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FOREWORD

The following articles weru translated because they are relevant
to computatione performed for the Navy Space Surveillance Project and
the Transit Navigation Satellite Project. The articles should also
be of interest to othere concerned with the subject of errors in numeri-

cal integration.

APPROVED FOR RELEASE:

R. H. LYDDANE
Technical Director
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THE FSTIMATION OF THE ERROR RESULTING FROM NUMERICAL INTEGRATION OF
THE EQUATIONS OF CELESTIAL MECHANICS

V. F. Myachin

This article presents the result of the application of a general
theory of estimation of the numerical integration error of differen-
tial equations, proposed by Professor S, M. Lozinsky, to equations
of undisturbed motion of celestial mechanics. In applying the theory,
consideration was given to the random character of the round-off
error. Here, in particular, it is shown that the new theory gives
qualitative confirmation of the well-known result of Brouwer, which
asserts that after a sufficiently large number, &, of integration
steps thc error in the coordinates of elliptic motion has the order

3

of growth K.

Introduction

Let us consider a system of equations of disturbed motion:
. x .
x=—K"r—:|+Rn

j=—K'5+R,
(n)
2::——Ifﬁ%'Ffﬁ.
rr=x'4y* 4 22
As is gcnerally known, the most prevalcnt method of approximating
the solution of such equations is by numerical integration; in addi-
tion it is known that the application of any formula of numerical
integration inevitably leads to an accumulation of error in the com-
puted approximate solution, which arises in two ways:
1) use in thc integration formulas of a finite number of terms;
2) errors in initial conditions and round-off in each step of

integration.




At the present time we do not have available strict, practically
acceptable estimates of the error of numerical integration of differ-
ential equations; however, there exist so-called rough estimates,

. which were obtained by rough reasoning.

Thus, Newcomb (1898) regarded the error in the numerical integra-
tion of any differential equation as the result of the sum of the
round-off errors at each step (by analogy with the error of approxi-
mate computation of a definite integral); counting these errors as
independent random variables (in the sense of the theory of proba-
bility), he came to the conclusion that the accumulation of.error
after k steps of numerical integration is of the order of k® for
equations of the second order and k%'for equations of the first order.

Applying this assertion to the estimation of the accumulation of
round-off errors in the method of special perturbations, one can draw
a conclusion about the advantage of obtaining the perturbations in’
the elements compared with their computation by the method of Cowell
or Encke (i.e., in the coordinates). 1In the first case the perturba-
tions are obtained as a result of single integration for all elements
except the mean longitude, which requires double integration, and,
consequently, only in this element is there a serious accumulation of
error. If, however, the perturbations are computed by the method of
Cowell or Encke, then for every coordinate there will be an equation
of the second ordfr and the expected error in each coordinate will be

of the order of k*.

Brouwer (1937), however, showed that this conclusion is incorrect
and that for elliptic motion the accumulation of errcrs in the
coordinates is equivalent to an error in mean longitude proportional

3
to k', and to errors in the other elements proportional to kY,




Consequently, for circular motion, where the mean motion is a con-
stant quantity, the error in the coordinates by the integration
method of Cowell or Encke is proportional to k%_. In this connection
Brouwer first noticed the essential difference between the approxi-

mate computation of a definite integral and the numerical integration

of differential equations; in the latter case the computation of each
tabular value uses the result of a prior integration, so that the
error in this case cannot possibly be considered as the result of
simple summation of errors at each step.

Still, because of loose reasoning, the result of Brouwer on the
quantitative side appears rough} in particular, it does not reflect
the experimentally known fact that the error has an oscillatory
character; moreover, at a sufficiently large number of steps of

integration the formulas give an underestimate, i.e., the true error

exceeds prediction.

At a later time Professor S. M. Lozinsky proposed a number of
general theorems for estimating the error in numerical integration

of systems of differential equations.
The present paper presents the result of the application to

System (A) of Lozinsky's so-called "linearized estimate”?, which was

somewhat modified and adapted in the interest of our problem. It is
shown that it, following Newcomb and Brouwer, one considers the
round-off errors as independent random variables, then for the accumu-

lation of error in the coordinates of elliptic motion the indicated
)

estimate gives the order of k*, and for circular motion the order

1
of k? ,

At the present time this estimate is in press. By permission of the
author we borrowed it from a course of lectures "Approximate Solu-
tion of Differential Equations", read by S. M. Lozinsky at Leningrad
University in 1955-1957.
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This method permits one to take account not only of the influence
of round-off errors on the error in the coordinates, but also the effects
produced by errors in the initial conditions and by the discard of the
remainder term in the integration formulas. Moreover, it is possible
to keep track of the variation of the error separately in each coordi-
nate.

The exposition is based upon an exemple of Cowell's method.

1. A FEW GENERAL STATEMENTS ABOUT MATRICES AND SYSTEMS OF LINEAR
DTFFERENTIAL EQUATIONS

let there be given the rectangular matrix:

Ay Qygy « o oy Qyy
A=|0m Tagy . . «y Gyy

. . L[] . . - . . ®

Qimty Amgy » ¢ o) Qg

We shall use the following notation:

ay= (A} A=]ayl

A matrix consisting of one column is called a vector. Let £ be
a vector with components xii, x® = x=,

We shall denote:

2= {x, x®, ., xM); 0= (£)O,

By |£| we shall denote a vector, defined by the equation
{| 2} =|{2)®|.

Finally, we introduce the norm of the vector £, denoted by [}
and defined by the equation

]
lesn}aitl(x)“)l.




A vector will be considered as a special case of a matrix.
For a given matrix A we denote by A the matrix defined by the

equation

(A)UE (-‘”/«3

it is called the transpose.

The transpose of a vector is a matrix consisting of one row:

£= Ix(l). x('),. “sq x("".

A matrix having the same number of rows and columns is called a
square matrix. The elements {A)x of a square matrix 4 form the
principal diagonal.

Operations upon matrices:

1. Addition of two matrices. By definition:
{A+B)y= (A)u -2 {B)u-
2. Multiplication of a matrix 4 by a number » . By definition}
(MA)g =M {A),.

3. Matrix multiplication. Let a matrix A have n columns, and a

matrix B have n rows; then by definition:

(4B)y= % (Am (B,

If the number of columns of 4 is not equal to the number of rows
of B, then the product AB.1is not defined. Matrix multiplication

possesses the associative property, and multiplication and addition

possess the distributive property:

(AB)C = A (BC),
C(A+ B)D=CAD+CBD,

—




if all indicated products are defined.
The operation of matrix multiplication, generally speaking, does

not have the commutative property:

AB+ BA.
For example, for the vector x:=(x, x®, ..., x*) and its
transpose £ we have:
i == xW o a® x,

but

PO O 1 R (270
= x@x(t) L@ @], (1)

@ ?

4. The transpose of the product of two matrices:
(AB)=BA. (2)

5. Matrix differentiation. Let A(f) be a ma‘rix representing a

function of the scalar argument #; then by definition;

AON, S (AWD,

6. Integration. By definition:

f
l [A()dr [1A@n,dr.
i1, [§) i

Henceforth, we will speak only of square matrices. A matrix whose

elements are all zero is called null and is denoted by O. A matrix
whose elements on the principal diagonal are equal to unity, and all

the rest are zero, is called a unit matrix and denoted by /.

,0...,0
Il by o5 O,
00 ... 1

6
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For any matrix A4 it is true that

Al=[A= A,
The matrix .S, possessing the property
SAS::I,

is called orthogonal.

Consider now the system of linear differential equations
=& n 0
Introducing the vector
g Ay ge, L )
and the matrix
P(&) - lpiy O,
we write this system in the form
§==P()y. (3)

We introduce the matrices of order n U(t,, ), V(ty t), defined

by the conditions:

O=PWU, Uty t)=1, Ulty t)=0 '
V=P(@)V, V(t, t)=0, V(t, t)=1, 4)

which are called respectively the first and second fundamental solu-
tions of System (3). The columns of these matrices represent the 2n

linear independent solutions of System (3).




