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Abstract

A theory for the ducted propeller is developed which is

based on a linearized annular airfoil theory and a lifting-

line propeller theory. The fluid is assumed to be inviscid

and incompressible and the free-stream velocity to be axisym-

metric. As with propeller theory it is not possible to obtain

a solution in explicit form so a process of iteration is used.

The flow field of the annular airfoil is represented by

a distribution of ring vor '.ces and ring sources on a cylinder

and where necessary a trailing vortex system. This approach

allows the airfoil section to have an arbitrary shape although

the annular airfoil itself is assumed to he axisymmetric. The

ring source strength is shown to be a function of only the duct

thickness while the ring vortex strength is a function of camber,

thickness and the radial velocity induced on the cylinder by

the propeller and duct trailing vortex system. In the presence

of the propeller two couoled singular integral equations are

derived for the vortex strength which are reduced to two coup-

led Fredholm, equations of the second kind. (If the propeller

is not present only one integral equation is obtained.)

The flow field of the ropeller is represented by a lift-

ing line and a helicoidal trailing vortex system. This allow

the propeller to have a finite nimber of buaden and an arbitrary

distribution of circulation. By this approach the propeller

problem essentially reduces to the proneller by itself with the



inclusion of velocity components from the duct and hub.

Consee.uently, it reduces essentially to the propeller problem

solved by Lerb.

The hub is treated by slender body theory which allows

it to have an arbitrary axisymmetric shape. One consequence

of using this theory is that the hub induces no tangential

velocities.
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Notation

a duct chord

ag axial distance between leading edge of duct
and propeller

at axial distance between trailing edge of duct
and propeller

b number of blades

CTsi thrust coefficient, equations (2.7-9) and (4.4-4)

Cps i  power coefficient, equation (4.4-6)

cj.(:R) mean line -dinate of the duct section measured
from the nve-tail line

E(k) complete elliptic integral of the second kind

o nondimensionalized circulation distribution of
the propeller, equation (4.3-11)

h (a/2Rd) chord-diameter ratio of the duct

11391 unit vectors

In(Y) modified Bessel function rf the first kind

IVy) modified Bessel function of the second kind

k modulus of the elliptic integrals

Ln(y) modified Struve function

Q propeller torque

q ring source strength

qh hub source strength

Rd duct radius

Rp Ppropeller radius

r, , o cylindrical coordinates

r o  radius at which the vortex is shed from the
propeller blade
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a(Z) half thikness ordinate o . the duct section

T thrust

Ve  ship speed

Va axial component of induced velocity

wo  local axial velocity

Vr radial component of induced velocity

Wt tangential component of induced velocity

wX  local wake fraction

ROM yrectangula7 coordinates

x, q,z nondimensional-.zed cylindrical coordinates

X .radial coordinate nondimensionalised by the
propeller radius

Onondimensionalized radius at which a vortex is
shed from the propeller blade

z axial coordinate nondimensionalised by the duct
chord

z P axial coordinate nondimensionalised by the

propeller radius

Sz - at

angle of attack of a duct section

id ideal angle of attack of a duct section

r relative angle between free-stream velocity and
duct

1/3 propeller advance angle

/3 d duct advance angle

IA p.upeller hydrodynamic pitch angle

r ring vortex strength

r circulation
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qxial coordinate

Ii ideal efficiency, equation (4.4-7)

Xadvance coefficient, equation (4.6-2)

advance coefficient, equation (4.4-3)

1' uiass density of fluid

stream function

angular velocity

Submc.ipts

d duct

h hub

P propeller

q ring source

( ring vortex

Wtrailing vortex systemi of the vortex cylinder

Note: Many functions are defined in thn text.

I;
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A. THEORY OF THE DUCTED PROPELUER WITH A FINITE NUMBER OF BLADES

I. INTRODUCTION

The name "ducted propeller" means a propeller-annular air-

foil combination acting as a propulsion unit. The annular air-

foil or duct can be used either to accelerate the flow at the

propeller (Kort nozzle)1 or to deaccelerate the flow. In the

first type of flow the ducted propeller is used where a pro-

peller alone would be heavily loaded. The duct accelerates

the flow at the propellei and thus the propeller operates at

a more favorable loading, in addition, the duct itself will

generally produce a positive thrust. In the case of the duct

which deaccelerates the fLow, the annular airfoil is used to

increase the static pressure at the propeller and thus delay

cavitation on ship propellers or decrease compressibility

effects on aircraft propellers.

Most of the work on the ducted propeller of the "iKort

nozzle" type has been done in Europe. Well known are the

experimental results of Van ianen 2,3,4,5 for a systematic

series of "Kort nozzles." A series for low-pitched three-

bladed propellers in a duct has also been given by Nakonechny6 .

Most theoretical approaches have been restricted to representing

the duct by a distribution of ring vortices along a cylinder
7

the ........ p.... by a uJLrJibuton oi sources over

the propeller disc.

1 - References found on page 146
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One of the first paners on the theory of the ducted pro-

peller is that of Horn
8 in which he uses the work of Dickmann

7

for representing the nozzle and considers the nropeller as

free-running. This procedure did not lead to a design method.
a

In 1950 Horn and Ar-itsburg developed a design piocedure based

on representing the 4uct by a vortex distribution a-d the pro-

peller by a sink distribution. Later (1955) Dickmann and

WeissingerI0 considered the ducted propeller as a propulsion

unit and in the optimum ( se represented the duct by ring

vortices with effect of the propeller taken into consideration

by momentum theory. In 1959 Gutsche11 developed correction

factors from the propeller in a long tube and then used simple

jet theory.

'7he foregoing described results have in general beeu re-
stricted to ducts which accelerate the flow at the propeller

although the theory develoned is iii principle applicable to

the deaccelerating duct. Lerbs12 has applied the theory, i.e.

representing the duct by a vortex distribution and the propeller

by a sink distribution, specifically to deaccelerating flow in

.he duct. Kuchemann and Webert 3 have considered the ducted pro-

peller in general but only with simple momentum theory.

From a review of the literature it is apparent that the

problem of the ducted propeller with a fiiift numbcr of bladed

and arbitrary distribution of circula:ion has not been developed

previously* but that such a theory is necessary for the adequate
*After the work in this report was completed, Reference L41J
was received which considers a lightly loaded propeller with a
finite number of blades in a duct of zero tickness.
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design of propellers operating in a duct. This paper presents

such a theory in which it is assumed that the nozzle flow

field can be represented by a linearized theory and the pro-

peller by the lifting line theory. As usual for potential flow

problems a number of assumptions are made about the fluid as

well as about the flow field. For this nroblem these are:

1. The fluid is inviscid and incompressible and no separa-

tion occurs on the duct.

2. Body forces, such a. gravity, may be neglected.

3. The free-stream flow is axisymmetric and steady with

respect to a coordinate system attached to the propeller. This

allows a radial variation in velocity and implies that the

coordinate system is rotating with the propeller. It causes no

loss in generality to assume the duct is also rotating since

the duct by itself at zero incidence induces no tangential

velocity.

4. The annular airfoil is axisymmetric and of finite length.

5. The thickness and camber-distribution of the annular air-

foil section can be expanded in a Fourier series with resnect

to the axial coordinate. This assumntion offers no restriction

to streamline shapes.

6. The linearized flow around the annular airfoil can be

represented mathematically by a distribution of ring vortices

and ring sources along a cylinder of diameter Rd.

7. The trailing vortex system from the duct has a constatit

diameter Rd and extends from the duct to infinity.
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8. The influence of all induced velocities on the shape of

the trailing vortex system from the duct is neglected. This

implies that the pitch angle of all the free vortex lines from

the duct is the same and equal. to

9. The propeller flow field can be represented by a lifting

line and trailing vortices, i.e. a horse-shoe vortex system.

The trailing vortex syst-m is directed along helical stream

lines trailing aft from the propeller blades. Each vortex is

of constant pitch and lies on a cylinder of constant diameter.

This implies that the contraction of the slip-stream is 4gnored.

Using these assumptiois the linearized boundary conditions

on the duct are derived. The annular airfoil is first condidered

by itself and its flow field represented by ring sources and

ring vortices. The strength of each is chosen so that the

boundary conditions are satisfied. With the strength of the

vortex and source distribution known, the entiie flow field

of the duct can be derived. The nropeller with a finite hub

is then added to the flow field and the interaction effects

determined. The solution to the problem of the combination of

the propeller and duct reduces to a nrocess of iteration.
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II. LINEARIZED THEORY OF THE ANNULAR AIRFOIL

II.1 Previous Theories

The theory of the annular airfoil has been discussed by

numerous investigators but in most cases was not developed

sufficiently for ducts of arbitrary section shape. The first

theoretical discussion of the annular airfoil appears to be that

of Dickmann10 who represented the annular airfoil in uniform

axial flow by a distribut )n of ring vortices. This is equiva-

lent in thin wing theory to representing an airfoil by a distri-

bution of vortices onlyand, thus, the thickness of the foil is

neglected. In linearized two-dimensional wing theory neglecting

the thickness is justifiable for obtaining the lift but not for

the pressure and velocity distribution. In annular airfoil

theory it would be exqected, because of the interference effects,

that the thickness plays a more important role than in linear-

ized wing theory.

The solution for the induced velocities from a single vor-

tex ring was given in the form of elliptic integrals by Lamb.14

By arranging ring vortices of varying strength along a cylinder

Dickmann represented the resulting integral of elliptic integrals

by a Fourier series. Tabulated coefficients for determining

the velocity distribution of a vortex ring Rr i untex c.ndcr

are found in Kuchemann and Weber13 and a more complete theo-

retical development of singularities useful for this problem is

found in a report by Meyerhoff and Finkelstein15 .
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Stewart,1 6 indenendently of Dickmann, derived the induced

velocities of an annular airfoil, again represented by a vortex

cylinder, using the vector potential. le was able to represent

thp velocity comnonents by integrals of a product of modified

Bessel functions.

Some work has also been done on flow about thick annular

airfoils and foils at an angle of attack. Specifically

Kuchemann1 7 considered anr lar airfoils of finite thickness

without circulation by a distribution of source and sink rings

and later Kuchemann and Weber1 8 considered annular foils of

finite thickness with circulation but infinite length. In

either case the theory was not adapted to foils of arbitrary

shape but the shane and velocity distribution calculated for

an assumed distribution of sources and sinks.

Weissinger1 9 has discussed the flow field about annular

airfoils with zero thickness onerating at an angle of incidence.

To represent the fIow mathematically he uses a distribution of

ring vortices along the duct whose strength, r( ,z), at a

point on the ring is dependent on the angular position as well

as the axial. Since in this case there are free vortices in

addition to the bound vortices, he uses, in addition, a system

of vortices of strength L d trailing from the cylinder. An

integral equation for the vortex distribution results from this

analysis which is solved approximately. Weissinger 20 later

included the effect of finite thickness by using a distribution



of ring sources. An approach which follows eissinger's

work very closely is that of Bagley, Kirby and Marcer21
.

In their work use is made of standard ring vortex distri-

butions which were tabulated by Kuchemann aud eber 1 5 . Since

this method is restricted to satisfying the boundary condition

at an arbitrary number of noints along the chord, (maximum

of five) it gives only an apnroximate soliition. Their consid-

eration of the annular airfoil at an angle of attack is similar

to Weinsinger's:.

Recently Pivko2 2 considered annular airfoils with thick

symmetrical sections but his work is only applicable to nozzle

length-diameter ratios of much less than one. This restriction

comes from the fact that he assumed a symmetrical section could

be represented bh a distribution of sources and sinks. Because

of the interference effects, however, a vortex distribution

must also be used in additio-, o the source-sink distribution.

Pivko23 has also considered thick cambered annular airfoils

oDerating at an angle of attack and included the effect of

the nropeller by a sink disc. In general he makes use of the

velocity coefficients given by Kuchemann and Veber1 5 and

superimposes the velocity of each effect. This theory is not

readily adaptable to sections of arbitrary shape.

In add,1-,n. to thc p:;cadiu work Maiavard2" has considered

the pressure distribution on annular airfoils with and without

thickness using electrical andlogy and Hacques 25 has considered
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the problem of designing for a given pressure distribution

also by electrical analogy.

In the next section the linearization of the boundary

conditions on the duct is considered. When linearizing

inviscid, incompressible fluid problems, it is the boundary

conditions which are linearized as the equation of continuity)

which reduces to Laplace's equation in this case, is linear.

11.2 Linearized Boundary londitions

r

i p-
61L

//

Figure 1. The annular airfoil coordinate system
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The coordinate system which is adopted is a cylindrical

system ( r f , ) with the zero axial coordinate ( ) located

at the nropeller blade center line and the free-stream flow

is from right to left (see Figure L). The annular airfoil is

assumed axisymmetric and has a length (a). Any radius on the

foil can be chosen as the reference radius (Rd) but since

this reference radius is the radius of the cylinder along which

the vortices and sources are distributed it would seem. 1.=son-

able to use some sort of an average. For convenience, but some-

what arbitrarily, the reference radius will be taken as the

inside radius oE the annular airfoil at-the propeller.

The section shape is assumed-to be delineated by the out-

side of the annular airfoil u( ) ario by the inside b( ) as

shown in figure 2.

Figure 2. The annular airfoil section

Using the above notation the mean line of the foil as

measured from the -axis (r=O) is



p
10

and the half thickness ordirate is

s= (f:) -- bail' (2.2-2)

The outer surface in terms of the mean line ordinate, or

namber, c( 4 ) and the half thickness ordinate s(5 ) is then

given by

r c(4) + s(4") (2.2-3)

and the inner surface by

r b(') =C(5) -5(4") (2.2-4)

If it is assumed that the mean line deviates little from

the cylinder of radiue Rd and length a and that the thickness

is small, then the camber and the thickness can be expanded in

terms of a nondimensional perturbation parameter e.

.?j f 6 tcI( ) + j',(r)] (2.2-5)

b (f b ; 6) = (f ' ; -.5 ,J = R d , *- 6 f ' " -: C¢¢ 5 e "[ C < )¢ -s < ' '] + . .

2- Rd 1 6 c ")(r) - S '()] (2.2-6)

As 6- 0 the problem reduces to that of a thin circular cylinder

of constant diameter.

Since the problem is axisymmetric and linear, a total

stream function can be written for the flow in terms of the

perturbation parameter e
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=., =- fw-c,.d , 'fl4";6) =- {,-tra .- °cr

+ - .. .(2.2-7)

As &-*0 the stream function reduces to that for the free-

stream velocity alone. From equations (2.2-5), (2.2-6) and

(2.2-7) the linearized boundary conditions are developed.

First there is the kinematic boundary condition, i.e. on the

surface of the body -nIbody = 0. As a first approximation

the equation for the out( surface of the ring is obtained

from equation (2.2-5).

F(y,) =Rd + cC's) i. S()(])-r 0 (2.2-8)

and for the inner surface of the rii g from equation (2.2-6)

F(r,4) tRs L 5c) - -"m 0 (2.2-9)

The velocity V is obtained from the stream function and in

ternis of its components is

- -; g ""(2,*2-10)

In ters of these velocity components and the normal to

the surface, the kinematic boundary condition becomes

F-(r,, )] (2.2-11)

From equations (2.2-8) and (2.2-9), it follows that F (r, )
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and F (r,") are, on the outside of the annular airfoil
7

F~.~) = s C)'j(2.2-12)

and on the inside

Fr0) "€ -"(2.2-13)

With these values for the normal to the surface, it follows

from equation (2.2-1.0) and (2.2-i), after multiplying through

by r'/Fr 2 (r,f ) + F4(
2(r,f ), that the kinematic boundary

condition on the outside of the ring is

!'<"t& * ~,C"')] + P :0 (2.2-14)

and on the inside of the ring is

Z! '.Efc',q - : ,..-15)

The stream function I is given by equation (2.2-7) and

substituting this value into equation (2.2-14), the boundary

condition on the outside of the ring is obtained in terms of the

perturbation parameter .

- ,+ ,

+ t.(R /f. .). S07 ,) 0 (2.2-1.6)
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The stream function is a function of e[c( 1 )(z) + S(1) W)11
and is next expanded in Taylor's series in terms of this para-

meter. Equation (2-16) then becomes

. . .. ,, ( o, le

The stream function 1(Rd+O, f ;6 ) can also be expanded in
terms of 6 , this equation then becomes

-P , . . . f , ,(R , r) *. 6 ,, . + , ... J

CC t 6 )q) i-CCv

(2-18)

Collecting terms of the same order the nrevious equation

can be written as

6 -Rd (PJfc<) (Rd 03

OF L , [c (s)"'M7 + 2)
S.)(2-19)

The first approximation is obtained by neglecting terms

involving nowers of e greater than one. Derivation of the
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boundary condition for the inside of the annular airfoil follows

in similar manner. Considering both sides of the ring, the

first approximation for the kinematic boundary condition is

=/?J w (f?d) c"'( )± s0)J (2.2-20)

The + sign refers to the outside of the annular airfoil and the

- sign to the inside. This equation has only to be satisfied

on the circular cylinder o' diameter (Rd) and length (a).

In addition to the foregoing boundary condition, the Kutta

condition must be satisfied at the trailing edge of the ring.

This means essentially that a stagnation point must occur at

the trailing edge of the. ring and for this the radial velocity

at this noint must be zero. Consequently at the ring trailing

edge the stream function must satisfy the following equation,

WeR , = a f (2.2-21)

Since it has been assumed as a first anproximation that

?= 0() and similarly for c(1)( , and s(l)(e -); the 'super-

scripts in the last equations can" o 'di-onped and the b6dfidhry

conditions can 'thert b6 written as

Rd (%_o,€) = 0,ws)C'(f) ± 5'(L7 o a., ,A, CC

CPO CRdZ OcA) =o (2.2-22)

For convenience the radial velocities will be nondimen-

sionalized by the free-stream velocity if this velocity is
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uniform or by the ship velocity Vs if the flow is axisymmetric,

The axial coordinate will also be nondimensionalized by the

annular airfoil chord a and the radial coordinate by the pro-

peller radius Rp, i.e.

z = axial coordinate
duct chord 2 3

x = radial coordinate -
propeller radius RP

xd= duct rad iu-= d j if the duct diameter
propeller radius is equal the nrovelle.-

diameter then Xd=l

The following notation will also be introduced which is

consistent with common usage in naval architecture.

cI - K1) (2.2-24)

If the velocity is uniform, i.e. independent of radius,

instead of the shin speed, the free-stream velocity is used for

nondimensionalizing and the wake fraction is unity, i.e.

/ e ) _- 'o = I

In the definition of the half-thickness ordinate, equation

(2.2-2) and mean line ordinate, equation (2.2-I), the angle of

attack of the section was not discussed. The mean line ordinate

is measured from r=0 and it is convenient to decomnos? this

ordinate into a nart Eront camber and a part from angle of attack,

see figure 3.
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Wd -

Figure 3. Delineation of the annular airfoil section
Us-L ,g the notation given in Figure ., the mean line ordinate

c(z) can be expressed in the following form,

"C ) ; ) s(0) *- z A f-a, ' Ce) -c, ev)

(2.2-25)
It may often be assumed for practical Purposes that cl(z)

and s(z) may he measured Perpendicularly to the nose-tail line.
This is for convenience in delineating the camber and thickness,
since normally the nose-tail line is used as a reference in
describing section shapes, and implies that the angleov is
small ( --7 c ). If the angle % is too large for such an

. tan, although inconvenient, cl(z) and s(z) must

be taken pernendicularly to the z-axis. For two-dimensional
a4rfoils it wculd be expected that angles for which a ? t-
would be outside the applicability of the linearized theory
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but this may tuvL be necessarily so for the sections of an

annular airfoil.

