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A B STRACT

A compilation of the analytical operations for the structural anal-

ysis of a truncated spherical shell based jointly upon an evaluation of

research effort and operational performance is presented, The four

primary problem areas of loading, shell conversion, stabilitýi, and
strength which confront the engineer in the structural desigis of such a

shell are discussed in detail. In each of these problem areas, com-

putational methods or approaches are offered which may be adopted as

design procedure.
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GUIDE TO THE STRUCTURAL DESIGN OF TRUNCATED

SPHERICAL RIGID GROUND RADOMES*

INTRODUCTION

The impetus for this report was generated by the Air Force's program

in the aevelopment of truncated spherical rigid radomes for the environ-

mental protection of ground radar ana communication antennas. As such,

this report should be of particular value to the engineer concerned with

the structural analysis or design of these radomes; but the principles

involved are equally applicable to any shell structure of the configura-

tion mentioned. Although this report is primarily directed toward radome

d&:stgners, no attempt will be made to discuss the electronic interaction

of antenna and radome. Rather, it will be assumed that the radome or

spherical shell design has progressed to the point where a tentative type

of structure has been selected based upon transmission characteristics;

and one must now determine bý analSsis what shell thickness, member sizes,

skin thicknesses, and so forth, are requiren for structural adequacý un-

aer the imposcd loading.

A sig.nificant portion of the material contained in this report was

dovwlop o 1( for Rome Air Development Center bý Armour Research Foundation

under contract AF 30(602)-1860. Appendixes A, C, and D of the final re-

port1 on this contract have been incluaed in total in this report. This

study program reflects the Air Force's belief that additional theoretical

and experimental work was and still is required in this area. This belief

was established from the kaleidoscope of analyses which have been sub-

mitten in response to operational requirements for radomes. This report

represents an effort to establish common ground for contractor and

Government engineers alike involved in the design of radomes.

In its capaeitý as responsible Center for the development of ground

radomes, RADC has had the opportunity to gather data on all phases of the

program from basic research to operational suitability. The procedures

recommended herein are based Jointlý upon the evaluation of laboratorý

test data and appraisals of rigid radomes.

LOAD I HG

"Eased upon observed field tests and reports from operational sites,

it has been established that wina loading is of primarý intere: the

*Released 14 February 1961.



structural engineer. Altliough snow and ice loadings represent a transmis-

sion hazard when one is considering a radome, experience has taught that

foi--the n-ts- -0&-geometryidattLin _(F'gre 1) there is not suf-

ficient build-up of ice or snow to warrant serious structural considera-

tion. Therefore this section of the report will discuss only the wind

loading. Its analytical representation is presented in Appendix A.

Two types of analytical representations of wind load distribution on

the spherical portion of the radome used in the past are

. potential flow distribution on a complete sphere, and

* distributions which approximate wind. tunnel data on radomes of

particular geometry.

The experimentallý determined pressures agree well with potential

theory on the forward half' of the dome, but are substantially less than

those predicted on the rear half. The differences are due principally to

the fact that

. air does not act as an ideal fluid at the Reyntcolds numbers in-

volved,

. turbulent flow occurs over the rear half of' the dome,

, the presence of the base geometry (e.g., tower) cannot be ignored.

Ps BASE I

BASE PLANE-

BASE CIRCLE DIAMETER

Figure 1. Typical Rademe O3eometry
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The analý tical representations, approximating the experimental data,

impl4 a pressure aistribution which is circularly symmetric with respect

The experimental results of Reference 2 on a 3/4 tower-mounted sphere

(Figure 2, Appendix A) show this assumption of symmetry to be valid rea-

sonably close to the stagnation point and also in the rear half of the

diome, but in error on intermediate sections. However, a more complete

analytical representation of the experimental data is impractical, es-

pecially from the viewpoint of subsequent analytical solution of the

shell equations.

It is believed that, as a basis for stress analysis, a general pol,-

nomial representation of loading, providing that sufficient terms are re-

tained, is preferable to the loading as predicted from potential theory

on a complete sphere. The question, then, concerns the adequacý to which

the particular series considered represents the available experim•ntal

data, say, in the vertical plane of symmetry of the dome. A three-term

series preserves stagnation pressure and total lift and drag. As such,

it closely approximates the experimental distribution near the stagnation

point, but deviates markedly in the rear of the dome. The four-term

series evaluated in Appendix A preserves, additionall.y, the location of

the maximum suction pressure (see Figure 4, Appenuix A). Of course, any

ueslred ctegree of accuracy can be achieved by retaining sufficient terms

in the series. Subsequent solution of the shell equations becomes more

cumbersome, but reidizans feasible. Additional study is required to evalu-

ate the practical significance of including terms beyond the fourth.

The situation is less involved with respect to stability considera-

tions. Here it seems reasonable to base the dome design on the stagnation

pressure assumed to act uniformly on the buckled area. Even if subsequent

study indicates the nonuniformity of the pressure to be significant, the

distribution according to potential theory, being valid for almost the

entire forward half of the dome, should be adequate.

SHELL CONVERSION

In the theoretical work discussed in the following sections of this re-

port, all formulas and computations will be based upon a structure with a

uniform wall thickness of homogeneous, isotropic material. Unfortunately,

the engineer rarely finds himself confronted with such an idealized

structure. More often, the shell is a space frame with orthotropically

oriented members or of sandwich construction with a wall of high densit)

3



high strength skins and low density, low strength core. To reduce these

types of shells to a form which can be handled by a general analysis, they _

are converted to an equivalent homo&eneous, isotropic, uniform thickness

shell of such modulus of elasticity and thickness as to preserve the ex-

tensional and bending stiffness of the original structure. The elastic-

ally similar shell thus created will develop a loading and deflection pat-

tern substantially identical to that of the original. The moments,

shears, and thrusts computed on the basis bf the equivalent shell are

then considered as applied to the actual shell and existing stress levels

computed.

Appendix B presents methods for tUe conversion of a sandwich structure

and a space frame structure to their elastically equivalent uniform shells.

