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Nomenclature

An, B. arbitrary constantsn

C wave propagation speed

C P specific heat at constant pressure

Fr Froude number

f dimensionless stream function

f' dimensionless velocity

9 gravitational constant

G modified Grai;hcf-nuxmber parameter based on x

Gr Grashof number based on x

K1, K constants0

k coefficient of heat conductivity

p total pressure

P pressure of the basic flow

Pr Prandtl number

Ra Rayleigh number

t' temperature perturbation function

t absolute temperature

vii



t ambient temperature

tw wall temperature

z dimensionless independent variable

velocity parallel to surface

U velocity cf basic flow

v velocity normal to surface

x distance from leading edge of the plate

y normal distance from surface

0( wave number

coefficient of volumetric expansion

boundary-layer thickness

C small parameter

dimensionless similarity variable

S dimensionless disturbance temperature function

4 dimensionless temperature function

A wave length of disturbance wave

/4 viscosity

kinematic viscosity
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dimensionless temperature amplitude function

density

time

1'dimensionless velocity amplitude function

stream function

disturbance quantity

(- Jdimensional quantity

Subscripts

i refers to irter critical layer

0 refers to outer critical layer

0, w evaluated at the wall,

ix



Introduction

Transition from laminar to turbulent flow has drawn the

attention of many investigators throughout the years. In most of the

experimental as well as the theoretical studies over-all effects of

certain imposing conditions on transition have been found. Many details

of the actua. mechanism of transition, however, still remain unknown.

In recent years investigations have been centered on clarifying the

intricate mechanism of transition through experimental studies.

Experimental studies have been greatly supplemented by the

development of small-disturbance stability theory. Although the

stability theory provides no insight into the actual mechanism of

transition, it does determine under what conditions certain small dis-

turbances would amplify or decay in a given flow. Schubauer and

I
Skramstad [I ] z-onfirmed the theory of small distrubances by per-

forming wind-tunnel experiments. They introduced small disturbances

artificially in the flow by means of a vibrating ribbon situated on a

flat plate. The small wave disturbances are observed to be amplified

as the flow progresses downstream under the conditions as properly pre-

dicted by the theory. The wave intensifies its strength as it is

amplified until a turbulent spot is produced. The turbulent spot grow-

ing in size envelops the adjacent portions of laminar flow. The growth

of a turbulent spot has been studied in detail by Schubauer and

Klebanoff [2] . By the use of a hot-wire anemometer Klebanoff and

Tidtrom [ 3 ] (see also Schubauer [ 4.] ) investigated the highly

1 Numbers in brackets designate References at end of paper.
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three-dimensional features involved in the transition process.

Hama, Long and Hegarty [5] explained some significant

features of the transition mechanism through the flow-visualization

technique by means of dye injection. Dye patterns of two-dimensional

discrete vortices shed by a trip wire on a flat plate towed in a

water tank were observed. Observations disclosed that the initially

two-dimensional discrete vortices deformed into three-dimensional

vortex loops. As the vortex loops moved downstream they were

stretched and deformed further until a turbulent spot appeared near

the head of the loop. This spot then gave rise to highly turbulent

motion. Hama [6 ] recently has performed similar experiments in the

water tank but used a vibrating ribbon as the stimulating device in

place of the trip wire used previously. He concluded from these experi-

ments that the formation of a vortex loop was an essential feature in

the transition process.

In the above mentioned experiments some kind of stimulating

device was always used to provoke the onset of turbulence. Several

experiments dealing with the phenomena of "natural transition", i.e.,

without the aid of artificial stimulation have been performed.

Fales f 7 ] Hana [8 ] , and Hegarty [9 1 concerned themselves

with the stability and transition of flow over a flat plate stopped

suddenly. Hama [10 ] , [11 ] , also considered the transition

process behind a backward-facing step and in the wake behind a circular

cylinder, respectively.



In order to attain a better basic understanding of the

"natural transition" process in contrast to the artificially-

stimulated transition process the present investigation was initiated.

The free-convectilon layer along a vertical flat plate is inherently un-

stable because of the particulur velocity profile in it and, therefore,

affords an exceLlent opportunity of studying its instability and the

phenomena associated with "natural transition".

Eckert and Soehnghen [12] investigated the transition

process in the free-convection layer along a heated vertical flat plate

in air. The interferograms, however, restricted the observations to

only a two-dimensional picture. Since the transition process is

intrinsically three-dimen5ionrl, only a limited inmderstanding of the

transition process was obtained.

A similar work was reported by Birch f13] who introduced a

controlled distarbance into the flow about an isothermal wall. He

attempted to determine; the properties cf a critical or nataral frtquency

that would produce incipient instability. An empirical relation between

the frequency and Rayleigh rumber was determined. Gartrell [14] made

a further study into the effect of foroed oscillations of the free-

convection layer. He found that the empirical relation developed by

Birch applied only to the specific test conditions of his study and not

generally to free-convection flows. In addition GCrtrell could find no

apparent relation among the various flow-parameters which could be used

to predict the effect of variations in flow conditions and disturbances



24..

on flows of this type. Thus, the effect of induced disturbances on a

flow, which was known to be highl•" unstable without artificial disturb-

ances still remains open.

Other experiments on trzansition in the free-convection fields

over vertical flat plates and cylinders were performed by Saunders [15]

[16] , Hermann [ 17] , Fujii 1 181 , and Larson [ 19] . These

authors, however, were essentialLy concerned with the transition

Rayleigh number. They found that transition took place at the Rayleigh

number approximately 2 to 4 x 109 in various fluids.

Lack of theoretical investigations into the instability of

free-convection flow provided an additional reason for careful analysis

of the problem. Although Plapp [ 20 ] performed an analysis on a

polynomial approximation of the ifree-convection velocity profile in air,

it was desired in the present inestigation to obtain a more accurate

solution based upon the exact velocity profile. Since the experiments

were to be performed in water, a velocity profile for larger Prandtl

numbers needed to be considered.

