DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.
COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
BALLISTIC CALCULATIONS AND DESIGN CRITERIA FOR DECOY LAUNCHING SYSTEMS

By
C. L. Fulton
and
S. Goldstein

ARPA Order No. 39-59
Task No. 8
ABMA Control No. ID-295-00-60
SPB 2-2249-60

February 1961

FRANKFORD ARSENAL
PITMAN-DUNN LABORATORIES GROUP
PHILADELPHIA 37, PA
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA) Arlington Hall Station, Arlington 12, Virginia.
BALLISTIC CALCULATIONS AND DESIGN CRITERIA
FOR DECOY LAUNCHING SYSTEMS

Prepared by
C. L. FULTON
Physicist
S. GOLDSTEIN
Physicist

Reviewed by
J. J. DONIELLY
Chief
Ballistics Branch
H. P. MANNING
Acting Chief
Ballistic Systems Division

Approved by
C. C. FAWCETT
Deputy Chief
Research & Development Group

For
A. R. CYR
Colonel, Ordnance Corps
Commanding

FRANKFORD ARSENAL
Philadelphia 37, Pa.

February 1961
OBJECT

To study the use of ballistic systems in launching diversionary objects from ballistic missiles, and to provide design criteria for launcher development.

SUMMARY

Standard cartridge-actuated devices were surveyed to determine the feasibility of using them in decoy launching systems. Design criteria were established, simplified ballistic analyses were made, and theoretical performances were calculated for several reactionless-type launchers.

AUTHORIZATION

ARPA Order No. 39-59, Task No. 8, Sept. 1959

ABMA Control No. ID 235-00-60

SPB 2-2249-60
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>CAD Launchers</td>
<td>1</td>
</tr>
<tr>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>Catapults and Removers</td>
<td>2</td>
</tr>
<tr>
<td>Thrusters</td>
<td>5</td>
</tr>
<tr>
<td>Reactionless Launchers</td>
<td>5</td>
</tr>
<tr>
<td>General Design Studies</td>
<td>5</td>
</tr>
<tr>
<td>Design and Ballistic Parameters</td>
<td>7</td>
</tr>
<tr>
<td>Full-Caliber Designs</td>
<td>12</td>
</tr>
<tr>
<td>Spigot Designs</td>
<td>14</td>
</tr>
<tr>
<td>Specific Design Study</td>
<td>14</td>
</tr>
<tr>
<td>Assumptions</td>
<td>14</td>
</tr>
<tr>
<td>Pneumatic Efficiency</td>
<td>16</td>
</tr>
<tr>
<td>Propellant Charge</td>
<td>18</td>
</tr>
<tr>
<td>Ballistic Efficiency</td>
<td>20</td>
</tr>
<tr>
<td>Propellant Charge and Velocity</td>
<td>22</td>
</tr>
<tr>
<td>Closed Spigot Design</td>
<td>23</td>
</tr>
<tr>
<td>Open Spigot Design</td>
<td>26</td>
</tr>
<tr>
<td>Launcher Weight</td>
<td>27</td>
</tr>
<tr>
<td>Acceleration</td>
<td>30</td>
</tr>
<tr>
<td>Conclusions</td>
<td>34</td>
</tr>
<tr>
<td>Recommendations</td>
<td>34</td>
</tr>
</tbody>
</table>

iii
TABLE OF CONTENTS (Continued)

REFERENCES
APPENDIX I List of Symbols 35
APPENDIX II Tables of Peak Pressure vs Velocity for Reactionless Launchers 36
INITIAL DISTRIBUTION

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Performance of CAD Launchers, Estimated from Standard Data</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Mechanical Energy as a Function of Load for M2 and M5 Thrusters</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Reactionless Launcher</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Full-Caliber Design and Spigot Design</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Dimensions for Full-Caliber and Spigot Designs</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Expansion Ratio</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Direct System and High-Low System</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Kinetic Energy as a Function of Bore Area for a Full-Caliber Design</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Kinetic Energy as a Function of Bore Area for a Spigot Design</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Piezometric Efficiency as a Function of Expansion Ratio</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Charge Weight as a Function of Expansion Ratio</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>Ballistic Efficiency as a Function of Expansion Ratio</td>
<td>22</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>13</td>
<td>Ratio of Charge Weight per Pound of Projectile Weight as a Function of Velocity</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Comparison of Closed and Open Spigot Designs for a Given Expansion Ratio</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Peak Pressure as a Function of Expansion Ratio for a Closed Spigot</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>Peak Pressure as a Function of Expansion Ratio for an Open Spigot</td>
<td>29</td>
</tr>
<tr>
<td>17</td>
<td>Launcher Weight as a Function of Expansion Ratio for a Closed Spigot</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>Launcher Weight as a Function of Expansion Ratio for an Open Spigot</td>
<td>32</td>
</tr>
<tr>
<td>19</td>
<td>Peak Acceleration as a Function of Expansion Ratio</td>
<td>33</td>
</tr>
</tbody>
</table>
The Advanced Research Projects Agency (ARPA) is conducting a research program in which methods for ejecting diversionary objects (decoys) from ballistic missiles are studied. Order No. 39-59, Task No. 6, issued by ARPA, authorized Frankford Arsenal to investigate methods for packaging and launching such objects, under the administrative guidance of the Army Ballistic Missile Agency (ABMA). This document reports the preliminary ballistic work done by Frankford Arsenal on this project.