If the foregoing equation for the camber is substititued

into the boundary condition, equation (2.2-22) and the coordi-

nates and velocities are nondimensionalized as discussed, the

boundary condition can be written as

t~ ±0, Z) -d W/y)rc/rz) 4- 1,;, S'(z)] 0" etf .

p (7l tO0af) =0 (2.2-26)

If a propeller is in the duct, then the radial velocity

on th- Ouct is a function of angular as well as axial position.

In this case the singularities used to represent the duct must

also be a function of both angular and axial position. Since

the shape of the duct is assumed to be axisymmetric, (this

assumption can be removed) the right-hand side of equation

(2.2-26) is independent of the angle ( , however, the left-

hand side includes all the radial velocities and can be depend-

ent on the angular position, i.e. the following equations can

be valid even though the right-hand side is independent of the

angle .

0?.~ zt ;/ X d (I -~,W c< t

(2.2-27)

11.3 Derivation of the Vortex and Source Distribution to

Represent the Annular Airfoil at Zero Incidence

The boundary conditions just derived will be used to

determine the strength of the ring vortex and source distributions
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on the cylinder. These ring vortices, of elementary strength

/(qz), and ring sources of elementary strength q(q2, z),

are used as a mathematical model to represent the flow around

the annular airfoil. In order that the distribution of sources

and sinks represents a closed body, it is required that there

be no outflow of fluid from the source-sink distribution or

that

(2.3-1)

If a propeller is in the duct, then the ring vortex

strength is dependent on the angular position and a trailing

vortex system exists behind the duct. This system has a

strength of 1 .,K and the induced velocities from this
Xd d 1

system must be added to that of the ring vortices and sources

and those of the nropeller. As discussed in the previous

section the stream function occurring in the boundary condition

is the total stream function for the flow, excluding that for

the free stream, and since it is linear all the induced veloci-

ties from the various singularities are added linearly and the

boundary condition on the duct is expressed by the following

equation.

LW'"Xwj I )Jr -Cw'd(t 0' -9 rW'-rd P~)J

-tr(7CJ, A 'I-. wq-) C,'(2) S ±s'(Z)] (2.3-2)

where
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U.(d, ,z)j, = radial velocity induced on the duct by the

ring vortex system and given by equation (A-16)
1WL - tg = radial velocity induced on the duct by the ring

source system and given by ecuation (B-8)

Z = radial velocity induced on the duct by theA(P trailing vortex system and given by equati on
(C-13) or (D-'')

Lwr(jz)? = radial velocity induced on the duct by thepropeller including the hub.

Making the substitutions into equation (2.3-2) for the
various velocity component,, an equation is obtained for the

vortex and source strength.

t 2tl,

0 0

+* CWr, =-(I-w EYM z ) t,'i) + S- -I- Z J', 6"-'7

where E = z -ae.
Since the integrals occurring in this equation have only

one sign and since the radial velocity induced by the propeller
on the duct does not change sign from one side of the duct to
the other, it must be concluded that the + signs do with the
; signs and hence the source-sink strength q(19,z) is given as
follows:

'?(, 
(2.3-4)

which imnlies that
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q(q,,z) =q(z)

or that within the linearized theory the source distribution

is independent of angle. If equation (2.3-4) is substituted

into equation (2.3-5), a singular integral equation is

obtained for the unknown circulation distribution which also

includes the derivative of the circulation. To solve this

equation for the circulation distribution requires a knowledge

of the form of the radial elocity induced on the duct by the

propeller and hub. Before deriving this velocity, it is

convenient to consider the duct by itself, f"rst .,L zero

angle of attack and then at an angle of attack. In the first

case the circulation distribution is independent of angle and

the trailing vortex system does not exist. Utilizing equations

(A-23) (B-l), and (2.3-4) the equation for the nirculation

distribution is obtained as:

f~ ~ ( -~' z)Pj~2 g(4) - E (01J- 2 E(49)hd/
' - )(2.3-5)

- qif-W 2 j c,'Cz) +L ?&1~] (- wr )s'(z') ~a)~~1z
C

where

2k= I
h'(z .z,)' +i

K(k) =f-- - Ce = complete elliptic integral
, -4,of the first kind

E(k) = f 'V/e = cnplete elliptic integral
0 of the second kind

h a
2Rd
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From this equation and equation (2.3-4) it can be seen

that the vortex strength is a function of both camber and

thickness distribution while the source strength is a function

of only thickness. This differs frnmr linearized wing theory

where the vortex strength is a function of only canber.

Equation (2.3-5) is a singular integral equation of the first

kind and the solution of this equation will be discussed in

the next secticn.
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11.4 Reduction of the intezral Equation for the Vortex

Distribution.

Equation (2.3-5) is a singular integral equation for the

vortex distribution. For convenicnce this equation can be

rewritten in the following form

-zC -= S H(Z) (2.4-1)

where

~i-')~ qA(~z'~t1Y~)-E(4)] - 2 EelR)) (2.4-2)

Iol() 'z (2.4-3)

The complete elliptic integral K(k) has a logarithmic

singularity at k - 1, (i - z'). This causes no difficulty in

equation (2.4-2) since lim(i-z') 2K(k) - 0, but the integral
Ig z

in equation (2.4-3) is improper. A logarithmic singularity

is removable from the integrand of an integral by a change in

variable and this technique will be used later.

Muskhelishvili26 has shown how to reduce an equation of

the type of equation (2.4-1) to a Fredholm equation of the

second kind whose solution is known. Using Muskhelishvili's

procedure the term g(z'-z') - g(0) is added to and subtracted

from the kernal g(i-z') in equation (2.4-1) and then this equa-

tion becomes

C) (zj j *f Y-z#) o)] z' a'z' = /C2) (2.4-4)
z 9 (j-Z)
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From equation (2,4-2) it follows that g(O) - -2 and

equation (2.4-4) is then

0 0

The integral on the right hnd side is not singular at

the point i - z' but has the indeterminate form 0/0 which

can be shown to be zero. By letting the right hand side

of this equation equal f (9) this equation becomes

J(-z') (2.4-6)

This is the well-known Cauchy type singular invegral

equation2 6 and has a unique inverse given by
I I

j z'O-Z') fj(Z')S~ d"1"2r-'CZ (2.4-7)

The last term is the total circulation about a section

of the duct and is a constant. In this equation there is a

singularity at the trailing edge of the cylinder (i - 0,

i.e. z - at) and at the leading edge (F - 1). In order to

satisfy the Kutta condition, equation (2.2-21), the circula-

tion at the trailing edge, ((0), must be made zero.27 This

is accomplished by picking the total circulation so that

this singularity is removed. For E = 0, then

,Z (:'' -f (2.4-8)

0 0
Substituting this result into equation (2.4-7) removes

the singularity at the trailing edge and the circulation dis-

tribution is in such a form that the Kutta condition is

satisfied.
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r

• V (z-s Z (2.4-9)
0

Substituting in for f (z') and interchanging* the0

order of integration, a Fredholm equation of the second kind

is obtained for the circulation ().

Z ___ /4(z)dz
ZC-i- a +I (z'..2)

2 r'5 j

a a (2.4-10)

where

(z"-z' - I [e (z9 2 (.Qv-q) 1 -2 E(-,')
(2.4-11)

-no (Z" Z')

This equation is still not in a form which can easily be

solved since Y(i) has a singularity at 1 - 1, i.e. the

leading edge. To remove this singularity a new dependent

variable is defined as 1-*(z) = -I -T (), thus at

i - 1 this new dependent variable is zero. Equation (2,4-10)

can then be rewritten as follows

0 (f) r z ') = (S) +f Z, I J(Z9 d-,

(2.4-12)

* Interchange of the order of integration of two Cauchy
principal value integrals would normally result in a
residue. The residue is zero here because of the form
of the integrand.
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where

K(z,'z) - 'AHz)'

2fa. vz '-) z" )(+l z"-z',)
0

Both f(i) and K1 (i, z') are Cauchy principle value

integrals since the integrand is singular. Since it is

desired that a solution i' thod be obtained for an arbitrary

H(z) and since g(z" - z') is of such a form that K(i, z')

cannot be obtained by simple quadratures, a change of

variable is made and then certain functions are expanded in

a Fourier series. Let ' ( I(1 + coso), Z' - C(os')

and z" - 1(1 + cosg"), then equation (2.4-12) becomes

fr

,r~a) =Sin OL$ ?& =,f(e) * K 0 1) r *(,ge (2.4-13)

where a

:(e) =-L-., c -- ---(o e H(j) (2.4-14)

(4- 05,lef( - Cs) [ #(C3'csid&

K(6'~'f~ 9 (cose" -cO36') (2.4-15)

To find the Cauchy principal value of the integral for

f(Q), the function H(95 will be obtained in a different form.

From equation (2.4-14) H(G') is obtained as

H z 97- V/X 1?c,'f'B') f fat a 3fs d)k -EYMjs m e'Y2 (2 .4 -16)
2
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where

-.(Caose ,) + Y

The thickness distribution and the mean line shape are

now expanded in a Fourier sine series in 0'. Because of the

shape of the airfoil section it would be expected that such

a series would converge very rapidly. The use of such a

Fourier series implies tha the required slopes can be

obtained by a term by term differentiation of the series.

For this to be possible the mean line and thickness distribu-

tions must satisfy additional restrictions than would normally

be necessary for their expansion in a Fourier series. Specif-

ically for the Fourier series of a function to be differentiated

tenii by term 28 the function must be everywhere continuous and

possess a derivation which satisfies the Dirichlet conditions.

For practical sections this causes no restriction on the

shape, evon if, the slopes are infinite at the ends since the

requirement in this case is that the integral of the slopes

be absolutely convergent. Expanding the thickness and camber

distribution in a Fourier sine series in 0, the following are

obtained.

CIO,

,(6) =E:-kC, nG (2.4-17)
P--!

ir

S (0) -Ta. , ' (2.4-18)

= 4 ,

o
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The slopes are obtained by differentiation and are
do

Com-C0or6

(2.4-19)
introducing these expressions for the slopes into

equation (2.4-16) and interchanging28 the order of integration

and summation, H(9) is ob -ined in the following form.

0

(2.4-20)
The elliptic integral of the first kind K(k) has a log-

arithmic singularity at k - 1, i.e. when cos 9" - Cos 0'.
This singularity can be removed from the integral by considering

the change in variable (cos 9' - cos 9") t 3, then

W (K() - (4)]s, In h, a In)~c~s~ [caoeI6s

3o -*/(i -cos')

(2.4-21)

where

This removes the singularity and the integral can he
evaluated numerically without difficulty. To complete the
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solution, the functio.n G( , ,M) is expanded in a Fourier

cosine series in G', i.e.

6 (0") E Ala a - osj ~s'-t (m~)c f3 65 /Q
re,

- -:V ' (2.4-22)

where

a(M)=?fG(cr)S;, edo' ( = /,, . (2.4-23)

Using this representation of G(Q',m) and substituting

equation (2.4-16) into (2.4-14), the integral for f(O) can be

evaluated

frt
,- L ) - r /a .)~-'-ts

0)

+ (9-os'
*~~jZ(a -- C cases)

(2.4-24)

The integrals occurring in this equation are of the

Glauert type and their evaluation is given in Reference [27].

PIT

(.l-Cose9s ,,

54 60 0[
.=1---;- - CoS 'n' + cose oe'J/

C 0.;(e ) 5 ih

T/ 1-) -19 (2.4-25)
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Also J case - Co. O)e
(CO _ r6o. -- -

0

Using these values for the integrals, f(9) follows as

Sa -

* ' (I- c s/ ,.,,[ZZitmos/,,2 j,

-- (-wsf/t~o ts~jcos I&e + - Cms'w S;#

(2.4-26)

where

On, O)= _ , r [ t (mS,, e](2.4-27)

The coefficients Fm and Bin(G) are independent of the

section shape, however, they are dependent on the chord-

diameter ratio of the duct, and can be tabulated. Now

consider the equation for the kernal K(0,9'), equation

(2.4-15). Attempts at evaluating this improper integral by

simple quadratures have been unsuccessful so K(9,9') will

be obtained in a form which can be solved by numerical methods.

In the following method the term

S+ .co "cose'1
coo- COS& J
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is expanded in a Fourier cosine series in 9" in the range

0 ! 0 '- - Tr . Tis function satisfies the Dirichlet

conditions 28 so can be expanded In such a series. Further-

more, the function is continuous for Vs 0"4 fr but

the first derivative is discontinuous at 0" - 0'. Expanding

this term in an even series, it becomes

(cos"- coje') 1 -J (2.4-28)

where

-3( "o["CJC5'-Ca°'1I 0"$,l  oO

d e (2.4-29)

f (c co5s -co.se' J

The integral for the coefficients must be evaluated

numerically but some difficulty arises at the point 9" - 0'

where the integrand has an indeterminate form. To determine

the value at this point l'Hospital's rule is applied to the

integrand.

j..n f, ,--' , _f~.5%'s , , i . - 3 1 J0)cosi 0

dais J(2.4-30)

Since

,, ,~i 5 /MacoS e." COY))

16 16
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At the point 9" G, therefore, the integrand is zero,

however, because of the form of equation (2.4-30), it must

be shown that when 0' = 0 or 1)' equation (2.4-30) is still

valid. Following the same procedure as above for 9' - 0, then

/[2 .. coe"--/I)os,, e " - ,.[.'(-e"-/jeos e" -nI s/'"f2 *(co-/).5

I h cose"-I S o"il -2, e"

.,,,...oF.,. PA "r,-I o. s"-l i,,',_,-o,- +.fa<j:.,;o ,, -411,,,,
- '.O j">' ''6 L /< !' <-  -" /7 -,

From this last result and equation (2.4-30) it can be

concluded that the integrand of equation (2.4-28) has the

value of zero for 9"-= 9', 0 9' - r' . Substituting

equation 2.4-28) into the kernal, equation (2.4-15), the

integration can be performed.

177"

0 CO5 0) C COS Csi

c , o-."- 9'<Co-< elb,, Ce') [f(o..,,."o-c0o9)< ed"

=~ ~ ~ ~ ~ ~~Wl n, C,.<9 <'- .. ~oeJ+<, .: J,.,, (2.4-31)
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K(9, 0') is a known function invol- ing only the chord-

diameter ratio (h) as a parameter so can be tabulated.

Substituting for f(g), equation (2.4-26), and the kernal

K(Q, 9'), equation (2.4-31), into equation (2.4-13) th-

Fredholm equation of the second kind for the circulation

distribution is obtained in a form which can be solved

by known methods.

o C (2.4-32)
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11.5 Ideal Angle of Attack

In the integral equation (2.4-10) for the circulation

distribution a singularity exists at the leading edge of the

ring which made it necessary to redefine the circulation

distribution. This singularity cannot exist if the ring

section is designed so that a stagnation point occurs at the

leading edge. The angle of attack at with the section is

operating when a stagnation point occurs at the leading edge

is known as the ideal anf e of attack (--id). Since an axi-

symmetric annular airfoil has been assumed, it is obvious

that an ideal angle of attack cannot be defined if the radial

velocities on the duct surface are functions of angle.

Consequently, in the presence of a propeller an ideal angle

of attack cannot be defined which applies Lo every section.

To remove the singularity occurring at the leading edge,

i.e., i - 1, in equation (2.4-9), this equation is rewritten

as follows:

a P -F' ''-:z V - 2(1 - ,,,j' 7 a# X Z

f (f-(- Ijx)r' X - Z ddJ (2.5-1)

where

,(Z') =o(Z') I -(,- .,) 't'.

Following the arguments for satisfying the K,,tta condition,

a stagnation point will occur at the leading edge of the duct

if the circulation at that point is zero. The circulation will
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be zero at the leading edge if the angle c< is chosen so

that the terms in the brackets of the previous equation

cancel out the singularity of the term ./._ at - 1.

The ideal angle of attack is therefore, defined as followsIl
tan ' id - I- - fzM . V - '

- el *d, - Z'

0

(2.5-2)

The term f(z') occurring in this equation is a function

of the circulation distribution ' (i) and this distribution

must correspond to that occurring at the ideal angle of attack.

To determine the so called ideal lift coefficient, ',' (2)

equation (2.5-2) is substituted into equation (2.5-1). The

solution of this integral equation will give the circulation

distribution for the section operating at its ideal angle

of attack.
I I

VIZ

= (Z ) dz'

0 (2.5-3)

From the form of this equation it can be seen that the

singularity is now removed from the leading edge. Proceeding

as in the last section it can be shown that this equation

can be reduced to a Fredholm equation of the second kind for
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the circulation distribution. The following form is

obtained for this equation where the coefficients are the

same as given in the previous section.

+ I el(,'s7 ri d o')de'

0 (2.5-3)

By substituting into equation (2.5-2) it follows

that the ideal angle of attack can be written as:

Iboces sso'/e' - Zs.F,
f(- WY) ) ?-

(2.5-4)
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11.6 Solution of the Fredholm Equation of the Second

Kind for the Circulation Distribution.

Both equations (2.4-32) and (2.5-3) can be solved by the

same procedure. The general form for either equation can be

written as follows

'7)13

c()J [ ( = (2.6-1)

In the general case:

BO(O) - [2 tanx + ZSM Fm1 cos

B(G) - sin 1

1( 9 2

C() sin0

D(05 W cos G/

Do(9) - - cot 19

2

and for the ideal circulation distribution

- 'd (9

Bom() = 0

B(G) - I

C(Q) = -

D(9') - sin 9'

Do(Q) = 0
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The Fourier coefficients are the same as defined in

Section II.4. The integral equation (2.6-1) can be solved

by the method of successive approximation or the Fredholm

solution method.29 In addition, since the kernal in this

equation io a degenerate (or product) kernal. the special

method appropriate to this type oD kernal can be used.

Which method is best depends on the convergence of the

Fourier series representl.g the kernal. If the series

converges rapidly the method appropriate to product kernal

is probably best. Following is an outline of this method,

necessary proof of the convergence is given in Reference [291.

To apply this mcthod the order of integration and summa-

tion are interchanged in equation (2.6-1) and then the

equation can be written as

-

+~ tce) [i),(O)fbo,(e 90(e) J-(09cd' 4 siJhb, w(e)d & Lj ,
0 0

+ r eef D( ' .... + s'n p

0 0 (2.6-2)

where

0~) ( - Wrd.) ?,' (a) + 2 -Z- 8~e~
( $4.' )

For convenience let

p 1Q
A, =JP W)n(eOc')rZi)J e' ( o=Ii,

and then the above equation can be rewritten as:

rc()=f(O) +-c(8)e)A0 +c(B),s;*) *, * .s+c(e)ASi e (2.6-3)
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By substituting this equation into equation (2.6-2) the

A,'s are obtained.

