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NOTATION

4, sinh Ka cos Ka
A, cosh Ka sin Ka
A, cosh Ka cos Ka
A, sinh Ka sin Ka
a Height of hydrofoil above sea bed
b Semispan of hydrofoil
c Average lift coefficient of hydrofoil °
&; (N\Dy+N,D)Y/ (DE+DD) #
@5 (N,Dy-N,Dy)/ (DE+D}Dy *
c Chord of hydrofoil
D Subscript to designate line doublet
D, +¢D, Complex denominator of M, (w,n) *
e(0) Functions of @ occurring in K (y) *
F Froude number based on water depth
f(k,a,2) Functions of k, @, and 2 occurring in K (3)
G(k,) Undetermined parameter
g Acceleration of gravity *
g (k) sinh kA cosh kA
g°(k) kh cosh? kh
H (m) Undetermined parameter
H, sinh 2KA cos 2KhA
H, cosh 2KA sin 2KA
H, cosh 2Kh cos 2KA
H, sinh 2KA sin 2KA
A Average water depth
. 1 (n,w) Imaginary part of kernel function K (n) *
J(n,w) Real part of kernel function K () *

*Primed quantities are used for the supercritical range of Froude number and unprimed quantities for the
subcritical range,
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Integration variable
Kernel of an integral defining a potential function *
Integration variable

Pole on the real k-axis

Kernel of an integral defining & potential functioh *
Complex kernel function .
Integration variable

Complex terms in the numerator of ¥, («,6)

Pressure change in the fluid

Unity if F<1and (-1)* if F>1

z? 4 S,

2?2+ S,

(n - y)2 +(2nh + 2 - a)2

(n - y)2 +(2nk + 2 + a)?

Kernel of an’integral defining a potential function
Free-stream velocity .
Subscript to designate semi-infinite vortex sheet
Either w, or w_

2cos 6 + (np-y) sin 6

zcos 0 - (np-y) sin 0

Longitudinal coordinate

Horizontal lateral coordinate

sinh K2 cos Kz

cosh Kz s?n Kz

cosh l;:z cos Kz

sinh Kz sin K2

Vertical coordinate

Spanwise distribution of vorticity ,

Wave elevation S

Yistance measured along the span

iv "




Angle
« cos™ ! (1/F)
Shape parameter
Horizontal doublet distribution £long the span
Distance in the z-direction

Density of fluid

Total potential function o4
Perturbation gotenh'al function *

U . .
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ABSTRACT

This report shows that singularities for a semi-infinite vortex sheet apd
a horizontal line doublet, both of finite span, may be used to represent the vor-
ticity and displacement produced by a finite span hydrofoil. The boundary con-
ditions which must be satisfied when these singularities move in shallow water
are derived. Expressions for tife pot;entia@l, functions are obtained for both the
subcritical and supercritical ranges of Froude number. Exg}licit expressions fors
the z-, y-, and 2-derivatives of the potential functions are also presented. Meth-

ods for determining the strengths of the singularities are discussed.

INTRODUCTION

As an extension of Wu’s theoretical study of finite span hydrofoils mgving beneath the
surface in water of infinite depth,! e&(pressions are derived here for the potential functions
associated with finite span hydrofoils in water of finite depth. These expressions may be
obtained for any span, water depth, or depth of submergence, and for any velocity in the sub-
critical and supercritical ranges of Froude number. In additioh to the potential functions,
explicit expressions are derived for the z-, y-, and z-derivatives of these fu.nctions. With
the res.ults of Wu’s report and those of other investigators,?’3 these functions may be used
to determine wave profiles, wave resistance, velocity components, pressure, and other pa-
rameters. .

A few t,h‘eoret,ical st,udies.have been made of the wavemaking produced by singular-
ities moving beneath a free surface in shallow water. Lunde* outlined the method for find-
ing :he wavemaking of a source in shallow water, -.nd Pond® and DiDonato® have made a
complete analysis of the problem for t.e subcritical range of Froude number. A further dis-
cussion of problems of this type, including a finite span hydrofoil, is given in Reference 7.
None of these works gives a complete analysis for the supercritical range of Froude number.

