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1. 

1.  Summary. 

The use of the mean of a symmetrically trimmed sample (the trimmed mean) 

as an indicator of location and the use of the total sum of squares of deviations 

of the same trimmed sample (the TSSD)  as an indicator of the variahillty of the 

trimmed mean are explored.  Ihe increase in variance (of the trimmed mean as 

con^ared with the untrimmed mean) when trimming samples from an exactly normal 

distribution is found to he less than 5^, 0f>,  9%  and lh%  respectively, vhen 

ä total of 1/10, 2/10, 3/10, or Vl0 o:f the sample is trimmed away. (Trimming 

will decrease the variance when the samples come from a long-tailed distribution.) 

The loss of normal-theory efficiency is given for all symmetric trimmings of 

samples of size < 20. The appropriate divisor, by which the trimmed sum of 

squares of deviations is to be divided to obtain an estimate of the variance of 

the trimmed mean,is tabled for the same range. 

ftie effect on this divisor of sampling from rectangular rather than normal 

populations is found to be small, but noticeable.  The empirical behavior of 

the reciprocal of the divisor is found to be simple, and a theoretical explan- 

ation for this is provided. 

Further studies in this area are In progress. 

2.  The problem. 

While the sample mean and sample variance are sufficient statistics when 

the sample is specified to come from a precisely normally distributed population, 

so that no statistic can then be a better estimate of location than the sample 

mean, and no statistic can be a better basis for estimating the variance of the 

sample mean than the sample variance (or sample sum of squares of deviations), 

these optimum properties fall miserably for samples from non-normal distributions 

(even when these non-normal distributions are symmetrical). Thus it is of interest 



2. 

to consider other indicators of location, and other "bases for estimating the 

variance of these Indicators. We must decide how to work numerically with each 

particular indicator and with each particular basis for estimating its variance. 

The first requirement that our procedures must satisfy is that they be appro- 

priate when the parent distribution is precisely normal. (Though we may rarely 

find san^ples from normal distributions in practice, none of us want to give up 

the possibility that a few of the parent populations we face may be almost exactly 

normal, and that others may be nearly normal.) 

In large samples the trimmed mean and the trimmed standard deviation (the 

mean and sample standard deviation of „those observed values remaining out of a 

sample of n when the g highest and g lowest values have been deleted) have 

been shown to have quite satisfactory properties [5]. This report opens an 

investigation into the properties of both these and related statistics in small 

and moderate samples. 

3. Results. 

The  main quantities studied are: 

(1) the variance of the trimmed mean. 

(2) the normal theory efficiency for location of the trimmed mean (as 

referred to the untrimmed mean; 1. e., the ratio of the variance of the untrlmmed 

mean to the variance of the trimmed mean). 

(5) the average value of the trimmed sum of squares of deviations. 

(10 the ratio of (5) to (l), which is the factor by which an observed 

trimmed sum of squares of deviations should be divided in order to obtain an 

unbiased estimate of the variance of the corresponding trimmed mean.  Ohese 

values are given for n < 20. 
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Such numerical results provide (i) a method for calculating an unbiased 

estimate of the variance of a trimmed mean, and (li) en Indication of the price 

that must be paid for trimming when the parent population Is Indeed normal. They 

do not provide solutions for the following problems: 

(1) If the extent of trimming Is guided by the apparent quality of the 

estimates provided by differently trimmed means, how much will be the downward bias 

of the estimated variance of that trimmed mean which appears to have the least 

variance? (This bias is due to selection and arises when the variances of the 

various trimmed means are estimated as indicated below.) 

(2) How rauch does the distribution of the ratio of trimmed mean to the 

square root of its estimated variance (based upon the trimmed sum of squares of 

deviations) differ from a suitable multiple of a suitable Instance of Student's 

t? What multiple and what degrees of freedom are suitable? 

(5) How variable is the trimmed sum of squares of deviations as a basis 

for estimating scale? 

(10 How do trimmed means and trimmed sums of squares of deviations behave 

for parent distributions that are non-normal but symmetric? 