Theoretical Analysis

Consider a steady free.-convection flow about a vertical heated

plate. The basic (conservation) equations governing this motion under

the boundary-layer approximations are:



LA- + _V- 2 =(o (2)

+e -r -t • (3)

where u and -if are the velocity components in 'x- and direct-

ions, respectively, ý the gravitational constant,. P the coef-

ficient of thermal expansion, t and tc, the temperature of the

fluid at any location and the temperature of the ambient fluid,

respectively, and L !fCp the, thermal ýiffusivity. Physical

configuration and co-ordinate system are shown in the following

sketch.

Boundary Layer -

Heated Vertical Plate '

ý NV

N /

k•0



When a stream function 4) is defined such that Lk= a • and

VI =- ) P/0 X the contiLuity equation is satisfied. E. Pohbhausen

21] showed that, by the use of a similarity transformation

I

34,(CO 4v×•

4 ao X ( 5 )

and a dimensionless iocal temperature L(') ( - t. - --

the basic equations can be reduced to a set of ordinary differential

equations

"f + 3 0- (6)

-. + 3 PRf -J- 0 (7)

where primes indicate the derivatives with respect to . The

boundary conditions are

f (o)=f (o)= 0 , -d(o)= I,

f /(CO) = -t.(CO) = 0 (8)

This set of equations have been solved by E. Pohlhausen, and its

solution is extended by Schuh [22] to the case of large Prandtl



numbers. Ostrach [ 23 ] performed a more accurate calculation of this

system of equations for the Prandtl numbers 0.01, 0.72, 1.0, 2, 10,

100, 1000, on an electronic computer. The numerical results obtained

by Ostrach are tabulated in NACA TN 2635 and exclusively used in the

ensuing computational and experimental work.

The stability of the basic free-convection flow will be

examined by the method of small pertuLrbations, i.e., we inquire

whether a certain disturbance, which is superposed to the basic flow

and which satisfies the equations of motion, is amplified or damped

out. A fundamental assumption of the hydrodynamic stability theory is

the "parallel-flow" condition which stipulates that the mean velocity

U depends upon ý only. The bouid-iry-layer flow approximates the

parallel-flow concelt very well because the variation of Lk with

respect to the - -co-ordinate is much 5maller than that with respect

to I. In addition, we need only to consider two-dimensional dis-

turbances in regard to the instability criterion, since H. B. Squire's

theorem [ 24 j states that a two-dimensional flow is more unstable for

two-dimensional disturbances than for three-dimensional disturbances.

The basic flow described by t- = U(') V, = 0 , P (x, ý

T (x,') is assumed to be a solution of the steady-state equations.

Upon this basic flow we superimpose a two-dimensional disturbance vary-

ing in time and space. When the disturbance velocity components,

pressure, and temperature are denoted by -W(x, ¶)) ((XI _(X,')))

S(X, .t') the resulting motion is given by
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These quantities are substituted into the two-dimensional equation of

continuity, the incompressible Navier-Stokes equations and the energy

equation, as given by

I + ----- 0 (9)

C 1A + v •---i + --A +1 +2- (10)
D_ x

S+Lt +(V-t= (12)

where C-) + ). After dropping the basic flow

quantities, which are already assumed to satisfy the conservation

equations, and neglecting the quadratic terms in the disturbance

quantities, these equations reduce to

0 (13)

+ + (15)

at+ (16)



by cross-differentiating equations (14) and (15), the pressure terms

are eliminated, and this system of equations reduces to the following

equations:

+ 0_ (17)

+f ( , vV 2-)-0 (V" + dt; -•,(8

-At +UT (19)

Since we have already assumed that the perturbation is two-dimensional,

any Fourier component of artitrary two-dlimensional oscillations may

i• (x -• r)
have ( X ) dependence in the form e

In this expression, d -= 2T1/X is redl and positive and represents

the wave number of the disturbance. On the other hand, E is complex,

Z-- = ? -r LZ: L , in which CE denotes the propagation velocity of

the wave disturbance in the X -direction and E denotes the amplifi-

cation factor. Depending upon whether Zg is positive, zero or nega-

tive, the wave is amplified, neutral or damped out. The continuity

equation for the perturbed velocity is satisfied b., introducing a per-

turbation stream function of the form
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•(-A,•,)=+ e•(- (20) 2

where is a complex amplitude function of the disturbance. The dis-

turbance velocity components are given by

e- = 
(21) 3(x- '(

v- -~-~ =•-L QC• 4(l ez(-X (22)

In a similar manner we may define a temperature perturbation as

(X, Y, C! •(I (23)

Substituting the streami function perturbation and the temperature

perturbation into equations (17), (18) and (19) we have

-4 ~ "'a #t 4J-+f (24)

2 The convenient complex notation is used here. Physical meaning is
attached only to the real part of the stream function, thus

Re(Y) = eZ' [ivcOs 7, o X--E - o i L (- ,T]
3 Prime denotes differentiation with respect to the independent

variable.
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It is appropriate to introduce di-mencinnless variables by dividing all

of the quantities involved by characteristic quantities. The following

dimensioniess v¢ariables are introduced:

in which & \~~X(r)

C =ý X/2 V.

Substituting these dimensionlezs quantities into equations (24), and

(25) we obtAin

- o~ ~r 5 , (26)

ff C) c

o( Cj , (27
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where Cý is a modified Grashcf-number parameter appropriately

describing the free-convection flow and defined as

I2

the Froude number and Pr =r -- p/ k the Prandtl number.

Equation (26) is the equivalent of the Orr-Sommerfeld equation with an

additional contribution due to the body-force term provided the

Reynolds-number in the Orr-Sommerfeld equation is defined as

R•--=U' S1V, where U'= ? 2V] -Gr/X . Equation (27)

is the counterpart of the Orr-Sonmerfeld equation for the energy

anplitude function.

