|  and the predicted errors 

t^>.  The first column gives the mean anomaly for all three "planets"; 

the '2nd, the appropriate number of integration steps; the 3rd to 8th 

columns, the true errors S^) and If  for examples I to III; the 9th 

and 10th columns, the values of •£*'  and e^',  the estimate of the 

error in all three examples.  The values Ry, ^') are expressed in 

unite of the sixth decimal place. 

Comparing the 3rd, 5th and 7th columns with the 9th; or the 4th, 

6th, and 8th, with the 10th; we can judge the quality of the obtained 

estimate. Note that the estimate reflects the oscillatory character 

of the accumulation of errors. 

2.  From the standpoint of the accumulation of errors it turned 

out to be of interest to examine the coordinates of Uranus, Saturn, 

and Jupiter obtained by D. K. Kulikov by integrating the Vlllth 

satellite of Jupiter for the period from '24 January 1930 to 28 August 

1965.  The integration was carried out on the electronic calculating 

machine BESM with steps of 10 days (all 1300 steps).  The coordi- 

nates of the planets were obtained by simultaneous integration of the 

system of nine equations; the initial coordinates were taken from 

"Astronomical Papers" (1951). 

44 



TABLE 1 

1st Example '2nd Example 3rd  Example Estimate 
Number 

of Anomaly 
Steps iy> V «T If •P ■P ■F f 

0 1 0 O 0 0 0 0 0 0 
90 26 0 0 0 0 0 0 0 0 

180 51 1 1 0 0 0 0 0 0 
2'iO 76 3 0 0 0 0 0 0 0 

360 101 0 5 0 0 0 ■+■ 1 0 1.5 
450 126 3 2 0 0 0 0 2 0 
540 151 0 3 0 1 1 3 0 3 
630 176 6 U 0 0 0 0 4 0 

720 201 0 7 0 0 0 1 0 4 
810 226 6 0 -•- 1 0 1 0 5 0 
900 251 0 5 0 0 0 5 0 6 
990 276 7 0 0 0 0 0 7 O 

10E0 301 0 9 0 0 0 0 1 8 mo 326 7 0 0 ■*- 3 0 9 1 
1260 351 0 5 0 — 2 0 — 6 1 10 
1350 376 — 7 - 1 1 — 1 - 2 - 3 11 1 

1440 401 0 -11 0 0 — 1 1 12 1530 426 8 - 1 - 1 —   1 - 1 2 13 2 
1620 451 1 5 0 — 2 0 4 1 14 1710 476 — 8. - 1 1 — 1 - 2 - 3 15 2 

1800 501 0 -10 0 0 — 8 1 16 1890 526 6 — 2 - 1 —   1 3 1 18 2 
1980 551 0 3 0   o 0 — 2 2 19 2070 576 - 6 - 1 0 — 1 - 7 - 1 21 O 

2160 601 0 7 0 0 —14 2 22 2250 626 1 — 2 — 1 7 1 24 2 
2340 651 — 1 - 1 0     1 0 — 2 2 25 2340 676 - 1 — 1 - 1 •4   1 -10 - 1 26 2 

2520 701 0 - 3 0 0 —21 2 27 
2610 726 - 2 - 3 2 —   1 12 — 1   • 28 2 
2700 751 2 — 7 0 0 5 2 30 

2 
2790 776 4 - 2 - 4 - 1 -15 - 1 31 

2880 
2970 
3060 
3150 

801 
826 
851 
876 

0 
— 6 

2 
9 

2 
- 4 
-11 
— 2 

0 
6 
0 

- 8 

—    / 0 
16 
0 

-20 

-29 
- 1 

8 
0 

2 
35 
3 

38 

33 
2 

36 
3 

3240 
3330 
3420 
3510 

901 
926 
951 
976 

0 
-11 
- 2 

14 

7 
- 3 
-16 

0 

0 
9 
0 

-13 

-12 0 
20 
0 

-25 

-35 
- 1 

12 
1 

3 
42 

3 
46 

40 
3 

44 
3 

3600 
3690 
37M) 
3870 
3960 

1001 
1226 
1051 
1076 
1101 

0 
-15 
— 2 

19 
0 

12 
— 4 
-21 
- 2 

17 

0 
18 
0 

-20 
0 

-19 

15 
0 

-26 

0 
36 
0 

-31 
0 

-44 
- 1 

16 
2 

-53 

3 
50 

i 
3 

48 
3 

52 
3 

54 
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Since the coordinates of the planets published in "Astronomical 

Papers" in 1951 were computed with great precision (the joint system 

of equations of motion of the five outer planets was solved; more- 

over, the calculations were carried out with 14' digits), they were 

taken for the precise solution X,,   and the difference •** — Xk  was 

taken for the true error of the estimated coordinates.  The compari- 

son is made in the 5th decimal place.  The results are given in 

Table 2. 

