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Abstract: The free-convection layer along a vertical flat plate 1s
investigated theoretically as well as experimen.ally with a view
to studying its instability and "natural" transition from laminar
to turbulent flow, Stability calculations are carried out based
upon the small perturbation theory for the exact velocity profile
for the Prandtl nmumber 10.

Temperature profiles are measured along a vertical
electrically-heated brass plate. By the use of a dye technique
the natural transition mechanism is investigated, i.e., discrete
vortex lines and their subsequent distortion into three-dimensional
pattern and eventual breakdown is carefully studied.

In addition a double-row vortex system, which arises in
the free-convection liayer, is investigated. Its mechanics and
overall effect on the stability and transition of the free-
convection layer are discussed.
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Nomenclature

An, B.n arbitrary constants

c wave propagation speed

p specific heat at constant pressure
Fr Froude number

f dimensionless stream function

f! dimensionless velocity

g gravitational constant

G modified Grachcf-number parameter based on x
Gr Grashof number based on x

Ki’ Ko constants

k coefficient of heat conductivity
P total pressure

P pressure of the basic flow

Pr Prandtl number

Ra Rayleigh number

t! temperature perturbation function
t absolute temperature

vii



ambient temperature

wvall temperature

dimensionless independent variable
velocity parallel to surface

velocity cf basic flow

velocity normal to surface

distence from leading edge of the plate
normal distance from surface

vave number

coefficient of volumetric expansion
boundary-layer thickness

small parameteyr

dimensionless similarity variable
dimensionless disturbance temperature function
dimensionless temperature function

wave length of disturbance wave
viscosity

kinematic viscosity

viil



3 dimensionless temperature ampliitude function

r densiiy

T time

¢ dimensionless velocity amplitude function
¥ stream function

~ disturbance quantity

-) dimensional quantity

Subscripts

i refers to inner critical layer

o] refers to outer critical layer

0, W evaluated at the wall,

ix



Introduction

Transition from laminar to turbulent flow has drawn the
attention of many investigators throughout the years. In most of the
experimental as well as the theoretical studles over-all effects of
certain imposing conditions on transition have been found. Many details
of the actua’ mechanism of transition, however, still remain unknown.
In recent years investigations have been centered on clarifying the
intricate mechanism of transition through experimental studies.

Experimental studies have been greatly supplemented by the
development of small-disturbance stebility theory. Although the
stability theory provides no insight into the actual mechanism of
transition, it does determine under what conditions certain small dis-
turbances would amplify or decay in a given flow. Schubaqer and
Skramstad [ 1] 4 confirmed the theory of small distrubances by per-
forming wind-tunnel experiments. They introduced small disturbances
artificially in the flow by means of a viLrating ribbon situated on a
flat plate. The small wave disturbances are observed to be amplified
as the flow progresses downstream under the conditions as properly pre-
dicted by the theory. The wave intensifies its strength as it is
amplified until a turbulent spot is produced. The turbulent spot grow-
ing in size envelops the adjacent portions of laminar flow. The growth
of a turbulent spot has been studied in detail by Schubauer and
Klebanoff [2] . By the use of a hot-wire anemometer Klebanoff and

Tidtrom [3] (see also Schubauer [U4] ) investigated the highly

1 Numbers in brackets designate References at end of paper.



three-dimensional features involved in the transition process.

Hama, Long and Hegarty [ 5] explained some significant
features of the transition mechanism through the flow-visualization
technique by means of dye injection. Dye pattefhs of two-dimensional
discrete vortices shed by a trip wire on a flat plate towed in a
water tank were observed. Observations disclosed that the initially
two-dimensional discrete vortices deformed intc three-dimensional
vortex loops. As the vortex loops moved downstream they were
stretched and deformed further until a turbulent spot appeared near
the head of the loop. This spot then gave rise to highly turbulent
motion. Hama [6 ] recently has performed similar experiments in the
water tank but used a vibrating ribbon as the stimulating device in
place of the trip wire used previously. He concluded from these experi-
ments that the formation of a vortex loop was an essential feature in
the transition process.

In the above mentioned experiments some kind of stimulating
device was always used to provoke the onset of turbulence. Several
experiments dealing with the phenomena of "natural transition, i.e.,
without the aid of artificial stimulation have been performed.

Fales (7] . Hama [8] , and Hegarty [9 ] concerned themselves
with the stability and transition of flow over a flat plate stopped
suddenly. Hame [10] , [11] , also considered the transition
process behind a backward-facing step and in the wake behind a circular

cylinder,'respectively.



In order to attain a better basic understanding of the
"natural transition" process in contrast to the artificially-
stimulated transition process the present investigation was initiated.
The free-convection layer along a vertical flat plate is inherently un-
stable because of the particulur velocity profile in it and, therefore,
affords an exceilent opportunity of studying its instability and the
phenomena asscciated with "natural transition'.

Eckert and Soehnghen [12] investigated the transition
process in the free-convection layer along a heated vertical flat plate
in air. The interferograms, however, restricted the observations to
only a two-dimensional picture. Since the transition process 1is
intrinsically three-dimensional, only a limited understanding of the
transition process was obtained.

A similar work was reported by Birch {13] who introduced a
controlled disturbance intc tne flow about an isothermal wall., He
attempted to determine the properties c¢f a critical or naturel frequency
that would produce incipient instability. An empirical relation between
the fregquency and Rayleigh number was determined. Gartrell [14] made
a further study into the e?fect of forced oscillations of the free-
convection layer. He found that the empirical relation developed by
Birch applied only to the specific test conditions of his study and not
generally to free-convection fiows., In addition Gartrell couwld find no
apparent relation among the various fliow-parameters which could be used

to predict the effect of variations in flow conditions and disturbances



on flows of this type. Thus, the effect of induced disturbances on a
flow, which was known to be highlyy unstable without artificial disturb-
ances still remains open.

Other experiments on trzansition in the free-convection fields
over vertical flat plates and cyl inders were performed by Saunders [15]
[16] , Hermann [17) , Fujii [ 18] , and Larson [ 19] . These
authors, however, were essentially concerned with the transition
Rayleigh number. They found that transition took place at the Rayleigh

o

nunber approximately 2 to 4 x 10”7 in various fluids.

lack of theoretical investigations into the instability of
free-convection flow provided an =additional reason for careful analysis
of the problem. Aithougn Plapp [ 20 ] performed an analysis on a
polynomial approximation of the free~convection velocity profile in air,
it was desired in the present investigation to obtain a more accurate
solution based upon the exact vel ocity profile. Since the experiments

were to be performed in water, a velocity profile for larger Prandtl

numbers needed to be considered.

