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ABSTRACT

A compilation of the analytical operations for the structural anal-

ysis of a truncated spherical shell based jointly upon an evaluation of

research effort and operational performance is presented. The four
primary problem areas of loading, shell conversion, stability, and

strength which confront the engineer in the structural desigi: of such a

shell are discussed in detail. In each of these problem areas, com-
putational methods or approaches are offered which may be adopted as
design procedure.
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GUIDE TO THE STRUCTUKRAL DESIGN OF TRUNCATED
SPHERICAL RIGID GROUND RADOMES*

(NTRODUCTION

The impetus for this report was generated by the Air Force's program
in the development of truncated spherical rigid radomes for the environ-
mental protection of ground radar and communication antennas. As such,
this report should be of particular value to the engineer concerned with
the structural analysis or design of these radomes; but the principles
involved are equally applicable to any shell structure of the configura-
tion mentioned. Although this report 1is primarily directed toward radome
desipners, no attempt will be made to discuss the electronic interaction
of antenne and radome. Rather, it will be assumed that tle radome or
spherical shell design has progressed to the point where a tentative type
of structure has been selected based upon transmission clharacteristics;
and otie must now determine by analysis what shell thickness, member sizes,
skin thicknesses, and so forth, are requireua for structural adequacy un-

aer the imposed loading.

A sipniticant portion of the material contained in this report was
dovelaopes f'or Rome Air Development Center by Armour Research Foundation
under countract AF 30(602)-1860. Appendixes A, C, and D of the final re-
port1 on this contract have been included in total in this report. This
study program reflects the Alr Force's bLelief that additional theoretical
and experimental work was and still is required in this area. This belief
was established from the kaleldoscope of analyses which have been sub-
mitted in response to operational requirements for radomes. This report
represents an ef'fort to establish common ground for contractor and

Government engineers alike involved in the design of radomes.

In its capacity as responsible Center for the development of ground
radomes, RADC has had the opportunity to gather data on all phases of the
program from basic research to operational suitability. The procedures
recommended herein are hased jolntly upon the evaluation of laboratory

test data and appraisals of rigid radomes.
LOADING

Lased upon observed field tests and reports from operational sites,

it has been established that wind loading is of primary intere: .. the
*Released 14 February 1961,




structural engineer. Although snow and ice loadings represent a transmis-
sion hazard when one is considering a radome, experience has taught that
for-the -typleal-geometry under consideration (Figure 1) there is not suf-
ficient build-up of ice or snow to warrant serious structural considera-
tion. Therefore this section of the report will discuss only the wind

loading, Its analytical representation is presented in Appendix A,

Two types of analytical representations of wind load distribution on
the spherical portion of the radome used in the past are

. potential flow distribution on a complete sphere, and
« distributions which approximate wird tunnel data on radomes of

particular geometry.

The experimentally determined pressures agree well with potential
theory on the forward half of the dome, but are substantially less than
those predicted on the rear half. The differences are due principally to
the fact that

., air does not act as an ldeal fluid at the Reyrolds numbers in-
volved,

. turbulent flow occurs over the rear half of the dome,

» the presence of the base geometry (e.g., tower) cannot be ignored.

€ « THICKNESS

BASE
£,' ANGLE

BASE PLAN!\

L, BASE CIRCLE DIAMETER J

Figure 1. Typical Radome deometry :
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The analytical representations, approximating the experimental data,
imply a pressure aistribution which is circularly symmetric with respect
ta.tle_axis containing . the stagnatlon point and in the direction of flow.
The experimental results of Reference 2 on a 3/4 tower-mounted sphere
(Figure 2, Appenaix A) show this assumption of symmetry to be valid rea-
sonably close to the stagnation point and also in the rear hLalf of the
dome, but in error on intermediate sections. However, a more complete
analytical representation of the experimental data is impractical, es-
pecially from the viewpoint of subsequent analytical solution of the

shell equations.

It is belleved that, as a basis for stress analysis, a general poly-
nomial representation of loading, providing that sufficient terms are re-
tainod, 1s preferable to the loading as predicted from potential theory
on & complete sphere. The question, then, concerns the adequacy to which
the particular series considered represents the available experimental
data, say, In the vertical plane of symmetry of the dome. A three-term
serles preserves stagnation pressure and total 1ift and drag. As such,
it closely approximates the experimental distribution near the stagnation
point, but deviates markedly in the rear of the dome. The four-term
serles evaluated in Appendix A preserves, additionall)y, the location of
the maximum suction pressure (see Kigure 4, Appendix A). Of course, any
uesired degree ot accuracy can be achieved by retaining sufficient terms
in the series. Subsequent soluticn ¢f the shell equations becomes more
cumbersome, bul remalns feasible. Additional study is required to evalu-
ate the practical signiticance of including terms beyond the fourth.

The situatlon is less involved with respect to stability considera-
tions. Here it seems reasonable to base the dome design on the stagnation
pressure assumed to act uniformly on the buckled area. Even if subsequent
study indicates the nonuniformity of the pressure to be signiticant, the
distribution according to potential theory, being valid for almost the
entire torward half of the dome, should be adequate.

SHELL CONVERSION

In the theoretical work discussed in the following sections of this re-
port, all formulas and computations will be based upon a structure with a
uniform wall thickness of homogeneous, isotropic material. Unfortunately,
the engineer rarely finds himself confronted with such an idealized
structure. More often, the shell is a space frame with orthotropically
oriented members or of sandwich construction with a wall of Ligh densit)
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high strength skins and low density, low strength core. To reduce these
types of shells to a form ‘which can be handled by a general analysis, they

are convarted to an equ;valent homogeneous, isdtropic, uniform thickness
shell of such modulus of elasticity and thickness as to preserve tlie ex-
tensional and bending stiffness of the original structure. The elastic- .
ally similar shell thus created will develop a loading and deflection pat~

tern substantially identical to that of the original. The moments,

shears, and thrusts computed on the basis ©®f the equivalent shell are

then considered as applied to the actual shell and existing stress levels

computed.

Appendix B presents methods for the conversion of a sandwich structure

and a space frame structure to thelr elastically eguivalent uniform shells,
GENERAL STABILITY

Depending on construction, primary instability of a rigid radome shell
can be caused
« by "oil canning” of the stagnation cap,
+ by local buckling of the stifteners in the case of space frames,
or
. by loecal huckling of facings on one or more panels ot sandwich

construction,

To establish the general stability of the structure of interest, the
designer must first convert the structure to its lhomogeneous, uniformly
thilek, elasticually cequivalent shell. This procedure is outlined in Appen-
dix 3. With the structural characteristics of tle eyuivalent shell thus
established, one may proceed to determine the critical buckling pressure

or general stability of the structure.

