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PREFACE

In treating the subject of ship vibration it is necessary to recognize that it falls in the
border region between oxact science and empiricism. While it is true that intensive research
hns been conducted in this field in several parts of the world and much progress has been
made, at t: time of this writing (1960) it cannot be said that an adequate method of vibration
analysis of & ship exists.

WAl zade

It is true that one can consider the hull as an ideal mass-elastic aystem and can write
down a certain set of partial differential equations which govern the behavior of such a system,
but, in attempting to predict the level of service vibration of a ship in the design stsge, one
must be well aware of the limitations of such a treatment.

It is also possible to present empirical data on the level of service vibration of ships
of various types together with the principal design features of the ships involved. This
approach is also inadequate since the level of vibration will vary with a number of parameters
simultaneously.

In the preparation of this book an attempt has been made to follow a path midway be-
tween the theoretical and empirical approaches. This leads to what may be called a *‘rational
theory of ship vibration.’” Use is made of th-: properties of ideal free-free beams to obtain an
insight into the effects of various design changes on the vibratory response characteristics of

hulls, However, it is also attempted to guard the reader and the user against extending the
caleulations into realms in which they have no validity. One aim is to show that the vibra-
tory characteristics are closely related to the structural strength characteristies.

While intended principally for the naval architect, the book has been prepared also
with the research worker and the student in mind. It has not been attempted, however, to
include a treatment of the fundamentals of mechanical vibration. It is presupposed that the
reader has or can acquire a background such as furnished by the courses in mechanical vi-
bration now given in practically all colleges of engineering. Specific references aro included
at the end of each chapter and a general bibliography is given at the end of the book.

The contrast between the problem of avoiding serious steady-state vibration and with-
standing the effects of severe transient vibrations due to heavy seas is pointed out. The
problem of setting up design specifications with regard to vibration is also discussed.

However, no attempt is made to disguise the fact that the present state of the art of predicting —
hull vibratory response characteristics is primitive. Where controversial issues arise only
opinions can be furnished.

In the mathematical treatment of the subject and in the illustrations given in the
appendixes, the aim has been iv emphasize the physical principles involved without burdening
the reader with too many details. It is assumed that the designer who makes use of the meth-
ods discussed in the book will assign the task of carrying out the actual vibration calculations
to a member of his staff who can consult the references when further details are needed.

Thus this book is not of the manual or handbook variety although concrete procedures for the
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designer are suggested, With the rapid pace of development of computational aids today it is
clear that procedures that are written out in great detail may become obsolete almost over-
night, but the principles involved are durable.

Except as otherwise noted, the statements made apply to either surface ships or sub-
mersibles. Although most of the information given was obtained from research sponsored by
either the United States Navy or jointly by the Navy and the Society of Naval Architects and
Marine Engineers, the book is not intended specifically for naval designers, and problems
that are strictly naval are not discussed. Thus submarines are mentioned only because they
may become future commerciai carriers and questions that relate to the detection of undersea
craft are omitted.

The relatively new field of hydroelasticity has been included since this is recognized
as a field of growing importance. In fact, in the broadest definition of hydroelasticity, the
subject of hull vibration itself would have to be included.

The book is based chiefly on the work of the U.S. Experimental Model Basin and the
David Taylor Model Basin and an exhaustive commentary on the work of other agencies is
not attempted here.

It is not overlooked that more elaborate analyses of the dynamical system comprising
the hulil and the surrounding water than the beam-theory analysis presented in this book are
conceivable. However, it is felt that even after such analyses have been developed, the
designer will still be restricted to the methods discussed here in the preliminary design stage.
The data required for more elaborate analyses will, in general, be available only at a very
advanced stage of the design. -

While this book is concerned chiefly with the problem of hull vibration, there has been
included among the chapters on design considerations, one dealing with the vibration of the
propulzion system itself. Here, however, the troatment is relatively brief and intended to
serve chiefly as a guide to other sources of information on this subject in the technical
literature. In dealing with the hull itself, no attempt has been made to review all the avail-
able literature, but to concentrate on the techniques that appear most fruitful.

In choosing a notation it was found impossiblo to adhere strictly =ither to standards
in nuval architecture or in engineering since the subject involves both fields. In recent years
the Amorican Standards Associsation has extended its sphere from acoustics into the field of
mechanical shock and vibration. Many of the symbols used conform to the ASA standards,
but the common symbols for the principal dimensions of ships used in naval architecture are
also retained. The common use of nondimensional notation in naval architecture has not been
folivwed here, as thig has not found such wide acceptance in the field of mechanical vibration.
Nevertheless, it is pointed out in the chapter on hydroelasticity that the aeroelastician has
also foend such notation preferable.

Finally it seems in order to point out that vibration theory plays a central role in ship
dynamics just as it does in mechsanics in general, An acquaintance with the vibratory
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characteristics of the hull not only assists the designer in avoiding serious vibration diffi-
culties when his produoct goes into service. but also gives him a deeper insight into many
factors involved in good structural design.
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NOTATION

As stated in the preface, the notation used in this book has been derived from the fields
of both naval architecture and mechanical engineering. It has not been feasible at this stage
to avoid using the same symbol with different meanings in different places. Hence, in listing
synibols here with specific meanings, the page on which the symbol first appears with this
meaning is given. Furthermore, in most cases the meanings of symbols are also given in the
text as they are used. As far as possible, symbols in naval architecture conform with Ref-
erence N-1; see page N-13, In formulas proposed by various authors, the original notation
has been converted in many cases to conform with that generally used in the book. In some
cases, however, it was considered prefurable to retain the notation of the original author.

Just as it was found impossible to produce a wholly consistent notation, it was also
found necessary to use different systems of unjts in different places. The two principal sys-
tems used are the fooi-ton-second system and the inch-pound-second system. A major ekcep-
tion is the frequent use of mils (thousandths of an inch) as & unit for displacement amplitude.
Where specific formulas for numerical computation are given, the units applicable to it are
given in the text.

Since this book is not intended as an instruction manual for the use of those preparing
requests for vibration calculations to be made by the Applied Mathematics Laboratory of the
David Taylor Model Basin, the reader should make sure what units are currently in use with
the codings in operation at the time before initiating such requests. Reference N-2, page
N-13, will be found helpful in this respect.

Symbol Meaning Page

A Mechanical admittance based on displacement 4-11

4 A 't coafficient of a hydrofoil defined by the relation 8. 7
Fy = AS%

4’ Area of that portion of the cross section of a hull contributed by the A- 4

plating when plane is parallel to the direction of the shear load
(called the ‘‘web’’ area)

4 Level of amplitude of vibration under calm sea conditions used as a H- 5
basis for comparison with rough sea conditions

4, Mechanical admittance at driving point d (based on displacement) 4-12

a Acceleration G- 2

a Coefficient of the 7th normal mode function in the series repre- 3-22
senting an arbitrary displacement pattern of hull vibration

B Beam of hull 3-8

b Half-breadth of a ship section at the waterline A- 2

N-1
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Symbol

Meaning
Semichord length of a hydrofoil or an aircraft wing

Schlick’s empirical constant appearing in formula for the fundamental
vertical frequency of a hull

Lumped viscous damping constant of a hull (equal to cAw)

Viscous damping constant of-a vibratory system of a single degree
of freedom

Electrical capacitance

Linearized (viscous) damping constant applicable to the translational
degree of freedom of g control surface system of two degrees of free-
dom at zero velocity

Lewis’ two-dimensional added mass coefficient giving the ratio of the
added mass of a ship form (in vertical vibration) to that of a circular
form of the same beam

Moment coefficient of a spade rudder

The effective viscous damping constant of a hull in its ¢th normal
mode of vibration and with respect to driving point &

Viscous damping constant equivalent to nonviscous damping on the
basis of energy dissipation, damping force per unit velocity

Linearized (viscous) damping conatant applicable to the rotational
degree of freedom of a control surface system of two degrees of
freedom at zero velocity

Coefficient for the inertia effect of water appearing in Prohaska’s
formula for the fundamental vertical frequency of a hull

Viscous damping constant, damping force per unit velocity in
sense opposing the velocity

Velocity of wave propagation

Distributed viscous dafnping constant of a hull, damping force per
unit length per unit velocity

Angular viscous damping constant
Critical viscous damping constant

Ratio of damping to critical damping
Blade frequency in cycles per minute
Depth of hull

Draft

A driving point in a mass-elastic system

Rectilinear displacement

N-2

Page
18- 8
3-8

4. 3
4-10

4-11

14- 4

A- 2

14- 2
4-10

8. 2

14- 4
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Symbol

El

QJ
GJ

Al JBS S

Meaning
Propeller diameter
Young'’s modulus of elasticity
Electrical voltage
Bending rigidity of a beam
Equivalent horizontal virtual inertia factor

effective added weight of water
<1 for horizontal vibration

displacement of ship
Eccentricity of a rotating mass of a mechanical vibration generator

A concentrated force acting on a hull at an arbitrary point and treated
as constant over a short interval of time in the digital treatment of
transient response

Force

A concentrated driving force (acting on a hull) which is an arbitrary
function of time

Lift force acting on a hydrofoil

Rotating time vector representing the vertical component of the blade
frequency force due to the port propeller

Rotating time vector representing the vertical component of the blade
frequency force due to the starboard propeiler

Area enclosed by the shell plating of the midship section of a hull
(not the area of the material)

Frequency
Shear modulus of elasticity
Torsional rigidity of a shaft

Effective torsional rigidity of a hull with respect to its longitudinal
axis

Acceleration of gravity
Draft
Impulse applied to a hull at driving point 4

Distance from the axis of a control surface io the center of gravity of
the rotating element (based on an allowance for added mass effect of
water) considered positive if the c.g. is downstream

Distance from the top of a polemast to the elastic axis of a hull

Moment of inertia of the cross section of a beam with respect to its
neutral axis (based on the area of the material)

N-3

Page

Qo
. []
> o

7-11
3- 4
3- 4
3-8

8- 6
7-11

14- 4
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Symbol

Jao

Meaning

Mass moment of inertia of the rotatable assembly of a control surface
system of two degrees of freedom including the added mass moment of
inertia effect of the water

Electrical current

Mass moment of inertia of the entire ship with respect to the longitu-
dinal axis through its center of gravity without any allowance for the
inertia effect of the surrounding water

Mass moment of inertia
Moment of inertia of an area

Moment of inertia of the area of the midship section of a hull for
bending in the horizontal plane

Mass moment of inertia of a resiliently mounted assembly or *‘sprung
mass®’ with respect to an axis through its center of gravity

Moment of inertia of the area of the midship section of a hull for
bending in a verticul plane

Mass moments of inertia of a resiliently mounted rigid assembly with
respect to the X-, Y-, and Z-axes, respectively, with origin at the
center of gravity of the assembly

Mass products of inertia of a resiliently mounted rigid assembly with
respect to axes X-Y, X-Z, and Y-Z, respactively, with origin at the
center of gravity of the assembly

Masa polar moment of inertia of a beam or shaft per unit length with
respect to its longitudinal axis

Mass moment of inertia of a hull per unit length with respect to the
a-axis including the allowance for the inertia effect of the surround-
ing water

Rotary inertia of hull per unitlength (difference between the mass
moment of inertia of the huil including the effect of added mass of
water and the value that would apply if all the mass were con-
centrated at the longitudinal axis)

Polar moment of inertia of the section area of a beam or shaf{
(based on the area of the material)

inflow velceity
nd
Longitudinal coefficient applied by F.M, Lewis to values of

added mass of water in ship vibration to correct for departure from
two-dimensional flow

Propeller advance ratio =

Effoctive polar moment of inertia of the midship section ares of a
hull (based on the area of the material)

Page
14- 4

3 4

39

3- 3

3-8

I



uw’

ete

KAG
K.E.

Kua

Meening

V=T

Spring constant of a vibratory system of a single degree of freedom

(imaginary unit)

Translational spring constant of a control surface system of two
degrees of freedom

Shear rigidity factor for beam or hull such that the slope of the
deflection due to shear is equal to the total shearing force at the
section divided by K AG, where 4 is the cross section area (of the
material) and @ is the shear modulus of elasticity

Pressure coefficient =
pnd?

T
Thrust coefficient = —————
pnd*
The effective spring constant of a hull in its ¢th normal mode of
vibration and with reapect to driving point d

Spring constant of an entire set of resilient mountings relating a
displacement of the mounted assembly in the Y-direction with the
restoring force in the X-direction and conversely. A displacement
v in the positive Y-direction evokes a force — X, » in the X-
direction; if v and K, are both positive the force is directed toward
~2. Similarly, a displacement v toward + & evokes a force -k, u

in the Y-direction

Spring constante of an entire set of resilient mountings defined by
obvious extgns.lon of deflpxtxons of K,, and KuB' For K, ., Kyo O0Ce
the same axis is used twice ’

Spring constant of an entire set of resilient mountings giving either the
restoring force in the X-direction due to & unit rotation of the mounted
assembly about the Y-axis, or the restoring torque about the Y-axis due
to unit displacement of the assembly in the X-direction. The sign
convention corresponds to that for K,

Spring constant of entire set of resilient. mountings installed between
the cradle and the hull in a compound isolation mounting system

Spring constant of an entire set of resilient mountings installed between
the assembly and the cradle in a compound isolation mounting system
determined by holding the cradle fixed

Spring constant of an entire set of resilient mountings installed
between the assembly and the cradle in a compound isolation
mounting system determined by holding the assembly fixed

Shear rigidity of a beam or hull

Kinetic energy

Page
3-16
4-10

14- 4
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Symbol
KW

o~

E - S o

Meaning
Power
Spring constant, restoring force per unit displacement

Horn's empirical coefficient appearing in formula for fundamental
torsional frequency of a hull

Torsional spring constant of a rudder-steering system

Torsional spring constant of a control surface system of two degrees
of freedom

Angular spring constant
Axial spring constant of a resilient mounting

Effective spring constant of a local ship structure referred to its
center of gravity

Generalized elastic constant of a mass-elastic system applicable to
its ¢th normal mode of vibration

Radial spring constant of a resilient mounting

Length of a hull (usually assumed to be the distance between the
forward and after perpendiculars)

Electrical inductance

Distance from the axis of a control surface to the center of lift,
considered positivo if the center of lirt is upstream

A characteristic length or dimension of a ship
Bending moment
Mass of a vibratory system of a single degree of freedom

That part of the mass of a control surface system of two degrees
of freedom which can vibrate only in translation

Total mass of a uniform bar

Imaginary component of the rotating time vector representing a
vibratory bending moment

Generalized mass of a mass-elastic system applicable to its {th
normal mode of vibration

Effective mass of a hull in its <th normal mode of vibration and
referred to thc driving point d

Lffective mass of a local ship structure referred to its center of gravity

Hydrodynamic moment acting on a spade rudder

Mass of a rigid body

N-6

4-11
14- b

15- 8
3- 2
4-10
14- 4

6- 3

14- 2
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Symbol

Meaning

Mass of the rotateble element of a control surface system of two
degrees of freedom including an allowance for added mass effect
of the water

Mass of a resiliently mounted rigid assembly or ‘‘sprung mass*’
flexibly supported in & hull

Frequency of fundamental vertical flexural mode of a surface ship
Maximum rpm of a rotating member

Number of significant vertical flexural modes of a hull
Fundamental torsional frequency of a hull

Frequency of the 2-node horizontal flexural mede of a hull
Predicted fundamental vertical natural frequency of a new ship
Frequency of the 2-node vertical flexural mode of a hull
Known fundamental vertical natural frequency of an old ship
Frequency of a simple harmonic vibration

Revolutions per second (rps)

Rpm of a rotating member

Frequency of the fundamental mode of vibration of a system
Single amplitude of a simple harmonic driving force P sin wi

Single amplitude of the vertical component of the propeller
oxciting force (at blade frequency)

Single amplitude of a simple harmonic driving force
Potential energy of a vibrating heam

Concentrated driving force acting on an element of a hull of
length Az

Driving force per unit length acting on a beam—in a direction
normal to the X-axis

Horizontal component of the force produced by a rotating
eccentric mass

Vertical component of the force produced by a rotating
eccentric mass

Pressure

Resonance magnification factor

Generalized driving force on a hull applicable w the th normal mode

and referred to the driving point d

N-7

Page
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Symbol
@)

e B | ~3

~3

Meaning

Generalized driving forco on a hull applicable to the 7th normal mode
but without reference to any specific driving point

Mass distribution coefficient appearing in Prohaska's formula for the
fundamental vertical frequency of a hull

A generalized displacement in matrix notation

Number of cycles used in estimating the logarithmic decrement from a
record of freely decaying vibration

Generalized displacement of a vibrating beam in its ith normal mode
Electrical resistance
Lever arm of weight unbalance of a rotating member

Factor appearing in Prohaska’s formula for the fundamental vertical
frequency of a hull

J. Lockwood Taylor's shear correction factor

Correction factor for variable inertia used in applying Prohaska’s formula
for the fundamental vertical frequency of a hull

Correction factor for shearing force used in applying Prchaska's
formula for the fundamental vertical frequency of a hull

Correction factor for transverse compression and dilitation used in
applying Prohaska’s formula for the fundamental vertical frequency
of a hull

Velocity of undisturbed water relative to a hydrofoil

Distance from a fixed point measured along the shell plating of a hull
in @ plane normal to the longitudinal axis of the hull

Torque with respect to the longitudinal axis of a cylindrical shaft

Moment about the longitudinal axis of a hull dus to all shearing

__stresses in the cross section

Torque
Propeller thrust

Single amplitude of blade-frequency driving torque with respect to the
longitudinal axis of s hull

Single amplitude of blade-frequency exciting couple with respect to the
longitudinai axis of a hull

Time
Tip clearance between propeller and huil (in the plane of the propeller)

Maximum allowable residual unbalance of a rotating member
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Symbol

U, v, &

W
WE

X, Y, Z
X1 Yps 24y

Xy Yy
z

Meaning
A displacement in the X-direction
Displacement in the X-, Y-, and Z-directions, respectively

The net shearing force in the direction of flexural vibration
transmitted by one section of a hull to the adjoining section

The real component of the rotating time vector representing
a vibratory shearing force

Velocity of an aircraft wing relative to the undisturbed air
Velocity of a ship
Volume

The imaginary component of the rotating time vector representing
a vibratory shearing force

Vertical virtuel inertia factor =
added weight of water for
vertical vibration

[y

displacement of the ship
A displacement in the Y-direction
Rectilinear velocity

Energy dissipated per cycle in a simple harmonic vibration in the
presence of damping

Weight of a rotating member

Weight unbalance of a rotating member
Displacement in the Z-direction
Rectangular coordinate axes fixed in space

Rectangular coordinate axes with origin at the center of gravity of the
cradle in a compound isolation mounting system

Rectangular coordinate axes with origin at the center of gravity of the
assembly in a compound isolation mounting system

Distance in the longitudinal direction forward of the plane of the
propeller

Displacement in the X-direction

The X-coordinate of a point 7 on a beam subject to vibration

A rectangular coordinate axis fixed in space

The displacement of points of a hull in the Y-direction when
vibrating in one of its normal modes of vibration
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10-10
10-10
6- 7
2- 2
8-12
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Symbol

Yy
Y. (9)
Y (2)
Y, (2)

Y ()
¥, (2)

y(2)

Meaning
The single amplitude of & vibratory system of a single degree of freedom

The steady-state single amplitude of vibration at the stern of a ship due
to a simple harmonic driving force of single amplitude P,

Displacement in the Y-direction of the axis of rotation of a control
surface member

lte single amplitude of a hull in its {th normal mode of vibration at the
driving point d

Amplitude pattern assumed as a starting mode shape in the calculation
of a hull flexural mode by the Stodola method

Amplitude pattern used in the calculation of a hull flexural mode by the
Stodola method and obtained from ¥ () by a parallel shift of the X-axis

Amplitude pattern used in the calculation of a hull flexural mode by the
Stodola method and obtained from Y, () by a combination of a parallel
shift and a rotation of the X-axis

An arbitrarily ‘assumed normal mode pattern of vibration of a hull

Pattern of displacement in the Y-direction of a hull vibrating in its
7 th normal mode

Displacement in the Y-direction

Real component of the rotating time vector representing a vibratory
displacement in the Y-direction

Displacement in the Y-direction of the center of mass of an element
of the hull of length Az

Imaginary component of the rotating time vector representing a vibratory
displacement in the Y-direction

Displacement in the Y-direction of the center of shear of the cross
section of a hull

Velocity in the Y-direction
Acceleration in the Y-direction

Single aiuplitude of vibration in the Y-direction of the center of
gravity of a local ship structure

The amplitude of vibration at a point s of a beam due to a simple
harmonic driving force applied at poirt #

Displacement in the Y-direction at the nth station of the hull at the s
interval of time in the digital calculation of transient response of a hull

Mode shape obtained in the calculation of hull modes by the Stodola
method on a graph in which its magnitude differs by the factor 1/e?
from that of the curve assumed in starting the calculation
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Symbol Meaning : Page

A Mechanical impedance based on displacement 411
Z Electrical impedance D- 1
Z Electrical impedance of a circuit having resistance, inductance, and 4-11
capacitance all in series
z, Mechanical impedance based on velocity 4-11
Z4; Mechanical displacement impedance of a hull in its £th normal mode of 4-11
vibration at driving point d
z Number of blades per propeller 7- 4
Z Z-coordinate of the center of mass of an element of a hull of length 3 7
Az (including allowance for added mass of water)
Z Z-coordinate of the center of shear of the cross section of a hull 27
vibrating flexurally in the Y-direction
] Empirical constant appearing in impedance-type formulas for stern 7-11
vibration of a ship
o Angle of attack of a spade rudder 14- 2
o, Empirical constant in impedance-type formula for athwartship 7-11
vibration of hulls
o Empirical constant in impedance-type formula for torsional 7-11
vibration of hulls
a, Empirical constant in impedance-type formula for vertical 7-11
vibration of hulls
o, By, Angular displacements with respect to the X-, Y-, and Z-axes, 6- 7
respectively
B Angular displacement with respect to the Y-axis 6~ T
B Section area coefficient A- 9
B Empirical coefficient appearing in the formula of Todd and Marwood C- 5
for the fundamental vertical frequency of a hull
B’ Component of the slope of the elastic line of a hull due to shearing 5- 2
only
y Real component of the rotating time-vector representing a vibratory 4- 3
angular displacement of the cross section of a hull with respect to a
Z-axis
y Angular displacement with respect to the Z-axis 3-8
y' Imaginuty component of the rotating time-vector representing a 4- 4
vibratory angular displacement of the cross section of a hull with
respect to a Z-axis
A Displacement of a ship 3- 3
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Symbol
AS

> @ D D & O

4 v

O

P, (2)

Meaning Page
A small distance along the shell plating in the plane of the section C-6
L.ength of a small element of a hull measured in the direction of its 3- 7
longitudinal axis
Logarithmic decrement for a free vibration 8- 8
Shell plating thickness C-86
Angle of attack of a hydrofoil 8- 17
Angular displacement of a control surface from its equilibrium position 14- 4
Angular displacement - G- 2
Complex exponential term in the expression for vibratory motion whose 14- 5

real part indicates the rate of decay or buildup and whose imaginary
part indicates the circular frequency (A = p + § @) .

Scale factor by which a dimension of a ship is multiplied to obtain the G- 1

corresponding dimension for the ship model

Wavelength 3- 5

Frequency of free vibration in the ¢th normal mode in the presence of 5- 5

damping

Mass per unit length 3-8

Real part of complex exponential term in the expression for vibratory 14- 6

motion indicating the rate of decay or buildup of the vibration, that is,

the degree of positive or negative damping

Radius of curvature of the elastic line of a deformed beam 3- 2

Mass density of water -5

Time at any instant between 0 and ¢ 5- 5

Rotation of the cross section of a beam or hull with respect to its 2- 4

longitudinal axis

Phase angle by which the driving force leads the displacement in a 4- 9

simple harmonic vibration

Steady-state single angular amplitude of a hull at the stern and with 4-13

respect to its longitudinal axis due to a simple harmonic driving

torque of single amplitude T,

Empirical coefficient appearing in Burrill’s formula for the C- 3

fundamental vertical frequency of a hull

Single amplitude in rotation about the longitudinal axis of a hull D- 3

The ¢th function of & series of orthogonal functions of @ 4+ 8

Circular frequency of a simple harmonic time-varying quantity 8- 1
N-12




Symbol Meaning Page

{1 A column matrix 8- 9
[] A matrix 6- 9
04 The midship section of a hull A- 1
- Equals approximately 4-38
. Designates differentiation with respect to time, when over a symbol 3-1
. Designates double differentiation with respect to time when over a 8- 1
symbol
< Equal to or less than b- 7
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CHAPTER 1
HISTORICAL BACKGROUND

Although ship vibration phenomena were undoubtedly encountered much earlier, the
subject appears to have first attracted scientific study toward the end of the 19th century.
As might be expected, the impetus came from the occurrence of resonance which indicated
the need for a method of predicting the natural frequency of vibration of the hull.

In 1894 O. Schlick** proposed a formula for the fundamental vertical hull frequency
and this provided the naval architect of that time with a guide for designing his propulsion
system so that the operating propeller shaft rpm would not coincide with this hull frequency.

Other evidence of interest in the subject in this early period is the French textbook
““Theorie du Navire,” ™ published in 1894 which included a chapter on ship vibration among
its four volumes. In that work, examples were cited in which the rated speed of ships had to
be reduced to avoid hull vibration. It does not detract from the pioneering contribution of the
suthors of that classical work that they were lod astray ir their speculations regarding hull
vibration by the observation that the ratios of natural frequencies of hulls to the fundamental
frequency corresponded more nearly to those of the string than to those of the solid bar with
free ends.

Another early investigator in this field was A.N. Krylov who recorded hull vibration on
a naval cruiser in 1900, His work on both the theoretical and ptactical aspects of the sub-
ject led to a complete book on the subject of ship vibration published in 1986, This work
is devoted chiefly to the fundamentals of mechanical vibration and the application of classi-
cal beam theory to the hull vibration problem.

Increasing interest in the subject is evident in the technical literature from about 1900
to World War II. A picture of the status of the development of the theory of hull vibzation
around 1932 is given by the paper of E. Schadlofsky !*5 where it is suggested that the fun-
damental vertical frequency of the hull can be estimated by a beam-type analysis involving
graphical integration. This procoss, based on the method of Stodola, "6 is discussed in de-
tail in Chapter 3. As indicated in the bibliography on page Bi-1, numerous other authors have
explored the application of beam theoty to the analysis of hull vibration.

About the time Schadlofsky’s paper was published, considerable impetus was given
to the experimental phase of ship vibration research by the manufacture of machines capable
of vibrating entire hulls. This development took place in Germany where such machines had
been previously designed by the firm of Losenhausen in Dusseldorf for the dynamic testing
of rivetad and welded bridges. These machines contained adjustable eccentric masses so
arranged that unidirectional sinusoidal forces and couples could be produced, as discussed
in Chapter 15.

1'IRet‘erenc:es are listed at end of each chapter. For complete bibliography, see page Bia1,
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The largest machine of this type was delivered to the U.S. Experimental Model Basin
in Washington, D.C. in 1981, Starting from that date, the U.8. Experimental Model Basin and
its successor, the David Taylor Model Basin, continued to maintain and develop machines of
this general type and to conduct experiments to verify theoretical predictions of hull vibration
characteristios.

Since World War II ship vibration research has been carried on at an expanding rate by
all the principal maritime nations of the world, This is evident from the bibliography. In the
United States, the Souviety of Naval Architects and Marine Engineers has done much to stim-
ulate interest in ship vibration and has cooperated closely with the Bureau of Ships of the
Navy Department in this field. Two of its research panels, in particular, have been directly
concerned with the ship vibration problem.

In recent years the development of analog and digital computers has contributed greatly
to the development of hull vibration analysis. 7 Simultaneously, experimental techniques have
been devised to determine the vibratory response characteristics of the hulll*? as well as the
forces tending to excite vibration in the hull. I8 So broad is the horizon that has been made
visible by modern developments in computing techniques that methods of vibration analysis
entirely independent of the beam theory of the hull are now under investigation. These
methods are along the line suggested by Professor H.A. Schade in his discussion of Refer-
ence 1-7. In these ‘‘three-dimensional’ analyses, the restriction that all points at the same
croas gection of the hull partake of the lateral motion of the *‘hull girder’’ is removed. No
results of these investigations, however, are available at this time (1960).
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CHAPTER 2 |
QUALITATIVE DISCUSSION OF SHIP DYNAMICS

A. INTRODUCTION

Unlike the case of a body free in space, the dynamical system considered in this book
must include both the body itself and its surrounding medium. The density of the medium in
this case iz comparable with the density of the material of which the vehicle is constructed;
this is contrary to the situation in aeronautics. It is therefore to be expected that the water
will have a marked effect on the dynamical behavior of the ship, and there is abundant evi-
dence that this is the case.

The forces exerted by the water on the hull arise either from pressure, which acts in a

direction normal to the hull surface at any point, or from friction or shear, which acts in a di-
rection tangential to the surface. As far as rigid body motions are concerned, when these two
sets of forces are integrated over the wetted surface of the hull, the entire system of forces
can be reduced to effective forces acting at the center of gravity in each of the three principal
directions (vertical, longitudinal, and athwartship) and effective moments about the three axes
through this point. In general, these forces snd moments depend not only on the rectilinear
and angular displacements of the hull with respect to these axes but also on the rectilinear
and angular velocities and accelerations; or, in the case of rough seas, on the motion of the
water surface relative to the ship.

Concurrently with these rigid body motions the hull may execute elastic vibrations of
numerous types. Although these latter vibrations are the main subject of this book, they can-
not be considered as entirely independent of the rigid body motions. In fact, in rough seas
the rigid body motions frequently lead to vibrations accompanying large hydrodynamic impacts,
and, even in calm seas, the forward motion of the ship may generate hydrodynamic flow exci-
tations of different types. It is shown in Reference 2-1 that, although the effect of buoyancy
may be detectable for the frequency of the fundamental mode of vibration of long, siender hulls,

ik 18 In generai jusuiiabie w neglect the effect.

B. RIGID BODY MOTIONS

When considered as a rigid body, & ship has six degrees of freedom, a1d hence there
are ¢ix displacement-like quantities to be taken into account in completely specifying its
motion. The steady forward velocity, the only motion desired in the normal operation of the
ship, is not ordinarily considered in discussing its rigid body motions. They are the motions —
superimposed on this steady forward velocity by the sea action, and always involve time-
varying velocities and accelerations. With reference to the axes shown in Figure 2-1, the
rigid body displacements in translation in the X-, Y-, and Z-directions are called, respectively,
surge, sway (or sidling), and heave, whereas the angular displacoments about the same axes
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are called roll, piich, and yaw, Of these six displacements, the three most important are roll,
pitch, and heave,

Although right-hand systems of coordinate axes are used throughout this book, it has
been found convenient, where elastic vibrations are dealt with, to orient the Y-axis in the
direction of the vibration. Thus when horizontal (athwartship) hull vibration is under discus-
sion the axes are oriented as in Figure 2-1, but when vertical hull vibration is discussed the
Y-axis is taken vertical and the Z-axis horizontal (with positive direction out of the paper.)

Figure 2-1 ~ Axes through the Center of Gravity of a Ship with Respect to
Which Forces and Moments Exerted by the Water May Be Defined

In the dynamios of rigid bodies, motions are defined in terms of the translation of the
center of mass and rotation about the center of mass. While this procedure is also applied
to the ship, it must be realized that, since the hull is elastic, these relatively slow motions
ars ulso accompanied by elastic deformations. These elastic deformations are not the ones
considered in the discussion of hull vibration. Furthermore, the hull by itself is not usually
considered as an isolated body because the component of the water forces due to acceleration
is usually accounted for by adding mass to the hull mass to take care of this inertia effect.
Since the rolling, heaving, and pitching motions, although slow, are still oscillatory and thus
have the essential characteristics of vibrations, it is important to distinguish them from the
elastic vibrations which, as has been statod, are the main subject of this book.

In the absence of an externsl alternating force, a body in free space could not execute
motions in which the displacement of the center of mass was oscillatory. The ship is sub-
ject to the constant force of gravity and to gravity moments which vary with its angular dis-
placements about axes other than those through its center of gravity. The buoyancy moments
accompanying rolling, heaving, and pitching are due to buoyancy forces that vary with these
motions, Although elastic deformations in general accompany these motions, they are too
small to play an essential role in determining these motions, aad the term *‘rigid body mo-
tions'’ is retained to distinguish them from the motions of the hull in which the elastic de-
formations do play an essential role.
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motions and eventually again come to rest. In disturbed seas, the surrounding water provides

Y11

A ship stopped in a calm sea, if initiaily disturbed, will execute damped rigid body

not only the restoring forces and moments necessary for oscillatory rigid body motions and the )
forces associated with the added mass, but also the forces and moments required to maintain
these motions in the presence of damping.

C. ELASTIC VIBRATIONS OF THE ENTIRE HULL

When 2 ship is subjected to an impulsive load, such as occurs when a descending an-
chor is suddenly arrested, it will execute elastic vibrations in addition to whatever rigid
body motions are excited. Of these vibrations some are observed only locally and some are
observed throughout the hull. The latter, in general, are of the type that may exist in a beam
free in space and so are called ‘‘heamlike.”” Although the surrounding water plays an impor-
tant role in these vibrations, it does not destroy their beamlike characteristic and it is help-
ful to consider the vibrations of the ideal solid beam free in space. This is frequently spoken

of as the free-free beam (both ends free).

22,23 24 the two terms i

As emphasized in standard works on mechanical vibration,
‘‘modes’’ and ‘‘nodes’’ are used repeatedly in the discussion of continuous systems and must |
not be confused with each other in spite of the similarity in spelling. Thus the mode is the \
patiern ur coniiguration which the body assumes periodically while in the vibratory condition,
whereas the node is a point in the body which has no displacement when the vibration is con-
fined to one particular mode. ‘‘Normal mode’’ of vibration is another very common term. The
normal modes are the patterns in which the body can vibrate freely after the removal of ex-
ternal forces.

A beam free in space may undergo four principal types of elastic deformation designated
as bending, twisting, shearing, and extensional deformations. These may all occur simulta-
neously. In a solid beam, these same types of deformation may exist with respect to any of
the three principal directions even though the relative magnitudes of bending, shearing, and
torsion may be very differcnt with respect to the different axes. In the case of the ship, the
elastic deformetions that play a significant role in its vibration are limited to bending and
shearing in both the vertical and horizontal planes through its longitudinal axis, and to tor-
sion about the longitudinal axis. The identification of extensional (longitudinal) beamlike
vibrations of hulls has so far been inconclusive, and this type of vibration is ordinarily con- -
sidered insignificant in ships although it may be quite significant in the propulsion systems
themselves, as shown in Chapter 12.

In a symmetrical beam the bending and sheﬁring effects combine to produce what are
usually called the flexural modes, as illustrated in Figure 2-2.

The curves plotted in Figure 2-2 indicate the displacements in the Y-direction of points
falling on the X-axis when the bar is at rest, Similar modes exist for displacements in the
Z-direction.
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Figure 2-2 — Flexural Modes of a Free-Free Uniform Bar

Figure 2-3 illustrates the torsional modes in which a uniform beam may vibrate, and
the curves plotted show angular displacement versus distance from the end.
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Figure 2-3 — Torsicnal Modas of a Free-Free Uniform Bar

In both the flexural and torsional types of vibration, a natural frequency is associated
with each pattern of vibration and the natural frequencies increase as the number of nodes
(points at which the curves cross the X-axis) increases.
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Figure 2-2 —~ Flexural Modes of a Free-Free Uniform Bar

Figure 2-8 illustrates the torsional modes in which a uniform beam may vibrate, and
the curves plotted show angular displacement versus distance from the end.
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Figure 2-8 — Torsional Modes of a Free-Free Uniform Bar

In both the flexural and torsional types of vibration, a natural frequency is associated
with each pattern of vibration and the natural frequencies increase as the number of nodes

(points at which the curves cross the X-axis) increases.
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If a free-free beam is unsymmetrical with respect to either the vertical or horizontal
plane through its longitudinal axis, it will be found that its natural modes of vibration involve
torsion, bending, and shearing simultanecusly. Thus from Figure 2-4 it is clear that if the
left end of the bar accelerates in the Y-direction, the bar will tend to twist because of the
inertia of the vertical member whose center of mass lies above the X-axis.

YA

Y

/
7

Figure 2-4 — Free-Free Bar Whose Normal Modes of Vibration Involve
Combined Torsion, Bending, and Shearing

The normal modes of vibration of the ideal free-free beam are independent of one
another, and, under an impact, the beam may vibrate in several of these modes simultaneously.
However, such a system has the property that, if it is initially deformed into a pattern cor-
responding to any of its normal modes of vibration, it will thereafter vibrate only in that mods
" and at the frequency associated with that more.

Patterns of two typical torsion-bending modes of a hull are illustrated in Figure 2-5.

A hull, of course, is a much more complicated structure than a solid beam, It behaves
like the free-free beam only in its lower modes of vibration. Hesice these modes are said to
be beamlike,and they may be excited by either transient or steady-state disturbances. The
transient disturbances are due to wave or slamming impacts which induce trains of damped
vibrations in one or more of these modes simultaneously. Steady-state vibrations are caused
by rotating unbalanced engine or machine elements, unbalanced propellers, or unbalanced
shafting, Vibration may also be set up by nonuniformity of pitch among the blades of a
propeller and, abnve all, by the variation in load on the individual blades as they rotate in
the nonuniform velocity field in the propeller race. The propellers also cause pressure flue-
tuations on the surface of the hull and appendages in their immediate vicinity. Propeller
blade excitation is the chief cause of steady-state ship vibration at this time (19860).

A common characteristic of the forced propeller-excited vibration of ships is that it is
concentrated in the stern. Since the beamlike modes of vibration involve large amplitudes at
both ends of the hull, this phenomenon obviously does not result from vibration in a single
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normal mode. It is apparently due to the resultant of the nonresonant responses in several
normal modes, as explained in Chapter 4.

FP.
g
A.P.
Y (+) Y (+)
oF 2o :

Statlon i
, Station
, 20
- Y
) Translation ¢( ) Transiation

e

Y(-)

Stahon 0 Station ~ Station
z —  __—n
Y — b4 ~ b (+)
\

)r¢ Rotation Rotation

Station
i ¢ (+) AL

Figure 2-5 — Two Torsion-Horizontal Bending Modes of a Hull Having
Reversed Phase Relations between Rotation and Translation

D. ADDED MASS

Before proceeding with the qualitative discussion of ship dynamics, it is necessary to
give further attention lo the inertia effect of the surrounding water as it relates to the elastic
vibrations of the hull. While it is true that the water can actually exert only normal pressures
and frictional forces on the hull, these forces may be broken down inio components which have
differont time rates of change. A component of the water forces that is proportional to the
acceleration of the hull at the point of interest and opposite to the acceleration in direction
yields here an effect of increased inertia. The relatively high density of water makes this
inertia effect of serious concern in the vibration of ships and underwater ship components,

Unfortunately, & vatiety of terms have been used in the technical literature for desig-
nating this water inertia effect. There are two distinct concepts responsible for some of the
confusion in terminology: (1) the apparent increase in mass of a bedy vibrating in water; and
(2) the apparent totsl mass of the body (including the effect of the water). Such terms as
‘‘added mass,’” ‘‘virtual mass,’ ‘‘apparent mass,’’ and ‘‘apparent added mass®® will all be
found in various publications on the subject. Although reference must inevitably be made to
papers in which such terms as *‘virtual mass’’ and ‘‘apparent mass’* appear, only the term
**added mass’® will be used hereafter in this book for the inertia effect of the water. This
conforms to Reference 2-5.




Not oni> & “:ere mush confusion about terminology regarding water inertia but there is
also & growlug !v=iing that thc concept of added mass of bodies vibrating in water has out-
lived its wsefuluess. This arise: frum the fact that as the frequency increases, the assump-
tion of incompressibility of the water on which the added mass enncept is based becomes
untenable and the vibrating body becomes, in effect, a source of und~ water sound.

In the theoretical treatment of the added mass effect, the flow pattern for vibratory
rigid body motion is considered the same as for steady or unidirectional motion. Moreover,
when a rigid circular cylinder with its axis lying in the plane of a free surface of water is
vibrating vertically, it is assumed that the flow pattern is the same below the surface as if
the cylinder were deeply submerged. This justifies the treatment as one for a circular
cylinder in infinite fluid and the subsequent discarding of half of the added mass that would
apply to the deeply submerged case; see Figure 2-6.
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Figure 2-6 - Pattern of Flow about a Circular

Cylinder Moving with Constant Velocity %
in the Positive Y-Direction in an
\’.—

S Y

Unbounded Fluid Medium

The theoretical derivation of added mass for vibrating hulls (by considering the flow
about ideal bodies in incompressible fluids) is based on the assumptions used in classical
hydrodynamics (potentia! flow). (See References 2-6 and 2-7.) The values derived on the
basis of two-dimensional incompressible flow are corrected for three-dimensional effects and
then applied as ordinary added masses in the hull vibration calculations as will be discussed
in the next chapter. It must be pointed out here, however; that, because of the complex form
of hullz, when motion of an underwater form takes place in a given direction, inertia effects
are developed not only in that direction but also in other directions. This phenomenon is
spoken of as an inertia coupling between the various degrees of freedom. As shown in Ref-
erence 2-8, in the most general case for a submerged rigid body having six degrees of freedom,
there are 21 such inertia terms. Fortunately, in practice most of these either vanish because
of symmetry or can be neglected.

It may seem surprising that the added mass effects for vibratory motion do not vary
widely with the ship’s forward velocity, but the potential flow theory indicates no variation;
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this has been borne out hy experimental observations, For further discussion of this point,
see pages 59 and 80 of Reference 2-7.

E. LOCAL EFFECTS

In view of the complexity of a ship’s structure, the number of *‘local’’ hull structures
is enormous. However, these structures may be divided into categories of different relative
importance. The most important distinction to be made as far as hull vibration is concerned
is between those structures that have an appreciable effect on the vibration characteristics
of the ship as a whole and those that do not. The possibility of affecting the ship as a whole
obviously depends primarily on the mass of the local structure, but it also depends on its
location and its stiffness.

When a mass and spring are attached to a free-free beam, the ‘‘sprung mass’’ partic-
ipates in the normal mode vibrations of the combined system, It can introduce an extra mode
so that. as far as the beam itself is concerned, there may then exist two flexural modes with
the same number of nodes. Its effect on the previously existing modes depends on both its
mass and the proximity of the beam frequencies to the natural frequency of the mass-spring
combination, that is, to the natural frequency of the mass when the end of the spring is held
fixed.

When local flexibilities of ship structures produce a sprung mass effect the normal
modes of the hull tend to depart from beamlike form, and modes of vibration of the ship may
be found in which the local vibration is excessive, whercas at the ends of the ship the vi-
bration is well within tolerable limits.

When local structures are of relatively small mass in comparison to the mass of the
ship, their effect on the vibratory characteristics of the ship as a whole will be negligible.
However, because of regonance, they may themselves vibrate excessively. If their natural
frequencies coincide with the frequency of some source of excitation prevailing at the oper-
ating speed of the ship, these structures may respond to an imperceptible hull vibration so as
to produce an intolerable local condition. Obviously, the cure for such a condition is to change
the natural frequency of the local structure.

F. SHALLOW WATER EFFECTS

The vibration characteristics of ships are materially modified in passing from deep to
shallow water. In the first place, there is a marked increase in the added mass effect for
vertical vibration, and in the second place, the propeller exciting forces may he greatly
changed, o

The change in added mass effect is due to the alteration of the noncirculatory flow
pattern. A rough rule for tho limit of depth at which this effect is no longer evident is six
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times the draft. When the depth is less than this a lowering of the frequencies of the vertical
modes of the hull is observed.

The variation in propeller excitation in restricted waters arises from a modification of
the steady flow due to the restriction of the channel around the ship. As will be pointed out
in Chapter 7, any effect that disturbs the uniformity of flow into the propeller races will set
up lateral forces which are transmitted to the hull through the propeller shaft bearings.

In addition to these two effects there will usually be a reduction in operating speed on
entering shallow water. Thus the vibratory level may vary because of any one of these sep-
arate effects,

Although it is not inconceivable under the circumstances that a particular ship might
experience less vibration while operating in shallow water, the chances are that it will ex-
perience more. Specific examples of increased vibration in shallow water are cited in Ref-
erences 2-9 and 2-5. If a particular hull happens to be subject to resonant vibration when
operating at its designed speed in deep water, then it is quite possible that resonance will
be avoided at the speed assigned to shallow water operation,
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CHAPTER 3
BASIC BEA¥ THEORY OF SHIP VIBRATION

A. INTRODUCTION

31,32

The fundamental system considered in all texts, on mechanical vibration is the

lumped mass-spring system of one degree of freedom shown schematically in Figure 8-1,

P, sin wt —= m

o
Figure 3-1 — Rectilinear Vibratory System U’P v
of One Degree of Freedom

A

—

This system has mass m, spring constant k, viscous damping constant ¢, and in this case is
acted upon by a simple harmonic driving force P sin w? in the z-direction. The mass m is so
restrained that it can move only in the z-direction.

The diffcrential equation governing this case; namely,

m& + oF + ke = B, sin wf [8-1]

[where the dot denotes differentiation with respect to ¢z (time)] is the most widely discussed
equation in mechanical vibration theory. Its steady-state solution yields the familiar res-
onance curves of forced vibration, These indicate that very large amplitudes of vibration of the
mass m will result when « is close to the natural circular frequency of the system

m
Also quite important in vibration theory is the solution of Equation [8-1] when the

(w ~3 * , and the damping constant ¢ is **small.”’
driving force is absent (P, = 0). This yields an exponentially decaying free vibration at a
frequency which approaches the undamped natural frequency as ¢-0.

Just as the lumped system of one degree of freedom provides the basis for the under-
standing of the vibratory characteristics of many familiar mechanical systems (for example,
the pickup units of many vibration instruments), so the uniform free-free beam provides a
basis for an understanding of the essential vibratory characteristics of ships.

The free-free uniform bar or heam is, of course, a continuous system (as contrasted

with the lumped system of Figure 3-1), and, although it also has the properties of inertia
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and elasticity possessed by the system of Figure 3-1, the differential equation governing its
vibratory motion is considerably more complicated.