Theoretical Analysis

Consider a steady free.-convection flow about a vertical heated
plate. The basic (conservation) equations governing this motion under

the boundary-layer approximations are:



o dv

oty <O, (1)
PI% 24 - o, du -

“ +vaa —vaaz+3p(t tw) | (2)
2t 2t _ k't

w3 +v‘>3 = e Sy (3)

where W and Vv are the velocity components in - and - direct-
ions, respectively, 3 the gravitational constant,. P the coef-
ficient of thermal expansion, t and 1T, the temperature of the
fluid at any location and the temperature of the ambient fluld,
respectively, and k /fCP the thermal iffusivity. Physical
configuration and co-ordinate system are shown in the following

sketch.

Boundary laye: \J

Heated Vertical Plate




When a stream function Y 1is defined such that w= 6“}’/()3 and
V =—2¢/I9x the continuity equation is satisfied. E. Pohlbhausen

{21 ] showed that, by the use of a similarity transformation

1

|
[ %ﬁ(tur_tm) ) -___V‘,__I
V(’[ 47 X J‘d“(%)'%, (#)
1
s [9p(t-t) |
Y= 4V X e |50 (5)

and a dimensiorless local temperature 1}(7)‘: (t - tmy(tw— t),

the basic equations can be reduced to a set of ordinary differential

equations
"y " /l .
fl+sff-zf +=0 (6)
LA+ 3RfAA=0 (7)
where primes indicate the derivatives with respect to 7 . The

boundary conditions are

flo)=Fflo=0 ., &)=
flo)= W(=)=0 (®)

This set of equations have been solved by E. Pohlhausen, and its

solution is extended by Schuh (22] to the case of large Prandtl



7.
nunbers., Ostrach [ 23] performed a more accurate calculation of this
system of equations for the Prandtl numbers 0.01, 0.72, 1.9, 2, 10,
100, 1000, on an electronic computer. The numerical results obtained
by Ostrach are tabulated in NACA TN 2635 and exclusively used in the
ensuing computational and experimental work.

The stability of the basic free-convection flow will be
examined by the method of small perturbations, i.e., we inquire
whether a certain disturbance, which is superposed to the basic flow
and which satisfies the equations of motion, is amplified or damped
out. A fundamental assumption of the hydrodynamic stability thecry is
the "parallel-flow" condition which stipulates that the mean velocity
U depends upon z only. The boundnry-layer flow approximates the
parallel-flow concert very well because the variation of u with
respect to the X -co-ordinate is much smaller than that with respect
to n . In additicn, we need only to consider two-dimensional dis-
turbances 1in regard to the instabiiity criterion, since H. B. Squire's
theorem [2L4 ] states that a two-dimensional flow is more unstable for
two-dimensional disturbances than for three-dimensional disturbances.

The basic flow described by U=TU(y), V=0, P (x, 3) ;
T‘(x,u) is assumed to be a solution of the steady-state equations.
Upon this basic flow we superimpose a two-dimensional disturbance vary-
ing in time and space. When the disturbance velocity components,
pressure, and temperature are denoted by Ti(x,1,?)) {7(x'2)1ﬁ)?5(x'1)f%

2:(x‘1.rﬁ ) the resulting motion is given by

-~

u=U+% ; Vv=% | F=P+'P'; t=T+1t .



These quantities are substituted into the two-dimensional equation of

continuity, the incompressible Navier-Stokes equations and the energy

equation, as given by

S r3=o.
-;—; +u-§—‘:+v§—“;—:—§—f+vvzu+gp(t—tw)
gif +-ur%¥:-F'U*§€§== - gﬁ? +V ‘;721f}
-g—% +u3—3 +v63§?= ]‘%:; Vzt,
were 7%= S5+ 35

(9)

(10)

’

(11)

(12)

After dropping the basic flow

quantities, which are aiready assumed to satisfy the conservation

equations, and neglecting the quadratic terms in the disturbance

quantities, thesc equations reduce to

NSO,
§E+U§%+%g—[§ =-
32+U-§7 =—j'.-—g-s+
-3-%+U§—t+7-j-g=% v'T

(13)

(1)

(15)

(16)



By cross-differentiating equations (14) and (15), the pressure terms

are eliminated, and this system of equations reduces to the following

equations:
ou DV
o % 4 , (17)

Since we have already assumed that the perturbation is two-dimensional,
any Fourler component of artitrary two-dimensional oscillations may

x(x-TT
have (X) T ) dependence in the form @ ¢ X (x )

In this expression, A = ZTI'/)\ is real and positive and represents
the wave number of the disturbance. On the other hand, € is complex,
C= C" + LCL , in which C, denotes the propagation velocity of
the wave disturbance in the X -direction and EL denotes the amplifi-
cation factor. Depending upon whether —C—L is positive, zero or nega-
tive, the wave is amplified, neutral or damped out. The continuity

equation for the perturbed velocity is satisfied b, introducing a per-

turbation stream function of the form

s



10.

I.R(X"E?) 2
(20)

Py, =9pe

where + is a complex amplitude function of the disturbance. The dis-

turbance velocity components are given by

U = -g-{s’- = $'(Ld) gt X0 , (21)°
v - T (&(x~-TT) ‘
-z fp et (22)

In a similar manner we may define a temperature perturbation as

(X (x-CTT)

Fyn=Sye (23)

Substituting the stream function perturbation and the temperature

perturbation into equations (17), (18) and (19) we have

U-o(F -5 F)-U -2 [z en ] -p5, (20

2 The convenient complex notation is used here. Physical meaning is
attached only to the real part of the stream function, thus

Re(¥) = CC‘T [ 6, cos X(x-CnT) — & SN ?\(x—f.m]
3 Prime denotes differentiation with respect to the independent
variable.
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(R ’}U"C) £p- J(;;tb)Jz r’lc,, [f"(‘ﬂ - a? f(Jﬂ (25)

It is appropriate to introduce dimen<imnless variables by dividing all
of the quantities involved by characteristic quantities. The following

dimensioniess variables are introduced:

\7= % in whick § = V2~ X/(G"K)IL y
= UX/Z VeVG—"x‘

¢=dx/21, 5, .

X = F/(tw_t“’) ’

c=Cx/2VpGr,

Substituting these dimensionless quantities intc equations (2&), and

(25) we obtuin
(Foc)(§-)-F 4= -k [z ftaty] - LAL o7 (o)

(fe) 5= ¢ =~ = [57— «* ] (1)

1




12.
where (3 is a modified Grashcf-number parameter appropriately

describing the free-convection flow and defined as

2~

Z\[-‘?—_'(G”x\ 3 F_r' :4V°32 G"x/jgxz

the Froude number and Pr :»/ucﬂ/ k the Prandtl number.
Equation (26) is the equivalent of the Orr-Sommerfeld equation with an
additional contribution duve to the body-force term provided the
Reynolds-number in the Orr-Sommerfeld equation is defined as

Re = U"S/'VOO where UJ "= ZVQO\IG-V‘_,‘/X . Equation (27)
is the counterpart of the Orr-Sommerfeld equation for the energy
amplitude function.