It is hoped to provide at least partial answers to these questions in later 

reports of this series. 

Ihe most directly relevant and useful results are collected in Table 1, 

Figure 1, and Tfeble 2. Table 1 shows the loss in normal theory efficiency when 

1, 2, 3, ...  .  observed values are deleted from each end of a sample. Figure 1 

shows similar information in terms of the modified fraction of the observations 

deleted from each end. Table 2 contains the divisors which convert trimmed 

sums of squaree of deviations into unbiased estimates of variances of trimmed 

means. 
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liable 1 

u 
Loss in i lormal theory efficiency for location ^ var y - 

vai 
var y 

(Trimmed mean referred to untrimmed mean) 

Size of 
original 
sample 1 

Number of observed values 

2                5               4 

deleted at 

5 

each end 

6 

n - h 
"        2 

7 8 9 

3 3k. 61, 

k 19.3$ 

5 13.5$ 43.4$ 

6 10.1$ 28.9$ 

7 8.5$ 

7.1$ 

6.1$ 

22.2$ 47.3$ 

34.5$ 
28.1$ 49.5$ 

8 18.2$ 

9 15.4$ 

10 5.3$ 13.3$ 23.8$ 38.3$ 
11 4.7$ 

4.5$ 

3.9$ 

11.7$ 

10.5$, 
9.4$ 

20.6$ 32.2$ 

28.0$ 

24.8$ 

50.9$ 
41.0$ 

35.5$ 51.8$ 

12 18.5$ 

13 16.3$ 
14 3.5$ 8.6$ 14.8$ 22.2$ 31.2$ 45.0$ 

15 3.2$ 

3.0$ 

2.8$ 

7.9$ 

7.3$ 

6.7$ 

13.5$ 
12.4$ 

11.5$ 

20.1$ 28.1$ 

25.5$ 

23.3$ 

37.8$ 

53.9$ 

30.7$ 

52.5$ 
44.6$ 

39.7$ 53.1$ 

16 18.4$ 

17 17.0$ 

18 2.6$ 6.3$ 10.7$ 15.7$ 21.5$ 28.2$ 36.0$ 45.9$ 

19 2.4$ 

2.3$ 

5.9$ 

5.5$ 

10.0$ 

9.3$ 

14.6$ 

15.7$ 

19.9$ 26.0$ 

24.1$ 

33.0$ 

30.4$ 
41.3$ 
37.8$ 

55.5? 
20 18.6$ 1*6.9? 



5. 
Chart I:  Loss In Kbrmal theory Efficiency for Location When IWrnmed Mean Replaces 

Untrimmed Mean. 
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kt     Example. 

If we are dealing with samples of 11 and choose to routinely trim 2 

observations off each end of each sample, the loss of normal efficiency can Toe 

seen from Tteible 1 to be 11.7^. If the population is exactly normal, the trimmed 

mean will have a standard deviation some 6^ greater than the untrimmed mean. 

(And if the population has rather long tails, the trimmed mean will have a much 

smaller standard deviation than the untrimmed mean,) 

If we have the following 11 observations:  -5, 10, 15, 11, 12, 17, -1, S, 

15, 10, 18 and proceed by trimming two from each end, we have to find the mean 

and sum of squares of deviations of the remaining 7 observations. Hence 

10 100 

15 225 

11 121 

12 Ihh 

8 6h 

13 169 

10 loo 

79 925 

f- 11.28 a tr1tnmft( 

2 

y = 

T = 925 - ■—- m  51.1*-5 = trimmed sum of squares of deviations. 

From Table 2 we find that 31,1*5 should be divided by 18.955 to obtain an 

unbiased estimate of the variance of y . The standard error of y Is thus 

V ss-^ 
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I. 