Knowing the fundamental solutions of System (3), one can solve the

nonhomogeneous problem:
2=P(t) 2+ (1), 2(f°)=i°, i(fo)‘-:-"_.,
Its solution has the form

[
E(O=Ulty 1) 2,4+ Vits, )2,+ [V (5, )2 (). 5

There occurs the following dependence between the fundamental

solutions;

i
Vite )= UG, Ot

to

or
Uty 8)=— }:; Vit 1). {6)

For the proof of these relations it is sufficient that the expres-
sion in the right member of the first equation satisfies the second

group of coaditions (4).

‘2. THE REMAINDER TERM OF COWELL'S METHOD
Let us consider the vector function

G(z)=(G"(2), GI(2), ..., G"(2))

of the scalar argument z and introduce for it the following differ-

ences:
CP=G(M—C©, V=GY—-G": G¥=C"—-aGP, ..;
2 2 2 ]

(7)
V=7 (C‘j’,_+6“i’) (j=1,35...).




We state the interpolation formula of Sterling

$v4-1

G(z2)=G(0)+ E}l A,(z)G‘,”-O' R, (8)

where

32 —1)(s2—4) ... {2—(j—1)3]

Ay (2)= @l

Ay (=228 (=1, 2, ...

If the function G(z) has a derivative of the order 2v+$8, then

the remainder term l_? can be written in the form

du+iG d3+a
R= A, -——7’—2;%(;» TR dzcv'(‘-cg (2)) : i
9
G <v+-1.

Remerk. For each scalar function entered into the expression
C(2), the quantities L take, generally speaking, different values.

We consider now the system of differential equations:

XV=FO(, X9, ..., M) (=1, 2, ... n).

Introducing the vectors
= (0, x®, L, W), F=(FW, FO, F®),
we write the system in the form

2=Ft, 2). (10)

We denote by x(f) a solution of System (10) and by Athe step of
the numerical integration, and we put for brevity
F(t, @) =F(), t,+kh=t,

ol (fg) = Xy, Xpay— 25 +- p—y = A’j..




Then successive integration of System (10) gives

'Q
i) — k= f@")dr",
b

(11)
koo 1 e 1
ooy — e —hty= [ dt' | fEVd" == [ (tpn—1) FE)d =R [(1— ) [ty + h2)dz.
‘k f, f, 0
Writing an analogous relation for the points &-—i, & and com-
bining this with Equation (11), we obtain finally
1
atgy== k[ (1 — 2) G (z)dz, (12)
0
where it is assumed
G (2)=f (te+ hz) + f (ts — h2). - (13)

We introduce now for the function f(f) the differences, analogous

to (7):

fk Ef(‘k)o

O =fu—f
2

N_ g0 )
f£ = k-o-—:- fk—--;-

Then, noticing that, according to (13),

Coﬂ!) e 2}'&”), C(o”—'): 0 (]= 1L, 2, ...

and substituting (8) in (12), we obtain

Atg, — A [ f E‘ ag f1 -4 q,] , (14)

10
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where

aIE2j'(l—z)A,(z)dz (=1, 2, ... (15)

If the function f(f) has a continuous derivative of order 2v-+3,

1, according to (9), the remainder term ¢k can be presented in the

form
1 do+eG ) 1 d»+G (Ca)
G =5 Gz gtz 7T IR ity (16)
IGI<v+1.

To be convinced of this, we introduce the numbers
my M, i=1, 2, ... n, representing respectively the minimum and

maximum (2v-+-3) th derivative of the function GY(z) in the interval
f—v—1, va-1}:

d3+3G0) (L
m< ———dm'(aﬂ <M.

Further, noticing that for 0<z<{1 the factor (1—z)As.s(2)
represents a quantity of constant sign (we say, positive), we multi-

ply it by the inequality and integrate

d24+IGV)
[a— o) Apaatn Tt e g,

m‘< ° 1 ng'

7 T4

Hence, by the known property of continuous functions, we prove

the existenceof a point { in the interval [—v—1, v+1}, such

that

1
d2+HIGH)
I (1 = 5) Anas(e) —737(5’—(‘»‘ ~de
H __ dvG ()
la - o 23043 D
2 4D

11
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Integration of the first term from (9) is carried out analogously.
For sufficiently small h expression (16) can be transforined to

the form

2 d"'.-’,“k) V.44
v,
I R Ay gt ¥ —— e - ag AN

IGl<v+1.

dr¥if ()
T dH

(16')

Equation (14) presents Cowell's method in the difference form.

Corresponding to it is the following sum method
=n [f [ +af, + /§ o fE -+ «7'.'] ' (17)

where

NfiI=/, 4 =d,.

We cite a few values of the coefficients (15):

1 i

“= 7% T
1 37

e T 5040
31 199

% 60480 %7 T 129600
289 i

lls —

3628800 "¢ 3024

3. ROUND-OFF ERRORS AND THE ERROR IN COWELL'S METHOD
If in the precise formulas (14), (17) the remainder terms ¢, §i
are omitted, if for all £x their approximate values are substituted,
and if the necessary round-off is effected, then we obtain Cowell's
difference method and sum method, respectively.

We shall assume that System (10) with the initial conditions

£(t)) =%y R(t—)=2_, (18)

12




is integrated by the sdm method with the step A'(within the domain
where the sought.for solution exists), and as a result of the integra-

tion we obtain the table of values
S~

DT X—’, X—" Xo, X], "0 ey th e 0y (19)
at the corresponding times

"oy I—-’, t—-n to, t“ .0y tt, ey

so that

X % ()= %

We introduce the quantity ¢, defined by the equation

!.EA’X,—-—Q-——EOL:}’&”’ (k=0,1, ..)), {20}
where it is assumed
d)(tn X)EAEF“: .f), d-)tE(T’(ttXt)n (I)z)EA’mkv etc.

The quantity <, is called the error of the sum method,
If System (10) is intcgrated by the difference method, then the
quantity %, which is defined by Equation (20), is called the error

of the difference method.

The error arises mainly due to round-off errors at each step of

the numerical integration.

For investigation of the question of calculation of the error we

limit ourselves to a very simple case of Formula (17):
A = 1 ;
x.=h’[ﬂ ”+ﬁ'f;+¢7.]- (21)

If one digresses from round-off errors, then the computations by
the method, corresponding to the precise equation (21), ean be pre-

sented in the form of the following algorithm,

13




1. The approximation of the values of the initial conditions (18)
X, X-, are given and we enter them in the table of values (19); we

compute &, P_,, and also the quantities
1
d%.nfa‘gb“'ii'd%a
(—1) 1
iD_':_ EXO = X—l —= -1—2 (mo-——- di—l)'

2. From the known mm &_, we extrapolate (we predict) the value

of ® we compute ®-® by the formula

1,00

B2 = B 4- B 4 B,

and we assume
X =84 1®

L,0" 12 no0.

3. We compute

D, X!.O)Eq’l. {

and we assume

1
Xl,lam(l—z)"_ﬁml.l .
4, We compute
d’i((“ Xl,l)Edsl.s

and we form the difference

@h‘——ﬁh,zaXﬁ
if it is found that

I,

14




where A is some preassigned number, then we finish this iteration

process at the first step of integration and enter the value of )h,l

in the table of values (19) in place of Xi. If, however,

the above

inequality is not satisfied, then, repeating the operations analo-

gous to those set forth in ‘3, we construct the following approxima-

tions:

Xl.m Xl.'au R

until the inequality is satisfied

NS¢, X)) — B(t,, X1,1) = 5 <

then we enter the vector X,; in the table of values (19) in place

of X,

5. If in the table of values (19) is already written all X, up to

J=k—1 inclusive, then for computing Xy we find the value of T,

defined by the equations

or

k=1
W=+ kD Y (k— )T,
2

J=0

AN =3,_,

(22)

(22')

we extrapolste the value of ®,, and construct the following

approximations by the formulas

The iterations are continued until the inequality

is satisfied.