The beam of Figure 3-2 is assumed to have a mass per unit length » and a bending
stiffness K/ in the xy-plane. Inthe terminology of the Euler-Bernoulli beam theory this means
that, if the beam is so slender that it can be bent into circular form in the XY-plane, with the
two ends joined together, certain simple relations exist. Thus the bending moment ¥, due to
the normal internal stresses acting at any cross section, will be related to the mean radius of
curvature p by the equation

El
M= — (3-21
P
Y
)
} r P (, &) Figure 3-2 — Slender Beam Free in Space
! Subjected to a Lateral Forcing
1 Function P (2, ?)
— X
0

When small deflections y of the beam of Figure 3-2 take place in the Y-direction, the approx-
imation that the curvature (reciprocal of the radius of curvature) is equal to the second de-
rivative of y with respect to 2 can be used, The familiar equation relating bending moment
and deflection in simple beam theory is then

2
- 3% [3-3]
da2

From this relation it can be shown that, in contrast with the ordinary second-order
differential equation governing the system of Figure 3-1, tho equation governing the system
of Figure 3-2 is a partial differential equation which is of the fourth order with respect to z
and the second order with respect to ¢ (time). This equation is

Er — 1+ 4 — = P(z, o {3-4]

where P (&, ¢) is the driving force per unit length in the Y-direction. This equation 18 widely
discussed in the literature, 3% %2 and in its homogenous form [P (2, ¢) = 0] leads to the well-known
formulas for the natural frequencies of uniform slender beams with various end conditions.

It was natural that, since the ship when advancing through waves is loadad in bending
and hence is essentially a beam, the early attempts to develop formulas for its natural fre-
quencies should be based on the formuls for the natural frequency of the free-free uniform

beam.
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The best known of such formulas is the Schlick formula for the fundamental vertical
frequency of a surface ship:

!
N=C\f—r [8-5]

AL?®

This formula is given in mixed units for convenience in practical application; thus

N is the fundamental vertical frequency in cpm,
C is Schlick's empirical ‘‘constant,”

2 ynits,

I is the area moment of inertia of the midship section in ft2-in.
A is the displacement in long tons, and

L is the length in ft.

For ranges of values of ¢ and further discussion of this formula, see Appendix C. Qther
well-known formulas such as those of Burrill,33 Todd and Marwood,*%or Prohaska®S are
also discussed in that appendix.

Here the empirical formulas are contrived to account for the many ways in which the ship

departs from the free-free uniform beam. Aside from its nonuniformity, one of the chief re-
spects in which a ship departs from a slender beam in its vibratory characteristics is in the
relativeiy much greater shearing flexibilily of the ship, This is because the ship is not, in
fact, as slender as the beams for which the Euler-Bernoulli assumptions are valid.

The modification of the Kuler-Bernoulli uniform beam to allow for shearing flexibility
yields what is now generally referred to as the ‘‘Timoshenko beam.’* This is still a uniform
solid beam, but when it is deformed, the slope of its elastic line is considered to have one
component due to bending and another due to shearing.. In the actual equation discussed by
Timoshenko,*? there was included not only a term for shearing rigidity but also a term for
rotary inertia, neither of which appeur in the equation for the Euler-Bernoulli vibrating beam.
The rotaty inertia represents the increased inertia effect because the mass of the ship is not
concentrated along its longitudinal axis.

The homogeneous form of Timoshenko’s equation in the notation adopted for this bock

is:

4 4 2 i 4 4
3y d%y 3%y pz 'y wEl 3%y

o e S et kG P T T i 0 [3-61
az de<dt at i KAG da“dt

This equation has been discussed in many publications in addition to Reference 8-2.
Even when the term for rotary inertia (lﬂz) is omitted, it has not been found possible to
derive from it a direct formula for the natural frequency of the free-free beam. However,
curves can be plotted showing how the frequencies of various modes vary with the ratios

L* El
£ and , as shown in Reference 3-6. The first of these ratios appears in the

Ef 2K AGL*?
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formula for the slender uniform beam in which shearing flexibility is neglected. This formula
is
o, =224y /5L [8-7)
uLt
The second ratio involves the relative magnitudes of the hending and shearing rigidities.

Many questions may be raised as to the interpretation of Equation [3-6] and of the
wave solutions to which it gives rise. Since the ship is not a uniform beam, and analytical
expressions cannaot be given for the parameters EJ, y, qu’ and KAG as functions of &, the
reader ia referred to the literature for further discussion of this equation. (See the bibli-
ography at the end of the book.)

Before considering the equations that provide the basis for the rational theory of ship
vibration proposed in this book, it is necessary to diacuss briefly the torsional vibrations of
the free-free uniform beam. As in the case of the flexural vibrations, in which the Euler-
Bernoulli assumptions provided an integrable equation, a simplified theoty of torsional vibra-
tion of beams or hulls is based on the torsional equations for the uniform (cylindrizal) shaft.

Figure 8-3 shows a solid cylindrical shaft with axis coinciding with the X-axis. It is

Y
Figure 8-8 ~ Cylindrical Shaft with Axis
T Coinciding with 0X and Twisting
0 %X about 0X

shown in texts on *‘strength of materials’®7 that the torsional rigidity of such a shaft is GJ,
where @ is the shear modulus of elasticity and J is the polar moment of inertia of the area of
the cross section with respect to the X-axis, This means that, if one end is held fixed and a
torque T is applied to the other end, the resulting twist at the point of application of the
torque is given by the equation

¢=— (8-8]

whore L is the length.

It can be shown that the torgional oscillations of such a shaft are governed by a par-
tial differential equation of the second order with respect to both z and time. This equation
is

GJ ki =1 ¢ [3-9]
3> M g2

whore .’M is the mass polar moment of inertia of the shaft per unit length.
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This equation merits special attention because it has the form of the one-dimensional
wave equation

In this well-known equation » may represent any displacement-like quentity, and ¢, the velocity
of wave propagation. Thus, if in Figure 8-2,  is the displacement in the X-direction and ¢

is the velocity of propagation of longitudinal waves along the beam, the longitudinal vibrations
of the beam are governed by Equation [3-10], In the torsional case of Figure 3-8 the velocity

of propagation is
/ @&J
I P

As shown in texts on acoustics,*® when the governing differential equation for the
vibration of the mechanical system can be expressed in the form of Equation [8-10], the
formulas for the natural frequencies can be readily derived from the relations among frequency,
wave velocity, and wavelength

¢ =nA [8-11]

where 7 is the frequency and XA is tho wavelength, The normal mode patterns in such cases
are sinusoidal, and the boundary conditions determine what fraction of a wavelength"is in-
cluded in the distance between the boundaries of the system.

For a cylindrical shaft free in space, the frequency of the fundamental torsional mode
which has one node at midlength is given by the formula:

1 fas
= o\ = [3-12]
oL Yi,,

The mode shape shown in Figure 8-4 is a half cosine. it will be noted that in this case the

1
D
Figure 3-4 — Normal Mode Shape for Funda- 5. -\
mental Torsional Mode of a Uniform Cylin-
drical Shaft with Free Ends 0 \\ L

&

length of the shaft comprises a half wavelength (half of a full cosine) and that Equation
[8-12] conforms to Equation {3-11) if
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Just as the empirical formula of Schlick for the fundamental vertical flexural mode of
a hull was based on the corresponding formula for the free-free uniform bar, s0 an empirical
formula for the frequency of the fundamental mode of torsional vibration of the hull :esembling
the corresponding formula for the free-free cylindrical shaft was proposed by Horn,3®

Horn's formula is:

gG']eO

N, =60k [3-13]

AB?+DHL

This formula is given here in mixed units for convenience in practical application; thus:

N_ is the natural frequency in cpm,

[
is the acceleration of gravity in ft/sec?,

N

[
o

is the effective polar moment of inertia of midship section ares,

is the displacement in long tons,

is the beam in ft,

is the depth in ft,

is the length in ft,

is the shear modulus of elasticity in tons/ft2, and
ie Horn's empiri-cal coefficient.

QO >

X

For discussion of the evaluation of % and J_,, see Appendix C.

Not only does the hull depart from the ideal free-free beam in the nonuniformity of mass
and stiffness distributions, but it also lacks symmetry, and this property complicates its vi-
bration characteristics to an extent that has so far been but little explored. Because of the
close approximation to symmetry of most ships with respect to a vertical plane passing
through the longitudinal centerline, the prototype beam for the equations to be derived here
is assumed to have one plane of symmetry, Here the term symmetry means mirror symmetry,
It is shown in Reference 3-10 thal mirror symmetry is a sufficient condition for vibrational
symmetry, but not a necessary one.

B. BASIC DIFFERENTIAL EQUATIONS FOR THE SHIP

The *‘rational®’ theory of ship vibration proposad in this book ia based on the assump-
tion that the hull may be considered as a free-free heam with three principal types of flexi-
bility; namely, bending, shearing, and torsional (or twisting). In this theory the inertia effect
of the water is treated as equivalent to mass added to the mass of the hull at suitable loca-
tions. The elastic axes for bending are assumed to be vertical and horizontal.

3-8
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The longitudinal (X) axis is taken as passing through a point halfway between the main deck
and the keel at the midship section; this is considered to be parallel to the keel whether or
not the ship is actually at zero trim. The orientation of the Y- and Z-axes are dependent on
the modes of vibration considered,

This analysis provides for a coupling of horizontal vibration with torsional vibration,
but, because of the symmetry, no coupling of vertical vibration with either torsional or hori-
zontal vibration is considered here,

The basic equations are derived by troating the forces and moments acting on the ele-
ment shown in Figure 8-5 when it ia taken as uniform with all parameiers equal to the mean
value over the length Az.

Z
\ Y
V + AV
. IS4 N X
0 N W J
+M .7 M+ AM

Figure 3-5 .- Element of Ship of Length Az Subject to Forces and Moments Imposed by
Adjoining Flements while Executing Torsion — Horizontal Bending Vibration

The equations are derived by considering that the element of the ship of length Az
possesses a combination of the properties of the Timoshenko beam in flexure and the eylin-
drical shalt in torsion, but with account taken of the lack of both inertial and elastic sym-
metry. Thus, a term # is introduced to represent the vertical distance from the z-axis to the
center of mass, and a term 2 to represent the distance from the a-axis to the center of hori-
zontal shear (which is here assumed to be the centroid of the area of the cross ssction of the
hully,

The axes chosen form a right-hand set, and the sign convention is as indicated by the
plug signs at the left end of the element in Figure 3-5. Thus the horizontal shear force V is
positive when the part of the hull to the left of the element exerts a force on the element in
the direction of positive Y.




Application of Newton’s law to motion in the Y-direction gives
2.5
uda S Ay [8-14]
912
where y’is the displacement in-the Y-direction of the center of mass of the element. Since

y'=y - Z ¢, for small motions

a2y’ oy s ¢

{3-15)
o 92 gt?
tHlence
2 2,
AV = pte 2V e 2 [3-16]
at? at?
Newton’s equation for moments about & Z-axis gives
3%y
AM =VAz+ 1] Az —— [8-17]
P

where M is the moment with respect to a Z-axis exerted on the element by the part of the
hull to its left. From the Timoshenko beam properties
MAz2

Ay = —— 3-18
iy 7 [8-18]

where y is the rotation of the cross section with respect to a Z-axis.

" VAz
Ay” = yAx ~ m . [R-19)
where ' is the displacement in the Y-direction of the center of shear and K4@ is the shear
rigidity. The last equation also implies that the displacement of the center of shear depends
only on shearing and bending action and not on torsicn, that is, that the hull twists about the
center of shear.

The simple concept of torsional rigidity defines the quantity &J, by the torque required
to produce a given rate of twist with respect to the longitudinal axis. The complete set of
shear stresses in the cross section has a moment about the X-axis designated in Figure 3-5
as T'. In the sbsence of a net vertical shear force, the torque with respect to the longitudinal
axis is obtained by subtracting from T' the moment due to the net horizontal shear force.

This is - V £, Hence, from the definition of torsional rigidity GJ,, and the sign conventions
indicated in Figure 3-5




aJ, aé T'+VY [3-20]
v '
whence ,
(T + V3YAx
A T o~ ce————— 3'
¢ Ve [3-21]

Since y°’= y - F ¢, and the element of length Ae is treated az uniform in the approximation
to the continuously varying hull, Ay’ = Ay - #A¢. So

VAz FTAe VE2Ae
Ay = vAz - - - 3-29
V=v38m Yae T ey @l [3-22]

e e

Since Iy is specified with respect to the atbitrarily chosen X-axis, the equation for the time
rate of change of moment of momentum about the X-axis gives

2,7 2
~ AT = - pAeZ J +(l . Az~ jA2F?) -?i [3-28]
2 px 2
ot at

where lﬂx is the mass moment of inertia per unit length with respect to the X-axis, including
the allowance for the inertia effect of the water.

The first term in this equation is the ratc of change with respect to the X-axis of the
moment of momentum associated with the center of mass; the second term is the rate of change
of moment of momentum about a parallel axis through the center of mass. Therefore

2 2
A
AT = ures 2L 1 ac 222 [3-24]
2 ] 2
at at

If the foregoing equations are set in differential form with respect to 2, the following
set of partial difforential equations is obtained:

17 2 2
LA LA (3-25]
oa at? o3
d .2
L over, 22 [3-26] =
az at2
ay M
J& El t ] —
JP (T+V7?
e T e a————— 8'28
8z G’.le [ ]
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—~ey-V : - 3-29

s ! (KAG M7 72 (3291
a1 a2 ER
—— = uz ——g - I’LZ --—¢ [8'80]
dz 922 dt?

In these equations a term involving A% is omitted since the element is treated as uni-

form over the length Aw. Also the X-axis is treated as a principal axis of inertia of the element.

The boundary conditions for free vibrations are

VeM=T=0for {z-o}
F WA

C. METHODS OF CALCULATING NATURAL FREQUENCIES AND
NORMAL MODES OF VIBRATION OF SHIPS

The set of partial differential equations given in the foregoing section cannot, in
general, be treated analytically for the nonuniform beam representing the ship since the coef-
ficients which are functions of # are not given in mathematical form. They are available only
in the form of graphs or tables. However, these equations furnish the basis for approximate
methods of calculation of considerable practical importance. These methods are classified
here as the digital, the analog, and the graphical methods.

In all three methods the problem is greatly simplified if only vertical hull vibration is
of concern, for here, unless the ship is of unusual design, the symmetry eliminates the cou-
pling effects. In this book, only the vertical case is used for illustration of the general
methods of solution. For the vertical modes, the ¥- and Z-axes are then rotated 90 degrees
clockwise so that positive Y is upward and Z points outward from the plane of the paper.

The axes still form a right-hand set and the flexural vibration is still in the direction of ¥
so that the same equations are valid. Here, however, Z and 2 are made zerv and the equations

involving y are independent of ¢. The reader is referred to Reference 3-11 for the treatment
of the horizontal and torsion-bending cases.

1. DIGITAL METHOD

The digital process that has shown the most promise so far in computing natural fre-
quencies and normal modes is referred to in David Taylor Model Basin reports as the Prohl-
Myklestad method, This method utilizes the equations in their finite difference form and is
closely related to the Holzer method widely used in torsional vibration analysis,

The process of troating the hull vibration problem by finite differences involves con-
sideration of the validity of various approximations. Natvrally the aim is to obtain the great-
st possible accuracy with the minimum amount of computation. Some prefer to regard the
process as one of first converting the ship into an equivalent ‘‘lumped’* system in which the

3-10

-—P




inertias are concentrated at certain points and the elastic properties are assigned to massless
elastic members joining these lumped elements, Qthers insist that no such concept is nec-
essary and that the representation of the continuous system by finite difference equations is
entirely mathematical. From either point of view it seems obvious that the greater the number
of lumps (or equations) used, the greater the attainable accuracy but sometimes, in the case

of tho computing machines, the accumulation of roundoff errors gives less accuracy with a
large number of lumps.

Accuracy of computation, however, does not necessarily imply absolute accuracy. The
latter is limited not only by the uncertainty in the evaluation of all parameters appearing in
the equations, but also by the factors which cause a ship to depart from beamlike behavior.
Here are included such properties as local flexibility, structural discontinuities, concentrated
masses, hatch openings, and large superstructures.

The minimum number of sections for obtaining the accuracy warranted by the reliability

of the input data appears to be 20. The point of diminishing returns appears to be reached at
40 sections. The basic process is the same regardless of the number of sections used.

The case of vertical flexural vibration used here as an illustration requires only four
of the six equations given on pages 3-9 and 8-10. The parameters and variables dropping out are
3, 3, I#x, GJ,, T, and .

A lumped system having approximately the vibratory characteristics of the ship is
illustreted in Figure 3-8. This is based on a 20-section breakdown which requires 21 maes

elements with one at each end.

/
2 L -

Figure 3-6 — Illustration of Breakdown of a Ship for Digitai Calculation
of Vertical Modes of Vibration
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The mass elements are points of concentration of the translational inertia uAz and the
rotational inertia l“ ; Ae. The elastic properties of the hull are concentrated in the massless
connecting members. In this case there are the bending rigidity £7 and the shearing rigidity
KAG. Hence, two principal modifications are made of the equations given on pages 3-9 and 3-10
for this particular caleulation, First, they are converted from differential form to algebraic form
with respect to time by using the fact that the desired solutions will be simple harmonic vi-
brations which can be expressed in the form

y (@, t) = Y, (2) sin ;¢ [3-81]
which gives
(@) =-0l Y (dsine, t=-0ly (s [3-82]
where Y, () is the normal mode pattern for the ¢th normal mode. Second, they are expressed.
in finite difference form with respect to 2.

The equations are then converted from differential form to finite difference form with
respect to @. As given here, they are in their simplest form.

AV =y Azy o? [3-88]
AM = VAz ~ 1, Azy o’ [3-34]
MAz

Ay = 8-35]
Y= 5 { .
Ay = yho - L8 [3-36]

= P = — -

V=3 Yo

As shown in Reference 3-11, a staggering system is usually used for increased sccuracy of
calculation. This requires introducing half stations and considering forces and displace-
ments at staggered intervals with the boundary conditions V = }f = 0 at each end. In this
simplified form the subscript notation required to identify a value at any particular station
along the length of the hull is unnecessary, as is also the use of half-station staggering of
certain terms for increased accuracy of computation. Each of the four equations indicates
the difference between two values of the variable on the left side of the equation in advanc-
ing a distance Az to the right when the hull is executing a simple harmonic vibration of
circular froquency w.

The computation is started by assigning an arbitrary value to « and unit value to y at
the left-end station. It is known that Vj = 0 and M = O but the value of y, must remain
undetermined temporarily. The set of four difference equations will then permit advancing
. from Station 0 to Station 1 with V, #, y, and y all known in terms of Yo' This process can
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then be contirued cyclicly until the right end of the hull is reached. Here it iz known that if
the frequency « assumed was a natural frequency, it will be possible to find a value of y,
such that the boundary conditions, that ¥V and ¥ are both zero at this end, will be satisfied.
Once y,, is datermined numerical values are then fixed for V, ¥, y, and y throughout the ship.

There are a number of ways in which this basic process can be carried out. Thus, use
can be made of the fact that the desired solution can be formed from a linear combination of
calculations made by starting at the left end, first with the values y = 1 and y = 0 and then
with the values y = 0, y = 1. A range of values of « is then explored for which it is possible
to find a linear combinaiion of these two calculations, which will make V and M both zero at
the right end of the hull.

Since the lumped system used here to represent the hull has only 21 degrees of freedom,
it can have only 21 natural frequencies and normal modes, whereas a continuous free-free beam
has a theoretically infinite number of modes. In praciice, such a calculation would not be
carried beyond about the sixth or eighth mode, the number depending on the length to depth
ratio of the hull. If the method were valid beyond this number of modes it would be necessary
to use a larger number of elements in the breakdown in order to realize its potentialities.

Several points should be noted concerning this method of computation. The natural
frequencies are found by a process of searching for values of w at which the boundary con-
ditions can be =atiafied. At each frequoncy thus found the caiculation automatically gives a
normal mode pattern. There is no significance to the absolute amplitudes used in such a cal-
culation, but only to their relative values. Thus, the calculation shows what values ¥, ¥, v,
and y would have throughout. the hull if it were possible for it to vibrate with unit amplitude at
the left end at the particular frequency in question. In the foot-ton-second system of units
this would mean ap amplitude of 1 ft at station zero, clearly an excessive value. However,
since the equations used ars linear the result can be used to obtain the values associated
with amplitudes of practical magnitude, that is, fractions of an inch.

The Model Basin has for the present (1960) adopted the station designations as 0 at the
stern and 20 at the bow for the vibration calculations. This is the opposite to that used in the
naval architects’ lines drawings but preserves the convention of having the how to the right
in the ship's profile.

In spite of the increased number of variables and parameters, the basic process of cal-
culating torsion bending modes by digital calculation is the same as for the simpler case just
illustrated. When a normal mode of this type is found by digital calculution ihere will be
obtained sets of values of y, v, ¢, V, M, and T for each natural frequency on the basis of
unit amplitude in y at station zero. When y and ¢ are plotted there may be found pairs of

torsion-horizontal bending modes in which there are the same number of torsional and flexural

nodes in each mode, However, there is reversal of phase between rotation and translation
as illustrated in Figure 2-5.
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2. ANALOG METHOD

The subject of eleotrical analogs of mechanical systems is very broad and is of great
importance in vibration analysis in general, as is well known. The equations applicable to
electrical notworks in which alternating currents are flowing are, in general, of the same
form as the equations applicable to vibrating mechanical systems. This at once suggests
the use of electrical circuits as computing devices for studying the vibratory characteristics

of mechanical systems.
An important distinction is to be made between those electronic computing devices that

perform purely mathematical operations such as integration and differentiation, and those in
which there is a truly physical analogy between the currents or voltager in various
branches of a circuit and the amplitudes of vibration or forces existing in the corresponding
mechanical system. The former are frequently called operational analogs and the latter are
spoken of here as network analyzers. This chapter is concerned only with the latter.

Direct electrical analogs of vibrating mechanical systems are not unique and two such
analogs have heen used at the David Taylor Model Basin in making vibration analyses on the
same network analyzer. These are known as the conventional or ‘‘classical’’ analog and the
““mobility™ analog. The analogous quantities in these two systems are listed in Table 8-1.

TABLE 3-1

Analogous Quantities in Two Types of Electrical Analog of a
Vibrating Mechanical System

. Conventional Mobility
Mechanical Values Analog Values Analog Values
Mass Inductance Capacitance

Soring constant

Reciprocal of
capacitance

Reciprocal of
inductance

Viscous damping

Reciprocal of

constant Resistance resistance
Force Voltage Current

. Integral of
Displacement Charge voltage
Velocity Current Voltage
Frequency Frequency Freguency

In general, mechanical units and electrical units are of such magnitudes in practice
that neither of these analogs can be used without a scaling transformation. The electrical
circuit is driven at a much higher fraquency than the mechanical frequencies met in practice.

This reduces the size of inductances and capacitances required in either analog.
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In dealing with the flexural vibration of hulls, the Model Basin has used a mobility
analog in the form of a pair of coupled transmission lines; in one the current represents the
shearing force in the hull, in the other the current represents the bending moment. This cir-
cuit is discussed ir considerable detail in Reference 8-12. When a separate ground line is
drawn parallel to each of these ungrounded lines, one section of this network, which then
represents one of the sections into which the hull is broken down in the analysis, will have
eight terminals, four at each end. Such a section is shown in Figure 8-7. This circuit com-
prises a “‘passive network,'’ that is, one within which there are no sources of energy so that
the network by itself is dissipative because of internal losses. When external voltages are
removed, only transient oscillations remain which eventually die out just as the vibrations
of the mechanical system die out after the exciting force is removed.

Az Az
i’" —_ KAG -
V, —=0— _J. LD LI © Vi1
plAz
cﬁL—T —0
Az
y El
M, v— " IOTT™- 3 o
Az ||| B .l_
2N I A
S T™ ?

Figure 3-7 — One Section of an Elcctrical Circuit Analogous
to a Section of a Vibruiing Ship

In Figure 8-7 currents [lowing to the right in the upper line represent vertical shearing
forces in the hull, and currents flowing to the left in the lower ungrounded line represent bend-
ing moments in the hull. Voliages in the shear line are analogous to mechanical translational
velocities and voltages in the moment line are analogous to mechanical angular velocities.

It will be noted that inductances are proportional to the reciprocal of mechanical shearing or
bending rigidities whereas capacitances are analogous to mass or mass moment of inertia.
One winding of the transformer is in series with the shear line; the other winding is connected

between the moment line and ground.
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To find the natural frequencies of a hull experimentally, the usual procedure is to in-
stall a vibration generator that is operated over a wide range of speeds and to observe those
speeds at which resonance peaks of amplitude are found. Similarly, with the analog the nat-
ural frequencies of the circuit are found not by observing free oscillations but by applying
continuous excitation by means of an oscillator, In the case of the mobility analog the con-
dition corresponding to resonance in the mechanical system is actually an electrical anti-
resonance. This is advantageous in that little power is taken from the osecillator, A high
resistance is inserted between the ungrounded terminal of the oscillator and one end of the
shear line in the circuit, If this resistance is high enough, the curront fed into the shear line
will remain practically constant regardless of the frequency since the change in impedance of
the circuit will have little effoct on the total impedance. At each antiresonance the voltage
will rise at ihe ends of the shear line, and the normal mode pattern of the hull may then be
found by plotting the voltage measured along the shear line at the 20 stations,

To show that this electrical system is analogous to the vibrating hull it is required
merely to show that the application of Kirchhoff's laws for electrical circuits when applied to
the section shown in Figure 3-7 will yield the same set of difference equations as Equations
[8-83] through [3-86]. Thus, the difference in currents at the two ends of the shear line of
the section must equal the current flowing from the shear line to ground. The latter current,
howaver, is the product of the voltage 7 and the admittance jugAz, where j = /=1, In a-c cir-
cuit theory, differentiation with respect to time is effected by multiplying by the operator jw,
and integration with respect to time by dividing by jw. Hence the current to ground is

jopAzy = - pAzw’y
Hence

2
V, ~-pAoo’y+ ¥V,

or
AV = pAzye? [3-33]
In the moment line Kirchhoff’s current equation involves four currents: M, M, ,, V Az
(through the transformer winding which is coupled to the shear line V), andy (fwlyzz&z) through
the capacitance. When the directions of these currents are taken into account there resuits
the equation

AM = VAz ~ I#ZAzym2 [3-34]

The remsaining two equations follow from Kirchhoff’s potential relations. Thus the voltage drop

. . Az |
in the inductance E— is equal to the inductance times the ...e of change of current, i.e.,
Az .

—— M.

El
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Hence
. Az

7.'n+1_7u= El

or, on integrating with reaspect to time,

MA2

Ay w —— 3-35
Y=g {8-85]

Finally, since the voltage drop in the winding of the transformer in the shear line is
Az times the voltage across the other winding (3) and since the voltage drop in the induct-

ance

Ay .
is equal to -—— V, the potential equation is
q XAG ) p q

. . . A2V
e A

On integrating this gives

VAz
Ay = yAz ~ AT [8-86]

It is seen that the boundary conditions of the free-free hull are satisfied in the analog
if the shear and moment lines are isolated at the ends since this makes V = M = 0. Of course,
when an oscillator is connected to one end, it gives an input current which is analogous to
applying an external simple harmonic driving force to one end of the hull. The voltages de-
veloped at the ends correspond to the rectilinear and anguiar velocities at the ends of the hull.

A photograph of the TM3 Network Analyzer used for vibration analysis by means of

the electrical analog is given in Figure 3-8. A complete description of this network analyzer
is given in Reference 3-13,

3. GRAPHICAL INTEGRATION ~ STODOLA MET!0D

Some success has been sttained in computing the lower modes of hull vibration by
graphical integration. This is of practical importance since analog or digital computing fa-
cilities are not universally available. In this chapter the application of graphical integration
to the Stodola methcd is discussed, but it must be emphasized that numerical integration can
also be applied to this method. In applying this method the added mass must have been pre-
viously computed and added to the mass of the hull as a distributed mass. Here the hull is
considered as a beam froe in space and the added mass is assumed to remain constant in time.

The case of vertical vibration is again used to illustrate the method, since in this case
coupling with torsion ig negligible. As a further simplification the effect of rotary inertis is
neglected here. The set of differential equations to be integrated is then:
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Figure 3-8 — Network Analyzer Used in Making Hull Vibration Calculations
by Means of Electrical Analogs
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In these equaiioﬁs p El, and KAG sll vary with .
The curve of . versus  is first plotted from the weight curve of the ship and the esti-

mated added mass of water. This may be either a smooth or a stepped curve.

Figure 3-9 — Sample Plot of ; versus z Required for Use of Stodola Method

A normal mode shape is then assumed for the 2-node vertical mode. The nearer this is
to the true mode shape the less labor is involved in the calculation, but, in the absence of a
basis for a more realistic curve, the normal mode pattern ¥, for the free-free uniform bar is
used as a starting curve, The value of ¥, may be taken as unity at z = 0. A set of values
for plotting the uniform bar curve is given under Case 11A of Reference 3-14. The p values
are then multiplied by the corresponding values of Y, to give the curve pY, shown in Figure
3-11,

0 \ & / L

Figure 3-10 — Sample Plot of 2-Node Pattern of Free-Free Uniform Bar
for Use in Stodola Method

If Y, were the irue normal mode pattern for the ship in question it would be found that

R fe kL




LY,

Figure 3-11 -- Plot of Y, versus @ for Use in Stodola Method
L
[ nY,dz=0 (8-41]

L
f {)" uY, de dz =0 [3-42]

since the first integral is proportional to the shearing force V (2) in the hull during vibration
(actually V (2) = [p¥w?d2), and the second is proportional ta the bending moment ¥ (). If
the first integral is not zero it may be made zero by a parallel shift of the X-axis in the plot
of ¥, () to obtain & second approximation Y, *(2). If, after this modification, the second in-
tegral does not vanish, it may be made to vanish by = rotation of the X-axis about the point
whose abscissa is that of the centroid of the area under the , curve. The curve of ampli-
tudes, obtained after shifting and rotating the base of the ¥ -curve and replotting on the
basis of unit value at Station 0, is labeled ¥* (). A mechanical integraph will draw the in-
tegral curve when the curve to be integrated is traced by the stylus.

Although the modifications that have been made so far in the starting mode shape of
the free-free uniform bar will now make it satisfy the houndary condition on V and ¥, as yet
no account has been taken of the elastic properties of the hull.

The four differential equations on page 3-18 yield the following set ol integral equations:

fuyow? dz = V [8-43]

[fuyew? de doe = M [3-44]

{de 2 _
.]Z’T fﬁzym deda=y [8-45]

/ d“-/:/‘ *dod /; ./ el [8-46)
———— 2 A — [ ~———— 2 = -4
J EI uye xkag J " Y
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After each integration the constant of integration must be found hefore proceeding to the
next. In the case of the first two integrations the constants are furnished by the boundary
conditions, and the value of y to be used in Equation [8-43] has already been adjusted so that
the first two conatants of integration will be zero. Thus V and # are zero for 2 = 0 and
z=L.

The last equation of the above set may be written

dz da da v
dede ~ [—— luyde | = —— rg g7
Uf £l ./:/;‘yw fKAGf”y ”] 2 (8-47]

where it may be seen that, if all the constants of integration were zero, and, if the starting

mode shape were the true mode shape, the curve finally obtained hy earrying out these inte-
grations would differ from the starting curve only by the scale factor - Hence the nat-
ural frequency could be found directly from this scale factor. @

As long as KA@ and EJ remain finite, all integrations may be cairied out starting with
zero values at = 0. When the final integrations on the left side of Equation [8-47] are car-

ried out, the two curves plotted with zero value at @ = 0 may be combined to give & curve for

y
—
)

f pyde

\\_

dz
KAG

@da:l_

Jf-

dzdz

J

A
m2
™~

Figure 3-12 —~ Combining of Components of Bending and Sheuring Deflection

First the ends of each curve are joined by straight lines. Then the ordinates measured ver-
tically from the curve to the inclined line are combined. The frequency is found by comparing
the magnitude of this final curve with the similar curve obtained by joining the ends of the
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curve Y, (o) used as a basis for the uy curve. This curve was previously obtained from the
curve Y, (#) by a parallel shift and rotation of the X-axis. To find the normal mode pattern,

however, it is still necessary to find the true base of the Y curve. Asin deriving the

7]

ocurve Y/’ (2), this is again accomplished by a parallel shift of the X-axis and a rotation about
a point whose abscissa is that of the centroid of the area under the y curve. The true base
must again be such as to make

1 L L X
—;f pydz and f ‘I ny dede
@ Yo o %o

If the curve Y, '’ (z) is the true normal mode curve, the process will yield a 2 curve

both equal to zero,

differing from Y/’ only in scale. It can be proven®! that the Stodola process is cof\’/ergent
to the lowest mode; that is, that, if the whole procedure is repeated using the finally obtained
Y curve as a second starting curve, the second calculation will come closer to giving the same
shape than previously. It can be shown also that no matter what shape is initially assumsd,
unless it coincides exactly with the shape of a higher mode, the process will eventually con-
verge to the 2-node mode shape.

If the Stodola method as previously outlined is applied to the calculation of the second
mode, the process will in general convergs to the {irst mode. To make it converge to the sec-
ond imode it is necessary to make use of the orthogonality relations applicable to normal

modes. 3! As a result of this property, if Y, and ¥, are two of the normal mode shapes,
then

IR 4 Y’ de =0
if ¢ j.

An arbitrarily assumed mode pattern can, in general, be resolved into a series of nor-
mal funciions. This

10
A~

ad

Y (-’B) = 2 (li Y‘ (ﬁ) [3'48]

i=1

For the Stodola ptocess to converge to the second mode the first mode component in the as-
sumed function ¥ (#) must be eliminated.

It has been shown that for a true normal mode the Stodola process gives a resuit that

' Y, (2)
differs from the initial pattern only in scale; that is, it gives for ¥, (2) the value i .
2
@

Once the first mode shape is known, the curve assumed for the second mode can be corrected
for any first-mode component present by subtracting the function
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L
](" pYY de
x Y, (#)

L
£ uY? dz

It is seen that this quantity is equal to @, ¥, () of the summation in Equation [8-48]

since
L L
fo uYYldzzfo p(ay ¥y +a, Y, +etc) ¥, de {8-49]
By the orthogonality relation all terms of the integration vanish except
‘e ¥2d
a »
fo S S |

For further discussion of the Stodola method as applied to this problem, see Reference 3-6.

4. GENERAL

This chapter presents only the essential elements of the methods used so far at the
David Taylor Model Basin to calculate the natural frequencies and normal modes of vibration
of a hull. A recent TMB report3!! goes much further into the mathematical details of such
calculations than is feasible in a book dealing with the general subject of ship vibration,
This reference alsc goes into the extension of the beam theory to the cases in which part of
the mass contributing to the displacement of the ship is considered flexibly attached to the
hull girder. This question is also discussed in Chapters 5 and 13 of this book.
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CHAPTER 4
BEAM THEORY OF STEADY-STATE SHIP VIBRATION

A. INTRODUCTION

As in the previous chapter the treatment of hulls given here iz based on beam theory.
However, at this point, account must be taken of the limitations of this theory. This leads
to what is called here the ‘‘rational’ theory of ship vibration. The methods presented in this
chapter are thus essentially heuristic and ‘‘quasi-mathematical.”’

When there is applied to the ideal Euler-Bernoulli beam (otherwise free in space) an
external forcing function, the differential equation applicable to the system is

4 2
g 2 +u37"’ - P(2,9) [4-1]

ot at

where P (2, ¢) is the driving force in the Y-direction per unit length of the beam. It is to be
noted that in general P varies both with distance from the left end of the beam and with tims,
When the forcing function is specified mathematically particular solutions of Equation [4-1]
can be given, as shown in References 4-1 and 4-2.

For the nonuniform Euler-Bernoulli beam the differential equation has the more general
form

2 2, 2
9 (EI (2) 9—% )+y(z 3y = P(&,t) [4-2]
ow? o at?

where E7 and p now vary with 2. Even if the ship were of such construction that £/ («) and
u(#) could be expressed mathematically it can be appreciated that Equation {4-2] would have
severe limitations in indicating the manner in which the hull would vibrate under a given ex-
citing force. In the first place, the inertia effect of the surrounding water is accounted for
gimply by the added mass component of yu; second, there is no dissipation or damping term in
the equation; and third, there is no provision for deflection due to shearing. Last, but not
least, there is nothing to indicale that the equstion is not equally valid regardless of the fre-
quency of the driving force. Thus, whether the driving force has a frequency of 1 cps or
10,000 cps, the patterns of vibratory response should be expected to be beamlike.

On the basis of experience the rational theory must recognize both the beantlike be-
havior of ships in their lower modes of vibration and the sharp departure from beamlike re-
sponse characteristics in the higher modes. The beam theory itself cannot automatically do
this. Although approaches to the vibration analysis of ships other than the beam theory ap-
proach have been suggested (see example in Reference 4-8), one of the chiaf aima in this

4-1




book is to show that the beam theory can be combined with past experience to yield a pre-

diction of hull vibratory response characteristics of practical use to both the ship designer
and the ship vibration reseorch worker. While a flexural mode of a hull may be excited by

either a force or a moment, only the lateral force is considered at this stage.

In the first method of calculating forced vibration to be discussed, namely, the digital
method, the ship is spproximated by a lumpud system exactly as in the digital method of cal-
culating normal modes, but now a simple harmonic driving force is applied at one station and
damping forces must be introduced. These damping forces limit the amplitude calculated at
resonance, that is, when the driving frequency coincides with one of the natural frequencies
of the system. The precise nature of the damping process in hull vibration is not well under-
stood at the present time. The subject is discussed at some length in Chapter 8. Here it is
only pointed out that in those calculations presented in this book which involve damping, the
damping action is visualized as produced by equivalent viscous dampers distributed along the
hull, These produce forces opposing the velocity at each point and proportional to that ve-
locity. This involves the use of distributed damping constants ¢ having the dimensions of
force per unit length per unit velocity, and lumped damping constants C having the dimensions
of force per unit velocity. In this book the damping constant is also usually assumed to be of

¢
the Rayleigh type, that is, viscous and proportional to mass (which makes — a constant).
However, there is also used in places a frequency-dependent damping defined by the relation

c
— = constant,
K9 The importance of damping in the attempt to calculate forced vibration of hulls cannot
be overemphasized since it is the damping alone that limits the amplitude of a mass-elastic
system when resonance is encountered. This subject is discussed in more detail in Chapter
8 where it is pointed out that experience has shown the utility of introducing equivalent vis-
cous damping constants based on the rate of energy dissipation even when the actual damping
process is believed to be much more complicated.

A characteristic of the forced vibration of mass-elastic systems in general is that, if
the driving frequency is steadily increased, the forced response exhibits a succession of res-
onance pesks which indicate that the driving frequency coincides with one of the natural fre-
quencies of the system. The minimum points between these peaks are designated as points
of antiresonance. Although the response at the driving point passes through a minimum at an
antiresonance, this is not necessarily true of the response at all points of the system. In
fact, at certain points, there may be a peak of response at the antiresonance frequency.

Just as in the case of free vibrations the differential equations for forced vibration of
ships cannot be integrated diractly, and indirect methods must be devised. The methods dis-
cussed in this chapter are the finite difference or digital method, the analog method, and the
normal mode method. For further details of the theory of beam vibration other than discussed
in this chapter, the reader should see Reference 4-4.
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B. DIGITAL METHOD

The digital method of calculating forced vibration is illustrated here for the case of
vertical flexural vibration of the hull with no torsion involved. The lumped system to be used
for a 20-section 'umping is shown in Figure 4-1, In this case, in addition to the elastic mem-
ber with the rigidities E/ and KAG connecting the mass elements, there is also inserted an
idealized dashpot between each element and a frame of reference fixed in space. The lumped
damping constant is C = cAz and, in addition, there is an external force P ¢/®* acting on

one of the elements.
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Figure 4-1 — Illustration of Lumped Approximation to & Ship for
Digital Calculation of Forced Vibration

In this problem the digital calculation uses rotating time vectors for all time varying
quantities. These vectors are resolved into real and imaginary components on an Argand
diagram as discussed in Appendix 2 of Reference 4-3. The driving force vector is used as
the reference vector for phase, and this is taken as falling instantaneously on the real axis.
The calculation requires evaluating the real and imaginary components of V, M, y, and y at
all stations to give the steady-state forced response pattern of the hull,

In real form the difference equations are the same as for the normal mode calculation
with the exception of the first (the shear force equation). The latter equations contain the

additional damping and driving force terms. Thus:

2
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In the rotating time-vector notation there must now be substituted for ¥ the complex

VAe

Ay = yAz -

KAG

[4- 6]

value V + jV* and similarly for M, M + jH‘, ete. If these substitutions are made in Equa-
tions [4-8] through [4-6], and the differences in the real and imaginary parts are separated

out, there results the following set of eight difference equations:

The boundary conditions are

The linearity of the equations makes it convenient to set the driving force amplitude
P, equal to unity. Hence P, will equal one at the driving point and zero at all other points.
Various schemes of coding this problem for a digital computer may be used as in the normal

mode problem.

and y". One scheme is to solve the complete set of equations successively with each of the
following sets of initial values and then to find a linear combination of these solutions which
makes V, V', M, and ¥* all zero at the right end of the system (Station 20).

AV = pAzyw? + Coy’ + P,

AV’ = pAzy’ w? - Coy

AM =VAz -1, Avye?

A =V Az -1,y o

A y Az
AT
Av = i Az
)
VAz
V™Y~ %aa
N V’Az

KAG

. . 2=0
V=V =M=M =0for{
&=

(4- ¥

[4- 8]
[4- 9]

[4-10]

[4-11]

[4-12]

[4-13]

[(4-14]

Here there are four unknown quantities at Station 0 (¢ = 0), namely, y, y’, y

The solution will give the real and imaginary components of V, ¥, y, and y at all

stations. The magnitudes (absolute values) will be the square root of the sum of the squares
imaginary component

of the real and imaginary components, and the arctan (

4-4

real component

) will give the
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phase angle by which the vector representing the variable in question leads the driving force
vector. If the two vectors are in phase the imaginary component will be zero.

y|¥'{ vy
1{o0j0]o0
0f 1[0l 0
of o 1]o0
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1f the damping values used are not too high, the calculation will show a relatively
large amplitude when the frequency of the driving force is set equal to or near to one of the
natural frequencies of the hull, as computed in the normal mode calculation. Furthermore, if
the amplitude at this frequency is plotted against @, the pattern obtained will be very close
to that obtained in the normal mode calculation. Further details of the calculation of forced
vibration by the digital method are given in Reference 4-5.

C. ANALOG METHOD

'The analog method of calculating the forced vibratory response of a hull on the basis of
beam theory differs from that outlined in Chapter 3 for computing the normal modes only in
regard to the representation of damping. The method for finding normal modes by means of
the analog was based on setting up forced oscillations in the circuit since steady-state con-
ditions furnish a more practicel method of elestrical messurement than decaying oscillations.
When the analog is to be used to predict forced vibration per se, however, not only the steady-
state response patterns are important, but also the magnitudes of the voltages developed for
given input currents which yield the forced amplitude of the mechanical system.

Praciical difficulties are encountered here in the use of & network analyzer for there
is always undesired dissipation in the inductances, capacitances, and transformers which
are treated mathematicully as dissipationless. Hence, to set up circuits that ave strictly
analogous to the mechanical systems defined by fixed parameters, it is necessary to take
these dissipation effects into account. However, these precautions in the use of the network
analyzer apply principally to predicting the resonant amplitudes of the hull under given ex-
citing forces, For off-resonance frequencies the forced response patterns are determined
chiefly by the elastic and inertia parameters. (See Reference +%8.)

Figure 4-2 shows one section of a circuit analogous to a hull subjected to a simpla
harmonic driving force P, ei®®, This differs from the section of the circuit previously con-
sidered for the normal mode calculation (Figure 8-7) in two essential respects. First, a

resiatance is inserted between the shear line and the ground to allow for the mechanical

CAZ
damping. In the ideal circuit shown here no allowance is made for the dissipation inherent in
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Figure 4-2 — One Section of an Electrical Circuit Anelogous to a Ship
Subjected to a Simple Harmonic Exciting Force

the inductances, capacitances, and transformers (as discussed in Reference 4-6). Second,
there is injected into the shear line at this section a current / equal to the mechanical force
Poej‘”'. The scaling factors applied in converting from mechanical to electrical values are
not considered here. This current injection device is also an idealization since it has the
property to maintain the current loef“" going into the shear line at this point regardless of the
current floewing in the shear lino due to any other sources of excitation present.

Of the four finite difference equations involved in the forced vibration calculations
Equations [4-3] through [4-6], the only one that differs from the equations involved in the free
vibration calculation is Equation [4-8] which involves the driving force P (¢) and the damping

torm %; . Henco, to show that the circuit of Figure 4-2 is analogous to the ship in forced

vibration (just as the circuit of Figure 8-7 is analogous to the ship in free vibration), it is
necessary only to show that the Kirchhoff equation for currents in the shear line is identical
with Equation [4-3]. Equation [3-38] involves three currents, namely, the currents flowing
into and out of the section (V, and V, , ,, respectively) and the curreni flowing from the shear
line to ground through the condenser (~ ;1_A:cw2y). In Figure 4-2 there are two additional cur-
rents, [ = Poej“” = P (¢) and the current through the resistance -—1——- = —1- . The latter is

cAe :
equal G ths voltage y, divided by the resistance, hence equal to Cy. Instead of Equation

[3-88], the current equation for Figure 4-2 becomes

V. =~ ubaoly + C % “P@+V,,, [4-15]
which is identical with Equation [4-1] since
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9y =~ %y and AV =V, -7V,
92

It must be emphasized that when the network analyzer is used to compute the forced
response of a continuous system, such as a hull, the circuit setup is actually the analog of a
lumped approximation to the hull. Hence, if a 20-section breakdown of the hull is used, the
circuit will in reality have only 20 degrees of freedom. Thus, while the off-resonance forced
response may agree very well with digital calculations, it is subject to the same limitations
as the digital calculations in giving a less and less realistic picture of the hull behavior as
the driving frequency is raised above the frequency range of the first few normal modes of
flexural vibration of the hull. The practical upper limit has been found to be the sixth vertical
mode for hulls of usual length to depth ratios, as indicated in the following section.

D. NORMA.. MODE METHOD

The normal mode method of calculating the forced vibratory response of hulls presented
here is quasi-mathematical in that it combines only a limited number of terms of a series that
is not converging rapidly in the mathematical sense. The justification is that it has been
found by experience that the higher terms of the series are insignificant in the physical sense.
As a matter of fact, it can readily be shown that in many cases the terms that are discarded
are mathematically larger than the terms that are included.

