NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Progress Report No. 39
for the period
July 1, through July 30, 1961

on

EVOLUTION OF ULTRA-HIGH STRENGTH STEELS, AND
RESEARCH ON MATERIALS AND VARIOUS
NOVEL TECHNIQUES OF FABRICATION
OF HIGH PERFORMANCE
ROCKET MOTOR CASES

Mellon Institute Project No. 381-3

Submitted to:
Bureau of Naval Weapons
Code SP-271
under
Prime Contract: NOrd 18169
MELLON INSTITUTE

Progress Report No. 39
for the period
July 1, through July 31, 1961

on

THE EVOLUTION OF ULTRA-HIGH STRENGTH STEELS,
AND RESEARCH ON MATERIALS AND VARIOUS NOVEL TECHNIQUES
OF FABRICATION OF HIGH PERFORMANCE ROCKET MOTOR CASES

Mellon Institute Project No. 381-3

Submitted to:
Bureau of Naval Weapons
Code SP-271
Prime Contract: NOrd 18169
PROGRESS MADE DURING THE MONTH OF JULY, 1961

A. The mechanical properties of 0.0045 in. diameter beryllium filament have been determined. Data given in Table I indicate that beryllium wire is approximately twice as strong as 6061-T-913 aluminum alloy wire. Although the current price of beryllium wire is around $2.75 per linear foot, a considerable price reduction can be expected if large quantities of wire has to be manufactured. If a program on beryllium and Be-alloy wire drawing is now initiated, metallic filament wound missile motor case development work can be materially advanced.

Aluminum filament wound and epoxy bonded sphere manufacturing work is now progressing satisfactorily. Two approximately 10 in. diameter spheres will be ready during the third week in August.

At the completion of this task, considerations will be given to wind similar spheres using both aluminum alloy and beryllium wires in the same work piece. Such interweaving is expected to produce a more rigid and stronger sphere.

B. Fatigue studies directed toward showing the effect of various austenitization temperature on the fatigue life and endurance limit have been completed for air melted Rocoloy 270. The results seem to indicate that use of austenitization temperatures above and below the optimum temperature lowers the endurance limit and reduces
TABLE I

Results of Tensile Tests\(^{(a)}\) on .0045 in. Diameter Beryllium Wire\(^{(b)}\)

<table>
<thead>
<tr>
<th>Test Number</th>
<th>0.2% offset Yield Strength ksi</th>
<th>Ultimate Tensile Strength ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144</td>
<td>177</td>
</tr>
<tr>
<td>2</td>
<td>136</td>
<td>179</td>
</tr>
<tr>
<td>3</td>
<td>144</td>
<td>178</td>
</tr>
</tbody>
</table>

\(\text{(a) Test conducted in accordance with ASTM specifications.}\)

\(\text{(b) As-drawn condition.}\)
the fatigue life. Similar work on vacuum induction melted and vacuum arc remelted Rocoloy 270 is in progress. Complete results of this study will be reported in a brochure which is being prepared on Rocoloy 270.

C. Analyses of the mechanical properties of MX-2 hydrospun vessel, Serial No.: Unit #2, have been completed. Primary interest was focused on the effect of hydrospinning on the fracture toughness of the parent material and the welded area.

The vessel was fabricated from sheet material measuring 48" x 40" x .150" thick. The sheet was rolled, welded, and hydrospun to its final dimensions of 13,900 in. diameter x 38 in. (spun length) x .060 in. thick in two steps with a spheroidize anneal between hydrospin passes. The final reduction of wall thickness was 60 per cent.

Figure 1 shows the directions and locations from which the tensile specimens and metallurgical samples were taken for a study. The standard unnotched flat tensiles were taken to show the directionality effects, if any, on the heat treated material and also as a check on the strength level attained by the heat treatment.