Thin Panda.mental system of equations for the velocity and

temperature disturbanees iequires six boundary conditions for a solu-

tion. We reqwire that all disturbances vanish at infinity. At the

wall the normal and parallel disturbance velocities must vanish. Thus

for an insulated wall the boundary conditions are:

k(o)= 4'(o)z. 5 ,o)= o ,

S 5, o--" 0 oL --- a- 0 (28)

whereas for an isothermal wall the boundary conditions become

#(o)= #'(o) •'I) = 0
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The problem of stability of the free-convection flow has now

been reduced to an eigenvalue problem of equations (26) and (27) com-

bined with either choice of boundary conditions equation (28) or

equation (29). Eliminating F from equation (26) by appropriately

differentiating equation (27), the two governing equations (26) and

(27) can be reduced to the following single sixth-order differential

equation in • , as previously discussed by Plapp [19 ]

t-[(f'.c)- - [(f,-c) (f"- ~f +p(0

(30)



Six constants, A, ) -- , A 6  are to be determined by the six boundary

conditions as given by equation (28) or equation (29). For instance,

the amplitude of the velocity fluctuation is

,= A, f, +-A\ +2 A, .3 +A4 ý++-A5 +.5+A6 f6 (31)

Thus the boundary conditions supply six homogeneous, linear, algebraic

equations for the six constants A, , ... , A 6. There is a non-

trivial solution of tris set of eouations for A , ... , A. only if

the determinant of the coefficients of A•, is zero. Since the co-

efficients of' ý 2 I and it.s derivatives are functions of 0( 1

C , • q , and Pr i,)r a given velocity profile, setting the

determinant D (o) C) 0 P R)=o Fives L, functional relation for these

quantities. The o C) Pr , which satisfy this relation, are

the eigenvalues.

To solve complcteiy the (igenvalue problem of the above

determinant is a dJfficult task without a high-speed electronic com-

puting facility.

Thus the problem is limited here to determining the nature of

the stability of L-imnar free convection in a viscous fluid when the

coupling term in equation (26) due to the temperature fluctuation is

neglected. S. Ostrach [ 25 ) showed that the body force does not

directly affect the stability for natural convection. However, for the

complete coupled problem in the free-convection case, justification of
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this assumption still remains open.

By virtue of dropping the coupling term we need only

equation (26) in the form:

(f~.)~~ 2 4f "'~=(32)W• C)(+" =' -) ;k ( f -2," 0'+,2

The amplitude function can thus be represented by linearly inde-

pendent soluticns • and 4 and may be written as

ý•(j)= A,+,•+AJ A--Aý3 t+-A4ý . *%3 3)

The boundary conditions for the reduced equation are

(o0)= C'(O)= o0
(34)

The property of the solutions of equation (32) for large

values of O(CI (or equivalently 0 Re ) has been investigated in

detail by previovs researchers (cf. Lin [ 26 1 , ch. 8). The

solutions ý, and +2 are classified as inviscid solutions, and

and #4 as viscous solutions. For the limiting value of o( q - O

the inviscid solutions have existent values throughout the flow field

whereas the viscous solutions vanish almost everywhere except in the

vicinity of the critical points where the essential influence of

viscosity on the disturbances comes into effect.
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i.) The Inviscid Solutions

The inviscid solutions are expected to be valid for large

values of the modified Grashof-number parameter. In this limit the co-

efficient I/ q of the right-hand side of equation (32) becomes so

small that the viscous terms on the right-hand side of the equation

can be neglected, giving the inviscid disturbance equation:

C) f + 0(35)

The boundary conditions are

Sat (36)

0 ~ asP

For neutral oscillations (C = CriCE 3 CL = o) fl-C

must vanish at some position. The critical points, where f C ,

are singularities of equation (35) which arise as a result of neglect-

ing terms in . The velocity distribution in the free-convect-

ion flow as shown in Fig. 1 has two critical points at which f-C

vanishes. The inner critical point 7. is located nearest the wall

for which f" is positive whereas the outer critical point •C is

located outside the maximum velocity near the ambient fluid for which

f is negative. By the use of the method of Frobenius we can obtain

two independent solutions near each critical point. The solutions in

the neighborhood of 17L are given in the form:
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ýC =2:- JC (•• ••37)

~ ~ bvQ 7 -Yý)1-t-K~ '1 10(-~. (38)"=-0

for > C The way of choosing the proper branch of

log ( ý - 7cý) for v > V?, has been established by Tollmein [ 271

and other workers (see Lin [ 26] , p. 130). If l¢j > 0 then

log (y- 1C = log 1 -7L 7 where CL refers to

the first derivative of the velocity profile at the inner critical

point. In a simiar manner we obtain a second pair of solutions

about the outer critical point:

2,

t o = Y- 1 K o 410 o1 ( -0o) (4o)

for Y > " Analysis of the proper branch for the log ( - 'v@ )

when a no and -'o e 0 results in log -

log I •ooj 4-1-7

In the neighborhood of the critical layer ( C ) may be

expanded in the following Taylor series:

It tot 1(f'- c)= (I -7C) + 'fc ((41••- " )
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Substituting equation (41), with and , into equation (35) we

obtain the following constants for the solutions of the inner critical

layer:

K( = f,'/./f I
az•-- ,+-fC 4 I

±IA

Limilarly, substituting equation (41), with and o , into

equation (35) we obtain the following constants for the solutions of

the outer critical layer"

ill /f" o'if.
K.="' f" o/,y T- oz ,"'-

co= C= , f"

do=• + /- o , , ..

For sufficiently large distances from the wall (large y ) the deriva-

tions of the velocity profile vanish and equation (35) reduces to

0 0. (42)

4 We concluded b,= 0 since the coefficients of b, lead to
which is already a solution.
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The general solutions are + - . Since we have a boundary

condition 0 as I --w , the only admissible solution is

+.
ii.) Viscous Solutions

A second pair of solutions 3 and 44 ' i.e., the viscous

solutions, must be obtained from equation (32). The solutions +3 and

4 are represented asymptotically for large values of G by solu-

tions of the simplified stability equation. In order to deduce the

simplified stability equation, it is convenient to introduce a new

variable Z defined by

I--C. (43)

The parameter C produces a stretching of the coordinate system and

is generally considered small for neutral oscillations. The choice of

E is arrived at by an order of magnitude consideration of the terms

and A (,f- C) • in equation (32) in the neighborhood of
-I

and V? ,rsetrl. This consideration yields Ej= (0(f)

in the neighborhood of Ncý and Eo=(-- •IfC"I)-N in the neighbor-

hood of ' , when ( -- C ) is replaced by the first term of its

Taylor series expansion.