This fandimental system of equations for the velocity and
temperature disturbances requires six boundary conditions for a solu-
tion. We require that all disturbances vanish at infinity. At the
well the normal and parallel disturbance velocities must vanish. Thus

for an insuwluted wall the bourdary conditions are:
’ Vs
plo)= ¢{d= S(o=0 ,
¢$,9", 5§ —= o0 as y—ww (28)
vwhereas for an isothermal wall the boundary conditions become
'
$lo)=¢ (= S(0)=0 ,

4’) 4’1) 3 -0 s N> . (29)




13.
The problem of stability of the free-convection flow has now
been reduced to an eigenvalue problem of equations (26) and (27) com-
bined with either choice of boundary conditions equation (28) or
equation (29). Eliminating § from equation (26) by appropriately
differentiating equation (27), the two governing equations (26) and
(27) can be reduced to the following single sixth-order differential

equation in 4) , as previously discussed by Plapp [19 ] R

s (-ei-eor v [ b

e [ G SR P S O *]}

ol o=t i freerc]

2
Pr

=g§%t{f"u’¢+ [(f'-c)—ofa“][””*"l}'ﬂ .

(30)



lu.
Six constants, A, g eeey /\6 are to be determined by the six boundary
conditions as given by equation (28) or equation (29). For instance,

the amplitude of the velocity fluctuation is

+:A»+| +A2¢2+A3¢3+A4 ¢++A5 +5+Ae¢e . (31)

Thus the boundary conditions supply six homogeneous, linear, algebraic
equations for the six constants A, s sesy Ae. There is a non-
trivial solution of *tnis set of eauations for A, 3 eeey AG only if
the determinant of the coefficilents of An is zero. Since the co-
efficients of db ) 5 , 4nd its derivatives are functions of &,

c, *G ,and Pr 1or o piven velociiy profile, setting the
determinant D ( x,C ) A QG ) Pr)=0gives a functional relation for these
quantities. The o, C 5 A G, Pr , which satisty this relation, are
the eigenvalues.

To solve completeliy the eigenvalue probtiem of the above
determinant is a difficult task without a high-speed electronic com-
puting facility.

Thus the problem is limited here to determining the nature of
the stability of laminar free convection in a viscous fluid when the
coupling term in equation (26) due to the temperature fluctuation is
neglected. S. Ostrach [ 2% ] showed that the body force does not
directly affect the stability for natural convection. However, for the

complete coupled problem in the free-convection case, Jjustification of



ls.
this assumption still remains open.
By virtue of dropping the coupling term we need only

equation (26) in the form:

(f- (™) —f "¢ =~ ﬁ(c}""— 202¢"+ ) | (32)

The amplitude function ¢ can thus be represented by linearly inde-

pendent solutions ¢ s ¢ ’ #3 , and ¢a and mey be wrltten as
! 2

¢(7):Al¢l +A2+l-kA3 ¢5+A4 ¢‘, . (33)
The boundary conditions for *he reduced equation are
$(0)=¢'(0)=0 ,
(3t)

¢>‘P,*’0 as =@

The property of the solutions of equation (32) for large
values of X G (or equivalently & Re ) has been investigated in
detail by previons researchers (cf. Lin [ 26 ], ch. 8). The
solutions ¢' and d% are classified as inviscid solutions, and ¢3
and *4 as viscous solutions. For the limiting value of K G—=— @
the inviscid solutions have existent values throughout the flow fileld
whereas the viscous solutions vanish almost everywhere except in the
vicinity of the critical points where the essential Infiuence of

viscosity on the disturbances comes into effect.
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1.) The Inviscid Solutions .

The inviscid solutions are expected to be valid for large
values of the modified Grashof-number parameter. In this limit the co-
efficient l/o(q of the right-hand side of equation (32) becomes so
small that the viscous terms on the rightehand side of the equation

can be neglected, giving the inviscid disturbance equation:

(F=c) ("=t f “4=0 . -

The boundary conditions are

=0 at = s
¢ 1= (36)

¢>: 0 as 7 —> 0 .
For neutral oscillations (C =C.—tC; 5 C; .—_o) f'—C

must vanish at some position. The critical points, where fI=C ,
are singularities of equation (35) which arise as a result of neglect-
ing terms in | / AG . The velocity distribution in the free-convect-
ion flow as shown in Fig. 1 has two critical points at which f'~c
vanishes. The inner critical point 7ci. is located nearest the wall
for which ¥~ 1is positive whereas the outer critical point %o, 1s
located outside the maximum velocity near the ambient fluid for which

§“ 1s negative. By the use of the method of Frobenius we can obtain
two independent solutions near each critical point. The solutions in

the neighborhood of 7: are given in the form:
L
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= -]

b= 2 a br-v) (37)

n=0

o
N n
.= Z bp(v — ¢ -
2L £ "(y( 7ct\+Kt ¢u |°3(7 7“) . (38)
for \z > \7‘. . The way of choosing the proper branch of

L
log ( - Yci.) for V(? > V.. bhas been established by Tollmein [ 27]
and other workers (see Lin [ 26} , p. 130). If fc:. > 0  then
log ( ) = 1 1 Y £7 fers t
og (g-v%,) = 08[7_7&' —n where J.. refers to
the first derivative of the velocity profile at the inner critical
point. In a similar manner we obtein & second pair of solutions

about the outer critical point:

b= 077 i (-t (39)

hm DA (- T K legly-n)

for \7 > 7“ . Analysis of the proper branch for the log (7 ~ o )

4 .
when 7 < 7C° and 'Fco 0 results in log (Y( - \?w)

= log |\?—\?C°| R U ,
In the neighborhood of the critical layer ( 'f — C ) may be

expanded in the followlng Taylor series:

SEURESOAL S -A AU AR
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Substituting equation (41), with k and ¢ . , into equation (35) ve
L
obtain the following constants for the solutions of the inner critical

layer:

Kiz fc';_’/ fcl:
Q=1 , Q’.___fciuzﬁzl ) a2=0(76 +fcc/6fc: g o o vy

b=1, b=o', b=z + LLE (L5

bimilarly, substituting equation (W1), with ¢ and ¢, into
lo 20
equation (35) we obtnip the following constants for the solutions of

the outer critical layer:

K=t/ %o
Co=1, C,:‘fa:%zfc: , C,= 0(76 + fc:”éf;; y e e .y

do=t, dy=0, d.=a?2 +£.72 1. "(fcm/ﬁ,)z, C.

o

For sufficiently large distsnces from the wall (large \7 ) the deriva-

tions of the velocity profile vanish and equation (35) reduces to

g x*g= 0 . (42)