GENERAL STABILITY

Depending on construction, primary Instability of a rigid radome shell

can be caused

, by "oil canning" of the stagnation cap,

, bl local buckling of the stiffeners in the case of' space frames,

or

* by local b1uckling of facings on one or mor. panels of sandwich

construction.

To establish the general stabilitt of" thA structure of interest, tho

designer must first convert the structure to its homogeneous, uniformly

thick, elastically equivalent shell. This procedure is outlined in AhppelA-

dix 13. With the structural characteristics of the equivalent shell thus

established, one may proceed to determine the critical buckling pressure

or general stability of the structure.

As a part of this report, the general stabillty of a homogeneous

spherical shell has been considered on the basis of' energy techniques

(Appendix C) froin which the following has been indicated:

1. For design, it is reasonable to consider the stagnation pres-

sure as being uniformlý distributed over the buckled area.
2. For shells of the geometry considered (Figure 1), equation

(37) , Appendix C, predicts that the dimplea area will intersect the base

circle for ! < 64. This means that, for "thicker" sliells, the base con-

nections provide a stiffening effect not considered in theory.

3. The maximum stagnation or buckling pressure is given by equa-

tion (3f•), Appendix C, ana tl,e estimateu size of aimple by equation (37),

'4



Appe-n~d-f C,',-

unifovm pressure Js still somewhat of a W'ttery.• The ,pam iom -----
pounded for a truncated sphere utner nonuniform and espec-ia.dl4 ioonaxisym-
metric conditions, as is the case for radomes. Though lacking a fundamental

understanding of the phenomena, it is believed that the present findings

contribute to a rational basis for design. Continuing studu should lead
to further improvements of design procedures. •

LOCAL STA31LITY

Investigation of the local stabilitý or an individual stiffener In a

space frame proceeds along the lines of a conventional beam-column analy-

sis. The axial load per stiffener is established from the normal loads

per unit lenigth of' shell determined from the membrane analsis (Appen-
dix D)) multiplied b.N the effective spacing (Appenuix i1) of the stifteners.

This axial loadi, along with the transverse load transferred from the mem-

braite, forms the combinIed loading picture on the stiffener. The degree
of sulp)ort or "end fixl.t" assiAned to the &;tlffenier is a direct function

of' the construcLlon details peculiar Lo tihe structure of interest. Its

evaluation dpo)n(ts upon th016 (esig-sior's experlence and a thorougih knowledge
tot* these details, artd uoes riot lerui itself to general treatmenit. With tie

Iottdlllg arid bc'urUdutrý col (itiotls ostabll h((it, npi ltvt, now pror'or'd wi th an,.
one of a number of familiar lmlethmods for the solution of' lndeterminate

structures.

It tile case of sandwich structures, once the general stability has

been established, the local buckling of the faces on one or more panels

maý be determined by metboas presented in Reference 3 of this report.

STRENGTHS

In genera] , stresses in radome shells have been determined employing

curved column, simple ueam, or membrane analyses, or combinations thereof.

The curved column ana beam analyses ignore the essential characteristics

of a shell in that theý disregard the influence of' continuit3 anui curva-

ture on the geometrical relations between displacements and strains, and
on the equilibrium conuitions. Membrane theory , wl.ile incorporating these

effects, takes no account of the flexural resistance of the shell and, as

such, has definite limitations in its application. As will be discussed,

these limitations, at the verý least, make questionable estimates of the

conditions of stress in the vicinity of the radoome edge constraints.

5



Whit is required, thenp is the application of a general bending-theory

h blef a truncated spherioal shell. As of this writini; h

A theory has not been developed; however, it is nonethee77 •eau±, A
membrane solution, as discussed in Appendix D, may be viewed as a first

s.tep in obtaining the bending solution.

Membrane theory results from a simplification of the usual small de-

flection bending theory of elastic shells In which the moment resistance

of the shell cross section is neglected. As a result, the state of stress
at a point in the shell is completely specified in terms of two components
of the resultant normal stress on the cross section and the resultant
shear. Moreover, these stress resultants constitute a statically deter-
minant system of forces, meaning that the governing (partial differential)
equations can be solved, in principle, without regard to shell deforma-
ttons. This has an important corollary, namely, that a membrane stress
solution, in general, cannot be found which satisfies an arbitrarily spec-
ified system of boundary tractions or displacements.

With application to rigid radomes, this means that a membrane solution
will not properly describe the built-in conditions at the base circle.

Rather, the theory will predict a nonzero system of base displacements and
associated curvatures. Since the actual edge conditions may be thought to
result from the superposition o0' suitable edge shears drud muunaLs, It is

clear that the membrane solution will be essentially meaningless insofar

as base stresses are concerned.

One approach to the bending theory of shells involves a two-step solu-

tion. First, the membrane stresses are determined for the fully loaded
shell and the deformations arc computed at points of support, The second

step involves evaluation of the bcnding theory for the shell subjected
only to the necessary moments and shears at the points of support to re-
move the excess deformations predicted by 'he membrant solution. The

complete solution is then the superposition of the stresses determined in

the two preceding problems. Progress to date does not permit determina-

tion of the bending stresses. However, the membrane solution described in
Appendix D was organized so as to readily permit the second step in the

above procedure to be carried out at a later date. As indicated above,

the results of the membrane solution are considered sufficientlý accurate
for design purposes at all points throughout the shell, except in the im-
mediate vicinity of the base circle (that is, the boundary laýer effect
as Riessner terms it in Reference 4).

6



8-1-noae the desiguer jwr~e often Vinds. himseltf iiivalv~d ia, 4j 1

-stress azmlysi* must consider
* means of determining an "equivalent" homogeneous shell to rep-

resent the actual structure (Appendix B),

* the application of membrane theory (Appendix D) to determine

the normal and shear loads In the equivalent shell, and

* the application of these loads to the actual shell and com-

putation of the resulting stresses.

SUMMARY
In this report and the appendixes thereto, we have attempted to es-

tablish a norm or basis for a more rigorous analýtical design of a radome

or spherical shell. Beginning with the loading, a procedure for the ana-

lytical representation ofr the pressure distribution on a radome resulting

from a wind loaciing has been indicatea and workea out.

