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Abstract

A theory for the ducted propeller is developed which is
based on a linearized annular airfoil theory and a lifting-
line propeller theory. The fluid is assumed to be inviscid
and incompressible and the free-stream velocity to be axisym-
metric. As with propelier theory it is not possible to obtain
a solution in explicit form so a proceas of iteration is uged.

The flow field of the annular airfoil is represented by
a diatribution of ring vor 'ces and ring sources on a cylinder
and where necessary a trailing vortex aystem. This approach
allows the airfoil section to have an arbitrary shape although
the annular airfoil itself is assumed to be axisymmetric, The
ring source strength is shown to be a function of only the duct
thickness while the ring vortex strength is a function of camber,
thickness and the radial velocity induced on the cylinder by
the propeller and duct trailing vortex system. In the presence
of the propeller two counled singular integral equations are
derived for the vortex strength which are reduced to two coup-
led Predholm equations of the second kind, (If the propeller
is not present only one integral equation is obtained.)

The flow field of the { ropeller is represented bv a lift-
ing line and a helicoidal trailing vortex syvstem. This allows
the propeller to have a finite nwmbar 2of blades and an arbitrary
distribution of circulation. By this approach the propeller
problem essentially reduces to the proneller by itself with the




inclusion of velocity components from the duct and hub,
Conseruently, it redﬁceu essentially to the propeller problem
solved by Lerbs,

The hub is treated by slender body theory which allows
it to have an arbitrary axisymmetric shape. One consequence
of using this theory is that the hub induces no tangential

velocities.
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Notation

duct chord

axial distance between leading edge of duct
and propeller

axial distance between trailing edge of duct
and propeller

number of blades
thrust coefficient, equations (2.7-9) and (4.4-4)
power coefficient, equation (4.4-6)

mean line -dinate of the duct section measured
from the nvse-tail line

complete elliptic integral of the second kind

nondimensionalized circulation distribution of
the propeller, equation (4.3-11)

(a/2Rq) chord-diameter ratio of the duct
unit vectors

modified Bessel function »f the first kind
modified Bessel function of the second kind
modulus of the elliptic integrals
modified Struve function

propeller torque

ring source strength

hub source strength

duct radius

propeller radius

cylindrical coordinates

radius at which the vortex is shed from the
propeller blade
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half thirkness ordinate o7 the duct section
thrust

ship speed

axial component of indvced velocity

local axial velocity

radial component of induced velocity
tangential component of induced velocity
local wake fraction

rectangular coordinates

nondimensionalized cylindrical coordinates

radial coordinate nondimensionalized by the
propeller radius

nondimensionalized radius at which a vortex is
shed from the propeller blade

aﬁia& coordinate nondimensionalized by the duct
chor

axial coordinate nondimensionalized by the
propeller radius

z - a,
angle of attack of a duct section
ideal angle of attack of a duct section

relative angle between free-stream velocity and
duct

propeller advance angle

duct advance angle

propelier hydrodynamic pitch angle
ring vortex strength

circulation
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§ axial coordinate

: ideal efficiency, equation (4.4-7)

A advance coefficient, equation (4.6-2)
As advance coefficient, equation (4.4-3)
Va mass density of fluid

b stream function

o,

angular velocity

Subscripts

d duct

h hub

P propeller

q ring source

'4 ring vortex

%% trailing vortex system of the vortex cylinder

Note: Many functions are defined in th- text,
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THEORY OF THE DUCTED PROPELIER WITH A FINITE NUMBER OF BIADES

I. INTRODUCTION

The name "ducted propeller' means a propellier-annular air-
£0il combination acting as a propulsion unit., The annular air-
foil or duct can be used either to accelerate the flow at the
propeller (Kort nozzle)1 or to deaccelerate the flow. In the
first type of flow the ducted propeller is used where a pro-
peller alone would be heavily loaded. The duct accelerates
the flow at the propeller and thus the propeller operates at
a more favorable loading, in addition, the duct itself will
generally produce a positive thrust., In the case of the duct
which deaccelerates the flow, the annular airfoil is used to
increase the static pressure at the propeller and thus delay
cavitation on ship propellers or decrease compressibility
effects on airecraft propellers.

Most of the work on the ducted propeller of the '"Kort
nozzle" type has been done in Europe. Well known are the

experimental results of Van Manen 295145

for a systematic
series of "Kort nozzles." A series for low-pitched three-
bladed propellers in a duct has also been given by Ndkonechny6.
Most theoretical approaches have been restricted to representing
the duct by a distribution of ring vortices along a cylinder7

and tha annlossd =

........... sro + Y% a disiribution of sources over

the propeller disc.

1 - References found on page 146
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One of the first paners on the theory of the ducted pro-
peller is that of Horn® in which he uses the work of Dickmann’
for representing the nozzle and considers the nropelier as
free-running. This procedure did not lead to a design method.
In 1950 Horn and Amt:sburg9 developed a design piocedure based
on representing the Auct by a vortex distribution aad the pro-

peller by a sink distribution. Later (1955) Dickmann and

weissingerlo considered the ducted prcpeller as a propulsion

unit and in the optimum ¢ se represented the duct by ring
vortices with effect of the propeller taken into consideraticn
by momentum theory. In 1959 Gutsche11 developed correction
factors from the propeller in a long tube and then used simple
jet theory.

’he foregoing described results have in general been re-
stricted toc ducts which accelerate the flow at the propeller
although the theory developed is iu principle applicable to
the deaccelerating duct. Lerbs12 has applied the theory, i.e.
representing the duct by a vortex distribution and the propeller
by a sink distribution, specifically to deaccelerating flow in
the duct. Kuchemann and Weber!® have considered the ducted pro-
peller in general but only with simple momentum theory.

From a review of the literature it is apparent that the
problem of the ducted propeller with a finite numbar
and arbitrary distribution of circulat:ion has not been developed
previously* but that such a theorv is necessary for the adequate
*After the work in this report was completed, Reference [41]

was received which considers a lightly loaded propeller with a
finite number of blades in a duct of zero tl.ickness,




design of propellers operating in a duct, This paper presents

such a theory in which it is assumed that the nozzle flow
field can be represented by a linearized theory and the pro-
peller by the lifting line theory. As usual for potential flow
problems a number of assumptions &are made about the fluid as

well as about the flow field. For this problem these are:

1. The fluid is inviscid and incompressible and no separa-

tion occurs on the duct.

2. Body forces, such a gravity, may be neglected.

3. The free-stream flow 1s axisymmetric and steady with

respect to a coordinate system attached to the propeller. This
allows a radial variation in velocity and implies that the

coordinate system is rotating with the propeiler. It causes no

loss in generality to assume the duct is also rotating since

the duct by itself at zero incidence induces no tangential

velocity.

4, The annular airfoil is axisymmetric and of finite length.

5. The thickness and camber-distribution of the annular air-

folil section can be expanded in a Fourier series with resnect

to the axial coordinate. This assumntion offers no restriction

to streamline shapes.

6. The linearized flow around the annular airfoil can be

represented mathematically by a distribution of ring vortices
and ring sources along a cylinder of diameter Ry
7. The trailing vortex system from the duct has a constant

diameter Ry and extends from the duct to infinity,




cv———

8. The influence of all induced velocities on the shape of

the trailing vortex system from the duct is neglected. This

implies that the pitch angle of all the free vortex lines from

the duct is the zame and egual. to

tanf; = wi(Ra) - Wlimus)
e Rd '470&{

9. The propeller flow £ield can be represented by a lifting

line and trailing vortices, i.e, a horse-shoe vortex system,
The trailing vortex syst~m is directed along helical stream

lines trailing aft from the proneller blades. Each vortex is

of constant pitch and lies on a cylinder of constant diameter,

This implies that the contraction of the slip-stream is “.gnored.

Using these assumptions the linearized boundary conditious

on the duct are derived. The annular airfoil is first conaidered

by itself and its flow field represented by ring sources and

ring vortices. The strength of each is chosen so that the

boundary conditions are satisfied. With the strength of the

vortex and source distribution known, the entiie flow field

of the duct can be derived. The nropeller with a finite hub

is then added to the flow field and the interacrion effects

determined. The solution to the problem of the combination of

the vnropeller and duct reduces to a nrocess of iteration,



II., T.INEARIZED THEORY OF THE ANNULAR AIRFOIL

II1.1 Previous Theories

The theory of the annular airfoil has been discussed by
numcrous investigators but in most cases was not developed
sufficiently for ducts of arbitrary section shape. The first
theoretical discussion of the annular airfoil appears to be that
of Dickmannl® who represented the annular airfoil in uniform
axial flow by & distribut sn of ring vortices. This is equiva-
lent ir thin wing theory to representing an airfoil by a distri-
bution of vortices only.and, thus, the thickness of the foil is
neglected. In linearized two-dimensional wing theory neglecting
the thickness is justifizkla for obtaining the lift but not for
the pressure and velocity distribution. In annular airfoil
theory it would be exjected, because of the interference effects,
that the thickness plays a more important role than in linear-
ized wing theory.

The solution for the induced velocities from a single vor-
tex ring was given in the form of elliptic integrals by Lamb.la
By arranging ring vortices of varying strength along a cylinder
Dickmann represented the resulting integral of elliptic integrals
by a Fourier series. Tabulated coefficients for determining
the velocity distribution of a vortex ring and vartey celindar
are found in Kuchemann and Weber13 and z more complete theo-
retical development of singularities useful for this problem is

found in a report by Meyerhoff and Finkelsteinls.
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Stowart,16 indenendently cf Dickmann, derived the induced
velocities of an annular airfoil, &again represented by a vortex
cylinder, using the vector potential. He was able to represent
the velocity components bv integrals of a product of moadified
Bessel functions,

Some work has also been done on flow about thick annular
airfoils and foilz at an angle of attack. Snecifically

17

Kuchemann considered anr ‘lar airfoiles of finite thiclkness

without circulation by a distribution of source and sink rings

and later Kuchemann and W'eber18

considered annular foils of
finite thickness with circulation but infinite length, 1In
either case the theory was not adapted to foils of arbitrary
shape bhut the shape and velocitv distribution calculated for
an assumed distribution of sources and sinks,

Weissin;(er19 has discussed the flow field about annular
airfoils with zero thickness onerating at an angle of incidence.
To represent the £low mathematically he uses a distribution of
ring vortices along the duct whose strength, ¥ (¢,z), at a
point on the ring is dependent on the angular position as well
as the axial. Since in this case there are free vortices in
addition to the bound vortices, he uses, in addition, a system
of vortices of strength éj%é trailing from the cylinder. An
integral equation for thé vortex distribution results from this
analysis which is solved approximately. Weissingerzo later

included the effect of finite thickness by using a distribution




of ring sources., An apprvach which follows Weissinger's
work very closelv is that of Bagley, Kirby and Marcerzl.
In their work use is made of standard ring vortex distri-
butions which were tabulated bv Kuchemann aud Weber13. Since
this method is restricted to satisfying the boundary condition
at an arbitrarv number of noints along the chord, (maximum

of five) it gives only an apnroximate solution. Their consid-
eration of the annular airfoil at an angle of attack is similar
to Weissinger's,

Recently Pivko22 considered annular airfoils with thick
symmetrical sections but his work is only applicable to nozzle
length-diameter ratios of much less than one. This restriction
comes from the fact that he assumed a svmmetrical section could
be representad bv a distribution of sources and sinks, Because
of the interference effects, however, a vortex distribution

must also be used in addiiion to the source-sink distribution.

23

Pivko bas 2lso counsidered thick cambered annular airfoils

onerating at an angle of attack and included the effect of
the propeller by a sink disc. In general he makes use of the
velocity coefficients given by Kuchemann and Weber!3 and
superimposes the velocitv of each effect. This theory is not
readily adaptable to sections of arbitrarv shape,

In addition to the preceding work Malavard““ has considered
the pressure distribution on annular airfoils with and without

thickness using electrical analogy and Hacqueszs has considered

- ——




the problem cf designing for a given pressure distribution

also by electrical analogy.,

In the next section the linearization of the boundary

conditions on the duct is considered. then linearizing
inviscid, incompressible fluid problems, it is the boundary
conditions which are linearized as the eauation of continuity,

which reduces to Laplace's equation in this cas2, is linear,

I1.2 Linearized Boundary ‘onditions

Y%lr)=-wrlr)

=-(1-e3)Y

£
0, a) (m)\ (o,8,)

/

N
~

Figure 1. The annular airfoil coordinate system




The coordinate system which is adonted is a cylindrical
system (7 , ¢, ¢ ) with the zero axial coordinate (& ) located
at the nropeller blade center line and the free-stream flow
is from right to left (see Figure L), The annular airfoil is
assumed axisymmetric and has a length (a). Anyv radius on the
foil can be chosen as the reference radius (Rg) but since
this reference radius is the radius of the cvlinder along which
the vortices and sources are distributed it would seem icason-
able to use some sort of an average. For convenience, but some-
what arbitrarily, the reference radius will be taken as the
inside radius of the annular airfoil at -the propeller,

The section sihape is assumed-to be delineated by the out-
side of the annular airfoil u(§) and by the inside b(¢) as

shown in figure 2.

P
R &
,.,_4 T = b(§)
' l
] |
Ry
. ' 1 £
(6, a¢) (0.0) @ ae)

Figure 2. The annular airfoil section
Using the above notation the mean line of the foil as

measured from the # -axis (r=0) is

ce) =5 [weg) + bg)f (2.2-1)
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and the half thickness ordinate is

sce) =4 [w(£) - b(£)] (2.2-2)
The outer surface in terms of the mean line ordinate, or
ramber, o(¢& ) and the half thickness ordinate s(§ ) is then

given by

¥ = w(€) =c(f) + s(€) (2.2-3)

and the inner surface by

v=b6(8) =c(€) -5(§) (2.2-4)
If it is assumed that the mean line deviates little from
the cylinder of radiue Ry and length a and that the thickness
is small, then the camber and the thickness can be expanded in
terms of a nondimensional perturbation parameter ¢.
vewlg;e)=[elEie) +500re)] = Rure[cYg)+ %) + e t) +5CUg)] + - o o
o 24+ €L[cr) ¢+ 59A)] (2,2-5)

V= b(E6)=[c(8:6)-5(¢; ] = Ra +6[cUe)-5g)] + ) - s“Ysh] 4+ - -
= Ry +e[cg) - s“Ys)] (2.2-6)

As ¢- 0 the problem reduces to that of a thin circular cylinder
of constant diameter.

Since the problem is axisymmetric and linear, a total
stream function can be written for the flow in terms of the

perturbation psrameter ¢ .
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(nEe) = - f“’s(r)"df' +Hrgie) = - [witrdr  re ¢%r, £)

Ak A /LR (2.2-7)
As ¢-»0 the stream function reduces to that for the free-
stream velocity alone, From equations (2.2-5), (2.2-6) and
(2.2-7) the linearized boundary conditions are developed.
First there is the kinematic boundary condition, i.e. on the
surface of the body v.37 body = 0, As a first approximation
the equation for the out¢ surface of the ring is obtained

from equation (2.2-5).

Flve) =Ry ve[cTe) + s Ug)] -r =0 (2.2-8)

and fer the inner surface of the riug from equation (2,2-6)

Finé)= Ry ve[cg) - sPe)] -v =0 (2.2-9)
The velocity V is obtained from the stream function and in

terms of its components is

wing) =1 = L8
(2.2"10)
wi(5g) = ~-'-,§§= -+ %

In terms of these velocity components and the nommal to

the surface, the kinematic boundary condition hecomes

TR - wh(rf) _ + wablng) _
oty = 2 1/
N AR A
From equations (2.2-8) and (2.2-9), it follows that Fr(r,f )

(2,2-11)

— e
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and F{ (r,;’) are, on the outside of the annular airfoil
Folgf) =~
(I)/ / (2-2"12)
Fetrg) = €[e705) + s™e)
and on the inside
F(rg)=-1
(2-2-13)

Fetng) = e[ (g) - s (e)]

With these values for :he normal to the surface, it follows

from equation (2.2-10) and (2.2-11), after multiplying through

by r Wvg}z(r,f )+ th(r,f ), that the kinematic boundary

condition on the outside of the ring is

g e[cg) + )] + Fp =0 (2.2-14)

and on the inside of the ring is
, Dy )’ 7
g €[cPte) - s + fp=0 (2,2-15)
The stream function ¢ is given by equation (2.2-7) and
substituting this value into equation (2,.2-14), the boundary

condition on the outside of the ring is obtained in terms of the

perturbation parameter ¢ .

(=(Ra + e[cc) + 3NNz (Rd # e[ tg) + s(8)])
~H (e[c%e) + s )], £ €)] € [cPee) v+ s%e)]

+9‘?(PJ+6[CU)(F)+ 5(')&‘),-7,&‘,'&) = 0 (2.2-16)
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The stream function is a function of e[c<l>(z) + s(l)(z):]

and is next expanded in Taylor's series in terms of this para-

meter, Equation {(2-16) then becomes

;(—/1’:' Wol@g)b ook @
\

{Baroifie) st (Ravo £ €) e [cg) + s0E)] +- - )

(2.2-17)
e[ sSOle)] v (ot e) v r Garof 6)e e lgns e ] + j =0

The stream function U(Rd+0,f i €) can also be expanded in

terms of € , this equation then becomes

)'-'?J “elRi)t - or e 4Rt E) + QM s e gty

e € [cgr v 5] e 3 (c15) + 5Veg)]

5
+ Zfé VZ’( +€"yé(2}{- Ve [-f%f(,)'f'ee%f){- , ..]é[cw(f}-f-S(’)(f)]* ,:,} = 0
(2-18)

Collecting terms of the same order the nrevious equation

can be written as
, ;- ¢r)
£ Lf—/\y wo (Ry){c¢g) + s)) - W; (Ryto f}j
+ €2 Z’s//”(@ +0, £)LC 1) » 5 ey VR 0, 8) - [stBs) 4 Ry il )
= % (Rir0,8)] L1 sPell] 4 e e =a

(2-19)

The first approximation is obtained by neglecting terms

involving powers of ¢ greater than one, Derivation of the
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boundary condition for the inside of the atnhular airfoil follows

in similar manner. Considering both sides of the ring, the

first approximation for the kinematic boundary condition is

t/;'-"’( RITO,E) = Ry wol i) [c0g) £ 5 tg) )/ 2.2-20)
The + sign refers to the outside of the annular airfoil and the
~ sign to the inside. This equation has onlv to be satisfied
on the circular cylinder of diameter (Ry) and length (a).

In addition to the foregoing boundarv condition, the Kutta
condition must be satisfied at the trailing edge of the ring.
This means essentially that a stagnation point must occur at
the trailing edge of the ring and for this the radial velocity
at this noint must be zero. Consequently at the ring trailing

edge the stream function must satisfy the following equation,

We(Ryzo,ae) =0 = ¥%(Ry 10, ae) (2,2-21)
Since it has been assumed as a first approximation that
¢= (1) and similarly for c(l)($ ), and s1(§ 9, the ‘super-
scripts in thé ‘last equations can he ‘drorped and the boundary

conditions can then beé written as

Yo (R 20,8) = Rywa(RJ)[C'(8) £ SE)] on ae s £ 244

Y (RdZ 0ya¢) =0 (2.2-22)

For convenience the radial velocities will be nondimen-

gsionalized by the free-stream velocity if this velocitv is
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uniform or by the ship velocity Vs if the flow is axisymmetric.
The axial ccordinate will alsc be nondimensionalized by the

annular airfoil chord a and the radial coordinate by the pro-

peller radius Ry, i.e.

3]
u

. . 3
axlial coordinate = =

duct chord
(2.2-23)
x = radial coordinate = él
propeller radius P
xXq= duct radi s = M4

= 2e Y if the duct diameter
P is equal the nrrorelle.
diameter then xd=1

The following notation will also be introduced which is

propeller radius

consistent with common usage in naval architecture,

(- wy) = 1%99 (2.2-24)

If the velocity is uniform, i.e, independent of radius,
instead of the shinp speed, the free-stream velocity is used for
nondimensionalizing and the wake fraction is unity, i.e.

()~ We) = XMoo = |
We

In the definition of the half-thickness ordinate, equation

(2.2-2) and mean line ordinate, equation (2.2-1), the angle of

attack of the section wae not discussed. The mean line ordinate

is measured from r=0 and it is convenient to decomposs thie

ordinate into a part from camber and a part from angle of attack,
see figure 3,
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X
' 8(2) l“ 1y
1 ..
/ﬁ- At C— tose =tar! fine

- /J o
X, __,4,.{___;4 -.l -
e

.2Thn o

Qe © 74

g 1 — e ]

Figure 3. Delineation of the annular airfoil section

Us<ig the notation given in Figure ., the meen line ordinate

c(z) can be expressed in the following form,

€z} 2 AL+ 500) + Zian e * c,(2) —C, (0 |
’ ‘ (2,2-25) {

It may often be assumed for practical nrurposes that cj(z)
and ¢(z) may be measured perpendicularly to the nose-tail line,
This is for convenience in delineating the camber and thickness,
since normally the nose-tail line is used as a reference in
describing section shapes, and implies that the angle « is

small (= =7noc ), If the angle x is too large for such an

assumprion then, although inconvenient, c1(z) and s(z) must
be taken perpendicularly to the z-axis. For two-dimensional

airfoils it wculd be expected thar angles for which o 5 fan=

would be outside the apnlicability of the linearized theory
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but this may uot e necessarily so for the sections of an
annular airfoil.

If the foregoing equation for the camber is substititued
into the boundary condition, equation (2,2-22) and the coordi-
nates and velncities are nondimensionalized as discussed, the

boundary condition can be written as

% (X4 t0,2) =x4(1 - W,g)[c,’(z) + tane £ 52)] on As £Z %a.e

¥, (xd £0,4¢) =0 (2.2-26)

If a propeller is in the duct, then the radial velocity
on the duct is a function of angular as well as axial position.
In this case the singularities used to represent the duct must
also be a function of both angular and axial position. Since
the shape of the duct is assumed to be axisymmetric, (this
assumption can be removed) the right-hand side of equation
(2.2-26) is independent of the angle ¢ , however, the left~
hand side includes all the radial velocities and can be depend-
ent on the angular position, i.e. the following equations can
be valid even though the right-hand side is independent of the

angle ¢ .
Yo(Xd 20 ,9,2) = Xd (1-wi))[c/(2) + fanx £ s2)]

(202"27)

I1.3 Derivation of the Vortex and Source Distribution to

Represent the Annular Airfoil at Zero Incidence

The boundary conditions just derived will be used to

determine the strength of the ring vortex and source distributions
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on the cylinder. These ring vortices, of elementarv strength
Y(¢,2), and ring sources of elementary strength q(¢, z),
are used as a mathematical model to represent the flow around
the annular airfoil., In order that the distribuiion of sources
and sinks represents a closed body, it is required that there

be no outflow of fluid from the source-sink distribution or

that
anr

!
[ |g(dz2)dgsz = ©
&8

(2.3-1)
If a propeller is in the duct, then the ring vortex
strength is dependent ou the angular position and a trailing
vortex system exists behind the duct. This system has a
strength of _1  J¢ and the induced velocities from this
system must Eg adgcd to that of the ring vortices and sources
and those of the nropeller., As discussed in the previous
section the stream function occurring in the boundary condition
is the total stream function for the flow, excluding that for
the free stream, and since it is linear all the induced veloci-

ties from the various singularities are added linearly and the

boundary condition on the duct is expressed by the following

equation,

Lwelng, @), ~[we(xd £0,0,2)], = [welxd, #2)]pr
v b
—fWr(X;{,&,z)]_p,/, = (1= wiy) [€/Ce) +tanx £ 5(2)] (2,2-2)

where
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ru@cnh¢zﬂ;, = radial velocity induced on the duct by the
N ! ring vortex system and given by equation (A-16)
fﬂyﬁynzﬁzy = radial velocity induced on the duet by the ring
f gource system and given by eauation (B-8)
[w,(xg,@z]y = radial velocity induced on the duct by the
Y7/ trailing vortex system and given by equation

(C-13) or (D-8)

[My(xﬁ@zi7*h = radial velocity induced on the duct by the
r propeller including the hub,

Making the substitutions into equation (2,3-2) for the
various velocity component:, an equation is obtained for the

vortex and source strength,

! oamr
b [ fena-zicosco o) yeor2) 4o
) ] [4hG-2)f v - 2 cos(¢-p)] %2
=]

™

! 2
h [1 —cos( -9)] @(9l2)de’ dz’ t L e(dz)
+ o= 5 I ’
W[ [ [482(2-20%+ 2 - 2cos(p -9 ]2 z f
(=]

. + L'Wr(xa,ezz)]}g = = (1~ W) [€/(2) + tan o E 52)T ~ [ W)y (74(45’2;1.‘5).7%;,

where 2 zz-g4,

Since the integrals occurring in this equation have only
one sign and since the radial velocity induced by the propeller
on the duct does not change sign from one side of the duct to
the other, it must be concluded that the + signs go with the

3 signs and hence the source-sink strength q( ¢ ,2) is given as

follows:

#ba)=-2( - Wyy) 3°(2) (2.3-4)

which impnlies that
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a(@,2) = q(2)
or that within the linearized theory the source distribution
is independent of angle. If equation {2.3-4) is substituted
into equation (2.3-5), a singular integral equation is
obtained for the unknown circulation distribution which also
includes the derivative of the circulation. To solve this
equation for the circulaticn distribution requires a knowledge
of the form of the radial -elocity induced on the duct by the
propeller and hub, Before deriving this velocity, it is
convenient to consider the duct by itself, first al zero
angle of attack and then at an angle of attack. In the first
case the circulation distribution is independent of angle and
the trailing vortex svstem does not exist. Utilizing equations
(A-23) (B-11), and (2,3-4) the equation for the ecireculation
distribution is obtalned as:

j[(:(?) ‘23’4 Piz-2)R[KR) ~E(R]- 2["(4’)},;{1.’
y; (2.3-5)
= (1 — wiey) [CZ) +Fank ] ~ ¢4 (1~ w,f_()Jl s'tz) B LR -ER)]d 2

(o}

where
W= 1
h‘(z-z')z"'l
%
K(k) _[Vw—jgr;z; = complete elliptic integral

of the first kind

complete elliptic integral
of the second kind

E(k) =[ Vi - #%me de =

A
2R3

I
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From this equation and equation (2.3-4) it can be seen
that the vertex strength is a function of both camber and
thickness distribution while the source strength is a function
of only thickness. This differs from linearized wing theory
where the vortex strength is a function of only camber.
Equation (2.3-5) is a singular integral equation of the first
kind and the solution of this equation will be discussed in

the next secticn.
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IT1.4 Reduction of the Integral Equation for the Vortex

Distribution.
Equation (2.3-5) is a singular integral equation for the
vortex discribution. For convenicnce this equation can be

rewritten in the following form

!

fg(z‘—Z') FE o = pez) (2.4-1)
where
gez-z) = A {4R(Z-2)*[K(R) ~E(R)] - 2 £(R)) (2.4-2)

!
H(i)=‘/(/~“/r°')[77'[c/'(5/‘ ttana] = b |s'c2) R[K(R) - E(I)]c/z'j) (2.4-3)

The complete elliptic integral K(k) has a logarithmic
singularity at k = 1, (z = 2'). This causes no difficulty in

equation (2.4-2) since 11m(2¥z')2K(k) = 0, but the integral
E-'Z !
in equation (2.4-3) is improper. A logarithmic singularity

is removable from the integrand of an integral by a change in
variable and this technique will be used later.
Muskhelishvili26 has shown how to reduce an equation of
the type of equation (2.4-1) to a Fredholm equation of the
second kind whose solution is known, Using Muskhelishvili's
procedure the term g(z'-z') = g(0) is added to and subtracted
from the kernal g(z-z') in equation (2.4-1) and then this equa-

tion becomes

1]

1
Y(z') dp f (F-2) —ato)] Y(ZD 4.0 = 4¢3 b=
ofg(o)(z__z,) z +o [9tz-2) ~g 0)] (o dz’ = H(2) (2.4-4)
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From equation (2.4-2) it €ollows that g(0) = -2 and
equation (2.4-4) is then

[ !
[ 1G) go =2 [rpsgir -2 02) go 2 -
Jaa dz 24[2+9(z z)](-zﬁ_;) dzt = L H(z) (2.4-5)

The integral on the righthmd side 1s not singular at
the pcint Z = z' but has the indeterminate form 0/0 which
can be shown to be zero. By letting the right hand side

of this equation equal f (Z) this equation becomes
!

