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BSTRACT

The Weyl (conformal curvature) tensor of space-time is
interpreted geometrically in terms of the behaviour of
congruernces of null geodesics., The corresponding physical
interpretation provides, in principle, a means for the
measurement of physical components of the Weyl tensor with

light rays alone, without the use of clocks or rigid rods.




GEOMETRICAL AND PHYSICAL INTERPRETATION OF
THE WEYL CONFORMAL CURVATURE TENSOR

by

F,A.E, Pirani and A, Schild

1. Introduction: Conformel-invariant methods

This paper outlines, without proofs, a geometrical and
physical interpretation of the Weyl tensor in the space-time of
general relativity. Proofs and further details will be published
elsewhere, The interpretation embodies a method whereby the
physical components of the Weyl tensor could, in principle, be
measured by observations of light-rays alone, without the use
of clocks or rigid rods, The posgsibility of such measurements
may be inferred from the fact that null geodesics, which
represent light rays, arc invariant under conformal transformations
of Riemannian space-time, while proper time along time-like lines
is not invariant (nor are time-like geodesics invariant). In
vacuum, the same measurcments will yield corresponding coriponents
of the Riemann curvature tensor, since the Riemann and Weyl
tensors coincide wherever Einstein's vacuum field equations hold.

In a previous paper (Pirani 1956), = physical interpretation
was given to the Riemann tensor, and a method of measuring its

comporients by observations of test particles was described. The
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whole discussion there was explicitly metrical, and required the
use of clocks (or rigid rods) as well as light rays. It was
understood that a particular Riemannian space-time was given in
advance, and the arguments depended on the measurement of proper
times.

in the present paper, on the other nand, the arguments are

entireiy ccnformal-invariant; toth geometrical and physical

interpretations refer not to a particular Riemannian space-time,
but to a whole class of space-times which may be obtained from
one another by conformal transformations of the metric. Such a

class of Riemannian space-time is called a conformal space-time;

thus a conformal space-time C(4> is a (sufficiently) differentiable
manifold endowed at each of its points P with a real infinitesimal

null cone1

(1) gabdxadxb = 0.

Physically, the null cone is the history of a wave front of light
collapsing to and emitted from the event P. The quadratic form (1)
must have hyperbolic normal signature in order that the proper
distinctions vetween past and {uture may be preserved.

The null cone (1) determines the metric e20 8.1 in any of
the Riemannian space-times of the conformal clasz up to a gauge

Is)

20 . . . . C .
factor. e which is an arbvitrary function of nosition. A

1. Latin indices a,b,c,... range and sun over 1,2,3,4.
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particular Riemannian space-time way be selected by assigning the
gauge. It is often easier to carry out proofs of theorems in a
particular gauge, exhibiting their conformal-invariance afterwards,
than to devise a strictly conformal-invariant, proof.

It is evident that the ratio of the magnitudes of two vectors

or of two simple bivectors at the same point, and the angle between

two directions at the same point (especially, the orthogonality of

two directions at the same point) are well-defined in a conformal
space-time. It is in fact easy to show how these quantities may
be determined by experiments with light signals alone.

In § 2 we give confurmal-invariant definitions of null
geodesics and of preferred parameters on them. In 8§ 3 we give a
conformal-invariant definition of infinitesimal shear, and state
our main result, which connects the seocond parameter-derivative of
the shear with the conformal curvature tensor. The infinitesimal
shear was introduced by Sachs (1961 a,b) in his analysis of null
geodesic congruences, and many of the ideas employed here viere

developed originally, in metrical form, by him.

2. Null geodesics and preferred varameters

A null hypersurface is defined, conformal-invariantly, as

a hypersurface which is tangcnt at each of its peints to the
infinitesimal null cone at that point. Ecuivalently, a null hyper-
surface contains at sach of its points exactly one null direction.

A null geodesic is a null curve which lies entirely in a null
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hypersurface (this manifestly conformal-invariant definition
reduces to the usual cne as soon as a gauge is assigned).
Physically, a null geodesic is the world-line of a light ray, that
is, the history of a light pulse.