01

A.= Jo(a9b6 (e') 6') J(e'9 *C(9 AeA c(e')A,S;'e'- - )A' -, iu jae

0

A, foe 9b, (09[f(6') #- c(s) Ae99A. + c(9A., e' 1 .. . '(e9Alt . do,']
0

................................................................................................

A -=f D 09) bm (a),[F(e') -t- C6) O 09 A. c ), S il 0' ... . c( 94, sid M &' P

o (2.6-4)

In deriving the equacion for Ao, it was necessary to divide

both sides of the equation by D,(9) and if Do(Q) is zero this

is not valid. For this case then, i.e. ideal circulation

distribution, Ao must be taken as zero and the above set of

(n + 1) equations reduces to a set of (n) equations. For

convenience the following notation is introduced into the

preceding equation.
Ir

Cli = obi9C(0 Do 94 = o, ,.
0Y

=f i D (,g"9s ' he'de,9 (2.6-5)

0

where
CoT L9/ -:

and

d! =f og b~(i e9{Ro')a'e,
0
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1,-W) tt K F)f - NjC1 m dim,+fo

~(i-, 4 ~r4~O*LsrA1J~ ~(2.6-6)

where

4r
dim= Mf i I8' cz. /

0
6j

and

N - 1 for the general case

N - 2 for the ideal case

In the foregoing equations the coeffic.ients c..e, fi, dim

and f,, are independent of the section shape and can be

tabulated for various chord-diameter ratios.

Introducing equation (2.6-5) and equation (2.6-6) into

equation (2.6-4) results in a set of simultaneous equations for

the coefficients An.

Ao(l - coo) - A1Col - A2 c 2 - .. An Co n  - do

- A0 clo + A(1 - c 1 1 ) - A2 c 1 2 - ... An cln - d (i.6-7)

-A o cno - A1 cnl - A2 cn2 - .. +An(l - cnn) - dn
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This system of equations represents an algebraic set

of simultaneous equations for the unknown A 's. Then

existance of a unique solution depends on the determinent

of the coefficients of A on the left hand stde being
n

different from zero (Cramer's rule).28 The number of

simulLaneous equations depends on the number of terms

needed in the Fourier series so iL satisfactorily

approximates the kernal. vortunately this can be determined

once and for all since the kernel, K(G, 9'), is independent

of section shape.
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1.7 Pressure Distribution and Forces on the Annular Airfoil.

The velocity field of-the ducted propeller is found by

summing the free-stream velocity, the velocity induced by

the duct including the trailing vortex system, and the velocity

induced by the propeller and hub. Since the flow field has

been assumed to be irrotational, steady and incompressible

and the body forces have been neglected, Bernoulli's

equation can be written as follows:

#'?'t,* L(-wW r( W)-+

"l 'r(O-'L5) I ,- ) (2.7-1)

The axial velocity w (x,q9, z), radial velocity Wr(x, P,z)

and tangential velocity wt(x, q , z) are the total velocities

induced by the various singularities in the flow and are

coamonly called perturbation velocities. The pressure po

is the pressure infinitely far ahead of the propeller

while p(x,q), z) is the local pressure. This pressure

distribution has been nondimensionalized by the ship

velocity times the wake (I - wx ) which is the local

free-stream velocity.

If this equation is linearized by the same method as

used for the linearized boundary conditions, the squared

terms will be neglected and the linearized prressure distri-

bution is then

r( goZ) -,V P . (X, ,Z)
lop_ (2.7-2)

T-p 2"(l,-,,,,,<) -"(,, - Wv)"
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The pressure on the annular airfoil itself is found

by substituting the duct radius xd for x in the preceding

equation.

(2.7-3)

The velocity wa(x,1 7 , z) is the axial velocity induced

by all the singularities -i the flow. Also, it should be

noted that since the velocity induced by the vortex cylinder

is discontinuous across the cylinder, equation (A-15),

the pressure changes from the inside to the outside of the

duct..

In the problem of a ducted propeller in an "LLviscid

fluid, the only net force on the duct itself is the so-called

induced drag or force in the axial dirextion. There is a

radial force on each section which contributes to hoop stress

but because of symmetry of the flow this net force is

zero. Since the net lateral force is zero, there is no moment

on the duct, however a moment on each individual section

could be defined.

The force F on any section of the duct is given by

the Kutta-Joukowski law27 which can be expressed as

F =/OV (2.7-4)

The velocity - is the velocity by the annular airfoil

section perpendicular to the direction of the force and P

is the total ctrculation about each seetion. The velocity-7
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does not include the self induced velocities 
so does not

contain the velocities induced by the vortex and source

ring&. Assuming that both the vel.city and circulation

r,(4, z) are nondimensionalized by the ship speed and the

axial coordinate by the chord, the lift at each section is
I1

(2.7-5)

The induced velocity v (xd,', z)? the axial

velocity induced on the cylinder of radiuts xd by the propeller,

hub and duct trailing vortex system. If the total lift on

the whole ring is taken to be some arbitrary direction with

respect to a propeller blade, normally in the vertical direc-

tion and positive upward, the contribution to the lift of

any arbitrary section of the ring would be
+

(2.7-6)

The angle q is measured from the arbitrarily taken

direction which is attached to one of the propeller blades,

i.e. rotating coordinate system. If this equation is integrated

completely around the circumference of the ring, the net lift

will be zero since the ilow is axisymmetric. If the annular

airfoil is at an angle of attack to the flow, the flow is

no longer axisymmetric and there is a net lift force.

The thrust force on the duct, which is equal and

opposite to the induced drag, is also given by the Kutta-

Joukowski law, equation (2 7-4), but in this case the



44

velocity at the duct is the radial velocity, again not

including the self induced velocities. Denoting the duct

thrust by Td , the following equation results for the thrust

force on each section.

d T (2.7 7)

and the total thrust ts given by integrating this equation

around the ring.

14 ='A-1zf(r12 T40-hU
0 (2.7-8)

This equation car, be put in the form of the thrust

coefficient used in propeller design by dividing by i7r

TJ ±A I Or7

___Mi__ 4- ffr4qN [If) CA~d)

cofiin use in]sd

(2.7-9)

The subscript "i" in this equation means inviscid fluid.
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11.8 Linearized Theory of the Annular Airfoil at an

Angle of Incidence.

In addition to the assumptions made previously concerning

the annular airfoil, it will now be assumed that the free-

stream velocity is a constant but at an angle^-r to the ring.

The angle will be assumed to be small enough so that sin-xr

= tan- r "Cr and cos C r - 1. As previously, a cylindrical

coordinate system (x,q9, Z) will be used with the zero axial

coordinate (i) zero at the :railing edge and (Rd) the reference

diameter will be located at the propeller centerline.

xr

Figure 5. Free stream velocity at an angle to

the duct

Applying the perturbation theory as in Section 11.2, and

assuming the angle of incidence or to be small, it can be
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shown that the linearized kinematic boundary condition is

Wr'.d?J~,qePZ) + wac,,cos& - Wc(.±'5i oq9)(281

In addition to this boundary condition, the Kutta

condition must be satisfied at the trailing edge of the ring.

±, q0) = 0(2.8-2)
One difference betwe i equation (2.8-1) acld the boundary

condition for the annular airfoil at zero incidence is the

addition of a radial velocity term from the free-stream

velocity which is dependent on the angular position. This

then implies that the radial velocity induced by the annular

airfoil must also be a function c the angular position of

with reference to the mathematical model the ring vortex

strength is a function of angle. As for a three-dimensional

wing 27 with a spanwise change in vortex strength, the fact

that the vortex strength is a function of angular position

leads to a trailing vortex sheet. This vortex sheet is

assumed to be cylindrical in shape and to extend to infinity

behind the annular ring.

The radial velocity wr in equation (2.8-1) is mathematically

conceived as being a sum of the radial velocity induced on the

ring by the r#ng vortices, ning sources and trailing vortex

system. The integral equation i'or the ring vortex and source

strength was derived in Section 11.3, equation (2.3-3), and

further the source strength was shown to be independent of

the angular position, eqUation (2.3-4). The velocity induced
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by the trailing vortex system from the duct at an angle of
attack follows from the law of Biot-Savart, and is derived
in Appendix C, specifically equation (C-12). If this equation
is substituted into equation (2.3-3) along with cquation
(2.3-4) an integral equation for the vortex circulation is
obtained. In this section the flow is aqsumed uniform so

( 1-Wxd) - 1.

oo

e =IT

4 Jjcok(& -19 I A(Zz) + L+ggz

jv Ig 4 A(s. -'z'5=QK) -E(IJdj _

-- H'z) q~o~cos~=h~C~q~(2.8-3)

where

The term H(D) is the same as given by equation (2.4-3)
and the evaluation of the integre.l in H(i), which has a
singularity in the integrand, is discussed in Section 11.4.

Equation (2.8-4) is a singular integral equation of two
variables for the circulation distribution. The inversion
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of an integral equation of this type is not in general

possible. Weissinger encountered this integral in the

problem of the thin annular airfoil at incidence and reduced

the two variable integral for the circulation to a one-

dimensional integral in terms of the Fourier coefficients for

the circulation. Following his procedure the circulation

Y( ,c) and the function H2(E'4) are expanded in a Fourier

cosine series in q9 . This involves a restriction on the

circulation that it must continuous in the angular

direction, but from a practical point of view this presents

no difficulty.

00
rk(:, r)= 5 ( z9)C o , .' (2.8-4)

0=0

He ,)- ,,,; Uj'')Cos,, (2,.8- 5)

where

(2.8-6)

7rz' f =fr(q)f z9COSr'PQ9'
-r

-17

-Ir
(2.8-7)

-7r
II

A cosine series is used since the flow is symmetric

about a vertical plane in the direction of the z-axis (See

Figure 5) and hence the circulation and radial velocities

are even functions of (P
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Substituting equations (2.8-4) and (2.8-5) into equation

(2.8-3) and interchanging the ordor of summation and intogra-

tion, the following is obtained

, -1'

I fr

0 -IT

(2.8-.8)

but, see Reference 2]

qr' ir

'. . co -(c - ' efo = cscsdP Sq -£'ircasnf

- o (2.8-9)

6.11

and making a change of variable, 9' - ( -') and using the

trigonome~ric identity cos n q' - cos 2n9' cos .4)- sin 2n0' sin nh ohf 'i , W Ifsn M 'Cot' 09 - CpC49
Ir f' o f (I~ - qYqos,)Cq 1N - n 40 cosa.p

j _ -(2.8-9o)

0
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The *ntegral involving sin 2n0' is zero because it is an odd

function of 0'. Again introducing the new variable 0' =

( -99 ) and the trigonometric identity sin na

sin 2n0' coo nqV + cos 2n0' sin n

"Fjis/; e C.q' o___,_____

-_ -onl --- 0 'n ot~

(2.8-11)
Substituting equatior (2.8-9), (2.8-10) and (2.8-11)

into equation (2.6-8), the following equation is obtained.

k;--o J J Lh8(i-z') + qsi Q e'.7"
I %60 M c (snf = f 05 ip ,D iGhe G )qc s t ' "

+ 4-

(2.8-12)
Since a Fourier series is unique, the coefficients can be

equated and an integral equation of one variable is obtained

for the Fourier coefficients.

6in P O'cte'de'42 r

0 0

(2.8-13)

Before proceeding further with the solution of equation

(2.8- 3) the Fourier coefficients un(i) will be examined.
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Substituting for H2(f0 Z) into (2.8-7) the un(i) s are given

as
u (3) - - H(i) (2.8-14)

0

u(7)-- (2.8-15)

un(i) -0 (n M 2,3...oo)

From these equations it can be concluded that all gn's

for n - 2, 3 ... ao are zero and therefore only go and g,

exist, also that go is a I iction of shape only and g, of

angle of attack. First examine the circulation coefficient

0 ,letting n - 0 in equation (2.8-13).

S [,.i ,cosee,','
H (Z) -joZA2'9~ C(-z')8 +~- tG

- Z fq;c~zf -~aZi[Kg -EM) RE)

0 (2.8-16)

This equation is of course exactly the same as (2.4-1),

thus it can be concluded that go(Z) - M'( ) where ((E) is

the circulation distribution for the annular airfoil at zero

incidence. This equation (2.8-16) is solved in Sections 11.4

and 11.6. It should be mentioned that on applying the Kutta

condition, equation (2.8-2), the equation for the Fourier

coefficients gn, equation (2.8-6), implies go(O) - gl(0) - 0.

As has been 3tated, gl(i) is independent of the ohape of

the airfoil and dependent only on the angle of attack and
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chord-dimneter ratio h For n - 1 (2.8-13) becomes

JI1(COVae + tsin-* 09*e

0 1
-'t,,-r, ~-z ( , . [-.-.L * 'O.R)Q_)] + ai,,,,i(Z')Sz

o 0

(ZZ I

0

Ja-z;) W,(f-z'xdz' + 21rrf (zJdZ'

o 0
(2.8-17)

where

, z-t') : [- )- ,,,- .a)#eK(R)] (2.8-18)

-h( -z')2 +

It can be easily shown that

1

By adding and subtracting 1 equation (2.8-17) can(z - zI)

be obtained in a form. similar to equation (2.4-5).

I I

. I (Z Z (2.8-19)
where 7

0 -0
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and this equation can be solved by the same procedure as given

in Sections II.4 and 11.6. Since the solution follows exactly

that of the previous sections with only changes In the Xern&l

K(i, z') and in f(i), a complete derivation will not be given

here. Following the procedure of Section II.4 yields for

equation (2.8-20) the following Fzedholm equation of the

second kindwbere C -( )(1 + cos 0).

. r

0

+(Sin s (2.8-20)

where

L m a " -Cosa'(2.8-21)

2 001 (oe-COSe9) Jotn
0

(2.8-22)

From Section 11.6 the solution of (2.8-20) is obtained

in the following form.

+ AmSile] (2.8-23)

The AMIs are obtained from a solution of the following set

of algebraic equations
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AC - A C ... A C doool 2 02 m om

-AoC 1 +AII (ll- ) - A2C12  . . -AClm - d1

-Ao Cmo -ACml A2Cm2  o ..... +Am(l'Cmm d

(2.8-24)

The coefficients C are
nun

Cl., = -j r. bj69D(09s ;,.d&., ai,/ 0, /,e ...-

or more specifically

ir

fr0

In = th prcdn equtions3( for Ci e cefcet

b~~1 C(,) a -b Q ar given$ by equatiJons(.-'n
( (2.8-25)

io " :.bjo,9(1+cs-s69dC-' j. (j =/,,s, .M)

Ir"

In the preceding equations for Cij the coefficients

b(1)(0 ) and bi(O) are given by equations (2.8-21) and

(2.8-22) respectively. The coel.fficients dm occurring in

the set of equations (2.8-24) are dependent on the angle of

incidence of the annular airfoii. They can be shown to be



55

dm j fcos -E W'6 (a,) (a17 re cos e~

-fr

0

where r

fr

+

fj~~ f 4 ) o'e del9de

0 ,,(2.8-27)

As can be seen from the form of the coefficients, the set

of equations for the Am's are completely independent of the axial

coordinate 0. Once the A Is are determined frou equation (2.8m24)

they are substituted back into equation (2.8-23) for determining

8 1*(Q) or as easily g 1(9). The circulation distribiution is

readily calculated from equation (2.8-4), i.e.

go s(i) + g (i) coofr

-(i) + g (i) Cos (2.8-28)

In this section the linearized flow field about an

annular airfoil has been derived and has been shown to be a

linear combination of the airfoil at zero incidence aiid a term

involving the angle of attack but not the section shape. It

should be noted however that both terms are dependent on the

chord-diameter ratio of the duct. Since the circulru.'on term

is independent of the section shape, it can be tabulated

for different angles of incidence and chord-diameter ratios.
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The pressure and velocity distributions of the annular

airfoil at an angle of incidence follow from Section 11.7

and as can be seen from equation (2.8-28), the effect of the

angle of attack is to add a term to the coefficient for the

airfoil at zero incidence. For instance the linearized

pressure distribution follows from equation (2.7-1), (A-15),

(B-10) and (2.8-26) as.

r"l

,ufr ]

0

(2.8-29)

where

- induced velocity from vortex distribution

of the annular airfoil at zero incidence,
equation (A-22).

A'd4 "induced velocity from source distribution,

equation (B-10).

0

The integrand of the integral has a logarithmic singularity

at k - I and a scuare rnot singularity at z' - . To remove
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these first the variables z' =Ca')(l + cos 0') and

z-( j)( + cos ) are introdaced, then the variable

(cos - cos 9') = cos 3 9,

3(1) NO -92)E(v)- (q -,Tf) )cO52e'CO5.L9IJ

- (2.8-30)

where

The lift of the annular airfoil at an angle of incidence

is given by eqution (2.7-6) and equation (2.8-28).
VI. I

ir
L fr(z)[ COS~~dP~fS~ ]s(Z)OS? C9

0

--- a (z,)dzlf -:a 9,*(e0co5-de (2.8-31)
o 0

The induced drag follows from equationa(2.7-8), (2.8-28)

and (C-12) as

CID

0 0

o 0
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~fr

0 0

eh(C.O -COSO)r _-.,J d (2.8-32)

where

S=h(cose -coo'.)' + q

The mocent on the annu'ar airfoil about the leading edge

is

0 0 (2.8-33)

Introducing the Fourier series for ( and the variable

i-(-)(1 + cos 9), the moment can be shown to depend only

on angle of attack and not the section shape.

-jf() ioca ed (2.8-34)
0

Some of these coefficientd have been tabulated by Weissinger19.
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III. Effect of the Hub

% Assuming that the ordinate of the surface of the hub is

denoted-by ph(z) and a polar coordinate system attached to a

propeller blade is used, the linearized kinematic boundary

condition which must be satisfied on the hub follows directly

from section 11.2 as

=!X h q)Z -(I- A ) W(Z) (3-1)

As before the velocities have been nondimensionalized by

the ship speed and the radial coordinate by the propeller

diameter. The function X h'(Z) is the slope of the hub surface

-(I -IwVx)

Ozt.

Figure 4. Notation for the hub

Since the hub is a symmetrical body and is assumed to have

no angle of attack with respect to the free-stream velocity,

the shape of the hub can be represented by a distribution of
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30

sources, doublets or vortices over the surface of the hub.

If the radial velocity can be shown to be independent of angle

and the hub is not too blunt, then the flow can be represented

by a distribution of sotirces and sinks along the z-axis only,

as indicated in Figure 4. The velocity wrh,"?z) in equation

(3-1) represents the whole flow field, i.e. it is composed of

the radial velocity induced by the annular airfoil with its

trailing vortex system, the propeller and the hub itself. In

terms of the nondintensional ed velocities of the individual

singularities equation (3-i) catn be rewritten as follows

2(xV q4, bei" CZh0-W, r Vi' N h ?- zi), Zr (.hIq9

- - -

Since normally it would be expected that the radial

velocity induced by the propeller and the annular airfoil at

the hub is small, it will be assumed that the hlb source

distribution satisfies only the average velocity at the hub.

If the hub radius is zero, this must be satisfied exactly.