() det = f, (Z)

(z_z;) (204-6)
o
This is the well-known Cauchy type singular integral
equation26 and has a unique inverse given by
! ]
Y(E) = - f{{“zyth £ (2)dz! + g]ruvdzﬂ (2.4-7)
w\zZa-2) ") @' -2) ) )

The last term is the total circulation about a section
of the duct and is a constant., In this equation there is a
singularity at the trailing edge of the cylinder (z = 0,
i.e. z = a.) and at the leading edge (z = 1). In order to
satisfy the Kutta condition, equation (2.2-21), the circula-
tion at the trailing edge, y(0), must be made zero.?’ This
is accomplished by picking the total circulation so that

this singularity is removed. For z = 0, then
1 _ i
L }____\/zg_) ez =-2 j r(z)dz’ (2.4-8)
o -]
Substituting this result into equation (2.4-7) removes
the singularity at the tralling edge and the circulation dis-

tribution is in such a form that the Kutta condition is
satisfied.
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!

/ 2 r -Ff,’) /{_,:) ;
HE RN ] e VE o (2.4-9)

o

. Substituting in for fo(z') and interchanging*® the
order of integration, a Fredholm equation of the second kind
is obtained for the circulation Y'(z).

J / (1-Z) H(z)
¥(z)=- 21T“ (1 2') [\ - (z" z)
/
1~ [Z =z [2+9(2"-2) Jyul y(z')dz
* ey / [ j[ (e Hez) O ] :
o o

(2.4-10)

where

g(2"-2) = & {c/AZ(z"—z()Z[K(W‘E(ﬂ)] - 2E(R)

‘g -he(zu z)2+,
This equation is still not in a form which can easily be

(2.4-11)

solved since ) (z) has a singularity at z = 1, i.e. the
leading edge. To remove this singularity a new dependent
variable is defined as }*(z) = V1 - Z (Z), thus at

z = 1 this new dependent variable is zero., Equation (2.4-10)

can then be rewritten as follows

[

vz =\1-7 y(2)=f() +j,K (2, 2) L2 2
4 12" (2.4-12)

* Interchange of the order of integration cf two Cauchy
principal value integrals would normally result in a
residue. The residue 18 zero here because of the form
of the integrand.




25

£(3) 2"2\/ =20 p1ez)dz!

_zll [’2 +q’Z”-- ,1)]
// (Z" Z-)(z,, Z')

Both £(z) and Kl("z', z') are Cauchy principle value
integrals since the integrand is singular. Since it is
desired that a solution mr thod be obtained for an arbitrary
H(z) and since g(z" - z') is of such a form that K(z, z')
cannot be obtained by simple quadratures, a change of
variable is made and then certain functions are expanded in

a Fourier series, Let z = %-(l + cosf), z' = %(1 + cos@')

and z'" = %’(1 + cos@"), then equation (2.4-12) becomes

r
¥io) =sin$ 0 ¥e) = £lo) + fK(e,e')r"‘{a')c/e' (2.4-13)
where e}
r
n (1-¢co58') ' / -
(o) = 2rr‘ cos e}———————(wm e H(e')de (2.4-14)
]
ar
o " /4
K(6.e) = o'c - cos8") [2 + g(coss co:e)]rlg
6,¢)= 360-52 os% (6'059” Cojé)) (cos@” 6'059) J(l 4= 15)

o
To find the Cauchy principal value of the integral for

£(0), the function H(O) will be obtained in a different form.
From equation (2.4-14) H(®') is obtained as

Hiey = ¢(1- de)(fr[c, (¢)) '/'fand_j"--[ '(e’?@ﬁ(((?) E(ﬂ)]sm()"&} (2.4-16)

o




26

where

2 4
% = Rleose' ~cos6 + ¢
The thickness distribution and the mean line shape are

now expanded in a Fourier sine series in 0'. Because of the
shape of the airfoil section it would be expected that such

a series would converge very rapidly. The use of such a

Fourier series implies tha the required slopes can be

obtained by a term by term differentiation of the series.

For this to be possible the mean line and thickness distribu-
tions must satisfy additional restrictions than would normally
be necessary for their expansion in a Fourler series. Speecif-
ically for the Fourier series of a function to be differentiated

termn by term28

the function must be everywhere continuous and
possesc a derivation which satisfies the Dirichlet conditions.
For practical sections this causes no restriction on the
shape, evc: 1f, the slopes are infinite at the ends since the
requirement in cthis case i1s that the integral of the slopes
be absclutely convergent., Expanding the thickness and camber
distribution in a Fourier sine series in 0, the following are
obtained.

o
¢i(e) =§:a”sMrn8 (2,4-17)

m=zl

Con =§fc,(e)sinm9de

i
ol \\

o0 !
5(0) —‘-Zsm sinme (2.4-18)
m=i
ﬂ/ .
3m = %fs{e}smmadé
o)

7o

£
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The slopes are obtained by differentiation and are

=4
=1

c/te) =

m

Cmmcosme

00
s'¢8) 225». mcosme
m=f

(2.4-19)
Introducing these expressions for the slopes into
equation (2.4-16) and interchangin328 the order of integration
and summation, H(®) is ob :ned in the following form.

"
oo g 4 /4
H(e?) =(1 "*’ﬂ)[‘/'fﬁbn« * JCmmcosme] =2 z;,,mfﬂ[;f(ﬂ)*E‘[ﬂ)]cosme”smﬁ ‘Ho"
z)
o

r=/ H
(2.4-20)
The elliptic integral of the first kind K(k) has a log-
arithmic singularity at k = 1, i.e. when cos 8" = cog @'.

This singularity can be removed from the integral by considering

the change in variable {cos 8' - cos ") = t3, then

> Virriosah
Jf RKA) ~ER)]smmo"smelo" = 3 jm (Kif) = E(8)eosm farccos eose-£7]) e
= 36/9/m)
(2.4-21)
where
e ey

This removes the singularity and the integral can he

evaluated numerically without difficulty. To complete the




solution, the functiou G{%',m) is expanded in a Fourier
cosine series in 0', i.e.
Glo,m) = [cz'ﬂ.[_m’#’)-E(‘.ﬂ’)_-/casmi(arc co.r[co}s'-zf:_zzc/t = ;Z,a(m)cosrg&’

J
- Wi-cose’) (2.4-22)

where -

Qo (1) =#;[G(6;m)de'
o
Tr
a (m):ﬁ!G(@'M)Sil 510/9'} (f = 4&E, 3 oo)
Il ’
i (2.4-23)
Using this representation of G(0',m) and substituting

equation (2.4-16) into (2.4-14), the integral for £(8) can be

evaluated ”

PO I A ‘,_""' ’ar/ A C cele &90/ '(
fto) (/ wxd)fanxco.s ?” de +C0S ié/m (C_Lase _c‘se)cosm 5_/

J

é

1Tv
3h coso’
+ 1—7.‘2(/ V‘/xJ}Co.s—-tE'ZSM m[ 74/ (“)f(‘we 0s0) Cosfoe]
(=]
(2.4-24)

The integrals occurring in this equation are of the
Glauert type and their evaluation is given in Reference [27].
b/

.
- , / i ’ 7
‘f €238) __ cosme'do’ :__f;casma do! - [Loesecosms’ o'

(cose’~cos6) Coss’-cose (¢o56' - c056)
[«]

Vi

o Sinmé [cosm9’+ Co.se(:osmB/]de’
Siné- (cose'-cese)

2

i

"

- Sthm @
r(l~cos BOTEEE" (2.4-25)
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Also v
(1=cos6 Jo! = —7r
(ces6'~rzos0)
[+

Using these wvalues for the integrals, £(8) follows as

[
fle) =2(1 - wyy) fanotCo.sé’-e —S/né’-6Zcmmsinm9J

m=/

mz=i

oo , [~ ~4 )
2h0-wiy))-c st &an,mao(n«) + S/M-ZLGZ5MM[ZAF(m)S/nf€7‘)
" 2 o=, ﬁ=/ <)

o0 o0 0
=(1- Wzrd)/ﬁ Tano. fZSMF;.nJCDSEI‘G + [-azcmmsime f[fm BM(O‘}ZSM?%?
mz/ mz/ mz] i

(2.4-26)
where
Fm = = m&o(m)
B (6= 20 m zd (m)Sinp
T [7o=/'c rel (2.4-27)

The coefficients Fp and B,(8) are independent of the
section shape, however, they are dependent on the chord-
diameter ratio of the duct, and can be tabulated. Now
consider the equation for the kernal K(8,9'), equation
(2.4-15). Attempts at evaluating this improper integral by
simple quadratures have been unsuccessful so K(8,0') will
be obtained in a form which can be solved by numerical methods.

In the following method the term

[2 + q(cos6"~cose’
cose” ~cosel
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ie expanded in a Fouriler cosine series in 0" in the range
0< 0"=17T , Tais function satisfies the Dirichlet

conditions28

so can be expanded in such a series. Further-
more, the functlon is continuous for 0 £ 0"<€ 7 but
the first derivative is discontinuous at 0" = @', Expanding

this term in an even geries, it becomes

4 ! >
2 +5(c'oje ~cos6’)| . Tbn(el)coma,,
(cosp" ~Cos8')

W0 (2.4-28)
where
i ’ X
e !
o= = | |2 *Fﬁ(“’_-‘e —cosel| Jg
bo(67 = 7 058" ~ cos6' |
¢ (2.4-29)
Py
i/ '
_2 [[2tqg(cose’=coss) ie!
o)== o/ cosnea 76
bn (&) T [ cose"-cose’ |

The integral for the coefficients must be evaluated
numerically but some difficulty arises at the point 6" = @'
where the integrand has an indeterminate form. To determine

the value at this point 1'Hospital's rule is applied to the

integrand.
im |2+ glcosscosel] v JmlQcosns’  _
92’8, co;é" ppy cosne”’ = -~ —_—-’—Sma =
co (2.4-30)
Since

, a " 13 0
m ‘ ) o tim - cosa’) X )| (cos'coss ) R —
99"(0)--6’{, e,jo"(c”’ol“"’-”) .-:8/,: a/[~sxna”@o56'-6056)/6 [ 2 /g I

-~

.[mo)—s(&’)] + -f-zmﬁ)ﬂ =0
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At the point 8" = &', therefore, the integrand is zero,
however, because of the form of equation (Z.4-30), it must
be shown that when 8' = 0 or 7 equation (2.4-30) is still

valid., Following the same procedure as above for @' = C, then

//,2»[ +9(coso " /)]w,,e — lim [ier/@a”-IJCoje”—ns/rme”rZLo(coja /)]]

oo —~sine!

= I:;n (cose"-1) _'vg l_fﬂé__—//_. K(g) E(Q)l.,. % K('g)}-l- nsmne la +3(cosa —I)] ]

. . .
fim (nsinn8") gou (05O ~1) +#?cosn o[z +5(cos6"~ )_7-' =
cos 0"

n

o
60

-

From this last result and equaticn (2.4-30) it can be
concluded that the integrand of equation (2.4-28) has the
value of zero for 8" = 0', 0< @'= 7 ., Substituting
equation 2,4-28) into the kernal, equation (2.4-15), the

integration can be performed.

T

K(aa?: 2cosg 6'cosp e g__ca,iﬂ__}_m b (9’)C05ﬂ9"]d‘9”
(cosg’ cos6)|&

m

ad
U =cose?) g
. f o i ' L05n6"'de
-7;25052—6 cosz 6 by (‘9)[ (cosg”-cosg)”

n=0

i- o0
=% c,/-s-zi- o' l—(cosf'e) bo (6) +(<u%s G)Z[:,,(e’)swne] (2.4-31)
Iz




K(0, 8') 1is a known function invol' ing only the chord-
diameter ratio (h) as a parameter so can be tabulated.
Substituting for £(0), equation (2.4-26), and the kernal

K(e, 9'), equation (2.4-31), into equation (2.4-13) th~
Fredholm equation of the second kind for the circulation
distribution is obtained in a fom which can be solved

by known methods.

Y'to) = (1~ wy) ![2 fane +me Fm]cos 76+ [-szm/nma +Em8,n(e)] sz'nz’-ej

mz] m=l m=)

ﬂ' o0
+#_/; cwé—&'[— (cosz0) b, (67 + (siné.e)nlf;(e‘)s}n neB Yeo)de
° (2.4-32)
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I1,5 Ideal Angle of Attack
In the integral equation (2.4~10) for the circulation

distribution a singularity exists at the lzading edge of the
ring which made it necessary to redefine the circulation
distribution. This singularity canmot exist 1f the ring
section is designed so that a stagnation point occurs at the
leading edge. The angle of attack at which the section 1is
operating when a stagnation point occurs at the leading edge
is known as the ideal anf'e of attack (<¢jq). Since arn axi-
symmetric annular airfoil has been assumed, it 18 obvious
that an ideal angle of attack cannot be defined if the radial
velocities on the duct surface are functions of angle.
Consequently, in the presence of a propeller an ideal angle
of attack cannot be defined which appllies io every section.
To remove the singularity occurring at the leading edge,
i.e., z = 1, in equation (2.4-9), this equation is rewritten

as follows:

{
3)=2 Z ! (/-z‘)r{." N =20~ tfancel d 2!
r(z) WiwfamaV 7 | (2) = 2(1 — wyy) T Tane)dz
[]

=20 22 201 - W) pifanc fz) [1-z' 4
e (/-Z)[e( il +(ﬁzf’_——‘z‘) z' Jz} (2.5-1)

G2)=6(2) + 201 -tng) T lanc

where

Following the arguments for satisfying the Knrtta condition,

a stagnation point will occur at the leading edge of the duct

if the circulation at that point is zero. The circulation will
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be zero at the leading edge if the angle o 1is chosen so
that the terms in the brackets of the previous equation

cancel out the singularity of the term IéE- at z = 1,
The ideal angle of attack is therefore, defined as follows
)

] £(2) r'—-‘

tan o id - - .Z——ffz—(/_ WXJ’J z'._/ V 7 dZ
'
! [ £ (z) !
arrz(l-‘m}f‘\/ -zh 2! dz

4

(2 . 5"'2)
The term fl(z') occurring in this equation is a function

of the circulation distribution Y (zZ) and this distribution

must correspond to that occurring at the ideal angle of attack.

To determine the so cailed ideal 1ift coefficient, Xy (2)
equation (2.5-2) is substituted into equation (2.5-1). The

solution of this integral equation will give the circulation
distribution for the section operating at its ideal angle
of attack.

£iz) fi(2) - ~z
W= i\ f5y [W G- ‘/}

i | s

(z'-Zh[z'(1~-2]
(2.5-3)
From the form of this equation it can be seen that the

singularity is now removed from the leading edge. Proceeding
as in the last section it can be shown that this equation

can be reduced to a Fredholm equation of the second kind for




the circulation distribution. The following form is
obtained for this equation where the coefficients are the

sane as given in the previcus section.

0O

r

uLJ((’/‘) (/_“‘x‘{)l ei msinme +ZSMBM(9/]

me=

-

n:/'[smc-? an(")smne]f‘;(a)d@

(2] (205"3)
By cubstituting into equation (2.5-2) it follows

that the ideal angle of attack can be written as:

"

1; 1 b, (890 4(8)smgcle’ - L
“n %d 'ffr(/—w,u) Jl 0 {770 2

)
SmFm
)

ny

”

(2.5-4)
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I1.6 Solution of the Fredholm Equation of the Second

Kind for the Circulation Distribution.

Both equations {2.4-32) and (2.5-3) can be solved by the
same procedure. The general form for either equation can be

written as follows

o) =>i-w 1‘1)[8(6) +3(9)[ EZc,,,m siImme +ZSMBM(9)H

n=

1)«

+c(e)JgD(e')[Do(6) b,(8°) +an(9jsmne])) rre')de’
n=i

(2.6-1)

In the general case:

y(e) = ¥*(e)
Bo(8) = [2 tanx + z}m F,] cos 1 9

B(8) = sin %9

1
G(8) -7.1); sin 5 0
D(8) = cos % o’

Do(8) = - cot 7

and for the ideal circulation distribution
Y(8) = ¥i4 (8)
B,(8) =0
B(8) = 1
) = 3
D(8"')
Do(8)

L.
(=T}
o
3
[+ o]
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The Fourier coefficients are the same as defined in
Section II.4. The integral equation {2.6-1) can be solved
by the method of successive approximaticn or the Fredholm
solution method.2? In addition, since the kernal in this
equation iz a degenerate (or product) kernal, the special
method appropriate to this type ol kernal can be used.

Which method is best depends on the convergence of the
Fourier series representi g the kernal. If the series
converges rapidly the method appropriate to product kernal

is probably best. Following is an outline of this method,
necessary proof of the convergence is given in Reference [29].

To apply this mecthod the order of integration and summa-
tion are interchanged in equation (2.6-1) and then the

equation can be written as

T o~

P

¥(6) ={ (&) +ce) [D,, (e fb,(e') D@') y(6)de’ + sime j b,(6)0(8)i (6 s’

o o
ﬂ’ d
+5m26 f b (6" 0(8) §10)de' ++ + + + + s}nne_/f‘,m(ﬁo(aw’(eycla’
’ ° (2.6-2)
where
flo) =(1 - de)(frBo(G} + B(8) [— agic,., msinmé + i‘m B.. (Q)U
ey

m=]

For convenience let
7r
A, =fb,,(e’)o(e'))’(e)de’ ) (=012, n)
o

and then the above equation can be rewritten as:

Y(e) = £6) +C(6) D,(0) Ay +C(6)A,5in6 + + + + o4 2() Ay SiMNE (2.6-3)

24
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By substituting this equation into equation (2.6-2) the

AJ's are obtained.

(14
Ao = f D(B')éa(el)[F(e’) +C(6) 0,064, +C () A Sing'+ - oevt cra-‘}An:?-“-"‘G']“'a'
(o]
r

4= fownb,(o)[f8) +c(0) l6IA, +etwArsing's « 2 c(8)pysinnd']de

=[0I 8n (0 [F(0) + C(6) 0,164, + CL&1A,5in 8"+ - -« - &y sinmnel |4

° (2.6-4)

In deriving the equacion for A,, it was necessary to divide
both sides of the equation by D,(8) and if D,(8) is zero this
is not valid. For this case then, i.e. ideal circulation
distribution, Ao must be taken as zero and the above set of
(n + 1) equations reduces to a set of (n) equations. For
convenience the following nctation is introduced into the

preceding equation.
i

Cif = D(G')bi(a')C(ayDj(éoc{B’ ) (i =0,4,2,++++n)
s
= 57 b §y (6)sine'de’ (2.6-5)
]
where
Dp(ef) = _597"—2'-9’

pjle) = 5ing8', (=12, *n)
and s

d; = f 0(s) b; () f(8')de’

2]
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o 0o oo
=(i-wa)[§2fan« +Z>‘MFM}Q "”Emddm + g;fmﬁm]
) (2.6-6)
where -
fe =[bz (8’)cosaz'- e'de’
&
g

dim= m[ c (6')sin@'sinm ode’!

[~]
"
ﬁ',.\:.fb,'[@’)Bm(Bﬁ)s/n9'Je’
(o

and
N = 1 for the general case

N = 2 for the ideal case

In the foregoing equations the coefficients c4 43 £4» S4m
and fim are independent of the section shape and can be
tabuiated for various chord-diameter ratios.

Introducing equation (2.6-5) and equation (2.6-6) into
equation (2.6-4) results in a set of simultaneous equations for
the coefficients A,.

Al - c ) - Aje 1 - A3¢5 - ... mAjcop = dy
- Ajcio +A1(1 - cqq) - Ay cyp- ..vApcyy = i
° 1 (2.6-7)

S 5 0.0 00000008 00006000000000bse0Lsts LSS,
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- Ay cpo m Ay ey A Chg = - +An(1 o) = d,
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This system of equations represents an algebraic set
of simultaneous quations for the unknown An's. The
existance of a unique solution depends on the determinent
of the coefficients of Ah on the left hand sfde being
different from zero (Cramer's rule).28 The number of
simulCaneous equations depends on the number of terms
needed in the Fourier series so ii satisfactorily
approximates the kernal. Vortunately this can be determined

once and for all since the kernal, K(8, '), is independent
of secticn shape.
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II.7 Pressure Distribution and Forces on the Annular Airfoil

The velocity field of.the ducted propeller is found by
summing the free-stream velocity, the velocity induced by
the duct including the trailing vortex eystem, and the wvelocity
induced by the propeller and hub. Since the flow field has
been assumed to be irrotational, steady and incompressible
and the body forces have been neglected, Bernoulli's

equation can be written as follows:

XN9Z)l =P . .

W_ [-r+m.(z&z).r -

V(1 - wi)

+[He )l | (wems2)f
Wi-wl %0~ wy)

(2.7-1)
The axial velocity wa(x, ®, z), radial velocity wp.(x, @,2)
and tangential velocity wt(x,¢p , 2z) are the total velocities
induced by the various singularities in the flcw and are
commonly called perturbation velocities. The pressure p,
is the pressure infinitely far ahead of the propeller
while p(x,¢9 , z) is the local pressure. This pressure
distribution has been nondimensionalized by the ship
velocity times the wake (1 - wy) which 1s the local
free~stream velocity.
If this equation is linearized by the same method as
used for the linearized boundary conditions, the squared
terms will be neglected and the linearized prressure distri-

bution is then

r%62) -, . 2 wax,d,2)
BPW-wf U - wy

(2.7-2)
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The pressure on the annular airfoil itself is found
by substituting the duct radius Xy for x in the preceding

equation,

1"@/;@7—)-:& - 2 Wn-(n, f‘: z)
3PU (1~ el Tl - wiyg P

(2.7-3)

The velocity wh(x,tf, z) is the axial velocity induced
by all the singularities "= the flow. Also, it should be
noted that since the velocity induced by the vortex cylinder
is digscontinuous across the cylinder, equation (A-~15),
the pressure changes from the inside to the outside of the
duct.

In the problem of a ducted propeller irn an iuviscid
fluid, the only net force on the duct itself is the so-called
induced drag or force in the axial dirextion. There is a
radial force on each section which contributes to hoop stress
but because of symmetry of the flow this net force is
zero. Since the net lateral force is zero, there is no moment
on the duct, however a moment on each individual section
could be defined.

The force F on any section of the duct 18 given by
the Kutta-Joukowski law?’ which can be expressed as

F -/o‘\'//" (2.7-4)

The velocity 7 is the velocity by the annular airfoil
section perpendicular to the direction of the force and [

is the total circulation about =ach section. The velocity V
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does not include the self induced velocities so does not
contain the vetlocities induced by the vortex and source
rings. Assuming that both the velucicy and circulation
Y{¢, z) are nondimensionalized by the ship speed and the

axial coordinate z by the chord, the 1ift at each section is

!
dl =pa Y |1(9, f}l—u- W) + %ﬂﬂ/‘i’, 22,0,.}5]42’
(2.7~5)
The induced velocity v (x4,¥, 2),,s ie the axial
P35

velocity induced on the cylinder of zadius x4 by the propellex,
hub and duct trailing vortex system. If the total 1ift on

the whole ring is taken to be some arbitrary direction with
regpect to a propeller blade, normally in the vertical direc-
tion and positive upward, the contribution to the 1lift of

any arbitrary section of the ring would be

l

dlees® = (eos 4}}/’”“1;52,/}(@ f)["(l— Wen) + %‘:(mqﬂ, Z')f’r%"af

° (2.7-6)

The angle ¢ is measured from the arbitrarily taken
direction which is attached to one of the propeller blades,
i.e. rotating coordinate system. If this equation is integrated
completely around the circumference of the ring, the net 1lift
will be zero since the flow is axisymmetric. If the annular
airfoil is at an angle cf attack to the flow, the flow is
no longer axisymmetric and the;Z is a net 1ift force.