X =0V + 1—12 o, ,,

By 1 =B(ty, Xr0), (=0, 1, ...

1Be,1— B e =K N <N

15

(23)

(31')
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Thus, if all Xy from (19) are obtained in / approximations on

the kth step, that is if

Xk=Xl'.l (k=1, 2. ---)v

then it is necessary for the condition {23') to be fulfilled.
The quantity %, is called the error of method (21).
l,et us suppose now, that all &, , &, are computed with the

errors fr i pxr Ssubject to the inequalities

lpe <o (|k>1, i>1),
leell<e (> —1),

where ( is a fixed number. This generates in the quantities ﬂ&*”
the errors g, which, according to (22) and (22'), satisfy the rela-

tions

Apre=rp, (k222 (24)

Let us suppose further, that in the computation of X, X

round-off errors pj, fy, are introduced, satisfying the inequalities

where pois a fixed number (for example, if all X, X are computed to
§ decimnl places, then it follows that p-—w%IO‘Q.
With regard for the errors introduced above, liquation (23) and the

condition (23') must be written in the form

Xe :‘Hr_n" P ! %),“"’"" kP %o (1%,‘])"- ‘) + e (k2> 1); (25)

| \'JhCl (]
1 ('l, . l (-l'
o 12 ol : 12- 'l).

P, 0 — B, 4 gt — o, i = PR )| <0 (k>1). (25')

16
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Proceeding now to the calculation of the error

4, =A%, — &, —--i!‘- A,
we introduce the auxiliary quantity
=X -0 —38  (k>—1) (%)
then, according to (25) and (25'), we find

' ' - H ( t 1 3
t,=Ff+cT (\11_2;5*) A g+ 35 (Br, s — Do, 11) =+ P, a2+ 0T (11—2) B, +

_ 1
Hence, observing that
= A% . " ()

and applying the operator A® to both members of the abBove equation,

with the aid of (24) we find finally

1 3 1 : o 1
hW=hk+g5 A%+ er, (Q) 820, + A%, -+ V] A%, (k>2), (26)
where it is assumed

Br =Py, 141,

Remark. If one makes use of the definition of ¥ and intrc-
duces also

W= U -,
then Equation (*) for k=0, —l1gives
‘!; = ‘!_| =),

Hence, according to (**) 1t is easy to show that Formula (26) can

be retained fork=0.1, if R.Pl‘ are replaced by the quantities
Pos P-1v and likewise it is assumed that

Ge=p_ =0, Y=%,=0
and in the expression er. (-il-i)A’(b, it is considered that

°°= 'b—l =-0.

17
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If the integration of System (10) is carried out by the difference

method corresponding to the exact formula
1
Algy=Ah' (ft""ﬁA'ft "Hh) )

then, repeating all of the above discussion with the corresponding

changes, we come to the following expression for the error %
1 ’ 1 .
1,=p,+11—2A’p; ~+ er. (1'2) A, + p,+i-2A'7~n (k>0), (’2'6')

where by p, are meant the round-off errors for A%, subject to the

condition
I<w  (&>0),

and all remaining quantities have the previous meaning.

Later we will make use of the expressions (26) and (26') in place
of the approximate values for the error &%, defined by Equation (20).

Remark. The quantities py were defined as errors arising from the
computation of the vectors ¢, if in the latter the components of the
vectors Xy are considered as precise numbers. Following Newcomb and
Brouwer, we will consider these errors as independent round-off errors.

4. THE LINEARIZED ERROR ESTIMATE OF COWELL'S METHOD

Let us suppose that the times ..., t—gy f—1y fgy #1y cooy fay o0
correspond to the quantities (19) obtained by numerical integration
of System (10) with the initial conditions (18) by Cowell's method.

This means that these quantities satisfy the following relations:

A’Xﬁ:hz \F.-F jil'aljpvj)] + % (k> 0)) (27)

where it is assumed

Fg'-——-"F(fk, Xk), ﬂz)EA'Fg s E%eh

18




and by % is meant the error which is computed by Formula (26) or
(26').

Designating by £(t) the exact solution of System (10) with the
initial conditions (18) and assuming £(&)==%xn we introduce the

following definitions:

a) the error of approximation of the solution X (or the error of
Cowell's method)

Kot =, W, ..., ) (28)

b) the Jacobiean J(¢, %) of System (10)

OFO (¢, ), x(3), ..., ¥
{J, x))y,= o d;;

(here % represents the set of the independent coordinates);

¢) the Jacobian in the unknown exact solution
J@O=J, =)

d) finally, we obtain

1
Q= _[j(hn Ry~ ady) da
0

[The quantities @ defined only for the condition that the segments
Ly, connecting points {ty, &)and (tx, Xb) of the‘(’l"'l) dimensional
space, are contained in the region of definition of the solution
2(0].

Subtracting (14) from (27) and using the obvious identity

Fl' —fk == kah
we find
A% .
o Qi+ ;a,,.av Q)+ 35 —a  (20), (29)
()]
19
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where AY is the central difference operator of order 2j.
Equation (29) is called the equation of errors.
In order to simplify the problem, we replace this equation by
the following approximation:

]
B = Jt0 B+ 35— d; (20')

Equation (29') is called the linearized equation of errors
(Lozinsky) .

Let us introduce the fundamental solutions U(t, ), V(t,, t) of
the system f§=/f(¢)g, defined by the conditions of type (4). Then
the general solution of Fquation (29') by analogy with (5) can be

written approximately in the form

skzsk.()"' Sk.t"“ sk.q (k> 1), (30)
where it is assumed

Bk,0= U (t,, ’k)so“'!—qo;:i(so—s—l). (31)

k—1

skv 152 V(’nu ’k)}hl ’ (32)

m=0

k=1

S*WE-—' E_‘Jov(’mv ’k)q-mh- (33)

Every estimate according to the absolute value of the right
member of Equation (30) is called the linearized error estimate of
method (14) or (17).

The quantity & erepresents the error created by the errors
8o= Xo— % S =X_,— Xy

in the initial conditions (18) and is called the error of the ini-

tial displacement.

20




The quantity &, . is the result of round-off at each step (and
also is due to the error of the integration method) and is called the
round-off error.

Finally, the quantity 8¢ is the result of omitting the remainder
term in the integration formulas (14) and (17} and is called the quad-
rature error.

Substituting (16') in (33) and approximating the sum by an inte-

gral, we find the estimate for the quadrature error

4
Sl d2r+2
13, o] < ah*ﬂhl*aj V(E, h)-jﬂwégldElﬂ-
g (34)
e
v 3 2944
o | (- DA VG, ) Srh® |,
b
or disregarding, for sufficiently small A , the second term of (16')
ly ,
B, o~ —“zvﬂhz'ﬂ_“ V(E, &) %ﬁ@ - dt. (34")
7

Usually in practice the quantities = {2} are limited thy.

the absolute value

l‘t(k‘)l<1,

Taking absolute values of (32) and replacing all ltf” by t, we

obtain the estimate of the round-off error in the form of Lozinsky
T oAt}
|30 (< N (35)
where

Ix &

vo=[ 31t Wi

6, 7=t

2l
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According to (26) and (26'), in the sum method <t takes the value

1 i
tF_-—43-p+4 er.(l—z)M-+-4P~+'§"~.
and in the case of the difference method, the value

=4 1 gl
T=gp-+4 €T, (ﬁ) M-+ 3,

where it is assumed

M=max[R*|FO (t,, Xn)l]= max[h?|FO(t,, 2.)]],
1<in, 0Kmk,

Estimate (35) can be improved a little if use is made of the

following identity

k—1

ZOV(L.. ty) A%, = V' (¢, 80, [V (), ts)—2V (to, 1)]8;+
1 %)
+k2: A:. V(lm ll) Bn""'[v(ll—iv fg)——QV(l.._" fl)]el—l""v(fl—h li) elv

where §, are arbitrary vectors. Introducing the definition

NV (& 1)

VIE, )= —5

and utilizing the relations

A:v(lnv ll)Ev(lm-—lv ti)_'z"’r(inv tl)+v(tn+lv t!)wh’w(lnn tl)v
Vi, 8)=0, V(tr-,, t)=hl,

easily deduced from (3), (4), and (6), we shall rewrite the identity

(*) in the form

k-1

g.v(:,,, t) A%, =~ V(t,, )0, +[V(t, t)- 2V(t, t)]0, +-
' (*#)
+ht 2_)1 V' (tm, tr)B, + AB,.

