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l. Summary.

The use of the mean of a symmetricelly trimmed sample (the trimmed mean)
as an indicator oi; location and the use of the total sum of squares of deviations
of the same trimmed sample (the TSSD) as an indicator of the varilability of the
trimmed mean are explored, The increase in veriance (of the trimmed mean as

compared with the untrimmed mean) when trimming samples from an exactly normal

distribution is found to be less than 3%, 6%, 9%, and 14%, respectively, when

& total of 1/10, 2/10, 3/10, or 4/10 of the sample is trimmed away. ( Trimming
will decrease the variance when the samples come from a long-tailed distribution, )
The loss of normel-theory efficiency is given for all symmetric trimmings of
samples of size < 20, The appropriate divisor, by which the trimmed sum of
squares of deviations is to be divided to obtain an ectimate of the veriance of
the trimmed mean,is tabled for the same range.

The effect on this divisor of sampling from rectangular rather than normal
populations is found to be small, but noticeable. The empirical behavior of
the reciprocal of the divisor is found to be simple, and a theoretical expian—
ation for this is provided.

Further studies in this area are in progress.

2., The problem.

While the sample mean and sample variance are sufficient statistics when
the sample is specified to come from a precisely normally distributed population,
so that no statistic can then be a better estimate of location than the sample
mean, and no statistic can be a better basis for estimating the variance of the
sample mean than the sample variance (or sample sum of squares of deviations),
these optimum properties fail miserably for samples from non-normal distributions

(even when these non-normal distributions are symmetrical), Thus 1t is of interest
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to consider other indicators of location, and other bases for estimating the-
. variance of these indicators. We must decide how to work numerically with each
particulaer indicator and with each particular basis for estimating its variance,
The first requirement that our procedures must satisfy is that they be appro-
priate when the parent distribution is precisely normal. (Though we may rarely
find samples from normal distributions in practice, none of us want to give up
the possibility that e few of the parent populations we face may be almost exactly
normal, and that others may be nearly normal.)

In large samples +the trimmed mean and the trimmed standard deviation (the
mean end sample standard deviation of those observed values remaining out of a
sample of n when the g highest and g lowest values have been deleted) have
been shown to have quite satisfactory properties [5]. This repoxrt opens an
investigation into the properties of both these and related statistics in small

and moderste samples,

3 Results,

The main quantities studied are:

(1) +the variance of the trimmed mean, -

(2) the normal theory efficiency for location of the trimmed mean (as
referred to the untrimmed mean; i, e., the ratio of the variance of the untrimmed
mean to the veriance of the trimmed mean).

(5) the aversge velue of the trimmed sum of squares of deviations,

(4) the ratio of (3) to (1), which is the factor by which an observed
trimmed sum of squares of deviations should be divided in order to obtain en
unbiased estimate of the variance of the corresponding trimmed mean. These

values are éiven for n < 20,
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Such numerical results provide (i) a method for calculating an unblased
estimate of the variance of a trimmed mean, and (ii) en indication of the price
that must be paid for trimming when the parent population is indeed normal, They
do not provide solutions for the following problems:

(1) If the extent of trimming is guided by the apparent quality of the
estimates provided by differently trimmed means, how much will be the downward bias
of the estimated variance of that trimmed mean which appears to have the least'
variance? (This bias is due to selection and arises when the variances of the
various trimmed means are estimated as indicated below. )

(2) How much does the distribution of the ratio of trimmed mean to the
square root of its estimated variance (based upon the trimmed sum of squares of
deviations) differ from a suitable multiple of a suitable insta.nce of Student's
t? What multiple and what degrees of freedom are suitable?

(3) How variable is the trimmed sum of squares of deviations as a basis
for estimating scale? "

(4) How do trimmed means and trimmed sums of squares of Zeviations vehave
for parent distributions that are non-normal but syrmetric?

It is hoped to provide‘ at least partial answers to these questions in later
reports of this series.