Secondly, methods for converting space frame structures and sandwich

structures to their homogeneous, uniform wall thickness, elastic equi-
valent counterpart have been demonstrateu. Once this has been accom-

plished, the designer may now apply the "membrane theory" to determine

shell loads and investigate for general shell stability.

Third, a membrane analysis, thich can be readily incorporated into a

general bending theory, is presented which has been evaluated for a four

term expansion of the loading and is considered valid in itself for thaL

portion of the radome shell above the equatorial plane. The results of

this analysis may now be applied to the actual structure under considera-

tion, and local stability and strength requirements investigated.

Fourth, a new theory of the buckling of a complete spherical shell un-

der uniform external pressure, developed by Professor L.H. Donnell of
Armour Research Foundation, is presented as a part of this report. An

approximate finite-displacement solution was obtained for the axisymmetric

buckling, in the form of a single dimple of a fairlý thin-walled homogene-

ous, elastic spherical shell. This solution provides for the buckling
pressure, Pc," and the semi-cone angle of the "dimple" which forms the

buckled shape, /.

RECOMMENDATIONS

Based upon a general review of the design techniques, the following
analytical studies are recommended:

7



develop and evaluate in detail a general bending theory for'.uni-

form, homogeneous;: spherical shells -subject to the simiplified wAniioading

extend the Donnell buckling the6ry presented in Appendix C to

include more general characterization of the deflected shape;

application of a more exact basis for determining the geome-

trical and mechanical properties of an "equivalent" homogeneous shell.

One such theory due to E. Riessner (Reference 5) would appear to be partic-

ularly suited to radome structures.

[8
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APPENDIX A

-ANALy-r-Tl-OAkL-tE-PR-ES-EN-T-AT ION 0F--W-H -1-GAD - - --.......... ........ .. -"

Typical data on steady wind pressures incident on radome shell geo-

metries of the type considered (Figure 1) was obtained'i'rum Reference 2,

and is sumnmarized in Figure 2. With a view toward simplification, in-

spection of Figdre 2 suggests replacing the given isobars by ones which

are symmetrical with respect to the axis of flow (these isobars would ap-

pear as vertical lines in Figure 2). With this assumption, the windpres-

sure is a funcLion onlý of Lhe distance (measured in the direction of floo

S~WIND

DIRECT ION 1

STAGNATIONPOINT !• •

C--- =1) , I

p -o.6, --1.

Figure 2. Isobar Plotting on a 3/4 Spherical, Tower Mounted Radome (Ref. 2)

from the stagnation point, X (see Figure 3).

For purposes of stress anal.sis, it is found convenient to express the

normal pressure as a finite power series in the coordinate X, or, equival-

entlyv, in a cosine series in the meridian angle 6 (Figure 3). The series

form adopted is given in equation (1). S~mbols are defined in the nomen-

clature.

10
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figure 3. Shell Coordinate System and Membrane Forces



N -- N
a W(4,e fj (1 8 Ill j6-0

- n"O n- n.

n~ 0N ... ... .(95) COS no,.. ...

where 0 (Qio ) P

The coefficients Pn(4)) can be expressed in terms of' the constants

an by expanding equation (1) and equating coefficients in cos n7. The

a5 , in turn, are related to those features of the actual pressure dis-

tribution which are to be retained. For N- 3, the following relations

are obtained:
P0= J0 + A s in 2,

P,= A1t siji (k + 3A. sin3 4, (2)

P 2 = 2I sin2 4,
P3 = .13 sin,

where

'10 110 + + a2  + U- 3,

Al = - (I1 + + '(13),

A 2 = 1/' (a 2 + ", 3

The four coefficients A0 . . A3 are determined so as to preserve the

total lift and drag on the radome (corresponding to the given pressure

distribution) , the stagnation pressure, and the position of the minimum
average pressure. The first three conditions are clearly necessary, where-
as the fourth condition is somewhat arbitrary. If more terms in equation
(1) were retained, additional features of the given pressure distribution

could be preserved.

In terms of the assumed pressure distribution, the total lift, L, and

drag, D, on the radome shell are to be found to be:

* General relationships are derived but numerical results are presented only for 1 3.

1
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*-277R
2  P0 (q5 sin cosd,

D f P sin q5cos 0 d area,
area (')

D 02R' ~ f f(F. ) s in' (PCos UCos rgid 6 (5)
'70 0 n-0 n

4,0

71,H 2  P,(0) sin' dP

For N 3, using equation (2)

L R
L ... (2 A0 + A i2 sil 2 

00) sil2 oo0 (0)
D ~2

L) 77P2

- L(5.11 + 12 A3) (1 - cos 0) 2 (2 + cos kO0) -
(7)

-9 13 sill, 4(k)0 e. (kos ].

The condition for the pressure at the stagnation point, 7 r 77/2, 0 0 0, is

2(n/2,o) * 1 * I p (7/2).
nu nO

For N 3 this leads to

,10+ Al +22+ 4A3 = 1. (8)

If the position of the minimum pressure is prescribed, say, at

X - sin 4) cos 0 =x , equation (1) yields

d(P/Q) N =0.(9d(Pa) - 2 n a• (I - X=)' 0 . (9)

dx X= . nO n

For N - 3, the an may be expressed in terms of the An by means of equa-

tion (3), and equation (9) becomes:

A I + 4" 2 X% t 12 A3 x 2  O.

13



The coefficients A1 . . . A4 can now b•e determined from equations (6),

(7) (),a (9) onoe D/q, and x, are spec i ...

Reference 2 reports the talbwing-Axperimentally drwaLnad-valu" .

of total lift and drag for a L3.5 inch radius redome at a stagnation

pressure of q - 0.3607 psi (150 mph wind, one atmosphere wind tmanel

pressure).

k = 183 lb,

D-u 52 lb (extrapolated for full-scale Reynolds number).

Using these values, the following lift and drag coefficients were

determined for a hemispherical radome (00 - 77/2).