4L We concluded b,z 0 since the coefficients of b, lead to ¢
vhich is already a solution,
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tan
The general solutions are * =e . Since we have a boundary
condition 4’-—— O as \7 —w o , the only admissible solution 1s
= e "M

ii.) Viscous Solutions

A second pair of solutions *3 and Ch , l.e., the viscous
solutions, must be obtained from equation (32). The solutions +3 and
¢4 are represented asymptotically for large values of G by solu-
tions of the simplified stabiiity equation. In order to deduce the
simplified stabllity equation, 1t is convenient to introduce a new

variable Z defined by

_Y_7c

3 (43)

The parameter € produces a stretching of the coordinate system and
is generally considered small for neutral osciilations. The choice of
€ 1is arrived at by an order or magnitude consideration of the terms
? . /"
4’” and (KG {f-0C) 4) in equation (32) in the neighborhood of
"=
Vcl and v _ , respectively. This consideratior: yields 5‘;:(‘*@ fc:.) 3
- . — S :
in the neighborhood of v . and  €,= (- Glf,,l) in the neighbor-
hood of 7C° , when (f — € ) is replaced by the first term of its
Taylor series expansion.
Substituting the new variable for the inner-critical-
- ” L )
layer solution Z,= («G ch)S ( M- Yci) into equation (32) we ob-

tain as a first approximation



-

4 2
'J—§-+Z‘J =0 (k)

i 4 : =
d 2, tdaf :

The solutions of this equation are universal, independent of the basic

flow. The solutions are

+2= Z,
S (u5)
+5=L i 27 H, [%(Lz.ﬂ dz, dz,
2, .2, )
] 2 3
4:4: fZLi HsL I:%?(‘ZL)Z} dz, dz; ’

H(I) (2)
where 3L and HSL denote Hankel functions of the first and
second kind of order one-third respectively.

Similarly, when the independent variable for the outer

1
critical layer Z°:(‘°(G|fco|)3 (v?- 7 ) is substituted into
(&)

equation (32), we obtain

d ¥ +Z,,‘H’=o (46)

(
d 2. 422 .

>

This equation is formally identical with equation (4l) for the
inner critical layer solution, The solutions of equation (’46) are
hence the same as given by equation (U45) with Z; replaced by Z, ;

only the integration limit must be properly chosen.



R

1.
111.) Formulation of the Eigenvalue Problem
The disturbance amplitude function for the uncoupled problem

is the sum of the four linearly independent solutions;

+= Bl +I'{.-BZ ¢zl*-B_g ¢3+B4¢4 . (h'?)

The solutions ¢ , $z , 4>3 , and ¢, are subject to the boundary
conditions already stated in equation (36). Since the Hankel function
H‘.: goes to Infinity as 2 —e o it does not satisfy the boundary
condition at infinity. Therefore, ¢ , Should not contribute to the

solution, and we have

$=B, 4 +B, 4, +By b, (48)

Applying the boundary conditions we obtain a set of algebraic equations

for the constants B, , B, and B; ;

B4 (4B, t,(c)+B $(o)=0

B (o1+B, 4, (o+ B & (o) =0 | 4
B|¢' (oo)+ BZ?Z (00)4- B;ﬂ (r.o) =0
However, the Hankel function (; vanishes 88 Z ———e o , thereforg,

equation (49) becames

Bé (o) +B,4,(e) + B g () =0,
B.é:(0)+82+; (°)+ Bs?;(o) =0 ’ (50)
Blt (COHB,_t_ (o) =0




Choosing $, eo that $ (o) =0 , we have Bz=0 and the

system of equations reduces to

Bh(e)+B ()= ,
B (o1B, ¢, (d)=¢

For a non-trivial solution of EB, and B the following must be

(51)

true:

o) 400

=0 (52)
$(o) (o)
This provides the boundary-condition equations
¢ (o] = 4>1(°) (53)

‘ - ’
¢ (o) b; (o)
Substituting 2ip= —‘7& / €; for the inner-critical point into

equation (53) we obtain

_8(0)  _ _#(z,) o
b0 Zod(z) >

This equation is the conventional equation used in the analysis of
the stabllity of boundary-layer profiles. The right-Land side of
equation (S54) is the viscous solution and only a function of 2,
vhereas the left-hand side is the inviscid solution and a function

of & and C only. Therefore a solution of this equation gives
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discrete combinations of ® , C , and 2;,, .

Equation (54) can be written in the following form:

E(“)C)"_' F(Zio) . (55)

In this equation [ (2, o) 18 the so-called Tietjens function [ 28 ]

expressed as
2

F(Z.)=£“£‘ Zél‘ﬁ_ [%(iz)ﬂ dz dz;
Z . me%H‘; [%(Lz)ﬂ dz

A solution of equation (55) is most conveniently obtained by a graph-

(56)

ical method, i.e,, the intersections of the calculated curves from
the inviscid solution E(,(,c) and the Tietjens function give the
desired eigenvalues. From the definition of 2Z,, the modified
Grashof parameter, (G , can be found and hence an indifference
curve will be established. The numerical procedure used in obtaining

the indifference curve 1s described in Appendix A.

a.) A Solution Considering the Outer Critical Point

Iet us now consider a procedure for the outer-critical point
similar to that presented above. Before proceeding, it must be
emphasized that an analysis of this type gives only a rough approxima.
tion of the d»esir.ed solution since only terms of order €, are

retained. Nevertheless, this speculative procedure was carried out for
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the following reasons:

1. The numerical results obtained for equation (55) based on
the inner-criticel point produced unreasonably high critical values fore
the modified Grashof-number parameter.

2. Plapp {19 ] , in his calculations of an indifference
curve for air ( A = 0.72) using & polynomial representa.tions of the
free.convection velocity profile, also found unreasonably high values
for the critical Rayleigh number. Plapp also performed similar calcu-
lations on the exact profile as given by Ostrach [23] . The latter
calculations, however, are to0 be seriously doubted since substantial
numerical errors were introduced.

3. The fr'ee-convection velocity profile is similar to a two-
dimensional unsymmetrical jet streaming near a parallel wall. It is
known that calculations for two-dimensional jet profiles at large
distance from the core of the jet, where the velocity profile almost
vanishes, lead to very low critical Reynolds mumber.

., Experimental‘evidence shows that the free-convection
layer becomes unstable near the outer critical layer first. This in-
stability appears to play a significant role in the transition of the
free-convection layer from laminar to turbulent flow. This point will

be discussed in more detail in a later section.

° Bia(l-T%n) |, oevsi

0,\?;-%5-

U= (See Squires [29)
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5. The free-convection velocity profile contains an inflect-
ion point outside the maximum velocity near the ambient fluid.
QGenerally, inflection points in the velocity profile are very signifi-
cant because, when present, a velocity profile is more unstable than
that without an inflection point. Such an inflectional instability
has been discussed by Gregory, Stuart and Walker [ 30] on the experi-
ments performed on a swept-back wing having a similar veloclty profile
a8 that obtained in the flow on a rotating disk. Also Boltz, Kenyon,
and Allen [ 31] encountered a similar velocity profile in the experi-
ments performed to determire the effect of swept-back angle on the
boundary-layer stability of an untapered wing.

