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ABSTRACT

" Linearized cavity flow theory, in conjune-
tion with a mapping technique, 1s used to develop
general expressions for the characteristics of super-
cavitating or fully ventilated, two dimensional hydro-
folls with prescribed pressure distributions, designed
for operation near a free surface. It 1s assumed
that the hydrofoills are operating at zero cavitation
number and that the Froude number - based on depth -
i1s very large. The general expressions are used to
derive the 1ift, cavity drag and shape of hydrofoils
composed of 2-, 3-, and 5-term and constant pressure
camber conflguratlons, comblned wlth angle of attack
and quasi-parabolic thickness and designed for opera-
tion at specific depths. Examples of numerical re-
sults are given and the effect of foll strength 1is

discussed and evaluated.
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NOTATION

Constants in the conformal transformation, depend-
ing on depth

Drag Coefficient = ———%;——-
Lift Coefficient = L2
$pul o
Moment Coefficlent = M
1 .2 2
3p U_ ¢

Chord length

Drag Coefficient of a foll designed for depth-
chord ratio h, wlth camber distribution type i,
camber 1ndex ki, design angle of attack 5 and

quasi-parabolic thickness coefficient T

Lift Coeffliclent of a foll designed for depth-
chord ratlo h, with camber distribution type i,

camber 1ndex ki’ and deslgn angle of attack &

Moment Coefficient of a foll designed for depth-
chord ratio h, with camber dlstribution type 1,
camber index ki, and deslgn angle of attack b

Two dimensional cavity drag

Depth of submersion / chord

Camber index of camber distribution type 1. 1
takes on the values 1, 2, 3 or 5 to denote that
the camber distribution is of the constant pres-
sure, two-term, three-term or five-term type, re-
spectively

T™wo dimensional 1ift on the hydrofoil
T™wo dimensional moment about the leading edge of

the hydrofoll, positive in the direction tending to

plteh the nose up

o
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Local pressure on the bottom surface of the hydrofoll
Cavity pressure

Static pressure in the free stream

Pressure difference between the upper and lower surfaces
of the hydrofoll : S
Leadlng edge suctlon force on a fully wetted airfoll,
positive 1n the directiosn of U,

The x component of the perturbation velccity in the
hydrofoll plane, expressed as a fractlion of U&

The x component of the'perturbation velocity in the air-
foll plane, expressed as a fractlon of Um

The y component of the perturbation velocity 1n the
hydrofoll plane, expressed as a fraction of U,

The y component of the perturbation velocity in the
airfolil plane, expressed as a fraction of U,

A space coordinate 1n the hydrofoll plane, parallel to
U, 1ts origin coincides with the leading edge of the

foll. Distance along the chord of the hydrofoil ex-
pressed as a fraction of chord length

Vertical space coordinate 1n the hydrofoll plane,
expressed as a fraction of the chord length

Ordinate of the bottom surface of the hydrofoll expressed
as a fraction of the chord length

Ordinate of the top cavity boundary, expressed as a frac-
tion of the chord length

Hydrofoll section modulus
Non~dimensional section modulus = Z/c3
A complex varlable = x + 1 y

Vortex strength

Deslign angle of attack of the hydrofoll
A complex variable = € + 1 7
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Imaginary coordinate in the airfoill plane

A dummy variable in the airfoil plane, deflned by
¢ = 3(1-cos6)

Real coordinate in the airfoil plane
A dummy variable along the € axis
Mass density of incompressible fluld
2
Cavitation number = (p_ - pc) / $pUC

Quasi-parabolic thickness coefficlent

The quantities A, B, C, D, E, F, G, H, J, K, L, M,

t

¢', H, J', K', L', M, R, Q and b are defined on pages 18 -19

Dilogarithm, defined on page 23
The quantities'§ and'a are defined on page 22
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THE LINEARIZED THEORY FOR SUPERCAVITATING HYDROFOILS
OPERATING AT HIGH SPEEDS NEAR A FREE SURFACE

INTRODUCTION

Increasing interest in the design of high speed hydrofoil
craft has made 1t necessary to review some of the basic contribu-
~tions in the field of supercavitating or ventllated 1lifting sur-
faces and to investigate the effect of the proximity of a free
surface on their design. The exact solution of the problem of a
supercavitating inclined flat plate near a free surface was ob-
tained by Green (1)* and was necessarlly given in terms of the spray
thickness rather than the depth of submersion. This solution was
discussed by Johnson (2) who presented it in practicable form to-
gether with experimental relationships between the spray thickness
and the depth of submersion. It is evident, however, that in view
of the large cavitation drag on a flat plate at both finite and
infinite depths, it 1s of great importance to specify low drag
(1.e., cambered) hydrofoil sections.

Tulin and Burkart (3) first showed that the problem of the
supercavitating hydrofoil could be converted into the problem of a
thin airfoil whose lower surface pressures are positive or zero and
that, for reasons of hydrodynamic efflclency, the center of pres-
sure of the foll should be as close to the tralling edge as possible.
They introduced a low drag supercavitating camber configuration by
specifying the pressure distribution on the equivalent airfoll as
the first two terms of a trigonometric serles and optimizing its co-

efficients, and proceeded to calculate the characteristics of specific

»*
Numbers in parenthesis refer to the list of References.
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hydrofolls, designed for operation at infinite depth, by combining
that camber configuration with angle of attack. Anticipating a
possible increase in hydrodynamic efficiency, Johnson (%) intro-
duced camber configurations derived from pressure distributions de-
fined by the first three and the first five terms of a trigonometric
series whose coefficients are also optimlzed so as to give zero or
positive pressures on the lowerﬂsuffaéé andrarcenter of pressure
as far aft as possible. Hydrofolls incorporating these types of
camber conflguration have since come to be known as Two-, Three-
and Five-Term Folls and are very useful in infinite depth applica-
tions. Specifieally, two-term folls are belng used 1n the design
of supercavitating propellers (5).