As a part of this report, the pgeneral stability of a homogeneous
spherical shell has been considered on the basis of energ) techniques

(Appendix €) from which the following has been indicated:

1. For design, it is reasonable to consider the stagnation pres-
sure as being uniformly distributed over the buckled area.

2. For shells of the geometry considered (Figure 1), equation
(37), Appendix C, predicts that the dimplea area will intersect the base
circle for %< G4. This means that, for "thicker" siells, the base con-
nections provide a stiffening effect not considered in theory.

3. The maximum stagnation or buckling pressure is given by equa-
tion (3€), Appenuix C, ana the estimated size of aimple by equation an, °
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unifovm pressure 16 still somewhat of & uusber).‘ The _prab 3 ol .
pounded for a truncated sphere under nonuniform and especiall; uonaxisym—
metric conditions, as is the case for radomes. Though lacking a fundamental
understanaing of the phenomena, it is believed that the present findings
contribute to a rational basis for design. Continuing stuu; should lead
to further improvements of design procedures. -

LOCAL STABILITY

Investigatlon of the local stability of an individual stiffener in a
space frame proceeds aloug the lines of a conventional beam-column analy-
sis. The axial load per stitfener is established from the normal loads
per unit leugth of shell determined from the membrane analysis (Appen-
dix D) nmultiplied by the effective spacing (Appenaix B) of the stiffeners.
This axial load, along with the Lransverse load transferred from the mem-
brane, forms the combined loading picture on the stiffener. The degree
o’ support or "end fixity" assigned to the stiffener is a direct function
of' the constructlon details peculiar Lo the structure of interest. Its
cevaluation depends upon the desipner's experience and & thoraugl knowledge
uf' these details, and does not lena ttselt to peneral treatment. With thea
loading and boundury conditions established, one may now proceed with any
one of' a number of familiar methods tor the solution of indeterminate
structiures.

In the case of sandwich structures, once the peneral stability has
been established, the local buckling of the faces on one or more panels
may be determined by methous presented in Reference 3 of this report,

STRENGTHS

In general, stresses in radome shells have bLeen determined employing
curved column, simple beam, or membrane analyses, or combinations thereof.
The curved column anu beam analyses ignore the essential characteristics
of a shell in that they disregard the influence of' continuity and curva-
ture on the geometrical relations between aisplacements and strains, and
on the equilibrium conditions. Membrane theory, while incorporating these
effects, takes no account of the flexural resistance of the shell and, as
such, has definite limitations In its application. As will be discussed,
these limitations, at the very least, make questionable estimates of the
conditions of stress in the vicinity of the radome edge constraints.
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What is required, then, is- ‘the applieation of a general bending theory

o the,problem of a° ‘truncated spherical shell. As of £his wribing, sunh

A cheory has not been developed; however, it is. nonet.helesa feas:!.ble. K
membrane solution, as discussed in Appendix D, may be viewed as a first
step in obtaining the bending solution.

Membrane theory results from a simplification of the usual small de-
flection bending theory of elastic shells in which the moment resistance
of the shell cross section is neglected. As a result, the staté.of stress
at a poiht 15 the shell is completely specified in terms of two components
of the resultant normal stress on the cross section and the resultant
shear. Moreover, these stress resultants constitute a statically deter-
minant system of forces, meaning that the governing (partial differential)
equations can be solved, in principle, without regara to shell deforma-
titons. This has an important corollary, namely, that a membrane stress
solution, in general, cannot be found which satisfies an arbitrarily spec-
ified system of boundary tractions or displacements.

With application to rigid radomes, this means that a membrane solution
will not properly describe the built-in conditions at the base circle.
Rather, the theory will predict a nonzero system of base displacements and
assocliated curvatures. Since the actual edge conditions may be thought to
result from the superposition ot suitable edge shears and mumenis, 1t is
clear that the membrane soluticn will be essentially meaningless insofar

as base stresses are concerned.

One approach to the bending theory of shells involves a two-step solu-
tion. First, the membranc stresses are determined for the fully loaded
sliell and the deformations are computed at points of support. The second
step involves evaluation of the bonding theory for the shell subjected
only to the nccessary moments and shears at the points of support to re-
move the excess deformations predicted by rhe membran: soilution. The
complete solution is then the superposition of the stresses determined in
the two preceding problems. Progress to date does not permit determina-
tion of the bending stresses. However, the membrane solution described in
Appendix D was organized so as to readily permit the second step in the
above procedure to be carried out at a later date. As indicated above,
the results of the membrane solution are considered sufficiently accurate
for design purposes at all points throughout the shell, except in the im~
mediate vicinity of the base circle (that is, the boundary layer effect
as Riessner terms it in Referznce 4).
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. stress a.nalasis must cons:ld.ex- _
. means of determining an "equivalent" homogeneous shell to rep- )
resent the actual structure (Appendix B),
« the application of membrane theory (Appendix D) to determine
the normal and shear loads in the equivalent shell, and
« the application of these loads to the actual shell and com-

putation of the resulting stresses.

SUMMARY

In this report and the appendixes thereto, we have attempted to es-
tablish a norm or basis for a more rigorous analytical design of a radome
or spherical shell. DBeginning with the loading, a procedure for the ana-
lytical representation of the pressure distribution on a radome resulting
from a wind loading has been indicated and worked out.

Secondly, methods for converting space frame structures and sandwich
structures to their homogeneous, uniform wall thickness, elastic equi-
valent counterpart have been demonstratea. Once this has been accom-
plished, the designer may now apply the "membrane theory" to determine
shell loads and investigate for general shell stability.

Third, u membrane analysis, vhich can be readily incorporated into a
general bending theory, 1s presented which has been evaluated tor a four
term expansion of the loading and is considered valid in itself for that
vortion of the radome shell above the egjuatorial plane. The results of
this analysis may now be applied to the actual structure under considera-
tion, and local stability and strength requirements investigated.

Fourth, a new theory of the buckling of a complete spherical shell un-
der uniform external pressure, developed by Professor L.H. Donnell of
Armour Research Foundation, 1s presented as a part of this report. An
approximate finite-displacement solution was obtained for the axisymmetric
buckling, in the form of a single dimple of a fairly thin-walled homogene-
ous, elastic spherical shell. This solution provides for the buckling
pressure, P, and the semi-coue angle of the "dimple" which forms the
buckled shape, f.