The boundary condition equation is given by equation (53).
Substituting the variable 2,,= - o/ €0 for the outer critical

point into the left-hand side of equation (53) we obtain

_ +| ((Z) = ¢§ (ZIJ (57)
7co ¢, (0) Z°° *3(2")
This equation is similar to equation (S54) and can be written in the

form

& *.c)=TF (2., (58)

the only significant change being that 2, 1is replaced by 2., .

The varisbles g, and 2, differ by a minus sign, Thus the

[
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TietJens function becomes

_ _L"L 2tH! [Buad] dz b

.. = (59)

2. f”z H; &2 4

Noting this significant difference equation (58) can now be solved

by using exactly the same procedure es indicated previously for the

imner-critical point.

Experimental Equipment

The experiments were performed in a water tank 3 feet wide,
5 feet deep and 7 feet long. The vertical heated plate was made of
brass 31 inches wide, 60 inches long and 0.25 inches thick. The brass
plate was one side of a double-wall construction which was mounted in a
bakelite frame as shown in Fig. 2. The entire brass plate was heated
by two circuits of No. 22 Nichrome wire. A Variac controlled the
current of the 0-15 ampere circuits within O.1 ampere. The wire passed
through Stoupakoff insulating tubing as it wes wound into a parallel
grid covering the width of the plate as shown in Fig. 3. The spacing
of the grid was one inch. The heating wires were firmly pressed
against the brass plate by Spun-Fiberglass packing which also kept the
heat loss & minimm. The packing was contained and made watertight
within the bakelite frame by a second wall made of aluminum. The

Wm-ww ¢ e
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sluninum wall was the same size as the brass wall but was not heated.
The double-wall structure was sutmerged vertically midway the length
of the tank and permanently fastened to the tank.

In order to facilitate the analysis of experimental results,
a grid consisting of 5 cm by 5 cm squares was marked on the brass
plate starting at 30 cm from the leading edge. The temperature of the
plate was determined from thirteen thermccouples imbedded in the plate
at the locations shown in Fig. 4. Details of an imbedded thermocouple
are shown in Fig. 5.

All thermocouples used in this experiment had a copper-
constantan junction. The temperature field in the free-convection
layer created by the heated well was measured by a thermocouple probe
as shown in Fig. 6. The thermocouple probe was attached to a travers-
ing mechanism, as shown in Fig. 7, that had an accuracy of traverse of
0.0005 inches.

The thermocouple reading were recorded by a Leeds and
Northrup-Speedomax recorder. The actual temperatures were printed on
temperature-coordinate paper having a scale of 0°C to 50°C, and running
at the speed of 64 inches per hour. The recorder printed a temperature
point once every four seconds. By this read-out device we could quickly
identify when the wall *emperature had reached the desired isothermal
condition and whether it was being maintained throughout an experi-
mental run.

For the study of the stability and transition of the free-
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convection layer the flow visualization technique of dye injection wes
used. Dye was injected smoothly through three different types of dye
rekes. For plan-view observation of the flow development, hypodermic
dye rakes as shown in Fig. 8 allowed black dye or black and red dye
to be injected into the free-convection layer. A comb-type dye rake
or an individual hypodermic needle was used for side-viéw observa-
tions. The comb-type dye rake emitted several colors of dye at
various distances from the wall in a single plane so as to identify
different flow paths at various distances from the wall. The flow
experienced no ill effects from the dye rakes inserted into the flow
field 6 inches from the leading edge.

For most of the observations Nigrosine black dye was used; a
red solution of acid chrome blue dye in water was used as the second
dye for several flow pattern observations. In addition, brilliant
yellow, brilliant green, and orange G dyes were also used to glve
contrast between dye streaks., The difference in density between
colored and clear water was negligible.

Flow phenomena were analyzed from both motion pictures and
still photographs. The motion pictures were taken with a Bolex 16-mm
movie camera at speeds of 16 frames per second or 32 frames per second.
The movie camera was calibrated by photographing a time display on the
Berkeley Universal Eput and Timer. The still photographs were taken

with an Exakta 35-mm camera.
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Experimental Procedure

In order to perform a carefully controlled experiment it was
necessary for the brass plate to reach a uniform, steady-state tempera-
ture. Generally, the Variac control unit was adjusted to a given power
input three to five hours prior to & run in order to attain this condi-
tion. Steady-state wall temperature was evidenced after a time period
on the temperature recorder. The temperature recorder was standardized
several times during this period to be able to account for any changes
in ambient conditions.

Temperature profiles were obtained by means of a thermocouple
probe. The thermocouple probe was attached to the traversing mechanism
and sutmerged into the tank, The probe was adjusted to a desired
distance from the leading edge. The normal-distance "zero" reading
was obtained by adjusting the micrometer until the thermocouple touched
the plate., The "zero" reading was recorded and used as a reference
reading for successive micrometer movements. The thermocouple probe
was retracted away from the wall at the intervals of 0.0050 inches
until the temperature recorder registered a constant ambient reading,

fw . Thereupon, the path was traced back at the same intervals to
the "zero" reading, at the wall. The thermocouple junction had a
thickness of 0.0060 inches., Therefore, the normal distances recorded
from the micrometer were corrected by 0.0030 inches, This assumed the
contact point of copper and constantan to be midway the thickness of

the Junction.
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The wall-temperature readings were recorded directly from the
imbedded thermocouples. For each reading obtained from the thermocouple
probe an entire set of wall temperature readings was recorded. These
wall-temperature readings were then averaged and used as L, .

When flow-pattern investigations were made,the thermocouple
probe was positioned at a sufficiently large nommal distance from the
wall. Thus, only the ambient temperature and the wall temperature were
recorded. For flow-pattern investigations dye was permitted to the
flow through the dye rakes after the plate had reached a uniform, steady-
state temperature. Careful control wes required of the dye flow so as
not to shoot it into the flow and disturb the flow field. The flow
field passing the hypodermic needles actually drew the dye into the
free-convection layer. As the dye patterns developed, still as well
as motion pictures were taken; the still pictures for the purpose of
reproduction, the motion pictures for the purpose of analysis of the
flow developments.

The dye patterns which were recorded on film were then pro-
Jected on a screen whereupon they were subject to analysis, i.e.,
wave lengths, leading edge distances, and wave propagation speeds were
measured.

This procedure was followed for numerous runs &t various
temperature differences between the wall and ambient temperature, The
temperature differences were always small as required for comparison
with theory. The experimental runs were performed at temperature

differences up to about ten degrees.
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Results, Observations and Discussion

A typical result of the temperature-profile measurements is
shown in Fig. 9. In this figure a sharp temperature decrease is
noticed very near the wall., This decrease takes place in the region up
to approximately 4= 0.008 inches. This anomaly might be attributed
to the conduction process taking place across the thin layer of fluid
between the thermocouple and the wall. Very close to‘the wall the
fluid moves very slowly such that a conduction process takes place
rather than a convective process, hence the temperatu;e recorded is
that of an almost still liquid. Since conduction in & liquid is very
poor, the recorded temperature is slightly lower than the streaming
fluid within a short distance away. For the distance v R4 0.008
inches this effect apparently becomes negligible.