If a hydrofoll designed for infinite depth 1s to be operated
at a finite depth the necessity for maintaining the condition of
shock free entry (i.e. the dividing streamline coincides with the
leading edge) requires that the foll be operated at an angle of
attack which 1s smaller than the original (infinite depth) design
angle. The 1i1ft and the chordwlse pressure distribution due to
camber also change as the depth of submersion 1s varied. An approxi-
mate method for calculating the effect of depth on angle of attack
and on the 1i1ft due to camber has been given by Johnson (6) who
also performed experiments which corroborated the theoretical pre-
dlctions almost completely.

Johnson resorted to an approximation because of the very
complicated integrals which arise 1n applying even the linear theory
to the problem of determining the finite depth characteristics of
a supercavitating hydrofoll of specified shape. The results he
obtained are adequate and very useful in ascertalning the effect
of depth varlation on the performance of a given foil. It is pos-
sible, however, to design hydrofolls for specified, finite depths
~#ithout having to resort to approximations to the linear theory.
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This is done by specifying the pressure distribution that 1s to re-
sult at the esired operating depth, rather than specifying the
shape of the hydrofoil. This approach results in hydrofolls which
are designed for specific depths and deliver hydrodynamic perform-
ance that i1s somewhat superior to that of foils desligned for 1n-
finite depth but operating at finite depth. 1In the present work
the linearized theory (3) is used to derive general expressions, in
terms of an arbitrary pressure distribution, for the shape and per-
formance characteristics of any supercavitating (c=o) hydrofoil
designed for any specified depth. In addition to the limitations
of linear theory the only conditions attached to the validity of .
these expressions 1s that the pressures be positive over the entire
bottom surface of the foll, that the cavity begin at the leading
edge and that the cavitation number based.on cavity pressure be
zZero.

The general expressions are used to calculate the lower sur-
face shape, cavity shape, 1ift and drag of two-, three- and five-
term hydrofoils and of a hydrofoil on which the pressure distribu-
tion 1s constant over the chord. From the results of these calcu-~
lations and from a conslderation of a hypothetical foll on which
the pressure distribution is that due to a single vortex 1t 1is
evident that the hydrodynamic efficlency of a foll depends to a
very great extent on the locatlon of 1lts center of pressure. From
the point of view of inecreasing the lift-drag ratio it would be de-
sirable to have the center of pressure as close as possiblie to the
trailing edge. Strength conslderations, however, indicate that
the center of pressure should be located near the foil leading edge
and dlctate that the loading at the nose not vanish. The two-,
three- and five~term camber configurations, if used by themselves
without additional angle of attack, would dellver very high 1ift-
drag ratios but would leave much to be desired from the point of
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view of strength. Specifically, the value of L/D for a given 1ift
increases as the center of pressure i1s moved to the rear, but in
all three camber shapes, when the 1ift is produced by camber alone,
the location of the upper cavity boundary near the leading edge 1is,
according to the linear theory, below the theoretical bottom surface
of the foll. The constant pressure distribution results in camber
configurations whose stfength is somewhétrimproved but whose 1ift-
drag ratios are relatively poor.

The first remedy that suggests itself 1s the standard one of
combining the various camber distributions with angle of attack.
he high leading edge pressures associated with angle of attack
have the effect -- at the cost of reduced lift-drag ratios -- of
greatly enlarging the cavity thickness and hence (since the foll can
be thickened to fill the entire cavity without affecting i1ts hydro-
dynamic characteristics) result in increased strength. The lin-
earlized characterlistics of a flat plate operatling near a free sur-
face are calculated by using Munk's inversion formula (7) to derive
the pressure distribution and incorporating it into the above men-
tioned general expressions for 1ift, drag and upper cavity shape.

In addition, the strength characteristics can be improved --
at moderate cost in drag -- by superimposing upon the foll the pres-
sure distribution generated by a single vortex located at the lead-
ing edge of the equivalent airfoll. The bottom shape associated
with this leading-edge-concentrated pressure is a semi-parabola in
foils designed for infinite depth and a similar, quasi-parabolic
confilguration in folls designed for finite depths. Thus the pres-
sure concentration at the nose has the effect of rounding the
otherwlse very sharp leading edge 1n addition to increasing the
overall area of the foll section.

It will be shown how the performance characteristices and

shapes due to camber (e.g., two-term, three-term, five-term or

[ H‘
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constant pressure) are to be combined with those due to angle of at-
tack and quasi-parabolic thickness to obtain the shape and charac-
terlstics of a foll composed of a set of these three parameters.

As in the work of Tulin-Burkart (3) and Johnson (4), the
method selected for the treatment of the hydrofoll problem 1s the use
of the concept of an equivalent airfoil derived from a suitable con-

formal transformation.

THE HYDROFOCIL-AIRFOIL EQUIVALENCE

In considering the problem of a supercavitating or fully ven-
tilated hydrofeoll at a finite depth _below a free surface it 1s assumed
that (a) the limitations of linear theory apply (i.e., the velocity
perturbations are small in comparison to the forward speed of the
foll), and (b) the cavitation number ¢ is zero. Asumptions (a) and
(b) are the same as those used in the design of infinite depth hydro-
foils. In addition it is postulated that (c¢) the Froude number based
on depth 1s very large so that on the free surface the velocity per-
turbation in the x direction (the direction of the stream) is zero.