When a singularity moves horizontally between a rigid bottom and a free surface, the
potential function is very sensitive to the value of the Froude number based on water depth.
As the velocity increases, the wavemaking builds up and becomes very severe when the
Froude number approaches unity. When the Froude number exceeds unity the singularity is
moving faster than the wave velocity and wavemaking effects diminish. This phenomenon is
common where ships enter shallow water and the resistance suddenly decreases when the
velocity exceeds the critical speed. Although most surface ships seldom exceed critical
speed in normal operation, this range may be important in the operation of hydrofoil boats.

Wu has shown th%t, the sir;gularity which produces the same vorticity as a hydrofoil

is a semi-infinite vortex sheet of finite span, extending from the position of the hydrofoil

1Ret’erences are listed on page 29. @
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to an infinite distance downstream. In addition to the vorticity, the hydrofoil produces a dis-°
placement effect. At some distance from the hydrofoil, a-horizontal line doublet of finite span, *
whose strength is proportional to the water displaced, is adequate to represent the displace?

ment effect. In shallow water both singularities must satisfy boundary conditions at the sea

bed and at the free surface. Furthermore,%he water surface far ahead of the hydrofoil is not

disturbed. In this report expressions are derived for the potential functions of each of the
singularities, Be“cause the boundary conditions and methods of analysis are the same for

each case, general considerations will be discussed first. Finally, a method for determining @

the strengths of the #ingularities will be discussed.

BOUNDARY CONDITIONS FOR THE THEORETICAL ANALYSIS

KJ

°
The hydrofoil may be considered fixed in an inertial system in which there is a uniform
velocity U at 2 = — = flowing in the positive a-direction. As shown in Figure 1, the hydro-
foil with chord ¢ and semispan b is fixed at z = 0, 2 = a with its span extending from y=-25
to y = b. The origin of the coordinate system is at the sea bed and the plane z = 4 is.t.he un-
disturbed water surface. Py .
.
Z ¥ ® °
> *
%/,/{// Free Surface
.
Figure 1 — Coordinate System for a Hydrofoil in Shallow Water’ -
®©
The potential flow about a hydrofoil may be obtained by representing the hydrofoil by .
several singularities extending along the span. The steady-state potential function is
®
°
. 2 .
.




® ® (=, Y z)=Uz+¢ (zyey, 2) (1]

. L]
where ¢ is the perturbation potential. If disturbances in the flow are small, interaction terms
may be neglected, and ¢ is the sum of the potential functions for each of the singularities

usedfo represent the hydrofoil. The change in Pressure p produced at any point in the fluid
L

i's obtained®from Bernoulli’s equation. Along any streamline n
¢ 1
P2y 2)==plU —— ~pg (2-h) = = p (grad ) (2]

&
]
where p is the density of the fluid, ®
g is the acceleration of gravity, and
z is the position of the streamline in the undisturbed flow. -
In the linearized theory, the last term in the Eqyation [2] may be neglected. Along the stream-
line represented by the free surface, the pressure change produced is zero and the wave el-
(;vation is given by
*

U (o
C(z,y)=z—h=——(—¢) (3]
g \dz/*,_, .

°
If the sea bed is considered as a rigid surface, there is no flow normal to this surface

and the first boundary condition is

L
d
Boundary Condition 1 (—2> =0 (4]
dz =
z=0
For disturbances at the free surface which are small compared with the wave length, the
L ]

normal velocity of the surface is the same as the vertical velocity of the fluid particles.
Then e

9  d¢ ¢
(Ua_z_a—z—)”h_o (5] o

If Equations [3] and [5] are combined, the second boundary condition which applies at the

free surface is obtained:

F) 02 - ®
Boundary Condition II ( 9% + F2p —f> =0 (61
dz 922 / 2 = 4

wher.e F is the Froude number based on water depth
¢ U

B —

. Vv gh

(7]

-]




As the free surface far ahead of the hydrofoil is undisturbed, the wave elevation and hence

the potential itself must vanish far upstream. Therefore the third boundary condition is®