GENERAL CONSIDERATIONS 

We shall use the following notations: 

yi < y2 5 ••• 5 yn 

are the ordered values In a sample; 

ave { ) 

indicates the average value, or expectation, of the expression in ( ); 

var { 1 

indicates the variance of the quantity following, as defined by 

var u » ave (u ) - (ave u) | 

when clarity or precision require indication of the distribution from which the 

samples are drawn, 

aveN( ) aad varK{ ) 

will refer to averages and variances based on the standard normal distribution 

(average zero and variance units), while 

aveR( ) and varR{ ) 

will refer to averages and variances based on the standard rectangular distribution 

(on the interval 0 < p < 1). 

The quantities of most interest to us will be denoted as follows, suppressing 

dependences on n, g, and the particular sample: 
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y = i (y1 + y2 + ...  + yn) - untriiiEned mean 

g a nvmiber trimmed from each end, 

h = n - 2g « number remaining, 

y »    ...... u (y   ,+y   „■«•..,  +y      ) = trimmed mean 
^   n-2g ^g+l  "^g+a x ••• T •'n-g7 

T - (yg+l " 
y) + (yg+2- y) + -• * (yn-g- y) 

" Vl2 + yg+2
2 + — + yn.g2 " (» " 2g)(y)2 

m trimmed sura of squares of deviations = TSSD. 

When we do need to "bring in dependence on n and g , we shall often do 

this by writing g + h + g as an argument. In  such cases it will be understood 

that g + h -i- g is the original sample size and that h is the trimmed sample 

size. 

We shall also systematically let L     refer to summation for 1 (or J ) 

from g ■?- 1 to n - g (a total of n - 2g « h values of l) over the same 

range.  'Then 

u  1 * 
y - hL yl 

* 2  l/„*  \2 
-Ey1 -^ZyJ 

as may easily be verified. 

6.     Relation to order-statistic moments. 

The quantities that concern us most can be expressed in terms of order- 

statistic moments as follows: 
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u     .u.2  ,        Uv2     ,u.2 var y « ave(y} - (ave y) a ave(y) 

1   * *    /     X . -2 E L aveCy^j) , 

ave T ■ £ «ve^ ) -jgX X ave (y^j)* 

2, 

Vary      ^aveCy^j) 

Again we vrlte Dlv- (g + h+ g)op DlvR(g +li+g) wben needed for clarity or 

precision, 

7, Normal distributions. 

For the special ease of sampling from a Standard normal population, we 

can refer to Telchroew tj] for the values of ave^y.), ave^y. ) and. aveN(y.y.) 

for n < 20, (The corresponding variances and covarlances are given hy Sarhan 

and Greenberg a few pages later [ 2]. ) 

Hius normal-theory variances of y's and nonaal theory averages of TSSD's 

are easily available for normal samples of size no more than twenty. For example, 

the case of 17 ■ 6 + 5 + 6, where a sample of 17 Is trimmed to the central 

five observations, yields 

£*£* ave (y^) » 1.92257699 

E* ave (y^) • .67^20047 

whence 

varN % m hS&Hm - .Or6903080 

Div (6 + 5 + 6) - fJtl^l - 5 - 3.7671397  ^ 
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Notice that If ve had had an Initial seurple of 5* and had not trimmed It, 

the correct divisor vould have heen 

Div (0 + 5 + 0) = 20 , 

Thus we must treat the sum of squares of deviations from a trimned sample quite 

differently firm the sum of squares of deviations from an untrlramed sample.    Ihis 

Is en^haslzed "by Table 3, which gives values of the ratio 

Divw(0 + h + 0) 

IiivK U + h + g 

of the divisors vhlch are appropriate on normal theory in the tvo cases. 
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IABLE 5 
; V. 