The major objective was to achieve a decoy launching where the decoys were ejected in a manner such that no reactive force would be felt by the missile. The launching system was to be contained within the missile, but no particular missile was specified. The configuration, weight, and launching velocity of the decoys were not specified.

To avoid a reactive force, the Arsenal investigation considered the possibility of ejecting two decoys simultaneously, in diametrically opposite directions. The decoys were assumed to weigh between 5 and 100 pounds, and their ejection velocities were to be in the range of 5 to 400 feet per second. This study consisted of three parts:

1. Standard cartridge-actuated devices, developed by FA for Air Force personal escape systems, were reviewed, and a short ballistic analysis was made of those having potential application in decoy launcher systems.

2. Tentative design and ballistic parameters were established for Davis gun-type launchers (reactionless launchers). The functional relationships of the design and ballistic parameters were determined for two basic types of designs.

3. A specific reactionless launcher system was analyzed to show the functional relationships of the design and ballistic parameters.

CAST LAUNCHERS

General

Standard cartridge-actuated devices (CAD) were surveyed and the results indicated that 10 CAD may give the desired velocities (5 to 400 ft/sec) to the loads selected (5 to 100 lb). Table I lists these...
10 devices and their standard performance data at 70°F and sea level pressure. Standard performance data were obtained from the CAD engineering manual for loads, velocities, and angles of launch. A preliminary analysis was made to estimate their performance when used in decoy launching systems.

Catapults and Removers

Ballistic efficiency is defined as the ratio of the kinetic energy delivered to the propellant potential energy. It was assumed for this preliminary analysis that the ballistic efficiency of a standard catapult or remover is constant for the entire range of weights ejected. This assumption is not experimentally precise, since the ballistic efficiency of a cartridge-actuated device increases as the propelled weight increases. However, the assumption is considered reasonable, since the standard data are for loads not too far removed from the range under consideration.

Table I. Physical Characteristics and Performance Data
For Standard Cartridge Actuated Devices

<table>
<thead>
<tr>
<th>Device and Model</th>
<th>Physical Characteristics</th>
<th>Performance Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter (in.)</td>
<td>Length (in.)</td>
</tr>
<tr>
<td>Catapult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>3.38</td>
<td>50.13</td>
</tr>
<tr>
<td>M4</td>
<td>2.63</td>
<td>40.62</td>
</tr>
<tr>
<td>M5</td>
<td>2.58</td>
<td>39</td>
</tr>
<tr>
<td>Remover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>2.19</td>
<td>30</td>
</tr>
<tr>
<td>T14</td>
<td>3.0</td>
<td>14.71</td>
</tr>
<tr>
<td>T15</td>
<td>3.0</td>
<td>14.71</td>
</tr>
<tr>
<td>Thruster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>1.44</td>
<td>13.68</td>
</tr>
<tr>
<td>M3</td>
<td>1.44</td>
<td>9.15</td>
</tr>
</tbody>
</table>

** Not applicable
Table I. Physical Characteristics and Performance Data for Standard Cartridge Actuated Devices (Continued)

<table>
<thead>
<tr>
<th>Device and Model</th>
<th>Diameter (in.)</th>
<th>Length (in.)</th>
<th>Weight (lb)</th>
<th>Stroke (in.)</th>
<th>Weight (lb)</th>
<th>Velocity (ft/sec)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>1.75</td>
<td>12.89</td>
<td>4.02</td>
<td>3.6</td>
<td>600</td>
<td>NA</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td>NA</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td>NA</td>
<td>0.146</td>
</tr>
<tr>
<td>M6</td>
<td>1.07</td>
<td>11.79</td>
<td>1.0</td>
<td>1.5</td>
<td>50*</td>
<td>0.8</td>
<td>0.025</td>
</tr>
</tbody>
</table>

* Plus one shear pin which sheers at 400 lb.

** Not Applicable.

The mechanical energy delivered by a standard catapult or remover also was assumed to be equivalent to the kinetic energy given to the load plus the potential energy the load acquired from being projected vertically. (Catapult and remover performance data are obtained from vertical firings.)

With the above assumptions, the following formula could be used to calculate the vertical ejection velocity for a particular decoy weight:

\[v = \sqrt{\frac{2Ex}{g}} \left[\frac{M_0 + \frac{M_0}{2} - \frac{M_0}{E}}{M_0} \right] \] (1)

where: \(E = \frac{1}{2} \frac{M_0}{E} \frac{v^2}{g} \)

For example, the T14 remover, with a 20-inch stroke, ejects a 300-pound load at 25 feet/second; therefore, it supplies 3150 foot-pounds of kinetic energy. The estimated upward vertical velocity imparted to a 60-lb decoy is:

\[v = \sqrt{\frac{2(32.2) \left[3150 + \left(300 - 60 \right) \cdot 19/12 \right]}{50}} \]

\[= 61.6 \text{ ft/sec} \]

Similar calculations were made for the other catapults and removers listed in Table I. The data thus obtained are plotted as propelled weight vs velocity in Figure 1.
Figure 1. Performance of CAD Launchers, Estimated From Standard Data
Thrusters

Thrust-travel curves of thrusters for various loads are shown in the Cartridge Actuated Devices Engineering Manual, Frankford Arsenal. These curves were integrated to obtain the mechanical energy in foot-pounds as a function of the design load. Figure 2 shows the resulting energy-vs-load curves for the M2 and M5 thrusters. The curves then were extrapolated (dotted lines in Figure 2) to the weight range under consideration; i.e., 5 to 100 pounds. This procedure gave the total energy available for propelling the decoy weight.