[
Joundary Condition III for +-ow, ¢ =0 (8]

In addition, the potential and its derivatives are finite everywhere in the region except at the
position of the singularity. ®

If the hydrofoil is represented as a lifting line with finite displacement and its vortex
wake, two singularities are required to represent the foil in an unbounded fluid. The circu-
lation and trailing vortex sheet are represented by a semi-infinite vortex sheet of finite span.
The displacement of the foil is represented by a horizontal line doublet. As the problem is
linear, the total potential is the sum of the potentials for the two singularities. Both poten-
tials must satisfy the three boundary conditions independently. The solution for each poten-
tial is built up from the potential of that singularity in an unbounded fluid. The function &,
is the potential of the singularity in an unbounded fluid plus itg image in the sea bed such
that Boundary Conditions I and III are satisfied. The function &1 is determined in such a
way that the potential b1+ b ;atisfies Boundary Condition II as well as I. The potential
b1 + & is found to consist essentially of the sum of three terms which will be designated
as ¢, ¢, and 3. In the subcritical range of Froude number, ¢, is the total potential for *
zero Froude number, %, is a short-range potential which decays rapidly to zero a short dis-
tance from the singularity, and ¢ is the potential associated with wavemaking. In the super-
critical range of Froude number, ¢, i.s the total potential for infinite Froude number but the
other terms have the same significance. Boundary Condition III i% needed to exclude wave-
making far upstream from the hydrofoil and to determine the explicit form of ¢4 for positive
*and negative values of z. When all boundary conditions are satisfied, the total potential

function is .« .
¢=¢1+¢11=¢1+¢2+¢3 = (9]
» POTENTIAL OF A SEMI-INFINITE VORTEX SHEET OF FINITE SPAN
The potential of a semi-infinite vortex sheet at 2z = ¢ and-its image at 2= ~ g is 5

obtained from Wu’s report ! .

b
z2-a I"'(n) dy z
- ¢y, = 1+
1 4 _f,, (n—y)2+(z—a)2[ [z2+<n—y)2+<z-a)21"‘]

. r d
&+ 5 (=92 + (2-0)2 [22 + (1~1)2 + (2+a) 21




where I'(n) is the dlstnbutlon of circulation along the span. It is easy to see that ¢Vl van-

ishes for = ~ and its z-derivative vanishes at z = 0. This &quation also has an integral
form which is derived in Appendix A and which is the real part of o o
.
®
b oo [
1 Tz |2 ~al
¢y =Re< — [ (n)dy fe‘”'“"”[sgn (z=a) e™™IZT8 _ gmm Z+a)] gy
1 ® 4n
-b 0
@
b n/2 a6 g
+_1 . - ./.e""" [sgn (z-a) e~klz—al _ o~k (z+a)] g [11]
4n2 I (n) dn i cos 0
=b /2 Y ¢
where ©
w=2cos 0+ (n-y) sin 6 {12]
®

and sgn is the signum function whose value is +1 when the argument is positive, —~1 when
the argument is negative, and 0 when the argument is zero. The line t.hroug’h the integral sign
indicates that the principal value is to be taken. In this case the integral must be evaluated
from — 7/2 + € to #/2 - €, where € approaches zero in like manner at the two limits.

To satisfy Boundary Condition II at the free surface, an undetermined potential function
qSV” will be added to ¢>VI This function Wl“ be given the same ¢ and y dependence as ¢VI
and must satisfy Boundary Condition I. If d>V is wrltten in terms of undetermined parameters

H(m) and G(k,6), then the form for z > a is -

oo

b
1 .
¢VI + d’V” = Re = / I (9)dn /e‘”‘ M=% sinh ma [e™™* + H(m) cosh mz] dm
m E
. = 0

/2
E e
;s 4
nt cos §
~n/2
=

feikw sinh ka [e™*% + G (£,0) cosh k2] dk > [13]
0

=

The integrands of each of these integrals must vanish when they are substituted into
Equation [6], the expression for Boundary Condition II. Then

~mh

e
H = —_— 14
- (m) sinh mA [14]