The most directly relevant and useful results are collected in Table 1,
Figure 1, and Teble 2, -'Ib.'ble l’shows the loss in normal theory efficiency when
1, 2, 35 see & observed values are deleted from each end of a sample, Figure 1
shows similar information in terms of the modified fraction of the observations
deleted from each end. Table 2 contains the divisors which convert trimmed
sums of squares of deviations into unbiased estimetes of variances of trimmed

means.
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Table 1

o S
var y -~ var y

loss in normal .theory efficiency for location =

var ¥
{Trimmed mean referred to untrimmed mean)

Size of Number of observed values deleted at each end = B ; Lo
original
sample 1 2 3 N 5 6 7 8 9
3 3k, 6%

N 194 3%

5 13,5%| u43.4%

6 10.4%| 28,9%

7 8.5%| 22,24  L7.3%

8 T.1%| 18.2% 34, 5%

9 6.1% 15.4% 28,1% 49.5%

10 5.3% 13.3%| 23.8%  38.3%

11 Y,7% 11.7% 20,6% 32,24  50.9%

12 h,2  10.5% 18, 3% 28,0% 41,0%

13 3.9%  9.4%  16.3%| 24.84  35.3%  51.8%

14 3.5% 8.6%  14,8%| 22,2% 31.2%  L43,0%

15 3.2%  7.9%  13,5%| 20.1%  28.1%  37.8%  52.5%

16 3.0  7.3%  12.4%| 18.4%| 25.5%  33,9%  Lh.69

17 2.8%6 6.7  1l.5%  17.0%| 23.3%  30.7%  39.7%  53.1%
18 2,6% 6.3  10.7%  15.7%| 21.5% 28.2% 36,04  L45,9%
19 2,4%  5.9%  10.0% 14, 6%| 19.9%  26,0%  33.0%  Ul.3% 53.57
20 2.3  5.5% 9.3%  13.7% 18-6%l 24, 1%  30.4%  37.8% 46.9¢
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Chart I: ILoss in Normal Theory Efficiency for Location When Trimmed Mean Replaces
Untrimmed Mean,
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Table 2

Ratio of average sum ow squares of deviations to variance of mean for trimmed samples from normal populations =
factor by which a trimmed sum of squares of deviation is to Ye divided to obtain an unbiased (on normal theory,
and for constant amount of trimming at each sample mHwa estimate of the variance of the corresponding trimmed

means

size of sample
after trimming g = mmber of observations trimmed from each end
h 0 1 2 3 L 5 6 T 8 9
2 2|} 1.0092 67142 . 50263 .40158 . 33436 28641 | .25050 | .22259 | .20028
B 6{| 3.1657 2. 17k 1.6243 1. 3061 1.0921 93833 | .82253 | 73217
L 12l 6.6313 k.5955 3, 5181 2, 3955 2,0659 2,0659 | 1.8160 | 1.6200
5 20|} 11.519 8.1453 6. 3090 5.1502 4o 351h 37671 | 3.3212
6 30|l 17.910 12,898 10,100 8.3053 7.0533 6.1296 | 5.4198
T yoll 25,866 18.935 14,979 12,401 10.583 9,2313
8 5611 35,1436 26, 323 21,016 17.511 15,014 13,142
9 T2l| 46,658 35,117 28, 276 23,699 20. 409
10 90|| 59.563 45, 36k 36,811 31,024 26,827
11 110 Th 17T 57.103 46,669 39. 535
12 | 132|[' 90. 523 70. 370 57.891 49,276
13 156|[L08. 62 85. 194 70.513
1 ! 182(0.28,48 101,60 84, 569
15 ' 210{[t50.13 119,61
16 24073, 57 139,26
17 ! 272{.98.82
18 | 306|p25.88
19 ' 0
20 330
J




4, Example,

If we are dealing with samples of 11 and choose to routinely trim 2

observations off each end of each sample, the loss of normal efficiency can be

seen from Teble 1 to be 11.7_%. If the population is exactly normal, the trimmed

mean will have a standard deviation some 6% greater than the untrimmed mean,

(And if the population has rather long tails, the trimmed mean will have a much

smeller standard deviation than the untrimmed mean., )