To calculate the vertical ejection velocity for a particular decoy weight, the following formula was used:

\[V = \sqrt{2g (\text{Total Energy} - W_t \frac{X_L}{12})} \]

(2)

where:

- Total Energy is read from Figure 2.
- \(W_t \) - Weight of decoy to be ejected
- \(X_L \) = Stroke (in.)
- \(g \) = Acceleration due to gravity

For example, the M2 thruster, with a stroke of 5.72 inches, supplies a total energy of approximately 620 foot-pounds for a 60-pound decoy. The estimated upward vertical velocity given to the decoy is:

\[V = \sqrt{2(32.2) \left[620 - 60 \left(\frac{5.72}{12} \right) \right]} \]

\[= 25.2 \text{ ft/sec} \]

Similar calculations were made for the other thrusters listed in Table I. The data thus obtained are plotted as projectile weight vs velocity in Figure 1.

REACTIONLESS LAUNCHERS

General Design Studies

Launchers employing standard CAD are limited to the range of weights and velocities shown in Figure 1, although an increase in performance can be obtained by modifying the propellant charge. Reactionless launchers
Figure 2: Mechanical Energy as a Function of Load for M2 and M5 Thrusters
are capable of a much greater range of performance than standard CAD, and it is more likely that the two decoys will be ejected simultaneously.

Like a Davis Gun, a reactionless launcher is essentially a tube containing a centrally placed charge of propellant for simultaneous ejection of masses from both ends. The net reaction is zero, if the vector sum of the momenta of the ejected masses (the decoys) is zero. A reactionless launcher is shown in Figure 3.

Two types of design were considered in this study: full-caliber, and spigot. A full-caliber design is one in which the bore diameter of the launcher tube is the same as the largest diameter of the decoy package. A spigot design is one in which the bore diameter is smaller than the largest diameter of the decoy package. Both types are shown in Figure 4.

Design and Ballistic Parameters

Tentative design parameters for the launcher-decoy package system were established for the ballistic analysis. The dimensions selected were considered to be within a range reasonably adaptable to those missiles for which decoy installations are now being considered.

Dimensions of a maximum diameter of 12 inches and maximum length of 12 inches were selected for the decoy package when used with a spigot design (Figure 5). For a projectile to be launched by a full-caliber design, a maximum diameter of 6 inches and a maximum length of 20 inches were chosen (Figure 5). The length of the overall launcher-decoy system was established at 55 inches. This permitted a launcher tube length of 31 inches for a spigot design, and 55 inches for a full-caliber design. The maximum bore diameters were established at 6 inches and 6 inches, respectively.

On the basis of prior experience, the following values were selected for the ballistic parameters:

\[
\begin{align*}
\text{Piezometric efficiency} & \quad (\mu) \quad - \quad 0.4 \\
\text{Expansion ratio} & \quad (E) \quad - \quad 4.0 \\
\text{Ballistic efficiency} & \quad (n) \quad - \quad 0.3 \\
\text{Bore pressure} & \quad (P) \quad - \quad 2000 \text{ to } 10,000 \text{ psi}
\end{align*}
\]

The piezometric efficiency is a measure of the flatness of the pressure-stroke curve -- the ratio of the mean pressure to the peak breech pressure during the acceleration of the projectile. For a closed breech gun, the piezometric efficiency is about 0.5. However, a lower value is indicative of better velocity uniformity*; therefore, a value of 0.4 was chosen.

*pp. 142-143, Corner, Theory of the Interior Ballistics of Guns.
REACTIONLESS LAUNCHERS

Figure 3. Reactionless Launcher

\[M_1 V_1 = M_2 V_2 \]
\[\text{NET REACTION} = 0 \]

Figure 4. Full-Caliber and Spigot Designs
Figure 5. Dimensions for Full-Caliber and Spigot Designs
An expansion ratio of 4.0 was selected as characteristic of guns having piezometric efficiency of 0.4. (Figure 6 shows what is meant by expansion ratio.) A ballistic efficiency of 0.3 is typical for an expansion ratio of 4.0.

The chamber pressure range depends upon the type of ballistic system to be used. Ballistic systems may be characterized by their optimum bore pressure ranges as follows:

- **Direct system**: 2000 to 10,000 psi
- **High-low system**: 500 to 2000 psi
- **Compressed gas system**: 100 to 500 psi
- **Mechanical system**: less than 100 psi (equivalent)

A direct system is one in which the projectile acquires its velocity as a direct result of pressure from the burning propellant (see Figure 7). For this kind of system, bore pressure limits of 2000 psi...
to 10,000 psi gives better assurance of uniform operation and good propellant burning at cold temperatures. Furthermore, maintaining the high chamber pressure below 10,000 psi keeps sealing and erosion problems within bounds.

In a high-low ballistic system, there is a vent (or vents) between the chamber in which the propellant is burned and the bore of the gun, so that the pressure in the combustion chamber is higher than the pressure in the bore. This gives better ignition and greater regularity of burning in a low-muzzle-energy gun. Figure 7 shows a high-low system. A high-to-low pressure ratio of four-to-one as a minimum and five-to-one as a maximum was considered reasonable, based on preliminary high-low system studies of other weapon systems.***

A minimum of 500 psi was selected for the low-pressure chamber, corresponding to 2000 psi in the high-pressure chamber.