The thrust force on the duct, which is equal and
opposite to the induced drag, is also given by the Kutta-

Joukowski law, equation (2.7-4), but in this case the
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velocity at the duct is the radial velocity, again not
including the self induced velocities.
thrust by T4 ,

Denoting the duct

the following equation results fcr the thrust
force on each section.

d7y —,oa.'V v(z, cp)[ﬂr(m,w, 2t -r(m 9 ) ]4

(20777)
and the total thrust is given by integrating this equation
around the ring.

[ g

]
nepe [ r(z,«)[grm,@z,,,,+ (1, 4, Z), ]w,owz
o0

(2.7-8)

This equation car be put in the form of the thrust

coefficient used in propeller design by dividing by gkfﬂr 174

! e

G Ji= f‘R‘frV‘ —ﬁ—"— J’«Y(N) J(Mﬂl)ﬁf- ’(wﬁ’,z ]dq)c{;

(2.7-9)

The subscript "i" in this equation means inviscid fluid.

S .
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I1.8 Linesrized Theory of the Annular Airfoil at an

Angle of Incidence.

In addition to the assumptions made previously concerning
the annular airfoil, it will now be assumed that the free-~
stream velocity is a constant but at an angle ~; r
The angle will be assumed to be small enough so that sin <,

to the ring.

= tano¢ . =ox, and cos o ,. = 1. As previously, a cylindrical
coordinate system (x,, Z) will be used with the zero axial
coordinate (z) zero at the -railing edge and (Ry) the reference

diameter will be located at the propeller centerline.

rald

Al

N

Figure 5. Free stream velocity at an angle to
the duct

Applying the perturbatior theory as in Section 11.2, and

assuming the angle of incidence o, to be small, it can be
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shown that the linearized kinematic boundary condition is

_VVV:(RJfOJtP,Z) + W, xpcosq = —wo[cl) £ 5'(5}]) (02Z=) (2.8-1)
In addition to this boundary condition, the Kutta
condition must be satisfied at the trailing edge of the ring.

Y2 (Ryt0,¢,0) =0 (2.8-2)

One difference betwe 1 equation (2.,8-1) and the boundary
condition for the annular airfoil at zero incidence is the
addition of a radial velocity term from the free-stream
velocity which is dependent on the angular position., This
then implies that the radial velocity induced by the annular
airfoil must also be a function of the angular position of
with reference to the mathematical model the ring vortex
strength 1s a function of angle. As for a three-dimensional
win327 with a spanwise change in vortex strength, the fact
that the vortex strength is a function of angular position
leads to a trailing vortex sheet. This vortex sheet is
assumed to be cylindrical in shape and to extend to infinity
behind the annular ring.

The radial veloccity L in equation (2.?-1) is mathematically

conceived as being a sum of the radial velocity induced on the
ring by the ring vortices, ring sources and trailing vortex
system. The integral equation for the ring vortex and source
strength was derived in Section II.3, equacion (2.3-3), and
further the scurce strength was shown to be independent of

the angular position, ecuation (2.3-4). The velocity induced
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by the trailing vortex system from the duct at an angle of
attack follows from the law of Biot-Savart, and is derived
in Appendix C, specifically equation (C-12). If this equation
18 substituted into equation (2.3-3) along with cgquation
(2.3-4) an integral equation for the vortex circulation is
obtained. In this section the flow is &ssumed uniform so
(1- weq) = 1.

1 2w

b Itz =2 cos(P- V¥ (@,2) dP’ | 4
[(z *) [ [#h2(2 -2)" + 4sinty(@-@)
[¢] o

12w

dta _ ot 4/\(2“2') érd'¢ldzl
+ l:/’ﬁcofz (¢ ?)]‘7[4/‘&(2 207 ‘/51n22"(¢—¢')]'é + /}adﬂ

L
oo

[

o[ et +aveorg] Jreatlien -aae

=~ H(Z) —4irety cos? = H,(Z,@P) (2.8-3)
where
£, S £Z <
ﬁ-Fﬁqffl ) °

The term H{z) is the same as given by equation (2.4-3)
and the evaluation of the integrel in H(Z), which has a
singularity in the integrand, is discussed in Section II.4,

Equation (2.8-4) is a singular integral equation of two

variables for the circulation distribution. The inversion
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of an integral equation of this type is not in general
possible. Weissinger19 encountered this integral in the
problem of the thin annular airfoil at incidence and reduced
the two variable integral for the circulation to a one-
dimensional integral in terms of the Fourier coefficients for
the circulation. Following his procedure the circulation
Y(z,9) and the function Hz('z',ﬁ ) are expanded in a Fourier
cosine series in ¢/ . This involves a restriction on the
circulation that it must | continuous in the angular

direction, but from a practical point of view this presents
no difficulty.

vz 1’}.—. Zg,. (Z)cosn ¢'

(2.8-4)
Hg(t-’,t?):Zun(Z)cosmP (2.8-5)
nso
where pe
wtel)=d [r @) 2)de’
0
T (2.8-6)
gn(z) = 7| (@ Z)cosn@d ¥’
-
LU
wolZ) = 5= [ He(¥Z)do
“tr
w (208"7)
un(Z =T—I’;]H¢(‘p, 5)605n¢d¢
ar

A cosine series is used since the flow is symmetric
about a vertical plane in the direction of the z-axis (See

Figure 5) and hence the circulation and radial velocities

are even functions of @ .
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Substituting equations (2.8-4) and (2.8-5) into equation
(2.8-3) and interchanging the order of summation and integra-

tion, the following is obtpined

! m

ST Rl WA b5 cos(¢ - 9'Jcosn @' O’ '

Ln(eosnd _;(ﬂja rE12h(E2) [ R Z-2) + wm‘é«o-er')]“]"z
r

!

m
. /) " ’
-rh [g eehz-2)| f s e AN

K(z-2 o+ 4 sinP k(@ -

=1

! (L
-nhj;,,(z') [)[Sin m?‘ccfg'ﬂﬁ-‘i"')a'tﬂ']dz')
o - /
(2.8-8)
but, see Reference [27],
r . Ty
f sina@'cot 3 (@ - P)de' = 2 f it S 4 = ~2mcosng
. ° (2.8-9)

)
and making a change of variable, 08' = (%1) and using the
trigonometric identity cos n¢"' = cos 2n0’ cosnd - sin 2n8' sin ng

if -7
f cos (@ -@)cosn@'de’ = -2 cos2e'cosng’de’
-

W(E-2)E 4 ¢sitd(@-P) % |[¢h¥z-2)" + 45in*E] %
$F

i ]
! ] / ) ] ’
:2605”@ __C_OZE"QCOSEQ d‘e. % __25,'” nq;[.rSMEhé‘coSZO 492 .
[442(2-2')2 + o sin®0] Jl4#2(2-2)2 + 4 sin* o
_yé ’”Ié
LA

= Ycosn cos2ne'cosze’'de’
[HEE -2’2 + o4sinte]* (2.8-10)
°
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The {ntegral involving sin 2n9' is zero because it is an odd

function of 8'. Again introducing the new variable Q' =

( JE%JEL ) and the trigonometric identity sin ng' =
8in 2n8' cos n ¢ + cos 2n6' sin n @

T %
sinn@'cotz (¢ -@")de’ 4eosng | Sinané'cote'de
[ UE(E -2 )or g sin(@~P) [4hrz-z2)2 + 4sint6'] R

[

(2.8-11)
(2.8-9), (2.8-10) and (2.8-11)
5-8), the following equation is obtained.

Substituting equatior
into equation (2.

! %

, 4(cosenO'cos2o’+ nsinend’sinze’lde’
,Z“" (Z)cosng ";‘:M zh( ﬁ n(z)eh(2-2) U[qhz(i-z')  dsintg TV

=] (4]

%

te!
. +Enh2(Z-2')2 7 4::(52"_3)‘.1 4:::,6],,‘ + 1rn ﬁn(zddz')

o

(2.8-12)
the coefficients can be
equated and an integral esquation of one variable is obtained
for the Fourier coefficients.

! ¥
Un(2) =2 h j gn(z)eh(z -z)r ?;:ii;ﬁ;fe':/.::I:;};:mea) de

Since a Fourier series is unique,

i
g 2 sin2né'cote’de’ o ot
+8 n H(Z- z)ﬁ. B(z 17 ‘/:m=e']"‘;'+amh gn(2')dz

(2.8-13)
Before proceeding further with the solution of equation

(2.8~ 3) the Fourier coefficients u,(z) will be examined.




51

Substituting for Hy(f, Z) into (2.8-7) the u,(z)'s are given

as
u(z) = - H@) (2.8-14)
u (@) = -4met, (2.8-15)
u,(Z) =0 (n = 2,3...0)

From these equations it can be concluded that all g,'s
for n = 2, 3 ... 00 are zero and therefore only 8 and 8;
exist, also that g, is a f iction of shape only and g; of
angle of attack. First examine the circulation coefficient
8o » letting n = 0 in equation (2.8-13).

!

'da’
H(E) = —2’1[99(2')2/\(5‘1’)[ ’f‘;/‘:}(c;f::)‘l ,:y,ﬂy]“]dz'
o

/

= faﬁ’/_,e(mz-zy[m) -E(%)] -eE(#J)d;'

z-2)
(2.8-16)
This equation is of course exactly the same as (2.4-1),
thus it can be concluded that go(ED = ¥ (%) where Y'(%) is
the circulation distribution for the annular airfoil at zero
incidence. This equation (2.8-16) is solved in Sections II.4
and II.6. It shtould be mentioned that on applying the Kutta
condition, equation (2.8-2), the equation for the Fourier
coetficients g,, equation (2.8-6), implies g,(0) = g;(0) = 0.
As has been 3tated, gl(E) is independent of the chape of
the airfoil and dependent only on the angle of attack and
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chord-diameter ratio h . For n = 1 (2.8-13) becomes

! 3
_ nhrs_onl | Ylcos'28’ + sin*28)d e’
0 0

t

¥
ert/z el 2cos’e’ de’ '+ 21rh|a,(z)dz!
HaE-2) ﬁ%!(z-z’)% ‘/5:’»'6'_]%sz 3
0

~Yfrey =2 f gi(2)| (ﬁ (a -RYEE(R) - 4(1- 4‘)‘K(£)]dz + Zﬂ/js.(z')dz'

-ef?l——)— Wi(z-2)dz' +21rh[,(z')c/z’
(o}

(2.8-17)
where

Wi(Z-2) = (- RPER) = 40~ #) K(R)] (2.8-18)
#= gr—l—,z'—
(Z2-2')F +1
It can be easily shown that

lim [W(Z_"ZI)] =|

2z

1
By adding and subtracting T——')— equation (2.8-17) can
zZ -z

be obtained in a form similar to equation (2.4-5).

/ /

u-) = —27r - ' _Tz‘]_(f_‘_{_');' ’Tf’] 'Z’
f(’ 2y % = e fg,(z){ - T, 8-19)
° o

o

where
lim [_1_(‘1'_2_)"/] =0
292 (2-2)
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and this equation can be sclved by the same procedure as given
in Sections II1.4 and II.6. Since the sclution follows exactly
that of the previous sections with only changes Iin the Rernsgl

K(z, z') and in £(z), 2 complete derivation will not be given

here., Following the procedure of Section II.4 yields for

equation (2.8-20) the following Fredholm equation of the
second kind where z -(‘?I' )1 + cos 9).

Qe

gr(a) = (sinz'—e)g,(s) =80, co:i- 6~ cos 0’[ ba (9')6052 6

f

+(sin ;e)Zb,., (e')sfnmo])g,* (6')de’ (2.8-20)
where e

s

" b (,,.)_z;, " __[W(cose "cose') - | ] qb,/ (/)
At

o

b,y (8) =$[[T\/,(6056”-—60569 - /]wmey,:/
(-]

(¢ose" ~co36’)

(2.8-22)
From Section II.6 the solution of (2.8-20) is obtained
in the following form.

9 ¥ = 2y (052 6 - -smz-elecaf‘-Le 7 Asing + Ay 5in28
!
3

feee s b Amsinm) (2.8-23)

The Am's are obtained from a solution of the following set
of algebraic equations
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Ay (1-Cog)- A€ ol Azboz- C e e -Amcm-do
-ACy + Aj(1-Cpp) =AC, . .. - ACyp ™ d;
-Aocmo had Alcml - Az%z “ e e e o o +%(1 cm) - d
(208'24)
The coefficients Cm ar
mw
Com =Cif = —#[bz(aﬂof'(e%'ma'c/o', (i =018 m)
or more specifically
v
po[en, ., ,
Coo =+ Fh + 5 |4 (0)(1 +cos0)d0’
W e,
Co;"'g ~s7| &l (e")sin“e'de’
T o
Coj= -5 | B30 sing 0" sin6'd8)] (f=2.3:m
I 4 (2.8-25)
mw
Cio = "rirfb"(”') (1+cosg’)de’ li=)23m)
Cige -#fbc-(e')s'm;e'sm 6'ds, (if=h23 m)

In the preceding equations for cij the coefficients
b(l)(e) and by (0) are given by equations (2.8-21) and

. (2.8-22) respectively. The coefificients d, occurring in

the set of equations (2.8-24) are dependent on the angle of

incidence of the annular airfoii. They can be shown to be
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dm = d¢ =_/cos§’9’6"(a') (2o costo')de’
[«
r
= Efrot b;(e?c:»s'z’, e'de
[=]

= 2 freey f, (€=0,1,8, ..+ m) (2.8-26)
where

-F]:z

5’ J (e'),cosgs'a’é'
[~}

£ = (6)ca§26 de' = g, oo m)

J

Okﬂq

(2.8~27)
As can be seen from the form of the coefficients, the set

of equations for the A,'s are completely independeqt of the axial

coordinate 8. Once the A.m's are .det:ermined from equation (2.8-24)

they are substituted back into equation {2.8-23) fnr'detemining

gl*(O) or as easily gl(G) . The circulation distribution is

readily calculated from equation (2.8-4), i.e.

V@, D = g, +8 (@ cosy
= (zZ) + gl(i') cos ¢ (2.8-28)

In this section the linearized flow field about an
annular airfoil has been derived and has been shown to be a
linear combination of the airfoil at zero incidence and a term
involving the angle of attack but not the section shape. It
should be noted however that both :erms are dependent on the
chord-diameter ratio of the duct. Since ;hé circul~*_on temm
31(2) is independent of the secticn shape, it can be tabulated

for different angles of incidence and chord-diameter ratios.
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The pressure and velocity distributions of the annular
airfoll at an angle of inctdence follow from Section II.7
and as can be seen from equation (2.8-28), the effect of the
angle of attack 18 to add a term to the coefficient for the
airfoil at zero incidence. For ingtance the linearized

pressure distribution follows from equation (2.7-1), (A-15),
(B-10) and (2.8-2&) as.

(5R1,9) = 4 - o| We(ZRa) W (Z, Ry)|’
49—%‘#1—‘{——-&.-2[% R el

f

'ﬂr
h |22 [eos(@~¢!) ~ eosP! 1ot |4z
£gi(2)cosq - 7 fi?-f [ R g YT 9]%&_? sz
(]

o

- p [%:(z,na)]y , a[-‘g,’:(fa '?J)]? + (os@)[Plz) £ g, (2)]

(2.8-29)
where .

%’,;"{f’-'/"’d)y = induced velocity from vortex distribution

of the annular airfoll at zero incidence,
equation (A-~-22).

7‘”:’{5”4}3- = induced velocity from source distribution,
equation (B-10).

{
Py = -4 ﬂ“g—')
o

( -R[ER) - 3KR) + 3 ECA) - Ka?})az.

The integrand of the integral has a logarithmic singularity

at k = 1 and a square root singularity at z' = 1, To remove
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these first the variables z' =( -' )1 + cos 8') and

z =($ )1 + cos 8) are introduced, then the variable

(cos T -~ cos 8') = cos39,

amm_({/é}")
P(z) = 27;‘-} [ "(97[(‘# RIER) - (4-38°) K(ﬂ)]cosae'ca.s% s'de’
"‘“5(-'"»’2-('1717) (2 .8"30)
where
4=

“cos 6 heosbe' + 4
The lift of the annular airfoil at an angle of incidence

is given by equation (2.7-6) and equation (2.8-28).
Y !

CL=?T;;¢RJ ==t ((mﬂ [[9"") *31(2’)6054’]&' )cW
0o

! e
_zjg (z')[ fcos‘«quo ]dz'
3 o
f w
=2onfg(z)dz = =2 17"]9,* () cosgede (2.8-31)
]

o

PRI
[

The induced drag follows from equations(2.7-8), (2.8-28)
and (C-12) as

C %-_’;/ aﬁd [fgo(Z) +9;(Z}C05¢][—!(¢,PJ/Z)]EJ¢C/Z

=-ngl,(z)( fg,(z')[ i”—(jr—d[xw) E(ﬂ)]dz')

o
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T

ir
Co; = -hl;]f(o)cosé-e(jﬂffo’)cos—z'-al[ 8
J

(2] o

+ ‘-’"-"“2“""7 [xea) - £¢8)] }ds')de

where

P 4

= Wlcos6 ~cos6) + 4

The mozent on the annv ar airfoil about the leading edge

is
M T
O =g = f(com’)[ @, 2).’5-04:]#’
[>] [o]

(2.8-33)
Introducing the Fourier series for J and the variable
z -(v-é-)(l + cos @), the moment can be shown to depend only

on angle of attack and not the secticn shape.

.
Cu =-T [d¥e)sifLacossede
M ?ou'() ] o33 (2.8'34)

Some of these ccoefficients have been tabulated by Weissingerlg

(2.8-32)




111, Nffect of the Hub

N Assuming that the ordinate of the surface of the hub is

denoted- by x,(z) and a polar coordinate system attached to a

propeller blade is used, the linearized kinematic boundary
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condition which must be satisfied on the hub follows directly

from section 11,2 as

_V\ﬂ_/z@;,,‘!’,z) = = (1= Wy ) Xi(z) (3-1)
s

As before the velocities have been nondimensionaiized by

the ship speed and tihe radial cvordinate by the propeller
diameter.

x

P{xlplz)
v

Anlz)

Figure 4., Notation for the hub

Since the hub is a symmetrical body and is assumed to have
no angle of attack with respect to the free-stream velocity,

the shape of the hub can be reprzgented bv a distribution of

The function.xh'(z) is the slope of the hub surface

~(1 = W) %
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sources, doublets or vorticesso over the surface of the hub,
If the radial velocity can be suvwn to be independent of angle
and the hub is not too blunt, then the flow can ba represented
by a distribution of sovcces and sinks along the z-axis only,
as indicated in Figure 4., The velocity wr(!‘h’(?i z) in equation
(3-1) represents the whole flow field, i.e, it is composed of
the radial velocity induced by the annular airfoil with its
trailing vortex system, the propeller and the hub itself, 1In
terms of the nondimensional zed velocities of the individual

singularities equation (3-1) can be rewritten as follows

(s, 42),, =~ 01 Wi LAAA2) = Yy (5, 9)2)y = %:l(x;,,q”,z)f
- %(7(}.,40)2)3 - %(’(“I%zjf

= ~(1- Wy, )x(2) - Ym,@zly -2y (5.2)

Since normally it would be expected that the radial
velocity induced by the propeller and the annular airfoil at
the hub is small, it will be assumed that the hub source
distribution satisfies only the average velocity at the hub,
If the hub radius is zero, this must be satisfied exactly.

Consequently the radial velocities induced at the hub will be

expressed as follows:

21
W - L 1w
0
and
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ar
%0n2lp = gy j W n, 2
The use of these induced velocities means essentially
that only the averuge radial velocity at the hub is considered
and that now the hub can mathematically be represented by a
source distribution along the z-axis. Using equation (3-3)

the boundary coadition equation (3-2), now becomes

= =(1 =W, ).\ 2) - W (x4, 2), ~ ¥ (Xn2
G Hhap == WP % My - (3-4)

For the derivation of the induced velocities from a
distribution of sources and sinks along a line, consider first
a single three-dimensional source of strength qu( §£ ') at the
point f =§', r=0, In polar coordinates the stream function of

such a point source igl3 (sec Figure 4)

!
» - ___ﬁ_c{y + j - E
tné) = g | M -€y+re]* (3-5)
The stream function of an axisymmetric body is obtained
by integrating a distribution of sources of strength q,(z')
per unit length along the £ -axis from the after end (§ =bjp)
to the nose (§ = b,).

by
4 ' _§-¢ N\
(f’(rlﬂb = Vﬂ'fﬁh(f)(l + [({-f’)gff’g]’k df
b

(3-6)
The induced velocities follow from equation (2,2-10) by
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differentiating this equation.

-

s ol geide ]
] 4w [(,e 6)24.,'3]3’2 (3-8)

If the induced veloclty is nondimensionalized by the ship

Wr('if);,: “‘#
speed (Vg) the source stren *h by the shin speed times the
propeller tip circumference (27 R,Vg), the axial coordinate

£ , by the duct chord (a) and the radial coordinates by the
propeller radius (Rp), the induced velocities can be written
in nondimensionalized form as in section IiI., This scurce
strength has dimensions of l.e.ngthz ner unit time comnared to
the elementary strength of the ring vortex which has the

dimensions of length ner unit time.

-#(x 2y = 2 [3"’( )[%f(':r(z;)z"):;f Wi (3-9)
W(x,Z), - (2)dz’ i
;o ( ) [w(z%%e—]—’e (3-10)
where

o duet chord  _ _a&
~ duet diameter 2%4Rp

at the propeller z=o and the equation (3-9) becomes

Walw A) o _~r2h2’k(l') d!’

—_—1 n,u/h -

Y "'J[%‘z’" HE q% (3-11)

b,
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Sometimes it may be more convenient to nondimensionalize
the axial coordinatc by the propeller diameter, i.e. let
Zp = é;" then the axial induced velocity can be written as

followg

Ye(zo) = — L i".ﬂ_(‘ﬂ: dzgp (3-12)

‘'he problem now ie to find the source distribution qn(z')
which represents the shape of the hub. For this the boundary
condition given by (3-4) muot be used. From equation (3-10)

the radial velocity at the hub is
by
Weln,2 h(ZA gn(z!) dz'
%= xa) J[‘//ﬁ?z -2)® + (2 2P%
, %/

and then the boundary condition becomes

by’
LS ghiz’) dz’ . L
" (#) 1}_’4;;(‘-_ = = (' = Wy)Xy(z) -‘;:’ %hi2lp

-2)2 +(BF]"

- 2 (X4,2)4
v (3-13)

3

his is a Fredholm integral equation of the first kind for
the unknown source distribution qu(z). Direct inversion of this
type of integral equation usually is not possible end a solu-
tion normally involves an infinite series of eigenvalues of the
kernal and eigenfunctions, An iteration orocedure for the solu-
tion of this tyne of integral equation has been develoned by
Lanaweber31. In general, since the diameter of the hub is

normally small compared to its length (the hub is often assumed
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to be infinite in length), and the velocity distribution some
distance from the hub and not on the hub itself is desired,
further simplification can reasonablv be made. The ovrevious
statement about the effect of the hub essentially describes

the assumptions involved in slender body ‘.:heory30

and it is
this theory which will be applied now.

Laitone32 derived the slender body theory by expanding
the source distribution in « Taylor series., The first term
of this series gives the rr ult of slender pody theory. Apply-
ing the result from Reference [ 32] directly to equation (3-13),

the following equation for the source strength q,(z) results.

%((52)) 2 (] - wy) X,;(l) - nvj‘(xhlz)’c - %’f (% ,2)4 (3-14)

or

gnlz) = = (1 = wy) -i‘%g "xh(l)[-\%'(xh,z)ﬁ + -V“f'(xh,zu]

where A(z) = ﬂ'xhz(z), i.e. the hub cross-sectional area.
Equation (3~14) shows that as a first approximation the

source strength representing the hub at a point is a function
of the change in the cross-sectional area of the hub at that
point and the radial velocity induced at the hub surface by
the annular airfoil and propeller blades. The velocity induced
by the hut at any point in the surrounding flow field is
obtained by substituting equation (3-12) into (3-9) and (3-10).

If the hub is of constant diameter, then the slopve is zerc
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Gch'(z)=0) and the source strength is a function of onlv the
velocities induced at the hub by the duct and propeller. If
the hub is assumed to be jnfinitcly long, then by=- o and by

=90 in equations (3-9) and {3-10), From a practical point of

view this presents ne nreblem since the point for which the
induced velocity is desired (?'c,z) will be at or close to the
propeller and therefore at large wvalues of 2z the integrands of
equations (3-9) and (3-10) become small very rapidly, as 7%
for the axial induced veloci y and 1 for the radial induced
velocity, and the integral can be shzwn to converge uniformly.
Furthermore the slope of the hub must be either zero or undulate
some dietance from the nropeller. Consequently the hub shape
some distance from the nropeller has no affect on the flow

through the propeller. It would be expected that in the normal

case the velocity induced by the hub at the duet woull be negli-
gible.
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IV. Circulation Theory of the Propeller in the Duct

Iv.1l Introduction and Assumptions

The circulation theory as apnlied to nronellersg is

analogous to lifting-line theory27

of wings of finite length.
The main difference, which considerably complicates the flow
field, is that the trailing vortices which were assumed to
lie lay in the plane of the wing now lie along helices. In
the rotating coordinate systam these helicoidal vortex
sheets are stream surfaces s are the vortex sheets behind
wings.