DlvH(0 + h ♦ 0) 
Value8 0f Div^g 4- h > g) 

Siz« of 
sample after P"^ a g > number of otoBervatlons trlnaned from each end 
■fcrlmning 

h 0 1 2 3            k 5           6 7 8 9 
1 m „ . - - - 

2 1 1.982 2.979 3.979   4.980 5.982 6.985 7.984 3.985 9.986 

5 1 1.895 2.79^ 3.694 4.594 5.494 6.594 7.295 B.195 

1* 1 1.810 2.611 5.411 4.210 5.009 5.809 6.608 7.1(07 

5 1 1.736 2.^55 5.170 5.883 4.596 5.509 6.022 

6 1 1.675 2.326 2.970 5.612 4.255 4.894 5.555 

7 1 1.621* 2.218 2.804 5.387 3.969 4.550 

8 1 1.580 2.127 2.665 3.198 3.730 4.2a 

9 1 l.S'O 2.050 2.51*6 3.038 3.528 

10 1 1.511 1.984 2.445 2.901 3.555 

ii 1 1.1*85 1.926 2.357 2.782 

12 1 I.U5B I.876 2.280 2.679 

15 1 1.^36 1.851 2.212 

Ik 1 1.M7 1.791 2.152 

15 1 1.399 1.756 

16 1 1.383 1.723 

17 1 1.368 

Iß 1 1.355 

19 1 

20 1 
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Ttms changes in this factor with shape deserve exploration. For this purpose, 

exploration of shapes far more extreme than are likely to arise in practice is 

reasonable since the aim is to discover maenitude of dependence rather than 

to halance losses. 

For this puipose, the accessibility of order statistic moments for 

rectangular distributions is convenient and useful, since the rather extreme 

shape of the rectangular distribution is not a handicap. 

It is shown in Section 11 that, for a rectangular distribution of unit 

length (which will serve us as well as any other as a standard rectangular dis- 

tribution) that if g values are deleted from each tall of a sample  size 

n = h + 2g»g+h + g, leaving h central values for the confutation of the 

trimmed mean and the trimmed sum of squares of deviations^ then: 

rectangular variance of trimmed mean «« 

varH(y)- TJ^) (1 - 2 ^~ + -^ ) 

average of trimmed stun of squares of deviations ■ 

_,   (h+2) (h+1) (h-1) 
aveRT,=  12 (n+2) (n+1) 

reciprocal of divisor for conversion 

1 ^(n + 1) g ,   . 
Div0(g + h + g) " (tH2) (b+1) (h-1) " (h + 2)h 

R 

Multiplication of the values already obtained for the normal-theory 

conversion-divisor conversion by the reciprocal of the rectangular-theory 

conversion-divisor yields the values of ratios of divisors set forth in 1!able k. 

It is clear from this table that the normal theory conversion-divisor is in any 

case approximately equal to the rectangular-theory conversion-divisor, and, as 

would be expected, the approximation becomes better as the amount of trimming 

increases. 
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Bible ^ 

WVjjCg + h * g) 
Value8 of DIVR(S HnETTg) 

h » size 
of trlnsned 
samples 

g m number of observations trlamed from each end 

 i — , —, 1 1 1- ~ 

h 0 1 2 ,    ! k 5 6            7       ' 8 9 

2 1 1.0092 1.0071 1.0053 1,001«) 1.0051 1,002»» 1,0020 1.0017 1.0014 

5 X 1.0025 1.0021 1.0017 1.0013 1.0011 1,0009 1,0007 1,0006 

h 1 .99^70 .99570 .99678 .99756 .99811 .99850 .99878 .99899 

5 1 .98755 .98908 .991^2 .99325 ,99^60 .99560 .99637 

6 1 .98079 .98271 .98600 .98875 .99082 .9931H .99363 

7 1 .97515 .97682 .9Q07h .98iH9 .98693 .98907 
8 1 .97028 .973A6 .97575 .97977 .9830U ,98566 

9 1 .96615 .96662 .97109 .97551 .97923 

10 1 .96263 .96227 .96676 .971U6 .9755»» 
11 1 .95963 .95838 .96275 .96763 
12 1 .95708 •95*91 .95907 .961*03 

13 1 .95^90 .95180 .95568 

lif 1 .9530^ .9^903 .95256 

15 1 .951^5 .9^55 
16 1 .95010 .9^31 

17 1 . 91*89^ 
18 1 .9M95 

19 1 

20 1 
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9*    Future vork. 