RECOMMENDATIONS

Based upon a general review of the design techniques, the following
analytical studies are recommended:

ahor
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o develop and evaluate in detaill a general Lending theory for’ uni— .

form, homogeneous, spherica.l shells subject to the simplified wind 1oading

ot &ppendix B, and incorporating the membrane wiglysis of Appendix Dy —

. exténd the Donnell buckling theory presented in Appendix € to
include more general characterization of the deflected shape; '

« application of a more exact hasis for determining the geome-~
trical and mechanical properties of an "equivalent" homogeneéus shell.
One such theory due to E. Riessner (Reference 3) would appear to be partic-
ularly suited to radome structures. . - o




RE

=1

1,

2,

10,

11,

12,

Abalytical and.Exbefimentél Stﬁdies of Spherical Riiid'ﬁéodn&'ﬁédoiaé '
Armour Research Foundation, Report ARF-8-15¢, Contract AFS0 (602)-186q
1961,

BADC, Report No. UB-800-D-1, Wind Tunnel Testa on a 1/24 Scale Nodel
Air Supported Radome and Tower, U.C., Cornell Aeronautical Laboratory,
Inc., Sept 54, ' .,;‘ ) .W 
ANC-23, Sandwich Construction for Aircraft, Part II, U.C., Forest
Products Laboratory, Second Ecition 19335.

"Membrane and Bending Stresses in Spherical Shells," U.C., Journal of
the Society for Industrial and Applied Mathematics, Dec 55, Vol, 4,
No. 4.

E. Riessner, NASA, No. 975.

Goodyear Aircraft Corporation No. 8224, Theory of Spherical Ground
Radomes, May 1, 13938,

H.8. Tsien, "A Theory of the Buckling of Thin Shells," Journal of
the Aeronautical Sciences, Vol. 9, No, 10, Aug 42.

L.H. Donnell, "Effects of Imperfections on Buckling of Thin Cylinders
and Columns Under Axial Compression," Journal of Applied Mechanics,
Mar 50.

T. Von Karmun, and Il.8. Tsien, "The Buckling of Spherical Shells by
kxternal Vressure," Journal! of Aeronautical Sciencos, Vnl. 7, No., 2,
Dec 39,

A, Kaplan and Y.C. Fung, A Non-linear Theory of Bending and Buckling
of Thin Elastic Shallow Spherical Shells, National Advisory Committee
for Aeronautics, TN 3212, Aug 54.

Timoshenko, Theory of Plates and Shells, McGraw-Hill Book Company,
Inc., N.Y., 1940,

C.B. Biezeno and R, Grammel, "Elastic Problems of Simple Machine Ele-
ments," Engineering Dynamics, Vol. II, D. Van Nostrand Company, Inc.,
New York, 19564,

rels LA i it somm M

e e




APPENDIX A

—AnAH-T-mAL——nem:rsen'mlen OF—WIND—H)ADIN“ , - e

Typica.l data on steady wind pressures :lncident. on ra.dome shell geo-
metries of the type considered (Figure 1) was obtained Yrom Reference 2,
and is summarized in Figure 2. With a view toward simplification, in-
speétion of Figire 2 suggests replacing the given isobars by ones which
are symmetrical with respect to the axis of flow (these 1sobars would ap-
pear as vertical lines in Figure 2). With this assumption, the wind pres-
sure is a function only of Lhe distance (measured in the direction of flow

WIND
DIRECTION

STAGNATION
POINT

P
{— =1
q )

Figure 2. tsobar Plotting on a 3/4 Spherical, Tower Mounted Radome (Ref. 2)

from the stagnation point, X (see Figure 3).

For purposes of stress analysis, it 1s found convenient to express the
normal pressure as a finite power series in the coordinate X, or, equival-
ently, in a cosine series in the meridianengle & (Figure 3). The series
form adopted is given in equation (1). Symbols are defined in the nomen-
clature.
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Shell Coordinate System and Membrane forces
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¥
n n§° P, (@) cos no,

} where 25 = Do (4) = 1,

The coefficients Dyn(g) can be expressed in terms of the constants

§ a, by expanding equation (1) and equating coefficients in cos nf. The
H Qyy in turn, are related to those features of the actual pressure dis- E
i tribution which are to be retained. For ¥ =3, the following relations :

AR R RTEE LT P TUT TR e TR}

are obtained:¥®
e = dg + 4, sin? ¢,

py = 4, sin ¢ + 34, sin? ¢,

)
p, =1, sin? @,
Py = A, sin’ ¢,
y where
- .‘l°=n°+(11+a2+()43,
411 = - <”1 + 2, + 3(13), -
(3)

4, = 1/2 (a, + 4ngq),

A3="113/’l- V{

(R A LN LI R

The four coefficients 4, . . . d; are determined so as to preserve the
total 1ift and drag on the radome (corresponding to the given pressure
distribution) , the stagnation pressure, and the position of the minimum
average pressure. The first three conditions are clearly necessary, where-
as the fourth condition is somewhat arbitrary. If more terms in equation
(1) were retained, additional features of the given pressure distribution ;%
could be preserved. ?

In terms of the assumed pressure distribution, the total 1lift, [, and
drag, UJ, on the radome shell are to be found to be:

[

%#@eneral relationships are derived but numerical results are presented only for ¥ =3,
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¢ -

- w? [ ® b, @ sin? ¢ do.

For N =3, using equation (2)

L nk? ] 2 2

5 £ - ....2_.. (2 4y t A2 sin ¢°) sin ¢o: (@

b nhk? 2 )
St r LIy 11249 (- cos @)F (2 4 cos &) -

(7)
-9 sin* Py cos ¢,°]_
The condition for the pressure at the stagnation point, ¢ = 7/2, 6 = 0, is

p(n/2,0) ¥
—— 1 n>_20 P, (m/2) .

For ¥ = 2 this leads to

dg + Ay + 24, + ady = 1, (8)

If the position of the minimum pressure 1is prescribed, say, at
X = sin ¢ cos € = x_, equation (1) yields

¥
dbla) = -3 na, (1- x,) n=1 a1 0, (8)
dx x ng n=0 "

For ¥ = 3, the 1, may be expressed in terms of the A, by means of equa-

tion (8), and equation (8) becomes:

2
.41 + 4.42)(' + 12 .43 xg“ = 0.
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The ooefficients A1 e Aa can now bhe determined from equations (6),
(7), (8), and (9) once L/q, D/a, and X, are specif‘ied.