C L 183 - 0.87,
k R2 q (0. 367) (13.5) 2

2D (2) (52)CD . ... ________ 0.50.

nkR2 q (0.067) (13.5) '7

Reference 2 also indicates that the minimum average pressure in the

plane 6 - 0 occurs at x, a sin 0. m 0.2 (On - 11.50). Using the above

values for CL, CD, and X, the Afs are found to be,

AO - - 1.1433

.- . f- 0.0401

A2 a 0.5466

;13 "0.4W2'6.

The numerical results of the stress analysis presented in Appendix D

are based on these values. Figures 4 and 5 show a comparison of the aver-

age pressure data -btained from Reference 2 and the above power series ex-

pansion with N - 3.

14



1.0

018

0.6

0.4 THE PLANE 0 ;0-,7

0 O26 04 0,2 0 -0.2 0,4 -0.6 -0.8 1.

p/q 0 ....
-0.2 -/R, SINuCOS

-0,4_, A

AILPRE4!SURE (Ref. 2)
-0.6

-1.0. -" Eqs. MIand (2)

-1.2
-1.4

Figure 4. Comparison of Pressure Distribution

WIND
DIRECTION ---"

Figure 5. Comparison of Pressure Distribution (Polar Plot)
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NOMENCLAIURE F'OR API ENDIX A

.. A ... Load pawameters,. . .. . - - -.

.. C Coefficient of drag,

Coeffticient of lift,

D Drag,

I Lift,

q Stagnation pressure,

P Pressure normal to the undeformed shell surface,

*1 Pressure distribution parameter,

* X,X Shell coordinates (Figure 3),

1R Radius of sliell,

8 Meridional angle,

• Circumferential angle, and

4,0 Angle of the base circle.
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APPENDIX R

The cgnverRs.ion of a san- -h o - ... s e-' st- --:

equivalent often reflects the investigator's ingenuitj and engineering

Judgment and, without a more exact solution, is difficult to evaluate.
Thus, the choice of one method over another often is not unique but more

a matter of opinion. The following methods have been used in the past an
are reconmmended for continued use until such time as further study ,ields

a more rigorous solution.

To create the elastically oquivalent shell, the designer must preserve

the extensional and bending stiffness of the actual structure. Represent-
ing extensional stiffness per unit width of structure as the product LA

and the bending stiffness per unit width as the product BI, then the fol-

lowing relationships must be maintained between the actual and equivalent

structures.

91actual = klequivatent

actual " quivalent

SANDWI•,H SHELL

In the case of the sandwich shell, the development #,,,,tlnu"s •s fnl-
lows (Reference 3):

The general expression for the bending st.tffness of a unit width of

sandwich construction is:

E' 3ptc (ty1-- t:• - Ptc 3 (1o)

actual 12pt, (10)

where kF &F=
p i - c and t =

This expression may be simplified by three postulations which are gen-
crally valid in the case of radome design:

1. Since the core is low densit., low strength material, its

stiffness may be neglected.

2. Skin thicknesses are equal (that is, t a I= 2 a t.).

17



._. Since the skins are thin, their individual stiffnesses can beI-ne gleeted, _________ ______ _______

Through application of these postulations, equation (10)may be re-

duced to:

•I•,• = -Z t,(t + t€ • 1i)

The bending stiffness of the equivalent shell per unit width is ex-

pressed as:

Sgequtv ILent 12X ?

Equating the actual and equivalent bending stiffness, equation (11)

and (12) yield

Ble t e (t + tc)2.(1)

Following the same procedure with extensional stiffness, the general

expression for the extensional stiffness of a sandwich shell per unit

width is:

E•actuaI P - t') + Ec 'c (14)

Again neglecting the modulus of elasticity of the core and assuming

equal thickness skins, equation (14) becomes:

bp' (2t,) (15)

The extensional stiffness per unit width of the equivalent plate is

expressed as:

9"lequivalent m ge te

Equating the extensional stiffness per unit width of the actual and

equivalent shells, equations (15) and. (10) yield:

Ie te = ,(2 p).



8olving equations (13) and (17) simultaneously e1 -ae4fo!g ,n

--- eip-ressens--fo-r--the--cnesaAkdxadu ,_ _L_4t, • the e lUive nt
shell in terms of known parameters of the actual sandwich shell.

te + t)

3 t+tc

With the thickless and modulus of elasticitý of the equivalent shell,

one may now proceed to compute load distribution, deformation, and buck-

ling pressure. h1owever, it must be kept in mind that the actual stresses

in the dome will be computeu from the loads, determined from the equiva-

lent shell per unit width, as applied to the actual shell of interest. In

the case of' the sandwich shell, the stresses in the core and facings due

to these loads can he calculatea by means of methods given in Reference 3.

SPACE FRAME

To develop the same equivalency for a space frame structure which re-

semules an irregular polyhedron, one must estimate the "effective spacing,

serveo by each at the stif'feneur cufutprishiig the irregular pol~hedron. It
has been demonstra~teI (iReferenuce 6, p 9)5) that as the number of faces of a

regular olh(,lhedron increases, the stiffener stress under uniform pressure

approaches the stress In a sphere of equivalent surface area similarlý

loaded whose thickness has been determined as follows:

total vol of stiffeners

x, x surface area

Onl.% half the volume of the stiffeners has been equated to the volume

of the shell because of the orthotropic nature of the stiffener as opposei
to the isotropic nature of the shell. Since the stiffener stress and

shell stress are now equal, one can say that the stiffener is now serving
an effective length of shell (I.) whose area is equal to that of the stif-

fener (4A),

As . t x Is,

This length of shell will be used as the "effective spacing" of the

stiffeners in developing the elastically equivalent shell as follows.
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As in the case of the sandwich shell, the following equations must be

satisfied:

acul equivailentad

EAactual uE•equivalent.