*** See for example, A Theoretical Interior Ballistic Study of Recoilless High-Low-Pressure Guns, Frankford Arsenal Report R-1513.
A compressed gas system could also be used with bottled gases such as CO₂, N₂, or compressed air. A mechanical system would use springs to propel the decoys.

Assuming that the launcher tube will be parallel to the earth’s surface, then only the kinetic energy need be considered. The defining equation is:

\[KE = \frac{\mu P_1 A X_L}{12} \]

(3)

The pressure is a function of the bore diameter:

\[P_1 = \frac{48 KE}{\mu \pi D^2 X_L} \]

(4)

where: \(D \) = Bore diameter

Full-Caliber Designs

The aforementioned assumptions, definitions, and equations were used to calculate \(P_1 \) for full-caliber launchers of 4-, 6-, and 8-inch bore diameters. The data are tabulated as a function of the decoy weight and its velocity in Table II. (Tables II, III, IV, and V in Appendix II list peak pressure vs velocity for the various reactionless launcher configurations.) The peak pressures for each of three types of ballistic systems are shown in the table.

Table II indicates that a launcher with a 4-inch bore diameter, an expansion ratio of 4, and a direct ballistic system would eject 100-pound decoys at 110 to 200 fps. A high-low system would eject these decoys at 60 to 100 fps, and a compressed gas system would eject them at velocities of 30 to 50 fps.

Since it is relatively easy to decrease the expansion ratio by positioning the decoy farther out in the launcher tube, the expansion ratio was lowered to 2, and the effect on the spread of the weight-velocity range was determined. Table III shows how lowering the expansion ratio to 2 would decrease the weight-velocity range.

Figure 8 shows the kinetic energy as a function of bore area for 55-inch full-caliber launchers.
LAUNCHER LENGTH: 55 INCHES
EXPANSION RATIO 4

DIA METER (IN.)

36.231.50843/ORD.60

BORE AREA (IN²)

Figure 8. Kinetic Energy as a Function of Bore Area for a Full-Caliber Design
Spigot Designs

The assumptions discussed previously also were used to determine pressures for a spigot launcher design. A closed spigot* with a total stroke of 11.5 inches was assumed. The pressures were calculated for diameters of 0.5, 1.00, 2.25, 4, and 6 inches, and tabulated in Table IV. This table is summarized in Figure 9.

The propellant charge necessary to eject two decoys at a desired velocity was calculated using the following equation:

\[C = \frac{2 \text{ KE}}{\eta \left(\frac{F}{y} - 1 \right)} \]

where \(F/y - 1 \) is the propellant potential (assumed to be \(1.46 \times 10^6 \) ft-lb/lb). The charge equation is derived from the definition of ballistic efficiency:

\[\eta = \frac{\text{Total KE}}{(\text{Charge})(\text{Potential})} = \frac{2 \text{ KE}}{C \left(\frac{F}{y} - 1 \right)} \]

Since there are two projectiles, the total kinetic energy is twice the kinetic energy of one projectile.

Specific Design Study

Assumptions

Upon completing the general ballistic analysis of 55-inch launcher systems, an analysis was made of a launcher with the shorter tube length of 31.5 inches. This launcher was to eject 25-pound decoys at 250 fps.

Essentially, the same assumptions relating various ballistic and design parameters and ballistic equations used earlier were also used for this analysis. They are:

1. The web size is small enough so that the charge is completely burned before the decoy moves appreciably.

2. The ballistic cycle time is so short that the loss in energy due to heat transfer is negligible. Friction also is neglected.

*A spigot is that part of the projectile which fits in the launcher tube. If the end of the spigot is closed, the design using this spigot is referred to as a closed spigot design. Conversely, if the end is open, the design is referred to as an open spigot design.
Figure 9. Kinetic Energy as a Function of Bore Area for a Spigot Design
(3) During the ballistic cycle, the propellant gas behaves like an ideal gas undergoing an isentropic expansion.

(4) Specific heats are constant during the ballistic cycle. Covolume effects are negligible.

(5) There is no pressure gradient or temperature gradient behind the base of the decoy, and energy appearing as kinetic energy of the propellant gases is negligible.

Pienometric Efficiency

An expression for pieometric efficiency as a function of the expansion ratio can be obtained as follows. Consider that the propellant gas is an ideal gas which expands adiabatically.

Then:

$$P_1 V_1 \gamma = P_f V_f \gamma$$ \hspace{1cm} (6)

The work done by such an ideal gas with constant specific heats is:

$$W = \frac{P_f V_f - P_1 V_1}{12 (1 - \gamma)}$$ \hspace{1cm} (7)

which can be rewritten as:

$$W = \left[\frac{P_f V_f}{P_1 V_1} - 1 \right] \frac{P_1 V_1}{12 (1 - \gamma)}$$ \hspace{1cm} (7a)

By definition,

$$E = \frac{V_f}{V_1}$$

Therefore,

$$\left(\frac{V_1}{V_f} \right)^\gamma = E^{-\gamma}$$

and from equation (6):

$$\frac{P_f}{P_1} = \left(\frac{V_1}{V_f} \right)^\gamma = E^{-\gamma}$$

Substituting this equation in equation (7a) gives:

$$W = \frac{(E^{-\gamma} - 1) P_1 V_1}{12 (1 - \gamma)}$$ \hspace{1cm} (8)
Piezometric efficiency is, by definition, the ratio of the mean accelerating pressure, \(\bar{P} \), to the peak pressure (which is assumed to be the initial pressure, \(P_i \)):

\[
\mu = \frac{\bar{P}}{P_i}
\]