With these assumptions, the problem of the thin hydrofoil near
a free surface, schematically illustrated in Figure 1, can be repre-
sented by a Seml-infinite slit on the x axis in the complex z = x + iy
plane, the free surface belng represented by the line y = h. This
configuration, shown in Figure 2 together with the relevant boundary

conditlions, 1s a simply connected polygon Bm, Cw, C;, D, E, B°° which

lends itself to a Schwarz Christoffel transformation of the type

dz AL [1]
at L+a
where z = x + 1y 1s the complex space coordinate in the hydrofoil
plane,
£ = €& + 1in 1is the complex space coordinate in the airfoil

plane, and .



‘;“

HYDRONAUTICS, Incorporated

-6-
A and a are constants depending on the depth/chord ratio h.
This transformation maps the entire z plane into the lower half of
the { plane.
With the above mentioned boundary conditions and the con-
straints that

when x

o E =0
1 £ =1,
the integration of the transformation [1] and its separation into

. i 7-)(-‘
and when x

I

the real and imaginary parts yield the result

X + 10 = aAf §-— In(l + §) ] where ¢ < O

[2]
X - 10 = aA[ § - In(1 + é) 1 where ¢ > 0
where
aAr = h [3a]
and
1 l+ta
A—-l-—l—-a— [(3b]

Plots of a and A vs. depth-chord ratio and of %K-vs. 5 are shown

in Figures 3 and 4.

As shown in Figure 2 and indicated in equation [2], the upper
half of the z plane maps into the negative € axls and the lower
half of the z plane maps into the positive £ axls. Thus the abecissa
of a point (x, yc) on the upper cavity streamline in the z plane 1is
represented by a negative € in the ¢ plane and the abeilssa of a point
(%, yo) on the lower cavity streamline (i.e., the lower surface of

the foll and the lower boundary of the trailing cavity) 1s represented
by a positive £ in the ¢ plane. Equations [3al and [3b] together

*

A1l distances are normalized with respect to the chord length of the
hydrofoll and all perturbation velocities are normalized with respect
to the speed of the stream at infinity, Uw.
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constitute an implicit solution for a and A in terms of the depth-
chord ratio h.
At the 1limits of zero and infinité depth the asymptotic
values of the constants and the transformation are:
a—=0
when h=+ 0 { A =1 _
x-10 ~» £ where £ > O (4]

Note that on the surface (h = 0) there 1s no distortion between the
airfoll and the hydrofoil.

Q =+ @
A — 22
when h — o \l X+10 = g2 where € < O (5]
x-10 — 52 where & > O V
Thus, at infinite depth the transformation [2] reduces to
the one used by Tulin and Burkart (3).

LIFT, DRAG, MOMENT AND CAVITY SHAPE

The 1ift on the hydrofoll and the moment about its leading

edge may be wrltten as

1
L= | apax [6]
0
and
1
M= - J’ Apxdx [7]
o)

(positive in the direction tending to pitch the nose up)
where Ap = the pressure difference between the face and back of the
nydrofoil.

N
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Using the llnearized Bernoullli equation
P + pUﬁu = p, [8]
where
. p = the mass density of the fluild
U, = the velocity very far upstream and downstream of
the foil
u = u(x) = the ratio of the perturbation veloeclty on
the lower (pressure) side of the hydrofoil to
the free stream velocity U&
and p = the pressure on the lower (pressure) side of the

foil,
and noting that since the cavitation number is zero the pressure

on the upper surface of a supercavitating foll 1s pP,» We get
Ap = p-p_ = - p Uiu . [9]

In the linearized cavity flow theory lines of constant per-
turbation velocities remain unchanged when transformed from the 2
to the ¢ plane (and vice versa). Consequently the conformal trans-
formation has no effect on the perturbation velocities u and v,
other than to distort the x location at which a given velocity
exists (i.e., the pressure--proportional to u--at a polnt x on the
hydrofoll 1s exactly the same as the pressure at the corresponding
point ¢ on the airfoil), so that

u(x) =u (g) [10]
(unbarred quantities refer to the hydrofoll; barred quantities, to
its equivalent airfoil). 3

Combining the real part of equation [1] and equations [2],

(9], and [10], and normalizing with respect to %pUi we get, for

ET

i
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the 11ft and moment coeffilcients,
1 _A¢ -
= - 11
Cr 2 of F s u(e)at [11]

and

oy - 2 Ofl x $5o H(g)ag:e‘oflaui -in(1+ £)185 W(e)ag . [12)

In the 1limits of h = 0 and h = » these expressions reduce to

1

¢, =~-2 u(e)ae (h=0) [11a]
0

o, = -2 [T 2fu(ejdE  (h==) [11b]
0

and

Cy = 2 fl gu(e)de (h=0) [12a]
0

Cy = 2 fl 2g3ﬁ‘(g)dg (h=eo) . [12v]
3 ,

In linear theory, the drag on an element of chord of a
hydrofoll may be expressed as the product of the 1ift on and the

dy
slope EEE of that element. Usling the linearized boundary condl-

tions (shown in Figure 2) and the fact that angles (e.g., %%) are

not affected by the transformation,we may write

T = v(x) = (e) (13]

|

where v(x)U_

the perturbation veloclty in the y dilrection on the
bottom of the hydrofoll,
and V(€)U_ = the perturbation velocity in the 7n direction on the
positive € axis in the airfoll plane.