Substituting the new variable for the inner-critical-

layer solution Z,.= (K CA (f-- Ch ) into equation (32) we ob-

tain as a first approximation
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L + 0,EJ (44)

The solutions of this equation are universal, independent of the basic

flow. The solutions are

(4.5)

Zj _ (,•• :zj Jr,.

where [VIl and H denote Hankel functions of the first and3 3

second kind of order one-third respectively.

Similarly, when the independent variable for the outer

critical layer Z7=(-o IC 1) iC(- If) is substituted into

equation (32), we obtain

j 4,+ Z;_Z4 + -0 (6
j _Z 4(146)

0

This equation is formally identical with equation (44) for the

inner critical layer solution. The solutions of equation (46) are

hence the same as given by equation (45) with ?_, replaced by Z 0

only the integration limit must be properly chosen.
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iii.) For.multion of the Eigenvalue Problem

The disturbance amplitude function for the uncoupled problem

is the sum of the four linearly independent solutions;

BA+BA B3 43 54+4(47)

The solutions +, , 4•, , 3, and +. are subject to the boundary

conditions already stated in equation (36). Since the Hankel function

Sgoes to infinity as P -- it does not satisfy the boundary

condition at infinity. Therefore, +4 should not contribute to the

solution, and we have

+ B2 2 * [3 ý3(48)

Applying the boundary conditions we obtain a set of algebraic equations

for the constants B, , J B and B3;

8,,(o)+B ' f(o)+ B3  (o) =0 (49)0,A(o),B 2* ((x,)4- ' (0)) + 0?

However, the Hankel function Hi vanishes as 2 - e , therefore,.3

equation (49) becomes

BA (o) +B2+(o) + B3f.(o = 0

Bef, ((oJ) +6I2,t B() (o)o B (50)

BA o4E37.f (o) =0
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Choosing so that 4(cc)= 0 ,e have Barn0 and the

system of equations reduces to

Bi,,(01+ B,,o 3t o
(51)

B,, o+B, (o)=o
For a non-trivial solution of B, and B., the following must be

true:

1(0)
=0 (52)

This provides the boundary-condition equations

*, (o) _( 53(o)

' )(o .

Substituting ZiO -• /C for the inner-critical point into

equation (53) we obtain

( 0 ( 5 4)

This equation is the conventional equation used in the analysis of

the stability of boundary-layer profiles. The right-Land side of

equation (54) is the viscous solution and only a function of Zo

vhereas the left-hand side is the inviscid solution and a function

of o( and C only. Therefore a solution of this equation gives
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discrete combinations of A , C ( and Z,

Equation (54) can be written in the following form:

In this equation F (z,.) is the so-called Tietjens function [ 28 ]

expressed as

, Z ( .[2 ,= (56)

ZLO .f H, .( )¶
A solution of equation (55) is most conveniently obtained by a graph-

ical method, i.e., the intersections of the calculated curves from

the inviscid solution E(.oc,)and the Tietjens function give the

desired eigenvalues. From the definition of ?- the modified

Grashof parameter, Cý , can be found and hence an indifference

curve will be established. The numerical procedure used in obtaining

the indifference curve is described in Appendix A.

a.) A Solution Considering the Outer Critical Point

Let us now consider a procedure for the outer-critical point

similar to that presented above. before proceeding, it must be

emphasized that an analysis of this type gives only a rough approxima-

tion of the desired solution since only terms of order 6e are

retained. Nevertheless, this speculative procedure was carried out for
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the folloving reasons:

1. The numerical results obtained for equation (55) based on

the inner-critical point produced unreasonably high critical values fors

the modified Grashof-nwmber parumeter.

2. Plapp (19 ] , in his calculations of an indifference

curve for air ( PR = 0.72) using a polynomial representation5 of the

free-convection velocity profile, also found unreasonably high values

for the critical Rayleigh number. Plapp also performed similar calcu-

lations on the exact profile as given by Ostrach [23 ] • The latter

calculations, however, are to be seriously doubted since substantial

numerical errors were introduced.

3. The free-convection velocity profile is similar to a two-

dimensional unsymmetrical Jet streaming near a parallel wall. It is

known that calculations for two-dimensional jet profiles at large

distance from the core of the jet, where the velocity profile almost

vanishes, lead to very low critical Reynolds number.

4. Experimental evidence shows that the free-convection

layer becomes unstable near the outer critical layer first. This in-

stability appears to play a significant role in the transition of the

free-convection layer from laminar to turbulent flow. This point will

be discussed in more detail in a later section.

5 9)-4,

(See Squires [29] )

o , •

tS
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5. The free-convection velocity profile contains an inflect-

ion point outside the maxim=n velocity near the ambient fluid.

Generally, inflection points in the velocity profile are very signifi-

cant becaube, when present, a velocity profile is more unstable than

that without an inflection point. Such an inflectional instability

has been discussed by Gregory, Stuart and Walker [ 30) on the experi-

ments performed on a swept-back wing having a similar velocity profile

as that obtained in the flow on a rotating disk. Also Boltz, Kenyon,

and Allen [ 31] encountered a similar velocity profile in the experi-

ments performed to determine the effect of swept-back angle on the

boundary-layer stability of an untapered wing.

The boundary condition equation is given by equation (53).

Substituting the variable =- i/c. for the outer critical

point into the left-hand side of equation (53) we obtain

This equation is similar to equation (54) and can be written in the

form

S(~cK)C=T- (ZO (58)

the only significant change being that 2,, is replaced by 1,0

The variables a, and i,, differ by a minus sign. Thus the
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Tietjens function becomes

20o Z ' [T2 ()

Noting this significant difference equation (58) can now be solved

by using exactly the same procedure as indicated previously for the

inner-critical point.