If we have the following 11 observations: -5, 10, 15, 11, 12, 17, -1, 8,

1%, 10, 18 and proceed by trimming two from each end, we have to find the mean

and sum of squares of deviations of the remaining 7 observations. IHence

10
15
11
j2

8
13
10

9

100
225
121
1k

64
169
100

923

(=
y = 11,28 = trimmed mean

T = 023 - (e 31,43 = trimmed sum of squares of deviations,

7

From Table 2 we find that 31.43 should be divided by 18.935 to obtain an

s [
unbiased estimate of the variance of y . The standard error of y' is thus

= 1l.29
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I.
GENERAL CONSIDERATIONS

We shall use the following notatlons:
Yy S¥p S eer SV,
are the ordered values in a sample;

ave { )

indicates the average value, or expectation, of the expression in [ 1

var { )

indicates the variance of the quantity following, as defined by

var u = ave (u2) - (ave u)2 3

when clarity or precision require indication of the distribution from which the

samples are drawn,

a.veN[ ) and va.rN{ )

will refer to averages and variances based on the standard normsl distribution

(average zero and variance units), while
aveR{ ) and ' va.rR{ )

will refer to averages and variances based on the standard rectangular distridution

(on the interval O <p <1).
The quantities of most interest to us will be denoted as follows, suppressing

dependences on n, g, and the particular sample:
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h
Sy + ¥, ¥ e yn) = untrimmed mean

<1
]

nmuber trimmed from each end,

®
]

h = n - 2g = nunber remaining,

;--—L— )-_-trinmedmean

T (Ygﬂ +Vgua *ove tVp g

.2 [TR-) .2
Ta (Vg =¥+ (Yo ¥) 4 eee + (3, o= ¥)

2 2 2 )2
Vel *Vgsp *ore *¥pg - (3-26)7)

= trimmed sum of squares of deviations = TSSD.

When we do need to bring in dependence on n and g , we shall often do
this by writing g + h + g as an ergunent. In such cases it will be understood
that g + h + g 1s the original sample gize and that h 1s the trimmed sample
size,

We shall also systematically let Z‘.* refer to summation for 1 (or J)
from g+1 to n-g (a total of n- 2g = h values of 1) over the same

range, Then

w1 %
y-'ﬁzyi

1 x* 2

* 2
T-Ezz (yi.- yJ)

* 106 %
a}:yi -HZZyiyJ

* 2 1, % 2

as may easily be verified.

6. Relation to order-statistic moments.

The quantities that concern us most can be expressed in terms of order-

statistic moments as follows:
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o o o
ver y = a.ve(y)2 - (ave ‘;)2 = e,ve(y)2

1 e
- ;2 'z ave(yiyJ) n

*
ave Ta & a.ve(yiz) - % Z‘.*Z.* ave (Y,_YJ )i

»* 2
ave3=h2 Zave(yi) <k
var y

Div (g +h+g) =
-
L ave (yiyJ)

Again we write Divy (g +h4 g)or D:l.vR(g +Ni+.g) when needed for clarity or

precision,

7. Normal distributions,

For the special case of sampling from a standard normal population, we
can refer to Teichroew [ 3] for the values of aveN(yi) , aveN(yia) and a.veN(yiy J)
for n < 20, (e corresponding veriances and covariances ere given by Sarhan
and Greenberg a few pages later [2].)
Thus normal-theory variances of ;'s and noruml theory averages of TSSD's
are easily available for normal samples of size no more than twenty. For example,
the case of 17 = 6 + 5 + 6, where a sample of 17 1s trimmed to the central

five observations, ylelds
£'E" ave (vy,) = 1.92257699
£ ave (y,*) = .674220047

whence

vary ; = 1'922276 2 - . 076903080

SN - 5 = 3.T6TA3T

Div (6 + 5+ 6) =




Notice that if we had had an initial sample of 5, and had not trimmed 1t,

the correct divisor would have beeh
Div (0 + 5 +0) = 20,

Thus we must treat the sum of squares of deviations from a trimmed sample quite
differently from the sum of squares of deviations from an untrimmed sample. This

is emphasized by Table 3, which gives values of the ratlo

mvN(o +h+0)
DivN (g +h +g

of the divisors which are appropriate on normal theory in the two ceses.
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TABLE 3

mvN(o +5h +0)