Consequently the radial velocities induced at the hub will be

expressed as follows:

M1Y

'fff XaZ f Z~ d

d (3-3)

and
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F" (XA A l

The use of these induced velocities means essentially

that only the average radial velocity at the hub ist considered

and that now the hub can mathematically be reprenented by a

source distribution along the z-axis. Using equation (3-3)

the boundary condition equation (3-2), now becomes

va (KAZ)SX(XhZ)

For the derivation of the induced velocities from a

distribution of sources and sinks along a line, consider first

a single three-dimensional source of strength qh( $ ') at the

point 4 = s', r=O. In polar coordinates the stream function of

such a point source is1 3 (see Figure 4)

The stream function of an axisymmetric body is obtained

by integrating a distribution of sources of strength qh(z')
per unit length along the -axis from the after end (( b1)

to the nose (f u b2).

The iu v i f from (3-6)
The induced velocities follow from equation (2.2-10) by
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differentiating this equation.

'aa. - WV~ ~ ~ErJ 0  (3-7)

we 0 -f h -, (3-8)

If the induced velocity is nondimensionalized by the ship

speed (Vs ) the source stren th by the shin speed times the

propeller tip circumference (21TRpV.), t:he axial coordinate

4 , by the duct chord (a) and the radial coordinates by the

propeller radius (RP), the induced velocities can be written

in nondimensionalized form as in section Ii. This source

strength has dinmensions o length2 ner unit time comnared to

the elementary strength of the ring vortex which has the

dimensions of length ner unit time.

ba

~(~i].- h zZ') z'
b

= ii. 1z 1f (2') dz' (3-10)

where
J dCt Chord = a

dtuct dtJ.=efer T;2djRp

at the propeller z=o and the equation (3-9) becomes

b3

b v (-1
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Sometimes it may be more convenient to nondimensionalize

the axial coordiuatc: by the propeller diameter, i.e. let

zp = then the axial induced velocity can be uritten as

p
follows

- V AZP) - z' (3-12)
2 2 /

The problem now is to find the source distribution qh(z')

which represents the shape of the hub. For this the boundary

condition given by (3-4) m.at be used. From equation (3-10)

the radial velocity at the hub is

and then the boundary condition becometj

ii Xd 1) dz' =Y) I(

(3-13)

This is a Fredholm integral equation of the first kind for

the unknown source distribution qh(z). Direct inversion of this

type of integral equation usually is not possible and a solu-

tion normally involves an infinite series of eigenvalues of the

kernal and eigenfunctions. An iteration nrocedure for the solu-

tion of this type of integral equation has been developed by

Lanaweber3 1 . In general, since the diameter of the hub is

normally small compared to its length (the hub is often assumd
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to be infinite in length), and the velocity distribution some

distance from the hub and not on the hub itself is desired,

further simplification can reasonably be made. The nrevious

statement about the effect of the hub essentially describes

the assumptions involved in slender body theory30 and it is

this theory which will be applied now.
32

Laitone derived the slender body theory by expanding

the source distribution in v Taylor series. The first term

of this series gives the r ult of slender body theory. Apply-

ing the result from Reference [32] directl.y to equation (3-13),

the following equation for the source strength qh(z) results.

I 2k 0-( -WAA)X,(tZ) -... YhI ~ - -fNjZd (3-14)

or

orfA Tf ...( X 4IA + -xAz).(fXAZ)h

where A(z) = 1 X.h2(z), i.e. the hub cross-sectional area.

Equation (3-14) shows that as a first approximation the

source strength representing the hub at a point is a function

of the change in the cross-sectional area of the hub at that

point and the radial velocity induced at the hub surface by

the annular airfoil and propeller blades. The velocity induced

by the hub at any point in the surrounding flow field is

obtained by substituting equation (3-12) into (3-9) and (3-10).

If the hub is of constant diameter, then the slove is zero
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Xh '(z)=0) and the source strength is a function of only the

velocities induced at the hub by the duct and nropeller. If

the hub is assumed to be infinitely long, then bl=-oo and b2

=0 in equations (3-9) and (3-10). From a practical point of

view this presents no nroblem since the point for which the

induced velocity is desired (x,z) will be at or close to the

propeller and therefore at large values of z the .integrands of

equations (3-9) and (3-10) become small very rapidly, as

for the axial induced veloci ; and 1 for the radial induced

velocity, and the integral can be shown to converge uniformly.

Furthermore the slope of the hub must be either zero or undulate

some distance from the nropeller. Consequently the hub shape

some distance from the rropeller has no affect on the flow

through the propeller. It would be expected that in the normal

case the velocity induced by the hub at the duet wou!l be negli.-

gible.
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IV. Circulation Theory of the Propeller in the Duct

IV.1 Introduction and Assumptions

The circulation theory as applied to nronellers is

analogous to lifting-line theory 27 of wings of finite length.

The main difference, which considerably comolicates the flow

field, is that the trailing vortices which were assumed to

lie lay in the plane of the wing now lie along helices. In

the rotating coordinate system these helicoidal vortex

sheets are stream surfaces 9 are the vortex sheets behind

wings.

Lerbs has developed the theory of the moderately loaded

propeller3 3 and his general approach will be used here.*

In this theory Lerbs considers the influence cf the induced

velocities on the shape of the helical vortex sheet at the

lifting line but neglects the effects of centrifugal force

and of the contraction of the slip-stream. In addition, the

change in shape of the vortex lines are neglected in the

axial direction, i.e. they are of constant nitch. These same

assumntions will be made here and further it will be assumed

that the influence of the duct on The change in the shape of

the helical vortex sheet in the axial direction can be neglected.

It should be mentioned here that the vortex sheets are not

necessarily true helicoidal surfaces since the nitch may vary

along the radius but each vortex line is assumed to be of

constant pitch

*Many of the derivations given R'3 this chapter follow closely
unpbl4ohdA cla s notes of Profeaoi J.V.Wehausen on "Hydro-
dynamics nf Ahips," University of California, Bkley.



In addition to the effect of the duct nn the propeller,

the radial velocities induced on the cylinder representing

the duct by the propeller must also be considered. For this

reason the induced radial velocity of-the propeller must be

derived in more general terms than was done by Lerbs.

In the following development the free-stream velocity

will be allowed to have a radial variation but must be

axisymmetric and the propeller may take any axial position

in relation to the duct. T_ other major assumptions are

stated more explicitly in Section I.

The boundary conditions imposed on the bound circulation

is that it be zero at the hub,33 r (Rh)=0 and if Rd> Rp then
the circulation at the blade tip is zero, r(Rp)=O. If the

diameter of the duct and propeller are equal (Rd=Rp), then

the circulation at the tip need not be zero. This last

statement comes from the fact that no equalization of pressure

takes place around the blade tip if there is no clearance

and the duct is sufficiently long. From a practical point

of view, because of the boundary layer no equalization of

pressure wi]l take place if the tip clearance is small. The

determination of how small is sufficiently small requires

an analysis from boundary layer theory. This is not treated

here.
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IV.2 Induced Velocities from the Vortex Lines of one Propeller
Blade

The flow field of each propeller blade is considered to

be made up of a system of horse-shoe vortices lying along a

helix. The elementary system used will consist of three parts;

a single helical vortex line, the bound vortex lying along a

radius, and another free vortex line along the negative 4 -axis.
This system is shown in the following figure.

ftros$, Pai fJf

/

5¢ P'(r Cos 41P)r s; n P j )

Figure 6. Propeller vortex system

IA
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The point P, is the point at which the induced velocity

is desired. It is assumed that one blade is located on the
A

x-axis and another at the angle . Letting (b) be the number

of blades the angle p is given by

b e(4.2-1)

The location of point P is taken as arbitrary. Only the

radial velocity is needed t( satisfy the boundary condition on

the hub and duct so only the radial velocity will be calculated

at the arbitrary point P (r cos q1 , r sincp,f ). The axial

and tangential velocities induced by this system are needed

only at each blade. Since the blades are assumed to be identi-

cal, it suffices to consider only the blade along the a-axis,

i.e. at the point P(x,0,0) = P(rO,O).

In Figure 6 the other singularities representing the hub

and duct could be considered but since the strength of these

singularities are dependent on the induced velocities from the

propeller vortex system this Procedure is not practical and a

method of iteration must be used. The other singularities

affect the hydrodynanic pitch angle/131 shown in this figure.

The velocity induced by a single helical vortex line

follows from the Biot-Savart law, and is derived in Annendix D.

Designating this contribution to the induced velocity by a super-

scrint (1), the radial velocity induced at an arbitrary point P

by a !,elical vortex line Leaving from the point P'(rocos 4vp,rosin

qP,O) follows from equation (D.8) as
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0

*7rj k- CS9- _CJV

-00 (4.2-2)

The axial and tangential velocities induced on the pro-

peller blade at P(r,0,0) by the same vortex line is obtained

from equations (D-7) and (D-9).

W41LO C' E0. S 0,94 +oe t , ) do(,t (..2-3)6
wc 1 1'~r. Cros p-)*

We" r [re + ore Ic -'* o, (42-
~ r\rr,6 - ros&?rt*) ±- (4.2-'fapi ,,

The velocity induced by the vortex line along the z-axis

again follows from the law of Biot-Savart. Using the desig-

nation sunerscript (2) the induced velocity is
0 0

RXS=FfrrVt + ( rsih"V);r - el3X[oto/
i recoslie + I-~'c 4~7

0 (4.2-5)

=,,rs 1 n +¢'-(rc "-- ;7 ,,,.Pj
4'f'J r2 + 4o2l/

From this equation it can be seen that the induced axial

velocity from the vortex along the z-axis is zero i.e. (wa (2)=0)

and also, as would be expected, the induced radial velocity is

zero. This follows from equations (4.2-5) and (A-l).

-- r~,(-rsi1cosq - r0sq~si,,) =

The tangential velocity follows from the same set of
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equations and 4.s

(4.2-6)
The induced velocity from the radial vorp3e line (lifting

line) is also obtained from the Biot-Savart law and is

y.-.f ,, ((rcosp -r eos,)2 (ros ,.rs ihf)fXto, siMi:+J,

0

a'K +r, r -a ' -Oq , (4.2-7)