¥e show now how to define a conformal-invariant preferred
Vi

parameter u along any null geodesic of a given congruence. Let ©

. a . . L. .
be the sclected geodesic and Ax its infinitesimal tangent vector

/
)

and 1”,'2 being chosen so that the connecting

7

at any point P (Fig., 1). Let {1y 1, and be three neighbouring

nall geodesics, 1

{/11’ 62 are orthogonal to Axa, and

£ being chosen so that the connecting vector 0 x% from £ to

3

‘C 3 is not orthogonal to Axa. Then a parameter u may be defined

vectors 6lxa, o 2xa from P to

along £ by the condition

area of parallelogram spanned by L\xa/Au and O BXa
(2) - = constant alongﬁ.
area of parallelogram spanned by 61): and O oX :
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It can be shown that this definition determines the parameter u
up to a linear transformation with coefficients constant along €,

irrespective of the choice of the neighbouring geodesics 451, A

£

09
3 and of the choice of connecting vectors from P.

If the gauge is chosen so that the denominator of (2) is
constant along £ (which corresponds to a zero magnification rate
along £ in the terms of Sachs's analysis), then the parameter u
may be identified with the usual preferred parameter along a null
geodesic in the corresponding Riemannian space (cf Synge and

-

Schild 1949, p.46).

3 Infinitesimal shear and its propagation

We now define in a conformal-invariant way the infinitesimal

shear for a congrueiice of null geodesics (cf Sachs 196la, p. ).
Let SP and SQ e infihitesimal 2~elements orthogonal +t0 a null

geodesic £ at neighbouring points P and Q of € , and let C be an
infinitesimal circle wit? centﬁ? P, lying in SP (Fig, 2). Those

null geodesics c¢f the congruence which meet S, in the circle C

r

will mect S, in an ellipse E. The infinitesimal shear of the
X

congruence from P to @, d€, is defined by the equation

) length of major axis of E

length of minor axic of
" *®

It may be shown that both deé and the major axis ¢ of the

=1

ellipse I are pletermined uniguely by the congruence of null geodesics
and the points P and §, and that d€ is independent of the choice
-*

of the orthogonal 2~elements S, and S..

P
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The physical interpretation of this construction has been
given, for the metrical case by Sachs (1961 a): Suppose that light
passes normally through a small flot transparent circular disc and
falls normally on a screen nearby. at a certzir instant (P), the
disc becomes momentarily opaoue, and throws a shadow on the screen
(3). Refraction of the light by the gravitztionnl field makes
the shadow elliptical. The null geodesics represent the light
rays; the circle C represents the periphery of the disc and the

ellipse & the periphery of the shadow. S=zchs has shown that the




shape, size and orientstion of the shadow depend only on the choice
of P and Q and not on the velocities of the disc or the screen.
It is evident Irom the above construction that d& is conformal-
invariant. It can be shown that the orientation of the shadow
also is conformal-invariants clearly, the size is not.

We can now state our main result, which relates the
propagation of the shear along a null geodcsic to the conformal
tensor. It is that

2 b ®

c d ¢ a dx” dx” _ b
(4) dul - bed du du ‘a
Here Ca is Weyl's conformal curvature tensor: in any Riemannian

bed

space of the conformal class,

a a a a 1 ~
O pea = Epoa * B[ a? o] * Be[a® c] T /3 Bp[a® o]

Rabcd is the Riemann curvature tensor, defined for example by the

commutation rule for covariant differentiation, V -V =
bscd bsde

a

N a . ..
R bcdva’ for any xectgr Va’Rbc = R boa is the Ricci tensor, and
be ax= . . b
R=g Rbc' Also e is tangent vector to the geodesic, and Pa

is the projection operator in the direction of the major axis e

b
of shear: Pa ea eb, Pabfa = 0 for every vector f:l orthogonal

a
to e .

Equation (4) determines a physical component of the tensor

a

n
© Since C~, . is dirreducible under transformations of the

bed*® bed

local orthogonal frame at any point (i.e. under Lorentz

transformations), all the components of Cabc may be determined

d
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by examining enough congruences of null geodesics, that is, by

carrying out appreopriate experiments with light rays.
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