Besides the questions of (i) relative efficiency for reasonable population 

shapes, (ii) allowance for selection Mas when the amount of trimming is allowed 

to vary from sandle to sample, and (lil) improvement from an unbiased-estimate-of- 

varianee procedure to a confidence procedure, all of which are very important to 

the practical use of "trimmed" techniques, the considerations of later sections 

about the rectangular case make it clear that normal theory and rectangular 

theoiy can be usefully cougpared for other sorts of "trimmed" procedures. Ihe 

mid-range (mean of highest and lowest values) of the trlmmed sandle needs to 

be considered as an indicator of location.  It is, of course, an inner (or quasi-) 

midrange of the entire sample. For both trlxnned means and inner midranges it is 

appropriate to consider at least the following as bases for estinetlng variability: 

(a) sum of squares of deviations for the sane trlmraed sandle, 

(b) square of the range of the same trimmed sandle, 

(c) sum of squares of deviations for a leas vigorously trlmned sample 

(d) square of the range of a less vigorously trimmed sandle. 

It is hoped to report on some of these ahortly. 
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II. 

DERIVATIONS, DISCUSSIONS, DETAILS 

10. Etaplrleal 'behavior ot Dlv (g 4- h -f g). 

When the noimal-theory 'behavior of Div (g + h + g) was examined, it vas 

noticed that, for h fixed and g changing the first differences of its 

reciprocal decreased somewhat for h > 3 , increased slightly for h » 2, 5, 

hut in both cases rapidly became constant as g increased. Ibis  is illustrated, 

for two values of h , in Table 5. This observation immediately makes it 

possible to extend the tahles of divisors T.eyond total sample size 20 by 

empirical extrapolation.  Such a process could be used to quite good effect 

without further support. However, its use will be simpler, and eooewhat more 

precise, if it can "borrow support from algebraic considerations which apply 

either to some other distribution shape or in some asymptotic sense. Results 

for the rectangular case are easily obtained, and may be shown to hold asymp- 

totically for all distributions smooth at the median. 
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Table  5 

ILLUSTRATION OP APPROACH OF G-WISE DIFPEREHCES OF RECIPROCALS 

OF DIVISORS 

1 h = 2 

g)         8g «V 
1 

h = 5 

6 
g s Dlv^g + 2 + Div^g + 5 + gJ 5(6g) 

0 .50000 

.49088 

.05000 

.072277 

1 .99088 

.49851 

■K 00763 .12277 
.03573 

-.03704 

2 1.1(0939 
.50016 

+.00165 .15850 

.03567 

-.00006 

3 1.98955 

.50059 

+.00045 .19417 
.03564 

-.00003 

It 2.^901^ 

.50067 

+. 00008- .22981 

.03564 

■" 

5 2.99081 

.50064 

-.00003 .26545 
.03564 

" 

6 3.491^5 
.50058 

-.00006 .30109 

7 3.99203 

.50053 

-.00005 

8 4.49256 

. 500V7 

-.00006 

9 4.99303 
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11, 'J*"i  rectangular case, 

Hie distributions of order statistics of samples from the standard rec- 

tangular distribution are well-known [1] as are expressions for their moments. 

If p. and p. are the ith and Jth order statistics of a earaple of n from the 

standard rectangular, vhere i < J^ then 

ave (p. - p^ m  (ave y. - ave y^    + var y^ - 2cov (y^, y^ + var y^ 

■ (^IT " ^T)2 +  5 (J (a-J+i) ' SiCn-j+l) + n+1  a--1    (n+l)2(n+2) 

1 (n-i+1)) 

This is a ftinctlon of n and j-i alone, and hence equal to ave (P*^; * 

as would he expected from the synmetric distribution of equivalent blocks [k], 
o 

What is important next is that (n+l)(n+2)ave(p.-p.)  depends only on J-i. 