(2




We shall now substitute (26) in (32) and the result of the sub-

stitution we shall write in the form

3k,,-35k.9—0—5y,,-—0 Sk.‘l‘"‘gl’.l‘-’_sk' A (36)

where it is assumed

k—ﬂl P?“'
S*-PE 2-! V(tvm tk)_},:»

m=0

k—1 P (37)
sk,uE 2 V(tim tl’) AzT y

m=0

Let us assume in the identity (**) B,=0, and make with its help
the estimate |6w“|, replacing all ]pg” by their maximum value p;

then we shall obtain

|39, | <wv 1+ PY),

where

(7% "

PYp=| ,2:', | o), & t)|dE.
g =
The estimate of the terms 3§ .., 3.4, &1 from (36) is made

analogously; thus it is revealed that (at least for equations of
celestial mechanics) all these terms, differing from the term 3§,
by the small factor A? represent small values in comparison with
it, so that the estimate (35) for the sum method can be written in

the form

|37 =80, <F NP, (38)
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As for the estimate of round-off error in Cowell’s difference
method, substituting (26') in (32) and reasoning as in the preceding
case, one can show that here the principal terms will have the values

5,, ¢ and
k—1

S, = Zo Vit "')117.:’ (37°)

M=

and with respect to them, the terms § ., &0, &,2 Will give small

corrections, so that the estimate {(35) can be replaced by the

following:
5 > P Ante)
|80, e 80, 4 40, | < B . (38")
Thus, knowing the fundamental solutions U(t, t), V(t, t) of the

system §=J({)§ and using the estimates (34') and (38) or (34') and
(38'), we can, according to (30), estimate the error (28) in the

integration of System (10) by Method (17) or (i4):
I8 | <1 8u 0l Be, g |+ 13k, |

Remark, By integrating the equations of celestial mechanics
always with a sufficiently large number of differences in the integra-
tion formulas and with sufficient accuracy in the initial conditions,
so that in the right member of the above inequality the first two
terms have practically no influence on the estimate of the error §,
then this inequality, taking account of (38) and (38'), can be
written in the form

: |40] < 5N (39)
(for the sum method) or ' /
) < v (39°)

(for the difference method) where the quantities ANv’ are taken from
61 .

The estimates (39) and (39') can be im?roved if, as adopted in
celestial mechanics, round-off errors,ﬁlpf) are considered as
independent random variables in the sense of the theory of proba-
bility (see the remark at the end of Paragraph 3).
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5. ON CONDITIONS OF THE APPLTCABILITY OF THE NORMAL DISTRIBUTION
LAW OF PROBABILITIES TO THE ESTIMATION OF ROUND-OFF ERROR

Some real variable £ defined by a random quantity is called sto-
chastic (or simply "random variable"”), if for any fixed x the proba-
bility of the inequality t<{x, designated by ¢(x), is known; by varying
x from — o to +© we obtain the function ¢(x), which is called the

distribution law or the distribution function of the random variable
£

The relation of the random variable § to its distribution fumction

¢(x) is written in the following form:
PE < x)=¢(x).

The argument of P can be transformed to equivalent inequalitieg
without changing their probability.

Axioms of probability impose on the distribution function of any
random variable certain limitationsE

1) ¢(x) monotonically increases in the interval — oo <x <<+ oo;

?) ¢(—m®)=0, ¢(-+o)=1, etec.

Knowing the distribution function of the random variable §, for
the given quantities x,, x4 one can find the probability of the

inequality x, <<t{<x, by the formula

Px, <E<x)= 9 (x5) — ¢ (x)),

whence, in particular, it follcws that

P& <) =9 (x)— ¢ (— x). (40)
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The random variable {, having the distribution function

. 1 o
G(z)EV—;_—Ie T dz, 1is called normal, and the function G(z) is
1,1
-0
called the normal distribution law of probabilities. According to

(40), for the normal random variable { we have

r 4

‘ 1]
P(l(l<z)=d’(z)5%—ﬁje T "ds, (41)
[}

We cite a few values of the function ©(z):

z ®(z) z b (2)
0.03 00239 0674 0.5000
0.1 00798 1.0 0.6826
0.2 0.1586 1.5 0.8650 (42)
0.3 02360 20 0.9544
0.4 03108 30 0.9973
0.5 03830 40 0.99%9

For the random variable £, the distribution function of which has
a continuous derivative p(x), the following definitions are intro-

duced:

1) expected value

+m
k= I xp(x)dx = a;

-0

2) variance

DR)= K (t—a)=b;

3} third absolute central moment

Elt—aP=c.

If A Is a constant quantity, then

EXe=\ £E, D(A, §)= D).
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The random variables &, §,..., & 8re called totally independ-
ent if the probability of the inequality §,<<Xx for any fixed m is

not dependent on the values the remaining random variables take,

THE CENTRAL LIMIT THEOREM OF THE THEORY OF PROBABILITY

Let &, &,..., & be some totally independent random variables,
possessing the expected values E §,=a,, the variances b, and the
third absolute central moments c, (1 < m< k).

Then the distribution law of the quantity

x
D} (Em - am)

C.:-—___:"'=l_____

VB, '

k
where B.Ezb,. tends to the normal law G(z) for k—» o, if is satis-
m=1

fied the following condition of Lyapunov:

hh=—35——>0 for k- o,

The theorem signifies, that

k
D (bm—am)

P('ELE— <z |=G(2),

or, according to (41),

E (Eﬂ Dk am)

m=]

g

AY

<zv5;) ~0(2).




Returning now to the notation of Paragraph 4, we shall consider
the rourd-off errors ¢f) from (37) as independent random variables

having the same distribution functions

e(x)=0 for x < —p,
(x)—-.——— for —p < x<<py
¢(x)=1 for x>¢p
(uniform distribution of a random variable).

The quantity p, appearing in the definition ¢(x), must satisfy

the inequalities

[ D] <p. (43)

Applying the theorem to the random variable %ON we find succes-

sively

P =0, DEM=%, 0<m<<hk—1;

; Fz k=1 n _1. p2
BY = > N (t, t) S N,
m—n ,:—1
where it is assumed
e n
Ns;)—j 3 o2, (&, 1,)dE. (44)

The above theorem leads to the following statement. If the con-

dition

5 ZII"U(E l,)ldﬁ (*)

P—"',— - =0 for k—> @,

(N&‘))”'




is fulfilled, then to the round-off error &)  we apply the normal

distribution law of probabilities
P{i#0,| <z VBD)=(2). (45)
Remark. In all cases, which we subsequently encounter, the con-

dition (*) is fulfilled, and we will not dwell on it further,

Let us introduce the coefficient of overestimating of Formula (45)
: 8%

R

whicn is itself a random variable
Pa<y)=P(ZVBI<|3,[)=1—n(%).

The quantity d, defined by the equation d:=P(n<1)=1-—0(z),
represents the probability of underestimating and must be considered
as the defect of Formula (45) for a given z.