The bending stiffness per unit width of the stiffened shell is ex-

pressed as:

B'Iactual s(9

With the bending stiffness of the equivalent shell again expressed as

in equation (12) and equating the two bending stiffnesses, we have:

(20)
S 12 X,

where

Proceeding in the same t'ashion with the extensional stiffness per unit

wiutI:

A&actual =-- . (21)2

With the extensional stiffness of' equivalent shell again expressed as

in equation (10) and equating the two extensional stiffnesses, we have:

EAis8 = A'ete' (22)

Proceeding in a fashion identical to that with a sandwich and solving

equation (20) arid (22) simultaneousl1 yields the following expressions for

the thickness and modulus of elasticity of the equivalent shell in terms

of known parameters of the stiffened shell,
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Once again the load distribution, deformations and buckling pressure

may be computed based upon the elastically equivalent shell* To apply

the load distribution, as determined from the membrane analysis (Appen-

dix D) to the stiffened shell in terms of axial load per stiffener, one

considers the stiffeners as assuming an axial load equal to the load

carried by a length of the equivalent shell equal to the "equivalent

spacing" developed for the stiffeners. This axial load, plus the trans-

verse load resulting from the transfer of the wind load to the stiffener

by the membrane, form the combined loading picture under which the stif-

fener is analyzed for local stability and strength.
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Elactua I Bending stiffness per unit length of actual shell lnder, con-

sideration
EIeqts~jaicnt Bending stiffness per unit length of elastically equivalent

shell
gl•actual Extensional stiffness per unit length of actual shell under

consideration

S.eq.ivalent Extensional stiffness per unit length of elastically equiv-

alent shell
Young's modulus of elasticity of sandwich skin material

9C Young's modulus of elasticity of sandwich core material

t Over-all sandwich thickness

tc Core thickness

tr. t7  Individual skin thickness when skins are unequal

t? Individual skin thickness when skins are equal

/Ap Poisson's ratio of the skin

4C Poisson's ratio of the core

Ne Youiig's modulus of elasticitý of elasticallý equivalent shell

$e Thickness of elastlicall equival1U1L shell

t. Thickness oi" equlvalentl, stressed shell

AS Cross sectional stiffener area

is "Effective spacing" of indiviuual stiffeners in a grid work

E9 Young's modulus of elasticitý of stiffener material

Is Moment of inertia of stiffener cross section

Poisson's rat.in of stiffener material

K (I - 2)