KA (1 4 kA F2 cos? 0
Gk, 6) = - 1+ cos* 6] [15]

cosh kk [kA F? cos? 0 — tanh kAl z




When the Froude number is zero, G (k, 0) becomes

e—kh
Go(ky ) = —
o (% 6) sinh kA

The potential for zero Froude number is

1
27/; ' (n) [TV (n) + LVl (m] dn (171

, 1
Gy = —
Vl -

5 1‘(n)’(y1(rl)dn=

[ ]
where 4 is introduced to make the kernel functions dimensionless in length. The functions

Ty (n)and L v, (n) have the dimensionless forms

o0

/l . l -m(z + 2€—m’.
TV (U)"Reg felm(n—y) sgn (z—a) e~m z—al_e m(z+a)
0

sinh ma cosh mz
- m
sinh mA

(18]
n/2 oo
Ly () = Re L il ek
G eri J o)
- 2

—kh -
S 5=id) o—klz=a] _ ek (z+a), 2e mrlh ka cosh kz]dk
sinh kA

(19]

If the relations givéen in Appendix A are used, these expressions have the nonintegral forms

o0

A z2+2nh-a 2+2nh +a
Ty =5 2 [ - . [20]

— (n- )2+(z+2nk—a)2 (r]—y)2+(z+2nk+a)2
n = o0 y

=

20

ZACEENS pry g Gr2ntoa) s

e ((n-y)% + (2+2nh-a)?] [22 + (n-v)? + (z+2nlz—a)2]l/2

(2+2nk+a) 2

[21]
[n=-9)% + (2+278+0) (2 + (- 9)2 + (2+ 208 + 0) 21

where ¢ is unity. For intermediate Froude numbers in the subcritical range

£




® y khF? cos? 6
. G (k, 6) = Gq (k, 0) - - [22]
sinh kA cosh kA [kAF? cos? 6 — tanh kAl *
Then
b ®
®1
5 = - r K d
bt B, T bt 5 f,, (n) Ky (n) dn [23)
where "
2 L) )
22 "/ ¢'¥¥ sinh ka cosh kz kdk
. Ky (n)=-Re : f cos 6d0 f [24]
LA . 2 sinh kh cosh kA [khF? cos? 6 — tanh kAl
For the hypothetical case of infinite Froude number
o ° o
o—kh
G (k 0)=- ——— [25]
= (£, 0) cosh kA
and °
b ;b .
by =— [PKS mdp==— [T @IT L, (pdy (26
S~ LA frmimy meLy, mid e
pdl N b

where T, (n) is already defined, and LV’1 (n) is the same as LV1 (1) except for an alternating

sign in the infinite sum. Therefore, LV’I(q) is given by Equation [21] if @ is given the value
¢=¢-n° . iy (27

For intermediate Froude numbers in the supercritical range

P 1 . khF? cos? 0 :
( ’ )_ i ( ’ ) * sinh k% cosh kA khFZ 0032 0 2 tanh kA4 28]

and the potential is "

1 2 *
[ ’ ,
= — r
961/, * ¢VH ¢V1 Y omh b. (m Ky (1) dn [29]
where
Ky () =Ly () +Ky () [30]
® »
L ]
® * 4

»




In this expression *

® ®
n/2 e 7‘ . »
7 Yo R A de f e'™™ sinh ka cosh kzdk L, ( o ( (31]
¥, () = Re ni ‘/; cos @ sinh kA cosh kA S n m - " ")
-/ 2

Therefore L V’%(q) Is twice the sum of the terms of LV’ (n) for which ¢ = -1, o

Since the potentials, associated wnh the free surface condition, for the two ranges of °
Froude number are similar in form, the followmg discussion will apply to both functions. The

range of integration over negative values of 6 may be changed to positive values if v is re-

defined as X
w,=2cos 0+ (n-y)sin O [39]
w_=2zcos 0~ (n-y)sin b
Then K}, (5) becomes ‘
n/2
K, (n) = Re i f e (0) (M (wt, 0) + M (w_, 6)] do [33]
0