Lerbs has developed the theorv of the moderately loaded

33 and his general approach will be used here.*

propeller
In this theory Lerbs considers the influence c¢f the induced
velocities on the shape of the helicaliyortex sheet at the
lifting line but neglects the effects o; centrifugel force

and of the contraction of the slip-stream. In addition, the
change in shape of the vortex lines are neglected in the

axial direction, i.e. they are of constant nitch. These same
assumptions will be made here and further it will be assumed

that the influence of the duct on :che change in the shape of

the helical vortex sheet in the axial direction can be neglected.
It should be mentioned here that the vortex sheets are not
necessarily true helicoidal surfaces since the pitch may vary
along the radius but each vortex line is assumed to be of

constant piteh.

*Many of the derlvatlon glven 1un this chapter follow closely
unpublighed class notes of Professor J.V.Wehausen on '"Hydro-

L LUVULE
dynamics of Shlps," University of Cslifornia, Deirkeley,
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In addition ta the effect of the duect on the propelier,
the radial velocities induced on the cylinder representing
the duct by the propeller must also be considered. For this
reason the induced radial velocity of: the propeller must be
derived in more general terms than was done by Lerbs,

In the following development the free-stream velocity
will be allowed to have a radial variation but must be
axisymmetric and the propeller may take any axial position
in relation toc the duct, Tr. other major assumptions are
stated more explicitly in Section I,

The boundary conditions imposed on the bound circulation
is that it be zero at the hub,33 [ (Rp)=0 and if Rq> Ry then
the circulation at the blade tip is zero, ['(Ry)=0. If the
diameter of the duct and propeller are equal (Rd=Rp), then
the circulation at the tip need not be zero. This last
statement comes from the fact that no equalization of pressure
takes place around the blade tip if there is no clearance
and the duct is sufficiently long. From a practical point
of view, because of the boundary layer, no equalization of
pressure will take place if the tip clearance is small, The
determination of how small is sufficiently small requires
an analysis from boundary layer theory. This is not treated

here,
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IV.2 Induced Velocities from the Vortex Lines of one Propeller
Blade

The flow field of each propeller blade is considered to
be made up of a system of horse~shoe vortices lying along a
helix. The elementary system used will consist of three parts;
a single helical vortex line, the bound vortex lying along a
radius, and another free vortex line along the negative £ -axis,

This system is shown in the following figure.

g4
P Plkeos®, vsin )
”~ - - /
; i /'//
R 4
8
/ ’ /'{
/) /
P"[cos(Fp+)) 1o sin(%p +%), 12 tansi] / *
W ~ F
SF E €
() I ﬁ
P'(tscosdp, to sin )y, 0)
(2
1/9

Figure 6. Propeller vortex system
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The point P, is the point at which the induced velocity
is desired. It is assumed that one blade is located omn the
%-axis and another at the angle . Letting (b) be the number

of blades the angle ¥ is given by

= =,2 s e 0
Go=tp-0fF o, p=hfint (6.2-1)

The location of point P is takeun as arbitrary, Only the
radigl velocity is needed t¢ satisfy the boundary condition on
the hub and duct so only the radial velocity will be calculated
at the arbitrary npoint P (r cos ¢ , r sin¢,£§ ), The axial
and tangential velocities induced by this system are needed
only at each blLade. Since the blades are assumed to be identi-
cal, it suffices to consider only the blade along the %-axis,
i.e. at the point P(x,0,0) = P(r,0,0).

In Figure 6 the other singularities representing the hub
and duct could be considered but since the strength of these
singularities are dependent on the induced welocities from the
propeller vortex svstem this procedure is not practical and a
method of iteration must be used. The other singularities
affect the hydrodynamic pitch angle /3 shown in this figure.

The velocity induced by a singie helical vortex line
follows from the Biot-Savart law, and is derived in Amnendix D,
Designating this contribution to the induced velocitv bv a super-
serint (1), the radial velocitv induced at an arbitrarv pcint P
by a l.elical vortex line leaving from the pnoint P'(r,cos %o,rosin

¢ p,0) follows from equation (D.8) as
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[}

w0 T [ [ 6608009 ) = t5in(@- Gy =) ¢ weos(@-fp-ultungs | i
‘HI'J \ lr2+r2 +(Z~ rufan,&)g-af"’ cos(P - 4’f"")J%

(402"2)
The axial and tangential velocities induced on the pro-
peller blade at P(r,0,0) by the same vortex line is obtained

from equations (D-7) and (D-9).

[}
wi = I’fs ~¥cos(@p +) _
“ [r’ v -2 ;’n,cas(q’,, te)+ yﬂ,‘lf‘w‘]% (4.2-3)
(/) I"r; ang, V-thcostPote) — Vo Sin (i@ 4o ) doc
(D"m‘ —Errhcos(Fp ve) + Kt ol tars; ] ) (4.2-7)

The veloclty induced by the vortex line along the z-axis
again follows from the law of Bint-Savart. Using the desig-

nation sunerscript (2) the induced velocity is

AN [ - _[_rcosg)?’ + (rs/ngg;—gflx [OZ’MZ +X)
V: 1 - IMf df

41:0 [rReos*®@ + vesintq +£2]%
(4.2-5)
ﬁ-(rs;nq’)c -(l’caﬁ?)f] ; F [(Vs:n@c "(Vcoscf){}
“”J [r? + fz]’/z v vz

From this equation it can be seen that the induced axial
velocity from the vortex along the z-axis is zero i.e. (wa(2)=0)
and also, as would be expected, the induced radial velocity is

zero, This follows from equations (4.2-5) and (A-1ll),

()
Wy = - - -
i’ Wrra( vsinbcos@ - ypcos¥sin®@) =

The tangential velocity follows from the same set of

[
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equations and is

e) 7 R
VW = wnm —— 5 —teem
¢ lfn’ra[ ksinf @ reo 4,) = ‘l‘ﬂ’f’

(4.2-6)
The induced velocity from the radial vortex line (lifting

line) is also obtained from the Biot-Ssvart law and is

[‘(rc‘oscP V'Cos@p)d +(recosp - rSM#)i +€I]X [eos@yd +5"’45’°#0m¢/

r
o
v -

°
]

e L (ctsingpiZ ¢ cosgl] = frsintp- @JE\ 4,
¢t [f +réispt ey’ c‘os(tf-t?fa)]%
[~]

[4-‘ +p2 It mppricos(P - ff')]’/g

(4,2-7)

- 1 = tcos(¥ &) rcos(@-t)
‘/ﬂ'[{' + ¥ismi(P- %)] [ E2 +rit ) =2 vk cos(P ~%) ¥ /(e + 1) ]

. [(-—g‘sm&,)? +({c05¢1‘o);-[r5in(¢—¢f)]z-j
(4,2-8)

The axial induced velocity of the lifting line is given

by the coms “nent in the & direction.

ay_  [rsin @ - ge) tp = Fcos(P -Fp] + Feost@-4p)
Wa™= (€% + resin(@~ gt;q)][v;z“,z,_,‘ ~2rhcos(¢- “’f’) '\/(-F‘_H’_')
)Py #P tnm, n=o,l,2..) (4.2-9)

For ¢p-¢: nr , (n=0,12...) it can be shown that Ya <3)"

At the reference blade @ =0 and 2z=0 and the above equation

reduces to

U)-_:'L o —¥eos = -t ¢osq, { ,(mr,ngo,/,z...)
MULLL AV P cosdp Pr o qo’a

(4,.2~10)
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and if (Fp =+ nm, (n=0,1,2...) wa(3)=0

The radial induced velocity feor an arbitrary point

P(r, ¢,2z) is obtained from equation (4,2-8) cs

wildl, - F[Esin(?-%)] b =rcos(P-%) 4 reos -%)
4 ymfet+ r?sin’(cf-%)] E2erisnE ~2vhcos(P-4,) et v r)
(4.2-11)

For & =C or c?:tfprnn'.(nw.- h2...), w'V =0

The tangential velocity at the propeller blade is zero
(wt(z’):o). This is obvious since at the blade § =0 and by
equation 4{4,2-8) both the -f and 3 components are then zero.
No singularities occur in equations (4,2-10) and (4.2-11),

This zan be seen by examinaticn of equation (4.2-7),

, The induced velocities at a point P from the three vortex
P

lines is obtained h»y summing and at the blade, P(r,0,0), are

(wa) = wau) + wa(”, wa(2)=0 (4,2-12)
where wau') is given by equation (4,2-3) and we(s) is given by
equation (4.2-9)

(wt) = wt(l) + wt(z), wt(3)=0 (4,2-13)
(L

where w, is given by equcation (4,2-4) and wt(Z) by equation

(4.2"6)0 ’

The radial velocity induced at an arbitrary point P(r sing@,
r cos@, §) is given by
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(3)
(wp)p = wr(l) swp w P e (4.2-14)

(1
where wr\ is given by equation (4,2-2) and wr(S) is given by

equation (4,2-11).




\
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IV.3 1Induced Velocities from the Vortex Lines from
All the Blades.

As discussed previously the blades are assumed to be
evenly spaced with one vertically upward along the positive
R-axis and the helical vortex lines shed at a given radius
are assumed to leave all the blades at the same pitch., The
velocity induced at one of the blades by the horseshoe
vortices from all the blades is desired. It ig sufficient
for this purpose to consider the blade &long the vertical
X-axis as the reference blade and calculate the velocities
induced at & point P(r, O, 0) on this blade. Also desired
besides the velocity induced at a blade is the radial
velocity at an arbitrary point P(r cos ¢, r sing, £).

First consider the velocity components induced by the
helical vortex lines shed from the blades at the radius r -
The total contribution to the axial and tangential components
at any one blade is obtained ty summing equations (4.2-3) and
(4.2-4) over ;ﬁe mmbter of blades.

(w ) =_I:r§Z - Feos(Py te) de
* % [r?+ -2rrco,(¢,+«)+ 1t ta il J#

oo
P (4.3-1)

iy tsfang, ¥ =5 [cos(@ ¥} + 5n (Hp +ac)] du
(e Ib Perit —2¥ttos(fy+a) + 1 3;‘-,,,/! £
(d

(4.3-2)
The radial velocity induced at an arbitrary point

P(r cos ¢, r sin¢g, £) by all the vortices shed from r, is
obtained from equation (4.2-2) as
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#(8 -1 fan:)® ~ 215 cos (P~ -)]

(4.3-3)
The velocity induced by the hub vortesx ccnsists only
of the tangential component. Summing this component results
in equation (4.2-6) being multiplied by the mumber of
blades, 1i.e.
.
(w ))bff?r'r (4.3-4)
Finally the velocity components induced by the vortex
along the 1ifting 1line will be discussed. At the reference
blade {tseif oniy the axial component will be considered as
on the blade both the tangential and radial velocities are
zero. Referring to equation (4.2-10) it can be shown that
there is no contribution from this component either, i.e.
(wé(3)hb = 0. In the first place there is no contribution
from the reference blade itself nor from a blade opposite
it, i.,e. for n = 0 and 1. The effect of the other tlades
must cancel in pairs since Py = - Py, P - 1 = - <P3, etc.
Consequently, since sin CPP = - sin ( - <Pp) and cosCPp
=cos ( ~-@ ), it follows when equation (4.2-8) 1s summed
over the nuwber of blades that (wa£3))bo=°°

The radial velocity induced at an arbitrary point

by the radial vortex lines equation (4.2-11) does not cancel.

This velocity follows by summing equation (4.2-10) over

the number of blades.

=i 1o [3MIF ~fy-oj +xcos(@ ~¢g -] .-".:»1,4_;]&“
2




b

(W), = —FE in(4-9 { —reos(d -
b, lLeey V?smf(tf—ﬂp §‘+ re+ KR -2Vl cos(@P- 4’
f;
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rcos(«'ﬁ-"mn

(4.3-5)

For § = 0 or ¥= <Pp +am (=0, 1,2,...), (w1§3')§5o=o..

The integrandscf the integrals for the axial and tangen-

tial velocities on the blade, equations (4.3-1) and (4.3-2),

are singular., To facilitate numerical calculation of these

integrals the '"induction factors"33 are introduced.

are nondimensional qualities of the induced velocity

These

components and are a function of geometry only. They are

defined by
(l) = ﬁ (2) .._.__F’_.__
Ol S 41r(r-r) and (i b= TmirRy

(4.3-6)

From equations (4.2-3) and (4.2-4) it follows that the

axial and tangential induction factors at the blades

are

L - cos (4 tot) do
ta.(—-’ (-‘){I Zj l.["’("e 2(5 Cas(%*‘“)"'(-""dehnﬂ]%:i

(4.3-7)

b ]
o(8) = (51— B s I-I-(ﬁ)[cos(q;d-a) - s/'n(c,ﬂ,, +a)] dec
&(3) (r}(l r)"a /’Z[l_p *(-?)2-2(-5-%05(4’,,+«)+{.?_)2,f-la.,:45]%]

(4.3-8)




In the limit as r — r,

, . y - .
l’f:f:; (.g(-f,) = (.os,dg
end

' e o) = si 3
;'rlrrs e(F it

The induction factors have been tabulated by Morgan34
and are given in graphical form in Lerbs' paper.33
Details of the method of caiculating the induction factors

33 and Wrench?s.

are given by Lerbs
The total velocity indv 2d by {(b) vortex lines is

obtained by summing the different velocity components.

This sumning does not represent the total velocity induced

on a blade by the system of vortices but only from a single

horse-shoe vortex on each blade. To obtain the total velocity

induced at a point from all the horse-shoe vortices the

sumied equations must be integrated from the hub to the tip

of the blade. The circulation strength /* of a single

trailing vortex is related to the total circulation along

the blade. From wing theory27 it follows that the strength

of this elementary vortex is j%; where /ﬂ(ro) is the

total strength of the bound vortex on the blade. With this

notation it then follows from equation (4.3-6) that the axial

velocity induced by the propeller at one of its blades is

Re
wuttp = g | S22 B
b

(r-5)
(4.3-9)

and from equations (4.3-4) and (4.3-6)
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Rp

[_b/"’_@) +/.i/l¢/_"t.(ﬁ<//s} (4.3-10)

dn (v-1)
Ry

If there is clearance between the blade tip and duct,
then as discussed in sectio (Iv.1), the circulation at the
tip is zero, f"(Rp) = 0, and the first term does not exist.
For convenience both of these equations will be non-

dimensionalized; let

T reference radius
xa-———- o=
Rp propeller radius
x = Xa - radius at which vortex is shed
o Rp propeller radius
X = Rh., _  hub radius
Rp propeller radius

and for the circulation

6625%{4= (1-w)G = é!,r:p;'!—y%,)
(4.3-11)
If the free-stream velocity is constant, then the free-stream
velocity w, is used for nondimensionalizing instead of the
ship speed Vs.

Introducing this notation into equations (4,8-9) and

(4‘\'3-10) the induced velocities are given in nondimensional form.
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)
watt _ 1| dG !
wrez f d % (x-xa)c“dx°
An
(4.3-12)
and
)
- 1 ¢ des _!_/
_'(ng 2 [—3_ Gs(1) + f 3?6: (x-1) ‘tdx"]
)73
or
(X) b6 (1) ___Lf G ! L dx
1/J 2:: *2) % 7(-7(.)“'61,o
(4.3-13)

The integrand of the integrals in these equations are
singular at x = x,. Lerbs33 has discussed both these equations
except that the equations were derived for a propeller without
the duct so that Gs(l) = 0, This term causes no difficulty,
however, 1if it is rewritten on the left-hand side as shown

since Lerbs deals with the same integral.
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IV.4 Thrust and Torque Developed by the Propeller

The thrust on the propeller follows from the law of
Kutta-Joukowski, equation (2.7-4). For each element of
each blade this law staice

dT =V Idr = p [lr) (0¥ =Wy =~ Wip)dr (4.4-1)
where

w, = 27 (rps) is ' e angular velocity of the
propeller, w.q is the tangential velocity
induced ‘at the propeller blade by the duct and
includes the tangential induced velocities from
the ring vortices, ring sources and duct trailing
vortex system. wfp is the tangential induced
velocity by the trailing vortex system of the
propeller, equation (4.3-13).

For the thrust the velocity V is the total tangential
velocity by the propeller 1lifting-line exciuding self-induced
velocities. It should be noted that by assumption in Section
II1 the tangential induced velocities from the hub are zero
and for a lifting line the self induced velocities (wt(3))
are zero. The total thrust is obteined by integrating this
equation from the propeller hub to the tip and summing over
the number of blades. Since the thrust of each blade is the
same, the thrust of one blade is multiplied by the number
of blades.
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2 i
T =0 bj ;(m[aaa ¥ = Wy () = vy, ]dr
R4
(4.4-2)
Tais equation is nondimensionalized using the same
notation as for equation {4.3-11) with the added definition

of the advance coefficient

7
/ = A
As = ZouRe (4.4-3)

and the thrust coefficient of the propeller <
I

o g = X Yy Vo) dx
(Cre)y = ZaEe w%_(oof iy )]

be Cbalints)

xh
If the free stream velocity w, is uniform over the

radius then it is used for nondimensionallzing instead of

the ship speed. The subscript "i" is used to denote that

the thrust is the thrust in an inviscid fluid. The total

thrust of the ducted propeller is given by adding this
aquation to equation (2.7-9).
The torque i1s also obtained using the law of Kutta-

Joukowski., This law gives a tangential force at each radius

which when multiplied by the radius and integrated over the

blade length gives the torque per biade.

4G =P Wy =0 TH[6lh) + iy + iy + wip) d¥
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where

wo(r) is the free-stream veleaity
Yah is the axial velocity induced by the hub
Wad is the axial velocity induced by the duct

Yap is the axial velocity induced by the trailing
vortex system of the propeller, equation (4.3-9)

Integrating this equaf‘on from the hub to the blade tip
and multiplying by the number of blades gives the total
torque of the propeller.

R
f
Q= ijfrfh7[ngadf-uab-+M¢n-+nankh

R (4.4-5)

Nondimensionalizing as before but defining a power coefficient
as

Waa
A ~a

the nondimensionalized form of this equation is

!
b _ walr), , walr) Wa (k)
XA =

where (l-uk) is the wake.
The ideal efficiency (inviscid) is given by the ratio
of the total thrust to the power, i.e.
o CasilptCnid = Cald ¢
where (ctsi)d is the duct thrust given by equation (2.7-9)

Cegy)
T1p = Smfﬂi_g = ideal efficiency of the propeller

Cosy
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IV.5 the Integral Eguation for the Circulation

The free helical vortices lie on stream surfaces and

are assumed to have the pitch of the resultant flow angle

at the lifting line. The velocities at a radius x are shown

in the following velocity diagram.

F'M.n

P
% / e "

/ V(1 - %) = W(x)

Figure 1. Velocity diagram of the ducted propeller
The helical vortex is shed at the angle /34 which isa

commonly called the hydrodynamic pitch angle.

The angle /3
is the propeller advance angle.

From this velocity diagram the following equation is
obtained for tan/ai.

Wo(X) + Wa + Wi + Wap
w(,x "’%J -WfF

tan/ei -

(4.5-1)
. (1- wy) + % +-§,§‘J + %f

X o Wy
Ag Ifsd %f

[ —
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Substituting in for "{;fr and %’tp , equations
/1
(4.3-12) and 4,3-13) this equation is obtained in terms of

the unknown circulation

|

w4 wen 1 [ 46 1,
as (-wi) + P+ G +2L,[Adla (x-1.) adty
ans, = T
X _wd _Lbgp-tide 1 _;
AT Y 7 %xa 5_/%’,«4.)“‘{"’
7

or

1 .
3 x] db __'__lz,m,aa +éa.]dxa . [l - 2 el
h

d % (X’Xo) 2_; T/s
~(1 = W) -%}’;h - -V%" (4.5-2)

with boundary conditions
o if Ro # Ry

Gs(xh)=0 and G,(1) {A If Rp = Ry

This last equation represents an integro-differential
equation for the unknown circulation distribution which will
give the desired thrust. Lerbs33 gives a numerical method
for solving this equation so only a few remarks will be
made concerning it. The left hand side of this equation is
the same as Lerbs discussed but the right hand side contains
velocities Induced by the hub and duct and, in addition, the
circulation at the tip, if it is not zero. Since the rlght

hand side is assumed kncwn in either the free-running or

ducted propeller case, this does not affect the solution method.
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In e strict sense the induced velocities of the duct and
hub at the propeller depend on the propeller circulation but
because of the complexity of the problem these velocities
must be assumed known. Ts consider that they are dependent
on the propeller circulaticn in equation {4.5-2) implies
that the circulation distribution representing the nozzle,
the source distribution representing the hub, and the propeller
blade circulation must be determined simultaneously., This
of course is not possible -nd it 18 necessary to resort to a
method of iteration. Tor instance, the duct and hub problem
could be solved separately without the propeller and then
using the resulting induced velocities the propeller
problem solved. This process is then repeated, using each
time the last derived inducaed velocities, until satisfactory
convergence is obtained.

Equation (4.5-2) is in a general form as the free-stream
velocity may vary radially (wake-adapted propellers) and the
circulation distribution need not be optimum. In addition
this equation applies to moderately loaded propellers* as
well as, of course, to lightly loaded propellers. These

various cases are discussed by Lerbs.33

* The difference between a moderaiely loaded and a lightly
loaded propeller is that for a moderately loaded propeller
the velocities induced by the helical vortices are
included in the caiculation of the angle at which these
vortices are shed wh{le for a 1lightly loaded propeller
their effect is ignored.

E——




IV.6 The Optimum Circulation Distribution of the Propellex

For the free-running propeller a question arises as to
what is the cirxculation distribution so that a propeller
produces a given thrust with a minimum amount of power. This
optimum circulation distribution is, of course, based on the
11fting-line theory and an inviscid fluid. For the ducted
propeller a similar question arises but the force on the
duct itself enters the problem. The problem cculd also
include determination of th. shape of the duct as well as
the propellar circulation distribution. Dickmann and
Weissingerlo have considered this problem, the optimum
shape of the duct, but for ducts of zero thickness an. a
simplified representation of the propeller,

The combined problem of optimum duct shape and optimum
circulation distribution along the propeller blade is a
formidable one since it 1is not possible, within the concepts
of the theory developed here, to obtain the interference
velocities in explicit form. This can be seen by referring
to cquation (4.5-2) in which it 1s necessary, in order to
obtain a solution to assume that the induced velocities from
the nozzle and hub are known and not functions of the circula-
tion. For the same reason it 18 not feasible to take into
consideration the total thrust of the ducted propeller system
but to consider only the propeller thrust.

The problem, which can reasonably be solved, reduces to

the determination of the circulation distribution on the
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propeller blade so that the propeller produces a given
thrust with minimum torque. This approach duzs not
consider whether or not for this optimum circulation
distribution the complete ducted system produces a given
amount of thrust with minimum torque. For this reason the
problem posed 1s somewhat academic and is discussed further
only for the sake of completeness.

In the followlng analysis it will be assumed that the
circulation at the blade ti 1is zero, Gs(l) = 0, and that
the free-stream velocity 1s a constant, w,(x) = w, or
(1 - w*) = 1, This essentially reduces the problem to a
free-running, woderately loaded propeller in uniform flow
with the addition of velocities induced by the duct and hub.

Nondimensionalizing with the free-stream velocity, the thrust

coefficient, equation (4.4-4), and power coefficient, equation

(4.4-5) become

!
L A X o (M 4 M ] d
(Cre'),, -vgf?p"ﬂ’%z ‘45%[6('()[;\ ( v —w?)J X

(406-1)
and
/
o & : () Wa(X) WalY)
G = é‘;?;;m: - _%é. xe(x)[: + %o_ﬁ + P 4 —pr]dx

X

’ (4.6-2)
where

1'1'0
A= WoRp

——— —
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The propeller induced velocities, LA and Weo in these
equations can be replaced by their values in terms of the
circulation distribution, equations (4.3-12) and (4.3-13). ‘
After integration by parts the thrust and power coefficients

can be written in terms of the derivative of the circulation
distribution.

} x
- X W {x) ] P RN .1 , '
(Cr,lp=-15 [ ((“ D) [ sl - L [e(x,)[ [ e ]Ax, 6l
Xh % X Ly \
(4.6-3)

and
u

_ ¢6 Py
Cpi = l\xab’L_/’

Wa.(x) _ W&lX}d XCIX + Z:IG(L)[IX mq(’?’i)c/x’]dﬁ’o}dff)d‘(

(40 6-4)
In thls form the thrust and power coefficients are

functions of G'(x) and not of both G'(x) and G(x). The

problem is to find the circulation distribution G(x) so that

the power coefficient (cpi) is a minimum while the thrust
coefficient (Cri%,remains unchanged. This is a problem in
the calculus of variaticns.

A small variation is now taken of the slope of the
circulation distribution, f.e. G'(x) + J G'(x) represents
the value of the slope of the circulation distribution in a
small region surrounding the point x and at the end pointeg the
variation is zero, ch'(xh) =dG'(1) = 0. If the circulation
distribution is an optimum, then in this small region
CTi[G'(x) 4wa'(x)]p and cTi[G'(x)] have the same value.