Kc KPp 1----

2K

22



APPENDIX C .....

~~~Lm ..........E YTHiEO Y-O_ $_EkLLU CKL INO (_ R -farencIat0)

Introduction

This Appendix presents an approximate solution, on the basis of

energy techniques, for the buckling of a spherical shell under uniform

external pressure. More specificall, a finite-displacement solution is

obtained for the axisymmetric buckling, in the form of a single dimple$

of a fairly thin-walled, homogeneous, elastic, spherical shell. The solu-

tion indicates that the pressure distribution outside of the dimple area

* is unimportant insofar as the buckling pressure is concerned. Hence, it

appears that for buckling under wind pressures, the effective uniform pres-

sure could be taken as the pressure at the stagnation point without great

error. The theory provides explicit forms for the buckling pressure and

the size of dimple in terms of the geometric and mechanical properties of

the shell.

The present solution differs from previous studies of this type (e.g.,

Reference 7) in two principal respects:

it takes into account a more general class of functions as

caracterlzing the ibuckled shalpe; and

. it accountsi for initial lrnjerfeeLlujib in the geuinet~r of the

shell.

The theory, of course, suffers none of the drawbacks of shallow shell

theory especially in that no assumptions as to the boundary conditions at

the edge of the dimple are LAtroduced.

The following sections present the derivation of the governing equa-

tions, the method of solution, and the results obtained.

DERIVATION OF EQUATIONS

Figure 6 shows a section of a spherical shell of radius k and constant

thickness t. The position of a point in the middle surface is located by

means of the spherical coordinates, r,6. The coorainate Z measures the

distance of a point from the middle surface. The deformation of the mid-

dle surface is assumed to be radially symmetric, and is given in terms of

a tangential displacement V and radial aisplacement w, directed positive

as shown in Figure 6. The middle surface is also assumed to have an ini-

tial radial deformation wj prior to application of the uniform normal pres-

sure P.
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Fiaure 6. Geometry and Coordinates for Spherical Shall

From geometrical considerations the unit strains in the meridional di-

rectiun, oE.9 and in the direction normal to th~is, e,, are

cot cot +

(24)

1 udw& 2 Z 2

'd-. t}+ _ )1 - -

-r O r2 1,i9 r2  d62

Following the methods of Reference 7, the parameter Kis defined as

i +2-, (25)

ond is assumed to be a constant. This means that only that component of

2(4



the initial radial deviation from spherica._ shape, wJ.•, is considered whioh

- - is the sam eh&peas the defleotion undaz.load c o.

The total potential energy a is .

~7tr2 t/2 ITd ( + Cn2 + Ief - d -0 sindO

l~~ 2 
2

S27 r 2 P sin 0 dO (28)

For simplicity in the derivation of equation (26), it has been assumed

that the pressure P remains constant during displacement of the shell. It

is believed that this will not introduce significant error if p is con-

sidered to be the average pressurc during buckling.

The displacements c and v are assumed to have the shape,

_7 2

w= t e

0 0, 2, 4 . . . even (27)

t 2

r)= 0 t 1'~ i~iV

where

It is seen that the coefficient W'0 determines t)e amplitude of the dimple,

and the other coefficients its precise shape. The number k determines the

effective size of' the dimple. A semi-angle of the dimple, 6, maý be de-

fined somewhat arbitrarily in terms of k for given r/t. As shown in Fig-

ure 7, it seems reasonable to a•soeat.e the value o£ n f 2.5 with the an-
gle 83.

It will be observed that the expressions for displacement, equation

(27), do not satisfy exactly continuity conditions on the opposite side of

the sphere, 0 = 180 degrees. This is considered to be of no significance,

however, since the displacements are completelý negligible there.

METHOD OF SOLUTION

In the solution presented heretn, onlý the coefficients WO, V1, and V3
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Figure 7. Determination of Semi-dimple Angle

in equation (27) were considered, all other coefficients being takeni zePo.

Bý means of equations (24), (26) , and (27), and assuming the shell to be

r t .
sufficiently thin so that - k >> 1 and k << 1', one finally obtains

t I

(1 (V22 + V V3 + V3
2 )

- W• (vi + V3) + (2k W0 
2 + W06o) f- V - (29)

2 3 1 3pWW- + --- (2k W 2 t A "A)
9k 128k 2k-

*The parameter k is of order unity.
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where (1 v2) Pr 2

Or
Am- *(80)

Following Reference 8, the number U is considered to be an "unevenness fao-

tor," defined so that the initial radial deviation may be expressed as

2t~ elI •Y•

and (Si)

V 12 2 r A
al t2 4Kt 40

Here, the term 1 - / is the approximate half wavelength of the2 k

radial displacement, taking the whole dimple as a full wave. This expres-

sion is similar to those used in studZ.Ing the effects of imperfections in

other buckling problems, sue for example Reference 8. In these previous

applications , it was argued that V should be roughl% independent of the

dimcnsions of the otructure and ohould depend onl- on the manufacturiug

process. The factor U was ound to be of the order of 0.0003, thus a
Or

value of' A = U - 1 corresponds to an uxLremelý irregular shell unlessT
r/t is very large.

Setting B-- 0 in equation (29) according to the principle of

1 3
virtual work, there results,

3k
-k- (2 V1 + V3 ) M€ = 0,

(32)

4 n T W + " (24 0W" + n0 A) 0.

Solving equation (32) f3r V, and Vj we find

2
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Now setting 7a •- = 0 in equation (29), and using equation (33) toK WO

eliminate VY and V3, there finally results two equations relating P, and

110 that is,

OP 0.S7 Wo (1 - 0.283A + 0.024A2  0.4502 ) - 0.037k 2 W0 (4)

P = 0.74 Wo (1- 0.0283A + 0.024A2 + 0.45k2 ) - 0.625

(1 - 0.173A) k W02 + 0.146k 2 W 0,

Eliminating P between these expressions, dividing by A'0 , ann simplifying,

we obtain

(1.35+0.494,t) 1_ l.619 YO (I- 0.1736) k+ (1- 0.2838+0.0246 2) . O. (35)

The desired relationship between P and A'0 (load-central deflection

curve) can now be obtained by assuming values of A ann W solving equation

(35) fork, and then solving either of equations (34) for P. The results of

such calculations are shown in Figure 8 for the extreme val,,e of the uneven-

ness parameter A - 0 and 1. It is observed that the load-deflection

curves are not particularly dependent upon the value of A; the range

0< A <1 being extreme, with shells of practical interest in the vicinity

of A 0 0. For this case, the value P a 0.62 may be taken as the nondimen-

sional buckling load (Figure 8). From equation (30), the buckling pres-

sure Per then has the value

O. 62PMt 2
Pc r a-j --(36)Cr (1 - V2)r(

It is found that the values of k do not vary greatly, and average

about 0.5 for the near horizontal parts of the curves in Figure 8. If, as

previously mentioned in connection with Figure 7 the semi-angle of the

dimple 8 is taken as )' 2.5, then by equation (28) with k = 0.5,
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Figure 8. Load-center Deflection Curves

DISCUSSION OF RMSULTS

The essential results of this studc are contained in equations (36)

and (37), namely, that the uniform pressure required to produce a dimple

in the shell, Pcr, is auout

0.6Et
2

Cr (1 - 2 )r 2
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and that the dimple formed has a semi-angle g (Figure 7) of about }
u 3.5 - radians = 200 /- degrees.f r ir

The theory also points to a relatively small influence of geometric ir-