-

-

where M (w, 0) is the complex integral

» ) T f(kya,2) etkw g (34]
BiFniass ][ ; tanh kA '
0 g(k)]| F*cos26 - o

In this equation w is written for either 0, or w_. The functions f (k,a,2), e (0), and ¢ (k) are

f (ky2,2) = sinh ka cosh kz
e (6) = F2 cos 6 [35]
g (k) = sinh kA cosh kA

The integrand of M (w, 0) has a simple pole when k = ko» Where %, is defined by the
equation

koh F? cos? 6 = tanh kyh (36]

This integral may be evaluated by means of a contour lntegratlon in the complex k-plane.
The method is described in Appendix B.
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The contour integration yields a value of K, (n) which is the sum of two terms, K,
2

°
and K, . In the subcritical range of Froude number
3

Ky, () =15 () + 1 (n,0) . 37

&

°
‘ . . . .
where /, (n,%) is defined in Equation [15B], Appendix B, in which

Ny =A,Z,-A,2

2774

[38]
o) Ny=A,%,+A,7,

® . .
The values of the terms used in N, and N, are given in Equations [17B] and [18B). In the

supercritical range of Froude number the integrals defining I\’V2 (n) have singularities which
occur when F cos 6 = 1. Therefore it is necessary to find the Cauchy principal value at the °
singularity.

Ky, =Ly, o +K, () [39]

It might appear to be more natural to combine LV; (n) with I(V’1 (n) to give I(V1 (n), the zero

Froude number value. However, from the few experimental and theoretical studies which have

been made with hydrofoils operating at I"roude numbers slightly greater than unity, the term
KV; (n), as given here, is a good approximation for the flow near the hydrofoil.® The approx-

imation is even better for higher Froude numbers. This indicates that the other nearfield

terms which are contained in K v, (n) are of secondary importance and probably may be ne-

glected in many computations.

®

The other integral terms obtained in the contour integration are of the form {5 (n,w),
Equations [22B] and [26B] in Appendix B. As these forms depend upon regions in which w,

and w_ are positive, they will be written explicitly for positive and negative values of z,
®
using the reslts giwen in Table 1 of Appendix B. In the subcritical range of Froude number
®



-

z>0,p-y>0
)

®

zr<0,p-y<0 ®

-

Ky, (1) = -2F2 [

Ky, (n)==~2F?

where tan 6, = Iul , and
2

g(0) =

n/2

00

f g (6) cos kqw do + /

17/2—01

0

3
)

g (6) cos kgw, do
11/2—01

k ok cos 0 sinh koa cosh kg2

®

sinh kgA cosh kA [(F2 cos? 6 — sech? koh)

In the supercritical range of Froude number

z>0,np-y>0

o0 kl
Ky, (1) == [f f (ko) cos kow, dkg + f/(ko) cos kow__dko]
. 4] [4]

z<0,n-y>0 .

Ky, (m) = ~h f f (kq) cos kqw, dk,

kq

where ky, is the value of % for which 6 = /2 - 6, and

f (ko) =

koh sinh kgya cosh k2

sinh kA cosh kyh sin 6

For negative values of n ~ y, v, and w«_ are interchanged.

The potential ¢V2 which contains the kernel KV2 (7), is a nearfield term that decays

@

g (9) cos kow_dﬂ] [40]
(]

[41]

[42]

[43]

[4.4]

[45]

rapidly with the distance from the singularity. The potensial ¢V3, which contains the
®

10




kernel Ky (n), is a wavemaking term which accounts for the waves downstream from the hydro-
3

foil. The waves extending upstream from the hydrofoil are of high frequency and aecay rapidly

with distance. Finally, the total potential function for the semi-infinite vortex sheet in shal-

low water is ®

b
1

¢V=§;
] ~b

PmKy )+ Ky )+ Ky ()] dy [46]
1 2 3

The 2~, y~, and z-derivatives of ¢+ are readily*obtained from the derivatives of the
kernel functions. The three derivatives of I\"Vl are obtained’ from Equations [20] and [21].