Refex-enoe 2 report.s t.he t‘ollowing axperimantally d.etﬁmined mugs
of total 11ift and drag for a 18.8 inch radius redome at a stagnation
pressure of ¢ = 0.367 psi (1530 mph wind, one atmosphere wind tunnei
pressurae) .

L = 183 1n,

D.-» %2 1b (extrapolated for full-scale Reynolds number).
Using these values, the following 1ift and drag coefficlents were
determined for a hemispherical radome (¢, = 7/2) .

c, = L, 183 = 0.8%,
7R%  (0.367) (18.5) %7
Cp = 2 . @ G2 = 0.50.

nh?q  (0.867) (13.5) %7

Reference 2 also indicates that the minimum average pressure in the
plane & = O occurs at X, = sin ¢, = 0.2 (¢, = 11.5°). Using the above
values for C;, Cp, and x_, the 4's are found to be,

4 = - 1.1433
1, = - 0.6401
A, = 0.5166
13 = 0.,42206,
The numerical results of the stress analysis presented in Appendix D
are based on these values. Figures 4 and 56 show a comparison of the aver-

age pressure data ~btained from Reference 2 and the above power series ex-
pansion with ¥ = 3,
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NOMEN‘CLA'IURL& FOR APEENDIX

Coefficient of drag,
Coeffioient of 1lift,
Drag,

Lift,

Stagnation pressure,
Pressure normal to the undeformed shell surface,
Pressure distribution parameter,

Shell coordinates (Figure 3),

Radius of shell,

Meridional angle,

Circumferential angle, and

Angle of the base circle.
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APPENDIX B -

equivalent often reflects the 1nvestigator 8 lngenuity and engineering _-
judgment and, without a more exact snlution, is difficult to evaluate..
Thus, the choice of one method over another often is not unique but more
‘a matter of opinion. The following methods have been used in the past and
are recoumended for continued use until such time as further_studyﬂ&;elds
a more rigorous solution.

To create the elastieally cquivalent shell, the designer must preserve
the extensional and bending stiffness of the actual structure. Represent-
ing extensional stiffness per unit width of structure as the product £4
and the bending stiffness per unit width as the product £ I, then the fol-
lowing relationships must be maintained between the actual and equivalent

structures.
EI‘actual = Elqutvalent
Aac tual E"lequt valent

SANDWICH SHELL

In the casc of the sandwich shell, the development centinues as f£nl-
Tows (Reference 3):

The general expression for the bendi.ng, stiffness of a unit width of

sandwich construction is:

[ A 2
Ei’ 3'Otc: (Fl FZ)
kl t? t? . —
actual o - Pl . (10)
127, 1 t,
{ P4
where . ch Ay . ')\P = 1-/"1'2
= - an - .
P EF }‘c )‘c 1 —,uc2

This expression may be simplified by three postulations which are gen-
crally valid in the case of radome design:

1. Since the core is low density, low strength material, its
stiffness may be neglected.

2. BSkin thicknesses are equal (that is, t,1 = tiz =1,




.. 3, Since the skins are thin, their individual stiffnesses can pe

__heglected,

__@hgough;gppligaq50nkqf'these poépglahions, equation (10) may be re=-
duced to:

E

Elotuar ™ E};

tpt + )2, (11

The bending stiffness of the equivalent shell per unit width is ex-
pressed as!

v 3 3
El fet (
equivalent” "1p X, . 12)
Equating the actual and equivalent bending stiffness, equation (11)
and (12) yield

3E, L

[ 3 . A 2
B, t, @+ 12, (19)

Following the same procedure with extensional stiffness, the general

expression for the extensional stif'fness of a sandwich shell per unit
width 1s:

BAyppuar = Ep (T -t + B 1 . (14)

Again neglecting the modulus of elusticity of the core and assuming
equal thickness skins, equation (14) becomes:

£

hetuar = bp (2L (15)

The extensional stiffness per unit width of the equivalent plate is
expressed as:

IR

“equivalent = Ee te ' (18)

Equating the extensional stiffness per unit width of the actual and
equivalent shells, equations (15) and (16) yield:

B, t, = Ep(2tp). - (1n)

b
i z
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Solving equations (13) and (17) simulteneously yields.the -following .

“———————-expressions—forthe thickness and modulus. _Q_f_il___ﬂ_-QLH af the gggvelsnt.

shell in terms of known parameters of the actual sandwich shell.

V3
=—2- (t+tc),

te

(18)
g /i Bty
e "3 t+t

c

With the thickness and modulus of elasticity of the equivalent shell,
one may now proceed to compute load distribution, deformation, and buck-
ling pressure. Nowever, it must be kept in mind that the actual stresses
in the dome will be computea from the loads, determined from the equiva-
lent shell per unit width, as applied to the actual shell of interest, Iu
the case of the sandwich shell, the stresses in the core and facings due
to these loads can be calculatea by means of methods given in Reference .

SPACE FRAME

To develop the same equivalency for a space trame structure which re-
sembles an irregular polyhedron, one must cestimate the "effective spacing®
servea by each of the stiffeners coumprising the irregular polyhedron. It
has been demonstrated (Reference 6, p 95) that as the number of faces of a
regular polyhedron increases, the stiffener stress under uniform pressure
approachies the stress in & sphere of equivalent surface area similarl)

loaded whose thickness has been determined as follows:

total vol of stiffeners
=

s 2 X surface area

Only half the volume of the stiffeners Las been equated to the volume
of the shell because of the orthotropic nature of the stiffener as opposed
to the isotropic nature of the shell. Since the stiffener stress and
shell stress are now equal, one can say that the stiffener is now serving
an effective length ot shell (ls) whose area is equal to that of the stif-
fener (dg),

This length of shell will be used as the "effective spacing" of the
stiffeners in developing the elastically equivalent shell as follows.

v i A s v
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As 1n the case of the sandwich shell, the following equations must be
satisfied' o

= £ And.

= E

EI
E4

sctual equivalent

actual equivalent,

The bending stiffness per unilt width of the stiffened shell is ex-~

pressed as:?
B 1

§7S

actual ) '
s

EI

(19)

With the bending stiffness of the equivalent shell again expressed as
in equation (12) and equating the two bending stiffnesses, we have:

E 1.k, t,? 20
- = 2
1 12 A

s

wliere

. 2
)\s 1~/J,s.