Experimental Equiiment

The experiments were performed in a water tank 3 feet wide,

5 feet deep and 7 feet long. The vertical heated plate was made of

brass 31 inches wide, 60 inches long and 0.25 inches thick. The brass

plate was one side of a double-wall construction which was mounted in a

bakelite frame as shown in Fig. 2. The entire brass plate was heated

by two circuits of No. 22 Nichrome wire. A Variac controlled the

current of the 0-15 ampere circuits within 0.1 ampere. The wire passed

through Stoupakoff insulating tubing as it was wound into a parallel

grid covering the width of the plate as shown in Fig. 3. The spacing

of the grid was one inch. The heating wires were firmly pressed

aginst the brass plate by Spun-Fiberglass packing 'which also kept the

heat loss a minimum. The packing was contained and made watertight

within the bakelite frame by a second wall made of aluminum. The
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aluminum vall vas the same size as the brass wall but vas not heated.

The double-vail structure was submerged vertically midway the length

of the tank and permanently fastened to the tank.

In order to facilitate the analysis of experimental results,

a grid consisting of 5 cm by 5 cm squares was marked on the brass

plate starting at 30 cn from the leading edge. The temperature of the

plate was determined from thirteen thermocouples imbedded in the plate

at the locations shown in Fig. 4. Details of an imbedded thermocouple

are shown in Fig. 5.

All thermocouples used in this experiment had a copper-

constantan junction. The temperature field in the free-convection

layer created by the heated wall was measured by a thermocouple probe

as shown in Fig. 6. The thermocouple probe was attached to a travers-

ing mechanism, as shown in Fig. 7, that had an accuracy of traverse of

0.0005 inches.

The thermocouple reading were recorded by a Leeds and

Northrup-Speedomax recorder. The actual temperatures were printed on

temperature-coordinate paper having a scale of 0 C to 50W C, and running

at the speed of 64 inches per hour. The recorder printed a temperature

point once every four seconds. By this read-out device we could quickly

identify when the wall *emperature had reached the desired isothermal

condition and whether it was being maintained throughout an experi-

mental run.

For the study of the stability and transition of the free-
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convection layer the flow visualization technique of dye injection Vas

used. Dye was injected smoothly through three different types of dye

rakes. For plan-view observation of the flow development, hypodermic

dye rakes as shown in Fig. 8 allowed black dye or black and red dye

to be injected into the free-convection layer. A comb-type dye rake

or an individual hypodermic needle was used for side-view observa-

tions. The comb-type dye rake emitted several colors of dye at

various distances from the wall in a single plane so as to identify

different flow paths at various distances from the wall. The flow

experienced no ill effects from the dye rakes inserted into the flow

field 6 inches from the leading edge.

For most of the observations Nigrosine black dye was used; a

red solution of acid chrome blue dye in water was used as the second

dye for several flow pattern observations. In addition, brilliant

yellow, brilliant green, and orange G dyes were also used to give

contrast between dye streaks. The difference in density between

colored and clear water was negligible.

Flow phenomena were analyzed from both motion pictures and

still photographs. The motion pictures were taken with a Bolex 16--n

movie camera at speeds of 16 frames per second or 32 frames per second.

The movie camera was calibrated by photographing a time display on the

Berkeley Universal Eput and Timer. The still photographs were taken

with an Exakta 35-mr camera.
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Exxorimental Procedure

In order to perform a carefully controlled experiment it was

necessary for the brass plate to reach a uniform., steady-state tempera-

ture. Generally, the Variac control unit was adjusted to a given power

input three to five hours prior to a run in order to attain this condi-

tion. Steady-state wall temperature was evidenced after a time period

on the temperature recorder. The temperature recorder was standardized

several times during this period to be able to account for any changes

in ambient conditions.

Temperature profiles were obtained by means of a thermocouple

probe. The thermocouple probe was attached to the traversing mechanism

and submerged into the tank. The probe was adjusted to a desired

distance from the leading edge. The normal-distance "zero" reading

was obtained by adjusting the micrometer until the thermocouple touched

the plate. The "zero" readirg was recorded and used as a reference

reading for successive micrometer movements. The thermocouple probe

was retracted away from the wall at the intervals of 0.0050 inches

until the temperature recorder registered a constant ambient reading,

4 . Thereupon, the path was traced back at the same intervals to

the "zero" reading, at the wall. The thermocouple junction had a

thickness of 0.0060 inches. Therefore, the normal distances recorded

from the micrometer were corrected by 0.0030 inches. This assmied the

contact point of copper and constantan to be midway the thickness of

the junction.
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The wall-temperature readings were recorded directly from the

Imbedded thermocouples. For each reading obtained from the thermocouple

probe an entire set of wall temperature readings was recorded. These

wall-temperature readings were then averaged and used as t. .

When flow-pattern investigations were made, the thermocouple

probe was positioned at a sufficiently large normal distance from the

wall. Thus, only the ambient temperature and the wall temperature were

recorded. For flow-pattern investigations dye was permitted to the

flow through the dye rakes after the plate had reached a uniform, steady-

state temperature. Careful control was required of the dye flow so as

not to shoot it into the flow and disturb the flow field. The flow

field passing the hypodermic needles actually drew the dye into the

free-convection layer. As the dye patterns developed, still as well

as motion pictures were taken; the still pictures for the purpose of

reproduction, the motion pictures for the purpose of analysis of the

flow develolpments.

The dye patterns which were recorded on film were then pro-

jected on a screen whereupon they were subject to analysis, i.e.,

wave lengths, leading edge distances, and wave propagation speeds were

measured.

This procedure was followed for nunerous runs at various

temperature differences between the wall and ambient temperature. The

temperature differences were always small as required for comparison

with theory. The experimental runs were performed at temperature

differences up to about ten degrees.
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Results. Observations and Discussion

A typical result of the temperature-profile measurements is

shown in Fig. 9. In this figure a sharp temperature decrease is

noticed very near the wall. This decrease takes place in the region up

to approximately I - 0.008 inches. This anomaly might be attributed

to the conduction process taking place across the thin layer of fluid

between the thermocouple and the wall. Very close to the wall the

fluid moves very slowly such that a conduction process takes place

rather than a convective process, hence the temperature recorded is

that of an almost still liquid. Since conduction in a liquid is very

poor, the recorded temperature is slightly lover than the streaming

fluid within a short distance away. For the distance o 0.008

inches this effect apparently becmes negligible.