Hence the drag

D - ofl V(¢)apax= -pUZ f V(e)i(e) 3 a [14]

€+a
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As shown by Tulin and Burkart (3), V(&) can be expressed in terms
of U(&) in the following manner: The downwash at & point £ on
the hydrofoll, induced by a vortex of strength v, located at ¢' 1s

—_— ,
S (ET=E) ° Since v = -2U(¢'), (negative because U(€ ) 1s the

veloclity perturbation on the bottom of the hydrofoil), the down-

- wash, integrated over the chord, becomes

dyo

dx

Combining equations [1%] and {15] and normalizing we get

1 .1 A[G((e)a(e' ‘ '
op =2 st - b TSt e

_ 1.1 _ Al ¢ & —(a V(e !
“e S ety ¢ T e e
A 1 .1 (u a(e' '
-2ar A Y e o)
and finally, using equation [3a],
—_ 2
h 1l u
o = 2 - T e (a#0) [26]

In the limiting case of infinite depth the drag coefficient

becomes
2

p = 5 | [ E@] (=) [16a]
At zero depth the hydrofoll becomes a planing surface and

its cavity drag 1s, in all respects, synonymous with the Spray drag

experlienced by such surfaces. Wagner (8) long ago showed that,

except in the immedlate neighborhood of the leading edge, the high

speed flow past a planing surface was i1dentical to the flow past

=v(g)=-11; Ojlﬁ—-é%'gldg' where 0 < € <1 [15]

v
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the lower surface of an identically formed fully wetted airfoil.
The difference between the two flows (in the immediate neighbor-
hood of the leading edge) consists in the fact that the leading
edge suction force experienced by a fully wetted alrfoll does not
exist on a planing surface (or, for that matter, on any super-
cavitating hydrofoil) and is replaced -- on the planing surface
6ﬁlyr-- by spray. Wagnér shdwed fhat the tdtalrdragroﬁ a planiﬁér
surface was equal to half the drag on the identical fully wetted
airfoll less half the leading edge suctlion force S acting on the
latter. Since the total drag on a fully wetted airfoll in an 1in-
viseid fluid iIs zero, the spray drag ¢an be written as

D=-38 (h = 0)
The magnitude of the leading edge suction force S 1s well known
in airfoil theory and is given by Jones (9) as

2
1im 2
S=_L0-TeU, [u(x)‘\/x]

Combining the last two equations, normalizing with respect to
%pUi and noting that at h=0, x=€ we get, for the spray drag co-
efficlent

2
Cp = ,lcimo" [E(g) V'E] (h=0) ~ [16b]

Equation [16b] shows that i1f the pressure (proportional to
u) on the lower surface, at the leading edge of the foil goes to
infinity as WfE--- the flat plate 1s a case in peclnt -- the spray
drag is 1indeed a finite quantity. It also shows, as Wagner (8)
anticlpated, that by proper use of camber 1t 1s possible to produce
1ift without spray or spray drag. It will be seen below that the
two-term, three-term, five-term and constant pressure camber con-
figurations fulfill this ambition.

The ordinates of the lower and upper cavity streamlines
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(yo and Ve respectively) are obtained by integrating their slopes.

The slope of the lower cavity boundary (i.e., the bottom surface
of the foll) has already been given in equation [15]. Employing
the same reasoning but keeping in mind that the upper part of the
hydrofoll 1s mapped into the negative ¢ axls, the slope of the upper

eavity streamline can be shown to be*

1 1 u(g’ ' o
= - v(-¢) == Of -EL%—%;- dé' where - < £ L0 [17]

and the ordinates of the upper cavity boundary of the hydrofoll and

lower surface are

vo(8) = JEV (4) piig g where  a<g<o (18]

E' + a

and

<
—
e
S’
42’»
[oF
e
b
jag
o
H
[t
(@)
N
)
A
=
—
=
\O
et

yo<€) = Ofe £ + a

Note that [18] and [19] glve the cavity ordinates in the hydro-
foil plane in terms of abelssas in the airfolil plane. This is only
due to the fact that the transformation (equation [2]) cannot be
inverted to glve an explicit expression for € in terms of x, and
can be remedied in the process of plotting the actual cavity shapes.
In the limiting cases of zero and infinite depth the upper

and lower cavity ordinates become

*It is polnted out that in spite of the similarity of the lintegrands
in equations [15] and [17] the expressions (after integrations) for
V(-£) and V(¢) will be entirely dissimilar due to the fact that
equation [15] contains & singular integral.

:‘;d
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Vo (x) = g" v (e') at’ (h = 0)
-\/[x
y,(x) = TS pagr |
0 (h = =) [20]
00 = M 2 we) gae

In equations [11], [12]), [16], [18], and [19] we have the
means to calculate the 1ift, moment, drag and upper and lower cav-
ity ordinates of a supercavitating hydrofolil, designed for any sSpe-
cified depth, in terms of the u perturbation velocity (and hence,
the pressure) on the bottom of its equivalent airfoil. The condi-
tions relevant to the validity of these equations are that (a) a
cavity does indeed exist everywhere on the upper hydrofoll surface,
(b) there is no cavitation anywhere on the lower surface, (c) the
linear theory holds, (d) the cavitation number is zero, and (e) the
Froude Number 1s very large.

It 1s often convenient to express the pressures on a glven
hydrofoll as the sum of a number of different types of pressure
distributions. Conversely, analysls of the characteristics of
various types of pressure distribution often leads to thé conclu-~
gsion that it might be advisable toc comblne some of them into one
foll. Such a foll 1s referred to as a composite foll whose various
components are the shapes assoclated with each of the specific
types of pressure distribution. Eac¢h of the characteristics of
the composite foll is a function of all 1ts component pressure
distributions in addition to being a function of depth. Denoting

n different component pressure distributions by ul, u R L

2 n

the characteristics of a composite foll are found from equations
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[11], [12], [16], [18] and [19]:

CL(h,ul, Uyy weey u ) = Cp(hu0,...,0) + cL(n,o,uE,...o)

+ ol + CL(h,O,O,....,un) [21]
Cu(h,u,ue,...,un)-CM(h,ul,O,...O)+CM(h,O,u seees0)

+ ...CM(h,O,O,...un) [22]

CD(h)ul,ue, LRI} ,un )=( VCD(h,ul, o, LR} O) + VCD(-hJ o)uéj v 'Jo)