If second order terms are ignoroed, the difference
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Cryl6'(x) + JG'(x)]P - C-,-i[G'(x)]p is obtained as follows:

(6Cr) =y, 600 +46] —G, (x)] eb[ ( j;@(r,) / Q("’)Jx]c{k G0dx

# ’(h
!
3 ' 1
_L,bf (m ot -x2) j&.ugx/ j;&r,)[[m)q ;;g)dx]c/xa ) 46 (x)dx
%A xAp () (3
{ x fl X A
= "‘j'(x%\w‘ ﬂufﬂ//‘l"‘el "(&)[j(;, = )"(x"')"'”'j(z' ) el ""J )‘{GMJX
h h 2 Xh %

=0 (4.6-5)

Ti)p 1s taken as zero since within
the variation in G'(x), Gp[G'(x) +JG! (x)] - C”_[G'(x)] is
taken as zero. A first order variation 4 C
defined as

The variation (J'C

pi may also be

/

X
JC,,, =Coc 61) +4C fx)] ~Cp, [G(x)]f, = [(JG'A’)U a(x’)dt’}dxo)G(X)J/

i x & / o X
-‘gb/ (=) ﬂ W‘“&+-‘%"”&}x’dx’ f ’(&)M oy )Jx}/xo)o@&’k/x
T 7,
/
[ (( ,u/[ b+ WW‘_JIxo‘x’ + J-fé ) U ool e -—,q?)rfx}f )JG(Y)JX
X
=0 (4.6-6)

The variation o C 4 must be approximately zero for a

sufficiently small variation in order for C pi to be a minimum,
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Actually C , by this analysis can be a maximum or a minimum

and to shozithat: Cpi for the optimum value of G'(x) is a
minimum {t should be shown that cpi[ JG'(x)] > 0 for
d# 0. This is not possible without knowing the form of G'(x),
however, it would be expected that Cpi is a ainimum.

By equations (4.6-5) and (4.6-6) both Jcﬂ and JC,\,
are zero for all JG6'(x) ( d sufficiently small) and this
can be true if and only if the integrands of both these
equations are proportional.. The equation that the circula-

tion distribution must satisfy is then the following:
Xo
o ! )
(7_11 %.del é G(Ko) I;, ) (p{lﬂ)dx +_[“' = lt(.g-, Jx')J%

ﬁéﬁ f’[w,‘ + !é!l)]xc/x +—’-I g,-g)dx' + j(:, ] (a(%}dx)dxa

G(X.)(Jlx Ml_;f( +A 7"‘,[7‘)]4” + 1,_”[( Az'("(%)]dx')dxg

Xy

X
=(T' -A)(xt-x) ~2j 8 v (xY + %ﬁ'(ﬁ;.)dx'
A

(4.6-8)

This 18 an integral equation of the first kind for the
circulation distribution in terms of the constant A. As
discussed in section III direct inversion of an integral
of this type is usually not possible, however Landweber31
has discussed an iteration procedure for this type of integral.
The solution of this equation will not be discussed further.

Once the form of the circulation is obtained then the value




91

of the parameter "A" can be calculated from the equation for
the thrust coefficient equation (4.6-3), and the value will
depend on the value of the thrust coefficient.

If the propeller is a free-running propeller, then

we(x"') w,(x')
L and -2 d are zero and this equation (4 6-8)
L Wo
reduces to that for the optimum circulation distribution for
a moderately loaded propel r*. (The velocity induced by the
hub is usually neglected,)
By interchanging the order of integration and then integrating

by parts,equation (4.6-7) can be written in the following form:

R

4 wlx!, W(X’ ’ b4
(% - ) el e f( L ieo)dx

1
>

P+ !&ﬂql.+lﬁgz\+-!ii4pixd1’ J[é%gg?ékéngx’

f

Ah

After differentiating and inverting, this equation becomes

1
(14355 3 2 4 gy [ XEag) e

X wx) welx g(xg
[7 “w Y T w P] 7 ik % ()’
If the integrals are zero in this equation, then from
Figure 7 it can be scen that this implies x-tan/3 { = constant.
This 18 mentioned in light of Betz's theorem which states that

* This particular form was obtained by Prof. J.V. Wehausen in
his unpublished class notes for '"Hydrodynamics of Ships'.




for a free~running lightly loaded propeller the circulation

distribution is optimum 1f the angle 7, satisfies
X tan /4 = conatant. Xt is not obvicus that equation (4.6-9)

will result in this theorem even if the propeller {s

assumad to be freas-rumming and lightly loaded,
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V. Interaction Effects

When discussing the duct and hub in Sections 1I and III,
the form of the propeller induced velocities was not included
because they had not yet been derived. This section then will
deal mainly with the effect of the propeller induced ‘velocities
on the duct, however, the equations for the duct and propeller
induced velocities at the hub will be given in a more explicit

form than in Section III,

V.l The Duct Trailing Vortex System

Ag gtated in Section II, when an annular airfoil is sub-
jected to a radial velocity which is dependent on the angular
nogition, a trailing vortex of strength ﬁb i
each point (@ ,z) on the duct. This trailing vortex system is

is shed from

shed at an angle equal to the flow angle and follows a stream
line in the rotating coordinate system. This implies, as in
case of the propeller, that the induced velocities from all

the components in the flow field have an effect on the trailing
vortex system. This represents a problem considerably more
difficult than the propeller problem since the helical vortices
are shed from all over the duct rather than along a line. To
obtain the eguation in a form which is amenable to solution

and yet which, it is felt, represents the flow field rather
well, it will be assumed that the helical vortices are all

shed at the advance angle of the duct. This is the angle
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given by the following equation

Wo(Rd) _ (1-Wy) V5
‘f‘cmﬁJ o Rd = < Rd

(5.1-1)
1t will furcher be assumed that these vortices mainiain a
congtant pitch angle and form a cylindrical vortex sheet of
diameter Ry extending from the duct to minus infinity in the
axial direction.

The velocity induced by a single helical vortex line is
derived in Appendix D. The v .ocity compcaents induced by
the cylindrical vortex sheet shed from tne duct are obtained
by integrating equation (D-7), (D-8) ana (D-9) over the sur-
face of the duct. Each vortex shed from the duct has a radius
Ry, pitch angle /3d and strength ,—2’] 3-5 £ these comnonents can

be written in the following nondimensionalized form

ﬂl_( c;(‘f) 4""‘)] \M'd" (5.1-2)

!

er
H r_,?j'ln’(a,z')
. o )

’ h(z-z’) ~“+4W]505(‘f‘¢"‘) f%—””(f‘w“‘) st
My = f J’ 7 W} }W

R3 ‘
(5. 1-3) i

o |

~2h(2 Z) + < tandd Jsin(- @ —=) —-cos(P-'ﬁ'-«)]Tw e
e e e

3
" R (5.1-4)

where

R“': I f(.xl{)‘_ 2(—:7)C(.\S(¢ —%-«) +[2h(z _z:) —x 1.0.”4]2
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At the propeller reference blade z=0 (i.e. Ec-at) and
-/ =0, sn the above equations are considerably simplified
at that point. In order to obtain the circulation distri-
bution on the duct it is necessary to have the radial velocity
induced on the duct by the trailing vortex system., This is

given by letting x=x4 in equation (5.1-3).

1 e
a0 ul e (e -sctandeosto-o- —ﬁwsin(er—.sp’-wl]d, e
E%::(’WHZ)]%_ Fr[fw(“)(j[[_ﬁ? 5P -] +[3h(z.zf)-~fan,4;7z_?¥- ¢
74 (5.125)

The uniform convergence of the infinite integral in this

equation is discussed in Appendix D,
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V.2 The Radial Velocities Induced at the Duct by the Propeller

and Hub

The radial velocity induced on the duct surface by the
proveller is given by integra;ing equations (4.3-3) and (4.3-5)
along the radius and summing the two equations, The circu-
lation denoted by 7 for a single vortex when referred to the
circulation at the lifting line is %5“) . Substituting
this for I in equation (4.3-3) and integrating from the hub
to the tip, the trailing vor 2x system induces the following

radial velodity on the duct.

Re b
")] o e[|~ etangJcos@-Bp-=) - G iang sin(P-Gp-%) 1 4,
Wl =g as'? °
% le

P [R+ 6 (€ - toocTanfic ) =2 Ry tiCos(9 =G -] |

If this equation is nondimensionalized as previouslv,

equation (4.3-10), then it can be written in the following

forn.
(/) .
h
b [
) s 1 [1[ehZ ~ () tendfoslp-Gpme) = (58) tui sin(@ -G -) doc
ly ;j’w) =(72)(72)ng ‘[["4-(3 e*(ehz-°‘%}’fa'}&)e—f(gj}(:os(ﬁ-%-d)]%
= N (5.2-2)

As discussed in Apnendix D the integrand has a finite
jump discontinuity when the point P(x, 2z) lies on the helix

and z70 or ¢ # Gp.




97

This can only occur in the foregoing equstion when the duct
has the same diameter as the propeiler {x3=i=xy,) and 2hz=
GP-¢;) tan/% . At this point the integrand has a finite:jump

since

- tarfsé
) = F W Z¥é0o or ¢#¢f

If 2=0 and ¥= Cﬂp, then the integrand is singular as dis-

o -'(4’-‘(’,0)(

cussed in Appendix D. For calculating purposes it is nrobably
best to nondimensionalize the axial compcnent with the propeller
radius, 8ince this equation is only dependent on the duct chord
through the non-dimensionalization of the axial component. In

this form then equation (5.2-2) is

,_(,) , -oqé,)/a,d]gxm-ﬂ-a) ﬁ)fanjﬁc!’/ﬂ(¢-%"‘) J
(y’w)( Y Z“j'“'(il) +(%_“ fa’}d)g —2(§)cos(4’-¢;o"¢)1%

(5.,2-3)
where N is the axial coordinate nondimensionalized by the
propeller radius Rp.

This equation is independent of the duct chord and once
tabulated on the basis of Zp the values can easily be changed
to those for the axial coordinate z by z=§f§g . It should be
noted that this factor I; is not the normal induction factor>3
ir which is ir=(17:%) I;. If the velocity induced at the hub
by trailing vortex svstem x, is introduced in the Fnregoing
equations in place of x4, then this equation gives the radial
velocity at the hub,

The radial velocity induced by #he line vortex itself is

obtained from equation {4.2-10). In nondimensionalized form
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th:s veloglfy is

= '(X;) am(¢-#)} L/xo) -—COS(‘?—%) CO-L“ —?) )JKO
J j i{(e)u T:.f(:r-%ﬂ[T/(.;e)m+(§=}~*~2(¥)ws(¢-m * W—]—?’H

(5,2-4)

For zp=o0 och % »(n=0,1,2,..)
[, =

This equatlon is also written lndependently of the duct
chord by nondimensionalizing with fhe propeller radius, and
as before zp=2hxdz. This eqration is in a general form and
can be anplied at the propelier hub or the duct by using
either the hub radius x, or duct radius Xq instead of x in
the above equation., If a factor {;(3) is defined as for the
free vortex sheets, then the above equation can be written in

a more simplified form
/

vy =k .
P%rw]r = - .é-fG,(Xo)c,« ({-;Cﬂzp)d/‘:

A (5.2-5)

where
(28)sin( ¥~ %) (%) - cos(T 7)) L oXe-9)
- ;(Wf) ) NP T - Elieode ) V. =
(5.2-6)

And combining this equation with equation (%5.2-5), tne total

radial induced velocity by the nroneller is given as
l

[Wr(?( qh)] Je,(x,)[‘,“)z,, 92) _¢,(7,¢,z)]axo .

or at the duct x=xg4
{

=(1) -0
[%/(’XJ;‘Z].’] = -21[63,(}'0)[(,, ('—:—‘-‘;)WIZ) ={y )('713)%2)} J70
5

Zh



99

{
:lj@s'(XO)(cT,)f)dZo (5,2-8)
Xh

Fer any ducted svstem the circulation distribution Gg is
a function of the duct radius x4 the pitch angle /3¢, the number
of blades b and the duct and hub shane. It is written here as
only a function of the radiv x, since for any one configuration
it can only be a fuunction of the radius. It should be noted
that the factor ({;)p contains both odd and even terms.

The radial velocity induced at the duct by the hub is

obtained from equation (3-10) by letting x=x,4

by
rw - .h. g(Z') JZ'
|\_"—ér(y, Z)]h = uﬂ'ﬂ‘/‘t Z'Z')zf /]7,@
b (5.2-9)

The function q(z') is the source strength of the line

source representing the hub and is given bv equation (3..14).
g vy equ
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V.3 Integral Equation for the Circulation Distribution of

the Duct Ring Vortices.

It was shown in Section II.3 that the ring source distri-
bution was a function of the annular airfoil thickness only.
Using this fact and substituting into equation (2.3-3) tae
radial velocities induced at the duct by the duct trailing
vortex sheet. propeller, and hub, equations (5.1-5, 5.2-7
and 5.2-9), the integral equ tion for the vortex distribution
is obtainedIaﬁr

f'[' . I Y

_ 2h(z -z)cos(P -9") 1@, 2) ddst
v = hj;f‘fl.‘(i—z’)ﬁ 2{1 —cos(P-@)}] % Paz
o -

{ 1 [o]
o 2@ 2) r['[ 2h(Z-7) ~tanfyJcos(P-@'-ot) ~ Tandf) sin(@-f'a, ot |l
L4 L22[7 - cos(f - @ -aj] +[2h(Z-2) -O(fan/@]‘}%
o @

-

where

)
U@,2) =-(1-wg)|em[c'(2) +Tan] + 2h f s2') 4 [Kik) —E(I)]Jz')

(o}
"
‘ /Xo s (z) dz'
[5G ) dxe - eyl
b

#h
(5.3-2)

This equation ig a singular integro-differential equation
in two-dimensions for the circulation distribution. The nart
of the equation to the lé?f' of the equal sign is assumed
known, i.e. the duct shap; and the radial velocities induced
by the pzopeller and hub. It should be mentioned that it
would be exvected with the normal configuration the radial

velocity induced by the hub at the duct would be negligible.
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The integral equation can be reduced to a one-dimensional
one Lf it is assumed that the ring vortex strength can be

expanded in a Fourier Series in 47 .19 i.e.

2 [od

Yifz) =Zg,, (z)cosng + Zlm (2) sinndf

(5.3.3)
n=0 nzl

-
2 = [ 1(%,2)dp \
=T

p.
gn(z) = #[rr(tg z)cush @d@ > (5.3-4)

r
ha(2)= [ v (8 2)sinngdp )
r
For convenience the part of the integral equation denoted
by U(@,z) will also be expanded in a Fourier series in ¢ .
This involves no assumptions on the form of U(@,z) since all

the functions in U(@ ,z) are continuous with resmect to P .

r

U(‘/}Z)-‘zun('z/’cosml’ +Zvn(2)s}fin§” (5.3-5)
h=0 nz

w

Up(2) = g;r”UM&z)cW \ 1

e

= Ll u(e,z)cosndd® |

“weltw) $ (5.36) |

..fr l

wiz) = | U 2)sin n@d@ y l

|

!
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From equation (5.3-2) it is apparent that u,(z) and v,(z)
for n Z1 will coniain terme invelving only the propeller in-
duced velocities. The Fourier coefficient u,(z) is a function
c¢f the duct shape, radial induced velocities from the hub and
the average radial induced velocity from the propeller. It can

immediately be written as

!
uplz)=—2 {1~ %4)(#[&(:} +tane] + f s2) BLKA} - E(R) ]o':.’]
(]

h(2') dz
——[fs(%, Ly( ¢Z)] Jxo -2 f—;,_ﬁ?;—zo_?-f-—l]
- Xn

)4 "
= -2’— H(z) - am 74;‘1‘/@7;!5‘2;2__%2 ‘/V/é:(/n)[, I#Z_]]fd/fo df

- Zp
(5.3-7)

The function H(z) is the same as that given bv equation
(2.4-3), Since the integrals in this equation are functions
of hub shapve and circulation distribution on the propeller
lifting line and are assumed known for the duct problem they
can be evaluated. The integral dependent on the hub shape
is simple enough that it can easily be solved numerically, if
necessary, and the integral involved the blade lifting line
can be reduced to a more simple form for numerical solution,

Consider the following integral

T

!
dotz) = [fe‘,(xo) ("’,eﬂ,z)]fdy,a’:,ﬂ =JG_{(X)[[Z;(§§)‘32)JW],0’J
i m

=T *n




H

jéb)[f

x4

2

«n

o

\xd/

! T
Z)a’qﬂ]Jg, - [u, (x,) U}“(W,q’,Z)J&P] de

74 - (5 3.
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8)

The integral involving the lifting line can easily be shown

to be zero.

f 502, g2 dg= JZ

Letting 6 =

kL

-

-—

(1))
X
‘r ;5)40)2) = -vj

€

From equation (5.2-5)

(22)ntp-4) (7‘) ~cos(P ) _ cos#-4)

de

Bl OB 1P - 20 cosco-q) W) +1

e e

(cf-?p) then -
g)sine () - coso - ]
' [(,)’me/b/@fu+("°)‘-2(—’)+"” o V&I
(5.3-9)

o

The integral involving the helical vortex sheet can be

reduced to a function of elliptic integrals.

(5.2-2) .,
[ f 6 (%) z,"ém&p

- %y

From equation

(5.3"‘1

0)

& oz [aAz-wf m]eos@ #-2) ~(E)tans; 5?4 ~4)
= y D*(”r“’)e +ehZ "°( far;dz )2 ~ ?(—')c‘a:(qo 4'9‘,-»(27%

The infinite 1ntegra1 in thls equation is uniformly con-

vergent with respect to ¢- <Pand fxo if z#() and consequently

the order of integration can be interchanged (see Annendices D

and E),

By changing the crder of integration, the integration

with respect o «and¢ , can be carried out.

a,(2) = '«[ [G;(Xa)cy Urodgs = [Ie;/z..;{ f:’:f’i;qo]c/x‘,
- An &

f

t )(m(yu)

p'l

([?"Z"‘{E)"}&J‘-" (P Gp) (58t Sinl 9 o)

[1+(3)°+ (2h2 -« 2 tangs,)2-2 (% )cos( @ - G -)]

drdf

J«den
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! T oo

"f@(”(ﬁ)(n f ([2hz + & tindifeos(@+) - (-é)m;d‘sm(t?ﬂ)) Jz ‘,,P] .

L +(_§)z r(2hz +3 20 f,,;& JL (a’o)(_.‘,,(&'_,a)]%

Xh

(5.3-11)
The change in variable o= -& has been made in this
equation and also the angle of the blade does not appear
since it makes no difference ‘hat comnlete cvcle of a neriodic
function is integrated. The integral in the brackets is dis-
cussed in Apmendix E. The reduced form is obtained by taking

the value of equation (E-18) at n=0., This gives

|

/ ] ¥
A Y cosed
f \ )Mq " (B il [VI§E ) 49

where

(5.3-12)

i‘;j, &
ot e[ # B - 4 eos (B

After integrating part of the integrand, this integral has

the following form.

7 oo

f ( J.,an] s .',a( )[(z -R2)KR) - 25(3)]

2_¢ z -
= fanle Co =y ) (5.3-13)
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where

ﬁf= 757;5)
(,,,._;3)2*_4/‘&2:

The double integral given by equation (5.3-13) does not
exist for k=1, i.e. %,¥x3=1 and 2z=0. The asvmptotic behavior
is such that the integral is infinite as 1R «o at this point
which is also the value obtained after interchanging the

order of integration. When k=0 the value of the double int»-
36

lim .&'—? ’ =0
k- o k2

gral is zero since

The singularitv at k=l of the right-hand side of equation

(5,3-13) is due to the elliptic integral of the second kind
K(k), however this causes little difficultv since this singu-
larity occurs under the integral with respect to x, and a
logarithmic singularity integrates out., If equation (5,3-13)
is introduced into equation (5.3-8} and a change of variable
is made the logarithmic singularitv cen be removed,

Assuming x4=1 and 2z=0 then let (1—§g) =t

|
2b | GXo) (X0\T (%o 7
xd f‘fan/?d XJ) LK’(YJ’L}JXO
%h
Vi

= 65 j g{%a -t &, (-t3 )¢t

o
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-

%
=6b[%§3‘0-f’)‘éﬂcz-@:w@) 2604, 4
(7]
(5.3-14)

where

ky = 4(1-t‘§
2=t
The elliptic integral K *,) has a logarithmic singu-

larity at k2=l, however

lim t2K(k2)=0
¢ -0

and the integrand of the above integral is no longer singular,

Using equation (5.3-13) the function u,(z) becomes

j (Ko)c,«')Jx,,d:p = [’—‘(—X’) %) 8,3/7( 1Z)dx
(5.3-15)

A similar development holds for the averasge radial nro-
peller induced velocity on the hub, In this case x, is substi-
tuted for x4 in equation (5.3-15) and the singularity at x,=x,

z=0 is removed by making the substitution(ﬁ%«l) = >

Substituting equation (5.3-15) into equation (5.3-7),

u,(z) has the following form

b !
(z')/dz’ 6,01)
‘ = -2 H( “27"‘h —-——-—-———-gh 2 F(Jx
! U (2] ZH(z) -2y uﬁ"/he(z—z')gl'l]% J""&d ) o (5.3-16)
b Ah

-2 [H(Z) + H,(2) +Hp(l)]
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The factor iyo is given by equation (5.3-12) however when
2=0 and *3=1, equation (5.3-14) should be used for this

equation, i.e.

by Yr=zy
(2)dz’ Gt ¢y g2 L2001 - 2E(R,
Uo(0) = ~ 2 H(o) --afri,%%‘rjz;—;i -3b m(' ¢J) 4;. [(2 &)K(ﬂ,) ‘)]‘#
/] (o]

(5.3-17)

where
ky? = 4(1-t3)
(2-t3)2
It is obvious by the form of U(9,z), equation (5,3-.2),
and the above form of us(2) that the Fourier coefficients of
higher order, gn(2) and h,(z) for n = 1, are functions only
of the propeller induced velocity. From equation (5,2.8)

and equatiocn {5.3-6) the Fourier coefficients u,(z) and vn(2)

« then follow as
1r ]
Un (2) =-éﬁ603ﬂ¢)(f%'(n)[3;. %’,QZZ)]’OJXO dg
- % ' (5.3-18)
and

pe ]
Va(z) = ~z'j""'"’4”(f@'(""[zr(ﬁ’ CV;Z)]'oJK")
- XA

3 (5.3-19)

and substituting for (fr)p from equation (5.2-8),
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»~(3) .
Llr (&) """Jr(.;‘l{xo)f Casﬂ(l))rcy - ('V ]‘I'{’dl ~r) (.553"20)

and

| 7
Vplz) == é[(;.gl(zn).[ (Séhmp)[a.f‘)-z;'u})cl(ﬂ!xe

-n

The integral for ir(S) in equation (5.3-20) will be dis-

cussed first.- Substituting in from equation (5.2-6) this can

be written

I'd -3
j(tosnfl’) 4y a@

k14

Wz b sin @0\ faweze + 1+5)F -2t R

- Pl
b , .
__2 " : [ehzsinee (%) —cos2e6 _ cosep |
= y[ f‘mép] S/nane\B,Aeza,usiiao] YRzt k(i ¢ 1)E ‘/(x,, o5%8 '\/4A'Z’+/J
7
= - L [T‘Sl"n¢p] [C} 7)2)] =0 (5.3-22)
J P:’ % n

The equation has the value zero since

]

sin n cﬂp=o (5-3-23)
P=i
for any number of blades.
If the Fourier coefficients v (z) are being considered
then

1w

Jnneho - sl il

b
_,_j;o,nq;[_’éz ejiz:fin{ff-ﬁ-)_[ (§) ~cos(¢-4) cos(‘?%)]))chp
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' where b if n=mb

b

ZCOJH% <4 m:I'ZlSo'oo

it o If n=mb (5.3.25)
and % ' . ) .

(J) - ” ’lxo Sin 2”6 5’"26 8
[l" %’Z)]n B ) *[4A222 + 5”‘829]'v} -‘”5”’ g
°

s/nanesm hgsin2ecosed de

n-t
+(-1) (%) '[( l.tl,‘z‘ * sln‘ee] Vi -4#tsinte
z (5,3-26)
5in2n8 sine9cos2ede

)
+’\/S’,’\.Z‘+/ [‘/Agzz + 5)”220]
o

£e=ﬁ_.% B2 1, ForBsi efanf'nn(.‘i: 3-24) 'is zevo
ZE4(1+ 45 !

An interesting observation from equaticne (5.3-22) and

’ (5,3-24) is that the induced velocity from the bound vortex is
an odd function and that many of the odd terms are zero, All
» "h!' terms which are not multiples of the number of blades are
zero.
The contribution of the free vortex system of the nropeller
to the Fourier coefficient u,(Z) is obtained from equations

(5.3-20) and (5.2-3) as

(0
f(cos n@)i, do

_ [ @Az «(i )tanSeJcox(~gp-) ~x(ge)tays; (P4 -2)
_j;e:osnﬁo)(;é)(ﬂ) }_ \[/ +{zf)e +(2hz- “75 tanss,)? - e(gg)c,,w_# _.,)]Sé

a}@

- (X __l_ :n? cosn th**’ﬂ*‘*%]fﬂ-‘(é*d) ~(§3)s5in (6 +4) tans: 48
(Bl 2} Vi '.[ +(’° +(eh:.+« S tansi 18- 2% }co;(iw)]%du

-1

——
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b

Z% xg)[;"""g’” o e ¥ z)] (5.3-27)

where
(1)
lﬁ'c(w)z) ]
L } \
B I_'ahz fof )fbn/S‘]cos(a ) = fan/¢ Sin(o+#) Jw P
'j;osne[f([/ +H{BE+ (2hz + a2 AL )8~ e(ﬁ«,}cos(a ¥R | ¢
T

- (5.3-28)

By a similar analysis it can be shown that the contribution

of the free vortex to the coefficient vn(z) is

T
, +ti) ?
J;(s/nan,,ua'fP (;J}{/ [E"’"‘&]{?’”s( )z)] (5.3-29)
where
fns(ﬂ'z) (5.3-30)

[+( o+ (2hz to f.n,d‘)" -2(&) m(ow)]%

From equations (5.3-20), (5.3-22) and (5.3~27) and equations

J;,n"é [th-fdfimﬁ, )]cas(é«) (K)fahﬁcS}n(a*d) ) :,c{g

(5.3-21), (5.3-24) and (5.3-29), the Fourier coeffiecients for

n#0 are obtained as follows

[G o) (507] if n = b

u,,'(z)’: m l,2,‘50..
O if n £ mb (5.3-31)
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and

N A e ] i nzmb
2147“6,.’.:(,4"1{;};1,(@)2)] + ‘H\Z[(%(;;)z). )J;r,, i
Wiz} = §
0, if n#mb
\

(5.2-32)

It will be noted that tl.c free vortex system of the propeller
contributes to both the odd and even terms while the lifting
line vortex contributes to only the odd term.