As 1 and J run over any h consecutive indices of a sample of n , the 

values of J-i are exactly the same,and occur with the same multiplicity, as if 

i and J ran through a sample of size h .  Consequently 

(n+l)(n+2) E*Z*ave (p, - p. )2 = (h+l)(h+2) Z Z ave (p, - p.)2 where E* is 
i d      J   1 J   i 

over some h consecutive values of a sample of n and 2 is over all values 

from 1 to h of a sample of h , 

Let now P-i < P2 < P* < • • • < Pv, ^  't*16 order statistics of a sample of 
* * * * 

h    (not n) from the standard rectangular,  and let    p^.     < Pg    5 P^   S '•* S^n 

be the order statistics of an independent sample of    n    (not h)  from the same 

distrihution.    Let    T(p)    and    T(p  )    be the corresponding TSSD's,  in the first 

case for all    h    values and in the second case for the central    h   values.     Since 

2h •  T(p*) « L*Z*{vi - Pj)2 

2h •   T(p) = E Z (Pj   - V±)2 
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we must have 

*;2 

2 

H 
aveR T(p )   a ^ avej^ £ E (pj - p^^ ) 

" SEcWsfe) Z*Z* aveR(n+l)(n+2)(pJ* - p^) 

" gg^CKng) Z £ aveR(h+l)(h+2)(Pj - p^ 

for, since T(p) Is an untrlmoed sum of squares for a sample of size h , 

ave T(p) «S (-h- l)o  for any distribution. 
u 

Now let us turn to var p . Recall that, for i < J 

(n+l)
2(n+2) covCp^Pj) - i(n+l-j) - ( ^ + c)( ^ - d) 

a ( ££ )2 . ( *|i ) (d - c) - cd 

where    21 a (n+l) + 2c,  2J n (n+l) +2d ,  so that    c    and    d    range over   h 

values with average zero and unit spacing between adjacent values.    Hence 

(n+l)
2(n+2) zVcov^p.) = h

2 ( ^ )2 - 2 ^      £*    (h -  |i.c|)|d-e| 

since    EZ   cd=(Ec)(Ed)= 0*0 a 0 . 

Now 
h 

brj. 
I (h-k) . k = h z k - ä2 = h : ^) ~ h^+1p+1) 

. li(|Ül (jh _ 2h - 1) -   C^l)^)(h-l) „ ( h+l) 

so that 
u 1 v*-*       ^ \ 1  rv,2 (n+l) o n+l ^^Vl var p = —gE 1    cov(p ,?.) »   -5- -5-  [h    v-i-/    - 2 -^- (       )] 

hd ^    1 h'i(n+l)'i(n+2) * ^5 

1 ri     p   h2 -1     , 
Mn+2)        ll " 2  lECSil) J 
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(for   ho 1, this checks with the variance of the median    p, namely    l/Mn+2), 

while for   h « n    It reduces to    l/l2n , as It should, 

The conversion divisor Is thus 

Tvr      • v ^        (h+2)(h4-l)(h-l) /       5h(n+l) - 2(h2 -l) 
DivR (g + h + g) »    V^(^)(^i) / 12h{n+iHn^) 

(h.t.2)(h+l)(hKh-l)      u        (h42)(h.H)(h)(h-l) 
"     5h(n+l) -2(112-1}      "        Jh.n - (2h^ -5h-l) 

which reduces to    (n)(n-l)   when   hsai,  as it should.    Its reciprocal can he 

written 

1  3(n+l) 2 
Div^g + h + g) =    (h+2)(h+l)(h-l) "    (h+2Kh} 

which is obviously linear in n , 

If we fix h , and let g Increase unit hy unit, n will increase in 

steps of 2, and the rectangular theory reciprocal will increase in steps of 

6 
(h+2Kh+inh-l) 

12.     'Jhe asymptotic  case. 

Consider next the case of an arbitrary distribution where    h    is fixed and 

n    Is large.     If    y = r(p)    is the representing function of the distribution, 

so that    P(r(p)) = p    where   F(y)    is the corresponding cumulative,  then 

y1 = r{v±) 

where y1,y2,   ..., y  are the order statistics of a sample of n y's and 

p., p . .,., p  are the order statistics of the corresponding sample of n p's. 
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Put q' « p  and q" « p , ^ so that the h central p^^ fall between 

q' and q". It Is a consequence of Wald's principle [h]  that, conditional 

upon the values of q' and q" , these h p.'s are distributed like a saarple 

of h from the rectangiilar distribution with q' and q" as end point. 