First it is assumed (on the basis of experience only) that under a simple harmonic
driving force the hull can respond in only a limited number of normal mode components. As a
guide to the number of normal mode components to be used in foreed vibration calculations,
the formula originally proposed by Baier and Ormondroyd*7? for the number of significant ve=-
tical modes of a hull ¥’ may be used as a guide. Assume

L
N = —_ £
D B

©w | en

where the lotters L, D, and B refer to ship length, depth, and beam, respectively. The ratio
of the number of significant horizontal modes to the number of significant vertical modes may
be taker..as 9/8, and of torsional to vertical as 1/2.

While the method involves the selection of the number of terms to be used in the series
on the basis of experience, it still retains certain important properties of the normal modes
which are found in the theoretical analysis of ideal systems.

Three properties of the normal modes of ideal beams are of particular significance
(see Reference 4-8, page 6), namely, the properties of orthogonsality, influence function,
and reciprocity.

Orthogonality of mathematical functions in general is discussed in Reference 4-9, and
if a series of functions of a single variable possess this property within certain limits of
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this variable, then the integral of the product of any two is zero. Thus

b
[ $i(2) ¢ (2) dz=0

if 7 # j. In the case of the ideal beam the orthogonality property involves the ‘‘weighting
functicn® p () and is

fh@ %@ Y@ damo

HER XS

When a beam posseases this property its kinetic and potential energies can be ex-
pressed in terms of vibrations in its normal modes, and, in fact, as shown by Rayleigh, 410
the kinetic and potential energies of mass-elastic gystems ir general can be expressed in

terms of the aquares of generalized coordinates each involving the deformation or velocity
in one of the normal modes. Thus

1 .
K. Eo= = 2 My 4} [4-16]
and
1
P.E.= = _5_ k; g2 [4-17]

where K. E. is the kinetic energy,
P. E. is the potential energy,
g; is the generalized velocity in the ith normal mode,
9;  1is the generalized displacement in the ¢th normal mode,
M; is ageneralized mass applicable to the {th normal mode, and
k, is a generalized elastic constant applicable to the ith normal mode.

A more precise dafinition of these terms is not essential here.

The normal mode influence relation states that the normal mode pattern determines the

influence of the point of application of a simple harmonic driving force on the magnitude of
the amplitude excited in that mode. Thus, a given force will not excite a mode which has a
nodal point at its point of application, and will excite the maximum amplitude in this mode
when applicd at the point at which the normal mode pattern is a maximum.

The reciprocity relation implies that, if a simple harmonic driving force applied at a
point @, of the ideal beam produces an emplituda of vibration y,  at 2, then

Yes ™ Ysr [4-18]
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In other words, the same amplitude will be measured if the points of application of the driving
force and measurement of response are interchanged.

Without further discussion of these very important properties of ideal beams it is merely
emphasized here that the great simplicity of dealing with mass elastic systemc in terms of
normal modes was demonstrated by Rayleigh in his *‘Theory of Sound.”*10 It has been shown
in recent years that the free-free nonuniform beam with shearing and bending flexibility, a
close relative of the Timoshenko beam, retains these properties (see References 4-8 and 4-11).

In the case of the ship, which retains beamlike characteristics only within & limited
frequency range, the use of theso concepts, the use of & limited number of terms in normal
mode response series summation, and the use of Rayleigh damping is largely intuitive, This,
however, does not impair its utility. Regardless of how the normal modes of the hull are de-
rived, if only flexural modes of vibration are involved, they may be used to compute the re-
sponse to a simple harmonic driving force by means of the equation derived from the beam theory

i=f" PY, (zy) Y, (2) sin (w? - ¢)
y(2,0) = 2 = L4151

=1 2‘/ 0y 21? Jow\?2 L 2
['(z) ] (i) fof"’f‘“"’“

where the force P sin wt is acting at z, and N’ is the number of significant normal modes,
This equation is discussed in detail in Reference 4-8.

The independent behavior of the normal modes of mass elastic systems permits the use
of the convenient concept of effective systems of one degree of freedom, each representing a
normal mode. There are various ways of defining such effective systems, They may be de-
fined with respect to a particular driving point, or without this restriction. When the hull is
represented by an equivalent lumped system, ite effective mass at a driving point 4 in the ith
normal mode is

smY?
Md' =

4

” [4-20]
Y5

where Y, is the amplitude at any station in the ¢th normal mode pattern, Y, is the normal
node amplitude at the driving point, and the summation includes the total number of lumps.
The effective spring constaut of the one-degreo system is given by the equation

Kg;= Mgy 0 [4-21]
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and the effective damping conatant is given for Rayleigh damping by the equation

€ 4; = (constant) x Mdi [4-22]

The effective system can thus be visualized as the familiar one-degree-of-freedom sys-
tem usually considered in vibration theory and shown in Figure 4-3.

P sin 0t — My Figure 4-8 — Effective System of One Degree

of Freedom Representing a Hull in One
of Its Normal Modes

NN

If each normal mode is thus treated, the component of driving point amplitude in each mode is
found from the familiar equation for the one-Gegree system:

v - P sin (w? ~ @)
ﬂ_Mm2)2+02 »?

[4-23]

where the effective val‘ues are used in each case for ¥, ¥, and C. To obtain the net response
the component of response at the driving point is multiplied by its normal mode function, and
the patterns are combined with account taken of the algebraic signs. The result will be the
same as given by Equation [4-19] if the same number of terms is used in both cases.

E. METHOD OF MECHANICAL IMPEDANCE

The term impedance, well known in oiectrical engineering, has become familiar in me-
chanical vibration analysis only recently. It is most commonly used in connection with the
rotating vector to represent a steady-state vibratory component. Although a mechanical im-
pedance may be dofined on the basis of either displacement amplitude or valacity amplitude,
the American Standards Association’s Committee on mechanical shock and vibration prefers
the latter, This stems from the fact that this committee waz formerly affiliated with the ASA
Committee on Acoustics. In the latter field the acoustic impedance concept has been in wide
use for some time,

When the mechanical impedance is based on displacement it is the ratio of the ampli-
tude of the driving force to the displacement amplitude at the driving point. Thus
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In this equation all three symbols represent rotating time vectors and are complex numbers.
For the system of Figure 4-3 it then is found, if the subscripts are omitted, that

Z=K~Mo?+julC [4-24]

Since, in complex notation, the vibratory velocity amplitude is obtained by multiplying the
displacement amplitude by jw, it follows that the mechanical impedance based on velocity
can be obtained from the mechanical impedance based on the displacement by dividing by
jw. Thus

K
Z,<C+joM-j — {4-25]
@

The similarity between this and the well-known expression for the electric impedance of a
circuit having resistance R, inductance L, and capacitance C in series, namely,

Z=R+jal - —— [4-26]
ol
is noteworthy.
If the ship actually possessed only N “normal modes, in each of which its behavior
conformed with the beam theory, the displacement impedance in each mode referred to the

driving point could be found by computing

Zg =Ky~ My; 0 +jly [4-27]
To find the net impedance, the impedances irn thé individual modes must be combined recip-

rocally since the net amplitude is the vector sum of the amplitudes in the individual modes.

Hence

Zd = [4'28]

The awkwardness of dealing with the reciprocals of complex quantities can be cir-
cumvented by resorting to the concept of mechanical admittance which is the reciprocal of

mechanical impedance. Thus

4-11
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1 ¢
Ae — o — -
7 "7 [4-20)

and

Y=P4d [4-30]

The admittances in the various modes combine by direct addition to give the net driving point
admittance; that is,

4-31
4= 34, e

It is a common observation that, when the blade frequency of the propulsion device is
well above the range of significant hull mode frequencies, the forced vibration of the hull is
conecentrated in the stern of the.ship, &nd settles down to a fairly constant level regardiess
of the speed, unless a local resonance of some structure in the stern is encountered.

From Equation [4-24] it can be seen that at high frequencies, the inertizal component
is the major component of impedance shen the damping is of the Rayleightype. If the elastic

and damping components are then neglected, the admittance becomes and the net
admittance has the form My;0
1 1 1
4y = 2—-— = — E-—— [4-82]

This indicates that under forces increasing as the square of the frequency, the stern amplitude
will remain constant at shaft speeds ahove the range of significant hull criticals.

On the basis of this reasoning, formulas have been proposed for estimating stern ampli-
tudes for given driving forces when the prescribed conditions are met; see Reference 4-8.
These formulas use empirical constants and the ship’s displacement. It is hoped that data
accumulated in the future will indicate to what extent a single constant can be used for ships
of widely varying types. The formulas are as follows:

For vertical vibration

Po

Y =~ [4'33]
3.4 x 1078 x D x (cpm)?

where Y is the single amplitude at stern in mils,

P, is the amplitude of the driving force in lb,
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D is the displacement of ship in long tons, and
cpm is the blade frequency in cycles per minute.

For horizontal vibration

[

B

Y= [4-34]
1.9 x 107 x D x (cpm)?

For torsional vibration

T,

é = [4-85]
0.46 x I x (cpm)?

where ¢  is the single amplitude at the stern in radians,
is the blade frequency driving torque in lb-ft, (single amplitude),

I  is the mass moment of inertia of entire ship about longitudinal axis through its
c.g. (with no allowance for added mass) in ton-sec2-ft, and

cpm is the blade frequency in cycles per minute.

It is seen that in all three cases, if the driving force increases as the =quare of the frequency,
the formula gives a constant amplitude. These formulas are readily converted to formulas for
vibratory velocities in lieu of vibratory displacements,
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CHAPTER 5
BEAM THEORY OF TRANSIENT SHIP VIBRATION

A. INTRODUCTION

Although the steady-state vibration of ships under normal operating conditions is a
very important consideration in naval architocture, it is clear that under rough sea conditions
much more severe vibrations of a transient nature are encountered. If quasi-mathematical
methods must be resorted to in dealing with steady-state ship vibration, this applies to a
much greater degree in dealing with its transient vibrations. It is to be noted at once that
the transient vibrations of ships are occasionally of such large amplitude as to deform the
hull girder beyond the linear range within which the beam theory of hull vibration is con-
sidered to have a fair dogree of validity.

Qbviously, just as in the case of steady-state vibration, the transient vibrations of
ships depend on both the exciting forces and the dynamical properties or response charac-
teristics of the hull. The forces, however, in this case are quite complex and cannct be
expressed in such simple mathematical terms as can the steady-state forces.

Much progress has been made in recent years in correlating the stress variations and
motions encountered in ships in & seaway with the statistical data available on ocean waves;
see Reference 5-1. It is merely pointed out here that useful correlations have been discovercd
between the statistical distributions of wave heights encountered at sea and the distributiouns
of motions and stresses in hulis, All that is attempted in this chapter is to indicate that,
within the linear range of deflections, the rational theory applied to steady-state forced vi-
bration in Chapter 4 should also be applicable to transient vibrations. -The linear range is
even lower than the range of deflections within which hull girder stresses reach the yield
noint of shipbuilding steel, since buckling of members in compression will ordinarily occur
before this point is reached,

The value of the consideration here of the lransient response of hulls to low magnitude
excitation is that it provides the naval architect with insight into the processes that take
place before damage actually occurs under siamming conditions in a seaway. Furthermore,
as far as possible damage to local structures and to equipment installed in the ship is con-
cerned, it points the way to avoid some of the alterations that frequently have to be made
after the builders’ trials of a ship. There is no implication intended here that, up to this
time (1960), experimental verification has been obtained of the adequacy of the treatment of
the respoase of ship hulls to transient loading by the rational beam theory advocated in this
book, or in fact by any other theory. This must await the vordict of investigationsa still
underway. Although it is shown in this chepter how the same general methods applied in
Chapter 4 to steady-state vibration are extended to the transient case, the presentation is

only analytical and does not encompass a practical evaluation of these methods.
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For simplicity and emphasis on basic principles, the discussion is restricted to flexural vi-
brations of the hull,

B. NORMAL MODE METHOD

The normal mode method of dealing with the transient response of ship hulls presented
here ig discussed in more detail in Reference 5-2. Basically, it rests on the assumption that
in its flexural response, even when account is taken of its shearing flexibility and damping
characteristics, the hull satisfies the conditions of a Rayleigh system. This means that the
complex vibrations excited by transient loads can be analyzed by considering the separate re-
sponse in each of its normal modes in the general scheme applied to mass-elastic systems by
Rayleigh,5-2

The system comprising the hull and the surrounding water is idealized as an unre-

strained beam loaded by an arbitrary forcing function and governed by ths following set of
partial differential equations:

92 dy oV
PR AR AR TP [5-1]
92 at e :
oM
Vo= — 5-2
™ [5-2]
dy
&N 5-3
dz Brey (6-3]
V=~ KAG B’ [5-4]
d
u=E] 2L [5-5]
ax

where ¢ is the viscous damping force per unit length per unit velocity,

P(=,?) is the external forcing function giving load per unit length varying arbitrarily
with respect to both z and ¢, and

B’  is the component of slope of elastic line due to sheuaring only.
The other quantities have been defined previously.

As indicated previously, the modes of free vibrations of such a system (when ¢ = 0,
and P(z, ¢) = 0) can be found only by graphical, finite difference, or analog methods if £7

and XAQ vary with @ Nevertheless, it is shown in Reference 5-4 that the normal modes of
such a system retain the property of orthogonality; that is,
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L
fo rY; (2) Y (2) d2 =0 [5-81.

where 1 ¢ 5.

It is shown in References 5-2 and 5-4 that, in accordance with the orthogonality rela-
tion, the dynamical hehavior of this system cau be treatad in terms of geries of responses in
each of its normal modes.

1t is also shown in Reference 5-2 that eve% with damping (o # 0), if it is of the Rayleigh

type, that ig, viscous and proportional to mass (— = oonstant.) , the response to the arbi-
"
teary forcing function P(2,¢) can still be treated in a series of normal mode responses.

With no pretense at mathematical rigor it has been assumed, on the basis of practical
experience, that under transient loading the hull will respond in only a limited number of
beamlike modes. Here it is presupposed that these modes have already been determined by
methods outlined in Chapter 3.

As shown in Chapter 4, in the dynamics of the ideal beam system representing the
hull, each normal mode of vibration is treated as a vibratory system of a single degree of
freedom having definite values of mass, spring constant, and viscous damping constant
suitably derived.

Such systems have been derived and discussed on the basis of two slightly different
concepts which it is well to clarify at this point.

In one scheme (illustrated on page 21 of Reference 5-2), a generalized coordinate
g, (%), with the dimension of length, is used to represent the displacement of the system in
its £th normal mode. The motion of the system in that mode is then given by multiplying
g;(?) by the normal mode function where the latter is considered dimensionless (that is,
merely a pattern of relative displacements at different distances from the left end of the sys-
tem). Then the response of the system is given in terms of its normal modes by the series
relation

v =3 40 @ (5-7)

where N’ is the number of significant normal modes. The generalized force ¢, (2), which in

this case alsv has the dimension of force, is defined by tiie rviusici

Qm=fpmnnMdz [5-5]

In this schome there are associated with each normal mode generaiized or effective
masses, damping, and spring constants defined by the relations
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M= fo“ u(®) Y2 (2) de [5-9]
C,= {)L c(a) Y2 (2) do [5-10]
and
K=ol M, [5-11]

where w; is the undamped natural frequency associated with the ¢th normal mode.

The other scheme, based on the same general theory, is more useful. Here the forcing
function is concentrated at one point (called the driving point d). In this case the behavior
of the system is derived by visualizing each normal mode of the system as presenting to the
driving force at d an effective ine:tia, spring constant, and damping constant, all based not
only on the normal mode pattern of each mode but also on the location of the driving point
itself,

Thus, if the external force acting al & is F (¢), then

@g;(2) = F () Y, (=) [5-12]
L 2
Jr P(:; Y; (3; oz
My = > [5-18)
Yo ()

L 2

[ e(2) Y7 (2) dw
Cyi = — [5-14]
Y? (2)

and

Ky = "’izM'

i

[5-15]

It then results that the response in each normal mode is governed by the same equation
as the vibratory system of one degree of freedom shown in Figure 3-1; that is,

Myi¥ar+ Cai¥ai*+ K ¥a; = Qa0 [5-16]

It is shown in numerous text books (e.g., Reference §-5) that when an external force
starts to act on such a system, if at rest at ¢=0, the response at time ¢ is given by the

equaiion
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Qd,(r) -(Cpu /oM (t - T)
¥4:(0) = f gin A, (¢-7)dr [5-17]

)\ My

where

Cai \2
pmyfor - H(5) w10
di

Hence the genersl response of the system is given by the equation
n
@)= 3 yy )Y, () [5-19]

If a single impulse # is applied at the driving point &, the same theory yields the
equation for the response in the ¢ th normal mode:

HY (2)) -Cq/2My,
 (£) = ————- ¢ sin A, ¢ [5-20]
As in the steady-state problem, tle summatica is to be carried out only for the number
of modes for which the beam theory is considered valid. Although the normal mode patterns
aro treated here as continuous functions, the same basic equations may be applied when the

normal medes have been computod by the digital method and are available only in tabular form.

In this case summations are substituted for integrations in evaluating the effeciive parameters.

Thus

My = ————— [5-21]

where the subscript # indicates the X-coordinate of an individual lumped mass.

1t must be remembered that this transient analysis is based on the treatment of the hull
as a beam free in space. Such a beam has two rigid body modes of zero frequency, namely,
the heaving mode and the pitching mode. 1f the components in these modes are included in the
series summation, the calculation will not be realistic if carried out over an interval of time
long enough for large rigid body rotations to develop. In the actual ship case, heaving and
pitching are controlled by the buoyancy of the water and the effect of gravity, and the cor-
responding natural periods are finite. In practical transient problems, the principal vibrations

have been executed by the hull before appreciable rigid body motions have had time to build up.
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C. DIGITAL METHOD

The digital method of treating the hull transient response problem requires no prior
computation of the normal modes. It uses finite differences in both time and space, and, in
the time domain, requires the establishment of stability criteria which will ensure that the
time steps are small enough.

The process, of course, involves the same basic concepts of the beamlike behavior of
the hull as discussed previously. As elsewhere in this book, the hull is treated here as a
beam free in space with a distributed mass added to allow for the inertia effect of the sur-
rounding water. Distributed-viscous damping is also included. The physical picture of the
process is as follows.

The hull is approximated by the lumped system shown in Figure §-1 as having 20
sections. As in the steady-state forced vibration problem, an ideal viscous damper is in-
serted between each lumped mass and a reference frame fixed in space.

Y El
KAG
—F 3— X
—1 Az I"-
pA
A o) A ==
0 20

Figure 5-1 — Lumped System Used in Treating the Transient Response
of the Hull by the Digital Method

At the instant when the transient load is applied, all stations of the hull have
specified displacoments and velocities relative to a set of axes fixed in space. In general,
both these displacements and velocities will be zero. However, there will be accelerations,
since external forces are now acting. The forces which actually may be varying continually
with reapect to time are considered as held at fixed values for a short interval of time, and
then as changing instantaneously to another value, and so on. It is then possible, by the use —
of the beam equations and the boundary conditions, to compute the acceleration at all stations ¢
at ¢ = 0. If then a step is taken in time during which these accelerations are assumed con-
stant, the velocities at all points can be calculated, and, a short time later, the displacements
due to these velocities can be calculated. Thus, as long as the external forces all along the
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hull are known at any instant of time, it is poasible to repeat this cycle of operations indef-
initely and thus to compute displacement at all points of the hull as they vary in time. This
also involves computing the elastic deformations, and so the shearing streases and bending
moments are also found in the process,

The mathematical problem of establishing the criteria for stability of the finite dif-
ference calculation involved here is discussed in Reference 5-6. The stability criteria

given there are:

At << —

and
ul,, (Az)?

1,5 (KAG) + p(ET) +0.25 & (A2)? (KAG)

(A%)? ¢

The finite difference equations in this case involve both differences with respect to a
and differences with respect to & The former are the same as in the forced vibration problem
excaept that simple harmonic motions and complex number notation are not required here. In
Figure 5-2 a section of the hull of length A, the distance between stations indicated in Fig-
ure 5-1, is shown uncompressed (not lumped at one point) so that its elastic properties may

e ax—e]

1 |
v lIF lv+4v
//I
Y/
/ 1.7/
o / . “\
o/ « A7 7 J X
+M 7 11/ 1 M+ aM
FARTaty
Y
[ /]
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%

Figure 5-2 — Free-Body Diagram of an Element of a Ship of Length Az Subject 1o
Forces and Moments Accompanying Transient Vibrations
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be visualized. Here its mass could be conceived as concentrated at the midspan. It must be
emphasized that in any scheme of representation of the.hull as an equivalent lumped system,
for the purpose of setting up difference equations for a digital treatment, there will be con-
flicting requirements in the achematic representation. It is not attempted here to indicate the
notation which will yield the maximum accuracy for a given number of sections. Accordingly,
the equations in the differences with respect to @ are given in simplified form as follows:

AV =~ pAgy - Cy + F (5-22]
AM =VAz +1,, Azy {5-23]
MAz

Ay = —— 5-24
Y= [5-24]

VAz
Ay = yAz - 5-25
y=v CAG [5-25]

It should be noted that in Equation [5-28] the term for rotary inertia is included, where-
as in Equation [5-2] it is neglected. Experience so far has shown that its inclusion makes
little difference in hull vibration calculations, and the demonstration of orthogonality of the
normal modes given in Reference §-4 was based on the set of equations in which the term
was omitted. Alsc, although it is not exploited here, it might also be noted that the finite
difference method is not restricted to Rayleigh damping but can be applied to both nonlinear
and linear systems.

The equations in the differences with respect to time (also in simplified form) are

Ays =Yy, A [5-26]
Ag/: = g}n A¢ [6-27]

It is necessary in this case to use both subscripts and superscripts. The former
indicate the space coordinate, the latter the time coordinate.

If the calculation starts from the rest condition, the boundary conditions are

At any instant of time there are sufficient equations to compute the accelerations at all points
along the beam. It is then poasible to compute the velocities and displacements at the next
time step, and thus to continue the process indefinitely.
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In this form of the problem, since the hull is considered free in space, no gravity or
buoyancy forces are acting. Although the calculation will give the net result of the com-
bination of rigid body motions and elastic deformations, the rigid body motions will not be
realistic if it is carried out for a total time comparable with the pitching or heaving periods
of the ship because there are no restoring forces to limit the rigid body displacements.

Obviously, many variations of this problem are possible. Thus the damping forces
need not be restricted to the Rayleigh type and gravitational and buoyancy effects can be
included. As given here the virtual mass is constant in time and thus does not vary with
amplitude, frequency, or mode shepe. While the method theoretically takes care of any elastic
wave effects that may exist in such a system, no use is made of the traveling wave concept
in setting up the problem.

Further discussion of this caleulation is given in References 5-6 and 5-7 and a sample

calculation is given in Appendix B.

D. ANALOG METHOD

Both the classical (cbnventional) and the mobility analogs discussed in Chapter 3 are
applicable to the hull transient response problem as computing devices. It camnot be said,
however, at this time that their potentialities in this field have been more than superficially ‘

explored. |
While the networks representing the inertial and elastic parameters of the hull con-

sidered a8 a beam are the same as for the steady-state vibration problem considered in
Chapter 4, the techniques of exciting the network and measuring its response are obviously
radically different.

Instead of a simple oscillator capable of injecting a sinusoidal current (in the mobility
analog) at any frequency desired within a given range, the transient problem requires a special
transient injection circuit which can deliver a current of the desired waveform regardless of
the impedance characteristics of the network. Thus it may be desired to inject a single half-
sine pulse, a rectangular pulse, a triangular pulse, or a current pulse that rises ‘‘instantly*’
to a given value and then decays exponentially. :

The measurement of transient response is also more complicated than in the steady-
state case, In that case, an oscillogram is not really necessary if both an indicating a-c
voltmeter and a phasemeter are available, In the transient case, a record must be made on
an oscillograph or on magnetic tape of the transient signal at a number of points along the
network.

In lieu of a single transient injection, it is often preferable to inject a series of input —
signals at intervals far enough apart to permit the transient to die out between intervals, if
these intervals are not too far apart they will permit direct observation of the response at any
point in the network on a cathode ray oscilloscope since the pattern will be retained both by

the screen and the retina.
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Further details of the use of the electrical analog for such calculations will be found
in Reference 5-8. Qbviously, at best, the analog predictions of hull response cannot be any
more reliable than the theory from which the analogous circuit is derived. Furthermore, the
analog may give a distorted picture of the true response as predicted by the mathematical
theory used. The advantages of the analog, however, in permitting the operator to vary the
inertia and stiffness parameters of the hull simply by turring dials make this method an
attractive one.

A recent proposal by Dr. N.H. Jasper considered by the David Taylor Model Basin is
the development of a transient computer for ship hulls which forecasts the stresses and vi-
brations encountered in seas of various wave heights. This is discussed in Reference 5-9.
The idea is to use an electrical network to represent the hull as a beam, but, instead of treat-
ing it as an ideal system free in space to which loads that are known with respect to time are
applied, the computer automatically applies the loads that are exerted by the sea, allowing
for the fact that the buoyancy and added mass effects vary with the rigid body motions of the
ship.
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CHAPTER 6

EFFECT OF LOCAL FLEXIBILITY ON THE VIBRATORY
CHARACTERISTICS OF A HULL

A. INTRODUCTION ~ THE ‘'SPRUNG MASS'’ EFFECT

While the chief aim in this book is to exploit the dynamics of a ship's hull when con-
sidered as a nonuniform free-free Timoshenko beam, it has been pointed out that in its vi-
bratory behavior, a ship departs from such a beam to an increasing extent as the driving
frequency rises. In the response to a steady-state simple harmonic driving force, this de-
parture frcm ideal beam behavior is evident in two respects of special significance to the
- navel architect: First, at high driving frequencies the amplitudes of vibration at points in the
hull lying in the same transverse plane (normal to the longitudinal axis of the ship) cease to
be the same. Second, when the blade frequency is higher than the frequency of (roughly) the
sixth vertical flexural mode, the propeller-excited vibration is usually concentrated at the
stern of the ship.

When the amplitudes of vertical vibration at points lying in the same transverse plane
are not the same the situation is ascribed colloquially to ‘*local flexibility.'® This local
flexibility, which at low frequencios may completely escape attention, may become so pro-
nounced at high frequencies as to fully control the vibratory response. For instance, if a
mechanical vibration generator were installed on the main deck of a ship in either the bow or
the stern, but in the middle of a panel of deck plating, it would be found that the lower flexural
modes of the hull could be readily excited, but that beyond a certain running speed (driving
frequency), the machine would be quite incapable of exciting the hull. This is true in spite
of the fact that its driving force amplitude increases as the square of the speed. If, however,
there are installed under this deck heavy shoring members that transmit the load to points on
the deck below, where there are either vertical bulkheads or sections of sheli plating, then the
range of frequencies over which the hull can be excited by the vibration generator is greatly
extended.

In dealing analytically with local flexibility, it has proven fruitful to consider the
vibratory characteristics of an ideal beam having one or more masses elastically attached to
it. The attached mass has been designated a ‘‘sprung mass’’ and thus the effect of local
floxibility is often spoken of as the ‘‘sprung mass effect.’” In this book the term sprung mass
is applied t. local elastic structures themselves; to relatively rigid assemblies that are
supported in the hull by means of resilient mountings; and {c-lieavy items of equipment that
are installed on foundations nominally rigid, but which in practice exhibit flexibility as a
consequence of the 1argé mass attached to them. A discussion of the properties of the ideal
beam with an attached sprung mass is given in Reference 6-1,

6-1
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B. LOCAL ELASTIC STRUCTURES

The chief structures falling in the category of local elastic structures are deck panels
(including plating and stiffeners supported only at the edges), longitudinal and transverse
bulkheads, panels of shell plating, stiffened shell plating panels supported only at the edges,
deck houses or supersteuctures, masts, docking keels or skegs, shaft struts, and control
surface members such as rudders or (in the case of submarines) diving planes.

The effect of these structures on the vibratory characteristics of the hull as a whole
depends chiefly on two properties, namely, the local natural frequency and the local effective
mass., Both properties require special consideration here., By the ‘‘local natural frequency’’
is meant the natural frequency that would be measured if the surrounding structure could not
move, The identification of local natural frequencies in practice is not always clear, and,
strictly speaking, any natural frequency observed may be considered as the [requency
associated with a mode of vibration of the entire hull system. Obviously, large local structures
cannot vibrate independently of the ship as a whole when the hull is unrestrained. When they
are excited by impaect, the frequency measured locally is then definitely a frequency of one
of the modes of vibration of the hull considered as a beam, with the local structure acting
as a sprung mass, If, however, the test is made in drydock, in which case the huli is re-
strained, the observed frequency may be a true local natural frequency.

The mass of the local structure, or rather, the ratio of the sprung mass to the mass of
the ship, furnishes a criterion of the distinction between a local natural frequency and the
local manifestation of a hull natural frequency. Unfortunately, the precise determination of
such a criterion is not feasible. Moreover, it is not the actual mass of the local strusture
but its effective mass that furnishes the criterion.

The concept of offective mass was discussed in Chapter 4 in connection with the
datermination of the driving point mechanical impedance of the hull. It will be recalled that,
fromn the impedance point of view, at any desired driving point the hull may be considered to
present an effoctive mass for each of its normal modes of vibration. This mass has such a
value that, if vibrating with a given amplitude at the frequency corresponding to the normal
mode in question, it will have the same kinetic energy as will the entire hull if vibrating in
this rormal mode with the same amplitude at this driving point. The same concepts are
applicable to the effective mass of the local structure. Although it is usually the fundamental
mode of vibration of the local structure that is of concern, this is not always the case. Where
more than one mode of vibration of the local structure is of concern, an effective mass must
be evaluated for each mode.

In tiia mode involved the local structure presents to the hull the effect of a sprung mass
attached at a selocted point. The point at which the equivalent sprung mass is considered
attached is somewhat arbitrary, and the value to be assigned to the effective mass dependa
on the point selected. In general, this point may be taken at the center of gravity of the local
structure. The normal mode pattern and also the local natural frequency for tlie local structure
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must be known approximately. The effoctive mass isthen such a mass that, if vibrating at
this frequency and with unit amplitude, it will have the same kinetic energy as the local
structure would have when vibrating in the mode in question with unit amplitude of the center
“* gravity; the ship itself is considered at rest (restrained) in both cases.

In general, the determination of the effective mass of the local structure would have
to be earried out by an approximate method in which its volume was broken down into a large
number of elements; to each element an amplitude was assigned in accordance with the known
or assumed normal mode pattern, Then

2
me = zmy [6 '1]

ycg

where m, is the effective mass of the local structure at its center of gravity for the
°& local mode of vibration in question,

m s tha mass of one of the elements into which the local structure is broken
down for the evaluation of effective mass,

y is the amplitude (in any arbitrary units) of the element m when the local
structure is vibrating in this mode, and

Yog is the amplitude in the same arbitrary units at the c.g. of the local structure
when vibrating in this mode.

Once the effective mass has been evaluated, the effective spring constant can be found from

the relation

[8-2]

where w, is the natural circular frequency of the local structure and &k, is the effective

e
spring constant to be associated with m, §
cg
Reference 6-2 discussos experiments conducted on a cargo ship in which the experi-

mental data indicated a considerable departure in the vibration characteristics of the hull
from those predicted by the beam theory. This reference indicates that there was reason to
believe that local flexibility accounted for the departure from beamlike vibratory response
characteristics. Exploratory calculations were later made by the electrical analog in which
a circuit was set up to represent this hull as a heam but with part of the mass flexibility
attached to the main hull girder. As indicated in Reference 8.3, these calculations showed
qualitatively that the sprung mass effect could account for the observed vibratory response
characteristics.

While sufficient information has not been obtained at this time to fix definitely the
magnitude required of flexibly attached masses before their effect on the normal modes of
hull vibration becomes perceptible, the following criteria are suggested here: (1) the effective
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mass of the local structure is of the order of 1/2 percent or more of the displacement of the
ship, and (2) the local natural frequency is within the range of significant hull frequencies
(roughly below 800 cpm). When both of these conditions are met, it is not expected that the
usual normal mode pattern of beamlike form as discussed in Chapter 8 will apply to the ship
in question.

It is then necessary to redefine the problem in terms of a beam with sprung masses. In
doing this, account must also be taken of the fact that the local structure may react so as to
affect not only flexural modes but also torsion-bending modes of the hull, In the latter case,
the concept of the sprung mass representing the local structure must be generalized to take
care of both the translational and rotational effects. This extension of the sprung mass
concept is discussed in Reference 8-4.

C. RESILIENTLY MOUNTED ASSEMBLIES

The case of resiliently mounted assemblies requires special consideration here since
in recent years thero has been a trend toward the resilient mounting of massive elements such
as diesel engines, auxiliary turbines, and turbogenerator sets. Since the isolation of such
assemblies from the hull requires a relatively *‘soft’’ mounting system, both of the conditions
previvusly stated for effecting the vibratory response characteristics of the hull are met. That
is, the local item is significantly massive relative to the hull and ity natural frequency on its
resilient mountings falls below the upper limit of significant hull mode frequencies. A typical
resilient mounting for shipboard equipment is shown in Figure 6-1, Usualily at least four such

Part of Assembly - —— X y Part of Mounting

Lm . Fifeciive Point

of Attachunient

X

Figure 6-1 — A BET-Type Resilient Mounting for Shipboard Equipment

mountings will comprise the set supporting & single assembly.. Figurs 8.2 shows schematically
a very common mounting arrangement. For further information on resilient mounting of shipboard
equipment see Reference 8-5,
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A resiliently mouated rigid assembly has six degrees of freedom and thus there may be
six local sprung mass effects to consider. Fortunately, it is usually possible to design the
local system to have planes of ‘‘vibrational symmetry.”* A plane is said to be a plane of
vibrational symmetry when vibrations in thig plane produce no tendency for the system to
vibrate in translation in directions normal to the plane or in rotation about axes lying in the

/ /— Assembly

§
|
|
|
I -+—Base

Aeo»

/’ =

,/ =
; 3

s
I’

Figure 6-2 — Schematic Illustration of & Resiliently Mounted Assembly with a
Typical Base-Mounting Arrangement

plane. As shown in Reference 6-5, the presence of this condition greatly simplifies the
vibration analysis.

Even in the simplest type of ship vibration; namely, the vertical, which in general is
independent of horizontal and torsional effects, it is clear that a resiliently mounted assembly,
if sufficiently massive, can excite the huii in more than one way. 1f motion confined to a
vortical plane through the longitudinal axis of the ship is considered, it is clear that such an
assembly can affect the flexural hull modes when the ship is slamming. Moreover, if the
assembly is located at a node of a certain flexural mode, which therefore it cannot excite by
heaving, it may readily exciie this mode by pitching or rocking (a combination cf pitching
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about the c.g. with translation of the c.g.). As a matter of fact, in this case it is impossible
to find a location in the hull at which neither pitching nor heaving of the assembly would
induce fiexural vibration of the hull.

In such a case, therefors, the effect of the local structure on the hull vibration charac-
teristics cannot be represented by a sprung mass of a single degree of freedom. Both the trans-
lational and rotational effects must be taken into account., To do this the mass momsnt of
inertia of the assembly with respect to an axis through its c.g. normal to the vertical plane
through the centerline of the ship, as well as its mass, must be known.

To analyze the vibration of a rigid assembly supported by a single set of resilient
mountings, a fixed set of axes is teken with origin at the c.g. of the mounted assembly in its
rest position. A right-hand system is used and the X-axis is taken parallel to the longitudinal
axis of the ship; see Figure 6-8, The individual mountings will have principal elastic axes
that, in the most general cases, may not be parallel to the axes chosen for the calculation.
Since a very common type of resilient mounting has an axis of polar symmetry (such as that
shown in Figure 6-1), this is generally called the axis of the mounting; such a mounting is
said to have an axial spring constant k, and a radial spring constant %,, each being the re-
storing force for unit displacement in the appropriate direction. If the mounting is displaced
into its nonlinear range under the gravitational load of the mounted assembly, then the values
of k, and %, to be used must be based on small displacements from the loaded position.
Mountings not having an axis of polar symmetry can be treated as combinations of mountings
having only axial stiffness.

If the mounting illustrated in Figure 6-1 is taken as an example, it is apparent that
an arbitrary motion of the assembly relative to the base {involving both translation and rota-
tion) will evoke not only restoring forces in the three principal directions, but also restoring
moments about the three axes. In deriving the dynamical equations for the assembly, a great
simplication results if two assumptions can be justified:

1. When the assembly moves relative to the base, the restoring forces doveloped in an
individual mounting in the axial and radial directions can be evaluated from the displacements
in these directions of a definite point within the mounting called the ‘‘effectivo point of
attachment,’’ which remaing fixed relative to the assembly.

8-8




2, When the assembly moves relative to the base, the moments (with respect to axes with
origin at its c.g. in the rest position) of the forces developed by the mountings are so large
relative to any couples developed within the mountings themselves that the latter can be
neglected.

It is shown in Appendix 5 of Reference 6-5 that from the % ’s and %_'s of the individual
mountings, the coordinates of their effective points of attachment, and the orientation of their
axes relative to the fixed XYZ-axes, there can he derived a set of elastic constants of the
type K, ,, K, o, etc., which characterize the elastic properties of the entire set of mountings.
There will actually be a total of 21 distinct values of the K’s, 15 of the form K” where ¢ 44,
and 8 of the form K;;.

The dynamical equations which yield the six natural frequencies and six normal modes
of vibration of the system are Newton equations giving either (1) the relation between the rate
of change of rectilinear momentum in a given direction and the forces in that direction; or (2)
the relation between the rate of change of moment of momentum about a given axis and the
moments about thet axis, Instead of expressing the dynamical equations in differential form
they are given here in algebraic form, as is commonly done in vibration theory, Thus, on the
assunption of simple harmonic vibrations, terms of the type - muw? are substituted for terms
of the type mi.

The six dynamical equations for the resiliently mounted assembly, when converted to
algebraic form, are:

Ky u+kK, v+ Koo+ l(ua o+ I(uﬁﬁ +Kuy},_mu(u2 =0 [6-8]

Kwu+1{w'v+l{uww+i{vaa+I(vBﬁ+Kvyy-mq;w2=o [6-4]

Kuwu+K,,wv+waw+Kwaa+Kwﬁ/3+Kwyy—'mwm2=0 [(6-5)
Ko+ Kog ¥+ Ky @+ Koy at KagB+Kyyy - Law?+ Ixy,sz +1,,y6?=0 [6-8)

KuBu+Kvﬁ'v+KwB'w+ Kdﬁ a+ Kﬁﬁﬁ +Kﬁyy"1yﬁ‘"2+ [xydw2+lyz)'w20 [8-7]

Kuyu+ I(vya) + ]{wyw+ Kuy o+ KB}’B + Kyy)’ - Izym2 + I“c:m2 + Iﬂ sz =0 (6-8]
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where m ig the mass of the entire assembly; ,
u, v, and w are displacements of the c.g. of the assembly in the X-, ¥-, and
Z-directions, respectively;
the K's are elastic constants for the entire set of mountings as defined in
Reference 6-5;
i Iy, and /. are mass moments of inertia of the assembly about the X-, Y-, and

Z-axes, respectively, which have their origin at the c.g. of the
assembly and are not here restricted to principal axes of inertia;

Ixy, l,,. and ’y: are maes products of inertia with respect to axes X-¥, X-Z, and
Y-Z, respectively; and
© is the circular frequency (2r times the frequency).

Such a set of equations, which reveals the vibratory characteristics of a mass-elastic
system, may be reduced to a single symbolic equation in which matrices are used to represent
entire sets of values in the initial set of equations, The use of matrix algebra in vibration
analysis is discussed in considerable detail in Reference 6-8. It is sufficient to point out
here that, in the present instance, there are six displacement coordinates invelved, namely,
%, ¥, W, e, B, and y. These, if put in the form of a column matrix, can be represented by a
single coordinate ¢. Thus

={q] {6- 9]

<~ mREg e

The array of quantities, which in the set of equations {6-8] through [8-8] represent
inertias, in this case yields a matrix, called the inertia matrix, which can also be repre-
gented by a single matrix symbol. Thus

n 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0 - 1] [6-10]
0 0 0 I, b, -,
0 0 0 -fy I, -,
0o 0 0 I, -, I,

Finally, the array of quantities, which in these equations represent elastic constants, in this
case yiolds a stiffness matrix which can be represonted by a single matrix symbol., Thus
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PKuu Kiv Kuw Kua Kug Kuy_
Lo Koo Kow Koa KuB Kvy
Koo Kow Kuw Koo Kup Kuy - [K] [6-11]
Kia Kva Kua Kaa Xaﬁ Ka)’
Kip Kup Xug Keg Kpg Kp,
LK“}’ Koy Kuy HKuy Kgy Ky

Then the entire set of six equations [6-8] through [68-8] can be represented by the
gingle matrix equation

-l Mg+ (K1 lgi=0 [6-12]

If Equation [6-12] is expanded by the rules for matrix multiplication (Reference 8-8), the set
of equations [6-3] through [6-8] will be reproduced. It should be noted that Equation [6-12] is
identical in form with the equation for the mass-spring combination having a single degree of
freedom.

As shown in Reference 8-8, the matrix representation of the dynamical equations
applicable to vibratory systems is not restricted to the free vibrations of undamped systems
but is applicable to damped systems and forced vibration as well,

The ‘‘dynamical matrix,’’ which is obtained by combining the two terms on the left side
of Equation [6-12}, is shown below,

Kuu = me? | K,, Ky Ko K.g Ky

Kou Kyp=mo? | K, Ko Kog Koy

Ko Koo Kpw ~ma?| Ko K.g Ky

Ketu Koo Kwa L Kaﬁ""xyf"z Koy * sz w?
Kg, Kg. K 1{,3;4- lLyo®| Kgg=1yo* | Kg,+1,,
Ky Ky Ky Ky * 1z 0 | Ky + 1,07 Kyy=1, 0

This matrix has the important property of symmetry with respect to the main diagonal;
also hoth the stiffness matrix and the inertia matrix are individually symmetrical. Since this
matrix yields the determinant of the coefficients of the variables of the six simultaneous
equations, it furnishes the so-called frequency equation since solutions of the simultaneous
equations are only possible for values of » for which the determinant vanishes. When the
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determinant is expanded and set equal to zero, the resulting equation is of the sixth degree
2, The positive values of o for which the determinant vanishes will be the natural fre-
quencies of the assembly. Corresponding to each root there will be a set of relative values
of u, v, w,a, B, and y constituting a normal mode pattern. These patterns are found by solv-
ing the simultaneous equations obtained when each of the natural circular frequencies is sub-
stituted for @ in the set of equations [6-3] through [6-8].

When planes of vibrational symmetry exist many of the X's and the mass products of
inertia may be zero. Then it will be found that all equations of the resulting set may be in-

inw

dependent or will reduce to small groups of aquations which are independent of the other
groups.

As an illustration of the manner in which the effect of a relatively masaive item of
equipment, resiliently mounted in a hull, may be taken into account in the hull vibration
analysis, a special case, chosen for its simplicity, will be considered here. The case se-
lected is the analysis of the vertical vibration of 2 ship in which there is to be installed a
heavy resiliently mounted assembly whose center of gravity will fall on the longitudinal
conterline of the hull, and of such design that the vertical plane through the longitudinal
axis of the hull will be 2 plane of vibrational symmetry of the resiliently mounted system.

The assembly now has three normal modes of vibration in this vertical plane when ths
hull is held fixed. In general, each of these modes will involve the displacements u, w, and
B, and thus a combination of heaving, pitching, and surging motions is involved. Here, for
consistency with Reference 6-5, the Y-axis is taken as horizontal and not vertical, as in the
treatment of vertical hull vibraticn in Chapter 8.

In the finite difference equations used for finding the vertical normal modes of the hull,
the only equations requiring modification due to the presence of the resiliently mounted as-
sembly are those for the element of the hull of length Az within which the assembly is mounted.

If the mass of the assembly is designated m and its mass moment of inertia about the
athwartship axis through its c.g. (the Y-axis in this case) is designated J_, the finite differ-
ence equations (in simplified form) become for this element:

AV = - ph2zo” - K, (2-2,) + K,y ¥ - Kuwg (B =B [6-13]

AM = =1, AzBo® + VAz + Kugts ~Kg, (2-3,) ~Kgg (B = B,) [6-14]

MAz
AB = 8-
B 7 [6-15]
VAe
Az= « BA2- 6-16
2= -Phe-od (6-16]
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Here the displacement amplitude of the assembly in the Z-direction is designated s, rather
than w,_ in conformity with the notation for the displacement amplitude of the hull in that di-

rection; whereas for the displacement amplitude at the assembly in the X-direction the des-
ignation 4 is retained, The force and moment equations for the assembly are, respectively:

_mszsm2=]{ww (z—zs)—l{uwus+1{wﬁ B ~B8,) [6-17]
and
-1,8,0% ==K, gu, +Kg, (-3 +Kgg (B~ B,) [6-18]
When these equations for the section containing the resiliently mounted assembly are
combined with the usual equations for the remainder of the hull, and the digital process is
carried out as described in Chapter 8, the solution then shows not only how the isolation

mounting affects the natural frequencies of the ship but also how it affects the normal modes
of the hull. It also shows how the resiliently mounted assembly vibrates in each of the nor-

mal modes of the entire system. From such a calculation it can be predicted whether the local
vibration of the resiliently mounted assembly will be excessive when the level of vibration of
the hull in its vicinity is within permissible limits. A more general treatment of the hull as a
beam with sprung masses is given in Reference 6-4. It can readily be seen that the additional
equations involved in the hull ealculation to allow for the sprung mass effect of a resiliently
mounted assembly (Equatjons [6-13] through [6-18]) are directly derivable from the dynamical
matrix shown on page 8-9,

A further development in the isolation mounting of shipboard equipment has been the
use of a compound mouniing system. Here the equipment to be isolated is supported by one
set of mountings attached to a cradle. The latter, in turn, is supported in the hull by another
set of isolation mountings. Such a system is shown schematically in Figure 6-4. It has
twelve degrees of freedom, six for each body, and accordingly has twelve natural frequencies
and twelve normal modes of vibration.