IfR,, R, S,, and S, are introduced for

Rf=z2+(q-y)2+(z+ 2nh—a)?
(47]
322=c2+(r]-y)2+(zt2nh+a)2
. ’ SZ=(-9)?+ (2+2nh~a)2 . -
13
S22_=(r,—y)2+(z+2n/z+a)2
the derivatives of Ty +L, are *
1 s ¢
8 T+L ]
(Ty Vl) A2 2+2nh-a 2+2nh+a]
P T D¢ s T s 9l g
. e R R; 1
8 T +L oo
Ty +Ly) 2 (2+2nh- a) Cx
O R ) —_— [1+R—
n= e Sy 1
2 2nh / 2nh~ /
_ (2+2nh+a) [1+ Q_z] N ¢z (2+2nh~a) _ ¢z (2+2nh+a) (50]
st Ry SER} S2R2
Y -
- L
11
. ® ¢ s



d(Ty +L oo
* Ty + Vl) A2 (n-9)? - (2+2nh-a)? 7 "z
- dz ) sS4 * Rl
= —oc 1 ®

®

(n-¥)2-(2+2nh+ &2 [1 Qz] ¢z (2+2nh-a)2  Qz (z2+2nh+a)? (51]
- +—| - +

R
s} 2 S2R3 SZR}

The derivatives of the other kernel functions are obtained from the derivatives of Ky () in

Equatien [33]. The z-derivative is the real part of :
K, ' w2
A o -J(nw)-J (g, w_) = - f Te(0) M (w,,0)+ M(w_, 6)] do [(52]
o.

where €°(6) is the product of cos 6 and its former value. The y-derivative is o

o s n/2 .
h %’%K =J (nw,)-J (nw)= f e (6) M (w,,6) - M (w_,60) d§ [53])
0 .

.

whefe e (6) is the product of sin 6 and its former value. In both cases the new value of
f(k,a,2) is . s
f(k,a,2) = kA sinh ka cosh kz [54]

Expresslons for the functions J, (n,w) and J4 (3, w) may be found in Appendix B. The func-
tlons N, and N, needed for J, (7,, w) are obtained by replacing k¥ by K (1+%) in Equation [54].

Then the real and imaginary parts are

Ny=Kh[A\Z3- 8,2, - A\Z,-A,Z,)

(551
Ny=KhlA\Z;-A4,Z,+ A\ Z,+A4,Z,]
The 2-derivative of K ,(n) is
. K, ) I
g h: =1 (nw)+1(n,w) (561
The function e(6) is unchanged but f(k,a,2) becomes"
f(k,a,2) = kA sinh ka sinh kz (57]

12 ? .
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L]
'Expregsions for I, (n, w) and /5 (n, w) may be found in Appendix B. The fupctions N, and N,
’ [
s ®
required for /I, (n, w) are e "

Ny =KATAYZ, ~ 4,2, - AyZ )~ A,2]

_ZV2 =KhlAZ, - A,Z, + A,Z,+ 4,2)]

-
’
-

Explicit forms for the thfee aerivativeg of'I(V3 (n) for positive and negative values of z are

readily obtained from the derivatives of the functions given in Equations [40] through [45].

POTENTIAL OF A HORIZONTAL LINE DOU'BL‘ET OF FINITE SPAN
The potential of a horizontal line doubiet of fi‘-n‘it'e span at 2 = @ and its image in the

sea bed at 2 = —-g is et e .

L] . b
bp =zh f;z(n) ! + 1 dn [59]
b, J, (22 + (1-1)% + (2-a)213/2 (22 4 (n=9)% + (2 + 2)213/2 .