Of greatest interest is the quantity
P =P <n<y = (z)—(£), (46)

which characterizes the probability of "cleanly" overestimating given
by Formula (45).

For z==3 Fommula (45) gives

R
300 2 VNG
1% 1< 3 VIVt (47)
h
wilth a probability of 0.9973, where the quantities 0, NY’ are deter-
mined according to (43) and (44).

With regard for the observation made at the end of Paragraph 4,

one can write the following probability estimate for the error of the

sum method (17):

. VY e
W< VNP =,
% (48)
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The probability of underestimating will be d==0.0027.
With the help of (42) and (46) one can determine the limits of

"cleanly" overestimating, given by Formula (47) or (48) end the
probabilities of their realization.

v ply)
6 0.6143
10 0.7613
30 0.9175

100 0.9734

Thus, for example, according to the resulting data, one can
assert that with a probability of 0.7613 Formula (47) gives a "clean"

overestimate by less than a factor of 10.

Remark. Repeating the above discussion, we can write the proba-
bility estimate for the terms & ,. 8, ,. from (36) if the errors
w9, p2 are considered independent random variables and use is made
of the identity (*) from Paragraph 4 [here are obtained small correc-
tions to the righi members of the inequalities {47)], and also the
estimate of the temm (37') if the errors p!? are considered inde-

pendent quantities. Hence, making the estimate of (37') together with .

(37), we shall obtain the approximate estimate of round-off error for
the difference method (14) 5
Vel +p't V3

|a$“')'+;b$,‘,’“, | < S VNP,
h’
which, according to the observation at the end of Parasgraph 4, can be
extended then to the error §,,

6. ESTIMATION OF THE ERROR OF NUMERICAL INTEGRATION OF THE PROBLEM
OF TWO BODIES (ELLIPTICAL MOTION)

Let us consider the system of equations of undisturbed motion

Kex Ky . K
'e'*_,-T—‘Ov y+7}'_0v zH T:-:Ov (49)

rr=xl gyt 2t
and let us assume that it is integrated by the sum method. The gen-
eral solution of System (49) has the form
x=a[P,(cos E— &)+ V1—¢'Q, sin E],
y=a[P,(cos E—e)+ VI —e'Q,sin E], (50)
1=a[P,(cos E—e)+ Y1 — &'Q, sin E],

20



where

Ka

I

E—esinE=nt—T), n

Here P,, P,, P, Q., Q, Q. denote direction cosines (Subbotin,
1941).

Let us introduce the vectors

g={x, y, z2)={x1, B O}, (50')
£*(t)={a(cos E—e), aVi—eé® sinE, 0}

and the ortiogonal matrix

P.. Q, =VI—PI—@Q
S=llsyll=|P,, Q, =VI—PI—Q| (51)
O A

The signs in the third column of the matrix .S are taken in such a

way that the orthogonality condition is fulfilled, i.e.,

Ss=1. (52)

Then Formula (50) can be written in the form

() =Sx*(1). (53)

In the notation of Paragraph 4 we find

- 3x*—r?, 3xy, 3xz
/(tv f):—‘;.'.{' Sxy' By’—rzv 3yl .
3xz, 3yz, 32—/

Desiring to simplify the algorithm for computing the fundamental

solutions Ulty, t), V(te t) of the system

g=/()y,




we introduce the matrix
JrO)=J(t, 2*{t)
and the fundamental solutions U*(ty, t), V*(t, t) of the system
gr=s 05"
Then according to (1), (2), (52), and (53), we find successively

JO =282 £O —r* (O N=5/* O;

Ulte, )=SU"(to, 1), (54)
Vite t)=3SV*(t, t)3S.

Proof of the relations (54) is immediately and sufficiently con-
vincing by the fact that, using (53), their right members satisfy the
conditions of Type (4).

Matrix J*(t) has the form

A, B, 0]

J*=|8, C, 0|,
0, 0 D

where

i n,(3 — ¢?) cos? £ — 4ecos £+ (3e? — 1)
ly (1—ecos£)? ’

B n23Vl—e"(slnEcosE—eslnE)
(l1—ecosE)b Y
C=",(2¢’-—3)cos’E+2ecos E 4 (2— 3¢9
- (1 —ecos E)b T

—1
Sp T
D=n (1 —ecosE)’

Hence

vy 5 (tg, 1) =0, 1 o (tss 0)E=0,
";,l('o' ty=- 0, U;_,(fm t)==0,
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e . s s
and the quantities v}, Ul, Yp . Uy p vy, 88tisfy the equations

o), ;= Av; ;+ By, ,
v, ,= B} ,+Cv; , (j=1, 2).

03,y = Dy 5

The solution of these equations has the form

vy, (ty )= R El)(l ey A {[(1 — e* sin E cos E +esin E} X
X cos® Ey-+[(e? — 1) cos® E -+ (e* — e} cos E -+ 2 (1 — e%)] cos £, sin Eg +
+[(e — €°) sin E cos E + 2(e* + 1) sin E]cos E, -+ [—ecos® E —
— 2(e* -+ 1) cos E -+ Se]sin E, + [—2(1 — e*) sin E cos E — Se sin E] —
— 83 sin Esin Ej(F — E));
v;-'l(lo' ty= n(l—e co:é)_(lez— e cos L)
-+ [sin E cos E -+ esin E) sin E, cos E, +[—e cos* E + 2 cos E— e]cos E,+
~+[—esin Ecos E +'2sin E]sin E, +[cos’E -+ e’cos E— 2] 4
-+ 3sin Ecos Ey(E — Ep));
U;-‘(lo’ = n (1 —-ecoill,")_(;-—ecos Fo)
-t [—sin Ecos E -+ esin E]sin E cos E, + |[—ecos E—2cos E —e]cos E,~+
-4-[—esin Ecos E—2sin E]sin Eg+ [2cos* E+ ecos E--2]4
43 cos Esin Eg(E — E,));

! {[sin E cos E -— e sin E] cos? E, +-

U;.i(lo' t)y= n (1 —eacos E) (1 — e cos £y)
1-[—cos* E -+-(® 1-e) cos E — 1]sin E, cos E, +[—- (e’ + e)sin Ecos E +-2sin E)cos Ey +
t [ecos’ E—2cos E +-e] sin £, +[sin Ecos E—esin E]—3(1 — e’ cos E cos Eg(E — E,));

], 3 (tt) =~ [sin E cos Ey + (- cos E-v e)sin E,— e sin E].

{[cos® E -+ ecos E —2]cos® Ey-4-

(55)

{[—cos® E+ecos E— 1) cos® E, +

The correctness of Equations (55) is ascertained by direct sub-
stitution of their right members in the above equations and verifica-
tion of the appropriate initial conditions [see (4)]. Here by E, is
meant the initial value of the anomaly

Ey—esinE,= n(t, - T).