A discussion of the calculation of the normal modes and natural frequencies of a com-
pound isolation mounting system is given in Reference 6-7. A treatment of the same problem
by means of the electrical analog, which in this case was derived from the Lagrangian squa-
tions, is given in Reference 6-8. -

D. SUMMARY OF EFFECTS OF SPRUNG MASSES ON HULL VIBRATION

Both analytical studies and available experimental data indicate that the local flexi-
bility or the sprung mass effect can cause a considerable modification of the beamlike vibra-
tory response characteristics of a hull. The general effects of lowering hull natural frequen-
cies that are below the local natural frequency and raising hull frequencies that are above
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Figure 6-4 — Schematic Elevation of a Compound Isolation Mounting System

Ship Huli

this frequency are of considerable practical importance. [t is also significant that the effects
on frequencies decrease the further they are from the local natural frequency itself. In gen-
eral, if the sprung mass is large enough to have a significant effect on the hull vibratory re-
sponse characteristics it will introduco an extra mode. Thus there may be found two modes
of the overall system showing the same number of nodes in the displacement pattern of the
hull girder proper. In such cases, the phase relation between the displacement of the sprung
mass and that of ihe hull in its vicinity will be reversed in these two modes.

Sprung mass effects may produce marked changes in the response of a hull to an ex-
ternal simple harmonic driving force since the sprung mass may act in the role of a vibration
neutralizer or dynamic vibration absorber. The properties of the latter are discussed in
Chapter 9.

Hence, if the designer knows in advance that a large mass is to be resiliently mounted
in the hull, he must take this into account in any vibration analysis that he attempts. The

means for doing this have been indicated in this chapter and are discussed in further detail
in Reference 6-4.
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CHAPTER 7
PROPELLER-EXCITING FORCES

A. INTRODUCTION

This chapter is devoted chiefly to propeller-exciting forces, but it must be recognized
that propulsion devices other than screw propellers may also generate vibratory forces, It is
only the lack of information on the time-varying forces from paddle wheels and other propulsion
devices of infrequent use in naval architecture that necessarily confines the discussion to
screw propellers at this writing, A change in propulsion system design practice would neces-
sitate detailed study of the forces produced by the new propulsion devices, A further restric-
tion in this chapter is to hydrodynamic forces only. The forces arising from mass unbalance
are discussed in Chapter 10.

The generic term ‘‘forces’? is used in the title of this chapter to cover any type of hy-
drodynamic excitation of the hull arising from propeller action whether this be a force or a
moment, and it may be recalled here that the significant flexural modes of the hull may be ex-
cited by either a force, 2 moment, or a combination of both.

The vibratory hydrodynamic forces arising from the operation of propellers may be sep-
arated into pitch;uxlbalance forces and blade-frequency forces. The former are due to irregu-
larities in the manufacture of the propeller and appear even when the flow into the propeller
is perfectly uniform.

The term ‘‘blade-frequency forces®’ is used hera in a broad sense to cover the hydro-
dynamic forces which will exist regardless of the degree of perfection in the manufacture of
the propeller. These forces are usually understood when the term ‘‘propeller-exciting forces®*
is used and their fundamental frequency is the blade frequency (rpm times the number of blades
per propeller).

It is clearly of great value to the designer to be able to predict whether, under a pro-
posed design, the propeller-exciting forces will be excessive, However, it is not the absolute
magnitude of these forces that i8 of prime significance but their magnitude relative to the
mechanical impoadance of the hull at the ‘‘point’® where these forces act. The vibratory re-
sponse characteristics of the huil are discussed in Chapter 4.

The designer would like to be able not only to predict whether the level of hull vibra-
tion will be excessive for a proposed design, but to say what changes should bLe made in the
design to reduce the level of service vibration to acceptable limits. This chapter, however,
is concerned only with the forces themselves.

The propeller hydrodynamic forces exciting hull vibration operate both directly on the
hull in the vicinity of the propeller as a fluctuating pressure and indirectly through the pro-
peller shaft bearing as a result of lift, drag, and moment on the individual blades, In the
latter case, ail three components may vary in time even though the propeller maintains a con-
stant angular velocity.
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B. PITCH UNBALANCE FORCES

PEATY

The first-order hull vibration due to pitch unbalance is usually strikingly in evidence
when a propeller blade has heen bent because of running into an obstruction, When this un-
balance is due merely to imperfection in manufacture of the propeller, it is of much smaller
amplitude than in the case of damage but is still of first-order frequency (frequency same as
the shaft rpm). When a perfectly formed screw propeller operates at constant angular velocity
in & uniform axial wake, its polar symmetry requires that it develop constant torque, constant
thrust, zero lateral force variation at its bearing, and zero moment variation about any axis
normal to its shaft axis. :

The effect of nonuniformity of the blades may be seen qualitatively by considering n
one-bladed propeller. While the latter will still produce constant thrust and constant torque
if the velocity field is uniform, the bearing will now be subject to simple harmonic vertical
and athwartship forces and moments about both the vertical and horizontal axes. These
forces and moments will be of a frequency which is the same as the shaft rpm (one cycle per
revolution). Moreover, if the velocity field in the propeller race is not uniform there will be
a superimposed variation effect whose fundamental frequency is also of the first order, but
which may have harmonic components depending on the irregularity of the velocity field
(wake pattorn). Thus, pitch unbalance gives risc to first-order hydrodynamic forces and
moments at the propoller shaft bearing and to harmonics of the first-order frequency.

Since, under current practice in the manufacture of propellers, forces due to pitch un-
balance are usually within acceptable limits, this phase of hydrodynamic propeller excitation
has not attracted much attention so far. However, when first-order hull vibration is encoun-
tered on the trials of a new class of ship, the-naval architect must always recognize that
oither mass unbalance or pitch unbalance may be the culprit.

C. BLADE-FREQUENCY FORCES
1. FIRST PRINCIPLES

Although the term ‘‘blade frequency’’ is now in general use for the forces under dis-
cussion in this section, it must be emphasized that harmonics of this frequency may be im-
poilant in many hull vibration problems. Although it had been under investigation several
years before, the subject of blade-frequency excitation of hulls attracted increased attention
after World War II; see References 7-1 and 7-2. In spite of this, the information available on
this subjeot at the present time must be considered relatively scant.

The forces that vary at blade frequeney or harmonics of the blade frequency will exist
in spite of extreme precision in the manufacture of a screw propeller and are directly charge-
able to the hydrodynamics of the ship design. While they may be greatly magnified by non-
uniformity of the wake, it is important to recognize that a fluctuating pressure field will exist
forward of the propeller even in & uniform wake. In fact, the hull pressure forces (calied the
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“surface forces’’ in Reference 7-1) and the bearing forces are generally treated quite inde-
pendently. Thus, to predict the blade-frequency exciting forces, the surface forces and the
bearing forces must be combined, taking account of any relative phase shifts.

Although the theoretical treatment of the pressure fields in the vicinity of the propeller
(from which the hull forces muat be deduced) is usually bazed on incompressible potentia.
flow, which implies an infinite'velocity of propagation, it must be recognized that such low
intensity fields cannot actually propagate at a velocity,greater than the velocity of sound.
Since the latter is in the neighborhood of 5000 ft/sec, it is clear that if the pressure field
extended over 100 ft from the propeller there could be appreciable phase shifts between the
forces transmitted through the propeller shaft bearing and the surface forces. However, be-
cause these pressure fields usually are not significant beyond a distance of one-half diameter
forward of the propeller (see Reference 7-8), and blade frequencies above 3000 cpm are rare
for ships of 2000 tons or more, this phase shift is not a serious consideration at present.

The phase relation between the bearing forces and the surface forces, however, in-
volves not only the consideration of the effect of finite velocity of propagation but the effect of |
algebraic sign or direction in space as well. Thus, if a one-bladed outboard-turning propeller J
is considered, when the blade is in the 3 o’clock position looking from astern, the bearing \
force will be directed upward. The pressure field forward of the blade, however, will be neg-
ative (suction) and =11l peak when the biade is in the 12 o’clock position. For instantaneous r
propagation, therefore, the bearing force and the vertical component of the surface force for-
ward of the propeller would be 90 deg out of phase (with the bearing force leading) if repre-
sented on a rotating time-vector diagram such as described in Chapter 4. Thus, it is obvious
that the separate determination of bearing and surface blade-frequency components is insuf-
ficient to predict the resultant hull driving force, and their phase relations must be taken into
account,

On multiple screw ships the phaso relations between the blade-frequency-force com-
ponents are still further complicated by the fact that the forces from the different propellers
will continually shift in phase unless the propulsion system has a synchronizing device.

This effect and the pitching of the hull in a seaway are the principal causes of the fluctuation
in the amplitude of propeller-excited vibration at the stern of a ship.

When propellers with different numbers of blades are used on the same ship, there will
also be a ‘‘beating’’ at a frequency equal to the difference in the two blade frequencies. Thus,
if four- and five-bladed propellers were operating at 200 rpm, there would be a beating at-a
frequency of 200 x (§ - 4) = 200 beats per min or 8.67 beats per sec, and the beat frequency
would be of the same order of magnitude as the component frequencies. In such a case, the
asual form of beats, which appears when the difference in the two frequencies is very small -
relative to their absolute values, would not be in evidence in the signal from a vibration
pickup. Since the shaft speeds would actually be varying, the hull vibration record would
appear quite irregular.
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When the propeller blades are uniform, and the inflow to the propellers is uniform in
time (but not in space), the variations in thrust or torque that occur as the propeller rotates
will have a fundamental period equal to the time required for the propeller to rotate through an
angle equal to 880 deg/s, where 2 is the number of blades per propeller, This is obvious since
at intervale of this duration the propeller always has the same orientation, or better, the same
‘‘attitude’’ as seen from any point of the hull. The reciprocal of this interval is called the
blade frequency, and clearly this is equal to the propeller rpm times z. Whereas the blade
frequency is the fundamental frequency for propeller-exciting forces and moments, the number
of blades and the after body arrangement may be such that very large harmonic force and mo-
ment components exist. Hence the term ‘‘propeller-exciting forces®’ includes both blade-
frequency forces and forces whose frequencies are multiples of the blade frequency.

2. ANALYTICAL PREDICTIONS

At the present time there is available to the designer no purely analytical procedure
by which he can start with a given hull and screw propeller design and calculate the blade-
frequency forces and moments that would exist under service conditions. Reference 7-4
indicates the progress that had been made ik the analytical prediction of marine propeller
pressure fields up to 1959, Future progress in such analyses is to be expected, as indicated
by Reference -5,

In the problem of surface forces, the first aim in the theoretical attack is to derive the \
froe-space pressure field due to the operation of the propeller. To make use of theoretically
derived free-space pressure fields, the designer must then be able not only to correct for the
effect on the free-space pressure of the presence of the hull itself as well as its vibratory
motion, but to integrate these pressures over the curved surface of the hull in the vicinity of
the propeller. Finally, he must be able to compute the bearing forces and to combine these
with the hull surface forees, taking account of algebraic signs or phase shifts. Thus, it is
not surprising that a purely analytical prediction of the blade-frequency exciting forces has
not as yet been achieved.

At the present stage of the art, such analytical predictions of blade-frequency exciting
forces as can be made are essentially comparative; see Reference 7-6. To make a prediction
the designer must have at hand force data on a previous ship of the same genersl type. He
can then make estimates of the relative magnitude of the surface forces for the new ship by
comparison of the axial and radial tip clearances from curves such as given in Figures 7-1
and 7-2 (from Reference 7-3). The parameters involved in this process (also from Roference
7-3) are:

p
pn2d2

Pressure Coefficient: Kp =
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Thrust Coefficient: Kpm

pnid?

where p is the free-space oscillating pressure at blade frequency (single amplitude) in paf,

n is the number of revolutions per sec,

p is the mass density of water in 1b-sec?/ft*,

@ is the propeller diameter in ft, and
T is the propeller thrust in 1b.
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The coordinate system applicable to Figure 7-1 and 7-2 is indicated in Figure 7-8,
‘ 2

Figure 7-3 — Rectangular Coordinate System
Applicable to the Pressure Amplitude
Data Presented in Figures

Aft Forward 7-1 and 7-2

Figures 7-1 and 7-2 were. plotted for a three-bladed propeller. The effect on the pressure

amplitude in going to increased numbers of blades may be seen from Figure 7-4 (also taken
. . . . inflow veloeity
from Referenco 7-3) in which J is the propeller advance ratio { J » —M ———= |,
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The “‘analytical’’ prediction of the bearing forces at present requires the availability
of a wake survey. There will be no thrust variation, torque variation, or bearing-force varia-
tion if the wake is uniform in the area of the propeiier race and the propeller blades are uniform.

0
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Thus, the process is similar to that of estimating the thrust and torque variation, the difference
being that the lift and drag on the individual blades nre resolved into components normal to the
shaft axis, Details of the torque and thrust calculation are given in Reference 7-7. Although
the bearing forces will be zero if the torque and thrust variation are zero, it does not follow
that a wake pattern that gives high blade-frequency thrust variation will necessarily give
large bearing-force variations. This is because the components of force on the individual
blades may be additive as far as thrust is concernod while canceling as far as vertioal or
horizontal forces in the piane of the propeller are concerned.

It is clear that, regardless of the complexity of the wake pattern, as long as it is con-
stant in time and the blades are uniform in pitch, such an analysis requires advancing the
propelier through an angle of only 360 deg/a. The time taken for this angular displacement
is the fundamental period of the bearing-force variation.

Thus, for a four-bladed propeller the estimate can be started with one blade in the
12 o’clock position. The lift and drag on each blade for this position are then estimated
from the wake survey just as the thrust variation is estimated. Instead of combining the
blade forces to give the net thrust, however, they are now combined to give the net vertical
force (or horizontal force as the case may be). The propeller is then advanced a fow degrees;
this process is repeated until the propeller (here assumed four-bladed) which was originally
in the 12 o'clock position has advanced to the 8 o’clock position. If the tabulated values of
net vertical force are then plotted against time, a smooth curve throcugh the plotted points
gives one cycle of the bearing-force variation. The time interval will be the reciprocal of
the blade frequency and in that period the four-bladed propeller will have rotated 90 dog,.

The total hull driving force is then estimated by combining the bearing and surface
forces. Although the estimate of their phase relation is uncertain, the maximum condition
will obviously be obtained if they are assumed in phase.

3. MODEL PREDICTIONS

In view of the difficulties involved in the analytical prediction of blade-frequency
exciting forces, it was inevitable that the possibilities of model predictions would be ex-
plored. The problem, however, also involves numerous difficulties which up to now have
not been completely resolved.

In the United States the attempt to determine blade-frequency exciting forces from
mode] tests was initiated by Professor F.M. Lewis under the auspices of the Society of
Naval Architects and Marine Engineers, The measurements wete made at the U.S. Experi-
mental Model Basin and the results are discussed in References 7-8 and 7-9.

The basic idea of the method was to measure the overall or effective driving force
acting on a self-propelled model by nullification of the model vibration by means of a me-
chanical vibration generator installed in tho model and geared to the propeller drive shaft.
Both the unbslance of the eccentrics of the vibration generator and their phase relative to
propeller could be varied while the model was underway.
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In experiments with this apparatus at the U.S. Experimental Model Basin, Professor
Lewis 'vas able not only to determine the effective blade-frequency vertical driving force but

%
i
[
§ also to demonstrate that a large part of the effective force was due to the pressure pulsations
F acting on the hull itself in the vicinity of the propeller. This was shown by installing in one
]
@

[N

model a long propeller shaft which placed the propeller far enough astern for the pressure field
; of this propeller to act on another model without a propeller and thus not subject to bearing
! forces.
; _ The model work on propeller-exciting forces was reactivated at the David Taylor Model
’ Basin in the post-World War II pericd, and the Society of Naval Architects and Marire Engineers
established two research panels in the field of hull vibration, one under its Hydrodynamics
Committee and one under its Hull Structure Committee. A comprehensive paper giving the re-
sults achieved up to that time was presented to the Society by F.M. Lewis and A.J. Tachmindji
in 1954.7-! Although this paper reported marked progross in the model determination of propeller-
exciting forces, it emphasized the difficulties due to resonance effects in the wooden models
themselves in spite of the efforts made to reinforce them. Such a model with the test gear
installed in the stern is shown in Figure 7-5.

NP21.57560 I

Figure 7-5 — Reinforced Wooden Model with Test Gear for the Determination
of Propeller-Exciting Forces
(From Reference 7-1)

In Reference 7-1 it was pointad out that, although the force system was known to be
considerably more complicated, for practieal purposes the model determination of blade-
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frequency excitation was reduced to the prediction of a net vertical force, a net horizontal
athwartships force, and a couple about the longitudinal axis of the hull. The horizontal and
vertical forces are assumed to act at such locations as to cause no twisting moment on the
hull, whereas the couple does apply such a moment. It is to be noted that, although there is
no plane of symmetry for horizontal excitation, there can be a plane of symmetry for vertical
excitation on multiple-screw ships if all propellers are rotating at the same speed and in
phase. In the case of e single-screw ship, there will be no plane of symmetry for either
vertical or horizontal excitation.

The latest development in the model determination of propeller-exciting forces up to
this time is described in Reference 7-10. In the technique described in this reference, the
difficulty with model resonance was circumvented by resorting to the use of a flexibly sup-
ported stern section designed to be nonresonent in the range of blade frequencies to be in-
vestigated. This is illustrated in Figure 7-8.

Figure 7-6 — Model for Propeller-Exciting-Force Determination Having
Flexibly Suspended Stern “lection

In the previous model technique a null method of fo.:e determination was used. Thus
the propeller forces were neutralized by forcos of known magnitude produced by a vibration
generator, The later tochnique did not employ the null meihod but was based on producing,
by means of a vibration generator, the same stern amplitude as produced by the propeller-
exciting forces.

7.8




As in model testing for powering, the scaling laws are very important in determining
propeller-exciting forces by means of model tests, In such model tests the model shaft speed
is the same as in the ordinary self-propulsion test; that is, it is in accordance with the Froude

scaling relation
‘ / length of ship
del = shi ——
madel tpm = Ship fom length of model

If the boundary-layer distribution is assumed to be the same between ship and model, the

experimentally determined model forces are then stepped up to full scale by multiplying by
the factor:

displacement of ship

displacement of model

The results of a series of model tests with the flexible stern technique are given in
Reference 7-11. As pointed out in this reference, in spite of the improvement in the model

technique, unknown scale effects make the model determination of propeller-exciting forces
still uncertain at this time.

D. EXPERIMENTAL FORCE DATA AVAILABLE

The experimental data on propeller-exciting forces at present are extremely meager in
spite of the effort made to obtain such information, Such data as now exist indicate blade-
frequency forces that are fairly large. To give a rough criterion of the order of magnitude of
these forces, it may be pointed out that for single-screw cargo ships the vertical and hori-
zontal forces have a single amplitude of the order of 10 percent of the steady thrust at the
normal operating spoed.

In'the caso of the Maritime C 4-Class dry cargo ship, both model and full-scale ex-
periments were conducted, as pointed out in Reference 7-1. The full-scale thrust of these

ships is 170,000 1b. Reference 7-1 gives the following values as determined from the model
(all iu single amplitude):

Net vertical force on hull 6 percent of mean thrust

Net athwartship force on hull 18 percent of mean thrust

Net couple on hull 70 percent of mean shaft torque
Thrust variation in shaft 5 to 8 percent of mean thrust
Shaft horsepower 22,000

These ships have the following principal characteristics:
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| L 525 ft
‘ B 8 ft
D 44 ft 6 in.
H 811t 6 in,
Top speed 22 knots at 102 rpm

Propeller blades 4
Single screw

A vibration-generator survey was conducted on S8 GOPHER MARINER in the investi-
! gation of the vibratory response characteristios of the hull.”'2 It was found during this
! survey that s vertical force of about 7 percent of the mean thrust would produce the amplitude
) in the stern observed at blade frequency under operating conditions. This would be about
12,000 1b.

In 1957 the David Taylor Model Basini made both an underway-vibration survey and a
vibration-generator survey on a twin-screw naval destroyer, USS DECATUR (DD 936). These
surveys are discussed in detail in Reference 7-13. In addition to operating the vibration gen-

» erator at the critical frequencies of the hull, it was run up into the operating blade-frequency
range (although not up to the maximum operating blade frequency). From the latter tests,
impedance-type expressions were derived for the relation between driving force and stern
amplitude at blade frequencies above the range of significant hull mode frequencies. As
given in Reference 7-13, the constants to be used in the impedance-type formulas were:

ib-min?

-‘6 ——————————

| aav = 3.5 X 10 mil-ton
Ib-min?

-6
@, =20 x107° L ton

1b-min?

ar=0.48

rad-ton-sec?

For the vertical and athwartship vibration these constants are to be used in the approximate

equation

Po

a Af?

Yy =

where Y, is the single amplitude at the after perpendicular in mils,
P, is the single amplitude of the driving force in Ib,
A is the ship’s displacement in long tons, and

/ is the frequency in cpm.




For torsional vibration the constant ay is to be used in the approximate equation

Iy

=

a,/f?
r
where T, is the single amplitude of the blade-frequency exciting couple in Ib-it, and / is as
defined for Equation [D-6] of Appendix D.

The following values of propeller-exciting forces were deduced for DD 936 from the
observed amplitudes in the stern in the underway-vibration survey in conjunotion with the
foregoing data.

Net vertical blade-frequency force, at 310 rpm = 82,000 1b
Net athwartships horizortal force, at 210 rpm = 28,000 1b

The DD 931-Class destroyer has the following principal characteristics:

L 407 ft

B 45 ft

D 25 ft
Full load displacement 3800 tons
Thrust per shaft 220,000 1b
Blades per propeller 4
Propeller diameter 13 £ 3 in.

Twin screws

Twin rudders

From the initial model experiments made at the U.S. Exparimental Model Basin in the
early 1930's, Profossor F.M. Lewis”® estimated the net vertical blade-frequency force for
SS PRESIDENT HOOVER to be 24,000 Ib single amplitude. This was 12! percent of the
total thrust, This ship has the following principal characteristics:

L 830 ft

B 81ft

D 30 ft 3 in. -
Displacement 29,000 tons

Blades per propeller 3

Twin Screws

The ship was provided with propeller shaft bosasings.
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In Reference 7-14 the author suggested as a round number that the bearing forces
account for 25 percent of the total blade-frequency exciting force acting on the hull, and
that the remainder was due to the surface forces.

An example of reduction of blade-frequency vibration by the use of a fin to reduce the
nonuniformity of flow to the propeller is discussed in Reference 7-15.
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CHAPTER 8
DAMPING OF HULL VIBRATION

A. INTRODUCTION

Damping plays a very important role in ship vibration, as in most other areas of me-
chanical vibraiion, and it is unfortunate that so little is known about the actual damping
process at this time. It is not generally appreciated that the power required to maintain a
quite perceptible vibration in a structure as large as a ship is relatively minute. It is also
generally overiooked that an undamped mass-elastic system can be maintained in forced vi-
bration at a nonresonant frequency with zero net power input to the system, Even under
damped resonant conditions the power required to maintain noticeablo hull vibration is amaz-
ingly small. Thus a ship of 5000-ton displacement can be maintained in vibration in its fun-
damental vertical mode with single amplitudes at bow and stern of the order of 10 mils with a
mechanical power input of only 100 watts, as foilows from the driving force and driving point
amplitude data given in the first line of Table 5 of Reference 8-1.

While the designer will naturally aim to avoid resonance involving any of the signif-
icant hull modes with either the blade frequency, the shaft frequency, or the running rpm of
sny major piece of machinery, cases will inevitably arise in which this is not feasibie. It
may well be necessary in many cases to operate & ship at a shaft speed at which the blade
frequancy coincides with one of vhe natural frequencies of the hull, Furthermore, it must not
be overlooked that, even when the operating blade frequencies are well clear of the range of
significant hull frequencies, it will still be necessary to pass through critical speeds in
coming up to the operating speed.

As shown in Chapter 4, the resonant amplitudes of the hull depend on the magnitude
of the driving force, the location of its point of application relative Lo nodal points in the
mode in question, and the damping itself. Clearly, the importance of being able to predict
the damping values doponds on the other factors determining the resonant amplitude. Thus,
if there is assurance that the driving forces will be negligible, the need for the damping pre-
dietion is greatly diminished, If all the critical speeds with respect to hull vibration are
known to fall well below the operating speed range of the ship, it may not be necessary to
estimate the hull damping. In general, however, it is desirable to do so.

The difficulty in estimating damping values for the entire hull is due fo the present
scant knowledge of the actual damping mechanism. To cite cbvious sources of damping is
far oasier than to asseas their relative importance. Thus there is an immediate tendency to
assume, since the hull cannot vibrate without imparting motion to the surrounding water, that
this is an important source of hull damping. There is ample evidence, however, that in the
range of frequencies of significant or beamlike hull modes, the damping action of the water
is extremely small. Thus the decay rates for free vibration of ships are no greater than for
steel structures in ajr.
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Aside from the surrounding water there are two other obvious sources of hull damping;
" one is tho internal friction in the hull structural material, the other is friction between slip-
ping or sliding surfaces within the hull, associated with equipment or cargo.

The experiments on GOPHER MARINER 82 show that at the levels of vibration excit-
od by propeller action, the most important source of damping appesars to be the cargo friction,
if by “‘cargo’? there is included here everything movable inside the hull proper. The damping
source next in importance seems to be the hysteresis in the hull itself if the structure is weld-
ed. With a riveted construction, the working of the joints can cause a dissipation of energy
which is chargeable to the hull although not to the material. The least important source of
damping appears to be the water. This statement applies to practical conditions under which
the amplitudes are too small to set up appreciable surface waves, and to frequencies at which
acoustics radiation is not an important factor. Here it should be noted that acoustic power
levels are ordinarily extremely low as contrasted with the level of mechanical power required
to vibrate a hull. Present evidence (see References 8-1 and 8-2) indicates that hull damping
is actually dependent on both amplitude and frequency.

As in the case of the hull itself, damping also determines the magnitude of resonant
vibration of local structures. Here hoth cargo and water damping effects are, in general, not
involved, and the damping source must be attributod to the material of which the local struc-
ture is fabricated, the type of joints, or the type of support which determines the transmission
of energy to other parts of the ship.

In harmony with the rational beam theory of hull vibration presented in Chapters 3 and
4, the treatment of damping in this book is also a rational or semiempirical treatment. Thus,
in the case of flexural vibration, the damping coefficient ¢ is used which represents a damping
force per unit velocity, per unit length. This coefficient ia further restricted to either of two
types: the Rayleigh type which is viscous and proportional to mass, so that S is constant

M
(where p is the mass per unit length of the hull including the allowance for added mass of

the surrounding water); or the type increasing with frequency so that i is constant, where
w is the circular frequency. He

In this scheme of treating hull damping, the ¢ values to be used in actual calculations
cannot be determined analytically from given hull design data but must be based on experi-
mentally determined values obtained on other ships.

The reader will find in the technical literature numerous treatments of beam vibration
with other types of damping; see, for example, References 8-3 and 8-4. In the belief that the
principal source of damping of ship vibration is the cargo, these methods are not evaluated
here. It is pointed out, however, that while the use of equivalent viscous damping constants
basod on energy dissipation is a makeshift expedient, the viscous damping constant that is
almost universally used in the treatment of lumped vibratory systems in standard textbooks on
mechanical vibration also involves an idealization of the actual damping process.
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B. ANALYTICAL TREATMENT OF HULL DAMPING

The most widely used assumption in the analytical treatment of the damping of a me-
chanical system in vibeation is that it is of the viscous type, as indicated in the previous
section. As applied to the elementary system of one degree of freedom, this is the type of
damping produced by a frictional force proportional to the velocity and having a direction
opposite to that velocity. This gives for the free vibrations the familiar differential equation,

me+ct+hke=0 [8-1]

where ¢ is the viscous damping constant,

m is the mass, and

% is the spring constant.

In spite of the fact that mechanical damping is rarely of the true viscous type, an
‘‘equivalent viscous’ constant is widely used because the solutions of the resulting linear
differential equations are well known, The equivalent viscous constant is hased on energy
dissipation per cycle. If this is designated W, then

W

70Y?

[8-2]

Ce=

where Y is the single amplitude and w is the circular frequency. The viscous damping

concept is also commonly retained in establishing damping constants from the logarithmic
decrements deduced from observations of decaying free vibrations. Thus, in the elementary
system of one degree of freedom, the critical viscous damping constant is given by the equation

¢, =2m ‘/ E {8-3]
¢ m

and the logarithmic decrement is

¢
27 —
c
5= ’ _.i___:._ (8-4]
2
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For small damping
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A common criterion of the degree of damping is the resonance magnification factor.
This is frequently designated by the symbol ¢, widely used in electrical circuit theory as an
index of dissipation for inductarues. The lower the dissipation in the coil, the higher is its
@. For viscous damping

1
Q= — (8-6]
]
2 —
cc
and for low damping
”
. = 8-7]
Q=3 l

In the case of the hull, the complexity and uncertainty regarding the actual damping
processes have forced an extcnsion of these concepts. By assuming that the damping of the
flaxural vibration of the hull can be represented by a distributed viscous damping constant
proportional to the mass per unit length (including the added mass of surrounding water), the
ship ecan be treated as a ‘‘Rayleigh system,” at least in dealing with vibration in its sig-
nificant flexural modes. The Rayleigh-type of damping is then of the type ¢/u = constant,
where ¢ is the vquivalont damping force per unit velocity per unit length (axial), and p is the
mass per unit length including ihe added mass of water.

Under such assumptions, the froe and forced vibrations of the hull may be treated in
terms of norme! mode responses. This effects great simplification. In this procedure the
{th flexural mode of the hull is reduced to an effective system of one degree of freedom re-

ferred to a specific driving point d. According to the equations given on pages 4-9 to 4-11,
the steady-state amplitude is

P
Yd i = [8" 8]

M Ll
Kap =My &® +jCypo

This gives not only the magnitude of the displacement amplitude in the ¢th mode but also the
phase of its rotating vector in relation to that of the driving force of circular frequency .

Experience has indicated that the damping is actually dependent on both amplitude
and frequency. For frequency dependence the indication is that the relation

c
— = constant
[

is closer to reality than the relation

c
— = constant
i
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In calculating steady-state forced vibration by the digital method discussed in Chap-
ter 4, it is possible to use values of ¢ satisfying either relation. All that is required in the
former case is to adjust the value of ¢ for each value of  for which the calculation is made.
However, this does not permit finding the response to an arbitrary excitation by the normal
mode method or by the digital method discussed in Chapter 5. Thus, where a method of cal-
culation requires the use of a true Rayleigh damping coefficient, its value must be based on
a mean value of the frequencies involved; but where the calculation requires only the response
of the hull at a single frequency, the damping cosfficient can be selected according vo that
frequency,

In the case of local structures, the same general principles used in treating the damp-
ing of the hull may be applied, but the determination of normal modes and the subsequent re-
duction to effective systems for each normal mode referred to a specific driving point cannot,
in general, be based on a beam-type analysis. Where the response in the fundamental mode is
of prime concern and where a reasonable guess can be made as to the fundamental normal
mode shape, the fraquency may be estimated by the general Rayleigh method if the potential
energy can be evaluated for a deformation in this pattern. The Rayleigh method of finding
natural frequencies of systems is discussed in References 8-6 and 8-7 and requires the eval-
uation of both kinetic and potential energies. Thus, for a section of plating simply supported
at the edges but with stiffeners in both the fore and aft and transverse directions, the bending
energy may be evaluated in terms of the curvatures in the two principal directions and the
rigidity factors for the stiffened plate. The effoctive mass values are then derived from the

kinetic energy on the basis of the same concepts as applied to the hull girder.

C. EXPERIMENTAL METHODS OF DETERMINING DAMPING

Two standard methods of determining the damping of a vibratory system are (1) to ex-
cite the system by an impulse and to measure the tate of decay of the resulting free vibrations,
and (2) to measure the resonant magnification in forced steady-state vibration. Both methods
have been applied to the entire hull and also to local hull structures.

When the hull is exciled by a vertical impulse at the bow, the predominant response is
usually in the 2-node vertical flexural mode. This impulse is most conveniently applied by
releasing an anchor and arresting it after a fall of a few feet. On one occasion it was found
possible to measure the fundamental vertical frequency of a large naval vessel during calis- ~
thenies of the crew on the forward main deck. A horizontal impulse may be applied at the
bow less conveniently by a bump applied by a tug boat. It is also possible to excits tran-
sient vibrations in the horizontal flexural modes by rudder maneuvering while underway.

The records from such tests usually show an initial complex vibration with high fre-
quency components which shortly settles down to a train of damped sine waves of constant
froquency. The logarithmic decremont is determined from the latter part of the record by

measuring two peak displacements ¢ eycles apart and using the relation
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(8- 9]

As applied to local structures, the impulse method of determining damping is similar,
but in this case it is often difficult to produce & decaying vibration in a single mode, Blows
with a heavy timber comprise the most common method of excitation.

The rational theory permits the evaluation of the damping constant to be used in the
calculation of forced vibration of ships directly from the experimentally determined logarithmic
decrement. Thus, suppose a calculation is to be made by the digital process outlined in Chap-
ter 4. Here the Rayleigh damping constant is retained and this means that ¢/p is treated as
constant for all points along the hull and at al] driving frequencies. Let M, be the effective
mess at any arbitrary point for the mode of vibration in which the logarithmic decrement was
observed (here called the ith mode). Thon the effective Rayleigh damping constant for this
mode and at this point of the hull is given by the equation

nCy,

5. =

13

[8-10]

My o;

The damping constants ¢ used in the digital calculation are then evaluated from the relation

—_ — ) ' [8-11]
Ca;
If hull damping were truly of the Rayleigh type, I would be independent of the mode

di
and it would follow from Equation [8-10] that the logarithmic dccrement would vary inversely
with the frequency of the mode. Since experience has shown it more feasible to assume that
the logarithmic decrement remains constant, it is expedient to assume

cdi

= constant [8-12]
Mdi w.

i

in any calculations dealing with response in a single mode.
Naturally, if experimental decrement values ate available for a previous ship of gen-

erally similar design these are the best to use, but as pointed out in Refereace 8-2, an aver-

ago value of

obtained from experiments on a variety of ships is 0.03,
di %
In deriving hull damping values from vibration generator tests, use can be made of the
fact that at resonance the mechanical impedance (defined in Chapter 4) in the mode in ques-

tion is solely the damping impedance € ; @, Hence, from the known exciting force of the
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vibeation generator and the measured resonant amplitude at the driving point, C,; can be com-
puted from the aquation

Py

C, = (8-18]
di Yy 0,

D. AVAILABLE DATA ON HULL DAMPING

Although experimental data on the damping of ship vibration are still relatively scarce,
the designer is fortunate that such information is being accumulated at an accelerating pace.
Obviously, in making estimates for a particular design the naval architect should seek data
on ships of the same general type. Some typical data are presented in Tables 8-1, 8-2, and
8-3. Further data of this type can be found in Reference 8-5.

In Reference 8-8, the logarithmic decrement of an aircraft carrier in whipping following

slamming in a rough sea was reported as 0.037.

E. DAMPING ACTION OF LIFTING SURFACES

In general, the damping of a hull, just as its inertia, will not change with the ship’s
forward speed. In the case of inertia, this is because the flow ol water associated with the
added mass effect discussed in Chapter 2 is noncirculatory. In hull damping, it is because
the contribution of the water to the total damping effect is quite small in any case.

There is, however, a hydrodynamic damping effect which does depend on the ship's
forward speed and which cannot be considered negligible. This effect, discussed in more
detail in Chapter 14, involves the lifting surfaces such as rudders and submarine diving planes.
In the present chapter the effect is discussed only in the simplest possible terms.

The function of the lifting surface, of course, is to produce a lift force derived from the
flow whose moment will cause the rigid body rotation of the ship desired for a maneuver. This
lift force is proportional to a “lift coefficient,’’ the angle of attack, and the square of the
relative velocity between the lifting surface and the water. In these simple terms the lift

force is given by the relation

F, = AS% [8-14]

where F) is the lift force,

4 is the lift coefficient,

S is the relative velocity, and

¢ is tho angle of attack.
As shown in Chapter 14, if the control surface acquires a component of velocity normal to the
direction of the velocity §, there results a change in F; due to the change in apparent angle
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of attack. A vibratory motion of the axis of the control surface, due to a vibration of the hull
as a beam, will therefore cause a variation in F of the same frequency aa that of the hull vi-
bration. If the entire hull is reduced to an effective ¥, K, C syatem of one degree of freedom
for the purpose of analysis, the governing equation for vibratory motion then becomes

MY + CY + KY = F/ [8-15]

where Fj is the variation from the steady lift ) due to any velocity of the lifting surface in
the Y-direction.

Under the simplifying assumptions made here and discussed further in Chapter 14, it
turns out that

Fy = - ASY [8-16]
Hence Equation [8-15] becomes
MY +(C+A48) ¥ + KY =0 [8-17]

This indicates that, when the vibration of the hull is accompanied only by a vibratory motion
in translation of the control surface (6 remaining. constant), the forward velocity of the ship
causes a damping action in addition to the damping that would otherwise exist. The latter
is represented by € in Equation [8-17].

It is shown in Reference 8-9 that the hydrofoil damping action of rudders at high ship
speed can reach the same order of magnitude as the ordinary hull damping action. For rud-
ders this, obviously, applies only to horizontal hull vibration. However, in the case of sub-
marines the diving planes can produce & similat damping action in vertical hull vibration,
When angular oscillations of the lifting surface are also present, the situation is radically
altered, leading to the possibility of flutter as shown in Chapter 14.
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Damping Factors Derived from Vibration Generator Tests on Ships Listed in Table 8-1

TABLE 8-2

(Vertical Modes Only)

Driving Point
. @ op , Driving Force Sing!
Sh Mod o/ ngle
" ot ad/sec| 1/sec we tons Amplitude
ft

NIAGARA Ist | 115 | o8 0.043 0.51 0.0011
2nd 20.9 0.41 0.019 1.68 0.0021

3rd 30.5 0.83 0.027 3.57 0.0014

4th 3.1 2.8 0.067 5.27 0.0058

5th 45.8 2.20 0.047 8.44 0.0049

CHARLES R. WARE st ] 82 | o 0.021 0.30 00050
2nd 12.2 0.17 0.010 1.32 0.0070

2id 1.3 .31 0.014 3.32 0.0031

| 318 1.3 0.035 6,29 0.0092

E.). KULAS 5t | 298 | 0.80 0.027 2.1 0.0006
C.A. PAUL 1st | 4m | oom 0.006 0.16 0.0079
2nd 11.1 0,114 0.010 0.76 0.0064

PERE MARQUETTE 21| 1st | 1L7 | 0.168 0.014 0.89 0.0052
NORTHAMPTON d | 139 | 0.298 0.021 121 0.0008
3rd 214 0.512 0.024 2.86 0.0007

| 2 | o2 0.024 571 0.0004

Sth | 37.6 1.33 0.035 8.84 0.0004

6th | 458 | 2.55 0.056 12.95 0.0001

Tth | az4 7.80 0.149 17.19 0.0002

STATEN ISLAND Ist 29,3 0.976 0.033 2.81 0.0038

(avg) 0.03¢4
TABLE 8-3

Experimontal Values of Logarithmic Decrements for Fundamental
Vortical Mode of Ships

Nams of Type of Test Test | Logarithmic
Ship Ship | Displacement] & | B | O |Draft | Decrement
tons ft-in| ft-in | fi-in | ft-in
NIAGARA Transpont 5,500 400} 58 | 37 121 0.070
OCEAN VULCAN| Freighter 13,750 416 | 56-11{ 37-4{25-11 0.053
HAMILTON Destroywr| 1,380 [ 310 31 | 209108 | 0.023
8-10
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CHAPTER 9
ANTIVIBRATION DEVICES

A. INTRODUCTION

The technical literature reports many developments in the field of antirolling devices
for ships, such as bilge keels, antirolling tanks, gyrostabilizers, and activated [in stabilizers.
Aside from the fact that the rolling frequencies of ships are of the order of 1/10 or less of the
lowest frequency normally associated with hull vibration, these devices perform the same
basic function as antivibration devices. In one way or another they set up moments opposing
the rolling motion of the ship. It may therefore seem surprising that relatively little attention
has been given to the development of antivibration devices for hulls. This is true in spite of
the fact that antivibration devices in the form of pendulum dampers have been used extensively
in large internal combustion engines to suppress torsional vibration in the crankshaft system.

The presumption in seeking auy antivibration device is that the source of disturbance
cannot be eliminated. In the case of hull vibration (as shown in Chapter 7), while first-order
exciting forces can be reduced by improved methods of balancing propellers, shafting, and
machinery, ot by closer tolerances for machining of propeller blades, the blade-frequency ex-
eciting forces canrnot be reduced without changing the number of blades per propeller, or al-
tering the stern configuration. Thus, a practical antivibration device for hulls could find application
under the following situations: (1) when hull vibration develops unexpectedly on the initial
trials of a new class of ship; (2) when the design study indicates that an excessive lovel of
vibration will exist, but there are overriding advantages in the particular design adopted which
warrant its retention; and (3) when an unusual type of propulsion system known to produce
large vibratory exciting forces is required for special reasons.

In this chapter a brief discussion is given of certain antivibration devices that have
actually been used to a limited extent for the purpose of reducing the level of service vibra-
tion of ships. These devices are the tuned vibration noutralizer, often spoken of in the lit-
erature as the ‘‘dynamic vibration absorber’’; the adjustable rotating eccentric; shaft synchro-
nizing devices; and flexible materials used in the vicinity of propellers, Both the tuned
vibration neutralizer and the adjustable rotating eccentric set up forces equal and opposite to
the external forces exciting the hull vibration. The synchronizing device, which is applicable
to multiple-screw ships, in effect reduces the external exciting force; the flexible material
attenuates the exciting force, that is, reduces the force transmitted to the hull.

B. THE TUNED VIBRATION NEUTRALIZER

The principle of the tuned vibration neutralizer is well known and is diacussed rather
thoroughly in most textbooks dealing with ths fundamentals of mechanical vibration; see
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Reference 9-1, The device is often referred to in the literature as the *‘dynamic vibration
absorber.

The effect of a ‘‘sprung mass'’ on the vibratory characteristics of ship hulls is dis-
cussed in Chapter 6, The vibration neutralizer is in essence nothing but a sprung mass with
provision for tuning its natural frequency and possibly having adjustable damping. It might
seem that, if the designer is concerned about the prevention of a buildup of hull vibration in
a particular normal mode, he has only to install in the ship a sprung mass tuned to the fre-
quency of this mode, It follows from the discussion in Chapter 6, however, that the desired
objective may not be attained that easily, If the sprung mass is large enough to counteract
the external driving force, it will probably be large enough to substitute a pair of hull modes
for the single mode otherwise existing. Hence, for practical application, it is incumbent on
the designer to provide the vibration neutralizer with variable tuning so that its natural fre-
quency can be adjusted to the frequency of the driving force over a considerable range of ship
gpeeds,

Figure 9-1 shows a large vibration neutralizer that was actually installed on an Italian
motorship and reported to have eliminated 94 percent of the previcusly existing vibration; see

Reference 9-2, In this case the vibration was caused by machinery and not by propeller action.

Of particular interest is the fact that the apparatus had a gross weight of 12 tons which was
about 0.1 percent of the displacement of the ship. An interesting feature also was that the
inertia element was a tank divided into many cells that could be flooded with sea water. Thus
the tuning was adjusted by varying the mass, and, in service, &n operator was required to ma-
nipulate the valves which flooded or enibtied various cells.

The U.S. Experimental Model Basin conducted laboratory experiments with the vibration

neutralizer around 1988 with a view toward exploring its potentialities for use on naval vessels;

see Reference 9-3. While these experiments indicated that electronically controlled energizing
devices could improve the performance of the vibration neutralizer under service conditions at
varying operating speeds, they did not appear promising enough to warrant the development of
a full-scale ship neutralizer at the time,

With regard to the feasibility of installing a full-scale shipboard vibration neutralizer,
one point brought out in References 9-2 and 9-3 deserves emphasis here. It may not be nec-
essary to install the apparatus in the immediate vicinity of the exciting source to obtain the
desired neutralizing action. It is true that setting up an equal and opposite force ot the driving point
is the most direct method of neutralizing the driving force. However, it follows from the beam
theory of hull vibration that a mass-spring combination will produce an antiresonance of the
system at the frequency to which it is tuned when installed at either end. In the absence of
damping it will maintain whatever amplitude is necessary to hold motionless that point of the
system to which it is attached.

It will be of interest to the reader that, at a much later date than that of the experi-
ments discussed in Reference 9-3, it was discovered, on the trials of & naval destroyer with
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Figure 9-1 — Vibration Neutralizer Installed
on Italian Motorship MARIA

twin rudders, that the natural frequency in torsional oscillation about the rudder-stock axes
fell close to the frequency of the 3-node horizontal flexural mode of the hull; see Reference
9-4. The result was that the rudders acted as vibration neutralizers with respect to this
mode of the hull znd caused a peculiar forced response pattern when the hull was tested with
a large mechanical vibration generator. This was only one phase of the unusual vibratory re-
sponse characteristics observed on this particular class of ships. Further details are given
in Chapter 14.

C. ADJUSTABLE ROTATING ECCENTRICS

The fact that adjustable rotating eccentrics have been used in the experimental deter-
mination of propeller-exciting forces on model scale (see Chapter 7) indicates the possibility
of using such elements for the elimination of propeller-excited vibration on full-scale ships.




When an eccentric of mass m and ecoentricity e rotates with a shaft, the reaction trans-
mitted to the bearings in any one direction is

P = mew? sin ot [9-1)

if the angle w¢ is suitably specified. Thus, in Figure 9-2 the force in the vertical direction
(positive upward) is given by Equation [9-1], and the force in the horizontal direction (pos-
itive to the right) is

2

P, = mew? cos wt [9-2]

In Figure 9-2 the bearing is fixed to its supporting structure or base. It might seem
that if this base were part of a vibrating hull the expression for the bearing force would he
much more complicated. It is readily shown, however, that, if the mass of the eccentric is
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Figure 9-2 — Rotating Eccentric (Schematic)
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added to the mass of the base or to the effective mass of the entire system on which the
bearing force acts, then the effective forces acting on the system are still given by Equations
{8-1] and [9-2], respectively.

If the rotating eccentric is to be used to cancel a force due to mass unbalance, it will
perform the function of an ordinary balancing head and may in fact be attached to the unbal-
anced shaft itself. The important cage for consideration here is that in which the rotating

aerantrie i3 4o he neod to cancel the blade-frequency exciting forces arising from propeller




action. In this case, if the propeller shaft has an angular velocity w, the propeller-exciting

forces have a ciroular frequency sw where 2 is the number of blades of the propeller. To cancel

these forces, any rotating eccentric device installed in the hull must therefore be driven at
an angular velocity 2 times that of the propeller shaft.