As mentioned in the Procedure, the wall temperature was ob-

tained by averaging the temperatures recorded from the imbedded thermo-

couples. This average wall temperature was used because, first, it

agreed well in nearly all instances with the temperature obtained by

extrapolating the temperature profile data to the wall (see Fig. 9).

Secondly, the local wall temperature also agreed well with the overall

average wall temperature. A typical wall temperature distribution is

given in Fig. 10. Near the leading edge of the wall there is a flow-

wise temperature gradient in the wall. Cause of the lower wall tempera-

ture near the leading edge of the wall is the circulatory motion of the ,

fluid in the tank, i.e.,, cold fluid is constantly drawn into the free-

convection layer near the leading edge. Thus, a more intensive cooling
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effect as caused, resulting in the lover wal temperature near the

leading edge. The wall temperature, nevertheless, approaches an almost

uniform value rapidly and the effect due to a small gradient near the

leading edge is neglected. The two temperature readings obtained in the

first five inches are not included in the average wall temperature.

Knowing the wall temperature and the ambient temperature

Fig. 9 can be converted into a dimensionless plotting, JL vs. I .

The fluid properties included in the definition of the dimensionless

variable I are based on the ambient temperature, t.. . Since the

temperature difference between the wall and the ambient temperature

was small, the values of did not change appreciably when the fluid

properties based upon the wall temperature were used, instead. There-

fore, this is an arbitrary and inessential choice as long as the

temperature difference remains small.

Experimental temperature profiles for the IA vs.

plotting are shown in Fig. ii. The experimental temperature profiles

are compared with the theoretical temperature profiles calculated by

Ostrach ( 23] . Agreement between the theoretical and experimental

temperature profiles is quite good.

Equation (55) was solved for the velocity profile as shown in

Fig. 1 for the Prandtl number 10. A velocity profile calculated for the

Prandtl nunber 10 was used since it was assumed that it would provide an

upper bound for a good representative velocity profile for the free-

convection flow in water. The solution of equation (55) is plotted in

0
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Fig. 12. Combinations of C, < , and - Z. , obtained from

Intersection points in Fig. 12 are given in Table 1. The modified

rashof-nuber parameter, G , calculated from zIo is also given in I

Table 1. The indifference curve gives a minimum value for 0 of

3.46 x 105 corresponding to c - 0.0235 and o0 - 0.875. Fig. 1i4 shows

a similar plotting, in which G and c are presented as abscissa and

ordinate, respectively. Fig. 15 shows the inviscid function , for

a neutral oscillation.

The solution of equation (58) is presented graphically in

Fig. 16. Points of intersection are given in Table 2 and presented in

Fig. 17, along v'lth the indifference curve obtained for the inner-

critical point. A marked shift in a portion of the neutral stability

curve is noted. In spite of a quite suspectible approximation procedure

in regard to the velocity profile in the stability calculation, somewbat

more reasonable values for the modified Grashof-number parameter were

obtained and a more reasonable critical value is implied in these

results. The lowest value of G obtained was G - 5040 at c - 0.005

and ( -.1.5.

For various temperature differences ranging from 3 to 8

domea,, the measured wavelengths, wave velocities and distances from

the leading edge were transformed into the nondimensional quantities

C , O( , and G , respectively. These experimental results are

plotted in Fig. 17 and Fig. 18. The experimental values of G were In

a region bracketed by G - 500 and G a 700. Although the agreement

between the measured minimum modified Grashof -number parameter and that

predicted by theory based on the inner critical layer is poor, there is
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'a fairly good agement for the G( , a combinations corresponding to

the predicted minimu value of G. That is the values obtained frou the

inner-critical layer theory were c - 0.0235 and 0( a 0.875 and the

over-all average of the measured quantities vere o( - 0.673 and

c * 0.0321.

Comparing the experimental results with the C, 0( , and-(•

combinations obtained from equation (58), a better agreement in the G

parameter is obtained 8 to 10 times less than that predicted by the

theory. But the oC, C combinations corresponding to this G value

provide less satisfactory agreement

Within the distance approxiLately 40 cm from the leading edge,

thin black dye streaks move up the surface '- • , •U vei-y slowly with-

out showing any indication of breaking. In this distance from the

leading edge, the flow was laminar and remained approximately so regard-

less of the temperature difference imposed between the wall and the

ambient fluid up to about 10 degrees. This laminar flow pattern can

be seen in the lower portion of Fig. 19 or Fig. 20 in which the flow

direction is from bottom to top. The laminar flow portion could be

extended almost to the entire length of the wall for the temperature

difference approximately 2 degrees or less. Temperature differences of

this much magnitude, however, mere not used since the flow would become

turbulent as a result of the disturbances caused at the free surface at

the top rather than by a natural transition process itself.
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The dye streaks as shown in Fig. 19 for A t = 6.14 show a

laminar flow pattern up to approximately 55 cm from the leading edpe.

At 55 cm from the leading edge a faint two dimensional dye accumula-

tion begins to appear. A rather concentrated., more definable dye line

is seen at 60 cm, thus giving a wave length approximately 5 cm. The

wave length was obtained by averaging several measurements across the

plate since there was a certain amount of irregular transverse wavi-

ness exhibited by the wave front. This transverse waviness, however,

was not unexpected since the disturbance waves occurred naturally

and were not produced by an artificial means of any geometrical

regularity or at a specific frequency. Since the disturbance waves

were formed arbitrarily in time as well as in space, a certain portion

of a wave moving downstream could be engulfed by a second wave which

started at a slightly higher x-location.

As we proceed upwards with the flow in Fig. 19, it is noted

that a "splitting" of the dye streaks begins to take place at the wave

front located at x = 60 cm. The splitting of the dye streaks appears

because there is a secondary twisting of the dye streak near the

plate surface. Although this twisting of the dye streak occurs, the

free-convection layer still appears to be in a somewhat later stage of

a still laminar flow, or in the initial stages of transition.