-- [ r O -roq-19) + rc+ q'
~~~ +~S~(1-) V + I l -*rrcsf1. V 'riJ

The axial induced velocity of the lifting line is given
by the cory -nent in the 1 direction.

W(3= rr [ r, rCo5(Q7 -q;p) C rcSCt4-9p4
-0. 7J r7

)(9p q' j ± Mir , ..) (4.2-9)

For ,.r , (n=0,12...) it can be shown that wa
At the reference blade (p =0 and z=0 and the above equation

reduces to

4VrrSj 17f#4.-10

(4.2-10)
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and if nlr, (n=0,1,2...) Wa(3)=0

The radial induced velocity for an arbitrary point

I'(r, q9,z) is obtained from equation (4.2-8) cs

(4.2-11)

For f =C or q= P
t -t .xL? . W.I) O

The tangential velocity at the propeller blade is zero

(wt(3)=O). This is obvious since at the blade =0 and by

equation (,4.2-8) both the i and 3 components are then zero.
No singulari.ties occur in equations (4.2-10) and (4.2-Il).

This caa be seen by examination of equation (4.2-7).

The in6:zed velocities at a point P from the three vortex
A

lines is obtained by summing and at the blade, P(r,0,0), are

() W(5) (2)=0
(w) =w + ( w ( (4.2-12)
a a a

where wa(%) is given by equation (4.2-3) and Wa(3) is given by

equation (4.2-9)

(1) (2) w (4.2-1)
(wt ) = W t  +Wt(.-3

where wt(1) is given by eq.ation (4.2-4) and w (2) by equation

(4.2-6).

The radial. velocity induced at an arbitrary point P(r sinc,

r cosq, () is given by
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r P=Wr + W r (), w r()=0(4.2-14)

where wr is given by equation (4.2-2) and wr is given by

Pquation (4.2-11)..
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IV.3 Induced Velocities from the Vortex Lines from

All the Blades.

As discussed previously the blades are assumed to be

evenly spaced with one vertically upward along the positive

i-axis and the helical vortex lines shed at a given radius

are assuned to leave all the blades at the same pitch. The

velocity induced at one of the blades by the horseshoe

vortices from all the blades is desired. It is sufficient

for this purpose to consider the blade along the vertical

A_
x-axis as the reference blade and calculate the velocities

induced at a point P(r, 0, 0) on this blade. Also desired

beside3 the velocity induced at a blade is the radial

velocity at an arbitrary point P(r cos4', r sinf, f).

First consider the velocity components induced by the

helical vortex lines shed from the blades at the radius r
0

The total contribution to the axial and tangential components

at any one blade is obtained ty summing equations (4.2-3) and

(4.2-4) over the nm*ner of blades.

b 0

(4.3-1)

b

/ (t FIt4f~i o5 (,P /i .( g t a .7 )

(4.3-2)

The radial velocity induced at an arbitrary point

P(r cos , r sinqp, f) by all the vortices shed from r o is

obtained from equation (4.2-2) as

I i . ,,. , ,
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(4.3-3)

The velocity induced by the hub vorte. ccnsists only

of the tangential component. Summing this component results

in equation (4.2-6) being multiplied by the number of

blades, i.e.

cb P
)b 4ff r (4.3-4)

Finally the velocity components induced by the vortex
along the !lifting line will be discussed. At the reference

blade itself only the axial component will be considered as

on the blade both the tangential and radial velocities are

zero. Referring to equation (4.2-10) it can be shown thtt

there is no contribution from this component either, i.e.

(wa( 3 ))b - 0. In the first place there is no contribution

from the reference blade itself nor from a blade opposite

it, i.e. for n - 0 and 1. The effect of the other blades

must cancel in pairs since 1 b - - ( 2, b - 1 - -q3, etc.
Consequently, since sin 7p - - sin ( -_9P) and cosq'p

= cos (-(P), :it follows when equation (4.2-9) is sumnedP, ( 3), _
over the number of blades that (wa bo =.

The radial velocity induced at an arbitrary point

by the radial vortex lines equatLon (4.2-11) does not cancel.

This velocity follows by sutiing equation (4.2-10) over

the number of blades.
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b
h1 05q r. -rs e)+

(4.3-5)

For €- 0 or q- 9p + n1Y (n - 0, 1,2,...), (wr bo=0.

The integrandscf the integrals for the axial and tangen-

tial velocities on the blade, equations (4.3-1) and (4.3-2),

are singular. To facilitate numerical calculation of these

integrals the "induction factors" 33 are intrrduced. These

are nondimensional qualities of the induced velocity

components and are a function of geometry only. They are

defined by

(4.3-6)

From equations (4.2-3) and (4.2-4) it follows that the

axial and tangential induction factors at the blades are

r l ()( Z L+( -e4)co . +c " 437)

4(o) =r( ) - ) -4, s., .

(4.3-8)
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In the limic as r - ro

and

The induction factors have been tabulated by Morgan
34

and are given in graphical form in Lerbs' paper.
33

Details of the method of calculating the induction factors

are given by Lerbs33 and Wrench 5

The total velocity indt sd by (b) vortex lines is

obtained by summing the different velocity components.

This suumming does not represent the total velocity induced

on a blade by the system of vortices but only from a single

horse-shoe vortex on each blade. To obtain the total velocity

induced at a point from all the horse-shoe vortices the

summed equations must be integrated from the hub to the tip

of the blade. The circulation strength F of a single

trailing vortex is related to the total circulation along

the blade. From wing theory 27 it follows that the strength

of this elementary vortex isd where r(r ) is thed ro 0
total strength of the bound vortex on the blade. With this

notation it then follows from equation (4.3-6) that the axial

velocity induced by the propeller at one of its blades is

" vt -ir r (r- r.)
b6 (4.3-9)

and from equations (4.3-4) and (4.3-6)
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Rb

If there is clearance between the blade tip and duct,
then as discussed in sectio (IV.l), the circulation at the
tip is zero, r(R p) - 0, and the first term does not exist.

For convenience both of these equations will be non-
dimensionalized; let

r reference radius

Rpropeller radius

x = r° - radius at which vortex is shed
0 R p propeller radius

xh - h. hub radius
Rp propeller radius

and for the circulation

r 0 - Wr)l"
ir -p Y Z 0 - W =)_W--

(4.3-11)
If the free-stream velocity is constant, then the free-stream
velocity wo is used for nondimensionalizfng instead of the

ship speed Va.

Introducing this notation into equations (4A-9) and
(4 .-10) the induced velocities are given in nondimensional fo-m.
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=o ,4 r -L-..' i&Io

(4.3-12)

and

Xi,

or

-r (4.3-11)

The integrand of the integrals in these equations are

singular at x - xo . Lerbs33 has discussed both these equations

except that the equations were derived for a propeller without

the duct so that Gs(1) - 0. This term cAuses no difficulty,

however, if it is rewritten on the left-hand side as shown

since Lerbs deals with the same integral.
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IV.4 Thrust and Torque Developed by the Propller

The thrust on the propeller follows from the law of

Kutta-Joukowski, equation (2.7-4). For each element of

each blade this law states

d 6T =,/ /dr = ( . r)r (4.4-1)
where

w o - 27((rps) is e angular velocity of the

propeller, Wtd is the tangential velocity

induced at the propeller blade by the duct and

includes the tangential induced velocities from

the ring vortices, ring sources and duct trailing

vortex system. Wtp is the tangential induced

velocity by the trailing vortex system of the

propeller, equation (4.3-13).

For the thrust the velocity V is the total tangential

velocity by the propeller lifting-line excluding self-induced

velocities. It should be noted that by assumption in Section

III the tangential induced velocities from the hub are zero

and for a lifting line the self induced velocities (wt 
(3)

are zero. The total thrust is obtained by integrating this

equation from the propeller hub to the tip and summing over

the number of blades. Since the thrust of each blade is the

same, the thrust of one blade is multiplied by the number

of blades.
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t~
(4.4-2)

This equation is nondimensionalized using the same

notation as for equation (4.3-11) with the added definition

of the advance coefficient

£ -6OoRp (4.4-3)

and the thrust coefficient of the propeller 1:
II

(c7 ) -~ -_ _ - = 47 'l ) 1 - + I ] d _4 4 4

If the free stream velocity w. is uniform over the

radius then it is used for nondimensionalizing instead of

the ship speed. The subscript "i" is used to denote that

the thrust is the thrust in an inviscid fluid. The total

thrust of the ducted propeller is given by adding this

equation to equation (2.7-9).

The torque is also obtained using the law of Kutta-

Jou1cowskio This law gives a tangential force at each radius

which when multiplied by the radius and integrated over the

blade length gives the torque per biade.

dG =7 ''r/ 1 r'r[) A b WO-+ + W, dK
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where

w0 (r) is the free-stream velocity

Wah is the axial velocity induced by the hub

Wad is the axial velocity induced by the duct

Wap is the axial velocity induced by the trailing
vortex system of the propeller, equation (4.3-9)

Integrating this equa 'on from the hub to the blade tip

and multiplying by the number of blades gives the total

torque of the propeller.

RP

b~ofr1r)w.(r) -w + W we,i 4- waIlr
Rb (4.4-5)

Nondimensionalizing as before but defining a power coefficient

as

the nondimensionalized fozm of this equation is

qbrf G W I - ) + 1 Cd) + i) ',4W I
Vs v + -~~Jep A 1 J (4.4-6)

where (1-W X ) is the wake.

The ideal efficiency (inviscid) is given by the ratio

of the total thrust to the power, i.e.

__ __1 __ (CTSd ' (4.4-7)
Cpsi

where (Ctsi)d is the duct thrust given by equation (2.7-9)

ip - -(Ctsi) ideal efficiency of the propeller
Cpsi
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IV.5 The Integral Eguation for the Circulation

The free helical vortices lie on stream surfaces and

are assumed to have the pitch of the resultant flow angle

at the lifting line. Th. velocities at a radius x are shoin

in the following velocity diagram.

WAP

W4J

W~d

Figure 1. Velocity diagram of the ducted propeller

The helical vortex is shed at the angle 13, which is

commonly called the hydrodynamic pi ch angle. The angle 1

is the propeller advance angle.

From this velocity diagram the following equation is

obtained for tanAi.

tafl 3  W, 1X) +WtJ + W A L/A

(4.5-1)

!=

Y)__+__I
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Substituting in for Vp and - , equations

(4.3-12) and 4.3-13) this equation is obtained in terms of

the unknown circulation

WI

(/-W,) t*'- + ! KeA 4-L A-X I~ X,.

- G

As VT 'S dxo,(X.)7

T/5

with boundary conditions 0: if Rp,#Rd
G3(xA- Gj(/ AIFRp --=Rd

This last equation represents an integro-differential

equation for the unknown circulation distribution which will

give the desired thrust. Lerbs3 3 gives a numerical method

for solving this equation so only a few remarks will be

made concerning it. The left hand side of this equation is

the same as Lerbs discussed but the right hand side contains

velocities induced by the hub and duct and, in addition, the

circulation at the tip, if it is not zero. Since the rlght

hand side is assumed kncwn in either the free-running or

ducted propeller case, this does not affect the solution method.
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In a strict sense the induced velocities of the duct and

hub at the propeller depend on the propeller circulation but

because of the complexity of the problem these velocities

must be assumed known. To consider that they are dependent

on the propeller circulation in equalon (4.5-2) implies

that the circulation distribution representing the nozzle,

the source distribution representing the hub, and the propeller

blade circulation must be determined simultaneously. This

of course is not possible -nd it is necessary to resort to a

method of iteration. For instance, the duct and hub problem

could be solved separately without the propeller and then

using the resulting induced velocities the propeller

problem solved. This process is then repeated, using each

time the last derived induced velocities, until satisfactory

convergence is obtained.

Equation (4.5-2) is in a general form as the free-stream

velocity may vary radially (wake-adapted propellers) and the

circulation distribution need not be optinium. In addition

this equation applies to moderately loaded propellers* as

well as, of course, to lightly loaded propellers. These

various cases are discussed by Lerbs.33

* 1he difference between a moderately loaded and a lightly

loaded propeller is that for a moderately loaded propeller
the velocities induced by the helical vortices are
included in the calculation of the angle at which these
vortices are shed whIle for a lightly loaded propeller

their effect is ignored.



IV.6 The Optimum Circulation Distribution of the Propellez

For the free-running propeller a question arises as to

what is the circulation distribution so that a propeller

produces a given thrust with a minimum amount of power. This

optimum circulation distribution is, of course, based on the

lifting-line theory and an inviscid fluid. For the ducted

propeller a similar question arises but the force on the

duct itself enters the problem. The problem could also

include determination of th. shape of the duct as well as

the propeller circulation distribution. Dickmann and

Weissinger have considered this problem, the optimum

shape of the duct, but for ducts of zero thickness ank a

simplified representation of the propeller.

The combined problem of optimum duct shape and optimum

circulation distribution along the propeller blade is a

formidable one since it is not possible, within the concepts

of the theory developed here, to obtain the interference

velocities in explicit form. This can be seen by referring

to equation (4.5-2) in which it is necessary, in order to

obtain a solution to assume that the induced velocities from

the nozzle and hub are known and not functions of the circula-

tion. For the same reason it is not feasible to take into

consideration the total thrust of the ductcd propeller system

but to consider only the propeller thrust.

The problem, which can reasonably be solved, reduces to

the determination of the circulation distribution on the



87

propeller blade so that the propeller produces a given

thrust with minimum torque. This approach dues not

consider whether or not for this optimum circulation

distribution the complete ducted system produces a given

amount of thruGt with minimum torque. For this reason the

problem posed is somewhat academic and is discussed further

only for the sake of completeness.

In the follow.ng analysis it will be assumed that the

circulation at the blade ti is zero, Gs(l) - O and that

the free-stream velocity is a constant, wo(x) - wo or

(1 - wc) - 1. This essentially reduces the problem to a

free-running, moderately loaded propeller in uniform flow

with the addition of velocities induced by the duct and hub.

Nondimensionalizing with the free-stream velocity, the thrust

coefficient, equation (4.4-4), and power coefficient, equation

(4.4-5) become

4!

-.L 4b G+ I-W4+
h'

(4.6-1)

and

c -'~AL. + *- A W()s. MV!~Ijs

* (4.6-2)

where

CRP

_____________________ __________________________________________P___
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The propeller induced velocities, wa and wt, in these

equations can be replaced by their values in terms of the

circulation distribution, equations (4.3-12) and (4.3-13).

After integration by parts the thrust and power coefficients

can be written in terms of the derivative of the circulation

distribution.

(C ~ ~JX f 1( 75) )d]%.)J
v~f( -x"xa -f KOOv

(4.6-3)

and

2e- +f (t - , 4(x,,.r

(4.6-4)

In this form the thrust and power coefficients are

functions of G'(x) and not of both G'(x) and G(x). The

problem is to find the circulation distribution G(x) so that

the power coefficient (Cpi) is a minimum while the thrust

coefficient (Cri) remains unchanged. This is a problem in

the calculus of variations.

A small variation is now taken of the slope of the

circulation distribution, i.e. G'(x) + £G'(x) represents

the value of the slope of the circulation distribution in a

small region surrounding the point x and at the end points the

variation is zero, JCt(xh) -JG'(t) - 0. If the circulation

distribution is an optimum, then in this small region

CTi[G'(x) +JG'(x)]p and CTJ[Gi(x)] have the same value.

If second order terms are ignored, the difference
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CTirG'(x) + JG(x)]p - CTi[G'(x)]p is obtained as follows:

f/ p(6C4 ~ ~ TrG IXg l f-flcJ d, &

f 4b( 4xzj P7 - Pb e4(,)JI r-)x6
-b ( ) -, (-' ., (J'j ^ .o -'.

I 
1

qb 1  r- [fx2 a J,~ 4(~~jxf&frkdx

=0 
(4.6-5)

Trhe variation (CrCTi)p is taken as zero since within
the variation in G'(x), Gri[G'(x) +fG'(x)] CTi[G(X)] is

taken as zero. A first order variation fC pi ay alwo be

defined as

2b ___ r; / , ,

+ GIAI

X4 J -j"

o 0(4.6-6)

The variation d^Cp must be approximately zero for a
sufficiently small variation in order for Cpi to be a minimum.
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Actually Cp by zhis analysis can be a maximumn or a minimum

and to show that C for the optimum value of G'(x) is api
minimum it should be shown that Cpi [ JG'(x)] > 0 for

S# 0. This is not possible without knowing the form of G'(x),

however, it would be expected that Cpi is a :ainimum.

By equations (4.6-5) and (4.6-6) both J'Ct P and dCop

are zero for all JG'(x) ( 6' sufficiently small) and this

can be true if and only if the integrands of both these

equations are proportional.. The equation that the circula-

tion distribution must satisfy is then the following:

I . x Xo

fAx~Lj4 M-A + - '(JS'cx

+AT-I x'(X1d1dr

(O )O - W O ( 4 .6 -8 )

This is an integral equation of the first kind for the

circulation distribution in terms of the constant A. As

discussed in section III direct inversion of an integral

of this type is usually not possible, however Landweber 31

has discussed an iteration procedure for this type of integral.

The solution of this equation will not be discustsed further.

Once the form of the circulation is obtained then the value
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of the parameter "A" can be calculated from the equation for

the thrust coefficient equation (4.6-3), and the value will

depend on the value of the thrust coefficient.

If the propeller is a free-running propeller, then

'wt(x')and wa(x ) d are zero and this equation (4.6-8)

wo  Wo

reduces to that for the optimum circulation distribution for

a moderately loaded propel r*. (The velocity induced by the

hub is usually neglected.)

By interchanging the order of integration and then integrating

by parts,equation (4.6-7) can be written in the following form:

-- iev~d + 4 f Je #cx
Wt x!

10 OO +Tf ('X(-X) 'x'

21, XXh

After differentiating and inverting, this equation becomes

2WIL)I + W019 + VA11f 2 jx ( ,-'o) A

I _ A_ =A

If the integrals are zero in this equation, then from

Figure 7 it can be seen that this implies x •tan/3 i - constant.

This is mentioned in light of Betz's theorem which states that

* This particular form was obtained by Prof. J.V. Wehausen in
his unpublished class notes for "Hydrodynamics of Ships".
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for a fre-running lightly loaded propeller the circulation

distribution is optimum if the angle /'i astisfiea

x tan/l4 w constnt. It is not obvious that equation (4.6-9)

will result in this theorem even if the propeller 1x

assumed to be free-running and lightly loaded.
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V. Interaction Effects

When discussing the duct and hub in Sections 1I and III,

the form of the propeller induced velocities was not included

because they had not yet been derived. This section then will

deal mainly with the effect of the propeller induced velocities

on the duct, however, the equations for the duct and propeller

induced velocities at the hub will be given in a more explicit

form than in Section III.

V.1 The Duct Trailing Vortex System

Ae stated in Section II, when an annular airfoil is sub-

jected to a radial velocity which is dependent on the angular

Position, a trailing vortex of strength is shed from
sh f

each point (09,z) on the duct. This trailing vortex system is

shed at an angle equal to the flow angle and follows a stream

line in the rotating coordinate system. This implies, as in

case of the propeller, that the induced velocities from all

the components in the flow field have an effect on the trailing

vortex system. This represents a problem considerably more

difficult than the propeller problem since the helical vortices

are shed from all over the duct rather than along a line. To

obtain the equation in a form which is amenable to solution

and yet which, it is felt, represents the flow field rather

well, it will be assumed that the helical vortices are all

shed at the advance angle of the duct. This is the angle
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given by the following equation

. ()(5.-)

It will furrher be assumed that these vortices maintain a

constant pitch angle and form a cylindrical vortex sheet of

diameter Rd extending from the duct to minus infinity in the

axial direction.

The velocity induced b, a single helical vortex line is

derived in Appendix D. The v .ocity compraents induced by

the cylindrical vortex sheet shed from tne duct are obtained

by integrating equation (D-7), (D-8) and (D-9) over the sur-

face of the duct. Each vortex shed from the duct has a radius

Rd, pitch angle / 2 d and strength -L so these comnonents can

be written in the following nondimensionalized form

t" 0 tr
F~~R A deO'~iy ~~7dz'

00 -

R'-~ ~ (Y _Z')' (),,r-,-., ha Pr:V -.,. - t,,?$d7;

eir if fR3±ur1A,

M = rrI ' R3~d' d

_jd (5. 1-4'

where

R I +(66 ) -z )C ts5(M -- + [a2 -Z! -w a