It is clear that, as contrasted with the vibration neutralizer which introduces a tuning
problem, the adjustable rotating eccentric, if driven through a suitable gear train by the pro-
peller shaft itself, will always synchronize in frequency with the blade-frequency exciting
forces.

In spite of this advantage over the tuned vibration neutralizer, a number of problems
need to be solved in designing a rotating eccentric device to cancel the blade-frequency pro-
peller forces. A single eccentric such as shown in Figure 9-2 yields a rotating force with
sinusoidal vertical and horizontal components. To obtain a pure sinusoidal force in one di-
rection, a pair of eccentrics rotating in opposite directions must be used. Phase control is
also necessary. Thus the device becomes essentially a vibration generator of the type used
to vibrate hulls in ship vibration research, as discussed in Chapter 15.

A complete rotating eccentric device should be designed for both components of the
blade-frequency force and for the couple with respect to the longitudinal axis of the ship as
weoll, When it is considered how limited the space inside the hull may be in the vicinity of
the propellers, it is apparent that a difficult design problem is involved with such a device.
The problem is discussed further in Reference 9-5.

D. SYNCHRONIZING DEVICES

Synchronizing devices used as antivibration devices are applicable only to multiple-
screw ships. Elementary considerations show that the scheme should be very effective in
certain cases. S

If a twin-screw design is considered for illustration, and, if there exists perfect sym-
metry of the geometry of the two propellers and of the flow with respect to the vertical plane
through the longitudinal axis of the ship, then the vertical components of blade-frequency,
propeller-exciting force will he equal for the two propeliers. These forces will then be rein-
forcing when the two propellers, rotating at the same angular velocity and in opposite direc-

tions, are so phased that a blade of each propeller reaches the 12 o’clock position at the same

instant. There is no implivation here that the vertical force reaches its maximum value when
a propeller blade passes through the 12 o'clock position. This ia merely a convenient ref-
erence for phase between the port and starboard force vectors shown in Figure 9-3.
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In the time-vector diagram (Figure 9-3), the blade position does not appear. This dia-
gram merely indicates that time is taken as zero when the vertical component is zero for the

port propeller. Whether a port prepeller blade is in the 12 o’clock position or not when ! =
/2, if the assumed symmetry exists, both vectors in the diagram should coincide when port

and starboard propeller blades pass through the 12 o’clock position simultaneously. If the
vertical forces are canceling, so that the time vectors are as shown in Figure 8-3, then the
reference blade of the starhoard propeller should be advanced in the direction of its steady
rotation by an angle of #/2 radians from the 12 o’clock position when the reference blade of
the port propeller is in its 12 o’clock position (where z is the number of blades per propeller).

In this simple illustration it follows that a synchronizing device that could maintain
the propellers in this phase relation would ensure the cancellation of vertical blade-frequency
exciting forces. The problem, however, is never this simple. There are horizontal force com-
ponents to consider as well. Under the ideal condition assumed, since their vectors rotate at
the same rats, but the horizontal force components are cqual and opposite when both propellers
have the reference vector in the 12 o’clock position, the phase condition for a cancellation of
vertical biade frequency forces is iiie 3ume us Lhe condition for reinforcement of the hori-
zontal components.

Thus, aven in the ideal situation considered here, the synchronizing adjustment would
have to be based on a compromise between canceling the vertical components and reinforcing
the horizontal components. In practice, moreover, the conditions are much more complicated —
than this. DEven if the synchronizing device can maintain a prescribed phase between
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propeller rotations, the flow conditions change with speed, heading, rolling, pitching, and
trim of the ship. Nevertheless, if a synchronizing device can ameliorate one suvere vibeatory
condition on a particular class of ship, it may well justify its installation.

Reference 9-6 discusses the synchronizing devices in detail and points out that the
scheme is most feasible in connection with electric drives, Reforence 9-7 describes a syn-
chronizing gear applicable to diesel drives for which considerable success has been claimed.
In this case it was found that the optimum synchronizing angle could best be obtained exper-
imentally. It should also be noted that on multiple-screw ships it is invariably observed that
the blade-frequency vibration is rarely steady but has a beating characteristic. When the ship
is not pitching appreciably, this beating effect is due to the shifting phase accompanying the
slight changes in speeds of the shafts. Thus the degree of benefit to be derived from a syn-
chronizing device is indicated by vibration records that show this beating characteristic,

The synchronizing device, if performing its function, holds the hull vibration level at the
minimum value observed in the beating records.

E. FLEXIBLE MATERIALS IN THE VICINITY OF PROPELLERS

As pointed out in Chapter 7, a latge fraction of the propeller-exciting forces acting on
the hull is associated with the pressure field in the vicinity of the propellers. Just as the
vibratory force due to an unbalanced piece of machinery may be attenuated by installing it
on isolation mountings, o, theoretically at least, the effect of the blade-frequency pressure
field at the stern of a ship can be attenuated by the use of flexible material at the stern.

Elementary considerations suggest that the benefit of such an expedient is highly
frequency-dependent, and, by analogy with the simple problem of attenuating the force trans-
mitted by a machine having a single degree of freedom, the natural frequency must be well
below the frequency of the force that it is required to attenuate.

Blade frequencies are, in general, at the low-frequency extremity of the spectrum of
mechanical vibration. To produce a stern structure with a frequency well below the lowest
blade-frequency disturbance is a difficult design task. Nevertheless, according to Reference
9-8, this was accomplished on the survey ship NORD. In this case the pressure field direct-
ly over the propeller was attenuated sufficiently by the use of a rubber plate backed by an
airtight box to attain a marked reduction in the level of hull vibration,

F. SUMMARY

This chapter mentions only a few of the most promising antivibration devices that
have been suggested for ameliorating the effects of vibratory exciting forces acting on hulls.
A friction damper such as the Lianchester damper discussed in Reference 8-1 could con-
cojvably be developed for such a purpose and it has even been suggested that the propeller
bearing forces be isolated from the hull by flexibly supported struts. No doubt many other
schemes could be tried.
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The question naturally arises as to whether or not antivibration devices should be
considered in the early stages of the design of a ship. This is certainly a very important
question, for, if the designer could be asssured that vibration difficulties could be circum-
vented with such devices, he need not concern himself with the problems of estimating the
magnitude of the propeller-exciting forces or of avoiding hull resonances. He could then con-
centrate on designing the afterbody and propellers strictly from the point of view of propulsive

efficiency.
The available information on the results obtained so far with antivibration devices for

ships and the difficulty of maintenance of such devicea suggest that they should not be con-
sidered by the designer from the beginning. Rather, they should be regarded as a last resort
to be used when a design study indicates that large vibratory exciting forces are unavoidable
without alterations in the design which are otherwise inadmissible.
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CH4PTER 10

DESIGN CONSIDERATIONS RELATING TO
STEADY-STATE HULL VIBRATION
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A. INTRODUCTION

Up to the time of this writing, it cannot be said that the consideration of steady-state
hull vibration has been a major item in what may be termed the paper stage of a ship design.
Although, as shown by the existence of Reference 10-1, the aubject could not escape the naval
architect’s attention, the simple fact is that so little concrete information on ship vibration

has really been available to the naval architect that the guestion of hull vibration has been
largely ignored. Only when serious vibration was encountered during the builder’s trials of a
new ship did its consideration assume importance. Then measures were takan to modify the
hull of the propulsion machinery to reduce or eliminate the vibration.

While it is true that a large number of technical papers on thé subject of ship vibration
wers available to the naval architect (as may be seen from the general bibliography included
in this book), the practicing naval architect could not spare the time to digest the mass of
scattered information contained in these papers. He had to rely on such summaries as given
in Referenca 10-1, and it is only because of the increasing tempo of research in this field
since World War II that it is at all feasible to go beyond the limits of Reference 10-1 in this
“hook.

There was, of course, for many years among naval architects a realization that unbal-
anced forces and moments set up by the propulsion machinery would cause hull vibration. In
fact, studies leading to improved balancing of rotating and reciprocating machinery had been
underway for over 50 years. It was indeed clearly recognized that, in avoiding sericus first-
order hull vibration (frequency same as the propeller shaft rpm), the remedy lay chiefly in re-
ducing the forces rather than in trying to reduce the hull response to given forces.

Specifications for static and dynamic balancing of propellers and shafting as well as
the specifications for finishing of propellers wore gradually introduced over the years as the
improvement in balancing and manufacturing techniques permitted.

The lack of information was most acute in the area of propeller hydrodynamic exciting
forces, and, fortunately, some progress has been made in that area in recert years. It is
obvious that, if the excitiug forces can be reduced to negligible magnitude, steady-state vi-
bration will not be a problem regardless of the natural frequencies of the hull. A possible
exception to this is the production of “‘flow-excited’’ vibration which, under special circum-
stances, may produce a fairly steady vibration above a certain critical speed. This point is
discussed further ir Chapter 14. There it is also pointed out that control surfaces may induce
flutter phenomens. The lattor are not considered flow-excited vibrations in the ordinary sense.
In general, the vibration due to sea action is of a transient nature and depends not only on the
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dynamical characteristics of the hull but also on the sea state and the seakeeping character-
istics of the huii.

In the design of ships to be driven by conventional screw-propellers, at least one of
the naval architect’s chief concerns is the avoidance of serious vibration due to propeller-
exciting forces of blade frequency or integer multiples of the blade frequency.

As will be shown in the next chapter, a serious vibration problem may develop when
transient vibrations of the entire hull (resulting from rough seas) are magnified in local hull
structures. This situation, however, is not chargeable to lack of attention to the items con-
sidered in the present chapter. Furthermore, the fact that transient vibrations may involve
hull amplitudes anywhere from ten to a thousand times those considered under steady-state
vibration does not give the steady-state hull-vibration problem a status of minor importance.
A ship may be slowed down temporarily in rough seas, and its heading may be changed to
minimize the effects of transient vibrations, but it must operate over long periods of time and
at full speed under normal sea conditions in the presence of steady-state vibration,

It is not attempted in this chapter to lay out a rigid design schedule for avoiding
steady-state hull vibration with conventional screw-propeller-driven ships. The subject of
hull vibration is still too obscure to permit this. In fact, too many of the ideas introduced
here are a matter of opinion to justify a manual-type presentation. It is attempted in this
chapter, however, to furnish the naval architect with specific recommendations based on both
experimental and analytical studies which, if followed, will reduce the ‘‘calculated risk’’ of
hull vibration that must still be taken by the ship designer.

Although this chapter deals only with considerations relating to hull vibration, it must
be pointed out that the selection of a propeller which is to be satisfactory from the hull-
vibration standpoint must be based also on considerations relating to vibration in the pro-
pulsion syste:, as discussed in Chapter 2.

B. GENERAL PROCEDURE

Since tne level of steady-state hull vibration that will be encountered in service de-
pends on both the magnitude of the exciting forces and the response characteristics of the
hull, the designer naturally first must consider whether there are any unusual specifications
for the ship in question which would cause either abnormally large exciting forces or an un-
usual sensitivity of the hull to vibratory forces. Ii has been attempted to make it clear in
previcus chapters that in neither category can accuracy of calculation be expected at present.
The only exception is the internal excitation due to mass unbalance. For this the designer
can fall back on the specifications for balancing of machinery, shafting, and propellers (see
Section F) to get an estimate of the first-order exciting forces and moments,

If the ship is to house some novel piece of machinery which develops large unbalanced
forces, then vibration trouble is to be anticipated unless huli natural frequencies are kept
well clear of the operating frequency of this machine,
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It is also obvious that, if hull natural frequencies can be kept clear of the range of
operating shaft rpm’s, close attention to ma.s unbalance of propellers and shafting is less
urgent than when they fall in this range.

If the propulsion system is not to include the conventional screw-propeller, a vibration
problem for which little guidance is now available may be imminent. This applies to paddle
wheels of either the side or stern type. The exception is the shrouded propeller, for the
shrouding is intended to smooth out the flow in the propeller race.

If both the hull design and the design of the propulsion system are to be ‘‘conventional,’’
the next consideration for the designer is the location of the range of operating blade fre-
quencies with respect to the range of significant hull critical {requencies. When these two
ranges do not overlap, the likelihood of propeller-excited hull vibration difficulties is greatly
diminished. When they coincide, the reverse is true.

Presumably the designer will have on hand at this stage a design specification for a
propulsion system with a particular range of operating shaft speeds and a particular number
of blades per propeller. He should also have a general idea of the hull scantlings and an
approximate weight distribution plot.

The operating range of blade frequencies is equal to the operating range of shaft rpm’s
multiplied by the number of blades per propeller 2. The range of significant hull frequencies
can only be estimated on the basis of the hull scantlings and weight distribution data avail-
able at this stage. A simple estimate of the frequencies can be made in accordance with the
rational beam theory if: (1) all decks and expanses of shell plating are provided with longi-
tudinal and transverse sliffeners, so spaced that local natural frequencies are not abnormally
low; (2) no heavy pieces of equipment (heavier than 3 percent of the displacement of the ship)
are insialled on resilient mountings; (3) the cargo will not have unusual flexibility such as
possessed by automobiles on inflated tires, large quantities of rubber or plastic material, or
large quantities of springs; (4) there are no ahnormally large expanses of deck unsupported
by bulkheads or stanchions; and (5) the ship does not have abnormally large hatch openings
or unusual structural discontinuities. '

If the designer knows that the foregoing conditions can be met, he can then make a
very simple estimate of the range of hull critical frequoncies. First, he can estimate the
fundamenial or 2-node vertical frequency by one of the empirical formulas given in Appendix
C. Better than this, he can use his own value of a constant to te substituted in the Schiick
formula. This formula is

N-c 'V‘_’_. ' [10-1]
ALS

where A is the frequency in cpm,
C is an empirical constant,

I is the area moment of inertia of the midship section in ft2-in.? units,
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A is the displacement of the ship in long tons, and
L is the length in ft. '

In lieu of assuming some value of C within the range of values given in Appendix C, the de.
signer can devise his own value of ¢ if he has available data on a previous ship of the same
general type, Thus, if he knows N, /, D, and L for the other ship, he can solve Equation
[10-1] for ¢. Then from the values of /, D, and L for the proposed design, he can use the
same equation to find A for the new ship,

Unless the L/D exceeds 18, the designer can then sssume that there will be not more
than six vertical modes, four horizontal modes, or three torsional modes of significance. If
the L/D exveeds 18, the formula suggested by Baier and Ormondroyd 18-3 can be used; namely

S

5
N's — [10-2

5 ]
where N’is the number of significant vertical modes,

L is the hull length, and
D is the hull depth,

The number of horizontal and torsional modes considered significant would then have to be
increased proportionately.

At this stage the designer can make the assumption that the ratios of the frequencies
of the vertical modes fall in the series 1, 2, 3, etc., so that he has only to double the 2-node
frequency to estimate the 3-node frequency, and so on.

Next, the rough rule can be used that the 2-node horizontal frequency will be 1.5 times
the 2-node vertical frequency and that the horizontal frequencies also follow the 1, 2, 3 rule.
It is not intended to furnish here any empirical rules for the frequencies of submarires but
such rules can be deveioped as information on such ships 1s accumulated.

Finally, an estimate can be made of the fundamental torsional frequency by Horn’s
formula given in Appendix C. While there is little information on which to base the ratios
of the frequencies of the higher torsional modes to that of the fundamental, on the hasis
of the information obtained on GOPHER MARINER, 1% it is suggested here that the de-
signer assume that the frequency of the third torsional mode will not be over 2.5 times the
fundamental torsional frequency (for GOPHER MARINER the ratios were 1: 1,8 : 2.2).

The next step depends on whether or not the range of hull critical frequencies is clear
of the range of operating blade frequencies. For large ships it is a common occurrence that
the highest significant hull critical frequency is lower than the lowest operating blade fre-
quency. In this case resonance with the blade-frequency forces is not to be anticipated, and
it is to be expected that the blade-frequency vibration will bo concentrated in the stern. The
vibration level, of course, will depend on bath the driving force and the driving moment. The
force and moment estimating is digcussed in Chapter 7. The formulas for estimating the stern
amplitude for known forces and moments are given in Appendix D.
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When it is indicated that the fraguanny of any of the significant hull modes will fall in
the operating range of blade frequencies, the designer should attempt to predict the level of
resonant vibzation that would exist if the iwo frequencies should coincide. Again the level
will depend on the magnitude of the exciting force, but the response will depend slso on the
damping. The foros can be estimated in accordance with the information given in Chapter 7,
and the forced vibration calculation can be made by the methods given in Chapter 4.

If the design is such that the conditions specified on page 10-3 cannot be met, then
no vibration predictions are feasible in the early design stage and the designer must wait
until the design has advanced to the stage at which the parameters required for & more de-
tailed vibration analysis are svailable, A sample calculation of a vertical hull mode by the
digital process is given in Appendix A. For details of the calculation of hull modes when
heavy units are to be installed on resilient mountings, see Reference 10-5.

In lieu of attempting to estimate the propeller-exciting forces, the designer should con-
sider the possibility of negotiating for a model determination of these forces, The state of
the art of doing this at the present time is indicated in Chapter 7 as well as in Reference 10-8.

C. REDUCING PROPELLER FORCES

The first-order propeller forces (those due to mass and pitch unbalance of the propeller)
are considered in Section F of this chapter, The present discussion refsra to the blade-
frequency forces and to forces whose frequencies are multiples of the blade frequency.

As pointed out in Chapter 7, these forces depend on both the pressure fluctuations at
the hull surfaces due to the individual propeller blades and the bearing forces. The latter
forces in turn depend on the uniformity of the flow into the propeller races. Obviously, moving
the propeller astern will usually reduce both components of the forces since the pressure field
at the hull will be weakened and the wake variation (which is aggravated by the boundary
layer when the prepeller is close to the hull) will be reduced.

It is equally clear, however, that there are severe limitations to the process of moving
the propellers astern. Some limitations are thc danger of fouling the propoller in docking,
the weakening of the support of the aftermost propeller shaft bearing, and the loss of thrust
due to the high wake near the hull. It is possible, however, to obtain increased propeller tip

clearance withoil moving the propeller by giving the propeller blades a rake in the aft direction.

The use of a propeller tunnel or shrouding is an obvious means of reducing propeller-
exciting forces, This is discussed in some delail in Reference 10-7, If absence of hull vi-
bration is an especially important requirement for the proposed ship, it may well warrant in-
stallation of a shrouded propeller for this reason alone. ‘

In the past the most common expedient to ameliorate the effects of blade-frequency
hull vibration (when encountered on the initial trials of a ship) was to substitute for the
original propeller another of similar thrust and torque characteristics but with a different
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number of blades, Obviously, this expedient may also be introduced in the design stage.
The trend has been from three to four-, five-, and six-bladed propellers,

Increasing the number of propeller blades will, in general, decrease both the forces
due to the pressure field acting on the stern and the bearing forces. The effect of increasing
the number of blades may be compared in a qualitative way to increasing the number of cyl-
inders in an internal combustion engine, The thrust per blade and the contribution to the lat-
eral force per blade are both reduced. Any given variation in wake will obviously cause less
variation in the lift and drag on a single blade when the blade area or angle of attack is re-
duced, Thus, in general, the net effect on the resultant force due to all blades will ba re-
duced. The exception nccurs when the wake pattern is such that there is greater reinforce-
ment of lateral force components with an increased number of blades. Hence, ar analysis
such as discussed in Chapter 7 is really necessary before it is assured that increasing the
number of blades will reduce the exciting forces in the gpecific ease in question. Thus,
when the supporting arrangement is such that two or more blades pass threugh the wakes of
obstructions simultaneously, large blade-frequency thrust variations may be expected. Of
course, the reinforcement of the thrust variations does not necessarily mean that the lateral
force variations will reinforce. The thrusts are unidirectional, whereas the lateral forces
have different directions for different blades. Details of the calculation of bearing forces
from the wake survey are given in Reference 10-8.

Hence, in seeking to reduce propeller-exciting forces without introducing unconven-
tional changes, the designer must, in general, compromise between the expedients of in-

creasing the propsller tip clearances and increasing the number of propeller blades.

D. AVOIDING HULL RESONANCE

The urgency of avoiding hull resonance depends, of course, on the magnitudes of the
exciting forces and the damping. When either the forces are small or the damping is large,
hull resonance is not intolerable and many a ship must operate under such a condition at
particular speeds. While it may be noted here that first-order disturbing forces will steadily
diminish as improved methods of balancing and machining are developed, the question at
issue here is: How can resonance be avoided?

it is, in general, feasible for the designer to avoid first-order resonance if the ship is
to operate at a fixed rpm. The reason is that, although propeller shaft speeds are relatively
low, there is a considerable spread in the frequencies of the lower hull modes, The advan-
tage of avoiding such resonance is obvious since, under such circumstances, a slight un-
balance in propellers, shafting, or machinery will not cause excessive hull vibration,

Keoping the blade frequencies clear of the range of significant hull critical frequencies
is usually relatively easy on large ships and relatively difficult on small ships. This is
because on large ships the operating blade frequencies are usually well above the range of

hull eritical frequencies, whereas on small ships they are usually right in this range.
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When the blade frequencies fall in the range of significant hull critical frequencies, the

prospects of avoiding & hull resonance are not good. This is because first, as indicated in
the previous section, there are normally about & dozen hull medes that may be significantly

excited; and, second, the frequency of each mode will vary with hull displacement over & band
which depends on the variations in loading encountered in the operation of the ship in question.
Figure 10-1, taken from Reference 10-4, illustrates the difficulty the designer may face

in seoking to avoid hull resonance in the blade-frequency range. The ship in question (the
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MARINER class) was & cargo ship designed by the U.S. Maritime Administration, with the
following principal dimensions:

L 525 ft

B 76 ft

D 44 ft 8 in,
Displacement 17,000 tons
Mean draft 24 ft
taximum shaft rpm 105
Propeller blades 4

Single screw

In this case, as in many other cases, the number of significant modes and the varia-
tion of natural frequencies with loading was such that resonance-free areas with propellers
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of the usual number of blades were almost nonexistent. The designer might, however, by re-
sorting to a six-bladed propeller, have been able to boost the operating blade frequency above
the range of significant hull mode frequencies. This was not done in the case of the MAR-
INER Class, which operated satisfactorily with a four-bladed propeller, since the exciting
forces were not excessive for that ship. -

When any prospect of keeping the operating blade frequencies above the range of hull
mode frequencies is indicated, the designer should attempt more refined calculations than are
given by the preliminary estimates to more definitely pinpoint the critical speeds. If, after
this, it is still indicated that the blade frequency will inevitably fall in the range of hull crit-
icals, then every effort must be made to reduce the forcas. )

Of course, blade frequencies can also be increased by using higher shaft speeds. If
the machinery design is not already frozen, this possibility should be considered. A faster
turning propeller can develop the same thrust with & smaller diameter; this also gives in-
creased tip clearance. A high-speed supercavitating propeller can bring the blade frequencies
well above the range of significant hull criticel frequencies, and this might be tried if not

ruied out by other considerations.

E. AVOIDING LOCAL RESONANCE

As in the case of vibration of the entire hull, the amplitude of steady-state local vibra-
tion will also depend on both the magnitude of the exciting force and the damping. Although
the classification ‘“‘local structure’’ is somewhat arbitrary, here it means any structure that
can be excited by a local disturbance so as to vibrate without appreciable vibration of the
hull girder. Those are the structures considered in Chapter 6 and include masts, deck houses
of shoit longitudinal extent, panels of deck plating, bulkheads, heavy items of machinery on
nonrigid foundations, as well as items of equipment installed on resilient mountings.

Obviously, changing the natural frequency of a local structure to avoid a condition of
resonance is a possibility, whereas changing a natural frequency of the hull itself after it is
fabricated is extremely difficult.

One unfortunate aspect of the problem of local resonance is that the use of large
numbers of propeller blades to reduce the propelier-exciting forces often brings the blade-
frequency intc the range of natural frequencies of many local structures whose frequencies
would otherwise be well out of range,

There are, of course, some relatively large local structures for which major alterations
would be required if it were considered necessary to raise their natural frequencies., In such
cases, however, it will usually be found that the local natural frequencies fall in the range of
significant hull mode frequencies, and, in fact, that these structures may even modify the vi-
bratory respounse characteristics of the entire hull. Under such circumstances calculations
should be made of the natural frequencies and normal modes of the hull with these local struc-
tures treated as equivalent sprung masses; see Chapter 6. The modes found in such
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calculations will indicate to what extent the amplitude of the local structure will exceed the
hull amplitude in the modes in whick it plays a significant role. These modes must now be
considered modes of the combined system and the conditions which ensure that they will not
be dangerously excited are the same considerations that apply to rescnant vibration of the hull.

The fortunate aspect of the local resonance problem is that trouble due to this can be
anticipated before the ship is ready for the builder's trials. The naval architect can use the
relatively small and portable vibration generators such as described in Reference 10-9 to de-
termine local natural frequencies. Even without these, such frequencies can be found by the
‘‘bop”’ or impact tost in which a heavy timber is used to excite the structure and the transient
vibrations following the impact are recorded with sensitive instruments. Some tests of this
type can be made even before launching, whereas those in which the bottom plating may have
an effect must be delayed until after launching.

F. BALANCING

The subject of balancing, in general, is a very important one for the naval architect
concerned with avoiding ship vibration. It is treated in.considerable detail in Reference 10-1
and the basic principles are discussod in standard textbooks on mechanical vibration; e.g.,
References 10-10 and 10-11, The naval architect (as contrasted with the marine engineer) is
not so much concerned with the techniques of balancing propulsion machinery as with the spec-
ifications that should be set for balance. He must have assurance that, if he establishes a
specification for maximum perinissible unbalanced forces or moments on the basis of his
estimate of the hull response characteristics, these specifications can be met by the manu-
facturer.

Since the advent of steam turbine power plants the chief concern of the naval architect
with regard to balancing, at least for large ships, has been the specifications for balance of
propellers and shafting.

It has been pointed out that a screw propeller is subject to both mass unbalance and
pitch unbalance. The latter requires further consideration here, Pitch unbalance is caused
by lack of uniformity or symmetry in the geometry of the propeller, and may exist even when
mass unbalance is negligible.

If the pitch of one propeller blade is greater than that of the remaining blades, then,
under uniform flow conditions in the propellor race, the lift, drag, and moments on small
elements or strips of this blade are not the same as for the corresponding elements of any of
the other blades. To exaggerate the pitch unbalance effect, one can consider the situation
of a propeller having only one blade. The hydrcdynamic force-system acting on the propeller
could then be roduced to a constant axial force, a force lying in & plane normal to the shaft
axis, a constant torque about the shaft axis, and a moment in a plane passing through the
shaft axis. The vectors ropresenting the lateral force and the moment would be constant in
magnitude but would rotate with the propeller. It is seen that where the flow is uniform there
is no thrust variation and no torque variation but that the propeller bearing will be subject to
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simple harmonic forces in both the horizontal and vertical directions as well as to simple
harmonic moments in both the vertical and horizontal planes. The frequencies are first order;
that is, the same as the rpm. When the velocity field is nonuniform, harmonics (integer
multiples of first order) will also, in general, be present.

When the flow in the propeller race is nonuniform, all forces and moments previously
copsidered for the one-bladed propeller will now be modulated by a ‘‘signal’’ due to the wake
pattern whose fundamental period will be the time taken for the propeller to make one revolu-
tion. In this case there will be thrust and torque variations at the signal frequency, bearing
forces in the vertical and horizontal directions, and moments in both planes of the firat order,
All harmonics of the wake pattern signal will also contribute so that the spectrum of bearing
forces may have numerous frequency components. Thus, while pitch unbalance may be ex-
pected to produce first-order vibration, second and higher orders wili also be present when
the inflow to the propeller is nonuniform. For furthor discussion of excitation due to pitch
unbalance, see Reference 10-8,

Specification 8.2.3.2, The following is quoted from page 6 of this reference:

““Balance limits — When balanced in accordance with 8.2.3.1 the residual
unbalance, in each plane of correction, of any rotating part shall not exceed
the value determined by:

4w
U= v for speeds in excess of 1,000 rpm [16-8}
or
5630
U= - for speeds between 150 rpm and 1,000 rpm [10-4]
N
or
U = 0.25 W for speeds below 150 rpm [10-5]

where U = maximum allowable residual unbalance in oz.-in.
W = weight of rotating pert in 1b
N = maximum operating rpm of unit.”

The Westinghouse standard for naval equipment is expressed by the formula

4w

WR< — [10-6]
n

where n is the rpm and WE is the weight, unbalance.
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An intensive study of tolerance for shafting unbalance was made as s result of first-
order hull vibration on = recent class of naval destroyers. The results of this study are dis-
cussed in Reference 10-12,

Reference 10-13, which deals with relatively small units rotating at high speed, also
discusses the principles of dynamic balancing.

A frequent rule of thumb is that for the maximum running speed of the rotor

WRaw? W
2 o< — [10-7]
g 100
or that, hence
2
Fo” <001 [10-8]
g

In this formula a consistent sei of units must be used, Thus, if £ is in in. ¢ must be
in./sec?, and & must be the angular velocity in radi/sec.

In the case of raciprocating machinery, if cancellation cannot be obtained by arranging
the crank angles suitably, it may be necessary to install auxiliary reciprocating masses
driven by the machine to be balanced. This is discussed in Reference 10-1.
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CHAPTER 11

DESIGN CONSIDERATIONS RELATING
TO TRANSIENT VIBRATIONS

A. INTRODUCTION

The basic beam theory of ship vibration discussed in Chapter 3 is a general dynamical
theory and is applicable to the transient response characteristics of ships, as shown in Chap-
ter 5, However, this theory cannot be applied indiscriminately to problems such as the slam-
ming of ships in a seaway which may involve deflections so large that buckling and plastic
strain of structural members ocour,

No sharp line of demarcation can he drawn between the field of structural seaworthiness
and the field of ship vibration. Certainly, in the structural strength of ships, the transient
vibration problem is of far more importance than the steady-state vibration problem. In fact,
the hull girder stresses due to steady-state vibration are almost negiigible. Tolerances for
steady-state vibraiion must be based, not on hull girder stress levels, but on permissible
amplitudes determined from physiological fuctors, satisfactory operation of equipment in-
stailed in the ships, or by local stress and fatigue considerations.

All that is attempted in this chapter is to show that the rational beam theory of ship
vibration advocated in this book can be used as a guide in considering, at least qualitatively,
the transient response characteristics of a hull. Thus, for instance, after a severe slam in a
seaway, a ship will execute a complex pattern of decaying vibrations which eventually settle
down into vibrations in the normal modes considered in Chapter 8. Since these vibrations
often persist for a large fraction of a minute, and are much larger in amplitude than those
usually considered under steady-state vibration, they may cause intolerable vibrations of
local struciures whose natural frequencies happen to coincide with their frequencies.

It is also appropriate to point out in this chapter that, although the bending moments
to which a hull is subjected in a seaway are actuslly of a transient nature, the components
having the frequency of wave encounter vary at such a slow rate that they are treated as
static in the standard strength calculation; see Reference 11-1. The static beam theory to be
used in this case, however, should logically coincide with the rational beam theory considered
to be valid in the low frequency range of hull vibration. Hence the designer should be able
to derive certain conclusions as to the hull strength in a seaway from its vibraiory response
characterisiics. Therefore, it is suggested here that the hull girder characteristics as de-
termined from the vibration analysis are applicable regardless of whether the naval architect
continues to rely on the time-honored standard strength calculation which uses a static load
determined from an assumed wave profile, or undertakes to forecast the extreme loading con-
ditions in a seaway.
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The dynamical system treated in this book is actually an ideal system considered free
in space with mass added to account for the inertia effect of the water and viscous dampers
inserted to allow for the energy dissipation effects.

The transient loading in a seaway which imposes peak stresses in the hull involves
rigid body motions that cause both large variations in the buoyant forces (which are entirely
neglected in the vibration analysis) and large variations in the added mass effect of the sur-

3
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rounding water (which for convenience has so far been treated as constant in time in the
vibration analysis). '

Although this treatment of the hull as a system free in space for the purpose of the vi-
bration analysis may seem highly artificial, the designer should realize that the hull by itself

g L
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is actually a system free in space subject to a complex system of forces imposed by the sur-
rounding water. If all these forces could be predicted in advance as functions of time, then

the transient problem discussed in Chapter 5 would be valid, at least up to loadings that did
not produce strains exceeding the elastic limit.

It is especially interesting to recall that the hull proper is nover permitied to execute |
free vibrations, for, no matter how calm the sea may be, the pressures associated with the 1
inartia of the surrounding water will always force it to vibrate at frequencies other than its
ratural frequencies in free space, As pointed out in Reference 11-2, it was a common prac-
tice around 1932 to compute the 2-node vertical frequency which a ship would have in air
(free space) and then to apply to this frequency (called the ‘‘theoretical frequency®’) a number
of correction factors. The largest of these was, of course, the factor for the inertia effect of
the surrounding water. Roughly, this effect lowers the free space fundamental vertical fre-
quency by 25 percent.

Although the free space natural frequencies of the hull are congiderably higher than
the natural frequencies in water, the corresponding mode shapes are not very different be-
cause the inertia effect of the water conforms roughly with the weight and rigidity distribu-
tions., Since the corresponding components of water pressure drive the hull at a frequency
below its natural frequency, they are in phase with the vibratory displacement, whereas the
vibratory buoyancy forces are 180 deg out of phase with the vibratory displacement.

B. THE HULL GIRDER

Although the designer has not been accustomed to think of the structural design of the
hull girder as a vibration problem, he has been accustomed to regard the hull as a beam. If
the hull is designed structurally as a beam, then it may be expected to exhibit the vibratory
characteristics of a beam. In fact it is advocated here that the extent to which its vibratory
response characteristics are beamlike may be used as a design criterion, This statement, of -
course, requires some clarification because it has been pointed out that if large items of
equipment are deliberately installed on flexible mountings, they can distort the normal mode
patterns considerably from beamlike form.

11-2

A



Clearly, the fundamental vertical frequency of a hull increases with its bending rigid-
ity or EI. Although a thin-walled box girder will not be able to develop its nominal £/, an
adequately stiffened thin-walled box girder can be made to approach this as a limit. As
stiffeners are added to increase the bending rigidity, the fundamental flexural frequency of
the free-free girder increases and thus the frequency is an indication of the flexural rigidity
in this simple case,

The theory also shows, however, that the frequency depends on the mass distribution
and hence it cannot be the sole criterion of bending rigidity. Furthermore, as suggested in the
case of GOPHER MARINER, ‘"3 nonbeamlike vibratory characteristics may be caused by the
cargo which a ship is carrying. The exception in this case proves the rule; it does not inval-
idate it.

If the hull is designed so that its vibratory characteristics are besmlike, in the absence
of heavy items of equipment resiliently mounted, they will then be predictable to a reasonable
degree. If they are predictable, then the propulsion system can be designed to avoid hull res-
onance. Even when it is known that a ship must carry cargo that will make the prediction of
its vibratory response characteristics difficult, there is still an advantage in producing & hull
that will have predictable vibration characteristics with & ‘‘normal’’ cargo. It may be possible
to operate at a slower speed whenever such abnormal cargo must be carried.

The transient loading of hulls in heavy seas can be treated only on a statistical basis
as pointed out in Reference 11-4. It is not intended to imply here that designing to produce
beamlike vibratory characteristics can reduce the slamming loads in a seaway. These depend
on seakeeping characteristics which involve, among other factors, the shape of the hull and
its speed. As a matter of fact, GOPHER MARINER experiments indicate that a cargo that
introduces nonbeamlike vibratory characteristics may introduce a desirable damping action.
The main contention here is that beamlike vibration characteristics for the hull proper are
desirable,

Another factor pertinent to the present discussion is the presence of structural dis-
continuities. These are usually associated with local stress concentrations and are con-
sidered undesirable in design. In a beam simply supported at its ends and uniformly
loaded statically, there would be an abrupt change of curvature in the deflection curve at
the point of discontinuity. Similarly, if such a beam were set vibrating in its fundamental
normeal mode the pattern would also show & sharp change of curvature at this point.

Thus the rule (but & rule with exceptions) advocated here is that the vibratory response
characteristics should be beamlike. The exceptions occur when large uniis are to be installed
in the hull on resilient mountings or when unusual cargo having ‘‘springy’® material is to be
carried, In such cases the hull, even if designed for beamlike characteristics without such
conditions, will not exhihit them in practice.

While it is not advocated here that the digital method of transient response calculation
given in Chapter b is applicahle to severe slamming load conditions, it might be noted that




calculations made by the method discussed in Reference 11-5 prediot that the vibratory re-
sponse to an impulsive load at the bow will be predominantly in the 2-node flexural mode.

This is generally confirmed by vibration measurements on ships in a seaway; see, for example,
Reference 11-8.

C. LOCAL STRUCTURES

The transient motions of locul atructures when the ship is operating in heavy seas are
of serious concern to the designer. Ohviously, the vibratory motions of local structures which
do not carry an internal source of excitation (such as an unbalanced pisce of machinery) will
depend on the motions of the hull girder in their vieinity, Even without considering the sta-
tistical problem of predicting the peak values of the transient motions which the hull will ex-
ecute in a seaway, there can still be pointed out here the desirability of keeping the natural
frequencies of local structures clear of the frequencies of the significant hull modes.

If it were a simple matter to raise the natural frequencies of local structures, the an-
swer to this problem would be tc reinforce them sufficiently so that all local natural frequen-
cies were above the range of hull mode frequencies. Since this noi feasible with the larger
structures (such as masts), the designer must consider which hull modes are most effective
in exciting the particular local structure in question. As an illustration, a pole mast will
have relatively low cantilever natural frequencies in the fore-and-aft and athwartships direc-
tions. The fore-and-aft mode responds to hull girder rotation in the vertical plane passing
ihrough the longitudinal centerline of the hull. In the vertical flexural modes of the hull the
rotation in the vertical plane is relatively large near the nodal peints and a minimum at the
antinodes. In the fundamental or 2-node mode the rotation is a maximum at the ends.

Figure 11-1 illustrates a situation in which a pole mast is located at a point of relatively
large rotation in the fundamental vertical flexural mode of the hull. QOn slamming in 2 seaway
a train of decaying vibrations of large amplitude in this mode will be excited. If the pole
mast were rigid, the fore-and-aft motions at the top of the mast due to this vibration of the hull
would be 4 y, where 4 is the distance from the top of the mast to the elastic axis of the hull
and y is the angular amplitude of the hull at the location of the mast. If, however, the fore-
and-aft cantilever natural frequency of the mast happens to coincide with the frequency of this
flexural mode of the hull, the fore-and-aft motion at the top of the mast will be greatly magni-
fied. Thus, in this case, a special effort should ba made to ensure that the fore-and-aft can-
tilever frequency of the mast is clear of the 2-node vertical frequency of the hull. Similsrly,
athwartship motion at the top of the mast is produced by torsional vibration of the hull at the
base of the mast and thus the frequency of the 1-node torsional mode of the hull should also
be avoided if possible.

It must be emphasized here again that when massive locsl structures have natural fre-
quencies (estimated on the assumption of a restrained hull) which fall near a frequency of one

of the modes which the hull would have if the local structure were rigid, the modes and
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Figure 11-1 — Illustration of Case in Which a Pole Mast Is Located at a
Nodal Point of the Fundamental Vertical Mode of a Hull

frequoncies of the hull itself are modified by the ‘‘sprung mass'’ effect. Details of analytical
nethods of dealing with this situation are given in Reference 11-7. Urfortunately, it is only
possible to carry out such analytical troatments when the hull design has reached a relatively
advanced stage. Only then can the parameters required in the equations be evaluated.

D. RESILIENTLY MOUNTED ASSEMBLIES

When all six of the natural frequencies of a rigidly mounted assembly (computed on the
assumption of an immovable hull) are well above ihe range of significant hull mode frequen-
cies, it may then be assumed that under transient excitation of the hull the assembly will
move with the hull, Under such circumstances the resilient mounting is installed for the pur-
pose of isolating the assembly either from blade-frequency vibrations that are well above the
hull natural frequency domain or from high-frequency vibrations accompanying shocks which
produce local vibrations in the area of the mounting.

As in the case of local structures, a massive askemhly such as an engine, if installed
on isolation mountings, will affect the hull frequencies themselves, and then it must be con-
sidered as a sprung mass. For details of analysis in such cases, see Reference 11-7. In
the case of machinery, the resilient mounting is used chiefly to isolate the hull from the un-
balanced forces and moments due to the operation of the machine itself. Such isolation will
be achieved only when all six natural frequencies of the assembiy are below the operating
frequencies (or speeds) of the machine.

A matter of chief concern in the selection of an isolation mounting system for an as-
sembly is whether the mountings will bottom under rough sea conditions. Should this happen
the equipment may suffer more severe damage than if it had been rigidly secured to the hull.
As a safeguard against this, shock tests have been devised for military equipment, as dis-
cussed in Reference 11-8. The damaging effect of bottoming can also be reduced by the use
of snubbers; see Reference 11-9.

11-6




REFERENCES

11-1. Rossell, H,E, and Chapman, I..B., Editors ‘‘Principles of Naval Architecture,"’
published by SNAME, Vols. 1 and 2 (19389).

11-2. McGoldrick, R,T., ‘A Study of Ship Hull Vibration,’’ EMB Report 805 (Feb 1935),

11-8. MecGoldrick, R.T. and Russo, V.L., ‘‘Hull Vibration Investigation on S8 GOPHER
MARINER,'’ Trans. SNAME, Vol. 68 (1955). Also TMB Report 1060 (Jul 1956).

11-4, Jasper, N.H., ‘‘Statistical Distribution Patterns of Ocean Waves and of Wave-
Induced Ship Stresses and Motions, with Engineering Applications,’’ Trans, SNAME, Vol. 64
(1956). Also TMB Report 921 (Oct 16567),

11-5. McGoldrick, R.T., “‘Calculation of the Response of a Ship Hull to a Transient Load
by a Digital Process,”” TMB Report 1119 (Mar 1857),

11-8. Jasper, N.H. and Birmingham, J.T., ‘‘Strains and Motions of USS ESSEX (CVA 9)
during Storms Near Cape Horn,'' TMB Report 1216 (Aug 1958).

11-7. Leibowitz, R.C. and Kennard, E.H., ‘“Theory of Freely Vibrating Nonuniform Beams
Including Methods of Solution and Application to Ships,’” TMB Report 1317 (May 1961).

11-8. Vane, F.F., ‘‘A Guide for the Selection and Application of Resilient Mountings to
Shipboard Equipment,”’ TMB Report 880, Revised Edition (Feb 1958).

11-9, Crede, C.E., **Vibration and Shock ISOIB.tiOD,” John Wl-ey & Sons, IHO., New York
/1951)-
A}

11-6

£
i
-
z
:
.

—



s
Pt

CHAPTER 12

DESIGN CONSIDERATIONS RELATING TO VIBRATION OF
THE PROPULSION-SHAFTING SYSTEM

A. INTRODUCTION

Machinery vibration per se is a subject which is outside the domain of hull vibration.
However, there are various types of vibration in the propulsion system of a ship which may be
excited by the propeller itself regardless of the degree of mass balance attained in the manu-
facture of the propulsion machinery. Since the designer is not free to select a propeller on
the basis of hull vibration characteristics alone but must also take such propeller-excited
machinery vibration into account, some consideration of the latter has been included in this
book. The vibration types in question are torsional vibration of the propulsion-shafting sys-
tem, longitudinal vibration of the propulsion-shafting system, and lateral vibration of the pro-
peller shaft.

Torsional vibration of propulsion systems is characterized by sinusoidal time vari-
ations in the angular velocity of the rotating members or, in other words, by the superposition
of angular oscillations on the steady rotation of these members.

Longitudinal vibration is characterized by fore-and-aft oscillations of the propeller,
the shafting, and the entire propulsion machinery, including both rotating and nonrotating
membera,

Lateral vibration of the propeller shaft is frequently spoken of as whirling. Under this
type of vibration the shaft center describes a circular or elliptical path in a plane normal to
the shaft axis. In some cases the ellipse may be very narrow and in the limit yield a recti-
linear path.

In all three cases the basic phenomenon is now well understood and has been discusced
in the technical literature in recent years, This does not mean, however, that the critical
speeds can in all cases be predicted with high precision. As a matter of fact, in the evalua-
tion of the parameters used in predicting such vibration, difficulties exist similar to those
pertaining to the evaluation of the parameters used in the hull vibration calculations.

The analysis of all three types of vibration in the propulsion system follows the same
general line as in the case of the hull. Thus, an estimate is usually made of the natural fre-
quencies and normal modes of vibration of the system. Then an estimate is made of the ex-
citing forces. It must be noted here that in the case of diess} drives, torsional excitation ex-
ists not only at the propeller but also in the prime mover. Next, an estimate is made of the
damping in the system, and finally, a calculation is made of the forced vibratory response.
This is then compared with permissible levels established on the basis of past experience,
and, if predicted to be excessive, steps are taken to reduce it.
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B. TORSIONAL YIBRATION

The subject of torsional vibration of propulsion systems has been treated extensively
in the technical literature; see Reference 12-1, Historically, the phenomenon first became a
gerious problem in internal combustion engine systems and the literature on the subject in
this connection is extensive; see Reference 12-2, The basic theory is the same as applied
to the pure torsional modes of the hull itself, In the propuision system, however, the analy-
sis is complicated by the presence of reduction gears, high and low pressure turbine sys-
tems, or, in the case of diesel drives, by reciprocating members,

For the immediate problem of this book, the designer needs assurance that a selected
propeiler will not create a torsional vibration condition which would not exist if the propeller
were replaced by a cylindrical mass of the same mass moment of inertia. The latter parameter,
incidentally, must include an allowance for water inertia effect and this also poses a problem
in evaluation of parameters; see Reference 12-3.

Fortunately, it is usually feasible to keen the operating range of blade frequencies
clesar of the range of torsional criticals. In the case of geared turbine drives, which at pre-
sent comprise the majority of ocean-going ships, a common practice is for the designer to
select a ‘‘nodal drive’’; see Roference 12-1. In this case the first torsional critical speed is
8o low compared to the normal operaling speed of tho ship that excitation from the propeller
is negligible. The second torsional mode is ‘‘tuned out.”” This is accomplished by design-
ing the two turbine branches sc that they will have the same torsional natural frequency (the
bull gear being held fixed). This produces a mode such that the entire propulsion system from
the proreller to the byll geer is a rode and hence, torgue variations at the propeller will not
excite this mode. The third and higher torsional modes fall well above the maximum operating
blade frequency. '

A general scheme for the torsional vibration analysis of propulsion systems developed
at the Bureau of Ships of the Navy Department is given in Reference 12-4, The principal aim
of the designer in applying this method is to guarantce that éignificant torsional vibration will
not exist in the propulsion system in normal operation of the ship.