The coefficients irn(3) can easily be obtained but the

(L

coefficients ﬁhc and ins(l) must be discussed farther., These
last two coefficients are a snecial form of the equations dis-
cussed in Appendix E. The coefficient 3§é), equation (5.3-28),

z
is given by equation (E-18) where § = —ZEE-—— = _D

—L . and 3;5
x tanfy  x tang

is given by equation (E~9) with the same value of § . It should
be noted that jhél) has a logarithmic singularity at X =Xq12=0.

This singularity can be removed by the method used for equation

(5.3-14).

With these Fourier coefficients u (z) and v, (2) the inte-
gral equation for the strength of the ring vortex distribution
representing the duct, ¥ (@,z), can be solved. If the Fourier
expansion of the ring vortex strength (5.3-3) is substituted

into equation (5.3-1), an integral equation is obtained for the
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Fourier coefficients, gnp(z) and h,(z), of the vortex ring

strength.

h(Z"Z}COS(¢F¢’) an {Z',I’QC M? “* nn (z’)g,n, ﬂ?l] ,
son-f 1 il aou
[4h2¢z-292 + 2{: cas(:p-@)j] 7

o -mn

(5.3-33)

. ﬁ}hcmjmrwlw(qﬂ-'rf«) Tangtd Sin(P =P ) ]J o
+}f Zahn(z)cosnﬁ ”Zlgnu )smmrl)( J {(2 h2-2)+ el ] + 8 [:ffcos(cp Q’M)]}* 4

where

Z=2-8t

The integral of each series in the above equation will

now be considered separately. First, using the trigonometric

identitv; l-cos(@- @')=2sin? -é- (¢-&

f [ ([;““"’)“’(”“q")lzg”"')“””’f’ k)dml-h (ﬁm Yonz ﬁ,{fcosmﬂcasw-qf")dfﬁ |

K(g-2'2 + 2[1 =cos(® ¢’)7]3 ne(z-2)B+ ¥ sin®l (¢-¢g¥J

Now make the change of variable ¢ - Q' = @ and use the trigono-
5 .

metric identity
cos n¢'=cosn@cos2n0 + sin ngsin 2ne

. The last term integrates out over the integration range of
r <« ! < T
- '2_=¢ =7
g-¢ .
= -
2é
ZUQn(z')@hQ-z‘ﬂl— f(‘””"p‘”f’”Q +Sinh@sinené)cos JeJ )

| ) [44h2(2-292 + ¢sin28]¥e
$-¢

n=o'y,
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%

!
= Zosm? fgn(z‘)[é/;(l Z)]L j' 422392"):54-2 f/;f’?e]a/e}

n={ o1 o

The integrand of the integral is periodic with respect

to O so it makes no difference whether the integration is

carried ocut over the range -'23—5_ ] ‘{ gor -{:— =7

and since the integrand is an even function, the integral over
the range from 0 to g is twi-~e that from —%"to g .
in the brackets can be reduced to a function tabulated by

The integral

Riegel s37 by making a change in variable 8=6+ T > and using the
trigonometric identity

2cos2nBcos28 = cos2(n+l)® + cos2(n-1)0

%
! 2
" v , = [eesatntng +cose(rn-18]d8 | 4,
""E”W gnt=leh(? UJ[ [4/:“"(2 “2)7 + 4 5id5 ]k
n=1

: o [(-1)Cosein+ e +(-/)cose(n—l)9J9
=h Cosn&ﬁn(z)[Eh(Z z)]ﬁ( [ [ F el dz'

'3
oo
= ézosmf (92”(‘))4% {[A(z-z’)]e[G,,,,(ﬁl +G,,_,(Q)]faz' (5,5-34)

x:;;::ara

k2 = 1

0n2(Z.2°)241
and
%
G,,(J&):(—/)j;-‘-fii;”T‘z——Q]% de (5.3-35)
o
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Riegels” has given the expansion of this function Gy (k)

¥

as k - 1, which is when z'—- 2, as

G, (k) = ( ) by VICK +.....
(5.3-36)
thus Gh(k) has a singularity as k -+ 1., This singularity is
removed by multiplying by (2 - 2')2,

"v_ J . , e
lmg 2 =21 GulR) = sy [ 11"~ b, 02 el

- lim (2.((2"’) [hf(t z')+1]) = |

From this limit it can be seen thzt the function within
the braces of equation (5.3-34) is not singular as z'-» 2,
but the complete integrand has a singularity at z' = 2, Values
of Go(k) and Gy (k) can easily be obtained in the form of complete

elliptic integrals. These two values are

Go U?) = ‘IE'E%)t

. (2~RY) K(A) - 201 -4 K(R)
6, (4) (k) - &
#° (1= 4) (5.3-37)
The asymptotic expamnsion of Gn(k) for k << 1 18 given by

Riegels3” as
7 (2nti)l pen
Gnl(4#) = 2.:,,,,,,# (5.3-38)

The integral involving the series Y h,(z') sin n¢ in
A<l
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equation (5.3-33) reduces in a similar manner to the follow-

ing equation

t oo
hf{fah(z-z.’) cos(-@')] 2. hn(Z)sinng’ dp'l 2!
fqé“('z'-z')" + 2[1 - cosi@-@)] %

a -1

a’ZI

o0 !
- 2125 inndd f(_z% 42’(:4?{2 (G (£) + 6,y (B)]
CEL 2 (5.3-39)
The other terms occurrin’ in equation (5,3-33) are some-
what more complicated since the helical vortex sheet shed
from the duct gives rise to both odd and even terms. This is
shown in the following reduction of the integral involving
gn(2z'). In this reduction the order of integration is inter-
changed, the change of variable =% - ¢' made, and the order

of integration changed back again.

. , [feh(Z-z}Mﬁn/J]r:aSW @'+a) ~m,44sin(¢-¢’+«)] o\ dep'd !
N Z‘[;.(‘[;m"¢ [;[EA(Z-Z')*"“’"”/’JJE + E[I ‘COS(¢-¢’+°()]}J/2 q)

n=i g 7

[2/:(2-27+0:be]605(9 $at) ﬁnﬂ:)ﬂ/&fd)} Jodz!
Zﬁnafswn%mo Cosm?sm"el/i{[e/,(z-z)+«fa»y1/]8#/sm”’(9 P dx dodz

! [

= | (s)
A smn(,”( /'_”(Z),c (Z-2)dz’ \ Deosndj ﬁ_’}cn /'z'—z’/a’z')
{?/ 5 ’ I EZ \g

(5.3-40)

where
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1 o
NGRS s [2h(2-2') + x fangy[cos(e +2) ~tand) sinto+]
(n(2-2) = nfen(z-2] cosna(ﬂ[[%(z_z}mfnw]e o (e+«7?79
- (5.3-41)

and
o0

ﬂ— "
-— ’) r - n .
C.:s(;z__ll) :n[éh(i-zQz/;l'nns(f[EA(z 2)+ o M/#J]ccf(am) .72: /Jsm(em)]dq)de

| fﬁh(f-z’) +otandy]®+ ¢ sin*f(e +2){*%
[+
(5.2-42)

(e and in(s), equations (5.3-41) and

The integrals in ip
(5.3-42) respectively, have Leen reduced to a simpnler form in
Appendix E by evaluating the infinite integral. Using Appendix

E equations (5,3-41) and (5.,3-42) become

i -2) = nf2hz-2)]T, (5.3-43)

iz -2) = n[ehz-2)]], (5.3-44)

where I; and I} are given by equations (E-9) and (E-18) re-
spectively with X=1,
The integral from the vortex sheet involving the Fourier

coefficient h (z‘) is reduced in similar menner and is

w ! T 0o

}nhj;,.(z') cosntf’(ﬁ }d«\c/a?’dz’

nil o - o }

iqz( [”"‘2’ iz - z)a) . gE,nn¢( f NN )
2 = 2

n=i h

(5.3-45)
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If the Fourier series for U(¢,Z) is substituted into
equations (5.3-33) along with equations (5.3-34), (5.3-39)
(5.3-40) and (5,3-45), the equation is written completely in
tering of a Fou;ier series. Since a Fourier series is unique
and linear, the coefficients can be equated. The result is
two linear singular integral equations for the Fourier coef-
ficients of the ring vortex strength, g,(z) and h,(2), in
terms of the known coefficients un(z) and vn(z), equations

(5.3"31) al‘ld (5.3"32)0

[J
an(2)=éfz—_'z—, n(2) Mo (Z-2) + hnl2) 5 5-19] dz’
3 ) (5.3-46)
H

va (3) =éf E—'—z B gn (2é8Kz-2) +ha(2) (2 -Z’)]dz'

o

where

M (-2 = £ \Thz-207(6,0(B) +en-,(ﬂ)1) +iy'(zz) (5.3-47)

From the equations for u,(z) and v,(2) it is known that
u,(2) = vy(2)=0 if n#mb, (w=1,2....). Since equation (5.3-44)

must hold for all values of Z, it must be concluded that

s Tegaco e s e 0/

= 7)= if ndmb. (m=1_2 )
‘gn(ﬁ) hn(?) 0 1if ngmb, (m
because the coefficients Kn(z-z') and i§°)(z-z‘) obviously
are not zero for ngmb. From a practical point of view this
fact greatly reduces the number coefficients which must be

calculated. For instance for a 4-bladed propeller in a duct




only gq(i), h4(2), ga(é), etc, exists, (It should be

noted that g,(z) exists for all number of blades and that
ho(2) is identically zero). From the decrease in the order
of magnitude of Fourier coefficients2® with increasing n,

it is not difficult to conclude that the series for the circu-

lation distribution converges very rapidly since so many of

the terms are identically zero,
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V.4 Reduction of the Integral EBquation for the Duct

Ring Vortex Strength.

The method of solution of the integral eq.-.zations (5.3-46)
will now be cousidered. First, however, the solution when
n = 0 will be discussed. For this case ho(z) =vy(z) =
1§e)(§' - 2') = 0 and the system of equations reduces to a:

singular integral equation for g 0(z,').
!

WolE) = f% Ko(Z -..,dZ (5.4~1)

o
where

\
yhe(z-2)8[kch) ~ECR) - 26 R)
(2.4-2)

The function uy(Z) is given by equation (5.3-16). This

Ko(2-2) = ~gE-2) =~ &

equation (5.4-1) is identical to the one solved in section
11.4 with the additional terms from the induced radial veloei-
ties from the hub and propeller. The s>lution method is the
same except that additional terms now cccur in equations

(2.6-2) and (2.6-6) for the function £(0). Following the

same procedure as in section II.4, the functions Hh(i) and HP(E)/

which ozeur in the equation for uo(E), are expanded in a
Fourier cosine series in @, for 0= @ = Tr, where

z =z —at 8[1/2)(1 + cos 8), then

[Hh(a) t H,,b?)] =Zp,,, cosmé (5.4-2)

mz=0
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where e
fo=7 f[ Hy (&) + Hp (8)]de’

° 1w
pm= £ |[Hu(8) + Hplo)]cosm 6'e’

° (5.4-3)

and Hp(O) and Hy(0) are obtained from equation (5.3-16) with
the change of variable mentioned previously. Substituting
equation (5.4-2) into equation (2.4-14), the new function
fp(O) is obtained

fol@) = f(0) + 5'7,,[1% cos$6 -smée}fwm] (5.4-4)

mz|
where £(0) 18 given by equation (2.4-26).

This function fp(O) is used in equations (2.6-2) and
(2.6-6) in place of £(0). This equation (5.4-4) is for the
general case, i.e. when a singularity occurs in the circulation
distribution at the leading edge. It also seems reasonable to
describe an ideal angle of attack of the duct section when
the propeller is in the duct. Obviously, each section of a
symmetrical duct cannot operate at an ideal angle of attack
in the presence of the propeller bBut an ideal angle of attack
can be defined in presence of the average velocity. Making
the definition of ideal angle of attack with the propeller in
the duct as the angle of attack in which the singularity in
go(z) does not occur at thé leading edge of the duct, the

following 1s written for the function fpid (®).

fo:g(0) =f:4(0) - a-grzfomsmma' (5.4-5)

me|

PN
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where f,, is obtained from equation (2.5-3).

i .

To zbtain the ideal circulation distribution [go(z)]id
in presence of the average hub and propeller induced
velccities, the foregoing equation is used for £(8) in
equations (2.6-2) and (2.6-6) and the calculations carried out
as described in section II.6 for the 1deal case.

By the procedure just described the Fourier coefficient
g, Or gg, where gg(o) - 36(9) sin %9, can be obtained by
the methods already desicribe. in sections II.4, II.5 and
11.6. The Fourier coefficients g (%Z)and h,(z)for n ¢ 0
cannot be obtained quite so easily because they are defined
by two linear singular integral equations and this involves
the solution of a system cf singular integral equations.

The system of singular integral equations given by
equation (5.3-46) can be reduced to a system of non-singular
Fredholm equations of the second kind which can be evaluated

29. The method of reduction is the same as

by known methods
given previously in that the singular integral equation is
reduced to the airfoil equation and then inverted. Starting
with the first equation of (5.3-46) the term Mn(E-E) = M, (0)
is added and subtracted from the integrand. It can easily
be shown from equations (5.3-43) and (5.3-47) that

Mh(O) = 2, and igc)(O) =0,

! 1
f(%-ﬁ%dz' = un(2)+ %]z o gnta et - bn(2)E50] o
; y (5.4-6)




This equation is now inverted as in section II.4. The
Kutta condition, equation(2.2-21), 1s satisfied by making
g,(2) zero at the trailing edge of the duct. Inverting and
interchanging the order of integration the previous eéuation

can be written as a Fredholm equation of the second kind.

I
-4 ] U | -2 Nl
9'1(2) ~1Ta'\/(-l—__—z-)—f(-z—,:f)- ’\/T Un (Z)dl

_I_ 1=2" [ 2=-Ma(2"-2, i 1) {pt
e

m Ntz y . ,
W\/("Z}f( z: (Z”})(Z"Z}] dz ) kn \?-)C/Z

(5.4-7)
A singularity occurs at z = 1 which is the leading edge
of the duct., As discussed previously, the singularity is
removed by introducing a new variable g:(z) -Wfihj—ifgn(g)
also h:(i) - W/i_:_ifhn(i). If the change of variable
z -l1/2k1 + cos 0), z' -(I/ﬁ(l + cos 0'), etc., 1s made,

the preceding equation becomes
v

o) = gn(6) sing 6 = £,(6) + [ [ Kn(e,6)gn®) = Kule,8)hnta)] de
J (5.4-8)
where

fn(6) = COS£-9 (—‘_(-%Q%%?—; un (6') de’

(5.4-9)
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T

. ! I ai / [t'l ~¢030") |8 ~ Mu(Co58"~cos0) de"
S e — cos 7
Kn(8,6) Fecoizoce EGJ' (cos8"-coso )| (cose" - cose')

°e (5.4-10)

L

€,
! - " -~ ’
K.(6,0) = P cos%s:‘.a’éef}l cvse”) [ iy (coso cw@)}da”

(cos0”~Cosd) | (ro56"~Cos0?)
o

(5.4-11)
The last three integrals are evaluated by expanding
the integrands in a Fourier cosine series in @' or 9" and
using the Cauchy principal value integrals glven by equation
(2.4-25), then

[~ d
£.(6) = #[ - Qno 6052’-9+ Sin é-azcz,,,,, Sthme (5.4-12)
mzl .
where
g
= 2 |unterde
o = jp [un(€706 (5.4-13)
[=]
™
Apm = ﬁf&n (6)sinmo'de’ (5.4-14)
[«
o0
K(s,6) = L cos 5’9’[- bno (8)cos o + (si ée)anm(e')s}nme
” ! (5.4-15)
where e
1 - _L a - —
bo(6) = rrﬁmr@"c—om]d@" {5.4-16)

o
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ar

bnn)fﬂ:#ﬁca B"—COSG’] cosmode’ (5.4-17)
o
and
K, (6,6) = — Cos- [ J,.a(a/cosé 4 +(smf G)ZJ m(8)simme ]
m (5.4-18)
where
g
dno(8') = %’;,—"j’la' (cose"~cos6') de”
c
(5.4-19)

g
dam(8') 3 -"f,‘,',—" frz’(cosa” -co58')cosme'de’

(5.4-20)
The function Ié is given by equation (E-18) with X = 1.
It has a logarithmic singularity at 8" = @' which can easily
be remcved. The integrand of the integrals for the Fourier
coefficients b , and b, equation (5.4-16) and (5.4-17),
are of indeterminate form. Referring to equation (5.3-47),

it can easily be shown that

g'lsg' |CO58" —CO8 8’

lim [ 2 = Mn ]=2nhl’"
[

The integral Ii is given by equation (E-9), Appendix
E, with X = 1 and the proper change of variables.
The second integral equation of the system, equation

(5.3-20), can be reduced to a Fredholm equation of the
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second kind for the coefficient h*(0) in the same manner.
n .
Repeating equation {5.4-7) the coupled Fredholm equations

of the second kind are

mw kg
gn(e) =fale) + ]K,,(te,a')g,,’?e')a’e' - fR,\(e,a')h:(e‘)Je’
o (4]
(5.4~21)
A ” r
hn(6) = f,.(6) + f Kn(e, a’)g,f(e’)cla' + J Kn(,0) by, (8)d 6’
o
wheze
A o0
- (6) =4"If["an° cosz6 + sin!’oZﬁnm sinme (5.4-22)
mel
w
Ao =1"er" (6')de’ (5.4-23)
o
-
Am = f j v (8') sin m 6de’ (5.4-24)
[
also

g,’f(a):gn(e)siné-e and h,f(e):/a,,(e)s/hé-la)

The system of equations (5.4-21) in the interval (0,7}
can be reduced to a single equation in the interval (0,21)
as discussed in Reference [29]. This single equation is not
necessarily more convenient to use than applying the various

solution methods directly to the system of equations ¢»>.4-21).




126

To obtain a numerical solution to the system of esquations,

they are rewritten in the following form

» { .
9:(9) -'-,f{(?}'f' -{%_L ["’Aocosi'af' A,S;HG‘/‘ o et Ap StnME

(5.4~-25)
h:(O) =Ft(9)+ s;:r alﬂaocofé'ei- Bl 5/ﬂ6+ soe 00t BM S;nmé]
(504"26)
where
11'
Fi(6) = fule] - [Kn(8 8)h, (o)de'
(/] (504-27)
T
A le » ) !
Ea) = (o) +|K(g8)qn (0)dE
° (5.4~28)
-~
Am = anm(a‘) Casé'e'g:(B')c/y
(5.4-29)
1r
By = [b,,,,, (eﬂcosge’h:(e')e!e'
e (5.4-30)

The Fourier coefficient b is given by equation (5.4-16)
or (5.4-17) and since they are functions of geometry only, they
can be tabulated. Each of the equations (5.4-25) and (5.4-26)
can be solved by the method given in section I1.6. The problem
now exists that Fi and F, are unknown, consequently, it is

necessary to use the method of successive substitution.

-
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Equation 5.4-25 is first solved assuming F{(f) = £,(8) and
then the resulting g*(@) used to solve equation (5.4-26).
This process is repeated using each time new values of F;(@)
and FZ(G) until satisfactory convergence is obtained. All
the Fredholm theorems apply to the system of equations so,
in general, convergence is assured.

Once the Fourier coefficients g} and h} have been
determined, the circulation distribution of the ring vortex
strength Y can be calculated from equation (5.3-3) and the
induced velocities at the propeller and hub can be determined.
In general, it will be found advantageous to make use of the

Fourier series expansion of the ring vortex strength,
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V.5 Induced Drag of the Duct

In Section 1I1.7 the induced drag of the duct was

expressed in the form of a duct thrust coefficient,

| er

(Cryely = “}1‘?& f ﬁ @) [%.f(x"’@zf)wﬁ AL z’fé’] dedz
42 (2,7-8)
= vhzl[Cy, +0y, *Cr' (5.5-1)
where
| ar
G, =7"rjf’“’""1'/wf"""”"”” (5.5-2)
[/]
tar
c,zs#ffr(fzz)—v“-:'(m%ﬁpdﬁi (5.5-3)
O' ] r
. Wr 1y 7
('r,= #!jrﬂ/’,ﬂ -f/;’(ld,ﬂz%dq’dz (5.5-4)

The radial velocity induced by the hub at the duct 1s
given bv equaticn (5.2-9), If this equation is substituted
into equation (5.5-2), the contribution to the duct thrust

by the hub is given., This equation can be considerably simpli-

fied 1€ the Pourier expansion of ¥ is used, then
]
Cqp =2 jgn(ﬁ Y, 2),d2
]

Since g,(z) may be asingular at the leading edge, the

change of variable z= %(1+cose) is introduced and then the
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equation can bhe written in terr.s of the coefficient gg (8)

which was discussed in the last section.

r

r i
Ci =2 Jg:(e) B34 cos iede (5.5-5)
o

where

g5(8)=sin 7 6 g,(®)

The radial velocity induced on the duct by the propeller

is given by equation (5.2-8), If the Fourier series for both

Y and the radial velocity induced by the propeller is used,
equation (5,5-3) is simplified to

r I

o0

Gy,= 7 ﬁ*(e)m(e)cosgeda - ézr‘r [ 9$(a)u,,(e)}casé’ade
o o

n=zj

! v . J
- Z“n(a)“"ef]c‘”?ede (5.5-6)
o “n=l
The function # (@) is n

g;(a), hX(8),u,(R) and v, (@) are the same as discussed in
the nrevious section with the necessary change in variable.
The radial velocity induced on the duct by the duct
trailing vortex system is given by equation (5.1-5). After
introducing the Fourier expansions for ¢ and making use of

the evaluation of the infinite integral in Appendix E, the

contribution to the nozzle thrust by the trailing vortex system
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is T » . . |
Cr =Z~hﬁf ( “3:(9’[ '/'3,"\(571,,‘05%9:’/91 * jhf(e)Ie'z:asée’de']cosi'a)dfﬁ
? - o h:T -] [e]
T

) w 14
' ’ \
-k (Z A:(e)[ fgf\(a')Iacos-z'-eUe’ - jﬁ; (o)1 cw%e'e’e']cosée)de
o (¥4

(5.5-7)

The functions Ii and I' are given by equations (E-9) and

(E-11) with the variable Csfn%cose-cose'), /£, =44 and ¥=1,

Once the contribution to the duct thrust by the various

components have been obtained the total duct thrust follows

easily. It should be remembered that only terms which are

harmonic with the number of blades appear in the series in

these equations, consequently a majority of the terms are zero.
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V.6, Velocities Induced by the Duct and Its Trailing

VYortex System at the Propeller and Hub.

Only the axial arnd tangential velocities ind)xced at a
propeller lifting line are desired. Since the flow ig
symmetrical, it is sufficient to consider only the lifting
line at @ = 0. The velocity induced at the propeller by
the duct can be considered as that due to the ring vortices,

ring sources and duct traili 3 vortex system.

[;‘/_::(‘x,o,o)} = “%"x“"‘"f - .%';(x,o,o)r " %(ﬁ',a,u%
d ' (5.6-1)
and
We(x, 00| = Ye(x00 Welx,0,0
[Vs('l)d %)a)r-f-‘é/ )3{
(506"2)

The ring scurce system does not induce a tangential
velocity since its strength is independent of angle. The
axial velocity induced by the source ring is given by
equation (B-12). Introducing the scurce strength in terms
of the thickness slope of the duct, equation (2.3-4), the

axial velccity induced by the source ring is obtained as

]
= * Iyt / fE !
L (o = A (%)%~ w,)fs Z)feh(ag +Z)][—7"f7{g‘l]Jz (5.6-3)
where °

&e - 4(¥)

YhElae+z)? + (Z + |

(5.6-4)
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The irtegrand of this integral is singular at the point
X = X4 and z' = -a,. The axial position z' = -a, is at the

lifting line and x = x, = 1 only occurs at the blade tip., When

d
the propeller is not within the duct then the singularity
does not exist, {.e. z' = -a, does mot iie between 0 and 1.
When the singularity exist this equation must be treated
as a Cauchy principal value integrai. Considering the case

t* * x = x,; then the precedi ; equation can be expressed as

]

W I venf LR
mty0ly = Lo w,,,){sme(ff;;%ﬂ' (5.6-5)
where °
.-2 "”I; )
o= h8(a;+2)8 +1

If the change of variable is made, z' = (1/2](1 # cos @) then

m

Zano)g =401 - 5T J _Eh)  sineds
14{ )8' ot “sd) 9)-%{@59 -C058¢) (5.6-6)

o

where
coso, = —(2a¢ +)

#- 2
& " hBlcose’ -coseg)t + ¢

The term, 5°{0)ky E(k,) sin@, is expanded in a Fourier
cosine series in O over the range 0 to7r. This involves no
additional assumptions on s'(9) than in Section II.4. If this
is done, and the series substituted into the atove equation

and the integration carried out, the induced velccity is
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finally given as

Wafl, 0) = (- W’J)Zs $in n &

% Sin 8 (5.6-7)

where -
5 = % f 5’01 E(R,) 5in6cosnede

The axlal velocity induced by the ring yortex at the

propeller lifting line is given by equation (A-18) as

[(1 ,.0547 - 1@,z) de'dz’
7 (X;O O)r = - -Effj' D:d + 4;,!(4‘.'.283 2(5—)005’?]%

(A-18)
If the Fourier series for Y is introduced, then this

equation becomes

[(xjco.w —I]cmh?”dp (
(x/ /] )( an,‘[g(%)%(yg [ (JI - 4ec05 2‘?')% d’

(5.6-8)
The functign k2 is given by equation (5.6-4) and the

Fourier coefficient hn(z') of the ring vortex strength inte-
grates out., By algebraic manipulation this equation is
reduced to a function of elliptic and Riegel functionms.