Values of DivN(g + 57 8)

Size of Bh ‘ !
sample af‘ter S =g= number of obeervations trimmed from each end
triming
n o] 1 2 | 3 b 5 6 7 8 9
1 - - - = = - - - - -
2 1 {1.982 | 2.979| 3.979 | %.980 | 5.982 |6,983 | 7.98%4 |8.985 9.986
3 1 {1.805 | 2.79% | 3.60L | h.5ok | S 4ok {6,394 | 7.295 |8.195
4 1{1.810 | 2.611} 3,411 | 4,210 | 5.009 |5.809 | 6,608 |7s407
5 1 |1.7% | 2.455 | 3,170 | 3.883 | 4.596 |5.309 | 6,022
6 11,675 2.326| 2,970 | 3.612 | 4,253 (4,894 |5.535
7 1 |1.624 | 2,218 | 2,804 | 3.387 | 3.969 |4e550
8 111.580 | 2,127 | 2.665 | 3.198 | 3.730 |4.261
9 1 ]21.543 | 2,050 | 2,546 | 3.038 | 3.528
10 1(1.%11 |1.984 | 2,445 {2,901 | 3. 355
11 1 [1.483 | 1,926 | 2.357 |2.782
12 11,458 | 1.876 | 2.280 |2,679
13 11,43 |1.851 | 2,212
1L 1{1.017 |1.791 | 2,152 B
15 111.%9 | 1.756
16 1{1.38% | 1.723
17 1{1.38
18 1]1.355
19 1
20 1
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Thus changes in this factor with shepe deserve exploretion, For this purpose,
exploration of shapes far more extreme than are likely to arise in practice is

reasonable since the aim is to disc'oyer magnitude of dependence rather than
to balance losses.

For this purpose, the accessibility of order stetistic moments for
rectangular distributions is. convenient and useful, since the rather extreme
shape of the rectanguler distribution is not a handicap.

Tt is shown in Section 11 that, for a rectangular daistribution of unit
length (which will serve us es well as any other.as a standard rectangular dis-
tribution) that if g values are deleted from each tail of a sample size
n=h+22=g+h + g, leaving h central velues for the computation of the
trimmed mean and the trimmed sum of squares of deviations, then:

rectangular verience of trimmed meen =

2
L 1 h~ - 1
veryM= ) - 23mEE D))
average of trimmed sum of squares of deviations =

(h+2) (n+l) (h-1)
avepT = 5 {732) (n+l)

reciprocal of divisor for conversion

1 3(n + 1) 2
Divp(e + b + g) = (m+2) (a+l) (B-1) ~ (b + 2)h

Multiplication of the values already obteined for the normal-theoxry
conversion-divisor conversion by the reciprocal of the rectangular-theory
conversion-divisor yields the values of ratilos of divisors set forth in Table L,
Tt is clear from this table that the normal theory conversion-divisor is in any
case approximately equal to the rectangular-theory conversion-divisor, and, as
would be expected, the approximation becomes better as the amount of trimming

increases,
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Table 4

Dive(g + b + g)

Values of ﬁ"n(s TETE)

gf"tf_md g = muber of cbservations trimmed from each end
samples

h 0 1 2 . 3 L - 6 7 -8 9

2 1 {1,0092 [1,0071 |1,0053 {1,00%0 |1.0031 |1,002% {1,0020 {1.0017 {1,001k

3 < |1.0025 |1,0021 |1,0017 [1.0013 |1.0011 {1,0009 |1.0007 |1.0006

4 1| .99470| 499570} ,99678| .99756| .99811| .99850| .99878| .99699

5 1| .98733] .98908] .991h2| .99325| 99L60| .99560| .9963T|

6 1 .98079| .98271| .98600} ,98873| .99082} .99241| .99363

7 1| .97513 ~97682 .980{1& +98419] ,98693| .98907

8 1| .97028| .97146| .97575| 97977 98204} 98566

9 1] 96615 .96662] .9TL09| 97551 .97923 '

10 1| .96263! .96227| .96676| 9TI4E| 97554

1 1] .95963| .95838| .96275| 96763

12 1| 95708 95491 495907 95403

13 1| .95490| .95180| .95568

14 1] .9530k| 94903 .95256

15 1] .95145] 94653

16 1| .95010| ,oukm

17 1| .9u8o%

18 11| .94795

19 1

20 1
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9. Future work.