Passing now to the definition of the matrix U*(f, t), we have
according to (6)
1

(s l)=u_ e BT = reas Eop {3sinE(cos E,—e)(E — Ep)+- ...},
. \/]_a 2 .
u, 5 (ln! ) (I—GCOSb)(lf—ecosb I |35|DESII‘\E°(E—EO)—}.. .. _).
A—et (5t
uy,, (t l)-—“_ecoqg)“_”o‘[_-o), {—3cos E(cos E,—e)(E— E)+...),
1

uj ot )= Mevees TN = vasr B {—3(1 —e')sin Eycos E(E — Ep)+-...),

uy oty )= ..,
where the dots denote periodic terms, which for us have no importance.
The relations (54) give

Ut ) =] (G 50 5500 0f Lt ) s, (8,0 v, (b )8, 5, 0

+ w5 . W, d)s, Sp0 VS a(te t)s 05y,

and the analogous.equation for u, ;(t, ), whence, introducing the

quantities
ai"':‘—'. sy, sin Ey— V1-—e? s,z c0s Ey, |
T(;)—:-, ;.1 (cos Ey—e) 1-V1 — e*s, 4 sin K (r=1, 2, 3),
where

Ey —esink, . —n(ty— T),

according to (55) and (56) we find to within the secular terms

'h(')c‘”
n(l =« cos Fy) (1 — rcos I )(F* Eo,

3 (57)
i (P' Eo)~

U‘, ] (lnv ll‘)

. i {ta W)= = ecos Ly) (V= e cos Fg)

Substituting {57) in {31) we obtain the expression for the error
of the initial displacement

(0
3 U0 | 0 | )

5"“"’(1_,00\/”(1_‘,‘.“, ey l'fn 0 Yo fa b Yot

‘m'(fk = Eg)
34"
) 3% |c(l) 3l ;n) - ')(qn \m) (1)(.(1) 6(:' )I
nk (1 — e cos £y) (1 — ¢ cos Fq) L ! = -1 1 (Fl

34




Equation (34') with regard for the relations (53) and (54) gives

the estimate for the quadrature error

- +4
3, ~‘—11'+)SI V*(E tk)i'd—z::'__‘(—e?"dEv

Hence with the aid of (50') and (55) we find to within the secular

terms (for simplicity the formulas are written for e==0)

6&, = 12a2v+2°&‘)(nh)h+u( Ey— Ey).

We turn now to the calculation of the quantities A&Q defined by
Equations (44) and appearing in the estimate of the round-off error
(47). For this we notice, that these quantities form the main diago-
nal of the matrix VV, which, according to (54), can be represented in

the form

YV = SV*V*S.
Hence, introducing the notation

)
Nyt == ( l":. y & 'A-)U;.: (& )+ ":. (6 ty) ";,'1<E» l,)l dt (i=1,2, j=1,2),
1 "
NyO9=: [ ot &, 4,)dE,

fn

we find

N;a) =N:“ 1) -z - 2N°“ ”s‘ ™ N°(2 g 2 i N:w':')sj.n' (i=1, 2, 3). (58)
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Flementary calculations according to (55) lead to the following
expressions for the quantities N;'“/(which for simplicity were
written for e=0):

N0 = J- A3 sint Ey (Ex — E, -+ 6 sin Ey cos Ey (Ex— Ef'+-
4-{?;-«-‘—25 sin® Ey -+ 12 sin® Ex cos (Ex— E,) +12 sin Ey sin Eo] (Ex— E,) +
+[24 cos? Ey sin(Ex — E,) — 32 sin (Ey — E;) + 3 (sin Ey cos Ex — sin E; cos Eg) —
— 3 (sin? B+ 1) sin2(E— E) |},
N o= L {—3 sin Ey cos Ev (Ex — E,)* — 8 (cos? Ex — sin® Ey) (Ex — E)*+
+[-—-—l—; s8in £y cos £y — 12 sin Ey cos Ex cos (E;,— E;)— 6(sin Ex cos E, -+ sin E, cos E.)] X
X (Ex— Ep)+[ 24 sin Ey cos Ey sin(Ey — Eg) — 5 (cos® Ex — sin® Ey) +
- 3 (cos® E,— sin? E) + 3 sin Eycos Ey sin2 (Es— Ey) ]},
NewD = {3 cos? Ex (Ex — E,)* — 6 sin Ey cos Ex(Ey — E, -+
+[ 5+ F cos? B+ 12cos? Ey cos (Ex — Eq) + 12 cos Excos E, | (Ex — E)+
+|_'_24 sin® Ey sin (Ex — E,) — 32 sin (Ex— Eq) — 3 (sin Ex cos E; — sin Eycos Eg) —
— ¥ (cos? B+ Vsin2(E— E) |},
Ny = {5 (Bx — E) — 3 sin (B — Ey)cos (Bx— E))}.

k

Hence, having used the quantities

a(k‘) =s,, sin Ek'—sl.i cos E* (,'._—_' ], 2, S)v

T(,:)= §,,1 €08 By 45, ,8in E,

from (58) we find
1
N = — {sa‘;”(E. — Ey -6 (B — E + [ ‘73 — 6st3 -+ ‘—25 & 4 126" cos (Ey — Ep) -+
+ 12400 (B, — E)) -+ [ —8(1 — 2 ) sin(E, — E;) — 2" sin(E, — E) + (59)
=3I — o)+ (— A — e st sin2(E,—E) ]} t=1,2,9)




—J

For ews«0 , Equations (59) must be replaced by the following
(for s,3=0)
NP = it g g [ 347 (B, — EP -+ [6o{r{9 — Be sin Eyfp* — 9e sin Ef) (E,— EQ -+
T [? & (1 — )l cos 2B, + (1'— ') [24(cos E, + ) ' — |
—12sin Ecdf") cos £,+ (1 — €% [6 (e + 4) sin Excl” + (60) |
+ 12.cos EMY] sin Ey + [ 2¢? cos® Ex+ Se con £+ (§ — - o') | 10"+
~+[ (¢! — 96" cos’ Ey + (4e — 8e) cos Ex + (— 7 ¢t — o' +14) | o+
+-[8e* sin By cos Ey + (Be? -+ 4¢) sin E.]agw](s. —E)+[...3},

where

o) == 5.1 sin Ex — VI —e's;,3 cos Eiy
(‘)—'[(1 + e*) cos Ey — 2e]si,1 +- VI—e 8,2 sin Ey.

Here the dots denote periodic terms differing by a small quantity from

corresponding terms of (59). i

Inversion of Keppler's equation [see (50)], gives
E:‘:M—O--esinM-#-—;-e’sinZM-+—...,
where

M=n(t—T),

hence

Ey— Ey==knh -+ 2e sin "—'2"’ cos M“',:M" + e*sinknh cos(M, - M- ...

If k corresponds to an integral number of revolutions, then

Ex— ky=knh,
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For a sufficiently large value of knh and for o)+~0 Formulas
(47) and (60) give the following approximate expression for the

round-off error:

M3
it < s 20, (61)

{1 — ecosEy)
where
o= s, 1 sin Ex — V1 — e* si,2 cos Ex-

One can compare this result with the well known estimation of

Newcomb, which in our notation can be written in the form

S|
2

15, Il < 0.2250k72 .

From the standpoint of the theory, stated in Paragraph 5, the
probability of such an inequality will be equal to 0.1780 [see (42)
and (46)].

If use is made of the estimate of round-off error in the form of

(35), then we obtain the following results:

[0, < ei¥ &~ % V30 |0 ke, (62)

Remark 1. Let us consider the case of circular mction described

by the equations

£ o n2x(h) == 0 {(i==1, 2, 3),

3
2.\{‘!2 == %= const,

where n* is a constant.
Let us suppose that this system is integrated by Cowell's
method. The general solution cof the system has the form
) =r (34,1 cos nt + 24,9 8in nt) W=7, 2, 3).
Calculating the estimate of the error of numerical integration of
this system by Formulas (47), we find successively

sin n (! — tg)

v, ¢ {tg, 1) = v, 4 (tg, ) =0, iv )

Vs 1/5 1
W.'J < &«)_ ‘/knh ——cln 2knh >~ 2 le

KR 3
(nh)*
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This result was predicted by Brouwer.
Remark 2, Let us consider at the seme time the equations of disturbed
and undisturbed motions e

rs

!+K%-'==0.
where R is the disturting function. We shall denote respectively by
X,, Xthe results of integrating these systems by Cowell's method with
the same initial conditions., Then because of the small value of the
disturbing function R one can put X, —s,~X—2 and estimate ‘the
error of numerical integration of the system of disturbed motion by
the formulas of Paragraph 6. (This hypothesis is a supposition of
S. M. Lozinsky.)