As mentioned in the Procedure, the wall temperature was Ob-
tained by averaging the temperatures recorded from the imbedded thermo-
couples, This average wall temperature was used because, first, it
agreed well in nearly all instances with the temperature obt‘ained by
extrapolating the temperature profile data to the wall (see Fig. 9).
Secondly, the local wall temperature also agreed well with the overall
average wall temperature. A typical wall temperature distribution is
given in Fig. 10. Near the leading edge of the wall there is a flow-
vise temperature gradient in the wall. Cause of the lower wall tempera-
ture near the leading edge of the wall is the circulatory motion of the
fluid in the tank, i.e., cold fluid is coastantly drawn into the free-
convection layer near the leading edgs. Thus, a more intensive cooling
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effect vas caused, resulting in the lower wall temperature near the
leading edge. The well temperature, nevertheless, approaches an almost
uniform value rapidly and the effect due to a small gradient near the
leading edge is neglected. The two temperature readings obtained in the
first five inches are not included in the average wall temperature.

Knowing the wall temperature and the ambient temperature
Fig. 9 can be converted into a dimensionless plotting, X vs. Vl .
The fluid properties included in the definition of the dimensionless
veriable Y are based on the ambient temperature, t, . Since the
temperature difference between the wall and the ambient temperature
was small, the values of 7 did not change appreciably when the fluid
properties based upon the wall temperature were used, instead. There-
fore, this is an arbitrary and inessential choice as long as the
temperature difference remeins smalil.

Experimental temperature profiles for the & vs. K|
plotting are shown in Fig. 11. The experimental temperature profiles
are compared with the theoretical temperature profiles calculated by
Ostrach [ 23] . Agreement between the theoretical and experimental
temperature profiles 1s quite good.

Equation (55) was solved for the velocity profile as shown in
Fig. 1 for the Prandtl number 10. A velocity profile calcﬁlated for the
Prandtl number 10 was used since it was assumed that it would provide an
upper bound for a good representative velocity profile for the free-

convection flow in water. The solution of equation (55) is plotted in
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Fig. 12, Combinations of ¢, o , and -2;.' , obtained from
intersection points in Fig. 12 are given in Table 1. The modified
Grashof-mmmber parameter, G , calculated fram 2Z,, 1is also given in
Table 1. The indifference curve gives a minimum value for G of

3.h6 x 105

corresponding to ¢ = 0,0235 and of = 0.875. Fig. 14 shows
a similar plotting, in which G and ¢ are presented as abscisss and
ordinate, respectively. Fig. 15 shows the inviscid function &, , for
a neutral oscillation.

'.l'hé solution of equation (58) is presented graphically in
Fig. 16. Points of intersection are given in Table 2 and presented in
Fig. 17, along with the indifference curve obtained for the inner-
critical point. A marked shift in a portion of the neutral stability
curve is noted. 1In spite of a quite suspectible approximation procedure
in regard to the velocity profile in the stability calculation, somewhat

more reasonable values for the modified Grashof-number parameter were

obtained and a more reasonable critical value is implied in these

" results. The lowest value of G obtained was G = S0k0 at ¢ = 0.005

and &« = 1.5.

For various temperature differences ranging from 3 to 8
degrees, the measured wavelengths, wave velocities and distances from
the leading edge were transformed into the nondimensional quantities
C, K ,and G , respectively. These experimental resulis are
plotted in Fig. 17 and Fig. 18. The experimental values of G were in
a region bracketed by G = 500 and G = T00. Although the agreement
between the measured minimm modified Grashof-number parameter and that
predicted by theory based on the inner critical layer is po§r, there is
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--a fairly good agreement for the o« , ¢ combinations corresponding to
the predicted minimum value of G. That is the values obtained from the
inner-critical layer theory were c¢ = 0,0235 and o = 0.875 and the
over-all average of the measured quantities were o = 0.673 and

c = 0.0321. '

Comparing the experimental results with the c, X ,and G
combinations obtained from equation (58), a better agreement in the G
parameter is obtained 8 to 10 times less than that predicted by the
theory. But the o« , C combinations corresponding to this G value
provide less satisfactory agreement

Within the distance approximitely 40 cm from the leading edge,
thin black dye streaks move up the surface oi .- wll veiy slowly with-
out showing any indication of breaking. In this distance from the
leading edge, the flow was laminar and remained approximately so regard-
" less of the temperature difference imposed between the wall and the
ambient fluid up to sbout 10 degrees. This laminar flow pattern can
be seen 1in the lower portion of Fig. 19 or Fig. 20 in which the flow
direction is from bottom to top. The laminar flow portion could be
extended almost to the entire length of the wall for the temperature
difference approximately 2 degrees or less. Temperature differences of
this much magnitude, however, were not used since the flow would become
turbglent as a result of the disturbances caused at the free surface at

the top rather than by a natural transition process itself.
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The dye streaks as shown in Fig. 19 for Al = 6.4k ghov a
laminar flow pattern up to approximately 55 cm from the leading edge.
At 55 cm from the leading edge & faint two dimensional dye accumula-
tion begins to appear. A rather concentrated, more defineble dye line
is seen at 60 cm, thus giving a wave length approximately 5 cm. The
wave length was obtained by averaging several measurements across the
plate since there was a certain amount of irreguler transverse wavi-
ness exhibited by the wuve front., This transverse waviness, however,
wag not unexpected since the disturbance waves occurred naturally
and were not produced by an artificial means of any geometrical
regularity or at a specific frequency. Since the disturbance waves
were formed arbitrarily in time as well as in space, a certain portion
of a wave moving downstream could be engulfed by & second wave which
started at a slightly higher x-location.

As we proceed upwards with the flow in Fig. 19, it is noted
that a "splitting” of the dye stresks begins to take place at the wave
front located at x = 60 cm. The splitting of the dye streaks appears
because there 1s a secondary twisting of the dye streak near the
plate surface. Although this twisting of the dye streak occurs, the
free-convecticn layer still appears to be in a somewhat later stage of
a still laminar flow, or in the initial stages of transition.