Besides the questions of (i) relative efficiency for reasonsble population
shapes, (1i) sllowance for selection bias when the amount of trimming 1s allowed
to vary from sample to sample, and (111) improvement from an unbissed-estimate-of-
variance procedure to & confidence procedure, all of which are very important to
the practical use of "trimmed" techniques, the considerations of later sections
ebout the rectangular case make 1t clear that normal theory and rectangular
theory can be usefully compared for other sorts of "trimmed" procedures. The
mld-range (mean of highest end lowest values) of the trimmed sample nceds to
be considered &s an indicator of location., It is, of course, an inrer (or quasi-)
midrange of the entire sample, For both trimmed means and inner midranges it is
appropriate to consider at least the following as bases for estimeting variability:

(a) sum of squares of deviations for the same trimmed sample,

(b) square of the range of the same trimmed sample,

(c) sum of squares of deviations for a less vigorously trimmed sample

(4) square of the range of a less vigorously trimmed sample,

It 1s hoped to report on some of these shortly.
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IT.
DERIVATIONS, DISCUSSIONS, DETAILS

10. Empirical behavior of Div (g + h + g).

When the normal-theory behavior of Div (g + h + g) was examined, it was
noticed that, for h fixed and g changing the first differences of its
reciprocal decreased somewhat for h > 3 , increased slightly for h = 2, 3,
but in both cases rapidly became constent as g increased, This is iliustrated,
for two values of h , in Table 5. This observation immediately mekes it
possible to extenl the tables of divisors eyvond total sample size 20 by
empirical extrepolation, Such a process could be used to quite good cffect
without further support. However, its use will be simpler, and sonewhat more
precise, if it cen borrow support from algebraic considerations which apply
either to some other distribution shape or in some asymptotic semse, Results
for the rectangular case are easily cbtained, and may be shown to hold asymp-

totically for all distributions smooth at the median,
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Teble 5

ILLUSTRATION OF APPROACH OF G-WISE DIFFERENCES OF RECIPRUCALS
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11, "= rectangular case,

The distributions of order statistics of samples from the standard rec-
tangular distribution are well-known [1] as are expressions for their moments,
Ir Py and p 3 are the ith-and jth order stetistics of a - sample of n from the

standard rectanguler, where 1 < J, then

2 2 .
ave (;pJ - pi) (ave yy - eve yi) +var yy - 2cov (yj, yi) + ver y,

3 1,2 1

mL -l t (n+l)2(n+2) (3 (n=3+1) -~ 2i(n-3+1) +

]
~
t

s (n=3+1))

This is a function of n and j-1 &alone, and hence equal to ave (p'j_j)2 5

as would be expected from the symmetric distribution of equivalent blocks [4],
What is important next is that (n+l)(n-l-‘?)er.ve(p‘_’-pi)2 depends only on J-1i.

As 4 and J rum over any h consecutive indices of a sample of n , the
values of Jj-1 are exactly the same,and occur with the same multiplicity, as if
i and J ran through a sample of size h , Conseguently

(n+l)(n+2) S ave (pj - pi)2 =2 (h+l)(h42) = T ave (pJ - pi)2 where I* is
over some 111 Jconsecu‘b:l.ve values of a sample of n and Z 1s over all values
from 1 to h of a sample of h .,

Let now Py < Py, < p5 S eee < Py be the order statistif:s of a sample of
*

* * *
h (not n) from the standard rectangular, and let P, <py < P < eee SR,

be the order statistics of an independent sample of n (not h) from the same
*
distribution, Let T(p) and T p ) be the corresponding TSSD's, in the first

case for all h +values and in the second case for the central h values., Since
* *_ % 2
2h « Ap") = Z°Z(py - Py)

oh + ™p) = 5 I (py - 2y)°
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we must have