C. LONGITUDINAL VIBRATION

Longitudinal vibration of propulsion systems has attracted general attention more re-
cently than torsionel vibration although the phenomenon undoubtedly occurred long before it
was recognized. It was brought strikingly to attention when it appeared unexpectedly on large
naval vessels during World War I1.1%-5

In this case, the analysis involves equations quite similar to those involved in tor-
gional vibration analysis; the only difference is that forces and rectilinear displacements
are involved instead of torques and angular displacemente.

The chief difficulty in the analysis is in the evaluation of the longitudinai stiffness of
the thrust bearing and machinery foundations, but, fortunately, in those propulsion systems in
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which ths longitudinal natural frequencies are most likely to fall in the operating range of
blade frequencies, the shafts are relatively long, and the frequencies of the lower longitudinal
modes do not vary widely for large variations in the foundation stiffness.

Here, as elsewhere, the designer is more concerned with obtaining assurance that the
longitudinal critical frequencies are clear of the aperating range of blade frequencies than
with being able to predict the frequencies with precision.

" In general, longitudinal and torsional vibrations of propulsion systems may be con-
sidered as independent of one another, but this is not always the case, as pointed out in
References 12-3 and 12-6, The propeller couples the longitudinal and torsional degrees of
froedom of the system to some extent under all conditions, but the coupling effect is signif-
icant chiefly whon the critical frequencies that would exist without this coupling effect are
close to one another. In such cases the mode excited is actually a longitudinal-torsional
mode and the excitation involves a generalized force which combines the effect of torque
and thrust variations. However, for the designer, it is more important to ensure that the
longitudinal and torsiona! frequoncies are kept far apart thar to be able to predict the ampli-
tude when they are close together.

It is obvious that, where short drive shafts are involved, as when the machinery is
installed far aft, the stiffnesses in the propulsion system are so high relative to the stiffness
which the hull presents to the thrust hearing foundation that analyses of longitudinal vibra-
tion that consider the hull as fixed are not realistic. Here, as in numernus other cases, the
longitudinal vibrations of the propulsion system merge into vibrations of the entire hull-
machinery system for which, as yet, reliable methods of prediction have not been developed.
The fortunate circumstance is that (at least in the case of surface ships) in such instances
the highest operating blade frequency is usually below the first longitudinal critical frequency.

D. LATERAL VIBRATION OF PROPELLER SHAFTS

Considerable impetus was given recently to the study of lateral vibration of propelier
shafts when it was suspected that the phenomenon of shaft whirl was the principal cause of
the failures of tailshafts that occurred at an alarming rate on single-screw merchant ships
shortly after World War II. Although it was later found that the chief stress variations in the

tailshafts were due to thrust eccentricity, 127

the investigation of the problem led to improved

moethods of predicting tailshaft whirling speeds and siresses; see References 12-8 and 12-9. -
As emphasized in Reference 12-9, the combination of a heavy propeller and a long

overharg from the tailshaft bearing may result in a low whirling speed of the tailshaft. The

Burcau of Ships procedure for ensuring against a whirling speed in the running range is out-

lined in Reference 12-10. A general discussion of design stage calculations for marine

shafting is given in Reference 12-11. Inertia effects of the surrounding water on propellers

are discussed in Reference 12-3.
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CHAPTER 13
DESIGN CONSIDERATIONS RELATING TO RESILIENT MOUNTINGS

It was inevitable that in the initial attempts at the isolation mounting of equipment in
ships it was found in many cases that the remedy was worse than the disease. For this reason
many such installations were provided with locking arrangements so that, if the mounting
were found to make conditions worse, it could be in effect eliminated. It also became a com-
mon practice to provide snubbers to ease the impact when the mounted assembly bottomed;
see Reference 13-1.

Although a decision to install major items of shipboard equipment on resilient mount-
ings is & very important one from the design standpoint, this chapter is concerned only with
the questions which arise after such a decision has been made. The subject of isolation
mounting of shipboatd equipment, in general, is discussed in detail in References 13-1 and
13-2. The questions at issue here are: How does the use of resilient mountings in a ship
affect the behavior of the ship from the vibration standpoint? What account of this should be
taken in the hull design?

If the weight of an assembly to be supported by resilient mountings is of the order of
14 percent or more of the displucement of the ship, and any one of its six natural frequencies,
computed on the agsumption of fixed support of the ends of the mounts, falls within the range
of significant hull frequencies (as estimated with the assembly rigidly attached to the hull),
then it is advisable to consider the effect of the resilient mounting on the nurmal modes of
vibration of the hull.

For simplicity it is assumed here that the mounted system can be designed to have
two planes of vibrational symmetry and that these planes are the XZ- and YZ-planes shown
in Figure 13-1 where 0 is at the c.g. of the
mounted assembly when in its rest position, 4

and the XZ-plane coincides with the vertical ?
plane through the longitudinal axis of the ship. o
The concept of vibrational symmetry is dis- s
cussed in Chapter 8. B
In all cases considered in this book the
vertical hull modes are treated as independent /
of the horizontal and torsional modes. How- o ta X
ever, it must be pointed out here that, if a

heavy assembly is flexibly mounted at a con-

iderable distance either to port ot starboard Figure 13-1 ~ Right-Hand Coordinate System
siee elvher fo po Used in Calculation of Natural Frequencies

of the ship’s longitudinal axis and above or and Normal Modes of Vibration of &
below it, there results a coupling of all three Resiliently Mounted Rigid Assembly
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(vertical flexural, horizontal flexural, and torsional) types of vibration, The equations for
the more general cases of hulls with sprung masses are given in Reference 13-3.

The designer first must carry out the calculation of the natural frequencies and normal
modes of the mounted assembly on the assumption that the hull is jmmovable, This process
ig discussed in Chapter 6. Also, the estimates of natural frequencies and normal modes of
the hull must be made on tho assumption that the mounted assembly is blocked so that it can-
not move relative to the hull.

If it is recalled that the effect of the sprung mass on the hull is significant only for
modes whose frequency is near the natural frequency of the sprung mass, and that the effect
is to lower the frequency of a mode below and to raise the frequency of a mode above, it is
apparent that the designer can derive some guidance from the two foregoing calculations even
without making the more slaborate calculations for the hull with the masses treated as sprung.
Thus, if the operating blade frequencies fall well above the range of significant hull mode
frequencies predicted with rigid mountings, no difficulty with steady-state, propellec-exciied
vibration is indicated when the natural frequencies of the assembly fall well within the range
" of hull mode frequencies. Of course, if an assembly has a natural frequency near that of the
highest significant hull mode, and the lowest operating blade frequency is only slightly above
this, a possibility of resonance exists and the need for further calculations is indicated.
However, the designer is still faced with the possibility of excessive transient vibrations.

If the mountings have locking devices it may still be possible to avoid bottoming of the mount-
ings under rough sea conditions, When a sprung mass effect is due {c the flexibility of a
massive local structure iiself, this possibility, of course, does not exist.

One might argue that, if the resilient mountings of an engine were to be locked out under
rough sea conditions, they should not have been installed in the first place. Such reasoning,
however, is not sound. If the mountings are intended primarily to isolate the hull from the
relatively high frequency vibrations of the engine, then this will be accomplished under normal
operating speed conditions in relatively calm seas. When the sea gots rough, the engines
would be slowed down and thus their unbalanced forces and moments would be reduced.
Furthermore, if severe transient vibrations should be set up in the hull under these sea con-
ditions, the vibration induced by the engine would probably be relatively unimportant as long
as these conditions prevailed. Thus, if an isolation mounting system is designed mainly for
eliminating steady-state vipcation, it may be justified to lock it out under slamming conditions
in which it would be required to act as a shock mounting which should be designed for more
severe conditions,

Although the subject of mass-unbalanced rudders is discussed in some detail in con-
nection with hydroelasticity in the following chapter, it is in order to point out here that such
appendages can have a marked sprung mass effect on the horizontal vibration of a hull. At
the present time it is indicated that with a hydraulic steering gear tne effective torsional
stiffness of tho rudder system may be relatively low. Thus, it cannot always be assumed that
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rudder torsional frequencies will be above the range of significant horizontal hull mode
frequencies. The vibration analysis of such systems is discussed further in References

13-4 and 13-5,
In summary, whenever the isolation mounting of large masses (of the order of ¥ percent

or more of the mass of the ship) is under consideration, the designer should look into its

effect on the vibration characteristics of the ship as a whole.
It must be kept in mind that the discussion of isolation mountings in this book does
not extend into the range of acoustic frequencies in which wave effects, such as discussed

in Reference 13-6, take place.
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CHAPTER 14
HYDROELASTICITY

A. INTRODUCTION

At this time hydroelasticity must be regarded as a new science for the naval architect.
Although the basic phenomena dealt with in hydroelasticity are not new, for the most part their
occurrence has been rare in the aperation of ships, and until recently they have been dealt
with individually as isolated phenomenas,

What is really new is the recognition that these separate phenomena comprise a group -
falling under the definition of the term *‘hydroelasticity.’’ Although various definitions of
this term will be found in the litorature (sco References 14-1, 14-2, and 14-3), it seems suffi-
cient to state here that hydroelasticity is concerned with those problems in which water vehi-
cles are subjected to time-varying forces imposed by the water, but governed alzo by the elas-
tic properties of the hull or its appendages. In general, hydroelasticity in naval architecture
parallels the well-established field of aeroelasticity in aeronautical engineering; see
Reference 14-4.

Note that the definition of hydroelasticity just given is really broad enough to include
propeller-excited hull vibration itself, which is the chief topic discussed in this book. How-
ever, the term is currently restricted to problems with hulls or appendages which involve the
water flow past the hull, with the exception of propeller-excited hull vibration, since the
latter is of such common occurrence as to warrant individual consideration.

Lateral vibrations of circular cylinders moving in fluids are frequently observed, and
this phenomenon has been found to be associated with the shedding of vortices. In particular,
such vortices are commonly called Kdrmén vortices and the series of these observed in the
wake of & towed cylinder is called a Kdrmin vortex street. The frequency of shedding such
vortices depends on both the towing velocity and the diameter of the towed cylinder, and
hence, in the design of appendages such as propeller struts, the use of a streamlined section
is important not only in reducing drag but also in preventing vibration. The Kdrmdn vortex
shedding phenomenon is discussed in further detail in Reference 14-1.

Another hydroelastic phenomenon that can be troublesome to the naval architect is the
so-called ‘‘Helmholtz resonator’’ phenomenon. It is illustrated very simply by the production
of a musical tone by blowing over an opening in an air-filled chamber. In naval architecture
the term is something of a misnomer since the chamber is an enclosure whose walls also may
vibrate and play an important role in determirning the frequency. Nevertheless, the hydre-
elastic phenomenon is similar to the one in air in the sense that it is the flow over an open-
ing in a compartment that produces it.

Two other phenomena of prime importance in aeroelasticity have their counterparts in
hydroelasticity although they occur less often in the latter case, These phenoiﬁena are
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‘flutter’’ and ‘‘divergence’’ and apply particularly to hydr~f~ils | that is, to lifting surfaces or
control surface members. '

The basic phenomena of flutter and divergence are dealt with in great detail in text-
books on aeroelasticity; see, for example, References 14-4, 14-5, or 14-6, They arise from
the variation in lift force and moment with velocity and angle of attack, and involve the ques-
tion of the static or dynamic stability of the lifting surface member under its normal range of
operating speeds.

As an illustration of divergence, consider the torsional stability of the spade rudder
shown schematically in Figure 14-1. In this figure the rudder stock is intentionally placed

\Vz
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Figure 14-1 — Schematic Plan and Elevation
of Spade Rudder Subject to Possible
Torsicnal Divergence

near the mid-chord position to exaggerate the hydrodynamic instability effect. This axis
would normally be near the forward quarter-chord position. For simplicity, assume that the
water flow in this case is parallel to the ship’s loungitudinal axis and that the water velocity
relative to the rudder is equal to - 8§, where § is the ghip’s forward velocity, Further, assume
that the flow imposes on the rudder a moment ¥ , with respect to the rudder stock axis given
by the relation

M, =CySta [141]

where a is the angle of attack and £y, is a moment coefficient for this particular rudder.

If the steering gear were locked, any change in the external steady moment applied to
the rudder would evoke an angular displacement Aa, and an elastic restoring moment equal
to ~%A a, where £ is the torsional spring constant of the rudder-steering system. Thus, if
equilibrium exists at an initial angle of attack a , any additional angular displacement A &
evokes a restoring moment —%A @ and an upsetting moment C,, 52 Aa, so that the net restoring
moment is
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~(k-CyS) A

Thus, in this case, the hydrodynamic moment produces a negative torsion spring effect which
varies with the speed of the ship. If the ship should attain such a speed that

k-Cy8%=0 (14-2]

the torsional rigidity of the system would vanish, and, at any speed higher than this, the hydro-
dynamic moment would twist the rudder to failure. In this simplified example the value of §
obtained by solving Equation [14-2] would be called the speed of torsional divergence. Diver-
gence is thus a condition of static instability or instability under a nonoscillatory flow
condition.

Flutter is a condition of dynamic instability and is discussed in more detail later in
this chapter. As applied to a control surface member, the phenomenon may be explained in
simple terms also by reference to Figure 14-1. Suppose that, instead of steady conditions
prevailing, the stern of the ship is vibrating horizontally (in the athwartship direction).

Then, if the rudder lacks mass balance with respect to the rudder stock axis, angular oscil-
lations of the rudder will also be generated. The latter will evoke variations in the hydro-
dynamic lift force acting on the rudder. The effect of these variations in lift force on the
system will depend, of course, on their frequency, magnitude, and phase. If conditions are
such that the lift force variation is in phase with the vibratory velocity and in the same direc-
tion, it will exert a negative damping effect on the system. Since the lift force variation in-
cresses as the ship’s speed increases, it may happen that it is suitably phased and of such
magnitude at a certain speed as to cancel out all positive damping effects in the system. A
speed at which this condition was reached would be called a critical flutter speed. At a
higher speed, if the phase did not shift, the system would have a net negative damping. Under
such a circumstance an oacillation once started would build up exponentially until damage or
failure seourrcds

Still another phenomenon falling under the category of hydroelasticity is the ‘‘singing’*
propeller, also discussed in more detail later in this chapter. This is by no means & new
phenomenon to the naval architect (see Reference 14-7), but it is still not thoroughly under-
stood. It involves the development of vibration of a propeller blade when the shaft attains a
certain speed, the frequencies usually being in the audible range. It is clearly a hydroelastic
phenomenon since it depends on both the flow past the blade as it rotates and the mass-elastic
properties of tho propeller,

B. RUDDER-HULL VIBRATION

In spite of the fact that W. Ker Wilson (Reference 14-8) had cited rudder flutter as a
recognized phenomenon in 1954, few cases of rudder vibration had been reported in the
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United States prior to its occurrence on a new class of naval destroyer, The United States
Navy encountered a case of hull vibration in 1956 which was traced to the behavior of a pair
of twin rudders, Although the ship involved was & naval craft, the investigation of the prob-
lem revealed nothing that would restrict the phenomenon specifically to naval types, and
hence it is cited here as & type of hull vibration problem other than propeller-excited with
which any naval architect might be faced in the future. It is a typical problem in hydro-
elasticity, Its investigation is discussed in detail in Reference 14-9 and only a synopsis is
givern here.

On the initial teials of the ship in question, a 3-node horizontal vibration of the hull
developed in the upper speed range and persisted with a practically constant frequency
throughout this speed range. The steadiness of the frequency, of course, eliminated pro-
peller excitation as the cause. The vibration was finally traced to the twin ruddors which
were initially set with the trailing edges “‘in'’ a few degrees to minimize power consumption.
On reversal of this setting, that is, by placing the trailing edges a few degreea ‘‘out,’’ this
vibration diminished to a permissible level.

To make a long story short, the subsequent investigation showed that the torsional

natural frequency of the rudders fell close to the frequency of the particular hull mode excited,

and, more spocifically, that the rudder-hull system had a normal mode in which the hull vi-
brated in 8-node flexure while the rudders executed torsional oscillations about the rudder
stock axes. The situation satisfied the basic conditions that would make control surface
flutter possible if the 1ift coefficient of the rudders and the speed were high enough.

The basic mechanism of control surface flutter can be explained in simple terms by
cansidering the “‘classical® flutter system of two degrees of freedom illustrated schemat-
ically in Figure 14-2. , -

The control surface member or hydrofoil which may oscillate torsionally about a ver-
tical axis is supported by a structure which can oscillate only in translation in a direction
normal to the steady velocity. The latter structure of mass ¥ is suspended by flexural
springs of combined stiffness K from a rigid member which moves at uniform velacity § above
the water surface. The rigid member also supports a surface plate (not shown) just above the
hydrofoil which moves with uniform velocity and eliminates surface disturbances. The dis-
tance from the axis to the center of gravity of the rotating element {based on an allowance for
added mass effect of water) is designated 4 which is considered positive if the c.g. is down-
stream,

The translational system has damping equivalent to & viscous damping constant C; the
rotational system has mass moment of inertia /, which includes an added inertia for entrained
water; an eolastic stiffness %; an equivalent viscous damping constant ¢; and a mass m, in-
cluding an allowance for added mass effect of the water. The displacement of the axis of the

control surface in translation is designated Y and the rotation of the hydrofoil about the Z-
axis (not shown) is designated 6.
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Figure 14-2 — Schematic Plan View of a Control Surface Flutter
System of Two Degrees of Freedom

mplified analysis of the oscillatory motion of such & eystem may be based on the

following assumptions:

(a) The lift force during oscillatory motion may be taken from the lift coefficient for
steady flow which is a linear function of angle of attack.

(b) The hydrodynamic moment with respect to the axis of rotation of the foil is given by
multiplying the lift force by the distance L from the axis to the center of lift which is a con-
stant L. L is considered positive if the center of lift is upstream.

This vields the following pair of simultaneous ordinary differential equations in the
variables Y and 6

10+ 06+ (k- ALS?) 0~mAY + ALSY = 0 (14-3]
—mhO-AS20+ (M +m) Y+ (C+ AS) Y+ KY =0 [14-4]

Such a pair of differential equations can be solved by an analog computer, or they may
be converted to algebraic equations by the assumptions Y = Yoe)“; 6= 905}“. If the resulting
equations are then divided by e’“, the result will be a pair of simultaneous homegeneous
algebraic equations in Y, and 6, with A appearing in the coefficients. The determinant of the
coefficients i called in this case the ‘‘flutter determinant.” When it is set equal to zero the
resuiting equation is a quartic in A,
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The stability of the oscillations then is determined by the four roots of this equation.
In general they will be complex. The real part of any complex root then indicates the exponen-
tial rate of decay or buildup of a possible mode of vibration. These roots, however, depend on
the value of speed § and, in general, it will be found that their characteristics change markedly
as § increases, If the roots of A are computed for a series of values of §, the damping of the
system may be plotted as 8 function of 8. Thus, if A = g + ja, plots of u/2rw will show how
the rate of decay or buildup in a possible mode of vibration varies with speed for a given set
of values of the parameters of the system according to Equations [14-8) and [14-4].

Since the system has two degrees of freedom, it will, in general, have two normal modes
of vibration, and, if it is given an arbitrary displacement, its subsequent motion will be a com-
bination of oscillations in each mode. Any one root of A gives a frequency and rate of decay
or buildup in one of these modes. As flutter is approached, the motions in the separate modes
may merge into a ‘‘flutter mode’ in which the phase relation between ¢ and Y is such as to
give zero net damping to the system. At the value of § corresponding to the critical flutter
speed, the calculations give a pure imaginary root (A = jw). This indicates that an oscillation
at this frequency () once started will persist indefinitely without damping. The analog com-
puter has the advantage that it automatically combines the responses in the separate modes
according to the initial conditions imposed by & given disturbance.

Of course the actual rudder-hull system is much more complex than the ideal system
just discussed. The hull has not just one normal mode of vibration in which ths rudder stocks
move normal to the longitudinal axis of the ship, but several, The rudders also may oscillate
in more than one mode since the rudder system may bend, twist, and shear. The flow to the
rudders is not actuslly vniforni since they lie in the outflow jet of the propellers. The lift
and moment coefficients of the rudders may not be linear functions of the angle of attack even
without the occurrence of cavitation. If cavitation occurs, nonlinearities may be expected to
be much more pronounced.

In spite of all these complications it appears possible to use this simplified flutter sys-
tem as a guide in forecasting the possibility of flutter of rudder-hull systems or of control
surface-hull systems in general.

The investigation of the rudder-excited hull vibration on the D2 931-Class destroyer by
the David Taylor Model Basin (as supplemented by experiments in the towing basin with an
apparatus built especially for this purpose) suggested that in the (ield of naval architecture,
as contrasted with the aircraft field, a ‘‘subcritical flutter’® condition is more likely than un-
stable flutter,

The suberitical condition is revealed by the same basic analysis and is eszentially
part of the same general phenomenon. It is illustrated by a curve such as d in Figure 14-3
when the minimum fails to dip below the axis. Then the dumping of the overall system is

reduced to an undesirable level by the conditica which produces critical flutter, but
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Figure 14-3 — Variation with Speed § in the Rates of Decay or Buildup of Possible
Modes of Vibration of the Ideal Systoem Shown in Figure 14-2 According to
Equations [14-3] and [14.4]

Negative values of the damping ratio indicate oscillatory instabllity (critical flutter).

oscillatory instability is not actually produced. The objectionable feature of the situation
arises from the fact that there are always other sources of disturbance on a ship underway.
Hence, whenaver the system is disturbed as by a wave impact, the vibrations in this par-
ticular mode of the rudder-hull system decay at a very slow rate. The other modes retain
their normal damping characteristic,

Further discussion of the phenomenon of control surface flutter will be found in Ref-
erences 14-4, 14-5, 14-68, and 14-10. The calculation of hull modes when the rudders are
treated as flexibly supported is discussed in Reference 14-11.

C. THE SINGING PROPELLER

The problem of the singing propeller is not usually considered a hull vibration problem,
but it is certainly a hydroelastic problem and one wiih which a general naval architect may
have to contend; see Reference 14-1.

The phenomenon has been investigated abroad both from the hydrofoil flutter point of
view and from the vortex shedding point of view. The former is discussed in Reference 14-7,
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the latter in Reference 14-12. Much support for the latter point of view is furnished by the
fact that critical speeds for singing can frequently be boosted beyond the top operating speed
of the propeller shaft by sharpening the trailing edges of the propellers.
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In the case of commercial ships, the chief objection to the singing propeller is the an-
noyance of the high frequency vibration to human ears rather than the absolute level of vibra-
tion amplitude produced. It is well-known that the levels of acoustic power that are intoler-
able from the physiological standpoint are extremely low from the mechanical vibration
standpoint. This means that singing propellers may become intolerable because of noise at
amplitudes far below those at which they are in danger of structural failure.

D. COMMENT ARY

The naval architect will become increasingly aware of the science of hydroelasticity
in the future. This will require an acquaintance not only with the subject of mechanical vi-
bration but also with the hydrodynamics of flow about streamlined and unstreamlined forms.
Only the barest outline of the subject of hydroelasticity has been sketched in this chapter,
The subject is but little understood at this time. When one surveys the extensive literature
available in aeroelasticity, the amount of literature on hydroelasticity published so far ap-
pears meager indeed. :

Studies in hydroelasticity up to the present time indicate that there are large discrep-
ancies between experimental results_‘and analytical predictions based on the classical theory
used in aeroelasticity. This is embhasized in the discussions of Reference 14-9. The phys-
ical magnitudes involved in the two fielda are, of course, quite different, and thus it might be
expected that effects that can be neglected in one field could play a dominant role in the
other.

In spite of the present lack of information in the field of hydroelasticity, certain areas
in which hydroelastic problems may be expected in the future can be pointed out here,

Control surface flutter has been discussed in this chapter; for surface ships the only
control surface members are the rudders, except when activated fin stabilizers are used.
However, should the submarine become a commercial ship, its diving planes are clearly sub-
ject to the same flutter mechanism as ihe rudders, Its periscopes, if it retains them, will of
course be subject to vortex shedding oxcitation, as will, in fact, any protruding member not
properly streamlined. Antipitching fins will introduce hydroelastic olfecis.

The designer of hydrofoil boats will he concerned not only with the static stability of
the hydrofoils but also with their dynamic stability. Thus, they will warrant a hydroelastic
analysis as detailed as the aeroelastic analyses currently made in aircraft design.

For a discussion of panel flutter and further details of hydroelasticity, the reader is
referred to 14-13, 14-14, and 14-15, The classical treatment of flutter as used in aercelastic-
ity is given in Reference 14-16. Hydrofoil flutter is discussed in Reference 14-17.
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CHAPTER 15
SHIP YIBRATION RESEARCH

A. INTRODUCTION

Ship vibration research was initiated toward the ond of the nineteenth century. Credit
for pioneering is usually given to 0. Schlick who proposed the now famous Schlick formula
for the frequency of the 2-node flexural mode of surface ships in 1894, Among other early
investigators waa A, N, Krylov who reported on the recording of ship vibration in 1900.
Although the analogy to string vibration cited therein was unsound, it is of historical interest
that the subject was also discussed in a French trealise on naval architecture published in
1894; see Reference 15-1.

As in so many other fislds of research, progress has been slow but at an accelerating
pace, and the development of theory has proceeded hand in hand with the development of
oxperimental techniques. This is a field in which full-scale experimentation is costly, The
mere tying up of a ship for the length of time required for vibration experiments is often pro-
hibitive, to say nothing of the cost of installing and operating the necessary equipment. How-
ever, it must be emphasized that the correction of vibration unexpectedly encountered on the
trials of a new ship may be much more costly.

It iz not attompted in this chapter to survey the ship vibration research work which is
now carried on by all the principal maritime nations abroad. This disenssion is ennfined
chiefly to the ship vibration research in the United States which, for the most part, has been
carried on hy the United States Navy either independently or in collaboration with the Society
of Naval Architects and Marine Engineers.

On the experimental side, this rosearch has involved the following principal phases:

(a) The development of instrumentation for recording vibration of ships and ship models.
(b) The development of machines capeble of vibrating ships and ship models.
(¢) The development of apparatus for determining propeller-exciting forces on model scale.

(d) The conduct of full-scale experiments with vibration generators to determine the vibra-
tory characteristics of ships in service,

(e) Running of vibration surveys on ships in service and the systematic storage of data
so obtained.

() The conduct of model experiments for determining propeller-exciting forces.

(g) Model experiments for the determination of the added mass effect of the surrounding
water.,
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On the theoretical side, ship vibration research in the United States has involved:

(a) The development of analytical methods of predicting the normal modes and natural
frequencies of vibration of ships.

(b) The development of analytical methods of predicting the steady-state forced vibration
of a ship under given exciting forces.

(c) The development of analytical methods of calculating transient vibrations within the
elastic range.

(d) The development of analytical methods of predicting the vibratory exciting forces
which will act on a ship of given design.

(e) The development of computing techniqﬁes, either analog or digital, for carrying out
calculations by the analytical methods developed.

The research program, of course, has also included the comparison of analytical pre-
dictions with experimental results and the evaluation of the analytical methods on the basis
of these comparisons. Most of the theoretical research accomplishments have been covered
in previous chapters. Hence, the present chapter is devoted chiefly to the experimental phase
of ship vibration research and to the attempts to correlate theory with experiment,

B. VIBRATION GENERATORS

The development of vibration generators for ship vibration research in the United Statea
waz based chiclly uu ihe priur development of such machines for research on bridges by the
firm of Losenhausen in Dusseldorf, Germany, prior to World War II. Their successful use in
Germany led the U.S. Experimental Model Basin to purchase from Losenhausen in 1981 the
largest machine of this typs when built. These generators consist of eccentric magses which
may be so unbalanced and so phased as to produce sinusoidal forces in one direction only,
sufficient to maintain a vibration of the entire hull of a magnitude permitting experimental
determination of the normal-mode pattern. The machine had a force amplitude of 49,000 1b
and a deadweight of 25 tons. Its two eccentrica each weighed 6000 1b and could be offset
up to about 12 in. It was operated by two d-c motors, each of 15-kw capacity.

There was also purchased from Losenhausen at the same time & very small vibration
generator, weighing only about 140 lb, and having eccentric weights at each end of two -~
parallel shafts. This machine was not only suitable for vibration experiments on model scale
but was also capable of exciting local structures on full-scale ships and was used repeatedly
for many years. As originally furnished, it had a maximum force rating of 440 Ib and a maxi-
mum speed of 3600 rpm.

The David Taylor Mcdel Basin later undertook the development of vibration generators
for full-scale ship experiments of greater versatility than possible with the huge machine
originally purchased from Liosenhausen. The Taylor Model Basin medium vibration generator
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Figure 15-2 — Taylor Model Basin Three-Mass 40,000-Pound Vibration Generator

shown in Figure 15-1 and the Model Basin three-mass 40,000-1b vioration generator shown in

Figure 15-2 were results of this effort.
The latter machine (shown in Figure 15-2) makes use of & schemc patented by Dr. R.
K. Bornhard who had been associated with the design of the large Losenhausen machine in
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Germany. It has three parallel shafts; the two outer shafts rotate in one direction while the
inner rotates in the opposite direction. This permits the production of & sinuscidal exciting
force in any desired direction in a plane normal to the shaft axes.

The operation of large vibration generators on full-scale ships has been greatly facili-
tated by the progress that has been made since their inception in the development of speed-
control devices for direct-current motors. The difficulty in operation is due to the power
vergus speed characteristic that must be mei by a machine for this service. If there were no
damping, no power output would be required to maintain a constant amplitude of vibration in
2 mass-olastic system such as a ship. Actually, even with damping, very little power is
absorbed except in the neighborhood of resonance. Since, on approaching a resonance speed
from below, the power required will increase, the speed is stable on the low speed side of
rosonance. Thus, any change in line voltage which would tend to increase the speed will
also tend to load the motors which will limit the speed. Above the resonance speed, however,
the situation is reversed., As the speed increases, the motors are unloaded by the drop in

amplitude of the system and hence tend to run away. An amplidyne-type of speed control is \
therefore beneficial,

For studying the vibratory characteristics of hulls, it is a prime requirement to main- \l
tain a selected speed of the'vibration generator. If this speed can be maintained the hull i
may then be explored with portable instruments. This permits location of the nodal points !
and the plotting of normal mode patterns, It also facilitates the step-by-step plotting of |
curves of displacement amplitude, velocity amplitude, acceleration amplitude, or power versus
speed,

Vibration generators for shipboard use must be able to produce not only sinusoidal
forces in either the vertical or horizontal directions but also couples about the longitudinal
axis for investigating torsional vibration of hulls. Some progress has been made in recent

. years in investigating the coupling of hull torsion with horizontal hull flexure, but much re-

mains to be done. It is very difficuir, to design a single machine to produce a pure coupls
large enough to excite the torsional modes of the hull, Proposals have been made to use
separate units synchronously driven, one installed on each side of the hull near the stern.
With large machines, however, the synchronizing becomes a problem comparable with that
of synchronizing propeller shafts. The design of the Taylor Model Basin three-mass, 40,000~
ib vibration generator is a compromise as far as pure couples are concerned. The maximum
couple attainable is 120,000 lb-ft.
Further details of vibration machines used by the Taylor Model Basin will be found in
Reference 15-2. —
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C. SHIP VIBRATION INSTRUMENTS

Certain salient points in the design of vibration instruments for shipboard use are
discussed here. For further details, the reader should see Reference 15-8, The basic prin-
ciples used in the design of vibration instruments in general are discussed in standard texts
on mechanical vibration; e.g., References 15-4 and 15-5. It must be pointed out in the beginning that
instruments that perform satisfactorily in making a shipboard investigation with a vibration
generator may be quite inoperable at conditions under which underway ship vibration surveys
must be made. Vibration generator tests normally can be undertaken only under very calm
ses conditions, and with the ehip either deaa in the water or advancing at a very slow speed,

The chief difficulty. in the design and operation of vibration instruments for underway
vibration surveys arises from the fact that the rigid body motions of the ship are extremely
large in proportion to the displacement amplitudes in vibration which are to be measured and
the accompanying accelerations sre high. There is not only this problem to contend with but
algo the fact that the vibratory amplitudes themselves cover a very large range, roughly from
a single amplitude of 0,001 in. to 1.0 in. This, of course, does not refer lc attempts to meas-
urs vibration under slamming conditions in a seaway where amplitudes of a foot or more are
occasionally encountered. ' :

As may be seen from Reference 15-8, all the well-known types of vibration instruments
have been tried on board ship, In spite of all the effort expended in this direction, stand-
ardization of instrumentation for underway vibration surveys has not been attained up to the
present time, However, both the Bureau of Ships of the Navy Department and the Society of
Naval Architects and Marine Engineers are continuing their efforts in this area.

The principal types of instruments now in use are:

(a) Amplitude indicating: dial gage-type vibrometers, optical vibrometers, Cordero vibro-
meters, velocity- or acceloromctor-type transducers with integrating amplifiers, cathode ray
or recording oscillographs, and rectifiers with d-c indicating meters.

(b) Frequency indicating: sets of Frahms reeds, single tunable reed, stroboscopes,
oscilloscope, and direct-indicating electronic frequency meter.

(¢) Amplitude and frequency recording: mechanical pallographs, crystal accelerometers
with integrating amplifiers and osciliograph, velocity pickups with integrating amplifiers and
oscillograph, transducers with frequency-modulation tape recording using playback, optical
recording for film (mircagraph), and optical accelerometers.

(d) Phase measurement: electronic indicating and slectronic recording.

A typical direct-recording instrument for shipboard use is illustrated in Figure 15-8
and a typical remote-recording system in Figure 15-4, In the former case, the instrument has
two seismic olements; one can move only in the vertical direction, the other only in the
horizontal direction. Each element is suspended in such & way as to have a natural frequency
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Figure 15-8 ~ TMB Two-Component Pallograph

Direct Writing

Integrating Amplifier _l Oscillograph

To Other Stations /—:JI @ O ﬁ
e

Velocity Pickup (electromagnetic Instruments at central recording
at remote station on ship) station on ship

1)

Figure 15-4 — Typical Remote Recording System for Shipboard Vibration Measurements

consziderably lower than the vibration frequencies normally to be measured. Under such circum-
stances'the element remains practica!ly fixed in space whereas the rest of the instrument
vibrates with the deck of the ship on which it is placed. The relative motion between the
element and the base of the instrument is then magnified by a linkage and recorded on paper
together with a timing signal. It is shown in Roferonce 15-3, however, that, by introducing
controllable damping and with adequate calibration techniques, such instruments can be used

at ranges of frequencies within which their own natural frequencies fall,
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In the remote recording system shown in Figure 15-4, the pickup unit also contains
a seismic slement., In this instance the element is a magnet whose field cuts across a coil
fixed to the base of the pickup. The voltage generated in the coil is proportional to the
relative velocity between the base and the element. An integrating amplifier converts the
signal to one proportional to vibratory displacement which is recorded on the oscillograph.
If desired, the velocity signal can be recorded directly without integration.

In general, instrumentation satisfactory for underway vibration surveys can be used
for vibration-generator surveys but the reverse does not hold. The limitation, if any, will
be in its sensiiivitics and froquency ranges., However, although the oarlior uze of vibeation
generators on board ship was chiefly for determining the natural frequencies of the hull and
its normal mode patterns, recently it has been found practical to use such machines for de-
termining forced vibratory response characteristics over the range of blade frequencies en-
countered in the normal operation of the ship.

Under very calm water conditions and with very sensitive vibration-recording equip-
ment, vibration-generator surveys may be made with amazingly low amplitudes, as in the
case of PONTCHARTRAIN!5"6 in which normal modes wers plotted with amplitudes of the
order of 0.01 mil.

The investigation of torsion-bending modes and pure torsional modes of hulls requires
special attention to instrumentation. Hers it is required to separate the rotational and trans-
lational components of the hull vibration. This can be done with translational instruments
only by simultaneous recording of signals from pickups at opposite deck edges and obser-
vation of phase. A rocording angular accelerometer with integrating amplifier will give the
angular amplitude directly if its sensitivity to rectilinear vibration is sufficiently low.

D. EXPERIMENTAL TECHNIQUES
1. MODEL

Considerable model experimentation has been carried out in the United States in the
effort to clarify tha added mass effect of the surrounding water on hull vibration character-
istics; see Reference 15-7. At this writing, however, the effort on model scale in the field
of ship vibration research is concentrated on the problem of determining model forces. As
stated in Chapter 7, this work is an extension of the pioneering work of F.M. Lewis,

Ta all model work one encounters the problem of similitude or scaling. This subject
is discussed further in Appendix G. It should be noted here that it is not feasible (because
of conflicting scaling rules; see Appendix G) to build a complete self-propelled dynamic
model of a ship from which the propeller-excited vibration of the prototype can be predicted
from direct measurements of the vibration of the model, Quits aside from the difficulties of
fabricating structural models of ships, the research scientist is confronted with scaling rules
for ship vibration that do not conform with those for ship propulsion.
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In F.M, Lewis’ original ascheme, a continuous wooden model was used for the propeller-
exciting force determination and the line of reasoning was that, since the determination was
made by nullification of the forces by forces produced by a balancing machine inside of the
model, the dynamic characteristics of the wooden model itself were islevant,

In later oxperiments it was found that resonance of the wooden model was deletertous
and a scheme of flexibly suspending the stern portion from the rest of the model was adopted.
As shown in dotail in Reference 15-8, the present setup yields the following values:

a, Blade-frequency vertical force,
b. Blade-frequency horizontal force, and
c. Blade-frequency torsional moment about the longitudinal axis.

In the field of hydroelasticity (see Chapter 14), the question of the Peasibility of model
experimentation is quite important. It must be decided whether it is feasible to predict a con-
trol surface flutter condition by model techniques. As shown in Reference 15-9, flutter model
testing has been found practical in aeronautical engineering. In naval architecture, however,
its use will have to be much more restricted. The criterion of similitude in flutter experiments
18 the nondimensional Strouhal number or ‘‘reduced frequency.’’ In aeroelasticity, this is

bw
commonly expressed in the notation 7 where b is the half-chord dimension of a wing,

is the circular frequency of the vibration, and V is the velocity of the wing relative to the
undisturbed air, This relation indicates that for a scaled model of the same material as the
prototype, the flutter speed should be the same as for the prototype.

In the hydroelastic field, if a dynamical mode! were manufactured of the same material
as the ship (since the natural frequencies vary inversely as the scale), the numerator in the
expression for the Strouhal number would be the same for model and prototype., Hence, the
Sirouhai number itself would be the same if the model speed were the same as the speed of
the prototype. Obviously, for surface craft the flow patterns will not be similar if model and
prototype run at the same speed since the law for similitude of bow waves is the Froude law;
that is,

V2

-— = constant
Lg

where V is the velocity, ' ' -
L is a characteristic length, and
g is the acceleration of gravity.

Although it has been pointed out that in the case of a deeply submerged submarine
model the flow pattern is independent of the speed unless flow separation develops, there
remains the problem of fabricating the dynamical model and of running it at such a high speed.
In the aircraft field, flutter model testing is well established and here the high speed re-
quired is feasible. It is also possible in wind tunnels to vary the density to reduce
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discrepancies between model and full-scale Reynolds numbers, Furthermore, as pointed out

in Appendix G, in the field of ship slamming it is feasible to experiment with dynamic models
based on Froude's law since here the propulsion system itself is not involved. In such models
the elastic characteristics are not represented in the shell but in a special girder installed
along the longitudinal axis of the model.

In dealing with vibration problems of local structures it iz easier to satisfy the con-
ditions of similitude than when the entire hull is involved, since hydrodynamic forces are
not involved. Thus, similitude for vibratory characteristics is theoretically satisfied if the
mode] is made of the same material as the prototype and duplicates it to scale. The practical -
ditticuities here lie 1n the tabrication of the model and in the simulation of boundary re-
straints and damping characteristics. These difficulties, however, are so great that compara-
tively little has been accomplished to date in solving vibration problems of local hull struc-
tures by dynamic model experiments.

2. FULL SCALE

Full-scale experiments in the field of ship vibration are at present confined chiefly
to tests with mechanical vibration generators, These machines are installed at either end
of the ship and operated over a sufficient range of speed and driving force to excite the nor-
mal modes of vibration of the hull, one at a time. During the operation of the vibration gen-
erator, the vibeation of the hull is recorded either by a multichannel oscillograph system or
tape recording system, or by exploring the hull with portable vibration instruments. The aim
is usually to record enough data to permit plotting the normal mode patterns for all modes of
the hull that can be excited. This includes the vertical, horizontal, torsional, or torsion-
bending modes. It is also possible in such tests to determine phase relations among the
displacements at stations along the hull, These show whether a standing or traveling wave
condition exists,

A useful adjunct to the vibration generator test is the anchor drop test. While such a
test usually excites only the 2-node vertical flexural mode of the hull, the recording of the
subsequent vibration permits a determination of the logarithmic decrement; that is, the damp-
ing, Furthermore, since the 2-node vertical flexural is the mode of the hull lowest in frequency,
it may be found in some cases that the vibration generator cannot produce suificient force to
excite this mode even when the machiry is set at its meximum eccentricity. The anchor drop
may then be the only means of determining the fundamental vertical frequency.

Although used less often for this purpose in the past, the vibration geaerator, if in-
stalled directly over the propellers, furnishes a means of determining the full-scale propeller-
exciting forces. Conceivably, it could be used as a balancing device to cancel out the pro-
peller forces when the ship is under way in the same manner 2s in the model determination
of propeller-exciting forces by the null method. This technique has not been used full scale
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to any extent up to the present tims, and synchronizing of the vibration generator with the
ghip’s shafts is not easily attained. However, if with the ship dead in the water, the vibra-
tion generator is operated at speeds (rpm) coinciding with operating blade frequencies (cpm),
the data so obtained may be used to estimate the underway propeller forces, provided the
underway hull vibration is also recorded. This, of course, involves the assumption that the
damping and added mass characteristics of the hull are the same underway as in still water.
In the case of vertical vibration, only the hydrofoil action of the propellers appeats to cause
a variation in damping. In the case of horizontal vibration, the hydrofoil damping action of
the rudders is to be taken into account. In the case of submarines, the diving planes provide
a source of damping of vertical vibration. It should be noted, however, that where the opera-
ting blade frequency falls above the range of significant hull mode frequencies, the mechanical
impedance at the stern is chiefly an inertial impedance,.

Aside from the full-scale vibration-generator experiments just described, both the U.S.
Navy and the Society of Naval Architects ahd Marine Engineers have initiated a systematic
series of underway vibration surveys on new classes of ships. Such surveys play an impoe-
tant role in the overall ship vibration research program. Even if nothing unusual develops
during such a survey from the ship vibration standpoint, the data ohtainad are still extremely
valuable in establishing acceptable levels of vibration for various classes of ships. If a
severe vibratory condition is discovered, tho investigation of this is likely to lead to a def-
inite advance in ship vibration theory, It is never desirable from the naval architect’s point
of view to dismiss a case of serious ship vibration which has been corrected by the trial and
error process without really tracking down the phenomenon. Unfortunately, however, economic
considerations sometimes impose such an outcome.

With the advent of the application of statistical methods to the study of the performance
of ships in a seaway (see Reference 15-10), more attention has been given in recent years to
the collection of data on the transient vibrations of ships. As pointed out in Chapter 2, these
vibrations are much more important from the point of view of structural integrity of the hull
than the steady-state vibrations which are excited by the propeller.

While, in principle, the instruments already mentionod in this chapter can be used for
recording transient vibrations, it is in order to point out here that the severe sea conditions
und.et which large transient hull vibrations are generated rule out an instrument of the type
shown in Figure 15-8 for such a purpose. The trend at this time is in the direction of remote-
recording systems using magnetic tape recording. This permits subsequent playback of the
record into vibration analyzers in the laboratory.

E. CORRELATING THEORY AND EXPERIMENT

The=complexity of the ship vibration problem is such that exact theories are nonexist-
ent. While the théory of vibration of ideal mass-elastic systems can serve as a guide, it is
only by continueily comparing theoretical predictions with oxperimental results that a rational
theory can be established,
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The theory advocated in this book is & beam theory with important modifications. The
idealized beam is considered to be free in space, but it carries added mass nonuniformly dis-
tributed to account for the inertia effect of the surrounding water. Thus it is nonuniform in
both its mass and rigidity distributions along its length. It can bend, iwist, and shear, hut
does not execute significant longitudinal vibration and ita torsion is only about its longitudinal
axis. If longitudinal vibrations of surface vessels, and especially submarines, are “‘signif-
icant'’ from some points of view, this arises from considerations nct dealt with in this book
and involves amplitudes of a lower order of wagnitude, The damping of the idealized system
iz provided by oxiornal and distiibuted viscuus dumping between itself and axes fixed in space,
It may have one or several flexibly attached masses and these may move relative to it in both
rotation and translation. Finally, it has the unique. property (for a beam) that it can vibrate
in only a limited number of modes.

In checking this theory, the simplest criterion is the comparison between predicted and
measured natural frequencies. Such a comparison requires merely tabulating the frequencies

and identifying them by the node shapes, then listing the predicted frequencies and the per-
centage of errors in the predictions,

The second beat criterion is the comparisun of the experimental and computed normal
mode patterns. Even if the frequencies check, the theory will have less and less validity,
the greater the departure of the experimentally determined normal mode patterns from those |
predicted. In this connection, beamlike modal patterns are not to be expected if there is
considerable local flexibility, especially when the local structure is massive. Hence, when
the observed modal patterns are not beamlike, calculations must be tried with various local
structures treated as flexibly attached, if correlation is to be improved.

The third area to be explored is that of the forced vibratory response of the hull. Here
much depends on whether the vibration is resonant or nonresonant, The forced resonant re-
sponse depends chiefly on the damping and the magnitude of the driving force. Since the
latter is known when a vibration generator is used, the forced resonant response in this
case yields an expetimental value of damping.

In the range of frequencies above that of the significant hull modes, the observed forced
response in the stern provides a check on the pronosed formula for mechanical impedance at
the stern of = shin discussed in Chapier 4.