Procceding in the same tashion with the extensional stif'fness per unit
wiath:
k1

bAaccual = z s. (21)

s

With the cxtensional stiffness of equivalent shell again expressed as

in equation (16) and equuating the two extensional stiffnesses, we have!

=k, t, (22)

Proceeding in a fashion identical to that with a sandwich and solving
equation (20) and (22) simultaneocusly jlelds the following expressions for
the thickness and modulus of elasticity of the equivalent shell in terns

of known parameters of the stiffened shell,

20
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Once again the load distribution, deformations and buckling pressure
may be computed based upon the elastically equivalent shell. To apply
the load distribution, as determined from the membrane analysis (Appen-
dix D) to the stiffened shell in terms of axial load per stiffener, one

considers the stiffeners as assuming an axial load equal to the load
carried by a length of the equivalent shell equal to the "equivalent
spacing" developed for the stiffeners. This axial load, plus the trans-
verse load resulting from the transfer of the wind load to the stiftener
by the membrane, form the combined loading picture under which the stif-
fener is analyzced for local stability and strength.

21
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“actual
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NOMENCLATURE FOUR APPENDIX B

Bending stiffness per unit length of actual ghell URder con-
sideration
Bending stiffness per unit length of elastically equivalent

shell
Extensional stiffness per unit length of actual shell under

consideration
Extensional stiffness per unit length of elastically equiv-

alent shell
Young's modulus of elasticity of sandwich skin material
Young's modulus of elasticity of sandwich core material

Over-all sandwich thickness
Core thickness

Individual skin thickness when skins are unequal

Individual skin thickness when skins are equal

Poisson's ratio
Poisson's ratio

Young's modulus

of the skin
of the core

of elasticity of elastically equivalent shell

Thickness of elastically equivalent shell
Thickness ot equivalently stressed shell
Cross sectional stiffencr area
"Effective spacing" of indiviaual stiffeners in a grid work
Young's modulus of elasticity of stiffener material
Moment of inertia of stiffener cross section
Poisson's ratio of stiffener material
a-ud
ECA,
hpA

¢
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 ENERQY THEORY OF SHELL BUCKLING (Beference ) . . .}

APPENDIX C

Introduction

This Appendix presents an approxiwate solution, on the basis of
energy techniques, for the buckling of a spherical shell under uniform
external pressure., More specifically, a finite-displacement solution is
obtained for the axisymmetric buckling, in the form of a single dimpie,
of a fairly thin-walled, Lomogeneous, elastic, spherical shell. The solu-
tion indicates that the pressure distribution outside of the dimple area
is unimportant insofar as the buckling pressure is concernad. Hence, it
appears that for buckling under wind pressures, the effective uniform pres-
sure could be taken as the pressure at the stagnhation point without preat
error. The theory provides explicit forms for the buckling pressure and
the size of dimple in terms of the geometric and mechanical properties of
the shell,

The present solution differs from previous studies of this type (e.g.,
Reference 7) in two principal respects:

. 1t takes into account a more general class of functions as
characterieing the vuckled shape; and

. it accounts for initial imperfectlomns in Lhe geometry of the o
shell,
The theory, of course, suffers none of the drawbacks of shallow shell
theory especially in that no assumptions as to the boundary conditions at

the edge of the dimple are imtroduced.

The following sections present the derivation of the governing eque-

tions, the method of solution, and the results obtained.
DERIVATION OF EQUATIONS

Figure 6 shows a section of a spherical shell of redius X and constant
thickness t. The position of a point in the middle surface is located hy
means of the spherical coordinates, r,8, The coorainate Z measures the
distance of a point from the middle surface. The deformation of the mid-
dle surface is assumed to be radially symmetric, and is given in terms of
a tangential displacement U and radial aisplacement w, directed positive
as shown in Figure 6. The middle surface is also assumed to have an ini-
tial radial deformation w, prior to application of the uniform normal pres-
sure D,

23
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Figure 6. Geometry and Coordinates for Spherical Shell

From geometrical considerations the unit strains in the meridional di-

rection, €,, and in the direction normal to tlis, ¢,, are

U 0 w z dw @+\)
= - == = —\ = cot
€x " cot ” 2 36 co w
(24)
1dv o kR/dw\? 2z [d%
€, #~ = -=*% — - —|—_—tw].
rdé r opaidé r? \ q46? )
Following the methods of Reference 7, the parameter £ is defined as
wy
K=1+2 —, (28)
(753

gnd is assumed to be a constant. This means that only that component of

24




the initial radial deviation from spherical shape, Wy - 13 considered which

\
o

is the same shape as the deflevtion under. loa.d @ e

The totel potential energy € is L

2 t/z
r<g
" 2 t/2 ( - ~>dz (€2 + 62 +Bve, €,) sin 6d6 ~
1-v -
2 k4
~2nr POI w sin & d6 (28)

For simplicity in the derivation of equation (R6), 1t has been assumed
that the pressure p remains constant during displacement of the shell., It
is believed that this will not introduce significant error if p is con-
sidered to be the average pressurc during buckling.

The displacements w and V are assumed to have the shape,

m=0,2,4. .. even (27)

where

It is seen thaut the coefficient ”o determines the amplitude of the dimple,
and the otlier coefficicnts its precise shape. The number £ determines the
effective slze of the dimple. A semi-angle of the dimple, B, may be de-
fined somewhat arbitrarily in terms of B for given r/t. As shown in Fig-
ure 7, it seems reasonablec tc asscciste tha value of v = 2,8 with the an-
gle 8.

It will be observed that the expressions for displacement, equation
(27), do not satisfy exactly continuity conditions on the opposite side of
the sphere, 6 = 180 degrees. This is considered to be of no significance,
however, since the displacements are completely negligible there.

METHOD OF SOLUTION

In the solution presented hLerein, only tihe coefficients Wy, ¥y, and ¥,

25
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in equation (27) were considered, all other coefficients being taken zero.