P 0 =R,
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THE ACCUMULATION OF NUMERICAL INTEGRATION ERRORS IN SOME
PROBLFMS OF CELESTIAL MECHANICS

A. S. Sochilina

The results of the application of estimetions of errors in numeri-
cal integration (Myachin, 1959) to numerical examples are presented.

Recently in connection with the rapid development of computing
equipment, methods of numerical integration for the solution of the
problem of n bodies have become most effective. Such enormous works
of calculation as "Coordinates of the Five Quter Planets 1653 - 2060",
"Coordinates of Four Minor Planets 1940 - 1960", and others, were
accomplished by methods of numerical integration. However, the
sccumulation of errors in integration essentially reduces the quality
of the numerical methods.

Errors arise:due to limited precision ot the calculating machine
(round-off errors), neglected differences in the integration formulas,
and inaccurate values of the initiml conditions.

Errors duc to neglected differences can be reduced to a minimum by
a suitable choice of the interval and the number of terms in the inte-
gration formula. The calculation of errors in the initial conditions
does not present great difficulty: if the initial conditions are com-
puted with the precision with which the computations are carried out,
then one can consider these errors as round-off errors in the first
step of integration.

In the majority of cases it is important to know the dependence
between the number of steps and the number of lost digits, in order
to provide for the necessary precision in advance or determmine with
what error any or all quantities were obtained.

With this aim B. F. Myachin (1959) investigated the formulas for
estimation of the accumulation of round-off errors in numerical

integration of' the equations of motion of the two-body problem.
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If the eccentricity, e, is neglected and the true error at the kth

step is indicated by &8?, we can write these formulas in the following

form:

< (k=1,2 3..; i=1,123),

where k is the number of steps, / is the number of the coordinate

(x' y' z)'

0__ pV3 ™
Ei— = W V’V (EA:),

NO==3d02(E, — E) + 6o (E, — E) -+ [;‘ — 682 g+ ’; o2 4+ 1202 cos (E, — E) +
+ 120000 |(E, — Ep) - [—8 (1 —s2 ) sin(E, — Eo) — 2469% sin (E, — E,) + (1)
4+ 3P — ) +-(— For— 3+ 352 ) sin2(E, — )],

=1z, , sin E,— &, ; cos E,

19 =s, cos E +s ,sinE,,

S, Sew Si3 Are the direction cosines (in general denoted by

P, Q, R), n is the diurnal motion of a body, A is the integration
step, Ep is the eccentric anomaly (in the given case the mean, since
e=0), and p is the maximum round-off error in the computation of
the right members of the equations at each step.

We used the formulas in this form for numerically comparing the

error 8§,  obtained by numerical integration, with the predicted

e&‘),

1. We shall carry out the indicated comparison in the exsmples,

which were specially computed for this purpose (the examples were
computed on the electronic machine BESM AN-SS3R). The problem of

plane undisturbed motion is solved with various initial conditions
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(orbital elements). The valuec of the interval of integratjon and

the elements are selected in such a way, that one revolution is
accomplished in exactly 100 steps. 1In all, three examples, each
having 1100 steps, were computed; the initial conditions werc defined

by the following elements:

lst example '2nd example 3rd example

Mo o Wl e e 0° 0° Q°
6% 5§ jomo opo 0 o ogo 0° Q° 0°
' 0™ 0 6 0 0 0 ako o O 0.04825380 0.04825380 0.2
@' © 0somo 0 0r0 .0 040 299128376 648" 648"
Integration steph. 431435258794 2040 2040

Integration was conducted by Cowell's sum mcthod taking account

of fourth differences

B |l L gPe 3
K= JOV o f — om O s O,

where

FE—T

i

and X is a vector with the components X, V, Z.

The results of the integration

Xn X-n © oy Xk: .

were compared with the values

x,, ..i‘z, o8y Xh s e 8y

computed beforehand by the formula of elliptic motion to the 6th

decimal place, and the difference
Xk'—Xl.=Sk

was taken as the net accumulation of round-off errors, since the
influence of the higher differences in the integration formula, in
the given casc f®, was computed with the maximum precision
(<1107
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In the future we will not take these errors into account, since
in all of the works considered their influence lies beyond the limit
of precision with which the computations are performed.

For the round-off error, ,, the adopted value is 0.5 x 10°°; that
is, the precision with which f was calculated at each step. One can
ncte that Formulas (1) are considerably simplified if the estimates
are computed for the points Ey—E, as multiples of 0, —;—, r, :—;-'1:.

In our case, since the problem of plane motion was solved
(sy=8u3=1, s);=s, =0) and integration began from the point of
perigee (E,=0), Formulas (1) are simplified still further and
become
ag>|<eg>=-%pvm (=1, 2 k=1,23...),
(nh)*

N (E) =2 E, N®(E)==3El+38E for Ex=2mm, (m=12...)

13

NO(E)=8E} + 14E—32, N®(E)=-5 E—8  for Ex=/(2m ) (2)

2

N“)(E,)=12‘:‘E., N(E)==3Ef—10E, for Ex=(2m~+1)=,

NYE)=3Es v 14+ 32, N®(E)= 1—? Ex-+-8 for Ex= (2m -t —g-) .

Beginning with % >200, the ratio F—{’,‘— is of the order of
“k
therefore, neglecting the first power of E, in comparison with 54

L
100’

and letting Ey==nhk, we shall obtain

)
2

AN="70.3k7 , <2 =3pk?

for Ey = mmr,

b ) _
a(kl)=3pl<7’ {2 =70_3p/<§ for (B (m - _} =
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We note thst for all three of the examples under consideration ¢
are the same, This is stipulated by the fact that the product nh 1in
all the examples is one and the same (i%) and, in addition, the
influence of eccentricity is excluded in the cited formulas.

However, the eccentricity does not very strongly distort the
result. For k>200 the formula of estimation (Myachin, 1959) is
written in the form

3
-2

k
3k=39|°tl"{_

ecos £y *

In Table 1 are cited the computed |3 and the predicted errors
). The first column gives the mean anomaly for all three "planets";
the '2nd, the appropriate number of integration steps; the 3rd to 8th
columns, the true errors ﬁg) and &Y for examples I to III; the 9th
and 10th columns, the values of ¢! and ¢, the estimate of the
error in all three examples. The values ¥, ¢/ are expressed in
units of the sixth decimal place.

Comparing the 3rd, S5th and 7th columns with the 9th; or the 4th,
6th, and 8th, with the 10th; we can judge the quality of the obtained
estimate, Note that the estimate reflects the oscillatory character
of the accumulation of errors.

2, From the stsndpoint of the sccumulation of errors it turned
out to be of interest to examine the coordinates of Uranus, Saturn,
and Jupiter obtained by D. K. Kulikov by integrating the Vviiith
satellite of &upiter for the period from '24 January 1930 to 28 August
1965. The integration was carried out on the electronic calculating
machine BESM with steps of 10 days (all 1300 steps). The coordi-
nates of the plsnets were obtained by simultaneous integrhtion of the
system of nine equstions; the initial coordinstes were taken from

"Astronomicsl Pspers”" (1951).
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TABLE 1
{
lst Example | '2nd Example , 3rd Example Estimate
Number 313 . -
Anomaly of

1 )