+ ... +\/CD(h,O,O,...un) )2 [23]

yo(h,x,ul,uz,...,un)=yo(h,x,u O,...,O)+yo(h,x,0,u2,...,u )

1’ n

oot yo(h,x,0,0,...,un) [24]

and

yc(h,x,ul,ue,...,un)=yc(h,x,ul,0,...,0)+yc(h,x,0,u 0)

2,-..,

+ oo+ yc(h,x,o,o,...,un) [25])

Notation of the type CL(h’ul’ue’“"’un)’ introduced here in

general terms, will be used later to denote the characteristics of
depth-adapted hydrofoils which are combinations of camber (denoted
by ki)’ angle of attack 6 and quasi-parabolic thickness T. The

types of camber configurations that will be considered are the
constant pressure (kl), the two-term (k2), the three-term (k3) and

the five-term (k5). Thus, for example, yo(h,x,k3, 5, T) denotes

[ 54
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the bottom surface ordinate, at x, of a three-term foil which has
been desligned for operation at a depth of h chords and whose camber
index, angle of attack and thickness coefficient have the values

k3, 6 and T, respectively; C 1,0,2.50) is the 1ift coefficient de-

(
veloped by a flat plate operiting at a depth of 1 chord at an
angle of attack of 2.5 degrees; and CD(l,O,Q.SQ;OwOl) 1s the drag
coefflclent of a quasi-parabolic shape designed for operation at
a depth of one chord with a thickness coefficlent of 1% at an angle
of attack of 2.5 degrees.

The general expressions will now be used to calculaterthe

11ft, drag, moment and shape of depth adapted camber configurations
which are characterized by certain specified types of pressure

distributions.

THE OPTIMUM PRESSURE DISTRIBUTION

Tulin and Burkart (3) have shown that for the class of all
possible cavitating hydrofoils the absolute optimum pressure dis-
tributlon 1s that in which the pressure is entirely concentrated
at the trailing edge of the foll. They pointed out that in spite
of the Yact that such a pressure distribution cannot be realized
on any éractical hydrofoll the performance of thils "optimum foil"
is a very convenient criterion against which the lift-drag
efficlency of all other supercavitating foils can be measured. The
lift-drag ratlo of the optimum foil, designed for infinite depth,

was shown to be %1-. It 1s of interest to find the value of this
L
optimum ratio for folls designed for other depths.
Let us consider the pressure distribution in the airfoil
plane, shown in Figure 4, which is such that the pressures are
entlrely concentrated at a point go. The distribution of the @

veloclty on the bottom surface of the foil can then be expressed as

% ul
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T(8) - ;o (e-t,) 2]

where K 1s a constant and 5(§-§o) is the Dirac delta function
which 1is such that

5(t-g ) = O T EE A O
: w fopr 'eveb =0

/7 8(e-¢ )ag =1

- 00

and

/7 6(e-6,) £ (&) & = £ (¢)

- 00

Combining equation [26] with (N) and [16] we obtain

G

ol 5 [27]
v

D a CL

Clearly, the largest possible 1ift-drag ratio will be obtalned
when &o =1 (i.e., the pressures are concentrated at the trailing

edge) so that

B -

D 2

opt a CL

Flgure 5 1llustrates how the optimum lift-drag ratio for a given

1ift coefficlent varlies with depth. As can be seen, D for a
opt

depth of one chord 1s almost four times as high as that for infinite
depth. Equation [27] also 1llustrates that in the absence of
strength requirements (which, in a practical case, might be over-
whelming) the center of pressure should be located as far aft as

possible.
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THE TWO-, THREE- AND FIVE-TERM CAMBER DISTRIBUTIONS

The perturbation velocity in the airfoil plane on the two-
term camber distribution 1s given by Tulin and Burkart (3) as

u(g) = - %F k,(s1n6-% sin 26) [28]

where 6 is a dummy variable defined by
£ = $(1-cos6)

Johnson (4) showed that for the three-term camber

u(g) = - %1; k3(sin 6 - sin 26 + % sin 36) | [29]

and for the five-term camber

- 6 ) 4 2
u(g) = - BF'k5(Sin 6 - §-sin 26 + 3 sin 30 - 3 sin 46
+ 31— sin 56) [30]

and k. are shown

3’ 5
serve the purpose of

the u distributions for given values of k k

2’

in Figure 6. The coefficients Kys k3, and k5

scallng the magnitude of the respective pressure distributions and,

hence, serve also as scaling factors for the CL, CM’ CD and shape

of the three types of camber configuration. These coefficients
shall be termed the 2-, 3- and 5-term camber index. It will be

seen that for camber configurations designed for infinite depth
the numerical value of the camber index is also equal to the value
of the 1ift coefficient when no angle of attack is present.

When the expressions for U(¢) given in equations [28], [29]
and [30] are combined with equations [11], [16], [18], and [19] the
following expressions for the 1ift, drag, bottom shape and top
cavity shape of the three camber configurations are obtained:*

*The work involved is one of straightforward, if sometimes laborious,
integrations demanding special care when improper integrals are in-
dicated. For some of the more complicated integrations the tables
of integrals in [10] and [11] were used.

« uf

i
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First, let

Tt - atf _ am
A=¢ alna =5 X
B = %52 - aA
T =13
c 35 aB
3—&&4-30
.___1_ 5-._.
E = 5 (3 aD
'P_‘=%€6-a§'

R=\/€§-€ for (& < 0)

G=1%(¢-%)R-gin (1-26-2R)

H = —;— R+ 13

T=%er + %—ﬁ

K=5 &R +357J

L= %€3R3 + %—f

M = R - (a+})1n(1-26-2R)- \[a"+a 1n 8‘123“35:25 a_ta R

where £ 1s defined by equation [2],

let @ =-/x +x
G'=-%(ﬁ+%)Q-%ln(l+2-\/'x_-2Q)
H'=%Q3+%G'
J' =—1}\/§'Q3+5-H'
K -zx @+ 5o
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11
TE'L

and let b = 2a + 2~ fa(l+a) + 1 .