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At the nropeller reference blade z=O (i.e. i-at) and

=0, so the above equations are considerably simplified

at that point. In order to obtain the circulation distri-

bution on the duct it is necessary to have the radial velocity

induced on the duct by the trailing vortex system. This is

given by letting x=xd in equation (5.1-3).

(5.1-5)
00

The uniform convergence of the infinite Integral in this

equation is discussed in Appendix D.
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V.2 The Radial Velocities Induced at the Duct by the Propeller

and Hub

The radial velocity induced on the duct surface by the

proDeller is given by integrating equations (4.3-:5) and (4.3-5)

along the radius and summing the two equations. The circu-

lation denoted by P for a single vortex when referred to the

circulation at the lifting line is d .) . Substituting

this for P in equation (4.3-3) and integrating from the hub

to the tip, the trailing voi ax system induces the following

radial velodity on the duct.

Rp

If this equation is nondimensionalized as previously,

equation (4.3-l0))then it can be written in the following

form.

9 o z) dxo (5.2-1)

b 0

(5.2-2)

As discussed in Apnendix D the integrand has a finite

jump discontinuity when the point P(x, z) lies on the helix

and z b or (? 4 ?Po
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This can only occur in the foregoing equation when the duct

has the same diameter as the oxupeller (xd=4xo) and 2hz=

(f-19,) tanli . At this point the integrand has a finftejump

since

,.. /1= 4 ,zo orq

If z=0 and P=  p, then the integrand is singular as dis-

cussed in Appendix D. For calculating purposes it is nrobably

best to nondimensionalize the ixial comnonent with the propeller

radius, since this equation is only dependent on the duct chord

through the non-dimensionalization of the axial component. In

this form then equation (5.2-2) is

b 0.-." . . fr fI( ) -oq(,) tu¥JlJc,4q9- -.4 - ( )YanA' sr,,,W-qp -0 d
1Y--,_)( ) - ,af)c~~- q ( 5.2- 3)

where z is the axial coordinate nondimensionalized by the

propeller radius RP.

This equation is independent of the duct chord and once

tabulated on the basis of z the values can easily be changed

to those for the axial coordinate z by z:-- . It should be

noted that this factor 1r is not the normal induction factor
33

i which is ir=(l-o) -it If the velocity induced at the hub

by trailing vortex system xh is introduced in the foregoing

equations in place of xd, then this equation gives the radial

velocity at the hub.

The radial velocity induced by t'he line vortex itself is

obtained from equation (4.2.10). In nondimensionalized form
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this velocity is

T (r.2-4)

For zpo or 0=q ±r

This equation is also written independently of the duct

chord by nondimensionalizing ith the propeller radius, and

as before zp=2hxjz. This eqation is in a general form and

can be anplied at the oronelter hub or the duct by using

either the hub radius xh or duct radius xd instead of x in

the above equation. If a factor ir 3 ) is defined as for the

free vortex sheets, then the above equation can be written in

a more simplified form
/

[~r~Y] - -Js'€o ;/ 3zX)oiC

t JtXh (5 .2-5 )

where

,(3) 1 ~ al~~ b~ cos((cr, _

(5.2-6)

And combining this equation with equation (5.2-5), tne total

radial induced velocity by the nroneller is given as

'X-. : (, 7, (Pj Z) r[ J''1Z (5.2-')

or at the duct x=xd

V = ) IXo 4 )]
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- (xO (5.2-8)

For any ducted system the circulation distribution G. is

a function of the duct radius xd the Ditch angle/Ij, the number

of blades b and the duct and hub shane. It is written here as

only a function of the radiu xO since for any one configuration

it can only be a function of the radius. It should be noted

that the factor (ir) p contains both odd and even terms.

The radial velocity induced at the duct by the hub is

obtained from equation (3-10) by letting x=xd

'S -11h Izv z ;
(5.2-9)

The function q(z') is the source strength of the line

source reDresenting the hub And is given by equation (3.14).
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V.3 Integral Equation for the Circulation Distribution of

the Duct Ring Vortices.

It was shown in Section II.5 that the ring s;ource distri-

bution was a function of the annular dirfoil thickness only.

Using this fact and substituting into equation (2.3-3) the

radial velocities induced at the duct by the duct trailing

vortex sheet. propeller, and hub, eqcations (5.1-5, 5.2-7

and 5.2-9), the integral eqi tion for the vortex distribution

is obtained as

I W

0 r

0 - - , - w [ - Co5Et'-of)] + [2 h ( ') - O - IJtddted

where IqZ~/x)a7c()*~.i~ -2fs('-C/)~7)dI

(5.3-2)

This equation iG a singular integro-differential equation

in two-dimensions for the circulation distribution. The hart

of the equation to the lift- of the equal sign is assumed

known, i.e. the duct shape and the radial velocities induced

by the piopeller and hub. It should be mentioned that it

would be expected with the normal configuration the radial

velocity induced by the hub at the duct would be negligible.
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The integral equation can be reduced to a one-dimensional

one if it is assumed that the ring vortex strength can be

expanded in a Fourier Series in ,19 i.e.

M=O h=1

i't

r ,z)) u54 (5.3-4)

For convenience the oart of the integral equation denoted

by U(,z) will also be expanded in a Fourier series in I .

This involves no assumntions on the form of U(q9,z) since all

the functions in U(4 ,z) are continuous with rasnect to qI

-.rr

u('ez) * sj n (5.3-5

U.,(Z)=F,

cU,(): :jL rua/ z)cosn4/'P9
114 (5.3-6)

-r
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From equation (5.3-2) it is apparent that un(z) and vn(z)

for n : I will conLain termis involving only the propeller in-

duced velocities. The Fourier coefficient up(z) is a function

of the duct shane, radial induced velocities from the hub and

the average radial induced velocity from the nropeller. It can

immediately be written as

,_ [-- IV () +t <n O + "f(Z)-P" Et!K(-El

0

fJJ J fq ¥ [€2(z..z,)2j-qI'M iir XI

b, • -9b,

HbZ -l~ Mih, (5.3-7)

The function H(z) is the same as that given by equation

(2.4-3). Since the integrals in this equation are functions

of hub shane and circulation distribution on the propeller

lifting line and are assumed known for the duct nroblem they

can be evaluated. The integral deDendent on the hub shape

is simple enough that it can easily be solved numerically, if

necessary, and the integral involved the blade lifting line

can be reduced to a more simple form for numerical solution.

Consider the following integral

-1r

~~c ~(5. =f)sqpJc~jzIj J r jV(dt
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-)Ig r ,zdf d o )

The integral involving the lifting line can easily be shownl

to be zero. From equation (5,2-5)

I_ J * '" = . [-) ,ae4,.(Jil-(f:; ¢ ) ,Ji

Letting e = (1-4 p) then

X 9 ) b 0'~S;, S &.ss _Cose

(5.3-9)
=0

The integral involving the helical vortex sheet can be

reduced to a function of elliptic integrals. From equation

(5.2-2) r,

5 x) r rhdJq (5.3-10)

-_ , ,,. ,O -"?-,dJ ]o,¢€.,- r 4--,

The infinite integral in this equation is uniformly con-

vergent with respect to - and %o if z0( and consequently

the order of integration can be interchanged (see Annendices D

and E). By changing the order of integration, the integration

with respect :o e and 4 , can be carried out.

" / II

ZZ0I(Z) ( xd) = fe (xZ.f, do] A,
A~ -IT

~ ~q ~..r)-()i. /n~I' r

r t i F' d (aZ
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Fej®z)(,flIdcoct)-(5 S)

(5.3-Il)

The change in variable o'= - has been made in this

equation and also the angle of the blade does not appear

since it makes no difference ,hat complete cycle of a periodic

function is integrated. The integral in the brackets is dis-.

cussed in Appendix E. The reduced form is obtained by taking

the value of equation (E-18) at n=0. This gives

where

After integrating part of the integrand, this integral has

the following form.

r 0

= -- z) (5.3-13)
tt,,"A
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where

The double integral given by equation (5.3-13) does not

exist for k=l, i.e. xo=xd=l and z=0. The asymptotic behavior

is such that the integral is infinite as ,4 oo at this point

which is also the value obtained after interchanging the

order of integration. When 1 =0 the value nf the double inte-

gral is zero since
3 6

Ir =0k-ok

The singularity at k=l of the right-hand side of equation

(5.3-13) is due to the elliptic integral of the second kind

K(k), however this causes little di[fficultv since this singu-

larity occurs under the integral with respect to xo and a

logarithmic singularity integrates out. If equation (5.3-13)

is introduced into equation (5.3-8) and a change of variable

is made the logarithmic singularity can be removed.

Assuming Xd=l and z=0 then let (1-x) =

J t4DiAd ?d/ r4Wa

'Xh

6 Ch['c () (,- O -e- 0,)d
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1$12= 6b - -  2 - K,q,) - 2 E4 de"

(5.3-14)

where

k2 =4lt)

The elliptic integral K 'c2 ) has a logarithmic singu-

larity at k 2=1, however

lim t2K(k2)=0

and the integrand of the ab3ve integral is no longer singular.

Using equation (5.3-13) the function Uo(z) becomes

frI

C 6 a G/K )
Z7 : rd .d = (4 )4 i (5.3-15)

A similar develoDment holds for the average radial Yrro-

peller induced velocity on the hub. In this case xh is substi-

tuted for xd in equation (5.3-15) and the singularity at xo=xh,

z=0 is removed by making the substitution(.3c, ) = t 3 .

Substituting equation (5.3-15) into equation (5.3-7),

uo(z) has the followiing form

=-er-z) H z) +HoA (5.3-16)

H C(Z) 4 HA (z) + Hp (z)]
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The factor iro is given by equation (5.3-12) however when
z=O and Xd=l, equation (5.3-14) should be used for this

equation, i.e.
r~

LA0(O)~~- =e -2C~ ~ f!, 2
(5.3-17)

where

k22 = 4(1-t 3 )

(2-tS)2

It is obvious by the form of U(f,z), equation (5.3-2),
and the above form of uo(z) that the Fourier coefficients of
higher order, gn(z) and hn(z) for n I, are functions only

of the propeller induced velocity. From equation (5.2-8)
and equation (5.3-6) the Fourier coefficients un(z) and vn(z)
then follo* as

-r
- '' ' (5.3-18)

and

V" (Z) (Si A xi d
IT XA Z(5.3-19)

and substituting for Ur) from equation (5.2-8),
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ir

r Q f (. J40T',., (("3-20)

xh -i1"

and

I i
'.j- (3)-. .. .

The integral for ir in equation (5.3-20) will be dis-

cussed first.-- Substitdtint in from equation (5.2-6) this can

be written
Lu

r 1.3)

F htrZ. [2, f,, ,q,, (.-3-22)

= - In, h, q. Co= ( .5.3-22 )

The equation has the value zero since

Lin n q9,p=o (5-3-23)
P1,~

for any number of blades.
If the Fourier coefficients vn(z) are being considered

then

ftr b-(5.3-24)
sina hf.- q91 tP En4,(53-4
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where (b if ,--A

o ,- (5.3-25)

and

.. + . ePes~rn.cose de

o (5,3-26)
+ __ snne sm, ecosgedo

___________ **~2 ,SPntfe'

0

v£,)4 2  or-pv, ef,..cf. -2Y) 'is zero

An interesting observation from equations (5.3-22) and

(5,3-24) is that the induced velocity from the bound vortex is

an odd function and that many of the odd terms are zero. All.

"h" terms which are not multiples of the number of blades are

zero.

The contribution of the free vortex system of the nropeller

to the Fourier coefficient un(Z) is obtained from equations

(5.3-20) and (5.2-3) as

f(

f(COSM47r, d49

ir

I(~ Yd )~ -W ;VL

fir -C ( ' +(26z o R~ AZ' J,
LIn
b , , l <+zoo(+.,+ , 4I-e-e(,- )<o,(,4. ]%-JJ
S '"" . -"--,-

-
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CO X&

= j'Z)1 (5.3-27)

where

Ia 0 (5.3-28)

By a similar analysis it can be shown that the contribution

of the free vortex to the coefficient v,(z) is

fii q (5.3-29)

where

(5.3-30)

00

From equations (5.3-20), (5.3..22) and (5.3-27) and equations

(5.3-21), (5.3-24) and (5.3-29), the Fourier coefficients for

n/O are obtained as follows

-1ZSj if n =mb

UZ)=m 1,2,...

0 if n / mb (5-3-31)
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and

*X

Vg~Z) "~1 [~j + 4AAZ le-~ ;f) Ah

O if n#rA b

(5.2-32)

It will he noted that tLe free vortex system of the propeller

contributes to both the odd and even terms while the lifting

line vortex contributes to only the odd term.

The coefficients (3) can easily be obtained but the

coefficients :nc (1) and ins (1) must be discussed farther. These

last two coefficients are a s necial form of the equations dis-

cussed in Appendix E. The coefficient Jn( ) equation (5.3-28),
2hz Zp.s given by equation (E-18) where q x te-, P Xotan$i a ns

is given by equation (E-9) with the same value of q . It should
be noted that Jn(1) has a logarithmic singularity at x=xdz=.

This singularity can be removed by the method used for equation

(5.3-14).

With these Fourier coefficients u (z) and v (Z) the inte-

gral equation for the strength of the ring vortex distribution

representing the duct, Y(qz), can be solved. If the Fourier

expansion of the ring vortex strength (5.3-3) is substituted

into equation (5.3-1), an integral equation is obtained for the
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Fourier coefficients, gn(z) and hn(z), of the vortex ring

strength.

V+

U(f Z) +A j 409 cS4-P)J'eJ)P
0-1Me

IJ{CeA(z-'z9 + t4('JJ + 2e.sq~~Of*

where

wz=Z-a t

The integral oE each series in the above equation will

now be considered separately.. First, using the trigonometric

identitv; l-cos( I?- ,p,')-2sin2 L (ce_ .,

I 77" 00

Now make the change of variable - = and use the trigono-
2

metric identity

cos n '=cosnq9cos2no + sin nqpsin 2ne

The last term integrates out over the integration range of

n o f s co0~ s in i '5 n 7 . c o a s 1 d )2h( h (z')feh(2
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4J ~ 7 F cz')~ii (z# 02 6L249 I.

The integrand of the integral is periodic with respect

to 0 so it makes no difference whether the integration is

carried out over the range - = o - IT2 2= Tvo 2
and since the integrand is an even function, the integral over

the range from 0 to : is twi-e that from -Zto . The integral2 2 2
ii' the brackets can be reduced to a functibn tabUlated by

Riege s37 by making a change in variable 6=9+ L and using the

trigonometric identity

2cos2n~cos2= cos2(n+l)O + cos2(n-1)6

f q 5;46~3 I
M=I 01 0

=h7s3f~ z'fh( z) (- c e", O &-O,'ose,.-I)ocJ0)c.,

I- -.-

n=o

where

k2  I__
h2 (2.,z?)2.1

and

=(-fCS e
.- " - - ,(5.3-35)

0
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Riegels has given the expansion of this function Gn(k)

as k - 1, which is when z'-. 2, as

Gn~k) bn b ....

(5.3-36)
thus Gn(k) has a singularity as k - I. This singularity is

removed by multiplying by (t - z')2.

""m ( -Zip" htV _91 b, hg(o -Z)'IA7.-P.'q
z'/4 (z-4 ])j

From this'limit it can be neen that the function within
the braces of equation (5.3-34) is not singular as z'-, 2,
but the complete integrand has a ingularity at z' = 2. Values
of Go(k) and Gl(k) csn easily be obtained in the form of complete

elliptic integrals. These two values are

G,, C) :

, ) = W - K(a) - 2(0 -4t) KOa)
V0 0 -(5.3-37)

The asymptotic expansion of Gn(k) for k -1 Is given by

Riegels3 7 as

The integra inv v e s(5.3-3i )

The integral involving the seri.es .n~ sin n4' in
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equation (5.3-33) reduces in a similar manner to the follow-

ing equation

I ir 00

_l212-2' cos(- '")72Lh,(z')sinrn'M

C' -IT

=~jjjsh~ nt~<z~} ~a(~(Z z')~-P,4 ) + -())a'
n __ fT12- _Z, Z1C).-

A,-o F (5 .3 - 39 )

'rhe other terms occurrin" in equation (5.3-33) are some-

what more complicated since the helical vortex sheet shed

from the duct gives rise to both odd and even terms. This is

shown in the following reduction of the integral involving

c (z'). In this reduction the order of integration is inter--n

changed, the change of variable Q=P- ' made, and the order

of integration changed back again.

I iI

jhhf(#jsi 1 J[2A(j _Z1) J., -~*,F -COS(1- q"+ ,/ jCjck
0 -7T b

In:I . ier Mf), 1j 9d

-fII ff qZ9 (( 1"fz' jh'V' P-)c"' y-

"1 0

(5.3-40)

where
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t iS;4c(oa3 )

and

(5.3-42)

The integrals in in(c ) and (S ), equations (5.3-41) and

(5.3-42) respectively, have been reduced to a simnler form in

Appendix E by evaluating the infinite integral. Using Appendix

E equations (5.3-41) and (5.3-42) become

SC(,) = ,A(Z-Z (5.3-43)

L~s2-z, = L2KZ. z9)]; (.3-44)

where I' and I' are given by equations (E-9) and (E-18) re-

spectively with X=l.

The integral from the vertex sheet involving the Fourier

coefficient hn(z') is reduced in sirailar manner and is

01 (5.3-45)

in (2 e-jd sin z-z')szZ

( 
.,mh 

I
E T- " =

_ os . I 0
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If the Fourier series for U( ,i) is substituted into

equations (5.3-33) along with equations (5.3-34), (5.3-39)

(5.3-40) and (5.3-45), the equation is written completely in

terms of a Fourier series. Since a Fourier series is unique

and linear, the coefficients can be equated. The result is

two linear singular integral equations for the Fourier coef-

ficients of the ring vortex strength, gn(Z) and hn(2), in

terms of the known coefficients un(2) and v n(), equations

(5.3-31) and (5.3-32).

U 6E) =i- - . f1Z , A,-z') 9 ta de
0 (5.3-46)

where

!1~i-z,) fbc-Z91LG4,/,W) 4c.,(4J7 + ,az9 (5.3-47)

From the equations for un(2) and vn(2) it is known that

un(i) = vn(2)=O if n/mb, (m=l,2.... ). Since equation (5.3-44)

must hold for all values of Z,, it must be concluded that

n(L) = hn()=O Lf nm (M=_11 ...... )

because the coefficients K (Z-z') and i(c)(Z-z') obviously

are not zero for nmb. From a practical point of view this

fact greatly reduces the number coefficients which must be

calculated. For instance for a 4-bladed propeller in a duct
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only g4 (Z), h4 (')' g8(2), etc. exists. (It should be

noted that g.(j) exists for all number of blades and that
ho(C) is identically zero). From the decrease in the order

of magnitude of Fourier coefficients 2 8 with increasing n,
it is not difficult to conclude that the. series for the circu-
lation distribution converges very rapidly since so many of

the terms are identically zero.
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V.4 Reduction of the Integral Equation for the Duct

Ring Vortex Strength.

The method of solution of the integral eqtations (5.3-46)

will now be considered. First, however, the solution when

n - 0 will be discussed. For this case h0(Z) WVo(z) -

i(e) ( - z') - 0 and the system of equations reduces to a,
0

singular integral equation for go(Z,).

j -z,(5.4-1.)

where 0

(

The function uo(Z) is given by equation (5.3-16). This

equation (5.4-1) is identical to the one solved in section

11.4 with the additional terms from the Indueed radial velnor-

ties from the hub and propeller. The s~lution method is the

same except that additional terms now occur in equations

(2.6-2) and (2.6-6) for the function f(G). Following the

same procedure as in section 11.4, the functions Hh(z) and Hp(i),

which occur in the equation for uo(i), are expanded in a

Fourier cosine series in 9, for 0 - 9 jr, where

Z = z -a t =(1/2)(I + cos 0), then

[H ) P Hp9) ZP,,COS5mea (5.4-2)
flz :
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where

f (9 fu io9 f Hp (&)]de'
0 ,r"

-L'HA,(e) + Hr(8')1Com 6'eG'
o (5.4-3)

and H (9) and Hh(Q) are obtained from equation (5.3-16) with
p

the change of variable mentioned previously. Substituting

equation (5.4-2) into equation (2.4-14), the new function

f (Q), is obtained

F~(e2 1f')+i~cs- m~~.*sn9 (5.4-4)

where f(9). ts given by equation (2.4-26).

This function fp () is used in equations (2.6-2) and

(2.6-6) in place of f(9). This equation (5.4-4) is for the

general case, i.e. when a singularity occurs in the circulation

distribution at the leading edge. It also seems reasonable to

describe an ideal angle of attack of the duct section when

the propeller is in the duct. Obviously, each section of a

symmetrical duct cannot operate at an ideal angle of attack

in the presence of the propeller but an ideal angle of attack

can be defined in presence of the average velocity. Making

the definition of ideal angle of attack with the propeller in

the duct as the angle of attack in which the singularity in

go(z) doec not occur at the leading edge of the duct, the

following is written for the function fpid (e).

f.(e) ( -i (5.4-5)46i (0) fid (19 r
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where f, is obtained from equation (2.5-3).

To obtain the ideal circulation distribution [go(z)]id

in presence of the average hub and propeller induced

velocities, the foregoing equation is used for f(G) in

equations (2.6-2) and (2.6-6) and the calculations carried out

as described in section 11.6 for the ideal case.

By the procedure just described the Fourier coefficient

go or g*, where g*(G) - g'(0) sin 2O, can be obtained by

the methods already describe" in sections II.4, 11.5 and

11.6. The Fourier coefficients gn(E)and hn(z)for n 0 0

cannot be obtained quite so easily because they are &efined

by two linear singular integral equations and this involves

the solution of a system of singular integral equations.

The system of singular integral equations given by

equation (5.3-46) can be reduced to a system of non-singular

Fredholm equations of the second kind which can be evaluated

by known methods29 . The method of reduction is the same as

given previously in that the singular integral equation is

reduced to the airfoil equation and then inverted. Starting

with the first equation of (5.3-46) the term Mn(i-i) - Mn(O)

is added and subtracted from the integrand. It can easily

be shown from equations (5.3-43) and (5.3-47) that

Mn(O) = 2, and ic)(0) -

ff W(2 -d,, - h,(z9d eO

fl t d cn(2) + (C )1

0 0 (5.4-6)
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This equation is now inverted as In section 11.4. The

Kutta condition, equation(2.2-21),is satisfied by making