For an estimate of this error by the formulas of B. F. Myachin, 

i   is necessary to ascertain the error made in a single step.  In 

the given case, in addition to the round-off error p(p = 0.5 • 10-n), 

the computation of the right members of the equations will contain an 

error due to the neglected disturbances from Neptune and Pluto.  The 

magnitude of the disturbances amounts to 1 • 10~p; that is, it 

exceeds the computing error.  Of the three planets, Uranus is subject 

to the greatest disturbing influences; since during the investigated 

interval of time Uranus makes only a half revolution (and the sum of 

the disturbances from Neptune and Pluto has a constant sign during a 

considerable period of time), while Saturn makes 1.5 revolutions and 

Jupiter 3.5; and accordingly the disturbances from Neptune and Pluto 

nave a periodic character.  For the estimate of the error due to 

round-off we use Formulas (l) (the results are given in Table '2 in 

columns 4; 7, 10).  For the estimate of the error due to neglected 

disturbances, however, it is impossible to use these formulas since 

in deducing (l) the probability law of the distribution of random 

errors was used and the disturbances do not obey the law of random 

errors.  The only acceptable formula in this case is the following 

(Myachin, 1959): 

|S»;)|<,y)«|v/3p|oi"|^  (/  1,2,3;*  1,2,3...),       (4) 
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TABLE '2 

Anomaly 

Number 

of 

steps 
*k — Xk 

Round 
off 

error 

Error 
due 

to neg- 
lected 
distur- 
bances 

y* — Y\ 

Round 

off 

error 

Error 
due 

to neg 
lectod 
distur- 
bances 

■» - A 

Round 

off 

error 

Error 
due 

to n«g- 
lccted 
distur- 
bances 

Jupiter 

135 
ISO 
225 
2"/0 
315 
360 
405 
450 
495 
540 
585 
630 
675 
720 
765 
810 
855 
900 
945 
9S0 
1035 
1080 
1125 

90 
144 
198 
252 
306 
360 
414 
468 
52? 
5-; 6 
6S0 
684 
738 
792 
846 
500 
954 
1008 
1066 
mo 
1174 
1228 
1272 

0 
0 

—2 
—3 
-2 
-4-1 
-4-2 
+3 
-t-1 
-2 
-3 
-6 
-4 

0 
5 
5 
2 

—1 
-5 
—8 
-5 
-4-4 
-.-8 

0.1 
0.2 
0.4 
0.5 
0.3 
0.5 
1.3 
1.6 
0.9 
0.7 
2.1 
2.6 
1.4 
1.1 
3.4 
4.0 
2.2 
1.4 
4.6 
5.4 
3.0 
4.5 
6.1 

1 
1 

15 

7 

56 

16 

120 

32 

207 

51 

319 

76 

0 0.1 
0 0.3 5 
0 0.1 
1 0.3 3 
3 0.8 
3 1.1 31 
2 0.6 
0 0.6 11 
2 1.5 
2 1.8 77 
2 1.0 
1 0.8 24 
6 2.5 
8 3.0 147 
4 1.6 
0 1.2 42 
4 3.8 
4 4.3 239 
2 0.7 
2 1.5 65 

10 5.0 
10 5.0 353 
6 3.6 

0 0.0 
0 0.1 
0 0.8 
0 0.1 

-1 0.3 
-1 0.5 

0 0.3 
0 0.5 
1 0.6 
0 0.8 
0 0.5 
0 0.3 

-2 1.1 
—4 1.3 
—2 0.8 

0 0.4 
2 1.5 
2 1.9 
1 0.2 

-1 0.5 
—4 2.0 

•    -4 2.5 
-3 2.2 

Saturn 
225   1 120 i   1 0.2      | (» 0.4 0 0.2 
270 256 4-  3 0.6 0.6 - 1 1.0 16 0 04 
315 392 -4- 9 1.4 - 1 1.1 -1 0.5 
360 528 -»-19 1.4 72 4   6 0.9 4 -4-1 04 
405 664 4-16 1.2 -.20 2.4 »-7 1.0 
450 800 t- 1 1.2 6.4 ^22 3.4 154 »-9 1.4 
495 936 — 9 4.0 • 12 2.6 »5 1.2 
540 1072 1 -" 6.2 299 - 9 1.4 15 -4 0.6 

Uranus 
225 
270 
315 

213 4- 2 3.3 7 -   1 4.1 8 - 1 2.0 
587 .14 2.5 60 - 7 1.5 12 - 3 1.0 
970 • 31 52 188 -23 4.8 150 -11 4.8 

2 

1 

16 

4 

53 

8 

63 

13 

103 

20 

152 

6 

1.4 

64 

6 

4 
7 

47 

whore by p  we denote the error in a single step due to the negie"t.ed 

disturbances, and dlj)  has the name meaning as in (l) . 