Then, for the two-term camber:

C
5 ¥2

4hk2

5ar

Cr, (h,k?_,o) = 4

[1 + 8a% (vE - Vir )2 - Qa]

2 2 2 2
Cp(h,k,,0,0) =¢ h( == ) [1-4a (Va - VI+a) ]

4hk2
N (h.ux:k ,0,0)=<

o] 2 2
5T

4k2

57

[(1—4a—8a2)(-a§ - 1n 22§

+ 2a(-§)2(1+2a - -g- g)]

(x + §-x3/2 - 4 x2)

3

where € 1s defined by equation [2]

(h

(h

(h

(h

(h

(h

|
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(
8hk

2 (3% + 2B - 4T - 4 + 4a0 - 4a° W) (Ochcm)
yc(h:x)ke:oa O) =< sar

8k
——2 - .)i 3/2 - 2 - ' = o0
\51 (% x 3 X 2x 8 J) (h )
For the three-term camber:
( 2 -
= kg (h = 0)
2hk
4a 1 1
CL(h,k3,O) = < ga}i[l - (1 - 5 + ;;5)] 7 (0<h<co)
\ k3 (h = =)
( 0 (h = 0)
by 2
- _33° S o
Cp (h.ky,0,0) _J h (552) (-3 +2b2) (0<h<)
2 2
\ or k3 (h = =)
( 2k
3 - 22 4. 32 .3 4 -
37 (x - 3x° + = x 8 x) (h = 0)
khx _ _ _
Yo (h%,ky,0,0)= { —=2 (4 K - 3B + 16T - 16D) (O<h<e)
3amr
2Ky 3/2 2 /o
= (5x - 20 x + 80 x° - 64 x° ) (h = =)
\ 127
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( 2hk —
-——% [K-6§+32('C'-B-Tf) + (32a+16) H
3ar

+ (32a%416a+2) (ai'-b')] (0<h<)
yc(h,x,k3,0,0) .=< )“{
-3—‘”1[% + 2x3/2+8x2+ % x5/2-32K'W )

+ 16J' -2H']

—~
a2
It
8
~

\

For the five-term camber:

N
jw
x
—~
=
.
o)
L

55
3hk
Sly. a4 A 2 1 o
L 5 (B = =)
( 0 (h = 0)
2k 2
5 (2 4 4 2 1
Cplh,kg,0,0) = ( h (gpr ) B-g+ 273 + ;1;) (0<h<=)
e = o
([ bk 2 3 4 12 5
-51—,_2(x-8x + %0x° - 92x +‘25-—x-
- 128,85 (h = 0)

3

me,
Vo (hr%,16s,0,0) = { —2 (NR-6KBIBOG-1472D+2046E-1024F)  (0<hcw)
Samr

;1;2 (x- %2_ x3/2160x2- 1%6— x/24 5:]3._2_9(3
- 2217 (h = =)
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( 8hk e - —- =
—3 [47 - 65 + 607 - 1645 + 2568 - 128(F + T)
saw + (128a4+192a3+1oua2+24a+2)(ai’-'E)
+ (128a3+192a2+104a+24) H
yc(h’x’ks’o’o)ﬂ - (128a2+192a+1ou)34(128a+192)f] (0<h<as )
i;;i (%-x + g-x3/2+15x2+ lgi x5/2+ l%ﬁ O+ lgé-x7/2
- 126M'-2H'+24J'-104K'+192L') . (h=w) -

THE CONSTANT-PRESSURE CAMBER DISTRIBUTION
Since the perturbation velocity u 1s proportional to the pres-
sure (equation [9]), the u(¢) associated with pressures that are

constant over the chord of the hydrofoil {and, hence, the airfoil) N
may be written

- 1 . *
u(¢) = constant = - > kq

and is shown in Figure 6. When this TW(¢) i1s comblned with equations
[11], [16], [18], and [19] the following expressions for 1ift, drag,
bottom shape and top cavity shape are obtained:

CL(h:kl:O) = ¥y (0gh =)
(0 ( h =0)
k1 a+l 2
CL(h,kl,O,O) =<h ( or 1in e ) (0 < h < =)
K
T (h = w)

*
Due to the standard (NACA) practice of referring to a constant-

pressure mean line as an "a = 1 mean line" kl has been adopted to

denote the camber index assoclated with this type of pressure dis-

tributlon. The numerical value of kl 1s the same as the value of

the 1ift coefficient developed by this type of camber (without angle
of attack) at any depth.

P
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Ky
= [x 1n x + (1-x) 1n (1-x) ] (h = 0)
y (h)XJk :O)O)= ‘}'{‘i:' {g‘ 1n ‘l‘-—g' - ‘];‘ 1n (1"&) + 1ln _§_+_a_ 1n a +82
o f e 8 A T RV (14a)®
2
+ 1, (B2) -1, (55 + Ly0)- %‘] (0<h<)
3
= [(x-l) In (1-v) - x In VX - VYJ (h = =)
hk, r
-Q-TT—Z IL'Z‘ 1n %—1- - %m (1-¢) - 1n 3? 1n (1+a)
2
+a a +a LA
¥, (h,x,k;,0,0)= " he (%:‘-) " e (TR - Lg(ﬁa—)+ 3.] (Odhe=)

-;L? {(x-l). 1n (1+/x) - x 1n Vx +\/Tc'] (h = =)

® n
where L, (w) = dilogarithm of w =Z 15 for .w|< 1
‘ n=1 n
W2
L2(1) =g

and £ 1s defined by equation [2].