Wa(x,00), = - ‘. 1\ [(%‘)“’af?-’]cwﬁﬁi’dfp
T/’.(Jwa%, W[(%}Z(Z}Mz) 7] it ]

(% fagg,(z') k) - 4)- T UEE) o

Uht(ae +2')2 + (& -1)?
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]

*fign tz')[—Gn(&) + (%)

é n=1!

- (¥

(4,) +G,,_,(E._)”Jz'

(5.6-9)

The Gn(kz) are functions tabulated by Riegels37 and
are given by equation (5.3-35). There are a number of
singularities appearing in the integrands when the axial
ccoxrdinate z' =-a, and x = xg = 1, but all are removable.
As in the case of equation t .6-3) this difficulty only
occurs when the propeller has the same diameter as the duct
(x4=1), the axial coordinate is at the lifting line (z'=-at),
and the velocity is desired at the point (x=1). In addition
to the singularity of the integrands at this point, it must
be remembered that gn(z') may also have a square root singu-
larity at the leading edge of the duct. For this reason
the change oI variable z'= % (1+cogb’) is introduced intc the

preceding equation and the function g*{@) obtained.

T
" & ) ECK) ,
V:(x QO&__ e ( )/e -@ ‘70 (G)COJJG[KM’) _Em ) eh’(coje'-co.s:de-f-(;] "/)2](]9
°
(5.6-10)
‘fﬂ’ _é)%ﬁ (Zg*(e) Gn(‘g) L1 (XJ) ,,,,(#) +ﬁ._,(£ ))])COS elc{el

where

cos8y = -(2a,+1)




]
Ul
u

4 = 4%)
£ LR(cos o ~cos6,)? + ({,+I)e

(5.6-11)

If x4 = x = 1 ,then equation (5.6-10) reduces to the follow-
ing.

g0k - il hogl @k(R) ~ERl]eos oo

mw
1] -! 'Q " - \ .
— é'lfr '«'ﬂg (2‘9:(6')[—6”('“!) + 'é’G”.'.,(R‘g) + :"Gn-:(-g.)]c‘osfe')db'
nsj
—z vl (5.6-12)

where

Y(0) is the ring vortex strength at z = 0

éz - 4
¢ " h¥(cose! —cosey)t +4

The ring vortex strength ¥ (0) arises from the proper-
ties of vortex sheetsl4 (see Appendix A). 1In this equation
the integrand of the first integral has a logarithmi- cingu-
larity at k,=1 arising from the elliptic integral K. The
integrand of the second integral also has a logarithmic
singularity arising from the functions G, at ky=l. To show
this, the expansion of the functions G, near k,=1, equation
(5.3-36), is substitured into equation (5.6-12). The singu-
larity of the type ( %{pl_xéﬁz_) cancels out and a logarithmic
singularity is left. The logarithmic singularity causes no
difficulty since it is a removable sirgularity and integrates

out. For convenience in numerical calculations the change in
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variable

cos®' - cos@; = cos3g
may be introduced into equation (5.6-12) to remove the
singularities.

The tangentiel velocity induced by the ring vortex
distribution at the propeller 1ifting line is given by
equation (A-19). If the Fourier series for the circulation
distribution is introduced { to this equation, it is obvious
that the even series integrates out and only the odd series

is left, consequently

J (1 - RLcos"P)% J

h=zi

! o0
%[ ‘
wixooly == (%) %(Z_An(zo[f ehlog: 21500282 nen 849 )y
]

h X4 1% y 2” [(052(h+/)47 cos2(n-l)&. ] /
il ‘Q 2”"””]( N R o da)"lz
h= >

o
1r

= '1# (%1)3/:[ [2h(cose ::o.ce,)] cos} 9’(Zhn (e) UARY-W/ A ﬂ\ de'

nx/ I
(5.6-13)

where

cosB, = -(2ap + 1)

£ = 4(E)

2 " he(cos@’ —cos %)2+(}§ +H)*

hk is given by equation (5.4-2)

——
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The integrand of this integral does not have any singu-
larities and is zero when k, = 1.

The axial velocity induced by the duct trailing vertex
sheet at the propeller lifting line is given by &quation
(5.1-2) with ¢ =0 and z = 0. Again introducing the Fourier
series expansion for the circulation distribution this

equation becomes

['3:("”' ]) = ‘ijn(z)( casm;?' [‘—("—" cas(.’-d)]d do’ )Jz'
-? g n=i
sl o0
mfZ/) (z) ﬁmnqﬂiﬁ Jc{,m(P )
6 n= Aar P4
(5.6-14)
where

RE= 1 +(E) -2 cos@ ) +[eh(-ar T') +tanps]®

(%) (,J) [ /84] (5.6-15)

The integrand of the infinite integral is singular at the
point x = x4, «t= ' [__%% 43_)_] and is only singular when
the propeller is the same d ameter as the duct. The infinite
integrals occurring in this integral are almost the same as
given by the propeller induction factor, equation (4.3-7).
If x % x4, the order of integration can be interchanged in
this equation and the infinite integral can be reduced as in

Appendix E.
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r
W, _ 2k 1 S k- _x P
[?/:(7/0,0) ]Q_{ -”mj(c‘os o {Z NG 'g:/b,(w@e ])de
¢
(5.6-16)
where
P

b, = j [(, - ;2 cos2g) fo_;?_m](n cosn§ K (no) - -”a-ﬂ' [I,(mr) ‘L_»,(W)]sinng

o

(5.6-17)

¢
z n | pR3inn(p-¢)d J
oV ff/%?'?}%_—ﬁ) ?
o
%
Z—ae =f[u -_écogay) co_;-zﬁqﬂ](n sinntKino) + %’Z[L(nc‘) -L, (M‘)]COS"C

° 1
_n €o5nfp-6) do | d
’[':7 ot +:7 ’a) ¢ (5.6-18)
and

c=-2h (cosé -cose,)

P
e ! XV yix QpJ
= + - 4(=) cos
o E?ZJ [(! ﬂ) (ﬂ)
cosf, = -(2a.+1)
If the behavicr of the doubie integral in equation

(5.6-14) 1s considered at Xwxi, then it can be shown that

141 and 1, are valid even for Xwxq since

X 2 nd
(- 7771case¢)1:u =2 sin ¢
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sing

Gexd =

2
fa%;

and

%in; (s‘in #)X, (no) = (taz/g’d)

The tangential velocity induced by the duct trailing
vortex sheet at the propell - 1lifting line is given by equation
(5.2-4). Introducing the Fourier series expansion for the

circulation distribution this equation becomes

m
{—‘(1‘30;0) ]W Eﬂj‘;’i‘g[ ’g,,(e)(t + 21 h,,(e) ‘tz ]C’ (5.6-19)

where

RJ

_lcom’j’ [-2h(coss. -cose; ) sin(P= «) +[& ~Cos(@ )+ Astn(@ -dz]ﬁ.,da/] dod (P:

=-,a;‘,/gf£%z—"f’[(%J ety i)

4" [5m2ncf:m2¢([_"‘_’.’@_‘_4o)

o) e

% (5.6-20)

tandy
]

cosngk,ino) - L sinn ¢[1 (nsi- umr)])d«p

- 4';j;ina’mps}naqﬂ(cosnﬂ(a(na) +'-’a-rsinn;[1;(na) —Lo(,,,)])dcp
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T oo
Slnn{ ~2h(cose -c056,) sin(@ '~ ] ‘*"[XJ —CoS(PLA) + A Sn(P'~ ""’7"75’«/\4 s
R3 |
- @d-coseqﬂ) cosn(p-¢)
m/u/ coseng W‘ % dp|dd
i
4 ; y ' _ sinn(, ’:}J/)
+ﬁ"‘%J[Smr:'cfsmenﬁ(_wr_z’.;:_g j;??%r )
)
%
f_";g (’ ~coszqf) “’53” sinng K,(na)+—-Caan[I (no) - L ('10‘)])
%
- 4; sin2@sinand sinngKolno) - 7 05”4[.[(”0’) ~L (”0')]) c/¢
t \J
(5.6-21)
where

G =_f:nh/_§J (cose —COS&;)

/
/ 2 ‘X
oot 05 45

cos8, = ~(2a; + 1)

These last two equations have no singularities in the
integrands of the integials. There are some indeterminate

forms of 0/0, which ace evaluated as follows




141

If @ =
lim (cosa_n_té’ | z 4’]) _ _faj/;cl

xX-»x o?

lim (i’_"_?_”l’i"_”_a_‘/’ ): n ten’f3y

x| o2
If X = xd
tantd !
cos52h - - 20/d
o cosend, cose/ K'("’)) Zh
1im (.22522222222 K, (no% tan®/]
@P>0

With the preceding equations the axial and tangential
velocities induced by the duct can be determined at the
propeller lifting line by equations (5.6-1) and (5.6~2).

These equations allow the propeller to have any axial posi-

tion in relation to the duct and, 3ﬁ addition; the diameter
of either the duct or propeller is arbitrary.

In addition to the velocity induced by the duct at the
propeller, the radial velocities induced at the hub a?e needed.
Because of the way the hub problem was treated only the average
radial velocity is desired. The average radial velocity
induced by the propeller at the hub was essentially derived

earlier in Section V.3 and is

) |
o, 4 [ S8 i) \
Zn (5.6-22)
The function I$ (1h,z ) is given by equation (5.3-12) |

with x4 replaced by i, . The radial velocity induced at the
hub by the ring source distribution is derived in Appendix B
as equation (B-13) and will not be repeated here. ‘'fhe radial




velocity induced at the hub by the ring vortex distribution
can be derived from equation (A-14). If the Fourier series
for the ring vortex strength is substituted into this equation,

the average radial velocity induced at the hub is found to be

i
2y 4~/ D) R}
[%’5(7&:9)} = U—f’;(—,—’f‘,{rlzfgf(e',)cosfe’v@ﬁ?h(case ~cose'l} @-’I—é_—’“f—"g’-—- 2 K(ﬂ!} de'
Q ] b L -
° (5.6-23)

where

cosd = 2(z-a;)-1

2o H(%)

- - ne %5 12
4he(cose -cos )2 +(i+ 3,5)

The modulus k 15 always different than one so thé
integral is always regular. The average radial velocity
induced by the trailing vortex system is obtained from
equation (5.1-3). If the Fourier expansion for the circu-
lation distribution is cubstituted into this equation and
then the equation integrated with respect to ¢ from 0 to
21, it is easy to show that the average radial velocity at
the hub is zero, i.e.

{.&'lf (Xh,Z)] =0
Many of the coefficients derived in this section are
dependent on geometry only so can be tabulated. Specifically

the coefficients I,., 1aps Itl’ and Itz shouid be mentioned.
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Vi, Conclusions

A theory for the ducted propeller is developed which

can be used for design purposes, The method is based on

assumption of an inviscid fluid and that the propeller

can be represented by a lifting line, These, among others,

LN

he assuwprtions normally made in propeller theory33

v
[P

ct

and,
consequently, corrections must be introduced to allow for
the difficulties in these gssumptions., These corrections are
not considered here,

Assuming that lifting surface and viscous corrections

can be made, the adequacy of the theory

must still be based
on experimental resulte. A linearized theorv similar to

that used for treating the annular airfoil has been very use-
ful in two-~dimensional airfoil theorv and, likewise, the
treatment of the propeller by lifting line theory has been

effective. it is not self-evident, however, that in combination

the resulting theory of the ducted nropeller will be satis-
factory. It is presumed that it will be.

An attempt has been made not to restrict the problem
more than the basic assumptions which are given in the intro-

duction, consequently, somewhat cumbersome equations are

obtained. In general, these equations have been reduced to

coefficient form which are dependent only on geometry so can
be tabulated.

Accepting the basic assumntions in Section 1, many

————
—
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important observations can be made abcut the auwnular ailriovil
and the ducted propeller,

1. The linearization of the duct boundary conditions
results in the radial velocities induced by the singulari-
ties in the flow being equal the duct surface siope. In
addition the boundary conditions are only satisfied on a
cylinder of constant diameter and chord equal to the duct
chord,

2. The strength of the d .t source ring distribution is
independent cf angular position and dependent onlv on the
duct thickness Jistribution even in the presence of the
propeller.

3. The strength of the duct ring vortex distribution
depends on both the camber and thickness distribution of
the duct as well as the radial velocities induced by the
vropeller. 1f the duct is at zero incidence end the pro-
peller is not present, the ring vortex distribtution is
independent of angular position and no free vortices are
shed from the duct.

4, When the duct is at an angle of attack {(no propeller
present), the duct vortex strength is a sum of two terms.
Cne term is the airfoil at zero incidence and the other is
dependent on only the angle of attack, duct chord-diameter
ratio, and the angular position.

5, The problem of the design of the propeller in the
duct reduces essentially to the problem of the propeller by

itself with the inclusion of the velocities induced by the
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duct, This means ihe indurrion factors which have been calcu-~
lated>> are applicable to this problem.

6. On expanding the radial velocity induced by the propeller
on the duct in a Fourier series, it is found that only terms
exist which are harmonic with the number of blades except for
one zero-order term. This means that the Fourier coefficients
of duct vortex strength are harmonic with the number of blades
except for one term. This zero-order term embodies the pro-
peller average radial velocivy and the duct thickness and camber.
All the higher order terms of the duct vortex strength are
functions of only the propeller induced velocity.

7. The duct ring source distribution induces no tangential
velocity at the propeller nor does the source distribution
representing the hub.

8. The duct trailing vortex system induces no average radial
velocities at the hub,

9. The induced drag of the duct is zero if the duct is by
itself and at zero incidence. In the presence of the propeller,
the i1nduced drag is dependent on the radial velocities induced

by the hub, propeller and duct trailing vortex system.
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Appendix A

Velocity Induced by a Vortex Distribution on a Cyliinderl3

First consider the stream function and velocity distri-
bution induced by a single vortex ring of diameter, Ry
located at g" » The figure shows such a rin; where both a
eylindrical coordinate system {r,®,& ) and a cartesian

coordinate system %,v, f) arc used,

? ‘.‘1 :"".\ o Plh@ 8) oy P[&J ’1’;\7’)
PRy g 3
Pg g

Ry ‘f

i)
[N S

vy
LI
mn

The coordinate £ is in direction of the axis of the vor-
tex, the element of the vortex filament is at the point, P',

and the stream function and velocity distribution is desired




o o

equation:

where
av
R
ds

at the noint, P. The Biot-Savort law gives the velocity
induced by a vortex filament. In vector notation and for

an element of filament 53, this law is given by the following

o ¥e) ﬁXJE
V= = 2804 -

is the induced velocity at P from the element
is the vector from point P' to P

is the incremented vector 7Pds tangent to the vortex
ring at p'

¥(9) is the circulation at P and dependent on <? '
If the unit vectors 1,3,k are in direction of the Ryyof

axes, the unit vector d8 can be written as

ad.g. - %?i{-— sin 41?’ fcaSW?/’ *O-Q] (A_z)

Since Ryd@ ' = ds the above equation becomes

-
j_f = —sin@’l +c:osq9':/, -[-ng {A=3)

From the figure it can be seen that the radius vector R

from P' to P 1is

R =(rcos¢ — Ry cos@)e +(rsmd —KJsmC/'); +[€;i’/)]

By vector multiplication it follows that Rxds is

ds




AxE =[(¢’—$’)cos<r']2’ o5 [#+ [pa -reoste-Al

(A-5)
The magnitude of R ig. given by

R = l,?(’! = VRS 41 + (€50 < 2v Ry cos(P-¢) (Au6)
Substituting equations (A-5) and (A-6) into equation (A1)
and integrating around the ring gives the vzlocity induced at
P by a single vortex ring.
e
p [RS + rCe(e-£)2-2rhicos(P-P)* (a-7)

Vlh’

For the induced velocity from a vortex cvlinder, the
induced velocity from the single vortex ring is integrated

along the cylinder from the trailing edge (f = a.) to the

leading edge (§ = ab). Since each ring will not necessarily

have the same strength, the vortex distribution will also be

a function of £. It follows then that for the vortex cylinder

the induced velocity is
as o
o oo &y [ [[e-Eeostll #lie-£)5in @] ~[reos@-C)-R R\ Ly 111100
W(U‘/ﬁf)- —f \ L—/ej +re +({_;/)g _ Z'rff,jca.s{tf’«c/’}]”/z J/(¢Jf}J¢a/£

(A-8)
As expressed by equation (2,2-23) the axial coordinate

¢ 0

(£ ) will be assumed to be nondimersionalized by the cylinder
chord (a), the radiaj coordinate (r) by the propeller radius

(Rp), the velocity and also the vortex distribution by the ship
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speed or in the case of uniform flow, the free-stream velocity,
The duct chord diameter ratio (h = a/2R ) will also be intro-

duced and then making the change of varisble (2" = z' + &)

[¢]

and noting ttat in the nondimensionalized form u,-u4=1l, the

preceding equation can be written as

(?‘,ff’zjy. f ( htz 2 ) cost T + [2h(z-ae2)cost']] -] ycos(f*” -1 Ay
?'r / *(,u} v 4k (z-ay2)8 -2(&)ces(P-9)] LA
(A-9)
If there is no clearance between the nropeller and the

duet, then x4 = 1 and the above equation becomes
1o
Ye(r¢z), = [2h(z-ac -2Jeo @] + [ehiz-tg-2)cos®]] - [Xcos(P7)- /],Z \ iy
% )¢Y [ \ [/ +XE 4+ 4h2(2~q4 2')2 - 23'6’5(?-&’)]% r(‘}f,_}
o0

(A-lO)
From the figure at the beginning of this section, it can

be seen that the velocity in the axial direction (w,) is given
by the component in the k direction. The radial velocity
component (w,) and tangential velocity component (w) are
obtained using the relationship of velocities in cylindrical

and cartesian coordinates.38

The velocity (w&) is the
component of velocity in the 1 direction and (w ) is the
component of velocity in the J direction, the radial and

tangential velocities are given by the following equations

n

wp = wycos @ + wysin ¢

Wy = -wysing + wy,co8 @ (A-11)
Applying these relationships to equation (A-9) the

different velocity comnonents are found to be
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| er

Jﬂfz) - nf [(Fleos@-4) -1 1@, z)dw !
p= 91* (, F(5)% + 4 hEG A ZTE -2 (EJeos @I (p 129

S

1 efr
Wetypz), = b 2 h(z-2s-Z)cos(f-&) Y (¥2)diils
; ¢ e [i +(Z) +4h%(2-a¢ 292 - 2 )costy- YT (a-13)

w ; 2h(z ~a¢ 2)sin (P-#)H¥)2) Jf 'z’
v:(".‘ﬂl})/ /:/'H-[% & yhz-as-2')% - E(E}uw’(!/—a}]"'ﬂ (A-14)

The velocity induced on the vortex cylinder itself is
found by considering the nroperties of vortex sheets.14 The
velocity across a singular vortex sheet has a discontinuity
in the tangential velocity component of magnitude ¢. As a
result the value of the induced velocity depends on the side
of the sheet,/ Since only the axial and radial velocities
will be needed on the ring itself, it follows then from

vortex theory that
| e

apyio gl = — | [ LC3W-F) - HFZ)dedr' o 1 vrps)
v (4 mr [‘/62(2_4{ _Z:}E $+2- 2(.‘05(¢—(f’]ﬂ2 4 (
o O

g h_| | 2h(z-ae-2)cos(@-@) ¢ 2) ¥ oz’
AR, [f['//:’(’ 2 2P £ 2 - Ecos(e-RI" )
(A-16

The plus sign refers to the outside of the duct and the
mitus sign to the inside. The radial velocity will also be

needed on the proneller hub, Denoting the nropeller hub radius




P-I
W
~1

by'xh, this radial velocity is given by

! 2
Wein qﬂz)r: h | [2h(z-ae 2)cosip-#IpET ¢S .
BOTA | G T T () 2 Becsco
o

(A-17)
The axial and tangenticl velocitv induced at each nropeller
blade will also he needed. For this nurnose it is sufficient to
consider the propeller blade in ite vertical position thus it is
sufficient to consider the an ‘e ¢ as zero and since 2zso at the
eropeller, the axial and tangential velocities induced by the

vortex cylinder at the propeller are

a.(r,oo)r - L(M)C0“ I]"( vy dp'dz! ,
E’r 4h2(ae +2')8 1 +(F)Pe 2(X )casq | %
(A-18)

!

W, _ _ _h 2hias+2)singd’ (¢, 2') dp'dz’
A el [J/L:{h‘(d{ +2)2 41+ (G)F - 2(Eeosqpi]%e )
(A-19

If the ciremlation distributioy (¥ 2) is a function of

the angular position, then a vortex system is shed from the
nozzle, The velocity induced by this svstem must also be
considered and is discussed in Appendix C and D,

If the circulation distribution ytqﬂ,z) is independent
of the angle @ , then the velocity induced from point to point
is independent of the angular position of the noints, It ig
then sufficient to consider that the angle ¢ is zero, From

the figure at the beginning of this section it can be seen that
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for ¢ =0 the radial velocity at P is given by the comnonent
of velocity in the i direction and the tangential velority
compenent is given by the comnonent in the j’dirs-.ction.

From considerations of symmetrv it is obvious that the tangen~
tial component of velocity is zero, This also follows from
the fact that the coefficient of 3 is en odd function and the

integral of this term vanishes, Utilizing these results,

emation (A-9) reduces to the following equation.

! efr

A 28 i 2eos@lp -T2 cos'~] 21\

Yyl . b (02 ) [2h(z-a¢ 2'jcos@ic -1 % Ji Vo,

[.TZ L/ am fg(%)% j (1 ——g,ECOS?-cf’)% ld‘(’)c{z
o

(A-20)

where

_g‘?- - 4( '})

4h2(z-ag-2')% + (1 +£)°
The integral in the brackets can be reduced to the form
of complete elliptic integrals by introducing the change in
variable cosé«ﬂ' = gin0, then d@' = -2d6 and when @' =0, 0= %
and when ¢'= 27 , 0 =_3_v_2_7_f__.

] %

J(rz)] = 1), [ffh(z-drz’)(ei’ﬂ%—/)]c?-—[a(é)smea-[{yﬂ)]
vy 2] (1 -RFsintlo )%

s

= - _:;_/r/z’} [2/1(:-4,,-2'),' ) - (h) ~ z{é)E(ﬂ.) ];

(7()5)"2 \ "') l_ i - ‘Hza(z~a¢-z')+(%_;)2

(A-21)
F-NER) ] ;) 4

P
+ K(—“., E(ﬁ.) ‘Mz(z-df _z,)e +(}J_5 _,)ZJ

f

e)dz’
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where
W
1
Kih)= | —e—acda = complete ellintic integral of the
I Eeorn?, . &
J'V’“ , S8 first kind
° 1

i

complete elliptic integral of the
second kind

oo
E() =’}W/I—,4fsmeeda
2

The axial comporent of velocitv is given by the coefficicnt
of the unit vector k and the radial component by the coefficienti
of the unit veector i,

As discussed npreviously the axial comnonent of the induced
velocity is discontinuous across the vortex cylinder therefore
on the vortex cylinder itwelf, i.e, (x = Xqr 8 = zZ 8, ), the
induced velocities are

1

%{Mz)‘ = - 5%‘[?’("-')—@[“(3)‘ + E(g)]C/ZI t ::")’(Z) (A-22)

- 54

rV/y iz 2 ren. s1)8 - - ﬂ}

_i/‘lx"z’ = ‘ffT (;_d;)—_{% (z-2, ~2') [K(“) E(ft’} zE(R)|dz' (423
where

R

he(z-a,-202 +1
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Appendix B

Velocity Induced by a Source Distribution on a Cylinder

In the derivation of the velocity field from & source
cylinder, first the velocity induced by a single source ring
of diameter Ry located at E/will he considered. As for the
vortex ring a cylindrical coordinate system (r,#,f ) and a
cartesian coordinate system (Q,y,g') are considered as shown
in Figure 8, The velocity inc¢ *‘ced by an element ds of the

1
source ring of diameter Ry at the point P ig=>

. ory 2

dv'= 34%6'}'7;15"5 (B-1)

The strength of the source at the point (R,, @', 5’) is

denoted by q(¢', f’). The vecter R and its megrnitude R rave

the same value as given by equations (A-4) and (A-6), there-
fore the induced velocity for a single ring is given by

et
7l =R [[ceost pucost)T 1 (roind ~Rasin@i] + (£-£') 4 ] g g1de’
[ 47 (R +rE+(€-£7)8 = 2 ¥ Rycos(P-9)] 7

AT
Isingle
ting
(B-2)
The induced velocity is given by integrating single
vortex rings along the cylinder from the trailing edge (§ =a,)
to the leading edge (f = a, ). Since each ring will not
necessarily have the same strength, the source distribution
will also be a function of £ ., For a source cylinder it

follows then that the induced velocity is

Ae efr

r 4 . . n? /
(= _Ra | [ |(recs@-Rycosd@li +(rsing -Rysin@)f+(E-§ )£ Weyolle’
LVK(“%)]& 4';[]( [Rf+viete-£')2 - E?r@z'asW-f/”)]”:B whguecy
¢ O

~3)
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As for the vortex ring the axial component will be non-
dimensionalized by the cylinder chord (a) and the radius by
the propeller diameter (Rp). The induced velocitv and source
strength wwill be assumed to be nondimensionalized by the ship
speced or in the case of uniform flow by the free-strcam
velocity. The chord diameter ratio of the cylinder (h = a/2R4)
will be introduced and the change of variable (2" = z' + ay).
Since in the nondimensionalized form (ay - a. = 1), the pre-

ceding equation can be written as-

!