In the computation by Formulas (4) for all three planets (> is 

taken as the maximum disturbance from Neptune and Pluto; that in, 

1 • 10~8,  which, of course, gives a strong overestimate tor Jupiter 

and Saturn (Table '2, columns 5, 8. Il) • 
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3,     We   shall  give one more example.     Let us  try  to  estimate  the 

error due to  round-off in  the  coordinates of the larger planets 

published  in   "Astronomical Papers"  in  1951.     We   shall make  the  esti- 

mate by the crude   formula obtained   from   (l)   under the   following 

assumptions:     we neglect Ef  and  Et  in   comparison with     £jjj °i    we 

assume equal  to  1.     Then   (l)   will   have  the   form 

18 ' »l<«»»3p*». (5) 

If p   is  taken  to be   1 •10"", then after 1000  steps of integration, 

which  corresponds to  an  interval  of time greater than  100 years  in 

this case,   the  error in the coordinates of the planets will  be 

approximately equal   to    1•10~°    ;   that   is,   the published   coordinates 

of the larger planets  are   free   from round-off error. 

Thus,   the  examples cited  above  show that  the   formulas derived  by 

B.   F.   Myachin  for the  estimate of errors due  to  round-off errors  is 

entirely  suitable   for practical  use. 

The estimate   (l)   reflects the oscillatory character of the  error 

and gives a comparatively   smaller overestimate   (as a rule,   by less 

than a  factor of 10).     Furthermore,   it  shows  that after  1000 steps of 

integration no more   than   five  digits are  lost  in  the  sought   for 

values  due to  round-off errors. 

But  as  for  the  error created  by  the neglected disturbances 

(Table '?) ,   the  estimate   (4)   whi-h  was used  for  them must  be  con- 

sidered unsatisfactory,   since   it does not   take   into  account   the 

periodic  character of the disturbances.     This estimate gives  a  practi- 

cally acceptable   result only  if during the entire   integration  o^ a 

large part of it  the disturbances are  constant. 

48 



LITERATURE 

My achin, V. F'.  1959.  Ob otsenke pogreshnosti chislennogo intcgriro- 
vaniya uravneniy nebesnoy mekhaniki [On the Estimation of Errors 
by Numerical Integration of the Equations of Celestial 
Mechanics"), Byull.  ITA, 7, 4(87). 

Eckert, W. J., Brouwer, D., Clemence, G. M.  1951.  Coordinates of 
the Five Outer Planets 1653-'2060.  Astr. Pap., 1'2. 

49 



DISTRIBUTION 

Bureau of Naval  Weapons 

DLI 1 
RT-1 1 
CA 1 
RRRE 1 
R-14 1 

Naval Observatory 
Mass.   Ave.   at 34th St., 
Washington, D. C. 
Attn:  Dr. G. M. Oleraence 1 
Attn:  Dr. R. L. Duncombe 1 

Commanding Officer and Director 
Naval Research Laboratory 
Washington.!25, D. C. 
Attn:  J. J. Fleming (Code 5100) 1 

Commanding Officer and Director 
Office of Naval Research 
Washington '25, D. C. 
Attn: Naval Research Group 1 

Superintendent 
U. S. Naval Postgraduate School 
Monterey, California 1 

Commanding Officer 
U. S. Naval Ordnance Test Station 
China Lake, California 1 

Commander 
Pacific Missile Range 
Point Mugu,   California 1 

Commander 
Naval Ordnance Laboratory 
White Oak,   Silver Spring 19,   Maryland 
Attn:     Mathematics Department 1 

Commanding Officer and Director 
David W.   Taylor Model Basin 
Washington  7,   D.   C. 
Attn:     Applied Mathematics Laboratory 1 



DISTRIBUTION   (Continued) 

Commanding General 
Aberdeen Proving Ground 
Aberdeen,   Maryland 
Attn:     Ballistic Research Laboratories 1 
Attn;     Dr.   B.   Garfinkle 1 
Attn:     Technical Information Section 

Development  and Proof Service;. '2 

Commanding General 
Army Ballistic Missile Agency 
Redstone Arsenal 
Huntsville,   Alabama 1 

Mathematics Research Center 
University of Wisconsin 
Madison  6,   Wisconsin 1 

Officer  in  Charge 
Jet Propulsion Laboratory 
4600 Oak Grove Drive 
Pasadena '2,   California 
Attn:     Library 1 

Commanding Officer 
Atlantic Missile Range 
Cape Canaveral,   Florida 1 

Space Track Filter Center 
Air_Force  Cambridge Research Center 
L.   G.   Hai.scorn Field 
Bedford, Massachusetts 1 