If the experimentally determined horizontal modes are observed to be torsion-free, or
very nearly so, then the same criteria for comparing theory and experiment in vertical vibra-
tion are applicable to horizontal vibration. When it comes to torsion-bending modes, it is
necessary to convert the mechanical system to a generalized system which combines the —
effects of translation and rotation before the comparison can be made. The general scheme
used for doing this is outlinad in Chapter 4.
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APPENDIX A

ILLUSTRATION OF A CALCULATION OF A VERTICAL
NORMAL MODE BY THE DIGITAL PROCESS

It is essontial to point out here that the illustrations used in this or other appendixes
of this book are not to be construed as samples for use in preparing data for calcilations to
be made by the Applied Mathematics Laboratory of the David Taylor Model Basin., The prob-
lems that have been coded for solution by that Laboratory are continually being studied for

improvement of the computing technique as new and improved coiputing facilities are installed.

Although the preparation of data for such a calculation as given in thizs Appendix is dis-
cussed in considerable detail in Heference A-1, the reader is urged to check directly with the
Applied Mathematics Laboratory for the latest instructions if a request for hull vibration cal-
culations is to be made of the Taylor Model Basin.

One of the simpler hull vibration cases (the calculation of the 2-node vertical mode of
a commercial cargo ship) is used for illustration in this Appendix to emphasize the basic el-
ements of the method, For the application of the digital method to the calculation of torsion-
bending modas, including consideration of the effect of sprung inertias; see Reference A-1.
This illustration is based on the Maritime C-4 design cargo ship GOPHER MARINER whose
vibration characteristics were the subject of Reference A-2, The design of this class of ship
is discussed in detail in Reference A-3.

The method is based on the finite difference squations given in their simplest form in
Chapter 8. The orientation of rectangular coordinate axes for ihe calculation is shown in
Figure A-1. It was assumed in this case that hoth 7 and 2 were zero because of the symmetry
of the ship with respect to the XY-plane.

A 5

| | { ] P ] t | ] | | 1 ! 1 1 § i F T
o | 2 3 4 5 € 7 8 9 10 ( 1@ 3 W4 5 B8 17 8 9 20
Figure A-1 — Diagram Showing the Divizion of e Ship ine v £5ual

Sections for the Vibration Calculations
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The hull was divided into 20 sections between the after and forward perpendiculars,
The ship was visualized as shown in Figure A-1; that is, with the stern to the left. It should
be noted that the station numbering here is from the after perpendicular forward for the reason
stated in Chapter 8, As this numbering system is purely arbitrary, the reader should check on
the numbering system in use at the time if a future request for calculations by the Taylor
Model Basin is contemplated,

The weight corresponding to the added mass of the surrounding water was added to the
weight of the vessel for the test loading condition. The weight added to each of the 20 sec-
tions was estimated from the formula: '

1
Added weight per unit length = 5 JOmph? [A-1]

where J ig the longitudinal coefficient applied to correct for the departure of the vibratory
motion of the water from two-dimensional flow in planes parallel to YZ and the ¢ coefficients
are factors, based on two-dimensional flow, which give the ratio of the added mass for a
cylindrical form having the shape of a ship section to the added mass far a circular cylindrical
section of the same beam,

The C coefficients were obtained as follows:

{a) The section-area coefficient B far the section was estimated by inspection (B is the
ratio of the area of the underwater section to 2 5d, where d is the draft and 4 is the mean
half-breadth of the section at the waterline, in ft).

{b) B/d for the section was then computed (where B is the whole beam at the section),

(¢) The value of ¢ corresponding to these values of 8 and B/d was found from Figure A-2.

The coefficicnt J was obtained from Figure A-3 after computing L/B (length over beam)
for the ship,

Combined Mass, m

The values of the combined mass m used in the digital computation were derived as
follows: A continuous curve of combined weight per unit length was plotted as in Figure A-4
by adding to the ordinates of the weight curve of the ship the values of added weight of water.
The lumped masses used in the digital calculation were then derived by concentrating the
weight indicated by the combined curve at the 20 stations after converting weight to mass by
dividing by ¢ (the acceleration of gravity),

Ares Moment of Inertia, /

The area moments of inertia were evaluated for a sufficient number of sections of the
hull to permit the plotting of a continuous ewrva. All tha longitudinal structural members up
tn the uppermost continuous deck or weather deck wera considered in the evaluation, If &
ship has decks with expansion jointa, which hence are not designed to carry hull bending
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(From Reference A-4)

stresses, they should not be included.
Superstructures extending less than
30 percent of the length of the hull may
be completely omitted in computing the
area moment of inertia of sections, as
was done in this case. With longer
superstructures their contribution
should be neglected at their ends but
added gradually so as to make them
fully effective in their midlength,
provided they are continuous and well
tied into the main deck structure.
Longitudinal bulkheads or longi-
tudinel stiffeners terminating at or near

tho section in question should not be included.

hatch coaming section area should be added.

4 5 6 7T 8 9 10 i 12 L/8
1.00
0.90
//
0.80
Wi
|/
0.70 //
y/
J
0.60 /

Figure A-8 — Curve for Estimating the
Coefficient J Used in the Added
Mass Evaluation

{From Reference A-4)
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Figure A-4 — Weight Curves for GOPHER
MARINER (Heavy Displacement) Used
for Caleulation of Vertical Modes

Where hatch openings fall at the section, the

It is imporiant to ncte that both the u and / curves approach zerv at the ends of the ship.
While the extrome stations (0 and 20) are taken at the perpendiculars, so that there is a pro-
jection of the hull beyond these stations ai each end, the x and / curves may be plotted to

give excessive yalues of p/f near the ends of the ship. Such a condition can cause considerable
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error in the digital calculation of the natural frequencies because it effectively makea the
ends of the ship very ‘‘flabby.’’ If the ship actually had such a construction, the lowest
mode would be determined by this local condition at the ends. QOn the other hand, no amount
of overestimating of / at the ends can have much effect on the natural frequency since it
simply means that the overhang at each end is rigidly attached to the ship at the perpendic-
ular. Therefore, the rule is to check at the ends to make sure that the value of /I does not
rise abruptly. This precaution was followed in this illustration.

'0-
ﬁ 8,000 - \
- L~
3 000 / M Figure A-5 — Area Moment of Inertia Curve
§ ~ Used for Calculation of Vertical Modes of
g ao000p GOPHER MARINER
§ 0 2 4 6 8 © 12 4 & 8 20
Stoin station Bow

Shear Rigidity Factor, X

For GOPHER MARINER the shear rigidity factor was evaluated by letting K4 = 4°,
where A is the total area used in the evaluation of I, and 4’1is the area of the vertical plating
only (such as the side ghell plating and continuous longitudinal bulkhead plating). The ‘‘web’’
area A’ was plotted for as many sections as were available (in this case six) and a smooth
curve was drawn as shown in Figure A-6.

! | v

Figure A-6 ~ Side Plating Area Curve Used
. / in Evaluating Vertical Shearing Rigidity
y | of GOPHER MARINER

Sids Plate Area in f12

{
[+] 2 4 € [} 0 12 H & 8 20
Stern Station Bow

The values actually furnished for the digital calculation of the vertical modes of
GOPHER MARINER for a heavy displacement loading are given in Table A-1. In this case,
the term for rotary inertia was omitted on the assumption that its effect would be negligible.
The reader is cautioned against using Table A-1 as a sample for furnishing data to the
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TABLE A-1

Initial Data Furnished for the Digital Calculation of Vertical Modes
of GOPHER MARINER for Heavy Loading Condition

Az 8
m EI x10 _Ai x 106
ton-sec? 1 k4G
" ft ton-ft ft/ton
n 7.48 0,3160 1135
1 13.97 0.5205 8.56
2 22.31 0.3615 1.17
3 38.76 0.2880 6.75
4 56.51 0.2455 5.72
5 73.04 0.2185 5.67
6 69.14 0.2005 6.08
7 75.89 0.1880 6.70
8 85.47 0.1800 7.23
9 90.79 0.1760 1.62
10 95.11 0.1750 1.73
11 80.35 0,1750 7.63
12 15.76 0.1790 137
13 67.02 0.1885 1.05
14 50.61 0.2040 6.73
15 41,14 0.2320 6.33
16 25.77 0.2740 5.98
17 26.51 0.3270 5.52
18 23.80 0.3805 5.06
19 14,94 0.5265 4,96
20 5.53 0.3240 -
Az=26.25 ft
L= 525ft Displacement: 16,840 tons
B=176.0 ft
D=441t6in.

Applied Mathematics Laboratory of the David Taylor Model Basin for future hull vibration '

calculations. The slightest changes made in recoding the problem for a new computing
machine may make it impossible for the machine to carry out the computation with the
initial data as presented, and current Applied Mathematics Laboratory instructions must be
foliowed,

The results obtained from the digital calculation of the 2-node vertical mode of
GOPHER MARINER for the heavy displacement are given in Table A-2.

It will be noted that, although the calculation was made by means of the coding for
torsion-bending modes, and, since in this case the terms coupling flexure and torsion were
Zero, the columns in Table A-2 for angular displacement ¢ and twisting moment T are both
zero,
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TABLE A-2

Data Furnished by Digital Computer for 2-Node
Vertical Mode of GOPHER MARINER

St;:t-on Y y 4 v y r
0 ~1.00000 0.00641 | 0 0 0| 0
1 ~0.82620 0.00641 | 0 -3 | - 12428 | o
2 ~0.64917 000625 | ¢ ! 1263 | ~ ddQ26 [ 0
3 ~0.47141 0.00619 | 0 2120 | - 99,686 | 0
4 ~0.20428 0.00560 | © -3276 | -185700 | ©
5 ~0.12648 0.00544 | 0 4329 | -2909,381 | 0 's
8 0.02725 0.00479 | 0 | -4913 | 42832 | O
7 0.15974 0.00393 | O | 4794 | 554186 | O x
8 0.26270 0.00289 | 0 | -4027 | -5659,905 | O 1
9 0.32635 0.00170 | 0 | -2606 | ~728322 | O ‘
10 0.34308 000042 | 0 ~731 | -1a71518 | 0 \
1 0.30958 | -~0.00088 | 0 1333 | ~712506 | 0 w
12 0.23148 | -0.00213 | © 208 | -636,170 | 0O \
13 0.11606 | =~0.00326 | 0 4017 | ~530,701 | 0 |
14 ~0.02779 | -0.00426 | © 4510 | -412310 | 0 :
15 -0.19169 | ~0.00511 | 0 4421 | -296,255 | 0 3
16 -0.36871 | ~0.00579 | © 3922 | ~193302 | 0
17 ~0.55465 | =~0.00832 | 0 3320 | -106,134 | 0
18 ~0.74303 | -0.00867 | © 2386 | - 43485 | O
19 -0.92899 | -0.00683 | 0 1267 { -10214 | 0
20 -L11188 | -0.00689 | O 389 0] 0
20A ~0.00689 0 0

The normal mode patterns of vertical displacement, angular displacement about a Z-
axis, shear foree, and bending moment, for the 2-node vertical flexural mode of GOPHER
MARINER as detormined by the digital calculation can then be plotted from Table A-2. The
absolute values given in this table have no significance. Only the relative magnitudes in &
normal mode pattern are indicated. It is to be noted, however, that the data were prepared in
the foot-ton-second system of units. Hence, although a single amplitude of 1 foot at the after
perpendicular would be an extremely large amplitude, the values of bending moment, per foot
amplitude at this stalion are given in the column for ¥ provided the hull is not deformed
beyond the elastic range. For smaller amplitudes the bending moments would be proportion-
ately smaller. e T

The normal mode pattern for displacement given by Table A-2 is plotted in Figure A-7
(with sign reversed). "

For further details on the preparation of data for a calculation of this type, see Ref-
erence A-1.
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APPENDIX B

ILLUSTRATION OF A CALCULATION OF TRANSIENT
RESPCNSE BY THE DIGITAL METHOD

As in Appendix A, the calculation presented in this Appendix serves to illustrate the
basic principles involved, but it is not intended as a sample to be used in preparing requests
for transient hull vibration calculations to be carried out by the Applied Mathematics Liabora.
tory of the David Taylor Model Basin, As a matter of fact, the recoding of this particular
problem with the addition of buoyancy forces is in progress at this time.

The analysis of transient vibration discussed in this book is confined to vibrations
within the elastic range, as pointed out in Chapter 5. For a discussion of the general prob-
lem of ship slamming in a seaway, see Reference B-1, The digital method of transient
analysis discussed in Chapter 5 was applied to GOPHER MARINER in the prototype example
used in coding the initial treatment of this problem on the UNIVAC. Further details of the
prototype calculation will be found in References B-2 and B-8.

The loading conditions for the calculation were as follows: a vertical force of 1 ton
was instantaneously applied amidships, held constant for 1 sec, then instantaneously re-
moved. No special significance is to be attached to the particular loading chosen for this
example, at least for simulating the loading encountered by a ship in a seaway. Mathemati-
cally, however, this is a standard type of forcing function sometimes described as a *‘rectan.
gular pulse load.”

The reference axes were the same as indicated in Figure A-1, and an element of length
Aw is shown in Figure 5-2. The hull data used for this calculation were the same as used in
the calculation of the 2-node vertical normal mode given in Appendix A (same ship and same
displacement in both cases) with the exception that the parameters /, , (rotary inertia) and
C (damping) were added. These additional parameters are given in Table B-1.

The rotary inertia values /. were estimated in this case by treating each lumped mass
m (which includes a value for added mass of water) as though it were uniformly distributed
throughout a rectangular parallelepiped bounded by the main deck, the bottom plating, and the
hull side plating, and taking the mass moment of inertia of this parallelepiped with respect
to a Z-axis passing through its centroid.

The damping values C were based on a value of 1 for the ratioc/u. The experimental
basis for this value is discussed in Chapter 8. In this calculation the time steps selected
(A¢) were 0.02 sec. Hence, the load data was 1 ton at Station 10 for time ateps 0 through
49 and zero at this station for all subsequent times. At all other stations the load was zero
at all times.

The calculation was catried out for 250 time steps or for a total duration of 5§ sec and
the resulis were printed for each step.
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TABLE B-1

Additional Parameters for GOPHER MARINER Used in the Calculation of Transient
Response by the Digital Method
These parameters were not included in the normal mode calculation given in Appendix A,

n s ¢
ton-sec2-ft | ton-sec/ft
0 1,068 7.48
1 4,663 13.97
2 6,122 22.31
3 9,128 38.76
4 13,360 56.51
5 20,430 73.04
§ 19,400 69.14
7 21,530 75.89
8 24,940 85.47
9 21,470 90.79
10 30,320 95.11
1 23,470 80.35
12 21,950 75.76
13 18,680 67.02
14 13,650 50.61
15 9,972 41.14
16 5,836 8.0
17 5,569 26.61
18 3,517 23.80
19 1,989 14.94
20 384 5.53

Figure B-1 shows the calculated displacement at Station 10 over the 5-sec interval.

Figure B-2 shows the instantaneous displacements and bending moments calculated
for all stations of the hull at the instant when the peak bending moment was reached.

At the stage of the development of the transient hull vibration calculation at which
this example was run, buoyancy and gravity forces were not included. Thus the hull was
treated as free in space as in the hull normal mode calculations. As shown in Reference
B-4, the coding was later modified to include buoyancy and gravity forces.

It must be realized that when the idealized nonuniform beam (with added mass and free
in space) is subjected to a unidirectional force there will ensue, in general, not only vibra-
tory elastic motions but also rigid body motions in both translation and rotation. Since the
gravity and buoyancy fotrces are not included in the treatment discussed in this Appendix, —
the calculation will not be realistic if carried out long enough for large rigid body displace-
ments to build up. The revised coding discussed in Reference B-4 will include gravity forceé, .
buoysancy forces, an added mass that varies with heave and pitch, as well as provision for a
forcing function varying arbitrarily in space and time. Plans are also underway for handling

the hull slamming problem by means of an analog computer; see Reference B-5,
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APPENDIX C
EMPIRICAL FORMULAS FOR HULL FREQUENCIES

A. FORMULAS FOR FREQUENCY OF 2.NODE VERTICAL MODE

It was pointed out in Chapter 10 and is emphasized in Reference C-1 that the designer
is fortunate in having a very simple rough rule for the ratios of the frequencies of the higher
vertical modes of vibration of a surface ship to the frequency of the fundamental mode. This
rule is that the ratios follow the sariea 1, 9, 8, etc.

Some idea of the roughness of this ruie may be obtained from Tabie C-i, based on
experimental data obtained by the David Taylor Model Basin and summarized in Reference
C-2. The average values in Table C-1 conform quite closely with the rule although several
of the individual deviations are larger than 15 percent.

The availability of such a rule enhances the value of the empirical formulas for esti-
mating the 2-node vertical frequency of ships since these, in effect, yield an estimate of the
frequencies of the priucipal vertical modes.

The most widely known of the empirical formulas for the frequency of the 2-node verti.
cal mode of & surface ship is the formula of O. Schlick:C"3

N=¢C ‘/—I— {c-1}
AL3

TABLE C-1

Experimentally Determined Ratios of Frequencies of Highar Vertical Modes of
Ships to the Frequency of the Fundamental Vertical Mode

. Ratios
Ship Type st Mode | 2nd Mode | 3rd Mode | 4th Mode

NIAGARA Transport 1 1.83 2.65 3.23
CHARLES R, WARE Destroyer 1 2.08 3.30 4.55
C. A. PAUL O1¢ Carrier i 2,35 3.713 4,67
PERE MARQUETTE Car Fenty 1 2.00 3.10 4.57
OLD COLONY MARINER | Dry Caigo 1 1.89 2.7 3.28
NORTHAMPTON Cruiser 1 2.11 2,99 4,23
STATEN iSLAND | Ice Breaker 1 1.93 .57

Average 1 2.03 3.01 4,09
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where N is frequency in vibrations per min,
¢ is Schlick’s empirical ‘‘constant’’ ranging from 1.28 x 10% to 1.57 x 105,
I is the area moment of inertia of midship section in ft%in.? units,
A is the displacement of ship in tons (2240 lb), and
L is tke length of ship in ft,

Note that this formula is similar to the formula for the free-free uniform bar discussed
in Chapter 8. The simplicity of the formula is naturally appealing but there remains the prob-
lem of selecting the best value of the empirical ‘‘constant.’’ Table C-2, taken from Reference
C-4, gives experimentally determined values of the Schlick constant for various types of
ships. Such a table can be used by the designer as a guide in selecting an appropriate value
of C to use in Equation [C-1]. It is recommended, however, that, if the designer can obtain
more recent information on both the natural frequency and the design parameters of a ship of
a type more nearly similar to the type ho is designing, he use this information to estimate
the fundamental vertical frequency of the new ship. Thus,

Iﬂ AO L03
Ny= N\ —— [C-2]
’0 An Lﬂ

where the symbols have the same mesaning as in Equation [C-1] except that the subscript a

applies to the new ship, and the subscript o applies to the old ship.
TABLE C-2

Empirical Values of Schlick Constants

Moment of T -1 Equiv,
Author and Type of ] Overall inettia | Measured | gppijok
Reference Ship Displacement | | anoth Amidships | ¥ DL3 | Freauency | constant
tons ft ft2in2 | x 104 | permin | x10~5
Todd (C-5} Tanker 15,140 440 476,000 6.08 78.9 1,30
Tobin (C-6) " 8,300 350 | 233,850 | 8,11 12 1.38
Nicholls (C-7) | Destroyer 1,37 310 33,000 8.96 120 » 1,34
Schmidt (C-8) | Motorship 7,010 484 718,000 9.50 106 | L12
Schadlofsky Tanker 16,600 462 604,000 6.08 81 1,33
{C-9) Cable layer; 834 181 15600 | 17.8 207.5 1.17
[ Tanker | 8,160 366 734,000 | 7.65 112 T 147
Freighter 8,360 N 264,000 7.88 105 1.33
Cole (C-10) Tanker 8,151 350 233,890 8.19 112 1.37
EMB Report
(C-11) Destroyer 1,382 310 35,000 | 9.22 107 1.16
Roop (C-12) Tanker 15,430 475 447,000 5.20 60.3 1.16
Battleship 32,000 583 1,325,000 4.57 77.1 1.69

C-2
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L. C. Burrill®-!3 proposed a formula of greater flexibility than the Schlick formula
in that it includes the beam and the draft. Henoce, while it also included an empirical con-
stant, the latter was expected toc be more stable than the Schlick constant, Burrill’s formula

is

Na_.___é_____ ._l— [0_3]
l/(1 +£—)(1+r) ALS
2d

where ¢ is an empirical coefficient given by Burrill as 24 x 105,
is ihe fundameniul veriical fiequency in cpm,

is the effective moment of inertia of the midship section area in ft?,

e

is the displacement in tons,

is the length between perpendiculars in ft,

is the beam in ft,

is the draft in ft, and

is J. Lockwood Taylor's shear correction factor

a ot B

~

[H 8.502 (34° +9a2+ea+1.2)] C-d]

L%(3a + 1)
B .
where a ~D and D is the molded depth in ft. J. Lockwood Taylor’s shear correction factor

is discussed further in Reference C-14,

Some idea of the constancy of Burrill's coefficient can be obtained from Table C-3,
derived from Reference C-15. Unfortunately, several of the values given in Table C«3 were
based on tests in shallow water, a condition known to increase the water inertia effect.

‘L'wo other empirical formulas for the frequency of the 2-node vertical mode of vibration
of ships are given here without further discussion; namely, the formulas of Prohaska, and
Todd and Marwood.

Prohaska’s formula (see Reference C-18) is

———————

100 R !
N=——= /'“A“ I3 [C-51
vearal 2 (L)
1,000 \ 100
where N is the 2-node vertical frequency,
R isrioryry,

is the correction for variable inertia,
r., is the correction for shearing force,
is the correction for transverse compression and dilatation,
¢ is the mass distribution coefficient,
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TABLE C-38

Experimental Values of Burrill’s Coefficient Derived
from Vibration Generator Tests of Ships

Name of Ship Type of Ship Design Test Displacement D;g::r"f Burill's
Displacement : Coefficien
ptons Design Displacement | | ior el t
HAMILTON Destioyer 16.3 feet | 22.7 x 10°
SOUTH DAKOTA Battleship 42,500 0.90 Shallow | 26.7 x 10°
ALASKA Battle Cruiser| 31,600 0.90 Shailow | 24.3x10° |
SHiLOH | anket 21,800 0.27 Shallow | 33.0x 105
PHILIP SCHUYLER | Cargo 14,200 0.36 14 fest 21,4 x 10°
(futl Toad)
PONTCHARTRAIN | Coast Guard 1,970 075 Shallow | 27.7 % 105
Cutter (full foad)
MACKINAW [cebreaker 5,090 0.81 80 feet 27.5 x 10°
2 feet 21,0 x 10%
NIAGARA Transport 6,740 0.82 127 feet | 25,5 x 108
(full load)

is the added mass of water/displacement of ship,

is the moment of inertia of midship section,

B~ oo

is the displacement, and
L is the length of ship.

The choice of units in this formula and the evaluation of the ¢'s are discussed in Reference
C-168. It is noted here, however, that the formula, like the Schlick formula, is essentially the
formula for the free-free uniform bat. Since ¢, g, #,, T T3 and R are all dimensionless, one
is at liberty to apply Prohaska’s factor

Ji4

ve(l+e

to the uniform bar formula in any consistent set of units. The uniform bar formula is

22,4y JEI
12Tk
where w, is the aatural circular frequency of the 2-node flexural modo,
El is the bending rigidity, and
¢ is the mass per unit length.
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[ EI /Bl
Ny=3888|/— =858]/— [C-7]
pl4 ML?

where N, is the frequency of the uniform bar in cps,
E is Young’s modulus in tons/ft?,
I is the area moment of inertia in ft*,
M is the total mass of the bar in ton-sec? /ft units, and
L is the length of the bar in ft.

Honece these unite may he rotained in applying Prohaska’s formula for tha ahin which becomes

N = 3.58R El (C-8]
1T Vad + o /ALY ]
g
where A is the displacement in tons,

g is the acceleration of gravity in ft/sec?, and

&, g, and ¢ are to be derived in nondimensional units from Prohaska’s paper. <16
_ p

The Todd and Marwood formula (see Reference C-17) is

/ 3
N - B E—'D— [0‘9]
AL3

where N, is the 2-node vertical frequency in cpm,
is the moulded breadth in ft,

is the moulded depth at side in ft,

is the displacement in tons,

o~ b W™

is the length between perpendiculars in ft, and

£ is an empirical coefficient.

In Reference C-18 Todd gives values of 8 ranging from 45,200 to 62,500,

B. FORMULA FOR RATIO OF HORIZONTAL TO VERTICAL FREQUENCIES

Experience has shown that the ratio of the 2-node horizontal frequency to the 2-node
vertical frequency 13 roughly 1.5, as pointed out in Reference C-1¢, In Reference C-20 A. J.
Johnson proposed the simple formula

N Iy,xV
LAY SNt [C-10]
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where Ny isthe 2-node horizontal frequency,
Ny is the 2-node vertical frequency,

Iy ie the moment of inertia of midship section area for bending in horizontal plane,

is the moment of inertia of midship section area for bending in vertical plane,
v, is the vertical virtual inertia factor =

added weight for vertical vibration

1+ ﬁnd
displacement ’

EVy is the equivalent horizontal virtual inertia factor =
offectiva addad waight for horizontal vibeatics

o hrn sewR AL

1+

displacement

Although the data available on horizontal modes are more scanty at this time than the
data on vertical modes, the 1, 2, 3 rule for estimating the frequencies of the higher modes

from the frequency of tho 2-5cde mode still seems to have utility.

C. HORN'S FORMULA FOR THE 1-NODE TORSIONAL FREQUENCY

Horn’s empirical formula for the fundamental torsional frequency of surface ships (see

Reference C-21) is
9@,
N, =80k} ———— - [C-11]
ABY+DHL

If English units are used in this formula, then

N, is the natural frequency in cpm,

is the acceleration of gravity in ft/sec?,

is the effective polar moment of inertia of midship section area in ft*,
is the displacement in tons,

o

is the beam in ft,

is the depth in ft,

is the length in ft,

is the shear modulus of elasticity in tons/ft?, and
is the Horn’s empirical constant.

TN U W BNy

Faor 7 B suppeston using ihe {onnala for lorsional rigidity proposed by L.
Gumbel, ©-22

2
47,

Jyo = [C-12]

A
22
5
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where F is the area enclosed by the shell plating of the midship section (not the area
of the material},
5 is the plating thickness, and
As is a small distance along the shell plating in the plane of the section.

This formula follows from the shaar flow concept and does not take account of the effect of
inner decks and longitudinal bulkheads,

Horn assigned the value of 1.58 to & for a freighter (38 WASGENWALD). As in the
case of the Schlick formula, the best procedure for the designer is to use Equation [C-11] in

conjunction with data on the torsianal frannancy of a shin of the peneral tvpe he is designing,

if such data can be obtained. Moreover, in estimating J_, he is not restricted to Equation
[C-12] but may apply any method of estimating torsional rigidity of hulls; see, for example,
Reference C-28.

In estimating the frequencies of higher torsional modes from the fundamental torsional
frequency, little guidance can be offered at this time. It may be pointed out that Horn c-2t
found for the first three torsional frequencies of a freighter the ratios 1 : 1.8 : 1.9, whereas for
GOPHER MARINER, if the apparent torsion bending modes are considered as flexure-free
torsional modes, the corresponding ratios were found to be 1: 1.6 : 2.2,
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APPENDIX D

EMPIRICAL FORMULAS FOR ESTIMATING THE
LEVEL OF STERN VIBRATION

It is pointed out in Chapters 2 and 4 that the propeller-excited or blade-frequency vi-
bration of ships is often concentrated in the stern and is practically imperceptible at points
further forward than 25 percent of the length from the after perpendicular. This condition pre-
vaila when the operating blade frequencies are higher than the range of frequencies of signif-
icant hull modes.

An explanation of this phenomenon has been suggested in Chapter 4, and this Appendix
is concerned only with the empiricai formulas for estimating the amplitude of this stern vi-
bration under such circumstances, The formulas presented here were derived from the con-
vept of mechanical impedance which is the ratio of the driving force to the response in steady-
state vibration. Obviously, impedance formulas are useful in predicting levels of sarvice vi-
bration only when the exciting forces themselves can first be predicted. The problem of esti-
mating the exciting forces is discussed in Chapter 7.

The concept of mechanical impedance, although not an essentially new concept, has
geined acceptance in naval architecture only quite recently. The preference of Committee
S-2 (Mechanical Vibration and Shock) of the American Standards Association has been to de-
fine mechanical impedance in terms of vibratory velocity; see Reference D-1. This preference
has been influenced by the concept of impedance in the field of acoustics in which driving
pressures and particle velocities are important quantities. When 30 defined, mechanical
impedance corresponds with elecirical impedance in the classical analogy wherein electrical
current is analogous to mechanical velocily, electrical voltage is analogous to mechanical
force, and electrical impedance is analogous to mechsanical impedance. Thus, the familiar
electrical equation of alternating current theory is

I~~[i [D-1]
= N

where | 1s the current,
E is the voltage, and
Z is the impedance.
This equatiun corresponds to the equation in mechanical vibration
; L
- Z [D'2]
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where ¥ is the gingle amplitude of the velocity,
P, is the single amplitude of the driving force, and
Z is the mechanical impedance,

In naval architecture, however, the designer is much more familiar with levels of vibration
expressed in terms of displacement amplitude than in terms of vibratory velocity amplitude,

The formulas given here are based on experimental data on steady-state hull vibration
in the stern produced by known mechanical exciting forces. They are written in terms of
driving force and displacement amplitude and do not employ the mechanical impedance term
implicitly, Their generality, however, does actually depend on the scaling of mechanical
impedance. At this time it can only be said that, since hulls in general have been observed
to follow the same general pattern of stern vibration (once the frequency rises ahove the range
of significant hull nstural frequencies) and, since at high frequencies mechanical impedance
is chiefly inertial, there is some logic in expecting that the same empirical constant will find
application to ships of different types.

Only when the designer has access to much more data than are now available will he
be in a position to decide whether he can use a universal constant in the formula for stern vi-

bration or whether he will have to establish separate constants for the various classes of ships.

The formula proposed in Reference D-2 for estimating vertical vibration at the after
perpendicular under the conditions just stated is
Py

Y= : [D-3]
8.4 x 1078 x A x (cpm)?

where Y is the single amplitude in mils,
P, ie the single amplitude of the vertical component of propeller-exciting force
in Ib (at blade frequency),
A  is the displacement of the ship in long tons, and

cpm is the blade frequency in cycles per minute.

The empirical constant in this formula is the factor 8.4 x 10~ 6. Should future experimental
data show a wide variation, then, in using the formula, the designer should select his own
factor from experimental data for the ship type nearest to the one he is designing.

It will be recalled that the rule for the number of significant vertical modes was

adopted from Refersnce D-3; namely
Niw [D-4]

where N “is the numnber of significant vertical modes,
L is the ship length,
D is the ship depth, and
B is the ship veam.
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In considering the use of empirical formulas for horizontal and torsional vibration at
the stern, the designer must recognize that, just as in the vertical case, such formulas are
applicable only when the blade frequencies fall well above the range of significant hull mode
frequencies, This means that there must be no significant hull horizontal or torsional natural
frequencies in this range. It is alsg suggested that if in the approximate Equation [D-41, N’
is 6 for vertical, the limit for horizontal is to be taken as 4, for torsional as 8. Thus, if in
the case of a long slender hull the number of significant vertical modes is estimated to be
greater than 8, the number of horizontal modes would be considered greater than 4, and the
torsional modes groater than 3 in the same ratio. ‘

There is, however, another element involved in dealing with horizontal and torsional
stern vibration; namely, tha. ppssibility of coupiing of these two motions. As pointed oui in
Chapter 7, the blade-frequency excitation at the stern is reduced for simplicity to a vertical
force, a horizontal force considered to act-at the center of twist, and a couple whose axis is
parallel to the longitudinal axis of the ship. It does not necessarily follow, however, that if
the couple is zero there will be no torsional vibration at the stern. Nor does it necessarily
follow that, if the horizontal force is zero, there will be no horizontal vibration at the stern.
This results from the fact that the effective center of mass may not fall on the axis of twist
(as pointed out in Chapter 3), so that flexural vibration and torsional vibration are coupled in
the hull,

At this stage of the development of ship vibration theory it is only feasible to propose
empirical formulas for horizontal and torsional vibration at the stern on the assumption that
this coupling offect is nogligible. The possible coupling effects are discussed further in
Reference D-4.

The empirical formula for horizontal stern vibration is then similar to that for vertical;
namely, the approximate Equation [D-8]. The only difference is the factor to be used in the
denominator. At this time, a factor based on only a single test is available. This factor is
1.9 x 1079, and is based on a vibration generator test on the USS DECATUR (DD 936) de-
scribed in Reference D-5.

The similar empirical formula for torsional vibration in the stern is

.
¢ = 0 [D-5]

0.48 x [ x (epm)?

where ¢ is the single amplitude in radians,
is the single amplitude of the blade-frequency exciting couple in Ib-ft,

I  is the mass moment.of inertia of the entire ship about the longitudinal axis
through its center of gravity. This does not include any allowance for virtual
mass moment of inortia of the surrounding water. ji is eapressed in ton-sec*-ft
units,

cpm is the blade frequency in cycles per minute,




Here again the factor 0.46 is based on a single test made on DECATUR, described in Ref-
erence D-5. The designer should inquire for later information if available in the future.

A final word of caution in the use of the formulas given in this Appendix is necessary.
If any local stern structure or appendage has a natural frequency in the range of the driving
blade frequencies to be specified by the designer then, even though the conditions for freedom
from hull natural frequencies are met, the empirical formules cannot forecast the stern ampli-
tude under a given excitation, and the designer must either resort to the more detailed analyses
discussed in Reference D-4 or assure himseif that the exciting forces will be within safe limits.
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Calibration

(a) Frequency response — For vibration of propeller blade frequency, a minimum frequency
response of 3 cps is required. For shaft frequency (first order) a lower limit of 1 eps is re-
quired, This may be attained if the respective transducer or vibrograph is critically damped,
producing a linear response at or below resonance.

(b) Amplitude response of * % mil to * 100 mils.

(¢) Laboratory calibration check — Prior to each test, or at least every three months, the
transducers and vibrographs should be calibrated. In the case of the electronic equipment,
the complete system should be calibrated.

(d) Shipboard calibration check — At intervals throughout the test checks should be made
on the electronic system by introducing known electrical signals. This will avoid error due

to possible drift in the system.

Test Procedure
(a) Determine ship particulars:

(1) Ship dimensijons,

(2\ Propeller: type, dimensions, number, and number of blades.
(3) Propeller aperture clearance.

(4) After body configuration.

(5) Type of power plant,

(8) SHP, RPM, and speed.

(b) Determine test conditions:

(1) Displacement.

(2) Drafts forward and aft.

(8) Losading plan,

(4) Depth of water (120-ft minimum),

(5) Sea state (limit bused on ship length).
(¢) Take data during following conditions:

(1) Eazh 5-rpm increment from one-half to full power.
(2) Hard turn to port.

(8) Herd turn to starboard.

(4) Crashback ~ Fuil ahead to full astern,

(d) Data-taking procedure:

{1} Permit ship to steady on speed for constant speed runs.

(2) Take sufficiont longth of tape to permit collection of maximum and minimum
values (about 30 sec for single-screw ships).

(3) For maneuvers, start recorder as throttle or whee! is moved. Allow to run until
maximum vibration is noted.
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Data Analysis and Reporting

(&) The following data are to be evaluated for all runs:

(1) Maximum overall values of amplitude.

(2) Maximum first-order amplitude.

(8) Maximum amplitude of blade frequenay.

{4) Maximum amplitude of blade-frequency harmonics.

o #h ‘;L.lg;;{‘mbmmj;

(b} Data presentation should include the following curves plotted on a basis of shaft rpm:

(1) Vertical hull vibration.

(2) Athwartship hull vibration.

(8) Veitical vibration at main thrust bearing.

(4) Athwartship vibration at main thrust bearing.
(5) Fore-and-aft vibration at main thrust bearing.
(6) Other curves as appropriate.

(¢) Method of presentation of data:

(1) All curves should show single amplitude of displacement in mils plotted

against rpm. :
(2) Maximum amplitudes obtained during maneuvering runs should be presented in

tabular form giving frequoncies and amplitudes,

It will be noted that this draft of the Code makes no provision for measuring torsional
vibration of the hull. The reason for this is that trouble with hull torsional vibration is so
unusual that if a case develops a special investigation will probably be authorized.
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APPENDIX F
LEVELS OF SERVICE VIBRATION

Even if hull vibration analysis were developed to the stage et which the designsr could
accurately predict the level of service vibration for a ship of given design, he would still be
faced with the question of whether the level of vibration thus predicted was acceptable. This
brings up the vital problem of vibration norms and the definition of such terms as ‘‘normal,”’
“tolerable,” *‘permissibie,” *‘‘accepiable,’* “'severs,'’ ‘‘intolerable,!’ or ‘‘unacceptable,
as applied to ship vibration.

Although at the present time it is safe to state that the naval architect is well aware
of the need for standards of comparison in this field, no definite standards have as yet been
established in the United States. As a maiter of fact, there is a natural reluctance on the
part of both the shipbuilder and the ship operator to collaborate in any program for estab-
lishing such standards because of adverse effect that publicity regarding the vibration levels
on a particular ship might have on its earning capacity. Furthermore, in the case of naval
ships, tiere-is the added hazard of revealing classified information in presenting data on the
levels of service vibration.

Accordingly, it seems feasible to include in this Appendix only certain data which have
been accumulated in the course of the ship vibration research carried on by the David Taylor
Modo! Basin, and which have already been disclosed elsewhere in unclassified reports or
papers. Such information will serve to familiarize the reader with some of the levels of hull
vibration encountered in practice. Much additional information on this phase of the subject
will be found in the references listed in the general bibliography, and certainly much more
will be available in the future.

The following quotation is taken from Reference F-1:

“‘While it would be of great assistance to the naval architect if tolerances of vibration
amplitudes could be established over the entire range of frequencies encountered on ships
below which the vibration could be assumed acceptable, it appears premature to propose
such standards at present. Criteria based on vibration velocity, acceleration, and the rate
of change of acceleration have all been proposed and these have been based on physiclogical
offects as well as on engineering considerations. As a very rough indication of present con-
ditions, it may be stated that single amplitudes of 50 mils at 100 cpm may be considered
high as may also single amplitudes of 2 mils at 2000 cpm.”

One of the chiaf points to keep in mind in connection with levels of service vibration
of ships is the enormous difference between the levels of steady-state vibration due to pro-
pellers or machinery, and the levels of transient vibration due to slamming in a seaway.
This point is brought out in the following quotation from Reference F-2 which deals with
shock and vibration instrumentation for ships.

F-1




“If both hull and machinery are taken into account, instruments for measuring steady-
state vibration in ships must be able to cover the range of frequencies from 80 to 10,000
cycles per minute (cpm) and the range of single amplitudes from 0.0001 inch to 1,0 inch.

While desirable, it is not obligatory that these large ranges be covered by a single instrument.
In the case of shock measurement, frequencies range from about 30 cpm to at least 50,000
cpm if account is taken of the elastic vibrations of the entire hull on the one hand, and the
localized vibrations of component structures on the other, Shock amplitudes may range from
0.0001 inch to several feet, the larger amplitudes heing due to whipping motions of th? entire
hull.”?

In connection with this quotation the reader is cautioned that the term ‘‘shock loading?”
here includes loading due to underwater explogion as well as to slamming in a seaway.

In Reference F-3 there are discussed criteria of acceptable levels of hull vibration
proposed by the Boston Navul Shipyard as a tesulb of muny years ol experience in making
underway vibration surveys on naval ships, A criterion based on vibratory valocity was
recommended. Figure F-1 shows three regions of dispiacement amplitude based on the Boston

figures. As this is written, this is not a Navy-wide standard.
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Figure F-1 — Range of Acceptable Amplitudes According to Boston
Criteria (Velocity 0.32 to 0.52 Inch/Second)

Clearly, in the question of acceptable levels of steady-state hull vibration, physic-
logical effects are a major consideration. The recognition of this has led to & number of
recent investigations on the physiological effects of mechanical vibration. In 1859 one of
the research panels of the Society of Naval Architects and Marine Engineers requested the
proparation of a summary of such data by one of its members. This led to the preparation of
a series of grapha by Mr. J.B. Montgomery of the Newport News Shipbuilding and Dry Dock
Company in 1959. These graphs were based on various criteria depending on the original
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source, As an illustration, one of these charts, based initially on Reference F-4, is repro-
duced here as Figure F-2. It wiil be noted here that the criterion of comfort is acceleration
regardloss of frequency. Some investigators have considered the rate of change of acceler-
ation or the third derivative of displacement with respect to time more significant than the

acceleration itself,
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Figure F-2 — Vibration Standard Adopted by L’'Institut de Recherches de la
Construction Navale (Based on Physiclogical Effects)

The Navy’s ‘‘Military Standard—Mechanical Vibrations of Ship Equipment®® (Reference
F-5) is intended as a guide for the vibration testing of equipment to he installed on board
ship. Table F-1 taken from Refercnce F-§ gives the level of vibration at which ondurance
tosts on equipment are to be run. Although this is based on accumulated data on service vi-
bration of naval ships, it is not to be consirued as a criterion of acceptable vibration levels
for future designs.
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TABLE F-1

Amplitudes of Vibration for Endurance Testing of Shipboard Equipment

Frequency Range Tabie Amplitude
cps single amplitude, inches )
5to 15 0.030 + 0,006
16t 25 0.020 + 0.004
26 to 33 0.010 + 0.002
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APPENDIX G
SCALING CONSIDERATIONS IN MODEL VIBRATION EXPERIMENTS

In any attempt to determine the vibratory response characteristics of g ship by means
of model experiments, the laws of similitude are of prime importance, It naturally occurs to
the research worker that it is far simpler and lass costiy te conduct model experiments in the
field of ship vibration than to conduct full-scale experiments. However, as pointed out in
Chapter 7, aside from the difficulties of fabrication, it would not bo feasible to run a self-
propelled model of a ship to determine the amplitudes of service vibration by direct obser-
vation of the amplitude of the model.

The reason for this situation is that significant quantities affecting the vibratory re-
sponse do not scale so as to give overall similitude in this case. This should not seem
surprising, and, in fact, it is hardly to be expected that overall similitude. regarding ship vi-
bration could he obtained when it is not attainable even for the fundamental problem of ship
resigtance. The general subject of model experimentation and similitude is treated in Ref-
eronce G-1 and in many other publications. In Reference G-1 it is shown how various dimen-
sionless rarameters can be derived from the total number of physical quantities affecting the
phencmenon and e number of fundamental vwnits involved (such as mass, length, and time;
or force, length, and time). It turns out that dynamic similitude is attainable when the model
is constructed to scale of the same material and when external loads are applied which are
related to the full-scale loads both in magnitude and in time variasiion in socordunce with
Table G-1.

Thus, in accordance with Table G-1, any natural frequency of a solid body could be
determined by making a scaled model of the same material and measuring the frequency of the
desired mode of the model provided gravitational effects were negligible. The frequency of
the prototype would then be A~1 times the frequency of the model, whete A is & number de-
termined by the first item of Table G-1. If the mode of oscillation is influenced by gravity,
the relation between the model and full-scale frequencies will not conform to Table G-1.
This relation could be fulfilled only if it were possible to modify the gravitationsl field
surrounding the model in such 4 way that the acceleration of gravity satisfied the 15th item
of Table G-1. A model of a simple pendulum would therefore not follow the rule for frequency
given in Table G-1.

It is thus readily seen that the rules of similitude for vibration are not satisfied in
self-propelied model tests of surface ships. In such tests the corresponding shaft speeds of

model and prototype are related as follows:

ship

model shaft rpm = ship shaft rpm

model
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TABLE G-1

Similitude Relations in Dynamic Model Testing {or Equal Stresses

Measured Quantity Prototype Mode!
Length L AL
Angular Displacement 6 4
Area A 34
Area Moment of nertia 1, IR
Volume 14 A3V

| Mass m 2
Ma3s Moment of Inertia I AS1
Mass Density I} ]
Moduius of Elasticity E E
Stress o o
Time ¢ Al
Natural Frequency N AN
Displacement (rectilinear) d ad
Velocity ¥ v
Acceleration a e
Force F zF
Torque T A3T
Spring Constant
e el ow
Sori

it | e
Damping Constant 2
(rectilinear viscous) ¢ Ate
Damping Constant . 4.,
(angular viscous) ¢ Ae
Ratio of Damping to

Critical Damping c/e, c/e,
Power KW MKW
echanical |mpedan 2
szg';eg tcmlvl::gc?ty)ce %o ¥ 2y
Reduced Frequency bo bw
(Strouhal number) v v

Since the blade frequencies would fall in the same ratio as the shaft speeds, the rule for
froquencies in Table (-1 would not be satisfied,
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It is important to note that, although the scalivg luw used in ship resistance model
72
work (namely, Froude’s law: o " constant) does not confora with the rules for model
g

testing involving elastic vibrations given in Table G-1, it does furnish e basis for studying
rigid body oscillatory motiong of ships. Thus, Froude's law is applicable to the determina-
tion of bending moments in ships in waves, and models muy be devised (not true scale models
in all respects) in which the frequencies of important mod«.s of elastic vibration are made to
conform with these rules, These rules are summarized in Tablc (-2,

TABLE G-2

Similitude Relaiions in Model Testing by Froude's Liaw

Measured Quantity Prototype Model
Length L AL
Velocity v Vo
Time ¢ Neg
Acceleration (rectilinear) a a
Force F ANF
Moment M Aty
Pressure P P
Displacement (rectilinear) d Ad
Angular Displacement 7] 0
Mass Moment of [nertia 1 A%
Rigid Bedy Natural _

Frequencies N XTEN
Flexural Natural Frequency -
(required) N XAN

Another important dimensionless quantity in model testing involving flow is the

Lo . - . . .
Roynolds number — where 7, is a characteristic longth, @ is the fluid velocity, and v is the
v

kinemalic viscosity. Where frictional resistance is predominant, as in the study of flow in
pipes, the Reynolds number is used as a basis for similitude, Important similitude relations
based on Reynolds number are given in Table G-3.