Steps 6&‘) bs{z) a‘n 5‘” bg) b&,’) ,L ) ,&

0 1 0 0 0 0 0 0 0 0

90 26 0 0 0 0 0 0 0 0
180 51 1 1 0 0 0 0 0 0
270 76 3 0 0 0 0 0 0 0

360 101 0 5 0 0 0 + 1 e 1.5
450 126 3 2 0 0 0 0 2 0
540 151 0 3 0 1 1 3 0 3
630 176 6 0 0 0 0 0 4 0
720 201 0 7 0 0 0 1 0 4
810 226 6 0 + 1 0 1 0 5 0
900 251 0 5 0 0 0 5 0 6
990 276 7 0 0 0 0 0 7 o
1080 301 0 9 0 0 0 0 1 8
1170 326 7 0 0 =] + 3 (i} 9 1
1200 351 0 5 0 =0 0 — 6 1 10
1350 376 =] —1 1 St — 9] — & n 1
1440 401 0 -1 0 = 0 = 1 12
1530 426 8 -1 = 3 = = il 2 13 2
1620 451 1 5 0 =9 0 4 1 14
1710 476 -8 | —1 1 = — 7 — & 15 2
1800 501 0 —10 0 =Pl 0 — 8 1 16
1890 526 6 -2 =] — i 3 1 18 2
1980 551 0 3 0 = 0 = 2 19
2070 576 =0 -1 0 =7 = — 1l 21 0
2160 601 0 7 0 = 1l 0 —14 2 2
2250 626 1 -2 == 1 7 1 24 2
2340 651 =] -1 0 — il 0 =7 2 25

2340 676 — ] —1 =" +1 —-10 =] 26 2 i

2520 701 0 —3 0 = 1) 0 =1 2 27
2610 726 — 7 -3 2 — ] 12 -1 28 2
2700 751 2 = 0 1 0 5 2 30
2790 776 4 — 2 — 4 1 --15 = | 31 2
2080 801 0 2 0 =i 0 —29 2 33
2970 826 — 6 — 4 6 = 16 — ] 385 2
3060 851 2 —11 0 4 0 8 3 36
3150 876 9 -2 = {J = —20 0 38 3
3240 901 0 7 0 =% 0 —35 3 40
3330 926 -1 = 9 —1 20 =t 42 3
3420 951 -2 —16 0 9 0 12 3 4
3510 976 14 0 —13 —1 —25 1 46 3
3600 1001 0 12 ‘0 —19 0 —44 3 48
3690 1226 —15 =1 18 =l 36 == 50 3
370 1051 =27 =] 0 15 0 16 3 52
3870 1076 19 =72 —20 0 —31 2 S8 3
3960 1101 0 17 0 —26 0 —53 3 54
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Since the coordinates of the planets published irn "Astronomical
Papers" in 1951 were computed with great precision (the joint system
of equations of motion of the five outer planets was solved; more-
over, the calculstions were carriea out with 14 digits), they were
taken for the precise solution £, and the difference Xe— Xr was
taken for the true error of the estimated coordinates. The compari-
son is made in the Sth decimal place. The results are given in
Table ‘2.

For an estimate of this error by the formulas of B. F. Myachin,

i is necessary to ascertain the error made in a singie step. In

the given case, in addition to the round-off error p(p=0.5:10""),

the computation of the right members of the equations will contain an
error due to the neglected disturbances from Neptune and Pluto. The
magnitude of the disturbances amounts to 1-10~% +that is, it

exceeds the computing error. Of the three planetvs, Uranus is subject
to the greatest disturbing influences; since during the investigated
interval of time Uranus mskes only a half revolution (and the sum of
the disturbances from Neptune and bluto has a constant sign during a
considerable period of time), while Saturn makes 1.5 revolutions and
Jupiter 3.5; and accordingly the disturbances from Neptune and Pluto
nave a periodic character. For the estimate of the error due to
round-off we use Formulas (1) (the results are given in Table '2 in
columns 4, 7, 10). For the estimate of the error due to neglected
disturbances, however, it is impossible to use these formulas since
in deducing (1) the probability law of the distribution of random
errors was used snd the disturbances do not obey the lsw of random
errors. The only acceptable formula in this case is the following

(Myachin, 1959) :

|,;<;>|<zg>z%\/§p|oy>|kr (i =12 8 k=1,2 8...) (4)
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TABLE 2

! Number

Anomaly i
L'y

135
180
225
270
315
360
405
450
495
540
585

675
720
765
810
855
90
945
950
1035
1080
1125

225
270
315
360
405
450
495
540

225
270
315

Error Error Error
Round due Round due Round due
to neg- to neg- " to neg-
of x — X oft lected | ¥F — Yk off lected | = = 4k +tE lected
steps error | distur- error | distur- error | distur-
bances bances bances
Jupiter
90 0 0.1 1 0 0.1 0 0.0
144 0 0.2 1 0 03 5 0 0.1 2
198 —2 04 0 0.1 0 0.8
252 —a 0.5 15 -1 03 3 0 0.1 1
306 —2 0.3 -3 08 —1 0.3
30 +1 0.5 7 -3 1.1 31 ~1 0.5 16
414 -4-2 13 — 2 0.6 0 0.3
468 +3 1.6 56 0 0.6 11 0 0.5 4
522 +1 0.9 2 1.5 1 0.6
576 -2 0.7 16 2 18 17 0 038 53 .
650 -3 21 2 1.0 0 0.5
684 —6 2.6 120 -1 038 24 0 0.3 8
738 —4 14 — 6 25 —2 1.1
792 0 1.1 32 — 8 30 147 —4 1.3 63
846 S 34 — 4 1.6 -2 0.8
500 3 4.0 207 0 1.2 42 0 0.4 13
954 2 2.2 4 38 2 1.5
1008 -1 14 51 4 43 239 2 1.9 103
1066 -5 4.6 2 0.7 1 0.2
1120 —8 5.4 319 — 2 1.5 65 -1 0.5 20
1174 -5 30 -—10 5.0 —4 20
1228 +4 4.5 76 —10 5.0 353 —4 2.5 152
1272 -1-8 6.1 — 6 36 -3 2.2
Saturn
120 T | 0.2 0 04 0 0.z
256 -+ 3 0.6 0.6 -1 1.0 16 0 04 6
392 +-9 14 — 1.1 -1 0.5
528 +19 14 12 16 0.9 4 +1 0.4 14
664 +16 1.2 -+-20 24 +7 1.0
800 -+ 1 1.2 6.4 +-22 34 154 -+-9 1.4 64
936 -9 40 ~+-12 26 +-5 1.2
1072 —17 6.2 299 -9 14 15 —4 0. 6
Uranus
213 + 2 33 1 | 4.1 8 -1 20 4
587 4-14 2.5 60 —1 1.5 12 -3 10 7
970 -1-31 52 188 --23 4.8 150 -1 4R 47

where by p we denote the error in a single step due to the neglected

disturbances,

and

°(x‘)

has the same meaning as in (1).

In the eomputation by Formulas (4) for all three planets p is

taken as the maximum disturbance from Neptune and Pluto;

1 ° 10—91

whieh, of eourse,

that is,

gives a strong overestimate for Jupiter

and Saturn (Table 2, eolumns 5, 8, 11).
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3. We shall give one more example. Let us try to estimate the
error due to round-off in the coordinates of the larger planets
published in "Astronomical Papers" in 1951. We shall make the esti-
mate by the crude formula obtained from {1) under the following

]

assumptions: we neglect £} and E, in comparison with Ej};d} we

assume equal to 1. Then (1) will have the fomm
4
il <<ep=3pk2 (5)

If p is taken to be 1107, then after 1000 steps of integration,
which corrcsponds to an interval of time greater than 100 years in
this case, the error in the coordinates of the planets will be
approximatcly equal to 1:10~® ; that is, the published coordinetes
of the larger planets are free from round-off error.

Thus, the examples cited above show that the formulas derived by
B. F., Myachin for the estimate of errors due to round-off errors is
entirely suitable for practical use.

The estimate (1) reflects the oscillatory character of the error
and gives a comparafively smaller overestimate (as a rule, by less
than a factor of 10). Furthermore, it shows that after 1000 steps of
integration no more than five digits are lost ir the sought for
values due to round-off errors.

But as for the e¢rror created by the neglected disturbances
(Table '2), the estimate (4) whi.h was used for them must be con-
sidered unsatisfactory, since it docs not take into account the
periodic character of the disturbances. This estimate gives a practi-
cally acceptablc result only if during the entire intcgration or g

large part of it the disturbances are constant,
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