Commander 
Air Force Ballistic Missile Division 
P. 0. Box 262 
Inglewood, California 1 

Commander, Operational Test and Evaluation Force 
U. S. Atlantic Fleet, u. S. Naval Base 
Norfolk 11, Virginia '2 

Commander 
Armed Services Technical Information Agency 
Arlington Hall Station 
Arlington. 12, Virginia 
Attn:  TIPDR 10 



I1 

DISTRIBUTION (Continued) 

Technical Translations 
U. S. Department of Commerce 
Business and Defense Services Administration 
Office of Technical Services 
Washington '25, D. C. 1 

National Aeronautics & Space Administration 
Goddard Space Flight Center 
Greenbelt, Maryland 
Attn:  Dr. J. Siry 1 
Attn: Dr. C. V. L. Smith 1 

National Aeronautics & Space Administration 
Theoretical Division 
Goddard Space Flight Center 
Silver Spring, Maryland 
Attn: Dr. p. Musen ! 

Coast & Geodetic  Survey 
Washington '25, D.' C. ! 

Director 
National Bureau of Standards 
Washington '25, D. C. 
Attn: Applied Mathematics Division 1 

Applied Physics Laboratory 
The Johns Hopkins University 
8621 Georgia Avenue 
Silver Spring, Maryland 
Attn:  Technical Library 1 

Yale University Observatory 
New Haven, Connecticut 
Attn;  Dr. D. Brouwer 1 
Attn;  Dr. M. S. Davis 1 

University of California 
Los Angeles, California 
Attn:  Dr. S. Herrick: 1 
Attn:  Dr. Robert M. L. Baker, Jr. 1 

University of Texas Computing Center 
Austin, Texas 
Attn:  Dr. D. M. Young 1 



DISTRIBUTION (Continued) 

Massachusetts Institute of Technology 
Computation Center 
Cambridge 39, Massachusetts 

Office of Ordnance Research 
Duke University 
Durham, North Carolina 
Attn:  Dr. F. Murray 

Dr. John W. Carr, III 
University of North Carolina 
Chapel Hill, North Carolina 

Radiation Laboratory 
University of California 
Livermore, California 
Attn:  J. L. Brady 

University of Illinois Computing Laboratory 
Urbana, Illinois 

Cincinnati Observatory 
Cincinnati Place 
Cincinnati, Ohio 
Attn:  Prof. Paul Berget 

Smithsonian Astrophysical Observatory 
Harvard University 
Cambridge, Massachusetts 

Space Technology Laboratories, Inc. 
5739 Arbor Vitae Street 
Los Angeles 45, California 
Attn:  Dr. S. D. Conte 

Bell Telephone laboratories, Inc. 
Whippany, New Jersey 
Attn:  Dr. B. McMillan 

International Business Machines Corp. 
Vanguard Computing Center 
615 Pennsylvania Ave., N. W. 
Washington, D. C. 
Attn:  i. Krongold 



-i 

• 

DISTRIBUTION (Continued) 

Watson Laboratory 
612 ?/. 116th Street 
New york 27, New York 
Attn; Dr. W. J. Eckert 1 
Attn;  Dr. L. H. Thomas 1 
Attn:  Dr. David Mace 1 

General Electric Company 
3198 Chestnut Street 
Philadelphia, Pennsylvania 
Attn; Mr. Marcel Martin i 
Attn: Mr. V. G. Szebehely 1 

Computer Usage Co., inc. 
18 E, 41st Street. 
New york 17, New York 
Attn;  Dr. B. Zondek 1 

RIAS Research 
7212 Bellona Avenue 
Baltimore 12, Maryland 1 

Lockheed Missiles & Space Division 
P. 0. Box 504 
Sunnyvale, California 1 

North American Aviation, Inc. 
Los Angeles Division 
International Airport 
Los Angeles 45, California 
Attn:  Engineering Technical Library 1 

Aerospace Corporation 
2400 East El Segundo Boulevard 
El Segundo, California 1 

Dr. C. C. Bramble 
145 Monticello Avenue 
Annapolis, Maryland 1 

Mr. James E. Barker 
1651 Brandywine Drive 
Charlottesville, Virginia 



DISTRIBUTION   (Continued) 

H.   M.   Nautical Almanac Office 
Royal  Greenwich Observatory 
H^rstmonceux Castle,   Sussex,   England 

Local: 

K-l l 

KB X 

KBA 1 

KBA-'2 1 

KBX-1 1 

KBP 1 

KC. 1 

KCP 1 

KCM 1 

KS i 
ACL & 
File 1 



UNCLASSIFIED 

ÜNCLASSIFIE 