regularities in the shape of the shell. Finally, equation (37) shows t;hat

for reasonably thin shells, the assumptions of shallow shell theory, aside

Vrom edge conditions, should be valid.

The general form of equation (36) can be considered to be well-estab-

lished; the magnitude of the numerical coefficient 0.02, of course, is

less well-established. In the one test result available in the literature

for a full sphere, Reference 9, £ = 14.5 x 10 6 psi, r/t = 900 and the nor-

pr
mal stress was -- 2480. These data correspond to a numerical coeffi-2t

cient of' 0.31, just half the value given in equation (36). The material

used is described as copper, so that yielding may have played some part in

its failure. The value of' 3 in this test Is r'eportod as eight degrees,

while equation (317) gives A,7 dpgrecs fnr this P ,sp, lfnowover, tho loTA-

tionA of the "edge" of such a dimple is obvlouslý rather limuefinicC

In a recent series of' unpublished tests at the Armour Research Founda-

tion using ordinary ping pong balls, clear indication of the dimple forma-

tion was observed. Ping pang balls are found to be reasonablý spherical

shells for which r/t - 30 and E " 5 x 105 psi and which collapse at about

100 psi. Using these data, the coefficient in equation (30) is determined

to be 0.45 rather than 0.62. The angle 8 was measured as 30 (degrees and

predleted from equatinn (37) to he 28 degrees. F1nall%. the experimental

data on clumped shallow shells reported in neference 10 shows a coeffi-

cient of 0.4 in equation (36) to represent a lower bound on the collapse

pressure; the value 0.62 falls in about the middle of the experimental

data.

The present theory is approximate on several counts, chiefly in that

the buckled shape is characterized by a minimum number of terms. The

inclusion of additional terms would have the effect of' reducing the numer-

ical coefficient in equation (36). It is strongly recommended that work
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dn this theory be pursued. For the present, however, there is no basis

_______t--T I han b~ievei Uierefra tha-t-

equation (36) serves as a realIstic basis for destKn with probabl•, a m.ini-

mum of conservation, and that the size of the dimple is given by equa-

tion (37).

In equations (37) and (38), I and t would be replaced by the expres-

sions for R. and te. as presented in Appendix B, to evaluate the criti-

cal buckling pressure for a space frame or sandwich design.
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E• total potential energy

* dimple size parameter

1 - /F~ wavelength of dimple
2

S U unevenness factor

SV circumferential displacement of shell

radial displacement of shell

initial radial deformation of" shell

displacement parameter, equation (27)

z radial coordinate

A semi-angle of dimple

1"/r7l t6
A - Vr/ t

r - shell radius

e meridional strain

circumferential strain

r creumffrential angle

t shell thickness

PC~r critical buckling pressure

AJ Young's modulus of elasticity of the material

V Poisson's ratio

(1 V2u) PC. r2

ARt2

32



APP END IX D

In this sectionp a stress and. deflection anaysi-s of_ a. homogeneous: _

spliericair.&doln shell of arbitrar basei~ oxnl m 1i450~t to.i~i
pressure loading developed in Appendix A is carried out o0. -the b• .of.

membrane shell theory. It is intended that this analysis be considered

as the first step in a two-step superposition approach to a general

bending solution. The second step, not carried out, requires application
of bending theory to a radome subject only to edge tractions sufficientý

to compensate for edge deflections and rotations implied in the membrane

solution. Toward this end, the membrane solution is adjusted to yield

only radial deflections at the edge. This solution is considered valid

for that portion of the radome shell above the equatorial plane. These

results, especiall, with regard to deflections, are believed to be more

complete than heretofore available.

MEMBRANE ANALYSIS

Stresses - Figure 3 shows the.membrane forces which act on an element

cut 'ron a spherical shell by two adjacent meridians and two parallel cir-

cles. The notation and sign convention for the stress resultants conform

to that of Reference 11. The equations of equilibrium of the element are

SiuiRIirl.zed ini equation (38) and serve to determine the resultant meridion-

al o,.rce 11,p, thii luitumfi-rertlal force A'6', and the shearir,• fvrces

1104 , A0,0 . All of the forces (that is, stress resultanLs) are per unit

length of the shell section.

- (No sin (P) + No--- N9 cos 4- 0;

.- (N, sin 0) + - + AN cos 4) 0, (38)

[NO, + No + P(¢O)R] sin € " 0,

where P(,O) is the pressure distribution normal to the undeformed shell

surface. A solution to equation (38) is sought which leads to finite

stresses at the shell apex, g5 = 0. The condition that the resultants of

the edge tractions on the base circle 00 are in equilibrium with the re-

sultants of the applied forces than is automatically satisfied.

Using the pressure distribution P(p.,) described in the previous
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section, equation (1), and following Reference 10, a solution of equation

(38) Is assumed in the form

H-. ..... _ . ...__ _ _ _ _ _ .

N#- R 17 X Sn (@) cos nO,

IV/q - N¢ - RP(' 0 ), (,e)

and NRQ X S~,, (@1 sin nO.

Equation (38) is then reduced to a pair of ordinary differential equations

in and S€0n which can be integrated to yield

Sen - (Un +VY) (40)

SqS = - (U- -

Where, letting

C cos q),

S i, si , 
b,

un - (1 + C)s n-2 (Ik)-1 1  (0)],

(41)

and
It. (n ) f pI (4) (n + C) (1 - C)" S 1-d4,

12n ()f Pn, (0) (n-C) (1 + C)n S -n de,
(42)

2n (0) for n * 0,1

in Car btrarý for n > 2.

The Integral expressions, equation (42), can be evaluated once the

pressure coefficients P(qsb) are specified. As seen from equation (2),

these will generally be of the form

P I . + 21 (sin 4') ; d < N.n J.0)-n=0 "

While it is possible to evaluate equation (42) for the jth general ter,

there is little advantage in doing so for small N. Explicit results for

34



N = 3 are given below for the P,(4k) defined in equation (2).

2 4

- 0(I- C)2 S2 (2+C) + (I-C) (30.2 + 9C I. 8)015

A2
2 =- -- (2 -+ 2) A 2  (1 + 0)-2

.4
S - (3 + S2) S + A S(l+C) 3

SO K2 (1 + 2
' 2

3
3 I SC-K- (1+,)3

where, as Uefore, C cos q, S - sin z.

We observe from equation (43) or equation (42), that the stress func-

tions for n _> 2 are not uniquely defined. This results from the fact that
the pressure terms for n > 2, equation (1) , produce no resultant force or
moment on the shell, and it would be necessarý to specify a compatible
distribution of' stress on the base circle in order to establish a unique
membrane solution. In the present case, of course, only displacement con-

ditions are known at the base circle, and nothing is known concerning the
stresses. Thus, the membrane solution determined is unique only to within
an arbitrarý system of self-equilibrated stresses applied to the base cir-
cle. The way out is to consider this solution as the first step in a two-

step procedure leading to the determination of the bending stresses as de-
scribed in the section on Strengths. The constants of integration, Knl
appearing in equation (43) can then be arbitrarily determined and the re-

sulting deformations acc-tinted for in the second step of the solution. If
one considers the shell to be fullý restrained agairst displacements at
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the b•ase circle, tho .n are most conveniently chosen by requiring two of