2
* 1 *_*® o, % *
avep (p ) = Zpeve, LI (p‘j - Py )

= m) o aveR(n+l)(n+2)(PJ* s Pi*)g

- —2—11-(—!-1-1-'—:[)-(—5;2—)- D &VeR(11+l)(h+2)(PJ - Pi)e
hl)(he2 h-1)(h+1)(h+2)

= {'nil%f ) ; avep Np) = (3.2(3-£1)+In+2)

for, since T(p) i1s an untrimmed sum of squares for & sample of size h,

ave T(p) = (~h-»1)<:2 for any distribution.

¥
Now let us turn to var p , Recall that, for 1 <)

(n+1)2(n+2) cov(pi,pj) = i(n+l-3) = ( 1%-]: + e)( B_g_]: - a)

=(%—l)2-(~r-1;—l)(d—c)-cd

where 21 = (n+l) + 2¢, 23 = (n+l) +2d , so that ¢ and 4 renge over h
values with average zero and unit spacing between adjacent values, Hence
*_% *
(041)2(n42) £ 5 cov(p.,p,) = b (B2 )2 o222 5F (4. Ja-c|)|a-c]
13 3?1 2 2 ld—c

*_* * *
gsince £ % cd=(Z¢c)(2d)=00=a20,

Now
h =
Y (hk) * k=hZk- k%= 22 hgh”-) - h(h+l%(2h+l)
k=1
_ h(h+l (3h - 2h - 1) = (h+1)(n)(b-1) _ ( h-;l)
so that
2
u 1 e ¥ 1 2 (n+l) n+l ,h+l
var p = L5 covip,p,) = [n -2=(0TN
-_h§ P71 h2(n+l)2(n+2) 2 3

2
& i1 -2 BBl ]
{n+2) 3h{n+l)
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1
(for h = 1, this checks with the variance of the median p, namely 1/4(n+2),
while for h= n it reduces to 1/12n, as it should,

The conversion divisor is thus

ne2) (bl )(b-1 Sh(n4l) - 2(n° 1)
Divg (g + 1 + g) = (rex%(:e"frx)éﬁ‘r) / TR (52)

(n42)(h41)(h)(h-1 gh+2)(h+1)(h)gh-1)

3h(n+l) - 2(h=-1 Zhen -~ (2h< -3h-1)

which reduces to (n)(n-1) when h=n, as it should. Its reciprocal can be

written

1 3(n+l) 2
Div(g +h +g) - (B '+2'§(h+l)'('h'-l) we)(h A

which is obviously linear in n ,

If we fix h , and let g increase unit by unit, n will increase in

steps of 2, and the rectangular theory reciprocal will increase in steps of

6
(h+2)(B+1)(b-1) *

12, The asymptotic case.

Consider next the case of an arbitrary distribution where h 1s fixed and
n 1is large. If ¥y = r(p) is the representing function of the distribution,

so that F(r(p)) = p where F(y) 1is the corresponding cumiletive, then

vy = x(pg)

where Y1sYps eeey ¥, are the order statistics of a sample of n y's and

Pys Ppe eeey P, are the order statistics of the corresponding sample of n p's.
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Put q' = pg and q = Pryl- e’ so that the h central Py fall between
q' and q". It is a consequence of Wald's principle [4] that, conditional
upon the values of q' and q" , these h D i's are distributed like a sample
of h from the rectangular distribution with q' and q" as end point.

Conditional on q' and q" we have the following averages and variances:

(S 1
ave (p | a'5 ") =5 (a' +q")

2
u LU
ver (3 | o', a") =< =

h-1 2

ave (X(p) | o', ¢') = =5 (a" - a')

whence
(Y] [¥] [v)
varp p = save var (p | ¢',q") + var ave (p| a',a")
a' q ', q."
1
= 15 ave (q" - a')? = +%var (a" +a')
and

h-l 1" - 1 2
evep p) = —5 ave (a" - q')

so that the reciproeal of the conversion factor satisfies

1

Y 1"
_ _ var p var (9" + q')
Divp(g +h + g) h(n-1) <73 D) - L+6h oo QT - q')° .