As received metallurgical samples were first processed and micrographs were made. Figure 2 explains in a pictorial manner the three directions from which the micrographs were taken. Figures 3, 4 and 5 show the above condition. It is readily seen from these figures that the spheroids are elongated in the direction of the roller tool marks.
Figure 1

Relative Positions of Test Specimens to the Longitudinal Weld of the MX-2 Hydrospun Vessel.
Roller Tool Marks

Figure 3

As Received Hydros spun MX-2 Microstructure of the Vessel's Spun Surface. (Magnification 750 X)
Roller Tool Marks

Figure 4

As Received Hydrospun MX-2 Microstructure taken from a Circumferential Cross-Section. (Magnification 750 X)
Roller tool marks are directed into the paper

Figure 5

As Received Hydrospun MX-2 Microstructure taken from a Longitudinal Cross-Section. (Magnification 750 X)
Photomicrographs were also made of the heat treated conditions. Figure 6 shows the as quenched condition and Figure 7 shows the hardened and as tempered condition of the hydrospun surface.

The as quenched sample was used for a decarburization study. Hardnesses were taken across the entire width of the specimen. Figure 8 shows the hardness traverse across the thickness. It was found that the outside surface was decarburized .007\(\frac{1}{2}\) in. and the inside surface .010 in.

The standard unnotched flat tensiles were heat treated along with the center notched specimens. Table II presents these results and also shows a higher tensile and yield strength for specimens taken from the longitudinal direction.

Table III compares the notch toughness and directionality effects of the welded center notched samples with that for the parent material. In this case, the circumferential direction indicated greater notch toughness. The circumferential center notched samples had the center notch coinciding with the weld. As seen from the table, the parent hydrospun material showed better properties.

D. Deep drawing of Rocoloy 270 and other experimental steels of this program into 10 in. hemispherical cups has been completed. These cups are intended for use in the evaluation of the biaxial stress-strain capabilities of various missile steels.
Figure 6 - Microstructure of Hydrospun M4-2. Annealed at 1250 F for 30 Min., Air Cooled, Austenitized at 1700 F for 30 Min., and Oil Quenched. (Magn. 500 X)

Figure 7 - Microstructure of Hydrospun M4-2. Annealed at 1250 F for 30 Min., Air Cooled, Austenitized at 1700 F for 30 Min., Oil Quenched, Tempered at 550 F for 2 + 1 hrs. and Air Cooled. (Magnification 500 X).
Figure 8

Table II

Uniaxial Unnotched Tensile Results

<table>
<thead>
<tr>
<th>Specimen Direction (b),(c)</th>
<th>Average Yield Strength ksi</th>
<th>Average Tensile Strength ksi</th>
<th>Average Fracture Strength ksi</th>
<th>Average Reduction in Area Per Cent</th>
<th>Average Elongation in 1" Per Cent</th>
<th>Hardness R<sub>C</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>219</td>
<td>268</td>
<td>333</td>
<td>28.9</td>
<td>7.0</td>
<td>52.0</td>
</tr>
<tr>
<td>L</td>
<td>235</td>
<td>279</td>
<td>348</td>
<td>31.1</td>
<td>7.0</td>
<td>52.0</td>
</tr>
</tbody>
</table>

(a) Annealed at 1250°F for 30 min., air cooled, austenitized at 1700°F for 30 min., oil quenched, tempered at 550°F for 2 + 1 hr.

(b) C = Circumferential direction (parallel to roller tool marks).
L = Longitudinal direction (transverse to roller tool marks).

(c) Test section size = .500" x .060".
TABLE III

Results of Notch Tests on Heat Treated(a) Hydrospon MX-2-47

<table>
<thead>
<tr>
<th></th>
<th>Specimen No.(b)</th>
<th>σ_{net} ksi</th>
<th>G_c ipsi</th>
<th>Average σ_{net} ksi</th>
<th>Average G_c ipsi</th>
<th>Hardness RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld Specimens</td>
<td>9-1</td>
<td>202</td>
<td>909</td>
<td>210</td>
<td>1010</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>9-2</td>
<td>218</td>
<td>1110</td>
<td></td>
<td></td>
<td>52.0</td>
</tr>
<tr>
<td>Parent Material</td>
<td>9-3</td>
<td>186</td>
<td>812</td>
<td>186</td>
<td>815</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>9-4</td>
<td>185</td>
<td>818</td>
<td></td>
<td></td>
<td>52.0</td>
</tr>
<tr>
<td>Circumferential Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld Specimens</td>
<td>8-1</td>
<td>202</td>
<td>977</td>
<td>196</td>
<td>919</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>8-2</td>
<td>190</td>
<td>860</td>
<td></td>
<td></td>
<td>52.0</td>
</tr>
<tr>
<td>Parent Material</td>
<td>8-3</td>
<td>208</td>
<td>1020</td>
<td>220</td>
<td>1080</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>8-4</td>
<td>232</td>
<td>1140</td>
<td></td>
<td></td>
<td>52.0</td>
</tr>
</tbody>
</table>

(a) Annealed at 1250 F for 30 min., air cooled, austenitized at 1700 F for 30 min., oil quenched, tempered at 550 F for 2 + 1 hr.