Before proceeding further in the discussion of the overall
plcture of transition which takes place in the free-convection layer,

a good deal of insight can bhe obtained by examining a single dye
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streak in plan and side views. Fig. 25 shows the developmental pro-
cess of & single dye streak taking place at various normal distances
from the wall at At= 7 °C.The y = o dye streak shown in
Fig. 25 (a) illustrates the laminar flow portion at the extreme left
vhich looks quite two dimensional. As the flow proceeds the
"splitting" process begins to take place. After the appearance of
the initial splitting the dye streak is still in a laminar state,
although it is swept down stream by the mean velocity in a twisting
manner. Poritions of the dye streak, as it is being twisted, are
twisted up away from the wall and into a region of slightly higher
velocity, whereas some of the dye sticks to the wall. At the same
time the dye streak is also being carried downstream by the mean flow
and continues to concentrate at a second discrete place along its
path. The places of the concentration and the so-called splitting
are seen in Fig. 25 (g) which shows a side view of what actually
oceurs to a dye streak riding on the surface of the wall. The dye
streak rolls up to form a vortex. This type of vortex rolling-up was
verified by Hama [ 6] for the boundary-layer flow over a flat plate,
In all instances observed, the vortex continues to roll up and appears
in the plan view as a highly concentrated dye spot for a single dye
streak or as a concentrated dye line for several streaks. Such & con-
centrated dye line is observed in Filg. 19 at x = 60 cm. This concen-
trated dye line continues to be concentrated and the weve amplified

until a second splitting process occurs. The vortex, which sppeared
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to be mainly two-dimensional, now begins to take on some three-
dimensional character. Yet, from a side view it appears as a nearly
two-dimensional rolling-up, but plan view clearly shows the distort-
ion into a three-dimensional formation. DBefore this three-dimension-
ality proceeds very far downstream, several dye streaks all having
the same character join in forming a vortex loop. The edges of the
dye streaks, which form the legs of the loop, are very cloudy and
immediately burst into a highly random motion indicating the burst of
a turbulence spot. Any further observation is completely obscured by
the dye clouds due to the random motion,

Basically this same type of flow phenomenom is observed for
various temperature differences., This 1s clearly shown in Figs. 20,
21, 22, 23, and 24, which are representative pictures of all the flow
observations photographed. No marked difference could be detected for
the flows at higher temperature differences except that the wave
fronts would appear to be quite straight and not have a great amount
of transverse waviness, Transverse waviness at high temperature
differences did not have sufficient time to develop because the onset
of turbulence moved down the plate and occurred very quickly.

Let us now return to the sequentiel photos of a single dye
streak in Fig. 25. As the hypodermic needle was retracted from the
wall the dye streak slowly left the surface., It should be noted here
that the nomal readings are actual micrometer adjustments and

correspond only approximately to the true normal distance from the
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wall at vhich the dye streak is located. The precise location of the
dye streak, however, need not concern us here, as long as we knov
that it is increasing in distance f£rom the wall. In Pig. 25
for § = 0.030 a.nd 0.060 inches, respectively, the dye streaks
indicate the same type of twisting, and vortex concentrating Ilow as
previocusly discussed for the dye streak at y = 0. At y = 0.090
inches and greater, corresponding to 7 = 0.61 and greater, the
observed dye pattern shows a considerably different flow phenomenom
occuring and only vaguely resembles the flow pattern previously
observed in Fig. 25 (a),(b) and (c). The regularity of the dye-
concentration points seems to be lost completely. The motion now
takes on a highly intensified irregular lengthwise wave motion. This
observation is informative as it indicates that a different type of
mechanism may be taking place. At v = 0.61 the velocity is almost
at its maximum. Hence, the dye stresk is now in a region vhere the
viscosity does not play a major role but the inflectional instability
makes its presence known.

In oﬂzr to clarify the flow phenomenom observed by a single
dye streak in plan viev, the dye streak was observed in side vievw at
various normal distances from the wall, (see Fig. 26). What was
observed in Fig. 26 (a) (b) (c) (d) and (e¢) seemed to be that as
expected the dye streak rolled up into a vortex and continued to roll
vhile being carried downstream by the mean flow until the final break-
down occurred. But as we proceeded to retract the dye streak farther
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away from the wall,’ a counter-clockwise rotating vortex (rolling out
into the ambient fluid) sppeared at the crest of the main vortex
formed near the plate. After several runs of single dye stresk obser-
vation at various distances from the wall, it was noticed that the
counter-clockwise rolling of the dye at the crest of the vortex
appeared with consistent regularity. In order to observe this
condition further, the dye comb was used to give dye streaks at
various normal distances from the wall at the same time. The use of
this type of dye-injection device produced rather unexpected results
as shown in Fig. 26 (g). Fig. 27 shows the vortex formation of two dye
streaks. A red-dye streak rides up along the surface of the wall,
vhereas a blue-dye streak flows upwards outside the maximm velocity
in the layer. It is immedistely evident that a double-row vortex
system arises. The red-dye streak rolls up on the wall similar to
that observed in a conventional boundary-layer flow over a flat plate,
vhereas the blue dye outside the maximum velocity rolls outward having
a counter-clockwise rotation in the opposite direction to that of the
vortex formed on the plate., This vorticity distribution in the free-
convection lsyer confirmed the speculation brought forth by Fujii [18]
although the actual phase relation between the two vortex rows differs
from his sketch. Perhaps, more interesting to note is that Fales [7 ]
observed a similar phenomencn when a jet of clear water issued into a
bath of dyed water. A strong similarity exists between a jet velocity

profile and the velocity profile obtained for a free-convection layer.
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The free-convection velocity profile is likened to & two-dimensional -
unsymmetrical Jet streaming near a parallel wall with still fluid
outside its outer edge.

The rolling up of the outer vortex begins to occur very near
the leading edge. A disturbance wave front can be seen very near the
leading edge in Pig. 28. It shows a plan view of a red-wave front
between 45 and 50 cm from the leading edge. (Note the change 1ir. dye
colors for plan view: Black dye flows up along the surface of the
plate and red dye outside the maximum velocity). When the red wave
front appears, the black dye streeks in the rear riding up the sur-
face of the plate remain laminar. Several wave fronts of the red dye
are observed in contrast to generally only two or at most three wave
fronts observed of the dye streaks on the surface of the plate as
previously discussed. As the wave progresses upwards along the
plate and is amplified, the red dye line becomes more concentrated.
The concentrated red dye line exhibits the same type of vortex roll-
ing up as before until again the vortex loop is developed and eventual
breekdown occurs. This breakdowr{ observed in the outer layer occurs
at a distance from the leading edge when the inner layer is still
laminar or only shows signs of initially entering transition. The
outside rolling vortex is very strong and impresses its effect onto
the inner layer. The inner layer is actually disturbed by the large
amplification of the outside disturbance wave and by its development

to final breekdown. Hence, the inside wave is provoked by the highly
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unstable motion occurring outside the maximum velocity. This
occurrence must result from the strong instability due to the inflect-
ion point in the velocity profile located outside the maximm velocity.
Its effect is to overtake the flow completely and control its
behavior. This type of instability wes clearly manifested in the
breakdown of the free-convection layer from laminar to turbulent flow.