Due to the inordinate difficulties involved in integrating
equation [12] analytically, the pitching moments were calculated
by performing a separate numerical Integration for each depth and
each type of pressure distribution. This was accomplished through
the use of the IBM 1620 digital computer, installed at HYDRONAUTICS,
Incorporated.

The variation of 1ift coefficient, drag coefficlent and the

wnd

ol
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location of the center of pressure ( 6—-) with depth, for the two-,
L

three-, and five-term and the constant pressure types of camber are
shown in Figures 7(a), 7(b), and 7(c), respectively. As a typlcal
example, the variatlon of the l1lift-drag ratio of the two-~term cam--
ber with 1ift éoefficient, 1s shown in Figure 8. The bottom and
top cavity shapes of the four types of camber distribution, for
depth-chord ratlios of 1 and infinity are shown in Figures 9(a) and
9(b), respectively. Except in the case of the constantrpressure
type of camber distributlon, the upper cavity boundary yc 1s seen
to lie below yo, the lower - or pressure - surface of the foill,
This result, which impllies a c¢crossing of the streamlines, 1s not
attributed to ilnadequacies of the linear theory. The same pheno-
menon occurs in many cases 1ln which body shapes are derived, as

is done here, from prescribed pressure distributions, regardless
of whether the problem is treated with linear or exact theory (see
(12) and (13) for discussions of this subject in the literature).
The prescribed pressure distribution, which 1s the starting point
of the foll design, immediately implles a theoretlical folil shape
but the theory, be it linear or exact, which is used to calculate
that shape, does not necessarily guarantee 1t to be physically
feaslble. The theory doesg, in fact, penalize us for using overly
efficient camber distributions (see Figure 8 ) by compelling us to
accept the reductlons in 1lift-drag ratio that occur when angle of
attack and/or quasi-parabolic thickness are combined with camber
in order to make the foll a practical possibility and provide 1t
with sufficient strength.

i
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) QUASI-PARABOLIC THICKNESS

A vortex of strength v =w 1 U& located at the leading edge

of the equivalent airfoll will generate a pressure concentrated en-

tirely at the leading edge of the hydrofoll so that the associated

- - U velocity distribution may be written in terms of the Dirac-delta
. function (equation [26]) as

: u(g) =-%786 (&)

Combining u(€) with equations [11], [16], [18], and [19]
ylelds the following expressions for the 1ift, drag, moment and shape

assoclated with the leading-edge-concentrated pressure:

C, due tot = O (0< h < =)
) Cy due tor = 0 (0 L h =)
T 2

h(E (0< h < =)
CD(h,O,O,T) = 1.12 h = o)

z =
L
5 (0,0,0,7) =0 (h = 0)
yo(h:xJO:O:T) =

- /X% (h = =)

-TE%M%E (0 < h < w)
yc(h,x,0,0,'r) =

+ T/X (h = o)

where € 15 defined by equation [2]. The effect of depth on CD(h,O,O,T)

X7
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is shown in Figure 7(b). The upper and lower cavity shapes due

to 7, for a number of depth-chord ratios, are shown in Figure 10.

THE INVERSE PROBLEM
To find the characteristics of a supercavitating hydrofoil

of glven shape, using the methods outlined herein, it 1is necessary
to express the pressure distribution - or u(€) - in terms of the
shape before the expressions (equations [11], [12], and [16]) for
the 1ift, moment and drag coefflcients can be used. The inversion
of the integral equation in [15] was shown by Munk (7) to be

V1-¢ fl Nfgn'v (¢') dé', 0 £ g1 [31]
TVE O VI-g' (€ - &0

in which 7(£') can be found from the shape by using equation [13].

(e = -

Unfortunately the integrations involved in these operations
when the hydrofoll 1s operating at a finlte depth are, for all but
the very slmplest shapes, too complicated to be done analytically
and would have to be done by numerical methods. At present, only
the flat plate problem will be solved for finlte depths. The prob-
lem of a flat plate with flap near a free surface has been dealt
with elsewhere (14) and for very close approximations to the per-
formance characteristics of two-, three-, and five-term and circular
arc folls which are designed for infinite depth but operating at

some” dther depth, the reader 1s referred to Johnson's work (6).

The Flat Plate at Finite Depths

The slope of a flat plate at an angle of attack & to the
direction of the flow 1is

&We S
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We use equations [13] and (31] to obtain

E(g).-_.@jl VET dgl __5Il_-—l§. (32]
TVE 0

Vi-¢  (¢-¢) Ve
and combine this result with equations [11], [16] and [19] to get,
for a flat plate,

o7 (h =0

¢ (h,0,8) = 5{-:- (V1i+ta - \/?)2 (0 < h < =)
5 % (h = =)
(76° (h = 0)

ool 0,8,0) = { o 2 (VT - V&) (0<n<a)

- %’- x] (O<h<w )

Yo (h,x,0,6,0)=

where P = 1n (1 - 2¢ - 2 €2°€ )

Q= 1n (1-~2:+1g+2@\/g)-1n%

and € is defined by equation [2].
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The variation of cL(h,o,a) and CD(h,O,G,O) and Cn(h,O,B)

with depth is shown in Figures 7(a) and 7(b). The moment coef-
ficients were calculated by combining equations [32] and [11] and
performing a numerical integration. The result 1s shown in Fig-

ure T(c) as a plot of location of the center of pressure
C. 7 er ol pres

(E!) on the hydrofoil vs. depth-chord ratlo. The top cavity shape
L

due to angle of attack for a number of depth-chord ratios is shown
in Figure 11.