(b) Gross section area = 3.000" x 0.060"
 Notch length = .3 to .4 of the width of the specimen.
E. Evaluation studies of the effect of ultrasonic vibrations on the solidification of weldments have been continued. The use of this technique in order to produce very fine microstructure in welds is clearly demonstrated in Figures 9 through 11.

F. Weld filler wire development studies have been concluded.

G. Work on fabrication and testing of scale model rocket motor chambers made from suitable steels is continuing. However, no results can be reported for the present period.

H. Stress corrosion evaluation studies on MX-2 and Rocoloy 270 are continuing and no failure of any specimens has occurred since the last report on this subject.

The specimens to be used for the study of the effect of surface decarburization on various steel properties, are presently being heat treated. The controlled production of the required depths of decarburization has been a difficult task. However, this has been achieved with considerable success by careful manipulation of the moisture content of the hydrogen gas used.
Figure 9

Photomicrographs showing the refinement produced by ultrasonic excitation. 95% Pical 5% HCl Etch X100 Welded and Stress-Relieved Structure.
Figure 10

Photomicrographs showing the refinement produced by ultrasonic excitation. 95% Picral 5% HCl Etch X250 Welded and Stress-Relieved Structure.
Figure 11

Photomicrographs showing the refinement produced by ultrasonic excitation.
95% Picral 5% HCl Etch X100 Austenitized, Oil Quenched and Tempered Weld Structure.
Work schedule during the month of August will include:

Further investigation of the effect of decarburation on the various physical and mechanical properties of missile steels and scale model motor cases.

Study of the effect of various additives to india ink or other suitable marking fluid, on the G_0 and K_0 value estimations.

Respectfully submitted,

G. K. Bhat
Project Leader

Approved:

H. L. Anthony III
Director of Research
Distribution List

Bureau of Weapons
U. S. Navy Special Projects Office
Munitions Building
Washington 25, D. C.
Code SP-20
Code SP-27
Mr. Richard Sanderson

Dr. H. L. Anthony
Director of Research
Mellon Institute

Dr. G. K. Bhat, Project Leader
Missile Materials Fellowship
Mellon Institute

Miss Elizabeth Jackson
Reports Section
Mellon Institute

Dr. Dwight F. Gunther
463 West Fifth Street
Loveland, Colorado

Mr. J. F. Kennedy
Office of Naval Research
University of Pittsburgh
Room 107 - Salk Hall
Pittsburgh 13, Pa.

Superintendent, Code 725
U. S. Navy Gun Factory
Washington 25, D. C.

Naval Air Material Center
Naval Air Engineering Facility
Ship Installations
Philadelphia 12, Pa.
Attn: Technical Library

U. S. Naval Weapons Center
Washington, D. C.
Attn: Code 725

U. S. Naval Research Laboratory
Washington, D. C.
Attn: Code 6322

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
Attn: Library

Commander
Army Ballistic Missile Agency
Redstone Arsenal, Alabama
Attn: ORDAB-ESI

Department of the Navy
Bureau of Ordnance
Washington 25, D. C.
Attn: ReS6

Department of the Navy
Bureau of Naval Weapons
Washington 25, D. C.
Attn: Mr. S. J. Matesky
Code RMMP-23

Commander
Air Force Flight Test Center
Attn: FTIDSG, Edwards AF Base
California

Department of the Army
Office, Chief of Ordnance
Washington 25, D. C.
Attn: ORDTr

Department of the Navy
Bureau of Aeronautics
Washington 25, D. C.
Attn: Adj, Technical Library