In Chapter 14 it was pointed out that in the aircraft field, model testing for flutter is a
well-established practice. Here the dimensionless quantity on which the rules of similitude

b
are based is the reduced frequency or Strovhal nuinber — where b is the semichord of the
) .

pirfoil, o i# the circul freguency of vibration, and v is the velocity of undisturbed air
relative to the airfoil. The rules thus derived conform with those for dynamic model testing




TABLE G-38

Similitude Relations Based on Reynolds Number
(Assumizg the Same Fluid for Both Cases)

Measured Quantity Prototype Model
Lenpth L AL
Velotity v e !
Tiine ¢ pLb i
Acerleration (1eciilingar) a A
Forca F F

for equal stresses given in Table G-1. In the case of wind-tunnel testing of aircraft flutter
models, it is possible to reduce the discrepanci.es between the model and prototype Reynolds
numbers by increasing the air density. In hydroelasticity this procedure is not feasible.

Although up to this time the extent of model work in hydroelasticity has been insignifi«
cant, the possibility of such developments should be noted. On the cther hand, it must also
be noted that in hydroelasticity the only craft comparable to the vehicle in the sircraft case
is the submarine since the sutface wave offect imposes the restriction that models of surface
vessals be propelled at velocities conforming not to the Strouhal number but to the Froude
number.

Further discussion of the use of models in vibration research will be found in Ref-
erences G-2 and G-3.
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APPENDIX H
MISCELLANEOUS INFORMATION ON VIBRATION OF SHIPS IN SERVICE

Certain unclassified data with regard to vibration of ships in service are prosented in
this Appendix without comment, A designer will often find such miscellaneous information
helpful in his efforts to guard against the occurrence of hull vibration in a ship of new desi .
There is no attempt here to present a complete compendium of the information available at the
time of this writing.

Table i1-1 presents observed values of natural frequencies of hulls reported in tech-
nical literature. Table H-2 gives the froquencies of vertical flexural modes of hulls as deter-
mined in vibration gonerator tests conducted by the David Taylor Model Basin, Table H-3
gives the frequencies of the horizontal flexural modes (considered as torsion-free) for the
ships listed in Table H-2.

Among the eight ships tested with a vibration generator (Tables H-2 and H-3), there
were a few for which a 1-node torsional mode was either identified or appeared likely, The
frequencies for these cases are given in Table H-4.

During and immediately after World War II the U.S. Navy conducted extensive investi-
gations of shock effects on naval ships. In connection with these investigations, data on the
natural frequencies of various local structures were obtained and summarized in an unclassi-
fied report; see Tables H-5 and H-8 taken from Reference H-15. Of special interest to the
designer are the data on the natural frequencies of panels of side plating, deck plating, and
transverse bulkheads which are repreduced hore from that reference.

In connection with an investigation of environmental conditions at the location of radar
equipment on naval ships, the David Taylor Model Bagin obtained information in 1959 as to
the relative magnitudes of various types of ship vibration in calm and rough seas; see Table
H.7 taken from Reference ii-i6, While these data are based on statistical analysis and wore
an innovation at the time they were presented, they may serve to give the designer some idea
of the augmentation of vibration levels which accompanies = change in the sea state,

The normal flexural modes of the free-free Euler-Bernoulli uniform beam are often used
as assumed modes in starting calculations of natural frequencies and normal modes of hulls
by the Stodola process. Values that may be used in plotting the first three modes are given
in Table H-8,

A sample test schedule for a vibration-genorator survey on a commercial cargo ship is
given in Table H-9, The ship is GOPHER MARINER, which has boen used as an example iz
many places in this book., The survey is discussed in deiail in Reforvive 11-17, &nd 1t should
be noted that this included, propeller-oxciting force determination as weil as hull-vibratory

response characteristics.
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TABLE H-2

ol
v ( .;'} Frequencies of Verticnl Flexural viados of Hulls in CPM
f ' ] (From Reference }-1%)
i
LU o -
o | Name of Shi Type Hote
s me of e ol T e s a1 [6]7 s
& Y Transport | 110 | 200 | 2% | 355 | 448
LZ'.\RL.@.’&MRE; Destroyer 79 | 165 | 26" | 360
«. 1, KULAS . Ore Carrier 92 | 159 | 200 | 246 | 285 | 304 | 360
; i, APAUL - | Ore Carrier | 45 | 106 | 16€ | 210 | 312 | 354 | 432

> PERE MARQUETTE 21 Car Ferry 112 | 224 | 34 | 512
> DL COLUNY MARINER | Dr, Cargo 82 | 155 | 227 | 210

PP RTYAMPTON Cruiser 68 | 133 | 204 | 288 | 359 | 437 | 500
P " UTATEN ISLAND Icebreaker | 280 | 540 | 720
] L

TABLE H-3

ivsx.encies of Horizontal Flexural Modes of Hulls (Considered Torsion-Free) in CPM
(From Reference H-14)

Name of Ship Type Node
1 2 3 4 5
NIAGARA Transport 190 | 402 | 585
CHARLES R. WARE Destroyer 132 | 246
L E. J. KULAS Ore Cartiet 195% | 320" | 375"
C. A, PAUL Ore Carier 180 § 300 :

PERE MARQUETTE 21 | Car Fenry | 220 | 390
OLD COLONY MARINER | Dry Cargo 118 | 280 | 350 | 435
NORTHAMPTON Cruiser 1063 | i83 | 276 | 3271 | 392
STATEN ISLAN leebreaker | 420

*Experimental determination of number uf nodes not made; tabulation made|
to yield bost agreement with calculated values,

TUncertainty as to whether this 1s a flexural or a torsional mode.

TABLE H-4

Frequencies of 1-Node Torsional Modes of Hulls (Assimed Flexure-Free) in CPM
(From Reference H-14)

Ship Type Frequency
NIAGARA Transport 322
CHARLES R. WARE | Destroyer 310
E. J. KULAS Ore Carrier 262"
NORTHAMPTON Cruiser 346

’Not positively identified as this mode,
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TABLE H-5

Dominant Frequencies uf Side Plating and Bulkhesus . - Vn- -.u8 Naval Skips
(From Reference H-15)

_ Method of Ranges of ~~min~nt| Method ot Exciting
Structural Units Obtaining Freguen-ies, £ps Vibration
Frequencios !
Destroyer CAMERCH
Transverss bulkhead, Frame 29 Oscilicgrams &£ 77 Depth-charge firing
Transverse bulkhead, Frame 99 Oscitlograms 42-116 Depth-charge firing
Transverse bulkhead, Frame 152 Osciliograms 25-177 Depth-charge firing

Heavy Cruiser CANBERRA (CA 70)
Side plating at flag cabin and statercom,

main-deck level Oscillograms §1- 81 Gun firing
Panel of side plating at flag cabin Calculalion 54-117
Panel of side plating at flag stateroom Calculation 38- 81

Light Cruiser MIAMI (CL R9)
Side piating and bulkhead at various focations ]Vibrograph recordsJI 10-121 J f ‘ming
Destroyer SUMNER (D-. 692)

T Oscillograms . 29~ 49 -
Side piating of after deckhouse Calculation 34— 80 Gun firing
Side plating and bulkheads at various iocations] Vibrograph recorus 52-108 Ta@ing

Submarine DRAGONET (35283)
Periscape sheers Vibrograph records 504, 536 Ramming
Conning-lower coaming Vibrograph records 157 Ramming
Conning-tower fairing Vibrograph records 134 Ramming
Back side staryoard running light Vibrograph records 60 Tapping
Bridge coaming Vibrograph records * 42 Tapping

Hattlaship MiSX -URI (BB €3)

1 1

S.de piaing at senior staff officer'g__‘

cabin and stateroom | Usciliograms 43~ 86 Gun firing
Side plating at senior staff officer’s . .
cabfn andgstateroom Vibrograph records 61- 79 Tapping
Side plating at senior staff officer’s cabin Calculation 15149
Side plating at senior staff officer’s s'ateroom | Calculation B 32-10)
H-4




e

R T —y

" by

g PR

TABLE H-6

"...ncnant Frequencies of Decks on Various Naval Shipz
{From Reference H-15)

=S PO
- ot
P Sicuctuesl Unlos :;::::m Ranges of Dominant | Method of Exciting
£ Fraquencies Frequencies, cps Vibration
* _ Lighi Cruiser KiAMI (CL 89)
: " Decks at varlcus lacations | Vibrograph records | 2079, 93, 103 | Ramming
: Dastroyer SUMNER (DD €32)

-Pomon of main deck
Portions of deck . st vath.us focitions

Oscillograms
Vibrograph records

26~46
49-315

Depth=charge firing
Tapping

Submarine DRAGONET (S5 293)

After tomnedo room, ovar stitfenss

Yibrograph records L 296

[ Ramming

TABLE H-7

Factors for Converiing Vibr tion Amplitudes in Calm Seas to Extreme Conditions

The vibration smplitude for calm sea operation is taken as A. (From Reference H-16)

Type - “‘ihration

Vibration Amplitude for
Extreme Conditions

Aireraft Carrier Destroyer
Propeiler-excitad A A
Exeited by unbalance of A A
propelles-shaft system
Transtent vibration
during maneuvers ZA A
TABLE H-8

Normal Mode ¥ :apss of the Free-Free Euler-Bernoulli Beam

Mode

Station No,

BRI
T

7[8{9 ] 1| 2

13 ] 14

15116 | 17| 18

13

2

2node| 1.000] 0.753) 0,544 | 0.312] 0,098 '6.099:'0.272 E.mj 3521

4=

586/ 0,608 | 0.586 /0,521

0,414[0.272

.099) 0,098 | 0.312{ 0,544

0.768

1.000

0.263{0,0

0.26310.483

0.625 { 0.662

0,585 (0,397 (0,128 0,228

2.608

T.o0¢

#node | 1,000/ 0.508! 0.228 | 5.118| 2,307 | D508 0,66 0.625 [ 583
#-node | 1,000 0.454] 0.052) 0442 0,643} .57, 1397 0,053 0,328

0.608(0.711]0.608 {0,328

0.045]0.397

0.621|0.643|0.442 | 0:052

0.454

1.000

NGTE: The horizontal 1i-.. woove the dechnal point indicates a negative value.
{

]
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TABLE H-9

Schedule of Vibration Tests on GOPHER MARINER

Transverse Vibration

1st Day

6:00 a,m. = Check operation of equipment,

7:00 a,m, — Start testing immediately foliowing the
clearance of the 30-fathom line.

7:15 a,m, = Operate ship at 5 knots,
Start running vibration generator.
Make frequency survey to determine transverse
natural modes,

10:15 a.m. - Continue frequency survey with increased eccen-
tricity — check important frequencies.

2:15 p.m. - Finish frequency survey.
Prepare for continuous acceleration,

2:30 p.m, — Build up from 5 knots to full power in perioed
of % hour.
Record transverse vibration.

3:00 p.m, ~ Finish continuous acceleration test.
Prepare for propeller force measurements.,

$:15 p.m. - Operate at 106 rpm.
Hold rudder £ 2 degiees,
Record transverse vibration.

3:30 p.m. - Operate at 100 rpm.
Hold rudder * 2 degrees.
Record transverse vibration,

3:45 p.m. - Operate at 95 rpm.
Hold rudder * 2 degrees.
Record transverse vibration,

4:00 p.m. - Qperate at 90 rpm.
Hold rudder * 2 degrees.
Record transverse vibration,

4:15 p.m, — Finish propeiler forces.
Build up to 95 rpm.
Prepare for turning tests.

4:30 p.m. -~ Execute turning tests at 95 rpm.
Record bending, torsional, and axial strains on rudder post.
Accomplish 90-degree change of heading with following
rudder angles:
5-degree left rudder S5-degree fight rudder
10-degree left rudder 10-degree right rudder
15-degree left rudder 15-degree right rudde:
Time between change of heading 3 minutes,

5:30 p.m, ~ Finish turning tests.
Build up to normal power,
Prepare for hull calibration test,

H-6




TABLE H-9 (Continued)

Schedule of Vibration Tests on GOPHER MARINER

Transverse Vibration

2nd Day

6:00 a.m, ~ Calibrate hull for transverse propelier forces,
Operate at 106 rpm.
Run vibrator at equivalent of 90 and 95 rom,

8:00 a.m, ~ Operate at 85 rpm,
Run vibrator at equivalent of 100 and 106 rpm,

10:00 a.m, -~ Finish hull vibration.
Shift generator for producing veitical force.
Onerate at cruising speed.

Vertical Vibration

2:00 p.m. ~ Operate ship at 5 knots,
Start running vibration generator,
Make frequency survey to determine verticai
natural modes.

4:00 p.m, - Continue frequency survey with increased
eccentricity—check important frequencies,

7:00 p.m, - Finish frequency survey,
Prepare for continuous acceleration,

7:15 p.m, ~ Build up from 5 knots to full power in period

of % hour.
Record vertical vibration.

7:45 p.m, - Finish acceleration run,
Operate at cruising speed,

3rd Day

6:00 a.m., — Calibsate hull for vertical propeller forces,
Operate at 106 rpm.
Run vibrator at equivalent of 90 and 95 rpm.

8:00 a.m, - Operate at 85 rpm,
Run vibrater at equivalent of 100 and 106 pm.
10:00 a.m. — Finish hull calibration,
Shift eccentrics for torque,
Prepare for propeller force measurements,
Record vartical vibration,

10:15 a.m. - Operate at 106 rpm,
Hold rudder * 2 degrees.
10:30 a.m, = Operate at 100 tpm,
hoid cudder = 2 degroes.
10:45 a.m. - Operate at 95 rpm.
Hold rudder £ 2 degrees,




TABLE H-3 (Continued)
Schedule of Vibration Tests on GOPHER MARINER

Vertical Vibration

3rd Day

11:00 a.m. —~ Operate at 90 rpm,
Hold rudder + 2 degrees,

11:15 a:m, ~ Finish propeller forces,

12: Noon -~ Finish shift of eccentrics for torque,
Operate ship at &5 knots,
Start running vibration generator,
Make frequency survey to determine
torsionai natural frequencles,

2:00 p.m, — Continue frequency survey with increased
eccentricity,
Check important frequencies.

6:00 p.m. ~ Fiiish frequency survey,
Prepate for continuous acceleration,

76157 pim, ~ BUITE up from 5 knuts to full power in period

of % hour.
Record torsional vibration,

§:45 p.m, ~ Finish continuous acceleration test,
Build up to cruising speed,

4th Day

6:00 a.m. - Calibrate hull for torque.
Opssate at 106 rpm,
Run vibrator at equivaient of 90 and 95 rpm,

8:00 a.m. - Operate at 85 rpm.
Run vibrator at equivaient of 100 and 106 rpm.

10:00 a.m. - Finish hull calibration.
Prepare for propeller force measurements,

10:15 a.m, — Operate at 106 rpm.
Hold rudder * 2 degrees.

10:30 a.m. - Operate at 100 rpm,
Hold rudder * 2 degrees.

10:45 a.m, — Operate at 95 rpm.
Hold rudder ¥ 2 degrees,

11:00 a.m. ~ Operate at 90 rpm,
Hold rudder = 2 degrees.
11:15 a.m. = Finish propeller forces,
Prepare for anchor test,

11:45 a,m, -~ Anchor test to occur in no less than 30 fathoms.
Arrest ancho: by brake aftes faii of about 1 fathom,
Repeat anchor test.

12:45 p.m. - Finish anchor test.
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Empirical formulas for estimating the level of
stern vibration, D-1 to D-4

Empirical formulas for hull frequencies, 3-3;
C-1to C-7 '

Energy dissipation per cycle, 8-8

Endurance tests for shipboard equipment,
F-3; F-4

Lngines, resilivnt mounting of, 18-2
Equation, differential, for vibrating beam, 8-2
Equivalent viscous damping, 4-2; 8-4
Euler-Bernouilli beam theory, 8-2; ¢-1

Euler-Bernouilli uniform beam, normal mode
patterns of, H-5

Exciting forces, propeller, 7-1 to 7-13
analytical determination of, 7-4 to 7-7; 15-2

Expansion joints, effect of, A-2

Cxperimental methods of determining damping,
8-5 to 8-7

Lxtensional deformation of a hul', 2-3

Fatigue, due to vibration, 11-1




Fin, use of to reduce propellor-exciting
force, 7-18

Finite difference equations, for hull with a
resiliently mounted assembly, 6-10; 6-11

Finite difference method, A-1 to A-T; B-1to
B-4
of vibration anaiysis, 3-1U to 8-13; 4-8 to
4-5
First-order hull vibration, 7-2
First-order resonance, avoiding of, 10-8

Flexible materials, use of to reduce vibration,
9-1; 9-7

Flow-excited vibration, 10-1
Flexural mocdes, 2-3

Flexural rigidity, as indicated by natural
frequency, 11-3

Flutter
elassical, theory, 14-8
criticai, 14-3
determinant, 14-5
model testing for, 6-4; 15-8
of control surfaces, 8-8; 14-3 to
panel, 14-8
sub-critical, 14-6
speed, 14-3

Forced vibration
analog method of calculating, 4-5 to 4-7
calculations, 15-2
imaginary numbers, use of ir, 4-3
complex numbers, use of in, 4-3
- linear combination, use of in, 4-4
difference equations for, 4-3; 4-4
digital method as applied in, 4-3 to 4-5
normal mode method of calculating, 4-7
to 4-9
of hulls, 4-1 to 4-13
experimental determination of, 15-7
phaso, in, 4-3

14-7

Forced vibratory response, 15-11
Forces, propeller-exciting, 7-1 to 7-13; 15-2
Forcing function, 4-1; 5-2
Formulsa
Rzier, L.A., for number of significant
vertical modes of a hull, 47
Burrill's, for frequency of 2-node vertical
mode of a hull, C-8
empirical, for hull frequencies, 3-8; C-1to
c-7

In-4

Horn’s, for frequency of 1-node torsional
mode of a hull, 8-8; C-6 to C-7

Ormondroyd, J., for number of significant
vertical modes of a hull, 47

Prohaska’s, for 2-node vertical mode of a
hull, C-8; C-4

Scklick’s, for frequency of 2-node vertical
mode of a hull, 8-8; C-1

Todd and Marwood, for frequency of 2-node
vertical mode of & hull, C-5

Forward velocity of ship, effect on damping
action of control surface members, 8-8

Frahms reeds, 15-5

Free-free beam, 2-3; 2-5; 8-1

Free-free uniform bar, normal mode of, 3-19
Free space natural frequencioes of hulls, 11-2
Frequency dependence of hull damping, 8-4

Frequency equation, for a resiliently mounted
assembly, 6-9

Frequency indicating instruments, 15-5
Frequoncy modulation, 15-5
Froude law, 15-8; G-3; G-4

Full-scale experiments in field of ship
vibration, 15-9; 15-10

Generalized coordinates, 4-8

Generalized force, 5-3
concopt in couplad longiludinal-torsional
vibration of propulsion systems, 12-3
Generalized mass, 4-8; 5-4

Generalized system for torsion-bending modes,
15-11

Generalized velocity, 4-8

GOPHER MARINER, 88, 10-4; 11-3; A-1to
A-7; B-1 to B-3; C-T; H-6 to H-8
exciting forces on, 7-11
exciting frequencies for, 10-8

Graphical integration, 1-2

Graphical methods of calculating hull modes,
3-10; 3-17 to 3-23

Gravity forces, B-2

HAMILTON, USS, 8-10

Harmonics, of blade-frequency exciting forces,
7-2

I



Hatch openings, effect of, A-3

Heave, 2-1; 2-2 '

Helmholtz resonator phenomena, 14-1
Historical background, 1-1; 1-2

Holzer method, 3-10

Horizontal exciting force, 7-9
Horizontal forces, blade frequency, 15-8

Horizontal modes, experimental values of
frequencies, H-3

Horizontal stern vibration, empirical
formula for, D-3

Horizontal vibration, sample test schedule
for, H-6; H.T
Horn's formula, 10-4
for frequency of 1-node torsional mode
of a hull, 3-6; C-6 to C-7
Hell
bending of &, 2-3
Hull(s)
couple exciting, 7-9
criteria for ratio of stiffness to mass at
the ends of the ship, A-8; A4
dynamical theory of, 11-1
extensional deformation of a, 2-3
forced vibration of a, 4-1 to 4-13
fres space natural frequencies of, 11-2
hysteresis damping of a hull, 8-2
loading of hull, effect of on
frequencies, 10-7
mechanical impodance of a, T-1; 4-10 to
4-13; D-1to D-4
natural frequencies of a, 8-10; 15-11,;
H-1; H-2
normai modes of vibration of, 2-3 to 2-6;
3-10
power reguired to vibrate a, 8-1
rigid body motions of the, 2-1; 2-2;
11-2; 15-5
shearing of a, 2-3; 3-8
steady-state vibration of,
structural design of, 11-2
theoretical frequency of a, 11-2
torsional modes of, 3-6; 15-7; C-8
torgsional vibration of, 4-13; 7-11; 7-12;
15-4; 15-7; D-3; E-3
transient vibration of, 5-1 to 5-10; 11-1 to
11-8; 15-10; B-1 to B-4
twisting of a, 2-3

In-6

'Hull design criteria, 11-2
Hull girder, structural design of, 11-2 to 1i-4

Hull vibration
snalysis, graphical method of, 3-17 to 3-28
analysis, linear combinations in digital
mwethod of, 3-13

Hull vibration
buoyancy, effect of on vertical modes of,
9-1 B
calculations, accuracy of, 3-11
characieristics, i-2
effect of isolation mounting on, 8-4 to
6-13
effect of local flexibility on, 6-1 to 6-13
effect of water on, 2-1; 2-8 to 2-9
sample test schedule for, H-6 to H-8
damping of, 4-2; 8-1 to 8-11
data, analysis of, E-3
due to shock, F-2
effect of rudders on, 8-7 to 8-8; 9-8; 10.1;
14-3 to 14-7; 15-10
first order, 7-2
levels of, due to slamming, 7-1
normal modes of, methods of calculating,
3-10
propeller-excited, 2-5; 10-1 to 10-8
rudder maneuvering to oxcite, 8-5
steady state, design considerations relating
to, 10-1 to 10-11 ‘
Hydroelasticity, P-2; 14-1 to 14-9;, G-3 to G4
feasibility ol model work in, 15-8; G-4
Hydrofoil boats, 14-8
Hydrofoil damping action, 8-7 to B-8; 15-10

Hysteresis damping of hull, 8-2

Imaginary numbers, use of in forced vibration
calculations, 4-8

Impact test, 10-9
Impedance, electrical, D-1

Impedance formulas, for stern vibration, 4-19;
4-13; 7-11; 7-12; D-1 to D-4

Impedance, mechanical, 4-16 o 4-13; 7-1;
D-1 to D-4

Impedance-type formula for stern vibration,
7-11; 7-12; D-1 to D-4; D-12; D-13
Impulse oxcitation, 5-5; 8-5; 10-9
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Inertia matrix, of o restliently wmyvnted
assembly, 6-8
Influence function, 4-7; 4-8

Instruments for ship vibration measure-
ment, 15-1; 15-5 to 15-T

Integral equations, in Stodola method, 8-20
Integrating amplifier, 15-5
Isolation mounting, effecis of on hull

vibration characteristics, 6-4 to
8-12; 11-5

Johnson, A.J., formula of, for ratio of hori.
zontal to vertical frequencies, C-5; C-6

Karmsn vortices, 14-1

Kinetic energy, 8-3; 8-5
in terms of normal modes, 4-8

Kirchhoff's equations in the mobility analog,
3-16; 4-8

Krylov, A.N., 1-1; 15-1

Lateral vibration of propeller shaft, 12-1;
12-3

Levels of service vibration, F-1 to I'-4

Levels of ship vibration, 15-10; F-1 to F-4

Lewis, F.M., 7-7; 7-8; 7-12; 15-7; 15-8

Lift force of control surface, 8-7

Lifting surfaces, damping action of, 8-7 to
8-8; 15-10

Linear combination, use of in forced vibra-
tion calculations, 4-4

Linear combinations, in digital method of
hull vibration analysis, 3-13; 4-4

Loading of hull, effect on frequencies, 10-7

Local flexibility, effect; of on hull vibra-
tion chars.cteristics, 6-1 to 6-13

Local natural frequency, 6-2

Local resonance, avoiding »f, 10-8; 10-9

wuocel wiructures, 2-5; D4 .
feasibility of mcdel tes:ing of, 14-9
irsguencics of, experimenial, H-4
specification of, 10-8
sprung mass effect of, 6-1 to -18: 15-11

vibraiion, 102 11-1; 11-4; 11-8
vibradion tesiing of, 16-2
Local vibration, 2-8
Locking arrangements for resilient mountings,
18-1
Locking out of resilient mountings under slam-
ming conditions, 18-2
Logarithmic decrement, 8-3; 8-5; 8-6; 15-9
Longitudinal vibration
of hulls, 15-11
of propulsion-shafting system, 12-1 to 12-8
.of propulsion systems, coupling with
torsional vibration, 12-3
Losenhausen, 1-1; 15.2
Lumped system, 8-1; 3-11; 4-3; 5-6
approximating a vibrating hull, 8-11
Lumping, A-2

Machinery, propulsion, vibration in, 12-1 to
12-4
Machines, vibration, 15-2 to 15-4
MARIA, S8, 9-38
Maritime Administration, U.8., 10-7
Mass -
added, 2-6 to 2-8
apparent, 2-6
center of, 2-2
effective, 6-2; 6-3
generalized, 4-8; 5-4
sprung, 2.8; 8-10 to 6-12
virtual, 2-8
Mass-spring system of one-degree-of-freedom,

Mass-unbalance effect, 7-2
Mass-unbalance of rudders, effect of, 14-3
Masts, flexibility of, 6-2; 11-4; 11-5
Masts, natural frequencies of, 11-4
Matrix
dynamical, of a resiliently mounted
assembly, 6-9
inertia, cf a resiliently mounted
sseembly, 6-8
notation, in tr.atment of resiliently
mounted ssgemblios, §-8

In-6




stiffness, of a sei cf resilient
mountings, 6-8; 6-3
Measurement of hull vibration, E-1 to E-3
Mechanical admittancs, 4-11; 4-12
Mechanical impedance, 4-10 to 4-13; 6-2;
7-1; 15-10; 15-11; D-1 to D-4
of a hull, of the stern of
a ship, 7-1; 15-11 .

Medium vibration generator, TMB, 15-2;
15-3

Method(s)
analog, of calculating hull modes,
3-14 to 3-16 '
digital, of calculating hull modes, -
3-10 to 3-13
graphical, of calculating hull modes,
3-17 to 3-23 :
Bolzer, 3-10
Myklestad, 3-10
Prohl-Myklestad, of vibration
analysis, 3-10
Stodola, 1-1; 3-10; 3-17 to 3-23
Mobility analog
;- antiresonance in, 3-16
Kirchhoff’s equations in the, 3-16; 3-17
oscillator, use of in, 3-17

Mobility electrical analogy, 3-14

Mode, normal -

analog method of calculating hull,
3-14 to 3-16

digital method of calculating hull,
3-10 to 3-13

flexural, 2-3

graphical methods of calculating hull,
3-10; 3-17 to 3-23

of vibration, 2-3

orthogonality of normal, 3-22; 3-23; 4-7;
4-8; 5-2; 5-3

torsional, 2-3; 3-6; 10-4; 15-7; C-6; H-3

torsion-bending, 2-6; 3-16 to 3-24; 15-7

Mode of vibration, 2-3

Model experiments in the fiela of ship vi-
bration, 7-7 to 7-10; 15-7 to 15-9

Mode! predictior of exciting foices,
7-10; 10-5; 15-7 to 15-9

Model prediction of propeller-exciting forces,
7-7 to 7-10; 10-5; 15-7 to 15-9

~
LR

1753
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B e ORI srntmacl on e v b .
- Models for hip #ihrating rosearnh; 160

Nodal drive, us¢ of o avoid torsicnal »ibra-

[ v
1-%; 4a-R

Model, witu ftesisiv =imn

G-1tr G-4

Mon.ent of lvertia of section wrans, Yofr 4
A-d

Monigqoniory, J.B., F-2

Moticns, rigid body, of a ship, 2-1; %-; “'3

Myklestsd m thod, 3-10 ;"-‘if.,
kA
Natural fregiencies of huils \\
comparisca of calculated and measure:, .
15-10; 18-11 A
experimenial vai.os of, H-1; H-2

methods of caicuisting, 3-1 to 3-24
Ngtural frequency cr toexl structure, pos:i-
bility of changing, 10-8
Navy, U.S., P-2; 15-10; G-1
Negative damping, 14-3

Network analyrers, 3-14
TMB, 3-17; 3-18

Neutralizer, v.uration, 8-1

NIAGARA, URS, 8-8; £-10

PN
VOOUn

tion, 12-2

. Nodes, 2-3; 2-4

Nonresonant fcrced response, 15-11

Nondimensioni: notation, P-2

NORD, SS, 9-%

Normal mode n:ethod
as applied to transient vibration, 3-2 to
5-5; 8-5
ol calculating forced vibration, 4-7 to 4-10
orthogonality «f, 3-2%; §.28: 4.7; $-4: -2
5-3 '

Normal mode of vibration, 23

Normal mode patern from divitad calceuintion.
A-T '

Normal modes
comparison of cuiculated and measured,

15-13
experirmiontal doterminstion of, 15-17 13
18- 0.

In Lontrol suciag
of vibration «i b
3-1 to 3-24
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TLAMPTON, LSS, 5-8: 810
1)
SIS TN L‘-“ N.1 1o N-13

rondhmensional, 7.0

N

\D' 1

\»” el

t of determining propeiler-
7-9

h’; hod

exeining forne

Numboer of propeller blades, effect of, T-8

U AN WU O RSS 18e10

DLD COLONY MAHINGG, 57, 58

tne-niaced propetie r, T-u, 10-9
vibratory effect of, 7-2; 10-9

L..:«mg_reo -of-freedm, i

, 9=1 .
reneasoninyr a nermal made, 4-9
Ciecritional analogs, 8-14

10-4

, formula for number of sig-
< oof a hull, 4.7

3-23:

Urmondroyd, J.,

Ormondroyd, 4
sircant vertionl modo

Ortnogonality of normal nodes, 3-929:

42Ty 3-8 B9 Be3d
Oscillator. usc in mohility analog, 3-17

*" Osciliograpn, i’»-"
' multi-channel, 15-9

Pallograph, 15-5
TMB two eonipoient,
Panel flutter, 3-8
PERE MARQUETTE, &%) 8.4
Phase
in forced vibration,
measurement, 15-9
meter, 15-5
relations, i5-9
shift, between exciting {drces o
differeni propeliers, 7-3
shift, botween surface wnd vearing
forces, 7-3

15-6

4-3

Pitel
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"‘\ Pitching of ne'l, 2

A3 ,
“WPlanes of vibrationni symmetey, 5-0

RS . . ) _— .
\\\'-.5 ating, experimental values of frequercic.,

VAT
Y xH-4

N II"T

Polar symmetry, of a resilient mounting, 6-6
Pole mast, natural frequencies. of, 11-4
PONTCHARTRAIN, USCGS, 15-7

Portable vibration instruments, use of, 15-9
Potential energy, 4-8; 8-5

Potential flow, 2-8

Power required to vibrate a hull, 8-1

PRESIDENT HOOVER, S8, propeller-
exciting forces on, 7-12

Proc ure coefficient. 7-4
Prosyr.e field (fluctuating), 7-2

Pressure, fluctuating due to water inertia, .
- 2-6
in'incipal axes of inertia, of a resiliently

" _mounted assembly, 6-8

:Prohaska’s formula for 2-node vertical fre-
quency, 3-3; C-3 to C-5

Prohl-Myklestad method of vibration analysis,
3-10

Propellers
advance ratio, 7-6
blades, number of, 10-5; 10-6
clearances 7-5; 10-5
excited v1bratlon 2-5; 2-6; 10-1 to 10- 9
14-1
number of blades, effect of, 7-6; 10-5; 10-6
one-bladed, 7-2; 10-9
pitch unbalance of, 7-2; 10-9
shrouded, 10-3; 10-5
singing, 14-7
supercavitating, 10-3
tip clearances of, 7-5; 10-5
unbalance of, 7-2; 10-9

vibratory effect of, 2-5; 2-6; 10-1 to 10-9

Propeller-exciting forces

analytical prediction of, 7-4 to 7-7; 15-

beats ing 7-3

experimental data on, 7-10 to 7-13

fin, use of to reduce, 7-13

full-scale determination of, 15-9; 15.10

model determination of, 15-12

model prediction of, 7-7 ta 7-10; 15-7;
15-8

on PRESIDENT HOOVER, SS, 7-12

reducing, 9-5 to 9-7; 10-5; 10-8

synchronizing devices for reducing, 9-5
to 9-7

[\')
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Propeller shalts
lateral vibration of, 12-1; 12-3
stresses in, 12-3
whirling of, 12-1; 12-3

Propulsion-ghafting systemns
damping in, 12-1
longitudinal vibration of, 12-1; 12-2; 12-3
torsional vibration of, 12-2
vibration of, 12-1 to 12-4

Propulsion system, vibration of, P-2; 10-2;
12-1 to 12-4

Radius =7 curvature of a beam, 3-2
Range of blade frequencies, 10-3; 10-4; 10-7

Range of significant hull frequencies, 10-4;
10-7 :

“Rational®’ theory of ship vibration, P-1;
2-6; 4-1; 15-11

Ratios of froquencies of higher modes to the
fundamental, 10-4; C-1

Retios of freauencies of hull modes, 10-4; C-1
Rayleigh, Lord, 4-9; 5-2
damping, :-2; 1-9; 4-12; 5-8; B-2; 8-8
method of finding natural frequencies, 8-5
syatem, 5-%; 8.4
Reciprocity, 4-T; 4-8
Reduced frequency, 15-8; G-3
Reed tunable, 15-5
Resoarch, ship vibration, 1-2; 15-1 to 18-19
Resilient mounting
assembly, 6-4 o 6-13
bottoming of a, 11-5
digital meuhod, applied to hull with,
8-10 to 6-12
dynamical equations for, 6-10 to 8-11
dynamical matrix of a, 6-3
. finite diffaronce equations tor hull with
a, 8-10
frequency equation for a, 6-9
inertia matisx of a, 6-8
matrix notation, in treatment of, 8-8
principsal axes of inertia of a, 6-§
anubbers for, 11-5
gtiftness matrix of a set of, 6-8; 8-9
design considerations reiating to, 13-1 wo
13.2
offert of, 11-2

effoc of slamming with, 13-2

In-9

Resiliert monnting
effective point of attachment of a, 6-4;
6-6; 6-7
elastic constants, of a set of, 6-8; 8-7
locking arrangements for, 13-1
locking out of, under slamming conditions,
13-2
of engines, 138-2
polar symmetry of a, 6-6
snubbers, use of in, 11-5; 13-1
Resonance, avoiding of, 8-1; 10-6 to 10-8
local, 10-8 to 10-2

Resonance, in wooden model, 7-2
Resonance magnification, 8-4; 8-5
Resonant forced response, 15-11
Response to transient sxeitation, 5-1 to §-10
Reynolds number, 15-9; G-4
Rigid body motions of a ship, 2-1; 2-2; 11-3;
15-5
Riveted construction, damping effect of, 8-2
Rolling, 2-2
Rotary inertia, 3-17; B-1; B-2
Rotating vectors, 4-4; 4-10; 4-11; 8-4; 9-6
Rudders
damping effect of, 8-7; 8-8
effect of on hull vibration, 8-7; 8-8; 9-3;
10-1; 14-3 to 14-T; 15-10
flexibility of, 8-2
hydrofoil damping action of, 8-7; 8-8; 9-3;
10-1; 14-3 to 14-T; 15-10
maneuvering to excite hull vibration, B-5
torsional divergence of, 14-2; 14.3

Rudder-hull vibration, 14-8 to 14-7

Scaling considerations in model vibration
experimeats, (-1 tc G-4

Schadlofsky, E., 1-1

Schiick, 0., 1-1; 15-1
formula, 3.8; 10-3; C.1

for frequency of 2-node veriical mode of
» huii, 8-3- 10-3; -1

Sen state, variation of vibration levels with,
H-5

Seaworthiness, structural, 11-1

Service vibration, misceilaneous information
on, H-1 to H-8
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Shaft
oylindrical, torsional vibration of,
8-4 to 3-8
cylindrical, torsional rigidity of, 8-4
speeds, use of higher, to avoid hull
resonance, 10-8

Shafting, unbalanced, 2-5; 10-11

Shallow water effects, 2-8; 2-9;
C-3

Shear deflection, 2-3; 3-3; 3-6; 4-1

Shear rigidity, 3-8; A-4

Shearing force, 8-7; 3-20

Shearing of a hﬁll, 2-3

Shell plating, fiexibility of, 6-2

Ship vibration, experiments, similitude in,
15-T; G-1 to G-4
Ship vibration
full-scale experiments in field of, 15-7
to 15-10
instruments for measurement of, 15-1; 15-5
to 15-7
standardization of, 15-5
levels of, 15-11; H-1 to H-9
model experiments in field of, 7-T to 7-10;
15-7 to 15-9
norms of, F-1
problem, empirical aspect of, P-1
‘“rational’’ theory of, P-1; 3-6; 4-1; 15-11
research, 1-2; 15-1 to 15-12
surveys, 15-1; 15-7; E-1 tc E-3
commerciaf, code for, [i-i.
of USS DECATUR /Dhozay 7-11
Shock, H-1
hull vibration due to, F-2
tests for equipment, 11-5

Shrouded propeller, 10-3; 10-5

Side plating in estimate of vartical shear
rigidity, A-4

Sidling, 2-1

Significant hull frequencies, number of, 4-7;
4-9. 10-4

Gigaificani hull frequency range, effect of,
10-4; 10-7

Significant modes, 4-7; 4-8
number of, 4-7; 4-9; 10-4

Similitude in ship vibration experiments,
15-7 to 15-9

Similitude, laws of, G-1 tn G-4
Singing propeller, 14-7

Six-bladed propeller, possible use of to avoid
resonance, 10-8

Skegs, flexibility of, 6-2

Slamming, 2-5; 5-1 to 5-10; 11-1 to 11-8; 15-10;
B-2
effect of with resilient mountings, 11-5; 18-2
levels of hull vibration dus to, F-1

SNAME, P-2; 1-2; 7-7; 15-1; 15-8; E-1
Snubbers, for resiliently mounted assemblies,
11-5; 18-1
Society of Naval Architects and Marine
Engineers, P-2; 1-2; T-7; 16-1; 15-5; E-1
code for vibration surveys of commercial
vessels, E-1

Speed control of vibration generators, 15-4

Sprung mass effect, 2-8; 6-1 to 6-18; 9-1 to
9-3; 10-8; 13-2; 15-11

Stability of finite difference calculation, 5-7

Staggering in finite difforence calculation,
3-12

Standardization of instrumentation for ship
vibration measurement, 15-5

Standing wave, 15-9
STATEN ISLAND, USS, 8-9; 8-10

Statistical methods applied (s transient vi-
brations, 15+10

Stoady-state vibration, 4-1 to 4-14; 10-1 to
10-12
hull, design consideration relating to,
10-1 to 10-12

Stern vibration, 4-12; 4-18; 7-12; 10-4; D-1 to
D-1
empirical foermulas for, 4-12; 4-13; D-1 to
D-4
impedance formula for, 4-12; 4-18; 7-12;
D-1to D-4
Stiffness matrix, of a sat of resilient mount~
ings, 6-8; 8-8
Stodola method, 1-1; 3-17 to 3-23
axis, shift of in the, 3-20
boundary conditions, satisfying of in, 8-21
constants of integration, 8-21
convergence of the, 3-22
integral equations in, 8-20
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Stresses, hull girder, due to vibration, 11-1
Stresses in propeller shafts, 12-3
Stroboscope, 10-5

Strouhal number, G-8
use of in flutter experiments, 15-8

Structural design of hull from the vibration
standpoint, 11-2 to 11-4

Structural integrity as related to transient
vibration, 15-10

Structural strength, relation to vibration
characteristics, P-3; 111 to 14-4

Structures, local ship, 2-8; 11-4; 11-5
Sub-critical flutter, 14-6

Submarines, P-2; 14-8; 15.-8; 15-11; G-4
diving planes, damping effect of. 8-7;
8-8; 15-10
feasibility of model experiments with,
15-8 '

Supercavitating propeller, 10-8
Superstruclures, treatment of, A-3
Surface forces, 7-3; 10-5

Surge, 2-1

Surveys, vibration, of ships, 15-1; 15-7; E-1
to It-3

Sway, 2-1
Symmetry, in vertical modes, A-1
Symmetry, vibrational, 3-7; 6-5; 13-1

Synchronizing device, for propeller shafts,
7-8

Synehronizing devices for reducing propeller-

exciting forces, 7-8; 9-1; 8-5 to B-7
Synchronizing vibration machines, 15-4

Syslems

luinped, 8-1; 8-11; 4-3; 5-6
approximating » vibrating hull, 3-11

masg-spring system of one-degree-of-
freedom, 3-1

one-degree-of-freedom, 3-1

. rropnlsion, vibratiap of P-9: 1N.9; 12.1

to 12-4

Rayleigh, 5-2; 8-4

Tachmindji, A.J., 7-8

Tost schodule for hull vibration charac-
teristics, sample of, H-6 to H-8

Theoretical frequency of a hull, 11-2

Theory
beam, P-1; 8-1 to 3-23; 4-1 to 4-13
Euler-Bernouilli beam, 8-2; 8-8
limitations of, P-1; 4-1
“rational,”” of ship vibration, P-1; 8-6;
4-1; 15-11
Timoshenko beam, 3-8

Three-mass, 40,000-1b vibration generator,
15-8; 15-4

Thrust coefficient, 7-5
Thrust variation, 7-7; 10-6

Time steps in calculation of transient vibra-
tion, B-1

Timoshenko beam theory, 8-3
Tip clearances ol roapailer, T-5; 10-5
TMB network analyzer, 8-17; 3-18

Todd and Marwood formula for 2-node vertical
frequency, C-5

Torque variation, 7-7

Torsional modes, 2-3; 3-6; 10-4; 15-7; C-6;
H-3
exparimental values of frequencies, H-3
of hulls, experimental investigation of,

15-7

ratic of frequencies, 10-4

Torsional moments, blade frequency, 7-4; 7-9;
7-12; 15-8
Torsional rigidity of eylindrieal shaft, 3-4
Torsional vibration
at stern, empirical formula for, 4.13; D-2
in diesel drives, 12.2
in propulsion system, coupling with longi-
tudinal vibration, 12-8
of bull gear. 12-2
of free-free :niform beam, 3-5
of hulls, 4-13; 7-11; 7-12, 15-4; 15-7; D-5;
15-8
oxperimentsl investigation of, 15-7
impedance formula for, 7-11; 7-12
of propulsion-shafling aystem, 12-2
of turbine drives, 12-¢
use of nodal drive w avoid, 12-2
Torsion-bending modes, 2-6; 3-18 to 8-24;
15-7
sxperimental investigation of, 15.7
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Transient vibration

analog method as applied to, 5-9; 5-10
difference equations for, 5-8

digital method as applied to, 5-8

in impact test, 10-9

in resiliently mounted equipment in, 18-1

instruments for, 15-10

normal mode method as applied to, 5-2 to
5-8; 8-5

of hulls, 5-1 to 5-10; 11-1 to 11-6; 15-10;
B-1 to B-4
design considerations relating to, 11-1

to 11-6

statistical methods applied to, 15-10

structural integrity as related to, 15-10

time steps in calculation of, B-1

Trunsmission lines in electrical analog of a
vibrating hull, 3-15

Traveling wave, 15-9

Trials of new ships, 15-1

Turbine drives, torsional vibration of, 12-2
Twisting of a hull, 2-3

Unbalance, limits for, 10-9 to 10-11

US EMB, P-2; 1.2; 7-7; 7-12; 9-2

U,8. Experimental Model Basin, P-2; 1-2;
713 1125 9-2

U.S. Maritime Administeation, 10-7

U.S. Navy, P-2; 14-10; H-1

Vector, rotating, 4-4; 4-10; 4-11; 8-4; 9-6
Velocity pickup, 155

Verticai exciting force, 7-9

Vertical forces, blade frequency, 15-8; 15.13

Vertical vibration sample, test schedule for,
H-8

Vibration
beamlike, 2-3
flow excited, 10-1
hull girder stresses due to, 11-1
in propulsion machinery, 12-1 to 12-4
Iaterai, of propoller shaft, 12-1; 12-3
normai mode of, 2-8
of local structures, 10-2; 11-1; 11.3; 11-4
of propulsion-shafting systems, 12-1 to

1244

of propulsion system, P-2; 10-2; 12-1 to
12-4
propeller-excited, 4-1 to 4-13; i4-1; 15.11;
D-1 to D-4; F-1
rudder-hull, 14-3 to 14-7
service, levels of, F-1 to F-4
steady-state, 4-1 to 4-18
stern, 4-12; 4-18; 7-12; 10-4; D-1 to D-4
testing, of local structures, 15-2
transient, 5-1 to 5-10; 8-5; 10-9; 11-1 to
11-6; 18-1; B-1 to B-4
/ibration analysis, Prohl-Myklestad msthod
of, 8-10
Vibration analysis, finite difference msthod
of, 3-10 to 8-18; 4-8 to 4-5
Vibration generator, 15-2 to 15-4; 15-11
mechanical, 3-168; 7-T; 7-9; 8-3 to 9-15;
10-9; 15-2 to 15-4; 16-11
difficulty of finding fundamantal mode
with, 15-9
TMB medium, 15-8
Vibration generator
three-mass, 40,000-1b, 15-3
speed control of, 15-4
amplidyne, 15-4
Vibration instruments, 15-5 to 15-7; E-1; E-2
calibration of, E-2
damping in, 156
for transient vibration, 15-10
portable, 15-9
Vibration machines, 15-2 to 15-4; 15-11
Vibration measurements, E-1 to E-3
Vibration neutralizer, 9-1 to 9-8

Vibration surveys of ships, 15-7; E-1 to E-3
gsample test schedule, H-6 to H-8

Virtual mass, 2-6 to 2-8; 8-17; 4-1; 5-10; 15-1;
A-2
shallow water effoct on, 2-8

Viscous damping, 4-2; 8-8
Vortex shedding, 14-1; 14-7

Wake, effect of nonuniformity, 7-2; 7-6
Water, damping action of, 8.1

Water, offect of on hull vibration characier-
istics, 2-1

Wave aquation, one-dimensioaal, -5

in-12
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Wave motion, 15-9

Westinghouse standard for balaice of naval
equipment, 10-10

Whirling of propeller shafts, 12-1; 12-3
Wilson, W. Ker, 14-8

Wind tunnel, usc of in aircraft flutter
testing, 1£-8

Yaw, 2-2
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