Cimad =-b | .’Lm)caw-casﬂz" + [B)sind - sing’] T+:eh(z-2ar2)R)
moof) T I\B‘A (-2 -2)% 1+ G5f - () coslo- 0"
o (B-4)

The axial compcnent of velocity is given by the component
in the k direction and the radial and tangential velocities

follow from equation (A-11)

Yz-a,2)° +1 +(§J}‘ - 2(&)cos(+- 9’)]3/2
(B-5)

Yty =5 Jf( T 2hz -ac-2) g (4] )dcm/z’

)

M bz), = h
‘4(/ Z)g 217'[

0 o

{ [(&) -cosce- "”')L?W' z) | dodz”
\[#h(z-a02)F # 1 +(5)* - E(gcos (4~ )%
(B-6)

e
1

I
Wil 2) =_h_jrf sin(f-S) (¥, 2') otz
v T I\ [44¥z-ac-z) 14 ) - 2(E)cos(p- PN

(B-7)

}ﬁ@ﬁb%héy




The velecities induced on the source cylinder itself are
found by considering the oroperties of source surfaces.'® 1In
this case the tangential velocities are continuous across the
surtace hu' the normal velocities are discontinucus, Denoting
the outside of the cylinder Wy a pius sign and the inside by
a minus sigu, it follows then that the radial velocity on the

-

cylinder itself (k = xj,ap = 2 = ay) is given by:"8

len

0y | —cos(¢-¢)]2(¢,z) Ntz t (02
sl 2”][([4;,2& -ag-2')? +e-éco,(¢—a9')1"é)df:8)2? t2)

If the source distribution is considered a constant with
respect to ¢/, then, since the flow is symmetrical, it is {
sufficient to consider that the angle qus zero in equation
(B-4). 1In this case the velccity component in the j direction
is an odd fuuction and integrates out., If the change in vari-

able coséd?'= sin® is made, equation (B-4) can be reduced to

the form of complete elliptic integrals,

1 17 -

[V(y,(/z)]___ 208 [[(E +) - 25in0] + [eh(z-a¢-2)] £ Jo'ldz
¢ k("")’/e_o [I - #35”,297’/2
/ —
(}5.(&!_‘, L2l )uﬂ)]
’T (f‘;)"?w;f‘;} L

(3-9)

- [ efeh(bae-z')]E(ﬂ,)] 7 ) J7
Yy

Wz, 2T o - |
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4(%)

%

0

->
in the i direction.

Mapy 7). L
% '% el | Y(z-a.-2')
(o]

Vh(Zag- )2 4 (37 41)2

|-

firet kind

! .
Kif) = | s e complete elliptic integral of the
: ) Vi -#isinte Y 8

ER) =f1/l —Z,ESME" de, complete elliptic integral of the

second kingd

The axial component of v-locity is denoted by the compo-

nent in the k direction and radial component is the component

Again considering the properties of source

surfaces, the velocities induced on the cylinder itself XPXq,

a;= z=ay) are found to be as follows

!

([.CW-QEY£<J7/

’ (B-10)
and
]
Wy [ .. B t1gy
. Fzazles btz Hlkia) -ER)dz 2 7 gl2) (B-11)
o
where
Y —
TR z-a,-2) ¢ 1

It is shown in section (YI.3) that within the linearized

theory the source strength is independent of the angular posi-

tion even in the presence of a nropeller,

For this reason the

velocity induced by ¢he source cylinder at each propeller blade

is obtained from equation (B-9) by letting 2z=0,

Since only the
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axial velocity ig needed, it is the only one given,

1

“lvol, — _ b |2ezif | 2hlact2) E(£L) ”
K ﬂ'o?@'/s (‘Hﬁ(’auz')ef-({l—l)‘ d

(B-12)
wheire

ﬁe - ue
e HhRae tZ)Rr(E 4)®

Similarly, the radial velocity induced at the hub by the

source cylinder is independe! . of angle and is obtained from

equation (B-9) by letting x=§h

!

G _
Rnzle = _h %(K{l,)—ﬂ@* 2()ixs ) E4y) )"JZ'

T X & P rb et ? Xh__l;)_‘
5 2 y (7_':'() Yh¥(z de 4)4’(7; !

(B-13)

where

£« i)
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Appendix C

Velocities Induced. by the Free Vortex Svstem of a Vortex Cylinder

at an Angle of Attack

If the ring vortices making up the vortex cylinder arc a
function of angular as well as axial position, then a system
of free vortices will be shed from the cylinder. Thig is equi-
valent to the vortex sheet which is shied from a three dimensional
flat wing.27 Consequently s'milar assumptions will be made
about the shape of the vortex sheet, namely, the free vortices
form a cylinder which has a constant diameter equal to the
diameter of the bound vortex cylinder with generators which are
parallel to the { -axis, and which extends from a bound ring
vortex to minus infinity. The density of the free vortices is

1 3)’(‘@?), where J’(Cf,zf) is the densitv of the bound

Ry 97

vortices, When the annular airfoil is at angle of attack, the
free vortex lines are straight lines parallel te the £ -axis
while in presence of a propeller the vortex lines are hzlical
in shepe. In this section only the straight vortex lines will
be considered.

The same cocrdinate system and notation will be used as in
7 ]

Appendix A. 71

) o %

i ¢
Free Vortex *
cem:fy( _‘[;) p

j |
47y

Figure 9. Notation for vortex cylinder trailing vortex system




166

The velocity induced by an element of the free vortex

follows from the law of Biot-Savart, eqiation (A-1)

d‘{{. Fryps .i/_;r_'__ﬁJ :_é; R%st dlipll,{;quyl (C“l)

From the figure the vector ds is given by

ds = of + 47 ag"k (C-2)

- * 3
and the radius vector R from P &4 p is

~to
R = (rcosf ~Rycos@’){ + r57ﬂ¢-&/5"”¢')i *E-£10 (o
The magnitude of R ig

-3)

R = iii =“/(§.‘§’II£!“/’£+/?JZ_2V@(¢:*@
From vector multiplication of equation (C-2) and
is obtained

(C-4)
(C-3), RYds

RXAE = (Fin@ - fy singp’)F" dE! - (rcosqp M cos)ide” (c-5)

Substituting into equation (C-1) the velocity induced at

P by an element of the free vortex ig

4P e W trsme — sinrﬁ')fgfﬁgﬂ"@ﬁﬂ’_*._i"'f de'dg'rydp’
RN ETE v R S 2 sty oY

-

(C-6)

Since the free vortex extends from -co to £ 'y the velocity

induced by an infinitesimal stripis obtained by integration,

- _ ) i{ - 7 7’_ _ . " ,
[%]5"7/(- - m a¢/[(r5/”¢ @/S/ﬁ¢}c (FC'OS(p /?JCa;&)%]J;pJJ¢

Frlament

H

. _ J£"
E-8" v v+ RY “ v Ricost-p) %

-0

(C-7)

The integrai is evaluated and equation (€C~7) becomes
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- 'y [ 5 N tened) - , .4
[V‘] s":; le f: -q—ﬁRJ‘igl(FSIlr, —/{‘;Slnc,/l)c (e 4'0 f"‘lf_asq7 )7,-]
filasen

7 ! .]\
Lr9+ Rt - E:RJcos(f-ﬂ[V(f ;)2 + ri fﬁ(;)- ~ 2¥Rycos(@-¢') - IJ )ngfl!cfcf'
(c-8)
The velocity induced by all the free vortex filaments
from 2 single vortex ring is given by integrating this equation
with respect to ¢' from 0 t¢ 27 and ot the free vortex cylinder
by integrating the induced velority of the single rings which

are distributed along the chord of the cylinder,

ag e
[i/'-] : [rsing-R)sin@ )T ~{reosp —/fﬁoﬂ)ﬂ[ (€-¢°) ,,,]ar detle!
WA [ [reerf - erfycosip-¢)] L\/(;‘{)hv!mj erfjcostr-) Y7
as 0

(C-9)

Nondimensionalizing this equation as before, i.e. the ~
axial component with the bound vortex cylinder length (a) the
radial component with the ring radius (Ry) and the circulation

with the velocity (Vo) the above equation is given more simply

as:
M f HW e '(l‘f"’"’""“"”)'ﬂf ehtz-2) + (Wl
” 2 [m) E “5(9" 4”)_7 I'\f‘fhe(z-z')ef(x)"l-/ 2-@5((?—097 s

where z = z2-8,, % refers to the coordinate system at the pro-
peller,
From the form of this equation it can be seen that the

free vortex sheet induces no axial component of velocity. The
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radial and tangential components are given by the usual relations
of velocities in cartesian and polar coordinates, equation (A-1l1),

12

[+

f., .
‘V"(xxz:r)}

ﬁ[ sin(¢ - &) l 2h(Z -&) ] .
T j[ 2ri -z(g)ws(qo-w)]bﬁﬁ\*‘(z'—z'fﬂg)w/~ezg)e(o(§ml.g*’W

and

1 afr

[W‘(z,t/z) [f[i ~cos(¢-€)] | Zn{Z-2]) F@
¢ (G - 22 ) os o) Vit hez -2 +(E )P+ =aae |

(C-11)
On bound vortex cylinder ,—::.- 1 and 0 =Z =1, the radial
velocity, equation (C 10), reduces to the following
f (/{ucﬂz [cot (4’-4?')]f 2h(2-2) + || dedz!
o j : \m'(z 2 + 4 sit P-4 i
{C-12}
and introducing the notation
g?_ !
U T RE(E-)7 41
equation (C-12) becomes
- ., ']
.”ﬁ'(rWz} | oty ool _Rhiz:2) | dgdl?
[V ’ ’ v [T —42coftie-¢) J‘P

(C-13)




Appendix D

Velocity Induced by a Heifcal Shaped Vortex Line

The velocity component induced at: 4 point in space by a

vortex line is given by the law of Biot-Savart. In vector
notetion and for an element of filament ds of constant

strength this law is given by equation (A-1} rewritten
here as (D-1),

i
3

Xds

———

O

d

<

e
4T (D-1)

dVi is the induced velocity at a point P

is the radius vecior from the vortex element
to the point P

ds is the vectar tangent to the vortex ring at
the element

4 1s the circulation along the helix and is
constant

The following figure shows such & helical vortex 1ine
leaving from a point f', which will be taken as s point on
the duct or the propeller blade, where both a cylindrical
coordinate system (ry@,¢) and a captesian coordinate
system (ﬁ,y,; J arc used. The point'P(x', y', &€ 'Y s a
general point in space and the point P"(x", y",f'» lays on
the vortex line.
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Figure 9. Notation of the helicoidal vertex
From this figure iz can be seen that the vector

given by

1line

R is

R =[rcosf ~Gcos(qp +)]; & [rsmd --K:’m{c/)ﬁ,m}]{
¢

w[E-E ~tatant] §

(D-2)
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The megnitude of R ig

R = (R[ [rcos@ -iicosi@ea)]® + [reind — g simi, w8 rleup £~ tox fan g]

or

RE= roent v[f£-£ £ «mnﬂa] ~2rt; cos(¥- 4 —x)

(b-3)

are in the direction of the

5

The unit rectors i, j, £ 4

l ¢

209, 7 cxes, The unit vactor %% aiso fclilows frox the
[+
iaure as
- s - - z
i3 =Sin(gy t)C +coS(fpte) J + tan do
v -
(2]

sec /o (D-4)

sec /4 odu

The contribution cf the whola vortex filament is found

by integrating equation (D-1) with respact to o« from 0 fo ~o0
_’.oo 9
Ly _ P | Bxdz _['_/R,’(a's
‘ 4 | R? vy K7
o Q0
(D-3)

- = o K Fpd -
Substituting iu for R, equatirn (D-2} and J5, &quation

~~

D-5), the induced velocity from a helical vortex line is

given as

— 3. -
7.l (ce-g5 - s pigpdeosct o - rsmd-rsmigrmlinnd)7
<=7l ' F\“ '
Z U




([(f £) = X1 tanfo] sinfth+=) +[recs - %cos(ﬂom)]fan/r,
R?

X ( r%ﬁ%'“/).z]dd , (o< tanp< T

(D-6)
The axial velocity induced by a helical vortex line is

given by the component of velocity in the & direction and

the radial and tangential velociries foliow by using
equations (A-11)

o[ | w-veoscp-¢,-«) »
o fp [ et

3
~ (D-7)
g
W z?igj ([(E £) —xto tango]eos(@-Fo==) - to tanfo Sin(P=F =%) | o,
Ro
Fa (D-8
OI
we= Lt (fvoafarﬁ, 'sz-ﬂ-mfr -to cos(p- g -a)Hande|
=2 (0-9)

The integrands of the integrals for the axlial and tangen-

tial velocities are singular when the point P(r, ¢ ,§)
lays on the helical vortex line itgelf, This cccurs when
x= (¢f- cpp) T, tanﬂao and r = r,. It can be shown

that the integrand of the integral for the radial velocity
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equation (D-$) i3 nct singuiar at this point but has a
Jump discontinuity, except possibly at cc = 0, Thig {s
shown hy letting (£ - £') = ro(¢~€9o) tan 4, and v = 1,
in this equation, using the series e;cpanSion of the sine

and cosine, and taking the iimit,

('6[(¢' %. —mJﬁnAcos[f-ﬁ-d) o I‘Zm[(',, sin (f-ﬁ -d)\
\ [2?'0 +062(¢’ qgaro()ef‘aneﬂo - z.o.s(Q” q? -w)]-/e /

1 (- -«)/z;y:.cos(f—-%-«) fango 5in(@-Fp -
& [2[/ ~cos(¢p- @ )] + (¥- - ~) 2tan B0 }¥e
The limit of this equation as «-» (¥ - ‘f’p) is
equivalent to considering (¢ - ‘50p -x) =~ 0 and letting
@ + 0. Considering the series expansion of the sine and

cosine, i.e.

3 §
sino=e- 2 + -
cose = . & .8t _ ..,

i T

The above equation can be written as follows

63 9’ -} 85 \
1 ( (9'?1“+W“"' Ot E gt ),
2 e’
b [2(/—/ -27 “7/'2 4"')4-927"“"/4]

:([- 4+ (Fr - 4r)6t + o] tanto )

62 . a2 73/3
\ {/ - —Z'T 4+ T Idn'/]p] /
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and the limit of the integrand at 8 - 0 is

! [} ) )
tonds i -5+ - )6+

w oo\ [1-2 g+l

- ‘Eﬂﬂa
362[1 +1anl,]%

Since the integrand 18 a odd function of 6, the limit
as - 6+ 0 must be of opposite sign. Considering 0 as equal

(¥ - E/)p ~o) the limit of the integrand can then be written

as

lim {_/__ (-sine + 66056)12;?40 -] = f‘a%{z
o-20 &\ -cose) + o2 tantha] 2 ] 6 +1i " 10y

Since the integrand of the integral for the radial
velocity 1s not singular, it can easily be gshown that this
infinite integral for the radial velocity is uniformly
convergent with respect to ry, r, £~ ¢ ' and ¢ - ¢y with
tiie exceptions discussed in the following paragraph.

At the point r = 1y, = &f",4’-cﬁp and « = 0, the
integrand is discontinuous. If £ = ‘,‘-’ ', 4’=q9p and the limit
of the integrand is taken as « » 0, obviously the limiting
value is given by equation (D-10). If, however, cﬂ-qOP,

o« = 0 and the limit is taken as § —~ £', or if £= £',
== 0 and the limit is taken as ¢+ ¢}, the integrand is
singular as %2 . At this point the integral does not

exist and consequently is not uniformly convergent.
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Appendix E

Evaluation of the Infinite Integrals in the Equation for the

Velocity Induced by the Trailing Vortex System

In Section V.3 infinite definite integrals of the

following two types arise

kig o
g [ (% (2 -Z) ¢ o (§ ) taryla]cos (51 «) = (& )tand, sin(G+) o 1({5
L '-\ f1+(%)? +[$(2-2" Lal"fan/fJa 2(72)0o5(9+«)]3’e

(
(E-1)

and

I, [ l: (['2'(2‘2/ to(38)tansJeosig +#) - (ﬂfa,ﬂ,sm(9+u)

ks (Ze)f +[5(2-2) + 1 tangse] ® - 2(5{;),;05(9 m)}/edﬂJdé‘

(E-2)
where
In Appendix D the infinite integral was shown to be
uniformly convergent if z # z' and sc the order of integra-
tion can be incerchanged. If z = z', it can be shown that
the asymptotic behavior of integral I, ir finite while I is

1nf1n1;e as lim(ln x} The integrals j_ . , equation

;4

1)
(5.3-28), jss;equation (5.3-30), 1,5, equation (5.3-41),

and iés), equation {5.3-42), are special forms of one or the
other of the above integrals.
For simplification the fcilowing notation will be

introduced:




AR -’- '—a..

. zZ=(z - 2z )x
¥ =0
X

; 3 -x tan 3

2 (E-3)
¢ = X tan g,
R NN PO B cos§

222
X“tan ﬁ‘o

The integral 11 will be discussed first. Interchange
the order of integration and make the change of variable
@ -(1/2)(5' +) in equation (E-1), then

ao F +ex
[ . . (;"\+r(,e)c:a52¢' ~A5sineg
~E| [[stnendcosna - cosang simmal dxdg
h CJ/ }/( nene g ) (£+20)2 HOFX)E ~Yoos BT R) T T
] 6 T +a

it makes no difference whether the above integration
is carried out over the range {-Fs+x = 4 = F+e) or
o

(-g-‘ré ¢ é-g!) since the integcand is g neriodi

+ o
function of §.
Also, the part of the integrand which is an odd function of g,

integrates out, consequently the above integral can be

written as
~ %
oz {(gm)case;a'::osangfsinn«+sinz¢s’man¢cosna¢ d B
i (57 oo %
s 6

Interchange the order of integration 4gain and make the

change in variabie /P =G+a, then

N




7/2
el T e
ce

—

% o0 \
.l
2 n( - COSH
- /-j—z—j[SmB¢Sm£n [ —(;— +a°)’/-’- j__.ﬁérf,/e )J¢
(E-4)

Assuming that the infinite integrals can be evaluated
in the form of kncwn functions, this equation is much easier
to evaluate than equntion{E-ﬂ since the range of ¢ , which
is of interest, i1s restricted. The difficulty in evaluating
numerically the infinite integral of equation (E-1) arises
in the fact that the integrand 1c a pesindic function of « ,
The infinite integrals of equation (E~4) can be evaluated in
the form of Bessel functions. This is done by writing
8in n(0-¢) and cos n(e-¢) in terms of each angle and
noting that the resulting integral is in the form of either
a Fourier cosine or sine transform whosze value ig known.39
The Bessel function equivalent of the infinite integrais

vhich arise are

%]

;I:: P = 5 ML) - Lytno) (E-5)
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(;o%)rflﬁ = Ko(”a-) (E"G)

[ (ha) - L (rs

\-
—

(E-7)

Q]:

f /f ,T}'?—%"’/e B = -7
[”]

Cosh
f(-/qu;%d/o = 7 Kylne (£-8)

The functions Ko(no-) and Kl(nor) are medified Bessel

functirmsl‘o of the sezcond kind. KO(DO") has a logarithmic

singulerity at o = (0 and K; (no) has a singularity like

1im L | The funcrions T {c) and I.{nv ) are modified
o+ & o 1

Besse1l functions of the first kind. Io(na) has the value one

-~

{no ) bzc the value zero. The functions

ol

at T = 0 and 1€
Lo(na) and L ( 0 ) zre modified Struve functions; and both
are zero at 0 = 0, For these identities to hold, ¢ must be
positive.

After integrating by parts and using the above values
for the infinite integrals, the foilowing equation is

obtained for the integral I

L.
where :72 &
e ¥ | cosr(o-L)
14 = fygnzﬁo‘/(.osé¢C052n¢)( /(/02*,0%)7"/4/0) d¢

o o (E-10)
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L/
-7 ﬁme;ﬂsmend)/ [ sinnfpn-8) 1
b 72—5;'/"] o? \'\,’(%o‘e lfﬁe_—%r )
° 8 (E-11)
7
I.= 7;;/"1‘2?}[ oseg”Cosend)‘»o:r SH (o) + ?-smnt;’[I‘,(no') Lo(”"')]
(E-12)
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d

__~4n j(s:npgssmz.naﬁ{,oanm(my) - smnqlt(na-) L,(mr)” dg

Ib— ?gﬁnfd
(E~13)

The only difficulty which will arise in evaluating these

integrals "is when o = 0 which can only oceur when ¥ = 1 and

=0, Forx=<1, = 2 8iu ¥. The integrands of
tang,

integrals for I, and I.: have logarithmic singularities at

¢ = 0 when x = 1 which can easily be removed by a thange in
variable as afascussed in section II.4. The integrands of I.D
and I 4 are of the indeterminate form 0/0 and can e€asily be
shown to have the following value at § = 0.

Integrand of I at g=0

lim [COS@snend | ¢
¢#-0 sing -\/caf oz

= 2n cos n{ (E-14)

Integrand of I, at 4=0

I ins ol = e
¢'fo[cos¢ sinengcosnt K ‘ajj Tan/]., cosnl (E-15)
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Of interest is the value of Il’ equation (E-9), for
f = 0. For this case the integrals I, and I, equation
(E-10) and equation (E-11) respectively, are identically
zero and equation I; reduces to the following very simplified
form,
e

o ‘ _
I, -2+, | lcosedceszng K ins)d g —-]sin 2gsineng Ki(no)dp | 4 =0
(o}

%

”~

! —Wn%o J

!
(E-16)
The integrand of the first integral has a logarithmic
singularity at X = 1, @ » 0 which can easily be removed.
The value of the integrand of the second integral at % = 1,
¢ = 0 is obtained from equation (E-15) as tan /o J
The integral I, equation (E-2), will now be considered, i
The notation given by equation (E-3) will be introduced and |
making the change in variable ¢ = '1/2)(9 +ac) equation (E-2)

becomes

2 (z"-m.rns»rfrosfmﬁfnwrf-‘m?ﬁ:‘/nanﬁsmno& o o
L /31]]\ [(C+x)24 ot}
% (E~17)

Interchanging the order of integration and making the change

in variable o= § +o< » I, becomes
%

IZ gg[((l-o.:e¢fosan¢) ,&_025’_1{’%;_& C!/O (S/"2¢5/”2ﬂ¢ fs#ingg /0 C/¢
T g
i :

2

_J i

_ﬂz_[ (co;ayﬁcasanﬁ [ [’C—”ﬁéﬁ"g} j ,LC_M.(&.Q

rvod (24 )
i J7? Z
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e g

- %éf}nafs;;.;anﬁ[ko%/df - jr%gg% d‘/,,},;q;
% =]

Using the Bessel function equivalents to the infinite

integrals this equation can be reduced to the following

I =T +I +I,+1y (E-18)

where
]

q
= )s2c ! N ,,.’,-S,J'.( -4}
Ie - ?zfaifzﬂ fas ¢ 052h¢’[';\/OT:F j(::g 4{;9)"3(;/0 0,¢
7}

(E-19)
o f
-4 sma¢sznpnml Rcosn(o-4,
Ip = Xt | oe (-’+ 8)"' dfa I d¢
3 (E~20)
)

. un r -
I =m9 (cosa¢cosen¢)(51nn § Kolno) - 5 cosn l,’[Io(hO’) Lg(ﬂa')])cl¢

° (E-21)
e
L= x?{:ﬁﬂj{siha¢;m£ﬂ¢) {g_’cosn ¢ [I, no/ -, (na'}'] +5inG K (no)| d¢
3 (E-22)

Difficulty may arise in evaluating these integrals when
0 = 0, which ean only occur when X = 1 and @ = 0 at the
same time. As before O = %“7— sin @ when x = 1. No
o

difficulty is encountered in evaluating the integral for

ipo when = 0 except if ¢ 18 also zero. ‘This possibility will
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be discussed later. The integrand ~f the integral I_ has a
logarithmic singularity at ¢ = 0 which can easily be removed.
Both integrais If and Ih have integrands of indeterminate

form and can easily be shown to have the following value
at ¢ -« Q.

Integrand of If atc P =0

Z
inang 1
lin, [co5@Sin2n cost’ o) oo
¢+o( ising| [j%%ﬁﬁ:-P# %ﬂl gsinng
Ly A

(E-23)
Integrand of I, at ¢ = 0

él:’-"a {smnqcasésmenjx i (iiu,‘)} = fang,sinng
(E-24)
The value of I, at 4 =0 is of interest especially
because of the form of I,. As before the integral Ip is

identically zero and comsequently for 4 = 0, I, becomes

7 f%
Fo_4 osegcosend)lgs _ 2mn_ | . o) - L (5
L | Y X2 fan) cosegcaseng[Line) - Lino) dp
[2) (7]
% (E-25)
_2Th Qinéjsmegﬁ)[ll(,,,) -L_,(mr)] d¢
i’_zfdnﬂ/{?a d

If in addition = = 1, the integrand of the last integral
is zero at @ = 0, but the integrand of the first integral
has & singularity at § = 0. In fact Lt can be shown that the

integral itself is infinite as r-ln oo , Conslder the first
integral for x =1
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