(9)

and mean pressure, by definition, is:

\[
\bar{p} = \frac{\int P \, d\,V}{\int V}
\]

where \(P \) is the operating pressure. So,

\[
\mu = \frac{\int P \, d\,V}{P_i \int d\,V}
\]

Now, \(\int P \, d\,V \) is the work done, and \(P_i \int d\,V \) is the same as \(P_i \, (V_f - V_i) \); therefore,

\[
\int P \, d\,V = \frac{12 \, W}{P_i (V_f - V_i)}
\]

But, from equation (6),

\[
W = \frac{(E - \gamma - 1) \, P_i \, V_i}{12 \, (1 - \gamma)}
\]

and substituting for \(W \),

\[
\mu = \frac{(E - \gamma - 1) \, V_i}{(1 - \gamma) \, (V_f - V_i)}
\]

so that:

\[
\frac{V_i}{V_f - V_i} = \frac{1}{\frac{V_f}{V_i} - 1} = \frac{1}{E - 1}
\]

Substituting in equation (10) gives:

\[
\mu = \frac{(E - \gamma - 1)}{(1 - \gamma) \, (E - 1)}
\]

Changing the signs,

\[
\mu = \frac{1 - \frac{E - \gamma}{(\gamma - 1) \, (E - 1)}}{\frac{1}{(\gamma - 1) \, (E - 1)}} = 1 - \frac{1}{E(\gamma - 1)}
\]

(10a)
Equation (10a) was used to plot the piezometric efficiency vs expansion ratio for an assumed ratio of specific heats of 1.25, and the curve is shown in Figure 10. This graph shows that an expansion ratio of 4.0 is associated with a piezometric efficiency of 0.4. It is also apparent that reasonable values of piezometric efficiency are bounded by 0.3 and 0.65 for expansion ratios of 5.5 and 2.0, respectively.

Propellant Charge

An expression for the required propellant charge weight* as a function of expansion ratio can be derived as follows. If it is assumed that the entire energy developed by the burning propellant is transferred to the projectile in the form of kinetic energy, equation (3) for kinetic energy is valid:

\[KE = \frac{\mu A P_i X_L}{12} \]

Since the system is a closed system during the burning period, the equation of state at the end of this time becomes:

\[P_i V_i = 12 C F \]

where: \(V_i = 2 A X_i \)

Substituting for \(V_i \) in equation (11) and solving for \(P_i \) gives:

\[P_i = \frac{6 C F}{A X_i} \]

Now, substituting for \(P_i \) in equation (3):

\[KE = \frac{\mu A X_L C F}{2 A X_i} \]

and solving this for the charge weight:

\[C = \frac{2 KE X_i}{\mu F X_L} \]

But, the expansion ratio, by definition, is the ratio of the final volume, \(V_f \), to the initial volume, \(V_i \), and this ratio is the same as

*It must be understood that the charge weight is actually mass and is customarily expressed in grms.
Figure 10. Piezometric Efficiency as a Function of Expansion Ratio
the ratio of the distances along the cylinder (Figure 6).

\[E = \frac{V_r}{V_i} = \frac{X_L + X_i}{X_i} \]

So,

\[E = \frac{X_L}{X_i} + 1 \]

or

\[\frac{X_i}{X_L} = \frac{1}{E - 1} \]

Substituting for \(X_i/X_L \) in equation (14), the charge weight as a function of the expansion ratio becomes:

\[C = \frac{2 KE}{\mu F (E - 1)} \] (14a)

This is changed to its final form by substituting equation (10a) for piezometric efficiency.

\[C = \frac{2 KE (J - 1)}{F} \left[1 - \left(\frac{1}{E^2 - 1} \right) \right] \] (15)

Propellant charge weight vs expansion ratio is shown in Figure 11 for certain parameters whose values are given on the graph. From this graph, it is apparent that lower expansion ratios require increasingly larger charges, which multiplies ignition problems.

Ballistic Efficiency

An expression for ballistic efficiency as a function of the expansion ratio can be derived as follows.

The definition of ballistic efficiency is:

\[\eta = \frac{\text{total Kinetic Energy}}{\text{propellant energy}} \]

\[\eta = \frac{2 KE}{C \left(\frac{F}{J - 1} \right)} \] (16)

Substituting the expression for propellant charge, equation (15), an expression for ballistic efficiency as a function of the expansion ratio is obtained:
Figure 11. Charge Weight as a Function of Expansion Ratio
\[\eta = 1 - \frac{1}{E \eta - 1} \]

(17)

A curve for \(\eta = 1.25 \) is shown in Figure 12. From this graph, it is evident that ballistic efficiency falls off sharply as the expansion ratio is decreased.

Propellant Charge and Velocity

An expression for propellant charge weight in grams per pound of decoy weight as a function of velocity can be derived as follows:

Using equation (16), and substituting the expression for kinetic energy,

\[KE = \frac{1}{2} \frac{W_t}{g} \cdot v^2 \]

(13)

an expression for propellant charge weight per pound of decoy weight is obtained as a function of velocity:

\[\frac{C}{W_t} = \frac{h \eta g \cdot v^2}{\eta g (\frac{P}{\eta - 1})} \]

(19)

with \(C \) expressed in grams.