1 = n ,
If now z' = yg and z' = yn+l-g , so that the h central ¥y fall

between z' and z" , it again follows from Wald's prirciple that, conditional
onthe values of z' and 2", these yy are distributed like a sample from
whatever may be the distribution of y truncated onto the interval from z!'

n
to z2 .
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If n is very large, the interval from z' +to z" will be short and will
lie close to the median of the distributién of y . If that distribution is
smooth near its medien, the result of truncating it onto any smell interval near
the medisn will be very nearly a rectangular distribution.

Hence

%] )
var var (y" +¥y'
h(h - 1) ‘T('fyf"“"'l"'éhaeg“- ,;2

1
Div(e+ b + g)

where D stands for any distribution smooth near the medlen, and T(y) is the

7SSD for the y's. Moxreover,
2! = r(q') and z" =1r(q")

where r will behave very nearly linearly, so +that

var (y" +y') . ver (d" -+ q')
ave(y" - ¥ )2 ave (q" - q' )2

consequently

L u
var var(q" +q')  _ , var p
h(h-1) E{E%(y) ~1+6h olgm g2 = n(h-1) —o =

and we see that asymptotically, for fixed h and very large n, the value
of the conversion factor will not depend upon the shape of the parent distri-
bution, so long as that distribution is smooth near the median,

If the distribution of ¥ is symmetric, then

r(p) =2 + b(p - 3) + a(p -3 ...

and deviations from linearity are of order (p - %)2 times the linear deviations.
Since (p - —12—)2 is of order 1l/n , the fractional deviations of the cuaversion

factor for any two symmetrical distributions from one another are at most of
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order 1/n for each fixed h .
Suppose that, for two symmetrical parent distributions, the conversion

factors for some h satisfy:

factor T = A (n+1) + By + Cl(n)

fector ™t = A, - (n+1) + B, + Ca(n)

vhere Cl(n) and 02( n) both tend to zero as n increases, Their ratio can
only approach unity as n tends to infinity if Al = A2. For the standard

rectangular distribution

-1 2
factor = BRI (n+l) - 5o -

Consequently, for any symmetricel distribution for which the general form

applies,

-1
factor ~ = TEETEIEST (n+l) + constant + C(n)

where C(n) tends to zero, while the difference between the reciprocals of

the factor for n and n-1 will be

8(factor™) = rEmymeryETy +LO(R) - c(n-2))

13. Suggested alternatives.

The discussion of the last parsgraph shows, upon reexamination, *that the
reason why the conversion factor does not depend upon h alone lies in the
ratio

ver [aversge of distribution trimmed to (z', z")]
ave [variance of distribution trimmed to (z', 2")]

Thus it appears thet perhaps the most natural way to bulld in some compensation
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is to use ss a basis for estimating the trimmsd variance of the mean of h
values, not the TSSD or squared range of the same h central values, but the
TSSD or squared range of a greater number of values, perhaps 1 +h + 1 or
2+4h+2 or 3+h+ 3. These possibilities will be considered numerically

in a later report.

REFERENCES

{1] M, G. Kendall and Alan Stuart 1958; The sdvenced theory of statistics,

Vol. 1; London, Charles Griffin (esp. §11.hff).
{2] A, E. Sarhan and B. G. Greenberg 1956; Estimation of location and scale
paremeters by order statistics from singly and doubly censored populations.

I; 27 Annals Math. Statist. 4o7-451,

{3] D. Teichroew 1956; Tebles of expected velues of order statistics anc products
of order statistics for samples of size twenty and less from the normal

distribution; 27 Amnnals Math, Statist. 41=-426,

(4] John W. Tukey 1947; Non-parametric estimation IT. Statistically equivalent
blocks and tolerance regions - the continuous case; 18 Annals Math. Statist.

529-529.

[5] John W, Tukey 1960; A survey of sempling from‘ contaminated distributions;

Chep. 39 (pages 4uB-485) in Contributions to Probebility and Statistics;

(Ed. Olkin et al), Stanford, University Press.