Department of the Navy
Bureau of Ordnance
Washington 25, D. C.
Attn: ReW3a

Commanding General
Aberdeen Proving Ground
Maryland
Attn: Ballistic Research Laboratories ORDECB-LII
National Aeronautics & Space Administration
1512 H Street, N.W.
Washington 25, D.C.
Attn: Chief, Division of Research Information

Commander
Air Force Ballistic Missile Div.
Hq. Air Res. and Dev. Command
P. O. Box 262
Inglewood, California
Attn: WDSOT

Commander
Army Rocket and Guided Missile Agency
Redstone Arsenal, Alabama
Attn: Technical Library
ORDXR-OTL

Aerojet-General Corporation
P. O. Box 296
Azusa, California
Attn: Librarian

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California
Attn: I. E. Newlan, Chief, Reports Group

Solid Propellant Information Agency
Applied Physics Laboratory
The Johns Hopkins University
Silver Spring, Maryland
Attn: K. G. Britton

General Electric Company
FPO Technical Information Center
P. O. Box 196
Cincinnati, Ohio

Commander
Armed Services Technical Information Agency
Arlington Hall Station
Arlington, Virginia
Attn: TIPCR

Thiokol Chemical Corporation
Redstone Division
Huntsville, Alabama
Attn: Technical Director

Hercules Powder Company
Baechus Works
Magna, Utah
Attn: Librarian

Exxelco Developments, Inc.
Silver Creek
New York

A. O. Smith, Corporation
Milwaukee, Wisconsin

Thiokol Chemical Company
Utah Division
Brigham City, Utah
Attn: Technical Director

Ingersoll Kalamazoo Division
Borg-Warner Corporation
1810 N. Pitcher Street
Kalamazoo, Michigan
Attn: J. W. Schiffel, Chief Engineer, Special Projects Office

Grand Central Rocket Company
P. O. Box 111
Redlands, California
Attn: Helen Ashman, Librarian

American Machine and Foundry Co.
Mechanics Research Department
1104 South Wabash Avenue
Chicago, Illinois
Attn: A. D. Kafadar

Allegheny Ballistics Laboratory
Hercules Powder Company
Cumberland, Maryland
Attn: F. Winer
Pratt & Whitney Aircraft
Division of United Aircraft Corp.
East Hartford, Connecticut

Aerojet-General Corporation
Azusa, California
Attn: Mr. W. T. Cox

Thiokol Chemical Corporation
Elkton Division
Elkton, Maryland
Attn: Librarian

Astrodyne, Incorporated
P. O. Box 548
 McGregor, Texas

John I. Thompson & Company
1118 22nd Street
Washington 7, D. C., N. W.
Attn: C. A. Posey

Lyon, Incorporated
13881 West Chicago Boulevard
Detroit 28, Michigan

Defense Metals Information Center
Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio

Aerojet-General Corporation
P. O. Box 1168
Sacramento, California
Attn: Mr. Frank Climent

Lockheed Missile and Space Division
1122 Jagels Road
Sunnyvale, California
Attn: H. H. Patton

U. S. Naval Inspector of Ordnance
P. O. Box 304
Sunnyvale, California
Attn: Cdr. P. S. McManus

Aerojet-General Corporation
P. O. Box 1168
Sacramento, California
Attn: W. R. Kirchner

Resident Inspector of Ordnance
Aerojet-General Corporation
P. O. Box 1947
Sacramento, California
Attn: Cdr. J. Christman

Ryan Aeronautical Company
Lindbergh Field
San Diego 12, California

Norris-Thermador Corporation
Norris Division
P. O. Box 38384
Vernon Branch
Los Angeles 58, California

Kaiser Fleetwings, Inc.
Bristol, Pennsylvania

Allison Division
General Motors Corporation
P. O. Box 894
Indianapolis, Indiana
Attn: Engineering Research Lab

Bendix Aviation Corporation
South Bend, Indiana
Attn: Technical Library

Hughes Tool Company
Culver City, California
Attn: Materials Department

Universal-Cyclops Steel Corp.
Bridgeville, Pa.
Attn: Mrs. E. Kirchhof, Librarian

Rocketdyne
Division North American Aviation
6633 Canoga Avenue
Canoga Park, California
Attn: Librarian, Dept. 596-306