Figure 13 shows a curve with which the propellant charge weight required to eject a pair of decoys of any weight at any desired velocity can be estimated. All that is necessary is to locate the desired velocity on the curve, and to multiply the ordinate value for this point by the weight of one decoy.

For example, the 100-fps line intersects the curve at 0.3 grain of charge per pound of decoy weight. Multiplying this by the weight of one decoy: 0.3 \(\times \) 5 - 1.5 grams. Therefore, 1.5 grams of charge should be sufficient to eject two 5-pound decoys, simultaneously, each at 100 fps.

Closed Spigot Design

Figure 14 shows open and closed spigots with equivalent expansion ratios. The closed spigot fills only part of the launcher tube. Consequently, the combustion chamber volume is the internal volume of the launcher tube beyond the end of the spigot, and the expansion ratio is equivalent to the ratio of the tube length to the combustion chamber length. The open spigot fills the entire launcher tube, but has an open end and a thick wall. The combustion chamber volume is determined by the thickness of the spigot's wall and the location of its base plate. The expansion ratio is equivalent to the
Figure 12. Ballistic Efficiency as a Function of Expansion Ratio

The peak pressure vs expansion ratio for a closed spigot design can be derived as follows. The length of the tube is (see Figure 5):

\[
X_L = X_T + X_I
\]

Therefore,

\[
X_L = \frac{X_T (E-1)}{E}
\]
Figure 13. Ratio of Charge Weight per Pound of Projectile Weight as a Function of Velocity
Substituting for X_L in equation (3),

$$KE = \frac{\mu P_1 A X_T (E - 1)}{12E}$$ \hspace{1cm} (3a)$$

But:

$$A = \frac{\pi \tau D^2}{4}$$

Substituting for A,

$$KE = \frac{\mu P_1 \pi \tau D^2 X_T (E - 1)}{48E}$$ \hspace{1cm} (3b)$$
From equation (10a),

$$\mu = \frac{1 - \frac{1}{E^2}}{(E - 1)(\sigma - 1)}$$

Substituting for \(\mu\),

$$KE = \frac{1 - \frac{1}{E^2}}{4\pi \frac{D^2}{2} X_T} \mu$$

(3c)

Solving for \(P_1\),

$$P_1 = \frac{4\pi (KE)(E - 1)}{1 - \left(\frac{1}{E^2}\right)} \frac{\tau D^2 X_T}{L^2}$$

(20)

Open Spigot Design

In an open spigot design, the spigot occupies the entire length of the tube. Consequently, the tube length is the same as the stroke length:

$$X_T = X_L$$

So equation (15) becomes:

$$KE = \mu P_1 \frac{A X_T}{L^2}$$

Substituting for \(A\),

$$KE = \frac{\mu P_1 \tau D^2 X_T}{4\pi \frac{D^2}{2} X_T}$$

From equation (10a),

$$\mu = \frac{1 - \frac{1}{E^2}}{(E - 1)(\sigma - 1)}$$

Substituting for \(\mu\),

$$KE = \frac{\left(1 - \frac{1}{E^2}\right) P_1 \tau D^2 X_T}{4\pi \frac{D^2}{2} X_T} \frac{1}{E^2 - 1}$$

Solving for \(P_1\),

$$P_1 = \frac{4\pi (KE)(E - 1)(\sigma - 1)}{\tau D^2 X_T \left(1 - \frac{1}{E^2}\right)}$$

(21)
Equations (20) and (21) are plotted in Figures 15 and 16. Figure 15 shows that with a closed spigot design the peak pressure is a minimum for an expansion ratio of 2.5. Figure 16 shows that with an open spigot design the peak pressure increases with the expansion ratio at an almost uniform rate. The peak pressure obtained is always less for an open spigot with the same expansion ratio. For example, a 4-inch diameter open spigot with an expansion ratio of 4.0 gives 4300 psi peak pressure to eject a 25-pound projectile at 250 feet/second. Under the same conditions, a closed spigot gives 6400 psi peak pressure. A choice of an open or closed spigot design would depend on the requirements for a specific system.

Launcher Weight

Since the launcher weight may be a critical factor, it was calculated for both open and closed spigots as a function of the expansion ratio.

The weight of a hollow launcher tube can be expressed as:

\[W_x = 2 \rho \pi D t x_p \]

(22)

where \(D \) is half the sum of the external and internal diameters, and \(t \) is half the difference. The "2" occurs because there are two tubes.

The tensile stress on a thin-walled cylinder as a result of internal gas pressure is commonly expressed as:

\[\sigma = \frac{P_i D}{2t} \]

(23)

This can be rewritten as:

\[t = \frac{P_i D}{2 \sigma} \]

(23a)

Substituting this expression in equation (22) gives:

\[W_t = \frac{\rho \pi D^2 P_i x_p}{\sigma} \]

(24)

Substituting equation (20) in equation (24) gives an expression for the weight of a closed spigot system in terms of \(E \):

\[W_t = \frac{4 \rho (ME) E (I - 1)}{\sigma \left(1 - \frac{1}{\rho E - 1}\right)} \]

(25)
Figure 15. Peak Pressure as a Function of Expansion Ratio for a Closed Spigot
Figure 16. Peak Pressure as a Function of Expansion Ratio for an Open Spigot
Substituting equation (21) in equation (24), an expression for the weight of an open spigot system is obtained in terms of E:

$$w_t = \frac{1}{\kappa} \rho \left(\frac{E}{E-1} \right) \sigma \left(\frac{1}{\sqrt{E-1}} \right)$$

(26)

Figures 17 and 18 show curves of launcher weight vs expansion ratio for launchers of steel, aluminum, or titanium. These curves are similar to the curves for peak pressure as a function of expansion ratio. Figure 17 shows that for a closed spigot design the launcher weight is a minimum for an expansion ratio of 2.5. Figure 18 shows that for an open spigot design the launcher weight increases with the expansion ratio at an almost uniform rate. The launcher weight required is always less for an open spigot with the same expansion ratio.