the three components of the base displacements to be zero, thus leaving

~oh1~~I ~ &emnent Io nae11 te byfii~t~a~e~T

evaluation Is presented in the following section.
SHELL DISPLACEMNETS

Following Reference 12, the displacement components U, V, w (measured,

respectively, in the positive radial, c~rci'ferential (0), and meridional

(9k) directions) can be related to the stress resultants by means of the

following system of partial differential equations.

cos 4 + Tsin (k 8 (No -Nk) sin 4;,

-+ F cos k - sin . = 2'8 W¢ sin 4), (44)

u (No 74de + •

whore,
R(1 + V)

Et

This system of equations can be integrated in a fashion similar to that,

employed for equation (38). Thus, we assume a solution in the form

N
U- U (qb) cos nO,

u - Z v (4)) sin nO,n.0 n (45)

W * wn (q) cos nl.

Using equations (39) and (45) and after considerable manipulation, the

following solutions to equation (44) are obtained:
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d A _ t -t 441P .- 0i:Z

J Ri1 ) " P(I. ) C.) (, + (I-C)' -d25  (4)

arnbitrry f+V + V) S0 (+4

where,

(s seemndfon 2 Soton C)1).

J~(m1 -- ( em' + •- - (1 +.C) + 1
J2 nk +f (2(-8 + 28 + S1oo, +m d1

L arbitrary for fl - 0,1
J (0)for n 2

(n arbitrary for n > 0,

and where So and SO~ are given by equations (40), (41) and (42) and P

j is determined from equation (1).
The following results are obtained for J1n and J211 for N'*3

A20
J1 (4) J (-0)

A1  - A - +
u1o -- (2m 2 + 2m'- 1 ma) + _ (16M2 $10

+ 16mn 1 + 9M2 _ 24m - 81nm + 45),

Al A 3  2
J () - Inm + - (-9mn + 12nz + 81nm + 15),

4 3 A2C
*1(0 - K2 m + (48

32

!0 2 (1-2C) m- 3-Cl-C) 2 ,13 3 1 0

~2 3 ( ) ! 3 2

10

'42
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where,
m 1+ Cu+ 005

EVALUATION OF INTEGRATION COQN1TANTS

It Is observed from the results of the preceding two sections that for
terms up to n - I (actually Wv + 1 terms since n a 0 is counted), there is
a total of 2N' + 2 integration constants consisting of N - 1 constants in the
stress equation, equation (40), and N + 3 constants in the displacement
equation, (45). Since there are 3Mf + 3 components of displacement to be
specified at the base circle, it is evident that the membrane theory can-
not possibly serve as a complete solution to the problem. This, of course,

was stated Ut the outset. It is proposed to evaluate these constants by
setting the 2N a 2 components of the V and W displacements equal to zero
at the base circle, 4 - f00. This will provide a solution for a shell hav-
ing only radial displacements, U(90 ) = U0 , at the base circle. The com-
plete solution for the fully restrained shell then can be obtained by
solving the general bending equations for a system of edge moments and
shears which remove the U0 displacements, as mentionea previously.

The 21 + 2 Rquotions for the integration constanatr are obtained by
setting V,(0o) - wn(q 0 ) - 0 in equation (46). There results

L " dJn(¢o) tor n ,

J -('ýO' " Jl,(O) for n > 2, (49)

Nn Ja (¢ 0 ) for n > 0,

where the Jln contain the P - 1 unknown constants, K (N > 2). Since
Un " W= - 0 on 4 - 00, the components of radial displacement at the base
circle are, from equation (46),

= ( Una R [(1 +0) SO (nN) + P(¢ 0 )]. (50)

For N a 3, the eight integration constants are X2 . X3, Lot Lit, No, N,

82, and N3 . Letting m0 = 1 + cos •, these are found to be,
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8 m"3 - I

: K• • 36,4• (2-rn0 )2t

,• ~~~80 (3 - a o -•

O" /O= -A 2 *•'2 = (1-rn0 ), (51)2

A1  .43

L -- (2mo 2 + 2o-1 - fn ,-) + (. c M-2 
+

2+ I6rn(- + imo0 -24 mo -8nmm 0 + 45),

•/I~~ + 15), o -9o

N1  -In m + - 0  + 12m 0 + 8 In m•+ 15),
10

2
03 0 3 o

11sing these va]ueb, thc stress resultanL6 aind displacements at aný

point (0ý 6) in the shcll can be found b,- means of equations (2), (11)
(39), (43"), (45), (4.)), (48), (50) and (51).

NUMERICAL RESULTS

The stress resultants and displacements for N 3 were programeai for

computation on an IBM-650 digital computer. Input to the program consists

of the base circle angle 40, Poisson's ratio v, the load parameters A,, A

.12, and YI, and information as to the ntLmber and location of points in the

shell at which stresses and uisplacements are to be determined. Output

consists of total and component stresses, deflections, and load at each

point. These values are based on unit stagnation pressure, 0, and unit

shell parameter gt/R 2 . Actual stresses and deflections fora specific load

and shell are obtained by a simple multiplication.

Typical results for 4P = 115', Y - 0.25, ana 10 . . A as given in

Equation (48) are shown in Figures 9 through 18. Figures 9, 10, and 11

show the distribution of the stress resultants on a series of parallel

circles, q * constant.
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Inasmuch as the membrane stresses are not an adequate repr'esentative

of total stresses in the vicinity of the base circle, results are shown only

for points on the shell lýing on or above the equatorial plane, that is,

for ¢ > 90 degrees. With rcference to Figures 9 and 10, the maximum com-

pressive stresses occur at the stagnation point, the circumferential stress

being three and a half times as great as the meridional stress. The naxi-

mum tensile stresses occur in the vicinity of' the maximum suction pressure

as anticipated. The oscillatory, nature of the stresses in the back por-

tions of the shell probablý is due to the nature of the approximate pres-

sure distribution (Figure 4). The maximum combined stresses can be found

in a straightforward fashion if desired. Figure 12 shows the stress re-

sultants on the planes X - constant, that is, on sectors of the shell

whose apex is the stagnation point and whose boundaries coincide with the

approximate isobars considered (Figure 2). The contour X - 0.91 defines

a circle which is tangent to the base circle, and, as indicated above,

the stresses are not considered to be meaningful below the equatorial

plane. The stresses on the section X a 0.99 are believed valid at all

points; the situation is unclear for the intermediate section X a 0.95.

The components of displacement are shown in Figures 13, 14, and 15.

A composition of displacements showing the deformed shape of the shell in
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the planes 6? 0 (yertioal plane of sýnletry cwLlning the stagnation
point) # *~ ~~ 1-15 degrees (the base pig4a~ 9Q ~ 5(~p .. , - . : ..I . -..

displacement pattern of Figure 17 suggests the nature of:the edge moments
and shears whioh must be applied to effect displacement constraint along

the base circle.
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load parameters-

SCD drag coefticient

L
OCL - lift coefficient

V drag

A' Young's modulus of elasticity of shell material

40.' 124 J1' J2, integral expressions, Equations (42) and (47)

K,, Ln, 'n constants of integration

L lift
NO resultant circumferential force per unit length'of

shell cross section

resultant meridional force per unit length of shell
cross section

resultant shearing force per unit length of shell
cross section

Pn pressure distribution parameter

1' pressure distribution normal to the undeformed
shell suv'fttce

s ta,,ation pressure

ii radius " shell

, b riierul/onal. aoid shear stress components definea in

Equation (.99)

t thickness uf shell

U radial. displacement of s•hell

v circumferential displacement of shell

W meridional uisplacement of shell

X, X coordinates, see Figure :J
R (1 + ,

13 shell parameter

9 meridlonal angle

95 circtunferential angle

00 angle of the base circle

1, Poisson's ratio.
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