Before proceeding further in the discussion of the overall

picture of transition which takes place in the free-convection layer,

a good deal of insight can be obtained by examining a single dye

a
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streak in plan and side views. Fig. 25 shows the developmental pro-

cess of a single dye streak taking place at various normal distances

fro the wall at At= 7 C. The y = o dye streak shown in

Fig. 25 (a) illustrates the laminar flow portion at the extreme left

which looks quite two dimensional. As the flow proceeds the

"splitting" process begins to take place. After the appearance of

the initial splitting the dye streak is still in a laminar state,

although it is swept down stream by the mean velocity in a twisting

manner. Portions of the dye streak, as it is being twisted, are

twisted up away from the wall and into a region of slightly higher

velocity, whereas some of the dye sticks to the wall. At the same

time the dye streak is also being carried downstream by the mean flow

and continues to concentrate at a second discrete place along its

path. The places of the concentration and the so-called splitting

are seen in Fig. 25 (g) which shows a side view of what actually

occurs to a dye streak riding on the surface of the wall. The dye

streak rolls up to form a vortex. This type of vortex rolling-up was

verified by Hema [ 6] for the boundary-layer flow over a flat plate.

In all instances observed, the vortex continues to roll up and appears

in the plan view as a highly concentrated dye spot for a single dye

streak or as a concentrated dye line for several streaks. Such a con-

centrated dye line is observed in Fig. 19 at x = 60 cm. This concen-

trated dye line continues to be concentrated and the wave amplified

until a second splitting process occurs. The vortex, which appeared
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to be mainly two-dimensional, now begins to take on some three-

dimensional character. Yet, fron a side view it appears as a nearly

two-dimensional rolling-up, but plan view clearly shows the distort-

ion into a three-dimensional formation. Before this three-dimension-

ality proceeds very far downstream, several dye streaks all having

the same character join in forming a vortex loop. The edges of the

dye streaks, which form the legs of the loop, are very cloudy and

immediately burst into a highly random motion indicating the burst of

a turbulence spot. Any further observation is completely obscured by

the dye clouds due to the random motion.

Basically this same type of flow phenomenom is observed for

various temperature differences. This is clearly shown in Figs. 20,

21, 22, 23, and 24, which are representative pictures of all the flow

observations photographed. No marked difference could be detected for

the flows at higher temperature differences except that the wave

fronts would appear to be quite straight and not have a great amount

of transverse waviness. Transverse waviness at high temperature

differences did not have sufficient time to develop because the onset

of turbulence moved down the plate and occurred very quickly.

Let us now return to the sequential photos of a single dye

streak in Fig. 25. As the hypodermic needle was retracted from the

wall the dye streak slowly left the surface. It should be noted here

that the normal readings are actual micrometer adjustments and

correspond only approximately to the true normal distance from the
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wal lt which the dye streak is located. The precise location of the

dye stresak howveer, need not concern us here, as long as we know

that It is increasing in distance from the vall. In Fig. 25

for - 0.030 and 0.060 inches, respectively, the dye streaks

indicate the now type of twisting., and vortex concentrating Zlov as

previously discussed for the dye streak at y a o. At y a 0.090

Inches and greater, corresponding to I a 0.61 and greater, the

observed dye pattern shows a considerably different flow phenomenon

occuring and only vaguely resembles the flow pattern previously

observed in Fig. 25 (a),(b) aid (c). The regularity of the dye-

concentration points seems to be lost completely. The motion now

takes on a highly intensified irregular lengthwise wave motion. This

observation is informative as it indicates that a different type of

mechanim may be taking place. At y - 0.61 the velocity is almost

at its maxJimu. Hence, the dye streak is now in a region where the

viscosity does not play a major role but the inflectional instability

makes its presence known.

In order to clarify the flow phenomenow observed by a single

dye streak in plan view, the dye streak was observed in side view at

various normal distances from the vall, (see Fig. 26). What was

observed in Fig. 26 (a) (b) (c) (d) and (e) seemed to be that as

expected the dye streak rolled up into a vortex and continued to roll

while being carried downstream by the mean flow until the final break-

down occurred. 1Mt an ve proceeded to retract the dye streak farther
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away from the wall, a counter-clockwise rotating vortex (rolling out

into the ambient fluid) appeared at the crest of the main vortex

formed near the plate. After several runs of single dye streak obser-

vation at various distances from the wall, it was noticed that the

counter-clockwise rolling of the dye at the crest of the vortex

appeared with consistent regularity. In order to observe this

condition further, the dye comb was used to give dye streaks at

various normal distances from the wall at the same time. The use of

this type of dye-injection device produced rather unexpected results

as shown in Fig. 26 (g). Fig. 27 shows the vortex formation of two dye

streaks. A red-dye streak rides up along the surface of the wall,

whereas a blue-dye streak flows upwards outside the maximum velocity

in the layer. It is Immediately evident that a double-row vortex

system arises. The red-dye streak rolls up on the wall similar to

that observed in a conventional boundary-layer flow over a flat plate,

whereas the blue dye outside the maximum velocity rolls outward having

a counter-clockwise rotation in the opposite direction to that of the

vortex formed on the plate. This vorticity distribution in the free-

convection layer confirmed the speculation brought forth by Fujii [18]

although the actual phase relation between the two vortex rows differs

from his sketch. Perhaps, more interesting to note is that Fales (7 ]

observed a similar phenomencn when a Jet of clear water issued into a

bath of dyed water. A strong similarity exists between a jet velocity

profile and the velocity profile obtained for a free-convection layer.
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The free-convection velocity profile is likened to a two-dimensional

unsymmetrical Jet streaming near a parallel wall with still fluid

outside its outer edge.

The rolling up of the outer vortex begins to occur very near

the leading edge. A disturbance wave front can be seen very near the

leading edge in Fig. 28. It shows a plan view of a red-wave front

between 45 and 50 cm from the leading edge. (Note the change ir. dye

colors for plan view: Black dye flows up along the surface of the

plate and red dye outside the maximum velocity). When the red wave

front appears, the black dye streaks in the rear riding up the sur-

face of the plate remain laminar. Several wave fronts of the red dye

are observed in contrast to generally only two or at most three wave

fronts observed of the dye streaks on the surface of the plate as

previously discussed. As the wave progresses upwards along the

plate and is amplified, the red dye line becomes more concentrated.