The outside wave so dominated the flow that it impressed its
wave length onto the wave disturbance in the inner layer. The outside
wave 1s completely established even before the inside wave begins to
show signs of a vortex rolling up. This is clearly seen in Figs, 27
and 28. Results of the measurements obtained from the outside wave
disturbance are plotted in Fig. 29. These experimental points fall
in the same region on the «, G plot as did the previously measured

data obteined from the wave very near the wall,

>




CONCLUSION

Theoretical as well as experimental investigations of the
instability and transition in the free-convection layer along &
vertical flat plate have led to the following conclusions:

1, In the process of natural transition in the free-convection
layer & double-row vortex system arises. One of the two rows of
vortices takes place near the surface and inside the maximm velocity
rolling toward the surface, wherzas the second row of vortices forms
outside the maximum velocity rolling out into the ambient fluid. The
double~row vortex system 1s the consequence of the particular velocity
profile in the free-convection layer for which two critical layers exist
one on each side of the veloclty maximm.

2. It bas been experimentally established that the instability
due to the outer critical layer is predominant and sets in first, well in
advance of the onset of any possible instability due to the inner
critical layer. In fact, the instability in the outer layer is 80 strong
and amplified rapidly to form discrete vortices. The outside vortices
completely control the behavior of the flow developments and impress their
effect onto the more stable inner layer near the surface, causing its
instability. The initial instability tekes place at the modified
Grashof number approximately 600.

3. The above observation explains why the critical Grasﬁof-mmber
parameter experimentally obtained here and in the other literature is so
much below the theoretical Grashof-number parameter 3.46 x 10° which is
computed based upon the instablility of the inmner critical layer. . Such an

instability simply does not come into the picture,
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L. The theoretical calculations for the minimum Grashof mumber
based on the inner-critical layer for a velocity profile corresponding to‘ a
Prandtl number of 10 produces values of Grashof number of the same order of
magnitude as obtained by flapp [19] for a velocity profile corresponding
to a Prandtl number of 0.72.

5. The instability calculation based upon the consideration of
the outer critical layer shows a drastic reductioh of the theoretical
Gra.sht;f number to the order of 103. Experimental evidence tends to agree
betfer with this reduction obtained in the present paper from the linearized
‘ai)p?oxjmation for the outer critical layer, It is felt that, because of lthe
approximate procedure, agreement with the experiment is still poor, although
it is fa-f better than vhen compared with the stability curve based upon the
inner critical layer. Improvement of the theoretical treatment is d.esired
in dealing with the instability due to the outer criticasl layer.

6. Small perturbation waves are amplified and can be seen as
concentrated dye lines., The dye line continues to be concentrated and the
vave is amplified until a vortex line is formed. This discrete vortex line
begins to take on some three-dimensional distortion and continues to roll up
until a vortex loop is formed. The formation of a turbulent spot takes |
place near the tip of the vortex loop and eventual breakdown occurs. This
transition process is essentially the same as observed in other cases. It
is somevhat different, however, from that in the ordinary boundary layer
over a flat plate as observed recently by Klebanoff. It is believed that,
in the free-convection layer as in some other cases, the amplification rate
i1s 80 high that the discrete vortices appear first before any other nonlinear
mechanism begins to show up.




APPENDIX A
COMPUTATION OF THE INVISCID FUNCTION ¢,
The inviscid solution ﬁ is obtained, for a chosen combina-
tion of o« and ¢, from the equation

(F=cA$'~ «*4)—f"$ =0

with the boundary conditions
$(0) =0 $(o2) =0 |,

For large values of ” the derivatives of the velocity profile
vanish and the equation reduces to

¢”— x? ¢ =0 .
The solutions are ¢ = e . Imposing the condition + (0 ) =0,
we see that only ¢ = ™1 1is acceptable. Thus the exponential
solution gives the necessary starting values to numerically integrate
from infinity inward to the wall. A difference scheme was used and

integration of the equation

+”—— (o(‘—- —fi) $=0

f-c
vas continued until the neighborhood of the singular point (£' = ¢)
wvas reached. In this neighborhood the solutions are given by
equations (37) and (38). These two series solutions are matched to
the value and the slope of 4» obtained from the numerical integra-
tiox.z procedure.

Once the series solutions teke us through the singular point,
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numerical integration is again started. This integration is continued
until the solution comes into the neighborhood of the second singular
point. Here the series solutions given by equations (39) and (40) are
matched and the numerical integration is continued to the wall where

¢ (0) and ¢ ' (0) are obtained. Thus the inviscid part of the
eigenvalue problem' is calculated for a given combination of A and

C.




APFENDIX B
ASYMPTOTIC SEF'ES EXPANSIONS FOR THE TIETJENS FUNCTION
AS GIVEN By MIzs [32)
Using Miles" notation we have:

Tee=[i-Fe] = —zfﬁ(sm/ J Sfis) a5

where

(= s+ 309

'5‘”/4 -sm/2 /4 )

For large z, say z ) 10, this asymptotic expansion is quite ade-

quate and the second expansion § =-2 >5 gives the accuracy better
than 0.1%.

—
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TABIE 1
NEUTRAL DISTURBANCE EIGENVALUES FROM
CAICULATIONS BASED ON THE INNER-CRITICAL POINT

‘ ¢ o Z, G x10”
0.0174 0.500 -2.66 9.73
0.0200 0.649 -2.7h 5.50
0.0220 0.722 -2.86 4.27
0.0230 0.7T70 -2.87 3.53
0.0235 0.875 -3.03 3.47
0.0235 0.974 -3.25 3.70
0.0230 0.997 -3.32 ,28
0.0226 1.000 -3.36 .6k
0.0220 1.015 -3.46 5.36
0.0208 0.995 -3.60 7.29
0.0200 0.995 -3.66 8.56
| TABIE 2

NEUTRAL DISTURBANCE EIGENVALUES FROM
CALCULATIONS BASED ON THE OUTER~CRITICAL POINT

c o %o G
0.005 1.6 16.5 5040
, 0.006 1.5 17.8 ) Ta12
0.007 1.37 19.4 8900
0.008 1.28 21.5 10,430
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FIG.7 TRAVERSING MECHANISM




FIGS8 DYE RAKES AND DYE COMB
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G =478 a:= 0493

G =520 a = 0509

FIG. 19 PLAN VIEW OF VORTEX DEVELOPMENT
AT AT = 6.44 °C



G = 667 a = 0.52l

G =621 a = 0453

FIG. 20 PLAN VIEW OF VORTEX DEVELOPMENT
AT AT:=357°C
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FIG.26 SIDE VIEWS OF A SINGLE DYE STREAK
AT AT =520°C
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FIG. 28 PLAN VIEWS OF VORTEX DEVELOPMENT
AT AT = 6.00°C



82.

50/

IAYM 3ONwBYNLSid 3QISINO WOYH YIiV3 WANIWIYIEXT bZ ‘bl
9]

£ 0/
+

+

It

s

3

20/

Do

O Of
09 — @

3

v

e

+

i
Tt

T

<4

1€Q