Acceleration

An expression for acceleration as a function of the expansion ratio can be obtained as follows. It is common engineering practice to express maximum acceleration for a projectile hurled from a gun as:

$$a = \frac{P_i A_i}{w_t}$$

(27)

Substituting for P_i from equation (20),

$$a = \frac{12E (KE) (\sigma - 1) A_t}{w_t X_t \left(1 - \frac{1}{\sqrt{E-1}} \right) \pi D^2}$$

But,

$$4A = \pi D^2$$

So, acceleration for a closed spigot system is:

$$a = \frac{12E (KE) (\sigma - 1) A_t}{w_t X_t \left(1 - \frac{1}{\sqrt{E-1}} \right)}$$

(28)

To find an expression for acceleration for an open spigot system, substitute for P_i in equation (27) from equation (21):

$$a = \frac{12 KE (E - 1) (\sigma - 1) A_t}{w_t X_t \left(1 - \frac{1}{\sqrt{E-1}} \right)}$$

(29)
Figure 17. Launcher Weight as a Function of Expansion Ratio for a Closed Spigot
Figure 18. Launcher Weight as a Function of Expansion Ratio for an Open Spigot
DECOY LAUNCHER BALLISTIC CALCULATIONS

Figure 19. Peak Acceleration as a Function of Expansion Ratio

The resulting curves are plotted in Figure 19. Again, the closed spigot has a minimum peak acceleration at \(E \approx 2.5 \), since the acceleration is directly related to the peak pressures. The open spigot, of course, shows substantially lower acceleration, since it operates at lower pressures and has a longer stroke.
CONCLUSIONS

It is concluded that the use of standard CAD as decoy launchers is entirely feasible, with each particular unit covering a certain weight-velocity range.

The design of a reactionless launcher to cover any specific weight-velocity combination is possible for the ranges tabulated. This launcher could be either spigot or full-caliber, depending on the weight-velocity range desired. It was concluded that the use of a high-low ballistic spigot system is not desirable where a smaller caliber direct system can be used. If launcher weight or the G loading on the decoys is critical and a spigot design is used, the open spigot will give reduced values, in which case, the use of a high-low ballistic system may be desirable. In fact, the pressures may become so low that the use of compressed gas or a mechanical system is recommended. Equal or greater launcher weight savings can be obtained by choosing aluminum or titanium over steel.

RECOMMENDATIONS

It is recommended that the analytical methods developed in this study be made available to those groups within government and industry who are designing decoy launchers or other package-ejecting devices for use on missiles.
REFERENCES

APPENDIX I

List of Symbols

A — Cross-sectional area of launcher bore (in.²)
C — Charge weight (grams)
D — Diameter of bore (in.)
E — Expansion ratio (dimensionless)
F — Potential of propellant (ft-lb/lb)
G — Acceleration in g units (dimensionless)
G — Acceleration due to gravity (32.2 ft/sec²)
P_i — Initial pressure (assumed to be peak pressure) (lb/in.²)
P_f — Final pressure (lb/in.²)
T — Thickness of launcher tube wall (in.)
V_i — Initial volume of launcher (in.³)
V_f — Final volume of launcher (in.³)
v — Velocity of projectile (ft/sec)
W_l — Propelled weight (lb)
W_k — Weight of decoy package (lb)
w — Work done in adiabatic expansion (ft-lb)
X_i — Initial length of launcher chamber; length of combustion chamber (in.)
X_L — Length of stroke (in.)
X_T — Length of launcher tube (in.)
η — Ballistic efficiency (dimensionless)
γ — Ratio of specific heats (dimensionless)
μ — Piezometric efficiency (dimensionless)
ρ — Density of launcher tube (lb/in.³)
σ — Yield strength (lb/in.²)
APPENDIX II

Tables of Peak Pressure vs Velocity for Reactionless Launchers

Tables II, III, IV, and V list peak pressure data for reactionless launchers at various velocities. The data is tabulated for the various full-caliber and spigot configurations, with data on each type obtained for several different bore diameters.
Table III. Peak Pressures for Full-Caliber, Direct System, Reactionless Launchers
(Length - 55 in.; Stroke - 13.75 in.; Expansion Ratio - 2)

<table>
<thead>
<tr>
<th>Proj Wt (lb)</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>200</th>
<th>240</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bore Dia - 4 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bore Dia - 6 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bore Dia - 8 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IV. Peak Pressures for Closed Sling, Direct System, Reactionless Launchers
(Length = 21 in.; Stroke = 11.5 in.; Expansion Ratio = 4)

<table>
<thead>
<tr>
<th>Proj Wt (lb)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore Dia - 3.3 in.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Bore Dia - 2.35 in.																		
5																		
10																		
20																		
30																		
40																		
50																		
60																		
70																		
80																		
90																		
100																		
Table IV. Peak Pressures for Closed Spigot, Direct System, Reactionless Launchers