The concentrated red dye line exhibits the same type of vortex roll-

ing up as before until again the vortex loop is developed and eventual

breakdown occurs. This breakdown observed in the outer layer occurs

at a distance from the leading edge when the inner layer is still

laminar or only shows signs of initially entering transition. The

outside rolling vortex is very strong and impresses its effect onto

the inner layer. The inner layer is actually disturbed by the large

amplification of the outside disturbance wave and by its development

to final breakdown. Hence, the inside wave is provoked by the highly
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unstable motion occurring outside the maximum velocity. This

occurrence must result from the strong instability due to the inflect-

ion point in the velocity profile located outside the maximum velocity.

Its effect is to overtake the flow completely and control its

behavior. This type of instability was clearly manifested in the

breakdovn of the free-convection layer from laminar to turbulent flow.

The outside wave so dominated the flow that it impressed its

wave length onto the wave disturbance in the inner layer. The outside

wave is completely established even before the inside wave begins to

show signs of a vortex rolling up. This is clearly seen in Figs. 27

and 28. Results of the measurements obtained from the outside wave

disturbance are plotted in Fig. 29. These experimental points fall

in the same region on the o% C plot as did the previously measured

data obtained from the wave very near the wall.

iI



CONCIAION

Theoretical as well as experimental investigations of the

instability and transition in the free-convection layer along a

vertical flat plate have led to the following conclusions:

1. In the process of natural transition in the free-convection

layer a double-row vortex system arises. One of the two rows of

vortices takes place near the surface and inside the maxim=m velocity

rolling toward the surface, whereas the second row of vortices forms

outside the maximum velocity rolling out into the ambient fluid. The

double-row vortex system is the consequence of the particular velocity

profile in the free-convection layer for which two critical layers exist

one on each side of the velocity maximum.

2. It has been experimentally established that the instability

due to the outer critical layer is predominant and sets in first, well in

advance of the onset of any possible instability due to the inner

critical layer. In fact, the instability in the outer layer is so strong

and amplified rapidly to form discrete vortices. The outside vortices

completely control the behavior of the flow developments and impress their

effect onto the more stable inner layer near the surface, causing its

instability. The initial instability takes place at the modified

Grashof number approximately 600.

3. The above observation explains why the critical Grashof-nvmber

parameter experimentally obtained here and in the other literature is so

much below the theoretical Grashof-number parameter 3.46 x 105 which is

computed based upon the instability of the inner critical layer. Such an

instability simply does not come into the picture.
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4. The theoretical calculations for the mini.m Grashof nMber

based on the inner-critical layer for a velocity profile corresponding to a

Prandtl number of 10 produces values of Grashof mmber of the same order of

magaitude as obtained by Plapp (19] for a velocity profile corresponding

.to a Prandtl number of 0.72.

5. The instability calculation based upon the consideration of

the outer critical layer shows a drastic reductiolh of the theoretical

Grashof number to the order of 103. Experimental evidence tends to agree

better with this reduction obtained in the present paper from the linearized

a&proximation for the outer critical layer. It is felt that, because of the

approxiiate procedure, agreement with the experiment is still poor, although

it is far better than when compared with the stability curve based upon the

inner critical layer. Improvement of the theoretical treatment is desired

in dealing with the instability due to the outer critical layer.

6. Small perturbation waves are amplified and can be seen as

concentrated dye lines. The dye line continues to be concentrated and the

wave is amplified until a vortex line is formed. This discrete vortex line

begins to take on some three-dimensional distortion and continues to roll up

until a vortex loop is formed. The formation of a turbulent spot takes

place near the tip of the vortex loop and eventual breakdown occurs. This

transition process is essentially the same as observed in other cases. It

is scmewhat different, however, from that in the ordinary boundary layer

over a flat plate as observed recently by Klebanoff. It is believed that,

in the free-convection layer as in some other cases, the amplification rate

is so high that the discrete vortices appear first before any other nonlinear

meohanimn begins to show up.
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AP3NDIX A

COMATION OF THE IMVISCID FAMIMON

The inviscid solution ý, is obtained, for a chosen combina-

tion of e( and c, from the equation

('--C)( "-- C' )--f'÷ =0

with the boundary conditions

+(o) = 0 0( ) = 0

For large values of I the derivatives of the velocity profile

vanish and the equation reduces to

The solutions are e e*t% . Imposing the condition t (00) O P,

we see that only * = e-l is acceptable. Thus the exponential

solution gives the necessary starting values to numerically integrate

from infinity inward to the wall. A difference scheme was used and

integration of the equation

If- (0(1- r) += 0

was continued until the neighborhood of the singular point (f' = C)

was reached. In this neighborhood the solutions are given by

equations (37) and (38). These two series solutions are matched to

the value and the slope of + obtained from the numerical integra-

tion procedure.

Once the series solutions take us through the singular point,



numerical integation is apin started. This integration is continued

until the solution comes into the neighborhood of the second singular

point. Here the series solutions given by equations (39) and (40) are

matched and the numerical integration is continued to the wall where

S(0) and 4' (0) are obtained. Thus the inviscid part of the

elgenvalue problem is calculated for a given combination of oA and

C.

i
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APPENDIX B

ASYPT•TIC SEMES EXPANSIONS FOR THE TETVEN5 FUNCTION

As GivIN By milS N~21

Using Miles" notation we have,

where

f3,= PH'[ 7[G )]

T + +: 2/ 6 3 C31"/*

&W/',4 3i•'€ w/÷
Asa 4 ~ 3 + 0O(Z)

jS111/4 +-63 i rl

1;1tT 4- 3 z s"12

For large z, say z > 10, this asymptotic expansion is quite ade-

quate and the second expansion • = -Z . 5 gives the accuracy better

than 0.1%.
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