By means of equations (24), (2G), and (27), and assuming the shell to be

r t it
sufficicntly thin so that 3 B >> 1 and 5 k << 1%, one finally obtains

3-vi)r 3
_f_____l_ € = _B .2+ Vy ¥y + ¥ 2y 4 VO(:E + _j> -
2mktt 4 ' ’ ? A
-~ ¥V +V)+(2kh'2+h-'A)f_V_
o Y 3 ) 0 27 3 (209)
2 3 , 1 9Pk,
| P Tt ¢ 2 R N 5 N
; 9k 90 128k (2R Hq °), 2t

% The parameter » is of order unity.
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: . where (1 - v?) pr?
} :P " 9 = [
i . - b;" - oy
or
A= T (30)

Following Reference 8, the number U is considered to be an "unevenness fac-
tor," defined so that the initial radisal deviation may be expressed as

e, U D IR e s e

and (a1)

ERL TR R )

™ rt
Here, the term ! = E; ;T is the approximate half wavelength of the

RO A R

radial displacement, taking the whole dimple as a full wave. This expres-

S i

sion 1s similar to those used in studying the effects of imperfections in
. other buckling problems, sce for example Reference 8. In these previous

L

applications, 1t was argued ihat U should be roughly independent of the

dimensions of the structurc and should depend only on the manufacturing

TR L

process. The factor U was found to be of the order of 0.0003, thus a

¥

r
value of A = T = 1 corresponds to an extiremely irregular shell unless

r/t is very large.

%¢ d¢
Setting YA = YA = 0 in equation (29) according to the principle of
- i 3

virtual work, there results,

3k
Y @V +V3) - Wy = 0,

(32)
3k 4 I
—4— (.,1 + 2!’3) - }5’0 + ‘2—7' (2k ”'0 + NOA) s 0,
Solving equation (32) for V; and ¥; we find
) i
i i
H !
i :
, 27
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Now setting T = 0 in equation (29), and using equation (33) to

N —

Ok,
eliminate ¥, and V4, there finally results two equations relating P, and
Wy that is,

P = 0.87 K, (1 - 0.283A + 0,0248% - 0.45k%) - 0,037%% Ky, (34)

P = 0,74 ¥y (1~ 0,0283A + 0.0240% + 0.45k%) - 0.625

(1 - 0.1738) k W2 + 0.146R2 ¥,2,

Eliminating P between these expressions, dividing by Ho, and simplifying,
we obtain

(1.85 +0.494 K9 k%~ 1.69 ¥y (L- 0.1738) # + (1 - 0.2830 +0.024A%) =0. (38)

The desired relationship between P and ¥, (load-central dcflection
curve) can now be obtained by assuming values of A anda § solving equation
(33) for R, and then solving either of equations (34) for . The results of
such calculations are shown inFigure 8 for the extreme values of the uneven-
ness parameter A = 0 and 1. It is observed that the load-deflection
curves are not particularly dependent upon the value of A; the range
0< A <1 being extreme, with shells of practical interest in the vicinity
of A » 0. For this case, the value £ = 0.062 may be taken as the nondimen~
sional buckling load (Figure 8). From equation (30), the buckling pres-

sure D, then has the value

0.628t2

(1 - 1/2)r'2

DCT " (36)

It is found that the values of R do not var) greatly, and average
about 0.3 for the near horizontal parts of the curves in Figure 8. 1If, as
previously mentioned in connection with Figure 7 the semi-angle of the
dimple 8 is taken as ¥ = 2.5, then by equation (28) with & = 0.3,
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Figure 8, Load-center Deflection Curves

DISCUSSION OF RESULTS

The essential results of this study are contained in equations (36)
and (37), namely, that the uniform pressure required to produce a dimple
in the shell, p.,., is about

0.6512

D —"——_ s
°r a-vdyr?
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and that the dimple formed kas a semi-angle S8 (Figure 7) of about

[t T
£ = 8.5/~ radlans = 200 /- degrees.
r [ r

The theory also points to a relatively small influence of geometric ir-
regularities in the shape of the shell. Finally, equation (37) shows that
for reasonably thin shells, the assumptions of shallow shell theory, aslde
from edge conditions, should be valid.

The general form of equation (36) can be considered to be well-estab-
lished; the magnitude of the numerical coefficient 0.G2, of course, is
less well-established. In the one test result available in the literature
for a full sphere, Reference 9, £ = 14.5 x 10% psti, r/t = 900 and the nor-

r

mal stress was éL = 2480, These data correspond to a numerical coeffi-
t

cient of 0.31, just half the value given in equation (36). The material

used is described as copper, so that yielding may have played some part in
its failure. The value of 8 In this test 1s reported as clght degreus,
while equation (37) glves 6.7 degrees for this nase, MHoweyer, the loeca-

tion of the "edge" of such a dimple 1s obviously rather indefinicc.

In a recent scries of unpublished tests at the Armour Research Founda-
tion using ordinary ping pong balls, clear indication of the dimple forma-
tion was observed. Ping pong balls are found to Le reasonabl; spherical
shells for which r/t = 80 and £ = 5 x 10% psi and which collapse at about
100 psi. Using these data, the coefficient in equation (30) is determined
to be 0.45 rather than 0.62. The angle B was measured as 30 degrees and
predicted from equation (37) to be 28 degrees. Finally, the experimental
duta on clamped shallow shells reporteda in Reference 10 shows a coeffi-
client of 0.4 in equation (36) to represent a lower bound on the collapse
pressure; the velue 0.62 falls in about the middle of the experimental
data.

The present theory 1s approximate on several counts, chiefly in that
the bucklec shape is characterized by a minimum number of terms. The
inclusion of additional terms would have the effect of reducing the numer-
ical coefficient in equation (38)., It is strongly recommended that work