OPTIMUM FOILS AND FOIL STRENGTH

In accordance with equations [21], [23], [24], and [25] the
1ift, drag and upper and lcwer cavity ordinates of a foil in which
camber, angle of attack and quasi-parobollec thickness are combined

are found as follows:

h,k,,8) = C h,ki,o,) + cL(h,o,a)

L(

- cp(hk 5,7) (-\ﬁ: (n,k,,0,0) +-\[c;(h,o,5,o) +—\/CD(h,O,O,'r))2

CM(h,k 58) = CM(h,ki,O) + CM(h,O,b)

5
L

yo(h,x,k 6,7)

x yo(h,x,ki,o,O)+yo(h,x,0,8,0)+yo(h,x,0,0,T)

yc(h,x,ki,a,v) = yc(h,x,k ,0,0)+yc(h,x,O,5,0)+yc(h,x,0,0,r)
Of the four camber configurations considered here it 1s

clear that for given values of 6 and T, folls incorporating the

five-term camber produce the highest 1ift-drag ratios. This con-

clusion is no longer significant, however, when the strength of

dod
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these supercavitating hydrofoils is taken into consideration. For
purposes of strength calculations it is assumed that the foll sec-
tion 1s constructed so as to f1ll the entire thickness of the
cavity*, thus setting the foil thickness at any point along the

chord equal to yc(h,x,k »6,T) - yo(h,x,k 6,7). The foil strength

12
1s evaluated by considering the non-dimensional section modulus 2

of a beam whose cross sectlon 1s the hydrofoil section [7 = Z/(c)3
where Z = (area moment of 1nertia)//kthe distance between the neutral
axls and the furthest fiber)]. In these calculations 1t 18 assumed
that the neutral axls of the beam 1s parallel to the reference

line (y = 0) of the foill. Since the sectlon modulus is calculated
malnly for comparison purposes 1t i1s of little consequence that

the true neutral axis may be oriented somewhat differently and that,
in addition, it may not always be practical to make the foll quite

as thick as the cavity.

The integratlions involved in calculating the section modulus
must, of necessity, be carried out numerically for each specific
foi1l (i.e., a foll composed of a given set of the parameters h’ki’

6 and 7). These calculations were first carried out by hand for

the two-term foll at a depth of one chord, using Simpson's Rule

in the calculation of the section moduli. Subsequently, a high
speed digital computer at the David Taylor Model Basin was used to
calculate the operating characteristics and section moduli of two-
term, three-term, five-term, and constant pressure camber hydrofoils,
designed for depth-chord ratios of 1/4, 1/2, 1, 2, 5 and ». 1In
these calculations the computer was programmed to consider for each

depth (a) all possible combinations of kys 6, and 7, with k, taking

*The upper surface of the foil is, however, stlll considered to be
unwetted.

e
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on 10 values between O and 0.6, & taking on 13 values between O and
3 degrees, and T taking on 9 values between O and 1%; and (b) all
possible combinations of the constant pressure camber configurations
wlth each of the two-, three-, and five-term camber configurations,
with ki taking on the same values as in (a). A sample of the re-
sults of these calculations is shown in Flgure 12, 1in which con-

tours of constant 6, k. and Z for a single value of T are plotted

on a grid of lift—dragzratio vs. 1lift coefflcient, for a two-term
hydrofoll designed for a depth of one chord. A subsequent report
{No. 001-T) containing all the significant results of thils computer
study will be publlished in the near future. In addition, the com-
puter program contained an optimlization procedure in which the pre-
viously stored list of all the folls that had been computed for a
given depth was searched for the three best folls (i.e,, those

with highest L/D) whose section modulus and 1lift coefficient were
within certaln prescribed ranges.

The optimization procedure showed that it 1s not possible
to single out one type of camber dlstribution as being the absolute
optimum for all depths, 1ift coefficlents and section moduli. It
1s possible, however, to make the following generalizatlions:

(a) The combinations of the constant pressure camber with
two-, three-, and five-term camber configurations are to be recom-
mended only at very low depth-chord ratios (h < 0.5). At depth-
chord ratlios of 0.5 or higher thls type of foll 1s efficlient only
for unrealistically high section moduli (2 > 12 x 10_4) and un-
realistically high 1ift coefficients (C_ > .60).

(b) Turning now to foils in which one of the four camber
types 18 combined with angle of attack and quasi-parabolic thick-
ness, 1t appears that except at unrealistically low section modulil

(§'< 2 x 10 ) the constant pressure and two-term are more efficlent
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than the three- and five-term camber configurations. This trend
intensifies as either the section modulus ov the deslgn depth 1is
increased, until, at infinite depth and high section modull
(Z>6 x 10-4) the constant pressure type of camber (combined with
5 and T) dominates the list of optimum foils. - : -
| In summary, the optimizatlon process indicates that for
practical values of depth-chord ratio, section modulus and 11ift
coefficient (i.e., h > 0.5, 2 x 107 {Z<6x 107" and 0.05 <

Cr, < 0.5) the constant pressure and two-term camber conflgurations,

each properly comvined with angie of attack and quasi-parabolilc
thickness, deliver higher 1ift-drag ratlos than the other types of
camber. The two-term folls are, usually, the better of these two
and in cases in which the constant pressure camber 1s somewhat
superior the difference between 1ts l1ift-drag ratio and that of
the two-term foils is not very significant.

In Figure 13 a typical, two-dimensional, two-term hydrofoll
is drawn to scale. This particular foll is designed for operation
at a depth of one chord and 1s composed of camber index k2 = 0.15,
design angle of attack b = 1.6° and quasli-parabolic thilckness
T = 0.004, It develops a 1ift coefficlent of 0.195 and a 1ift-
cavity drag ratio of 34.5 and its nominal sectlon modulus 1is
Z=4.1x10"
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