gn(i) zero at the trailing edge of the duct. Inverting and

interchanging the order of integration the previous equation

can be written as a Fredholm equation of the second kind.

, -~ .;_Ij-- (~,z,)dz,
2t T z - V T  ,

V j(' Z i L Z"-M(Z"-Z'J dz"1 ,z ' z'

0 0

(5.4-7)

A singularity occurs at - i which is the leading edge

of the duct. As discussed previously, the singularity is

removed by introducing a new variable g*(Z) - /T-zgn(i)

also h*(7) - "Vf-h (1). If the change of variable
./n n
2 - l/2 + cos 0), z' -l1/2)(i + cos 9'), etc., is made,

the preceding equation becomes

Ir
(0)~ 5M 19, K, (e - 99 lr .

OLe) 8 " f i (5.4-8)

0

where
'tr

C tos ocoe doe'
(5.4-9)
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IT

0. C0 a -Co'sO a _V________0___ofej ' " (oe-oero e" - co~s9 ]

0 (5.4-10)

fr

E (r5-cot)

0

(5.4-11)
The last three integrals are evaluated by expanding

the integrands in a Fourier cosine series in 0' or 0" and

using the Cauchy principal value integrals given by equation

(2.4-25), then

,() = -c-o t osI.e+ S; 50 0m & (5.4-12)

where

NO= f ' (5.4-13)
17.

4,1 = ,fe').#ic#9suim,'ae' (5.4-14)

K(GCe') os 1'. bo (99 9 /c,(,s , .,Ia

(5.4-15)

where

b0 f- (5.4-16)
0
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b,,. :,,J = r/Lco .,_¢o ej( 5.4-17)>

ad

Ir (5.4-118)

where

ir

dno(e'h 1f - -0cos e" -C.se') de"

(5.4-19)

dm(9'1 = - -cosD')co it" o'de'

(5.4-20)

The function I' is given by equation (E-18) with i = 1.
2

It has a logarithmic singularity at 9" - 9' which can easily

be removed. The integrand of the integrals for the Fourier

coefficients bno and bnm, equation (5.4-16) and (5.4-17),

are of indeterminate form. Referring to equation (5.3-47),

it can easily be shown that

I/Mi r 20- M = 1, A II
C's' L -COS '

The integral I{ is given by equation (E-9), Appendix

E, with R - 1 and the proper change of variables.

The second integral equation of the system, equation

(5.3-20), can be reduced to a Fredholm equation of the
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second kind for the coefficient h*(@) in the same manner.
n

Repeating equation (5.4-7) the coupled Fredholm equations

of the second kind are

o 0
(5.4-21)

A f,(e) +f~ne J'~e)cB fKj(9,eP)9
0

whe-'e

ow I[ PRO C0 + 1 ' M ~ "

h ,e [Ic + ZA (5.4-22)

Im:

o = wv (edJe' (5.4-23)
0

17"

4 fvl.O)$1k imG'de (5.4-24)
0

also

The system of equations (5.4-21) in thA inte:al (Qi.)

can be reduced to a single equation in the interval (0,2ir)

as discussed in Reference [29]. This single equation is not

necessarily more convenient to use than applying the various

solution methods directly to the system of equations t.,4-21).
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To obtain a numerical solution to the system of equations,

they are rewritten in the following form

(5.4-25)

h (o) &F(e)* +t4 [, .~C1 .. .~i . "mG

(5.4-26)

where

F, Ce) f. (9) -fK, (9, ')J; (e:)J(4
0 (5.4-27)

A

0 (5.4-28)

AM = fbnm(e') cos#9'5i9'

(5.4-29)

ir

fod(5.4-30)

The Fourier coefficient bnm is given by equation (5.4-16)

or (5.4-17) and since they are functions of geometry only, they

can be tabulated. Eacb of the equations (5.4-25) and (5.4-26)

can be solved by the method given in section 11.6. The problem

now exists that F1 and F2 are unknown, consequently, it is

necessary to use the method of st:-ucessive substitution.
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Equation 5.4-25 is first solved asswming FI(G) - fn(G) and

then the resulting gA(Q) used to solve equation (5.4-26).

This process is repeated using each time new values of FI (9)

and F2 (Q) until satisfactory coavergence is obtained. All

the Fredholm theorems apply to the system of equations so,

in general, convergence is assured.

Once the Fourier coefficients g* and have been

determined, the circulation distribution of the ring vortex

strength Y can be calculated from equation (5.3-3) and the

induced velocities at the propeller and hub can be determined.

In general, it will be found advantageous to make use of the

Fourier series expansion of the ring vortex strength.
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V.5 Induced Drag of the Duct

In Section 11.7 the induced drag of the duct was

expressed in the form of a duct thrust coefficient.

=qAX'[G,# +* C ,Cr.1 (5.5-L)

where

I Rofl

GT I(f(")A '24dw5. 9- 2)

0

The radial velocitv induced by the hub at the duct is

given by equation (5.2-9). If this equation is substituted

into equation (5.5-2), the vontribution to the duct thrust

by the hub is given. This equation can be considerably simpli-

fied if the Fourier expansion of r is used, then

I
ii

Since g(,) may be singular at the leading edge, the

change of varinble i= s(l+cose) is introduced and then the
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equation can be written in terr.s of the coefficient g* (e)

which was discussed in the last section.

r (555)hc td
C- 0()I 555

0

where

g(e)=sin e 8 go(e)

The radial velocity induced on the duct by the propeller

is given by equation (5.2-8). If the Fourier series for both

(and the radial velocity induced by the propeller is used,

equation (5.5-3) is simplified to

ir ar

2 (5.5-6)

The function %o(e) is given by equation (5.3-15) with

the change in variable, z= * ( + cose) + at. The functions

*(M), hn(e),un(Q) and Vn(Q) are the same as discussed in

the nrevious section with the necessary change in variable.

The radial velocity induced on the duct by the duct

trailing vortex system is given by equation (5.1-5). After

introacifig the Fourier expansions for (" and making use of

the evaluation of the infinite integral in Appendix E, the

contribution to the nozzle thrust by the trailing vortex system
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is -)

0 0

7F( 1' ~4e(o94co 91e (11

(5.5-7)

The functions I and I' are given by equations (E-9) and
I Z

(E-ll) with the variable 1 :(c s@-cos@'), 4,=4d and R=l.

Once the contribution to the duct thrust by the various

components have been obtained the total duct thrust follows

easily. It should be remembered that only terms which are

harmonic with the number of blades appear in the series in

these equations, consequently a majority of the terms are zero.
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V.6. Velocities Induced by the Duct and Its Trailing

Vortex System at the Propeller and Hub.

Only the axial an tangential velocities induced at a

propeller lifting linp are desired. Since the f!ow is

symmetrical, it is sufficient to consider only the lifting

line at = 0. The velocity induced at the propeller by

the duct can be considered as that due to the ring vorticcs,

ring sources and duct trail i vortex aystem.

(j 0 ,o)]= W,, 1- 0) , (" +
i + (5.6-1)

and

J 'Xj0,O)r + (r,0,

(5.6-2)

The ring source system does not induce a tangential

velocity since its strength is independent of angle. The

axial velocity induced by the source ring is given by

equation (B-12). Introducing the source strength in terms

of the thickness slope of the duct, equation (2.3-4), the

axial velocity induced by the source ring is obtained as

S ir1 - w - - (5.6-3)

where 
0

_ q( (5.6-4)
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The ivtegrand of this Integral is singular at the point

x - xd and z' - -a t . The axial position z' - -at is at the

lifting line and x - xd - I only occurs at the blade tip. When

the propeller is not within the duct then the sfngularity
does not exist, 1.. z'1 -at does nou lie between 0 and 1.

When the singularity exist this equation must be treated

as a Cauchy principal value integral. Considering the case

t" ̂  x - xA then the precedi _ equation can be expressed as

.riO~o ±(i~(5.6-5)

where

+ z )e +

If the change of variable is made, z' (1/2)(1 R cos 9) then

'V 0) W'')f(9 ; 'V4,) siade
5 I / - )  -Cos e) (5.6-6)

where
cosO -(24e +-)

he(Co 6 - C 0S 00)1+%

The term, s'f',)i' 2 E(F2) sing, is expanded in a Fourier

cosine series in 9 over the range 0 toTr. This involves no

additional asstumptiona on s'(G) than in Section II.4. If this

is done, and the series substituted into the alove equation

and the integration carried out, the induced velvcity is
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finally given as

fl-" (5.6-7)

where

415 '(,e Y'g) sin 6eosn Ode
C

°Ene axial velocity induced by the ring yorLex at the

propeller lifting line is given by equation (A-18) as

1 V7

v3  27T]J ~+ (-;r)r + 'i Al(ae + - 2I )os'.'
0 -IT'

(A-18)

If the Fourier series for Y is introduced, then this

equation becomes

hF;. ,fg ,~S' icsq/g,
"V3 (x~oob= - h ,,,/, (Z)1J(, I)

(5.6-8)

The functicn k is given by equation (5.6-4) and the2

Fourier coefficient hn(z) of the ring vortex strength inte-

grates out. By algebraic manipulation this equation is

reduced to a function of elliptic and Riegel functions.

:- h/f ' (,5)etI_.Co"""tJO- ,hPo<'YJ ])

= - - ,:-~ ~ ~ ~~ (1 jz/ o[ - !...
'X (af *z') P +

0
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-~ ~~~~Z G, (it +~ G.( 2  G~ 1 4)j
0 l

(5.6-9)

The Gn(k2) are functions tabulated by Riegels37 and

are given by equation (5.3-35). There are a n-ber of

singularities appearing in the integrands when the axial

ccordinate z' -- at and x - xd - 1, but all are removable.

As in rhe case of equation 1 .6-3) this difficulty only

occurs when the propeller has the same diameter as the duct

(xd-l), the axial coordinate is at the lifting line (z'--at),

and the velocity is desired at the point (x-l). In addition

to the singularity of the integrands at this point, it must

be remembered that gn(z') may also have a square root singu-

larity at the leading edge of the duct. For this reason

the change af variable z'- (1-coq@') Is introduced into the

preceding equation and the function g*(Q) obtained.

17 (5.6-10)

0

where

coset - -(2at+l)
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(5.6-11)

If xd - x l,then equation (5.6-10) reduces to the follow-

ing.

-- r(o) (5.6-12)

where

Y(O) is the ring vortex strength at z - 0

,=he(cosG,-cose yt -

The ring vortex strength Y(o) arises from the proper.-

ties of vortex sheets14 (see Appendix A). In this equation

the integrand of the fifst integral has a logari.hmi- cingu-

larity at k2 -1 arising from the elliptic integral K. The

integrand of the second integral also has a logarithmic

singularity arising from the functions Gn at k2-1. To show

this, the expansion of the functions Gn near k2-l, equation

(5.3-36), is substituted into equation (5.6-12). The singu-

larity of the type ( gm cancels out and a logarithmic

singularity is left. The logarithmic singularity causes no

difficulty since it is a removable sirgularity and integrates

out. For convenience in numerical calculations the change in
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variable

cosO' - coset - cos39

may be introduced into equation (5.6-12) to remove the

singularities.

The tangential velocity induced by the ring vortex

distribution at the propeller lifting line is given by

equation (A-19). If the Fourier series for the circulation

distribution is introduced i to this equation, it is obvious

that the even series integrates out and only the odd series

is left, consequently

V,(X)OIO)(r 2 ''d)M
0 0

(5.6-13)
where

coset 2 -(2at + 1)

j7(-Y) ' Ios ) +)

[2 As s(ren b Y, eu o(5-

h~is given bY equation (5.4-2)
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The integrand of this integral does not have any singu-

lart1es and is zero when k - 1.

The axial velocity induced by the duct trailing vortex

sheet at the propeller lifting line is given by equation

(5.1-2) with V -0 and z - 0. Again introducing the Fourier

series expansion for the circulation distribution this

equation becomes

o = -9 0

o -ir

(5.6-14)

where

R~z t(j 2  (~)cosq2').t.T~o(~a ~ II) (5.6-15)

The integrand of the infinite integral is singular at the

L tan j J
the propeller is the same difame ter as the duct. The infinite

integrals occurring in this integral are almost the same as
given by the propeller induction factor, equation (4.3-7).

If x # xd, the order of integration can be interchanged in

this equation and the infinite integral can be reduced as in

Appendix E.
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05

(5.6-16)
where 1/

- - ZC0os E K(n o-) n

4.

0 (5.6-17)

0

"fe~s 
lin n

00

gvo *O' I(5.6-18)
and

0* - (co - 'qS) O

cosOt - -(2at+l)
If the behavirr of the double integral in equation

(5.6-14) is considered at *Xd, then it can be shown that

ial and 1a2 are valid even for *wxd since

-K c0seeq) =esmnad
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and

1im 'in 'K~ (n a- n(t1,3 d

The tangential velocity induced by the duct trailing

vortex sheet at the propell - lifting lTine is given by equation

(5.1-4). Introducing the Fourier series expansion for the

circulation distribution this equation becomes

fr

j) [-Joea,*(e)Q e ide (5.6-19)
VNZI

where

--- (e-o st, _ r( -o,,) //() .).f; , CO( ._~ *,,,,-rJ o,

f-d

0 0

+ . (5.6-20)

- inc q1 fC )F
7 L

0
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and

o 0

%

- I [((q)C5?f i4K( * ,o1 ql(o) o)1 e

oT.713 0(2a +o-n Z)

0

fin2~s~n~(s~nhsn no) -2 cosn;I(n-)L~nJ)t

a n the / in al The) a cosome [qi]r n
Uos, (A t + 1)s

These last two equations have no singularities in the

integrands of the integrals. There are some indeterminate

forms of 0/0, which axre evaluated as follows
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If C= 0

lim {sinaneps'I n ni ./4

If x - xd

tim shn a( 1 sin -(P t4.('-_

With the preceding equations the axial and tangential

velocities induced by the duct can be determined at the

propeller lifting line by equations (5.6-1) and (5.6-2).

These equations allow the propeller to have any axial posi.-

tion in relation to the duct and, 1in addition, the diameter

of either the duct or propeller is arbitrary.

In addi tion to the velocity induced by the duct a t the

propeller, the radial velocities induced at the hub are needed.

Because of the way the hub problem was treated only the average

radial velocity is desired. The average radial velocity

induced by the propeller at the hub was essentially derived

earlier in Section V.3 and is

' (5.6-22)

The function i, (  ,z )is given by equation (5.3-12)

with xd replaced by xh . The radial velocity induced at the

hub by the ring source distribution is derived in Appendix B

as equation (B-13) and will not be repeated here. The radial

. . .. . . . . . . . . .. . . . . . . . .
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velocity induced at the hub by the ring vortex distribution

can be deiived from equation (A-14). If the Fourier series

for the ring vortex strength is substituted into this equation,

the average ra4ial velocity induced at the hub is found to be

"I-I

o*(• .e-rAcs-cos& ~~' Pd

e 0(5.6-23)

where

cosO - 2(z-at)-l

The modulus k is always different than one so the

integral is always regular. The average radial velocity

induced by the trailing vortex system is obtained from

equation (5.1-3). If the Fourier expansion for the circu-

lation distribution is cubstituted into this equation and

then the equation integrated with respect to q9 from 0 to

2ir, it is easy to show that the average radial velocity at

the hub is zero, I.e.

[- (Xi, z) ] 0

LT L , (5.6-24)

Many of the coefficients derived in this section are

dependent on geometry only so can be tabulated. Specifically

the coefficients la , Ia2' It, , and 1t2 should be mentioned.
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VI. Conclusions

A theory for the ducted propeller is developed which

can be used for design purposes. The method is based on

the assumption of an inviscid fluid and that the propeller

can be represented by a lifting line. These, among others,

arc the assumprions normally made in propeller theory3 3 and,

consequently, corrections must be introduced to allow for

the difficulties in these egsumptionso These corrections are

not considered here.

Assuming that lifting surface and viscous corrections

can be made, the adequacy of the theory must still be based

on experimental results. A linearized theory similar to

that used for treating the annular airfoil has been very use-

ful in two-dimensional airfoil theory and, likewise, the

treatment of the propeller by lifting line theory has been

effective, It is not self-evident, however, that in combination

the resulting theory of the ducted nropeller will be satis-

factory. It if; presumed that it will be.

An attempt has been made not to restrict the problem

more than the basic assumptions which are given in the intro-

duction, consequently, somewhat cumbersome equations are

obtained. In general, these equations have been reduced to

coefficient form which are dependent only on geometry so can

be tabulated.

Accepting the basic assumotions in Section I, many
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important observations can be made abcut the aamnular air'ull

and the ducted propeller.

I. The linearization of the duct boundary conditions

results in the radial velocities induced by the singulari-

ties in the flow being equal the duct surface slope.

addition the boundary conditions are only satisfied on a

cylinder of constant diameter and chord equal to the duct

chord.

2. The strength of the d' t source ring distribution is

independent of angular position and dependent on!y on the

duct thickness distribution even in the presence of the

propeller.

3. The strength of the duct ring vortex distribution

depends on both the camber and thickness distribution of

the dunet s well as the radial velocities induced by the

uropeller. if the duct is at zero incidence and the pro-

oeller is not present, the ring vortex distribution is

independent of angular position and no free vortices are

shed from the duct.

4. When the duct is at an angle of attack (no propeller

present), the duct vortex strength is a sum of two terms.

One term is the airfoil at zero incidence and the other is

dependent on only the angle of attack, duct chord-diameter

ratio, and the angular position.

5. The problem of the design of the propeller in the

duct reduces essentiaLly to the nroblem of the propeller by

itself with the inclusion of the velocities induced by the
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duct. This means ihe indunion fantors which have been calcu-

lated3 3 are applicable to this problem.

6. On expanding the radial velocity induced by the propeller

on the duct in q Fourier series, it is found that only terms

exist which are harmonic with the number of blades except for

one zero-order term. This means that the Fourier coefficients

of duct vortex strength are harmonic with the number of blades

except for one term. This zero-order term embodies the pro-

peller average radial velocity and the duct thickness and camber.

All the higher order terms of the duct vortex strength are

functions of only the propeller induced velocity.

7. The duct ring source distribution induces no tangential

velocity at the propeller nor does the source distribution

representing the hub.

8. The duct trailing vortex system induces no average radial

velocities at the hub.

9. The induced drag of the duct is zero if the duct is by

itself and at zero incidence. In the presence of the propeller,

the induced drag is dependent on the radial velocities induced

by the hub, propeller and duct trailing vortex system.
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A~pendix A
Velocity Induced by a Vortex Distribution on a Cyl1nder1 3

First consider the stream function and velocity distri-
bution induced by a single vortex ring of diameter, Rd,
located at f . The figure shows such a rin; where both a
cylindrical coordiciate system (r,gv, ) and a cartesian
coordinate system (c,y, t) are used.

'~ A p (r,qi p, or p !

t ot

P'(R,rfj¢)

# rr

The coordinate is in direction of the axis of the vor-
tex, the element of the vortex filament is at the oint, P',
and the stream function and velocity distribution is desi-ed
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at the point, P. The Biot-Savort law gives the velocity

induced by a vortex filament. In vector notation and for

an element of filament ds, this law is given by the following

equation:

j= C~ f( A-1)

where

dV is the induced velocity at P from the element

R is the vector from point P' to P

d is the incremented vector leds tangent to the vortex
ring at p'

'(fl) is the circulation at P and dependent on

If the unit vectors T,j,' are in direction of the ,y,f

axes, the unit vector C can be written as

Since Rddq' ds the above equation becomes

s S as .9( - 3

From the figure it can be seen that the radius vector

from P' to P is

(A-4)

By vector multip.l.ication it follows that -hde is

IT
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(A-5)

The magnitude of R is. given by

R ,!~~i#L 2r Rdc5O-~ (A-6)

Substituting equations (A-5) and (A-6) into equation (A-1)

and integrating around the ring gives the velocity induced at

P by a single vortex ring.

0

For the induced velocity from a vortex cylinder, the

induced velocity from the single vortex ring is integrated

along the cylinder from the trailing edge (f = at) to the

leading edge (f = ab). Sinep ach ring will not necessarily

have the same strength, the vortex distribution will also be

a function of '. It follows then that for the vortex cylinder

the induced velocity is
aj 2tr

at 0 (A-8)

As expressed by equation (2.2-23) the axial coordinate

( ) will be assumed to be nondimersionalized by the cylinder

chord (a), the radia. coordinate (r) by the propeller radius

R), the velocity ancd also the vortex distribution by the ship
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speed or in the case of uniform flow, the free-stream velocity.

The duct chord diameter ratio (h = a/2Rd) will also be intro-

duced ani then making the change of variable (z" = z' + at)

and noting that in the nondimensionalized form L.-ut=l, the

preceding equation can be written as

,"r 4e

11. k L' / -t(r) 14 "( ,,,- 6)CO4fO0M
o 0 (A-9)

If there is no clearance between the nropeller and the

duct, then 3d I and the above upiation becomes

YVY (zr h [Ph IIjZ-4e -0ic, PP7i * [Ph tz -A 4C& l -ExC394

0 0 (A-1O)
From the figure at the beginning of this section, it can