Tl




¢n this theory be pursued. For the present,'however,'thére is no basis’

~~~——————————-ﬂor—arhitrapila—nedueingwthis_noeﬂficieniu_ JJLJs_hﬂliaxﬁd_xhenafone_thax__M

equation (36) serves as a realistic basis for design with probably & mini-
mum of conservation, and that the size of the dimple is given by equa-

- tion (37) .

In equations (37) and (38), £ and ! would be replaced by the expres-
sions for Ee and t,, as presented in Appendix B, to evaluate the criti-
cal buckling pressure for a space frame or sandwich design.
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€ . total potenual energy

k : dimple size parameter N e

i _g_.kg__-pg_w—/w——*constmt*ﬁmperfecﬂm pummr

l -él/rt/ wavelength of dimple

U unevenness factor
v circumfeerential displacement of shell
w radial displacement of shell
wy initial radial deformation or shell
Var ¥y displacement parameter, equation (27)
z radial coordinate
A semi-angle of dimple
re/t o
A=ir/t
rs shell radius
€y meridional strain
<, circumferential strain
o circumferentinl angle
t shell thickness
Per critical buckling pressure
E Young's modulus of elasticity of the material
v Poisson's ratio

, 1-vY) p,, r?

—

Ft?
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APPENDIX n

In this section, a stress and. defleution annlysisrof'a.hnm ger

spherical radame shell of arhifrary tase angle and Aubject to the wind.
pressure loading developeéd in Appendix A is earried out on the basis Qf
membrane shell theory., It is intended that this analysis be considered

as the first step in a two-step superposition approach to a general
bending solution. The second step, not carried out, requires application
of bending theory to a radome subject only to edge tractions sufficient’
to compensate for edge deflections and rotations implied in the membrane
solution. Toward this end, the membrane solution is adjusted to yleld
only redial deflections at the edge. This solution is considered valid

for that portion of the radome shell above the equatorial plane. These
resul ts, especially with regard to deflections, are helieved to be more
complete than heretofore available.

MEMBRANE ANALYSIS

Stresses - Figure 3 shows the membrane forces which act on an element
cut t'rom a spherical shell by two adjacent meridians and two parallel ecir-
cles. The notation and sign convention for the stress resultants conform
to that of Reference 11. The equations of equilibrium of the element are

i

summarized in equation (38) and serve to determine the resultant meridion-

al furce ¥4, the clreumferential force Ay, and the shearing furces

ﬁo¢ = A¢0. All of the furces (tlut is, stress resultants) are per unit

length of the shell section, -

2 (L

55 (¥p sin ) + - Ny cos ¢ = 0

3 oN
-a—‘-/; (N¢9 sin ¢) + —a—e' + N6¢ CcoSs q:J - O, (99)

[Ny + Ng + Pryg)F] sin ¢ = 0,

where P(¢'o) is the pressure distribution normal to the undeformed shell
surface. A solution to equation (38) 1s sought which leads to finite
stresses at the shell apex, ¢ = 0, The condition that the resultants of
the edge tractions on the base circle ¢° are in equilibrium with the re-
sultants of the applied forces than is automatically satisfied.

Using the pressure distribution P(¢_9) described in the previous
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., and f"dilowi‘n.g Reférence 10,

sedtio
(38) is assumed in the form

g

. ¥ o
Hg=Ra % 84 @ cos nf,
B ==~ Ny~ BEy gys ) (39)
and

1
N¢g - RQJEO Swﬂ {¢) sin n6.

Equation (38) 1is then reduced to a pair of ordinary differential equations
in S¢n and S¢9ﬂ which can be integrated to- yield

S¢n = (Un * Vn)

(10)
Span = 8 W, - V3.
Where, letting
C = cos ¢,
S = sin ¢,
mg o2
U,=-(1+0 ,, @ -1,, )},
(41)
e =n=2 '
l/" = (1 - () Ty [ n () —K"])
and
L, @ [p, @ (n+0) (1. O™ 8" gy,
I, @) [n, @ (n-6 (1+0" 8" do,
(42)

-~

ap (0) for n = 0,1

" larbitrary for n > 2,
L

The integral expressions, equation (42), can be evaluated once the
pressure coefficients P, (¢) are specified. As seen from eguation (2),
these will generally be of the form

J +2
Fo@) = T 0, %2, (stn ®" iy J < h.

While 1t is possible to evaluate equation (42) for the jth general term,
there is little advantage in doing so for small N, Explicit results for

34

gl i B

o
e




g P e enon e el

0

4 4
Spp = - CL-02 52 (2 @+0) + = (1-0) (3C? + 9C + 8)
3 5
AZ
S4p = el S + 4, 1 +0)"?2
1, ) 5
qu; =-j5—(3+S) S+ k3 SQ+0)
' = -1
4,0 )
3
. e , _ . 1y =3
Sy 3 1, SO-k, )72,

where, as uefore, C = cos ¢, S = sin ¢

We observe from equation (43) or equation (42), that the stress func-
tions for N 2 2 are not uniquely defined. This results from the fact that
the pressure terms for n > 2, equation (1), produce no resultant force or
moment on the shell, and it would be necessary to specify a compatible
distribution of stress on the base circle in order to establish a unique
membrane solution. In the present case, of course, only displacement con-
ditions are known at the base circle, and nothing is known concerning the
stresses. Thus, the membrane solution determined is unique only to within
an arbitrary system of self-equilibrated stresses applied to the pase cir-
cle. The way out is to consider this solution as the first step in a two-
step procedure leading to the determination of the bending stresses as de-
scribed in the section on Strengths. The constants of integration, Kg»
appearing in equation (43) can then be arbitrarily determined and the re-
sulting deformations accounted for in the second step of the solution. If
one considers the shell to be fully restrained against displacements at
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the base clrcle, the £, are most conveniently chosen by requiring two of.
_the. three components. of the base displacements to be zero, thus leaving

" TTonly ons displacement to be eliminated by bAse moments end shears. ThHis

evaluation is presented in the following section.

SHELL DISPLACEMENTS

Following Reference 12, the displacement components u, U, w (measured,
respectively, in the positive radial, circomferential (J), and meridional
(¢) directions) can be related to the stress resultants by means of the
following system of partial differential equations.

2o v =B (W, ~N,) s
5 cos ¢ §$-sin p=pf Wy~ o) sin ¢,
—a—é' +V cos ¢ ~ ‘a—¢- sin ¢ = - s-ﬁ N0¢ sin d’, (44)
B e
“rrn el tag

where, P
1+v)

A Et

This system of equatlions can be integrated in a fashion similar to that

employed for cquation (38). Thus, we assume a solution in the form

¥
U= n"nio u, (#) cos né,

ve I U (#) sin nd, (48)

n=0

¥
we= % W, (®) cos n&.
n=0

Using equations (38) and (45) and after cousiderable manipulation, the

following solutions to equation (44) are obtained:
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by TSI L0 0" Uy 95 ¢ (-0 Uy @A)