(Length - 31 in.; Stroke - 11.5 in.; Expansion Ratio - 3) (Continued)

| Proj Wt (lb) | Velocity (ft/sec) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 200 | 270 | 300 | 400 |
|--------------|-----------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5 | | 2900 | 2600 | 2300 | 2000 | 1700 | 1400 | 1100 | 800 | 500 | 2000 | 3300 | 4000 | 4700 | 5400 | 6100 | 6800 | 7500 | 8200 | 8900 |
| 10 | | 2500 | 2200 | 1900 | 1600 | 1300 | 1000 | 700 | 400 | 100 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 20 | | 2000 | 1700 | 1400 | 1100 | 800 | 500 | 200 | 100 | 50 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 30 | | 1500 | 1200 | 900 | 600 | 300 | 100 | 50 | 10 | 50 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 40 | | 1000 | 700 | 400 | 100 | 50 | 20 | 10 | 5 | 10 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 50 | | 500 | 200 | 100 | 50 | 20 | 10 | 5 | 1 | 5 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 60 | | 100 | 50 | 20 | 10 | 5 | 1 | 5 | 1 | 5 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 70 | | 100 | 50 | 20 | 10 | 5 | 1 | 5 | 1 | 5 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 80 | | 100 | 50 | 20 | 10 | 5 | 1 | 5 | 1 | 5 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 90 | | 100 | 50 | 20 | 10 | 5 | 1 | 5 | 1 | 5 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
| 100 | | 100 | 50 | 20 | 10 | 5 | 1 | 5 | 1 | 5 | 2200 | 3500 | 4200 | 4900 | 5600 | 6300 | 7000 | 7700 | 8400 | 9100 |
Table V. Peak Pressure for Closed Spigot, High-Lox System Reactionless Launchers

(Length = 31 in.; Stroke = 11.5 in.; Expansion Ratio = 4)

<table>
<thead>
<tr>
<th>Proj. Wt. (lb)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>730</td>
<td>1000</td>
<td></td>
<td>1300</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>510</td>
<td>730</td>
<td></td>
<td>1300</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>650</td>
<td>1000</td>
<td>820</td>
<td>1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>810</td>
<td></td>
<td></td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>810</td>
<td></td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>810</td>
<td></td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>810</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>810</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>810</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>810</td>
<td>1300</td>
<td></td>
</tr>
</tbody>
</table>
INITIAL DISTRIBUTION

U. S. ARMY

35 - Commanding Officer
U.S. Army Ordinance
Frankford Arsenal

1 - Chief of Ordnance
Department
Washington, D.C.
Attn: ORDTS, G.L. Thulin

1 - Commanding General
U.S. Army Strategic Missile Command
Research and Development Division
Redstone Arsenal, Ala.: Alabama
Attn: Chief, Strategic Plans Branch

1 - Commander
U.S. Army Baltic Missile Agency
Redstone Arsenal, Ala.: Alabama
Attn: OPDAB-4

1 - Commander
U.S. Army Field Artillery
Redstone Arsenal, Ala.: Alabama
Attn: Chief, Strategic Research

1 - Commanding General
U.S. Army Ordinance
Yuma Test Station
Yuma, Arizona
Attn: Capt. Ramsay

1 - President
CONARC Airborne Electronics Board
Fort Bragg, N.C.
Attn: Major S. Popolonski

U. S. AIR FORCE

3 - Commander
Wright Air Development Division
Wright-Patterson Air Force Base
Ohio
Attn: WADD-13, Capt. D.R. Barron

3 - Attn: WDPSS, Mr. C.K. Hodell

1 - Attn: WDPSP-1, Mr. A.E. Varble

1 - Attn: WDPSP-9, Capt. R.L. Hester, Jr.

1 - Attn: WHAD, Library

1 - Directorate of Flight & Missile Safety Research
Norton Air Force Base
San Bernardino, California
Attn: AFCFS-C, Col. K.S. Wilson

1 - Attn: ASCLF, Mr. Shannon

1 - Commander
2705th Ammunitions Wing
U.S. Air Force
Hill Air Force Base, Utah
Attn: OOTIT, Mr. R.A. Maschal

1 - Commander
Warner-Robbins Air Material Area
Robbins Air Force Base
Georgia
Attn: WRMQTC, Mr. M. Lewis
<table>
<thead>
<tr>
<th>U.S. NAVY</th>
<th>OTHER</th>
</tr>
</thead>
</table>
| 1 - Chief, Bureau of Ordnance Department Navy
 Washington 25, D.C.
 Attn: ReW3c | 10 - Armed Services Technical Information Agency
 Arlington Hall Station
 Arlington 12, Virginia
 Attn: TIFDR |
| 1 - Chief, Bureau of Aeronautics Department Navy
 Washington 25, D.C.
 Attn: Ae-52 | |
| 1 - Commanding Officer | |
| U.S. Naval Ordnance Test Station
 China Lake, California
 Attn: Mr. R. Rumpp | 1 - Lockheed Aircraft Corp.
 Missiles and Space Division
 Sunnyvale, California
 Attn: R. Spidell |
Standard cartridge actuated devices were surveyed to determine the feasibility of using them in decay launching systems. Design criteria were established, simplified ballistic analyses were made, and theoretical performance were calculated for several newness type launchers.

DISTRIBUTION LIMIT: NS
Some obtain copies from ADITA
Standard cartridge actuated devices were surveyed to determine the feasibility of using them in decal launching systems. Design criteria were established, simplified ballistic analyses were made, and theoretical performances were calculated for several reactionless type launchers.