be seen that the velocity in the axial direction (wa) is given

by the component in the f direction. The radial velocity

component (wr) and tangential velocity component (wt) are

obtained using the relationship of velocities in cylindrical

and cartesian coordinates. 3 8 The velocity (w.) is the

component of velocity in the i direction and (wy) is the

component of velocity in the i direction, the radial and

tangential velocities are given by the following equations

Wr = W.cos d, + wysin q9

wt = -wsinqf + wycos 9 (A-11)

Applying these relationships to equation (A-9) the

different velocity conponents are found to be
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1'Or., z). 7. - )c o s( -
]J

USj f ( j + (z--)Cos/ Z') .
0 0

1 er

Er

0 0

)e 2IrJde (-)e. 2(b) COs-OP9T (A-14)
0 0

The velocity induced on the vortex cylinder itself is

found by considering the nroperties of vortex sheets. 14 The

velocity across a singular vortex sheet has a discontinuity

in the tangential velocity component of magnitude a'. As a

result the value of the induced velocity depends on the side

of the sheet. Since only the axial and radial velocities

will be neede;d on the ring itself, it follows then from

vortex theory that
Rfr

V5 ~ ~~~ ~ jrzrl-,, ,Z,,-f

(A-.15)

fh(-4e - -z) oc94/,'9q ,
-, r % J L,/,h-(z.4,-Zr * - - -'1/

0 0 (A-16)

The plus sign refers to the outside of the duct and the

minus sign to the inside. Thct radial velocity will also be

needed on the nroneller hub, Denoting the oropeller hub radius
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bv Xbt this radfal velocity is given by

I21r 2 ~ ~ -~YV;)J '~
,dZ aA_. ..1(2 -ae z) oc - "... .

0 0 A d'

(A-17)The axial and tangent .l velocity induced at each nroneller
blade will also be needed. For this pirnose it is sufficient to
consider the propeller blade in it, vertical position thus it is
sufficient to consider the an '.e 9 as zero and since z=o at the
propeller, the axial and tangential velocities induced by the
vortex cylinder at the propeller are

*'r ,
- J~~~~~~qAg(a6  zV )2 , 4 - ~ e~ c sq~~

0 0 
(A-18)

I 2 .'

-; J9" (,Z) " -,-

0 0 
(A-19)

If the circuation distributio , is a function ofthe angular Dosition, then a vortex system is shed from the
nozzle. The velocity induced by this system must also be
considered and is discussed in Appendix C and D.

If the circulation distribution 4'(c z) is independent
of th. angle 19 , then the velocity induced from point to point
is independent of the angular position of the points. It is
then sufficient to conTider that the angle c is zero. From
the figure at the beginning of this section it can be seen that
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for qP =0 the radial velocity at P is given by thp omrcnnt

of velocity in the i direction and the tangential velocity

component is given by the comnonent in the j direction.

From considerations of symmetry it is obvious that the tangpn-

tial component of velocity is zero. This also follows from

the fact that the coefficient of J is an odd function and the

integral of this term vanishes. Utilizing these results,

prpAation (A-9) reduces to the following equation.

I aOr

o 0 (A-20)

where

I = Yh2(z-a-~z') , - )

The integral in the brackets can be reduced to the form

of complete elliptic integrals by introducing the change in

variable cosI' = sinG, then d ' -2d0 and when q'=0, G=

and when ,' 21r , Q =

r2 SnF4 - 0)7C'- CasOSM-O&(r~I) 0] Alz

-. ~ ~ ~f Ia k (Z) L' .1, --(Z z

0

(A-21)

+ K( E (9) - - Xd ] Z)

I (1- - -)-
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where

F(A __cOIcDlete ellintie inteegrl of theJ esin f i-st kind

J= -,e e =complete elliptic integral of the
second kind

Thc axial component of velocity is given hi the coeficnt

of the unit vector R and the radial component by the coefficient

of the unit vector i.

As discussed previously the axial comnonent of the induced
veLocity is discontinuous across the vortex cylinder therefore

on the vortex cylinder itself, i.e. (x = xd, at _ z _ a4 ), the

induced velocities are

I

= l 1 41 ~z (A-22)

[w~~i - fr(z') -(W~ez-le -l)[K.A) EO E(4JIV  qfr 'J (z -ezj-z), (A-23)

0
where

e 4eZ' I,
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Appendix B

Velocity Induced by a Source Distribution on a Cylinder

In the derivation of the velocity field from a source
cylinder, first the velocity induced by a single source ring
of diameter Rd located at F/will he consildered. As for the

vortex ring a cylindrical coordinate system (r,q9 , ) and a

cartesian coordinate syztem (!,y, 4') are considered as shown
in Figure 8. The velocity ine ced by an element ds of the

source ring of diameter Rd at the point P is
15

4r R-1 (B-1)

The strength of the source at the point (Rd, q9', /") isdentedby) q" 4
denoted by q(', f' ). The vector, R and its magniatde R irave

the same value as given by equations (A-4) and (A-6), there-

fore the induced velocity for a single ring is given by

Ca R~o r,,,, + ( -a -,o,,s ' 'P +)3~ ¢'-')' .,,,,J

(B-2)

The induced velocity is given by integrating single

vortex rings along the cylinder from the trailing edge (f =at )

to the leading edge (' = a/, )o Since each ring will not

necessarily have the same strength, the source distribution

will also be a function of . For a source cylinder it

follows then that the induced velocity is

e (i-

at, o (B-3)
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As for the vortex ring the axial component will be non-

dimensionalized by the cylinder chord (a) and the radius by

the propeller diameter (RD). The induced velocity nnd sourci-

stren ,h will bassumed to be nondimensionalized hy the ship

speed or in the case o£ uitiform flow by the free-stream

velocity. The chord diameter ratio of the cylinder (h = a/2Rd)

will be introduced and the change of variable (z" = z' + al).

Since in the nondimensionalized form (at - at = 1), the pre-

ceding equation can be written ds

L f jcrIX C04-C.S4Z f 1) sin7'9- s4g'7:a~'
v,'' . = J /3'A yz-af-z')2 -' X(.) ' 'q-j q J °cd'-f)] '

0 0 (B-4)

The axial component of velocity is given by the component

in the 1; direction and the radial and tangential velocities

follow from equation (A-11)

hf f( .z'2A (z -a-9 ci q _ z _Z

z_' - ( - osZ -~"7
0 (B-5)

ffi 44t)j CO
i 0 (B3-6)

ry' _y _2eZ,2}cosq~ij~
00

(B-7)
_________________________________________
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The velocities induced on the source cylinder itself are

found by considering the nroperties of source surfaces.14  In

this case the tangential velocities are continuous across the

surtace tf!, the normal velocities are discontinuous. Denoting

the outsidc, of the cylinder by i plus sign and the inside by

a minus sig,&, it follows then that the radial velocity on the
cylinder itself ( = xd,at z a ) is given by3 8

W ,' ) E4 f f( - ) *of* : ) -w;: r¢

0 o (B-8)

If the source distribution is considered a constant with

respect to V, then, since the flow is symmetrical, it is

sufficient to consider that the angle &/is zero in equation

(B-4). In this case the velocity comnonent in the j direction

is an odd fuiction and integrates out. If the change in vari-

able cos-'= sine is made, equation (B-4) can be reduced to

the form of complete elliptic integrals.

';"2 -](z-* -Z')2 '("z )])2) ) 'I ___
_L-x-P f.! [KJ wra-, fie-,) I-4]4, e l.
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where

1'{z-at -z'Y- 1 (31 + )P_

K -JG'&j complete elliptic integral of the
sn 8 first kind

ER) =f' /- ,si' o d, complete elliptic integral of the
second kind

The axial comDonent of -locity is denoted by the compo-

nent in the k directioL and radial component is the component

in the i direction. Again considering the properties of source

surfaces, the velocities induced on the cylinder itself X fd,

ae=: zna) are found to be as follows

I

T 2r j 1(Z_-e-Z (B-10)
0

and

K.J f z9 rK(R)-.EU;JZ' . - z) (B-Il)
0

where

i(Z -a~ Z -z) I*

It is shown in section (11.3) that within the linearized

theory the source strength is independent of the angular posi-

tion even in the presence of a propeller. For this reason the
velocity induced by the source cylinder at each propeller blade

is obtained from equation (B-9) by letting z=O. Since only the
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axial velocity is needed, it is the only one given.

- _~ ~ h ____ 
ZAa * 9 (~)E

where

Similarly, the radial velocity induced at the hub by the
source cylinder is independei of angle and is obtained from

equation (B-9) by letting xx h

'4-hZ (A= EO 4 9 Aa- 4f-y+( 1j ,

(B-13)

where

L _ _ _ _-_ _- r_ _ _ )_
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Appendix C

Velocities Inducec by the Free Vortex S-,stem of a Vortex Cylinder

at an Angle of Attack

If the ring vortices making up the vortex cylinder arc a

function of angul.ar as well as axial position, then a system

of free vortices will be shed from the cylinder. This is equi-

valent to the vortex sheet which is shd froim a three dimensional
27

flat wing. Consequently s'iilar assumptions will be made

about the shape of the vortex sheet, namely, the free vortices

form a cylinder which has a constant diameter equal to the

diameter of the bound vortex cylinder with generators which are

parallel to the f -axis, and which extends from a bound ring

vortex to minus infinity. The density of the free vortices is

I Y(Sdo), where d( , ) is the density of the bound

vortices. When the annular airfoil is at angle of attack, the

free vortex lines are straight lines parallel to the e -axis

while in presence of a nropeller the vortex lines are helical

in shape. In this section only the straight vortex lines will

be ccnsidered.

The same coordinate system and notation will be used as in

Appendix A. A

d(1 r

Free Vorte, 0r

Figure 9. Notation for vortex cylinder trailing vortex system
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The vel.ociry induced by an element of the free vortex
follows from the law of Biot-Savart, eq1atil (A-I)

From 1he figure the vector ds is given by

7P.ds = -+ o + d" 
(C-2)

and the radius vpetor R from P' to P is

The magnitude of R is

From vector multiplication of equation (C-2) and (0-3), RXds
is obtained

R~d (r~i~ S /~ G*O f. -( ca c s o jdr (C-5)
Substituting into equation (C-i) the velocity induced at

P by an element of the free vortex is

= ~?gsi#~o)~_-rco s q2 - Ldc0 CP i~,ijq2

(0-6)

Since the. free vortex extends from -oo to ' the velocity
induced by an infinitesimal strip is obtained by integration.

,Il

7 .. r _7 *: r~ f- e rPJcqo3~9J

(C-7)The integral is evaluated and equation (C-7) becomes
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[re# /?d -- 2r/?cos(-P)jY((.)')i-V

The velocity induced by all the free vortex filaments

from a single vortex ring is given by integrating this equation

with respect to q9 ' from 0 ti, 21( and ot the free vortex cylinder

by integrating the induced velocity of the single rings which

are distributed along the chord of the cylinder.

ae of

(C-9)

Nnndimensionalizing this equation as before, i.e. the

axial component with the bound vortex cylinder length (a) the

radial component with the ring radius (Rd) and the circulation

with the velocity (V ) the above equation is given more simply

as:

V1 j j +y 99-]Lr12-') frIz' 9
where z = z-at, z refers to the coordinate system at the oro-

peller.

From the form of this equation it can be seen that the

free vortex sheet induces no axial component of velocity. The
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r-adial and tangential. components are given by the usual relations

of velocities in cartesian and polar coordinates, equation (A-Il),

0 0X( 
C.lO

and

I air

(C-i)

On bound vortex cylinder = land 0 1, the radial

velocity, equation (C-10), reduces to the following

00

and introducing the notation

h~ia2 +1

equation (C-12) becomes

z-- +] -~'qIJ

0 0

(C-13)

________ ______________ ____ _____ _____ _____________________
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Appendix D
Velocity Induced by a Helical Siaped Vortex Line

The velocity component induced at j point in space by a
vortex line is given by the law of Biot-Savart. In vector
notation and for an element of filament di' of constant
strength this law is given by equation (A-1) rewritten

here as (D-1).

'j/ RX76
VIr J -fl?(D-l)

where

d i  is the induced velocity at a point P
R is the radius vector from dhe vortex element

to the point P
dis is the v-ct,)r tangent to the vortex ring at

the element
I is the circulation along the helix and is

constant
Tho following figure shows such a helical vortex line

leaving from a point P', which will be taken as a point on
the duct or the propeller blade, where both a cylindrical

coordinate system (r,17, ') Cad a cartesian coordinate
system ( ),y,-) arc used. The point P(x', y', ') is a
general point in space and the point P"(x", y", ") liys on

the vortex line,
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t -,

R

t/'/
il i !/

II

Figure 9. Notation of the helicoidal v "An

From this figure it can be seen that the vector R is

given by

S=[r,-OSCP -GCOSc,#."OU)I4 4. rrSMq ' t (f

L ~c (D-2)
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The T,."gnitude C1f R is

R? =JpI Irc 5,,v- ico s(4 +9 [rs 'M -- s;#t -'I+ . ,
2  

" c -oMl*/JJ

or

Ra  +'- 1.r"-¢'-Io40  o2.- 3rrcos9--)

(D-3)

The unit rectors J .,. f , k are in the direction of the

A, y, a xtes, The unit vector . also follows from the

ft2tirA tnQ

S- f e) /3o (D-4)

and ds ro sec 13od(-

The contribution of the whole vortex filament is found

by Integrating equation (D-1) with respect to cx from O to -.oo

-0 0t/. -'7- R j .L

(D-5)

SubZ.tUti .. i1 for R. Pt~atl'-r ,D-2) and 5S, equation

(D-.), the induced velocity from a helical cortex line is

given aa
-Io

, v rr¢ f; ,,, ., , , . - ,r3.-_ _,-_ ,

-i.,-



172

3 ( _' )-o/ R3

(D-6)

Mhe axial velocity induced by a helical vortex line is

given by the component of velocity in the k direction and

the radial and tangential velocities follow by using

equations (A-il)

~0

(D-7)

W".] . q t - ronj,5 1o(r-r 4)

., Y -r (D-8

(D-9)

The integrands of the integrals for the axial and tangen-

ti:al velocities are singular when the point f ' ,f)

liys on the helical vortex line itself. T1occurs when

6m (40- cp) - (f J ') and r - ro . It can be shown
rdo tanh gh a e

that the integrand of the integral for the radial velocity
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equation (D-V) is noL singular at this point but has a

Jump discontinuity, except possibly at ;< - 0. This is

shown by letting (- -9 - o(-P19) tan,-I and r = ro
in r.-As equation, using the series expansion of the sine

ana cosine, and taking the limit.

- -0() . Vo ,;,('-n ) -

[a-p - O5(f..c --, -- a,, s;c3-€ -/

The limit of this equation as o<- (t? . p ) is

equivalent to considering (0- -u) ' 9 and letting

9 - 0. Considering the series expansion of the sine and

cosine, i.e.

3! 5!

co5e = - !f ,

The above equation can be written as follows

-( e +e . ... .. o 0 - ' e .... )' , o
-~ ~ e- ' S V- " . .. " ?; .7 -,A + + e tn d

+ _[-\ 2(-I*- .a + ..n2 ,o, /
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and the limit of the integrand at 9 - 0 is

4..-
'ra 19-.0 19 + T. ""

Sirice the integrand is a odd function of 9, the limit

as - 0 -' 0 must be of opposite sign. Considering 0 as equal

(0 - q9 - ) the lim.t of the integrand can then be ritten

as

Since the integrand of the integral for the radial

velocity is not singular, it can easily be shown that this

inftnite integral for the radial velocity is unifotmly

convergent with respect to r., r, i - and - p with

the exceptidns discussed in the following paragraph.

At the point r - rot - ', -9qp and o,= 0, the

integrand is discontinuous. If f ', = p and the limit

of the integrand is taken as ox - 0, obviously the limiting

value is given by equation (D-10). If, however, 0 -q2,

-: - 0 and the limit L.s taken as -, f', or if f- fl,

-c= 0 and the limit is taken as q9- q2p, the integrand is

singular as . . At this point the integral does not
02

exist and consequently is not uniformly convergent.

i-
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Appendix E

Evaluation of the Infinite Integrals in the E uation for. the -
Velocity Induced by the Trailing Vortex System

In Section V.3 infinite definite integrals of the

following two types arise

= ..ihn f. r) ___. .._____

(E-l)

and

ir 00

=(f) 7cs0 F or -Z S

e (E-2)

where

In Appendix D the infinite integral was shown to be

uniformly convergent if # z' and sc the order of integra-

tion can be incerchanged. If z = z'y it can be shown that

the asymptotic behavior of integral I, i, finite while 12 is

infinite as lim(ln 4 The integrals jne , equation

(3-) (1equation (5.3-41),

0.3-28), Jns;equation (523-30) in,

and in( , equation (5.3-42)5 are special forms of one or the

other of the above integrals.

For simplification the following notation villl be

introduced:

!I
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x0 x

x
xO

x

4wxtan,
z 

(E-3)

-2 . ( +3i)2 - 4 :cos ;1

The Integral I1 will be discussed first. Antechnge

the order of integration and make the change of variable
0 -(1120 +o,) in equation (E-1), then

it makes no difference whether the above integration
is carried out over thp. . - = .x o +r-) or

0 since the. Integrand is a periodic f-,nction of 0.
Also, the part of the integrand which is an odd function of 0,
integrates out, consequently the above integral can be
written as

Interchange the order of integration again and make the
change in variable lo .t+ then
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- -,

00.-, Lo 0 ' " . j ,°ppl

(E-4)
Assuming that the infinite integrals can be evaluated

in the form of known functions, this equation is much easier
to evaluate than equation fE-l) since the range of , which
is of interest, is restricted. The difficulty in evaluating
numerically the infinite integral of equation (E-l) arises
in the fact that the integrand is a pe.Tdic function of , .
The infinite integrals of equation (E-4) can be evaluated in
the form of Bessel functions. Thib in done by writing
sin n(/o- q) and cos n(io- 4) in terms of each angle and
noting that the resulting integral is in the form of either

a Fourier cosine or sine transform whose value is known.39

The Bessel funntion equivalent of the infinite integrals

which arise are
00

o-L10)] (E-5
ip a1*



178

r j. ~ (no) (E-6)

00

24- 0-2)"i

o

do

The fumctions Ko(no-) and K,(ncr) are modified Bessel
functins 0 of the sacond kind. Ko(no*) has a logarithmic

singularity at 0o - 0 and K]. (no-) has a singularity like

urn .k .fun... f'-) and I. (, ) are modified
Besoel functions of the first kind. 0 (n ) has the value one

at 7- G ad i!no = te ',aAe zero. The functions

Lo(n a) and Ll(no-) are modified Struve functions- and both

are zero at o* = 0. For these identities to hold, 0 mus t be

positive.

After integrating by parts and using the above values
for the infinite integrals, the following equation is

obtained for the integraI -

1 a + Tb + Ic + I d (E-9)

where

0 (E-0)
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Ire
rI

-Lb T1 ,,,, .- - , , ; ,<
o 0 (E-l)

0 (E-12)

f- %osniK eno -io gsn~rn. nL.(7] Mnc
0 (Eo,,,' )<<,.

o (E-13)

The only difficulty whIch -- ll.11 arise in evaluating these

integrals is when c - 0 which can only occur when R - I and

W U. Fuz: 1 . SIL, 0. The integrand of

integrals for I., and I- have logarithmic singularities at

0 - 0 when -3 = I which can easily be removed by a ;'hange in

vriablas ascussed in section 11.4. The integrands of Ib

and Id are of the indeterminate form 0/0 and can easily be

shown to have the following value at 0 - 0,

Integrand of Ib at 0 - 0

+ nsi">t n' l.- " <'  + / , '

- 2n cos nL (E-4)

Integrand of Id at 0 - 0

Yn oo5na c~4i, o) 'aP Cos1)
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Of interest is the value of I,, equatlon (E-9), for
- 0. For ehis case the integrals Ia and Ib, equation

(E-10) and equation (E-11) repectively, are identically
zero and equat:ion I reduces to the following very simpl.ified

form.

I (

(E-16)
0 o

The integrand of the first integral has a logarithmic
singularity at 9 - 1, 0 0 which can easily be removed.
The value of the integrand of the second integral at 3c -
S-0 is obtained from equation (E-15) as tai/no.

The integral 12, equation (E-2), will now be considered.
The notation given by equation (8-3) wili be introduced and
making the change in variable 0 =1/2k +'0) equation (E-2)

becomes

S___ .in a /?-n #s.4 Am

(E-+7)

Interchanging the order of integration and making the change
I.n variable +K 12 becomes

Y12b

f05a c .,.,~ j .~oa~ J (2t/o2 -
-,n 11/0 d0 41 -

0+ 77 ,t
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adno

0 0

Using the Bessel function equivalents to the infinite

integrals this equation can be reduced to the foll.fing

1
2 - Ie + If + Ig + Ih (E-18)

where

(E-19)

= m rAcsnosmpnJt5 Los 0n2 -VdOh [ 0(o
(E-20)

0

h o ( lnan TSn,) -I 1(l*1 +51fqK (n~o) do

(E-22)

Difficulty may arise in evaluat-ing these integrals when

- 0, which (-an only occur when = = 1 and 0 - 0 at the

same time. As before 0- 2 sin 0 when x - 1. No
tan /d0

difficulty is encountered in evaluating the integral for

ie when C'- 0 except if is also zero. This possibility will
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be discussed later. The integrand nf the incegral I has ag

logarithmic singularity at 0 - 0 which can easily be removed.

Both integrals If and Ih have integrands of indeterminate

form and can easily be shown to have the following value

at -0.

Intaegrand of if at 0 0

4-.0 is ~/, IJVA 1I
(E-23)

Integrand of Ih at 0 - 0

5 inif6,coS5, nenA' 4a- ta sO-o

(E-24)

The value of 12 at = 0 is of interest especially

because of the form of Ie . As before the integral If is

identically zero and consequently for - 0, 12 becomes

0 0

(E-25)

2.r T.hi 1,SI , n -

If in addition 7; - 1, the integrand of the last integral

is zero at 0 - 0, but the integrand of the first integral

has 8 singularity at 0 - 0. In fact it can be shown that the

integral itself is infinite as -in oc Consider the first

integral for x - 1
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