L

U, E:‘;'l- (Cu, - n¥,) __{-1,’1";_;_ l(l-*v) Sen t Py

where,

)

Jig @ = [ @8, t 28,5, tp,) (1+0)

n " J

in

(0)

arbitrary

¥ = arbitrary

n

and where S, and S¢8n are given by

for
for

for

1s determined from equation (1).

-n-i
J @84, - 2549 * P -0 T4,

us-n-l
dy

¢

no= 0,1
2

v

n,

Iv

o,

equations (40), (41) and (42)

The following results are obtained for J,, and J,, for ¥ = 3.

Jyo @)

gy @

Jpy @)

Jyg @)

Jys @)

G’za (¢)

Jyy @)

4,0

Jzo (¢) .- ":;" ]

4

Ay

4
3

~

4,C

-3
- sz + —_—

ot

4

1 3
—@n it 2m?t - o)+ —Q6m? +
3 10

+ 16m* + om? - 2am-8linm + 453),

3
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’
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and p,

(48)
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where,
me=1+tCw=1 +cos G

" EVALUATION OF INTEGRATION CONSTANTS

It is observed from the results of the preceding two sections that for
terms up to 7 = # (actually # + 1 terms since n = O is counted), there is
a total of 2/ * 2 integration constants consisting of ¥ ~ 1 constantsin the
stress cquation, equation (40), and ¥ + 3 constants in the displacement
equation, (48). Since there are 3% + 3 components of displacement to be
specified at the base circle, it is evident that the membrane ﬁheory can-
not possibly serve as a complete solution to the problem. This, of course,
was stated ut the outset. It is proposed to evaluaic these constants by
setting the 2N = 2 components of the UV and W displacements equal to zero
at the base circle, ¢ = ¢o- This will provide a solution for a shell hav-
ing only radial displacements, U(®,) = U;, at the base circle. The com-
plete solution for the fully restrained shell then can be obtained by
solving the general bending equations for a system of edge moments and
shears which remove the u, displacements, as mentionea previously.

The 28 + 2 equations for the integration constants are obtaiued by
setting U, ($y) = w,(@;) = 0 in equation (46). There results

Ly = dy,(¢y) for n = 0,1
Jyp@gr = vy, (0) for n > 2, (49)
M, = Jy, ) for n > 0,

where the J;, contain the # - 1 unknown constants, K, (¥ > 2), Since
Uy » W, = 0 on¢ = ¢, the components of radial displacement at the base
circle are, from cquation (46),

R
U"(¢°) = uOn = ‘fﬁ:—.‘; [(1 +V) S‘bn(d)o) + pn(¢o)]" (80)

For ¥ = 3, the eight integration constents are Ky Kgo Ly, Ly, Hy, M
¥, and #3. letting my = 1 + cos ¢, these are found to be,

1
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L. 84 @R-m,)

S i ] . .
] ]
gmg? - 1
2
‘- 964, (@-mg)
L
? 80 (3 - 2m,)""+5
' 4, ' '
LO = l‘lo = ‘h’z" -2—- (1—”’0), (81)

A1 -2 _1 v . .43 . ._2
Ly = ry (2my™* + 2m™* = In my) + o (A6ms* +

+a6mg™t +omg? —2amy -8lnm, + 45),

A A
] 3 2
Hlﬂ——lﬂ ﬂ70 +-1—(T(-9”'° +12m0+81ﬂmo+ 15),

3

Hsing these values, the stress resultants and displacements at ang
point (¢, ) in the shcll can be found by means of equations (2), (11),
(39), (1), (45), (16), (48B), (50) aud (51).

NUMERICAL RESULTS

The stress resultants and displacements for # = 3 were programed for
computation on an IBM-650 digital computer. Input to the program consists
of the bLase circle angle ¢, l'oisson’s ratio v, the load parameters 15,4,
4, and 43, and information as to the number and location of points in the
shell at which stresses and displacements are to be determined. Output
consists of total and component stresses, deflections, and locad at each
point. These values are based on unit stagnation pressure, n, and unit
shell parameter Et/R?. Actual stresses and deflections fora specific load
and shell are obtained by a simple hultiplication.

Typical results for ¢, * 115°, v = 0.25, ana g v o o AB as given in
Equation (48) are shown in Figures 9 through 18. Figures 9, 10, ang 11
show the distribution of the stress resultants on a series of parallel
circles, ¢ = constant.
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Inasmuch as the membrane stresses are not an adequate representative
of total stresses inthe vicinity of the base circle, results are shown only
for points on the shell lying on or above the equatorial plane, that is,
for ¢ > 90 degrees, With reference to Figures 9 and 10, the maximum com-
pressive stresses occur at the stagnation point, the circumferential stress
being three and a half times as great as the meridional stress. The maxi-
mum tensile stresses oceur in the vicinity of the maximum suction pressure
as anticipated. The oscillatory nature of the stresses in the back por-
tions of the shell probably is due to the nature of the approximate pres-
sure distribution (Figure 4)., The maximum combined stresses can be found
in a straightforward fashion if desired. Figure 12 shows the stress re-
sultants on the planes X = constant, that is, on sectors of the shell
whose apex 1s the stagnation point and whose boundaries coincide with the
approximate isobars considered (Figure 2). The contour X = 0.91 defines
a circle which is tangent to the base cirecle, and, as indicated above,
the stresses are not considered to be meaningful below the equatorial
plane. The stresses on the section X = 0.99 are believed valid at all
points; the situation is unclear for the intermediate section X = 0.05.

The components of displacement are shown in Figures 13, 14, and 13,
A composition of displacements showing the deformed shape of the shell in
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the planes 6 = 0 (vertical plane of symmetry containing the stagnation
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' displacement pattern of F‘:lgure 17 suggests tﬁe nature of the edge moments
and shears which must be applied to effect displacement constraint along
the base circle.
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i —
: g, dg load parameters .
; fCD-,g,_- -drag coelticient
i mhig
b L
! Cpo— 1ift coefficient
£ WRZQ 3
f D drag _ §
: E Young's modulus of elasticity of shell material g
§ Lo Loy i iy integral expressions, Equations (42) and @n %
2 K.» Ln, N,1 constants of integration =
3 i
: )/ 1ift i

Na resultant circumferential force per unit length of

shell cross section
N¢ resul tant meridional force per unit length of shell

cross section

N€¢ resultant shearing force per unit length of shell
cross section
Ny pressure distribution parameter
F pressure ldistriibution normul to the undeformed
shell surface 3.
n stagaation pressure
i radius . r shell
Sénr Seon merialonal sud shear stress components defined in )
Eyuation (89) )
t thickness uvf shell
u radial displacement of shell
v circumferential displacement of shell
W meridional uisplacement of shell
X, X coordinates, see Figure 3
QA +v)
B i shell paramcter
e meridional angle
¢ circumferential angle
¢0 angle of the base circle
1 Poisson's ratio.
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