Conditional on q.' and q" we have the following averages and variances: 

whence 

ave (p | q', q") » | (q' + q") 

var(^ | q-, q")-«'^2 

ave(T(p) | q', q") = ^g (q" - VY 

var^ p a ave var (p [ q'^q.") + var ave (p|  q',^") 
R     I', <l" q', q" 

= ^ ave (g" _ gi )2 „ + | var (q" + q« ) 

and 

aveH T(p) « ^g ave (q" - q1)' 

so that the reciprocal of the conversion factor satisfies 

a 

If now z' = y  and z" = y ,  , so that the h central y^^ fall 
g n+x-g 

between z» and z" , it again follows from Wald's principle that, conditional 

onthe values of z' and z", these y^^ are distributed like a sample from 

whatever may be the distribution of y truncated onto the Interval from z' 

to z". 
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If n is very large, the Interval from z' to z" will De short and will 

lie close to the median of the distribution of y. If that distribution is 

smooth near its median, the result of truncating it otito any small interval neaor 

the median will he very nearly a rectangular distribution. 

Hence 

__1_- s h(h - 1) -^r- « 1 + 6h ave & i Ti ')2 
Div^rg+ h + g; ^J' 

where D stands for any distribution smooth near the median, and T<y) is the 

TSSD for the y's. Moreover, 

z' = rCq') an«1 z" " r(q") 

where r will behave very nearly linearly, so that 

var (y" + y') w var (g" ± gj, 
ave(y" - y')2    ave (q" - q« ) 

consequently 

and ve see that asymptotically,   for fixed   h    and very large    n ,  the value 

of the conversion factor will not depend upon the shape of the parent distri- 

bution,   so long as that distribution is smooth near the median. 

If the distribution of   y    is symmetric,  then 

r(p) = a + b(p - i) + d(p - i)     + ... 

and deviations from linearity are of order    (p - i)2    times the linear deviations. 

Since    (p - -I)2    is of order    l/n , the fractional deviations of the conversion 

factor for any two symmetrical distributions from one another are at most of 



25. 

order l/n for each fixed h , 

Suppose that, for two synmetrlcal parent distributions, the conversion 

factors for some h satisfy: 

factor'1 - A^  »'{n + l) + B1 + C^n) 

factor"1 » Ag • (n + l) + B2 + C2(n) 

where C.{n)    and Cp(n) "both tend to zero as n Increases. OSielr ratio can 

only approach unity as n tends to Infinity if ^ - Ag. For the standard 

rectangular distribution 

faCt0r'  " (lHg)(h4-l)(h-l)  (n+l) " (h+2)h   * 

Consequently, for any symmetrical distribution for which the general form 

applies, 

t***0*'1 -  (h+2)(h^l)(h-l) ^
+1) + COnStant + C(to) 

where C(n) tends to zero, while the difference "between the reciprocals of 

the factor for n and n-1 will he 

^factor'1) - (h+2)(h^1)(h-1) + tC(n) - c(n.2)]. 

15. Suggested alternatives. 

The discussion of the last paragraph shows, upon reexamlnatlon, that the 

reason why the conversion factor does not depend upon h alone lies in the 

ratio 

var [average of dlstrlhutlon trinroad to (z1, z")] 
ave [variance of dlstrlhutlon trlmtned to (z1, z")] 

Thus it appears that perhaps the most natural way to build In some compensation 



is to use as a basis for estimating the trfcUBSd     variance of the mean of    h 

values,  not the TSSD or squared range of the sane    h   central values, hut the 

TSSD or squared range of a greater number of values, perhaps    1 + h + 1    or 

2+h + 2    or    3 + h + 5.    These possibilities will he considered numerijally 

in a later report. 
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