where p(n) is the doublet strength per unit length. This potential vanishes for large values

of z and its z-derivative vanishes at the sea bed. The integral form for ¢Dl is

b ﬂ/2 oo
A .
¢Dl = Re — f n (n) dn f cos 0do f eikw [gklz—a| | ~k(z+a) pqp [60]
i 2
=b -n/2

where w is defined in, Equation [12],

To satisfy the free surface.boundary condition of Equation [6], it is necessary to add
a potential ¢D‘” which’contains an undetermined parameter G (%, 0). As in the case of the
senfi-infinite vortex sheet, G (k, 6) must have the same z and y dependence as qSDl and must

satisly Boundary Condition I. For points near the surface where z is greater than a, the

potential is

rr/2 oo
f cos 0d0 f e'*™ cosh ka [e~*7 + G (9, k) cosh kzl kdk
0

b
5 g 2 ;
p,*%p,, = e"—if#(n) U]
~b “n/2

(61]
13




When Boundary Condition II is applied, G (%, 6) has tlée same form it had for the case of the

semi-infinite vortex sheet, Equations [15] through [28]. It is therefore possible to write down

the solution at once. ®

2
¢D=;/l‘(7l) [KDI(’I)+KDZ(7T)+KD3(’7)] dn (621
)

o

(=]
In this equation the values of K 3 (n) for the two ranges of Froude number are

. . 2 /2 o0 . ° i

A : 2 e ** cosh ka cosh &
o Kp () =Re — cos 0d6 f ethw | g=klz—al , =k(z4a) , Z¢ _ ©OSh ka cos z]kdk
2nt /2 : sinh kA
e 4
. (63]
n/2 up
. A2 . 2¢ %k cosh & h &
Kp (M =Re — _cos 0(10'/‘e"""[e""h"‘i +ek(z+a) 2§  COSh ka cos z] kdk
1 2mi 2 4 % cosh kA
Y L] -n, .
| (64]
I L]
These‘functions have the nonintegral form
| . -
h2 = z . . * x
Kp () =— E ¢ +
! 2 e 22+ (-y)2 + (2+ 2nh-a)?}3/2 [z2+(r,-y)2+(z+2nh+a)2]3/2
[65]

where ¢ is unity in the subcritical case but has the value (-1)" in the supercritical case.

The function§ I(D2 (n) and KD3(’7) are obtained from the real part of the double integral

§ n/2
Kpm) =1 () + 1 (w_, n) = Re i;[ e (6) M (,, ) + M(u_, 0)] do [66]

where M (w, 6) is the complex function defined in Equation [34). The functions f(k,a,2),

| e(9), and g(k) are




L}
® f(k,a,2) = kA cos‘h ka cosh kz
e(0) =F2cos3¢ (671

g(k) = cosh kA sinh k& ®

. 0

The functions / 2(n, w) and / 3 (1, w) are defined in Appendix B. The functions N, and N,

needed for /, (n, w) are -
Nl=I(th3Z3-ﬁ‘A4Z4—A3Z4—A4Z3] )
(68]
Ny=KhlAzZy - AZ, + AjZ, + A,Z,]

[°]
®
In the supercritical range of Froude number it is necessary to determine the Cauchy principal

value at the singularity which occurs when F cos 6 = 1. Explicit forms of I(D () are the
same as those for KV (n), Equations [40] through [44], if the functions g(0) and f(kg) are
* given t,he values . .
(koh)? cos? 6 cosh kqa cosh k2

g(0) = — " 2 [691]
sinh kA cosh kyh [F2 cos? 9 - sech? kol

(kolz)2 cos? 0 cosh k.o" cosh kg2

ky) = (701
ko) sinh kA cosh kyh Sin 6

The derivatives of %p are obtained from the derivatives of the kernel'functions. The
three derivatives of Kp . (n) in Equation [65] are

haKDl ]13 £ [1_312/312 1_322/[222] .
= + [71]
da 2 3
n = ~ o0 Rl R23
b I(
1 3 1
h = ——Iz z(n- y) E —5 + — L7721
R = —o0, P 'R
L] aK pos
b, 3 3 2+&nh~-a 2+2nh+a
A - =--2-hz EIQ 5 + ~S (73]
2 L4 .
R = =00 Rl R2

where R, and R, are as defined in Equation [47]. The derivatives of the other kernel

functions are obtained from the derivatives of Kp (1) in Equation [66]. The z-derivative is

15
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the real part of o

K,

A —az— =-J(n, w,)-J (g, w_) [74]

where e (6) is the product of cos 6 and its former value. The y-derivative is

-
K

b5y TImw) = d(, 0) [75]

where e (6) is the produat of sin 0 and its former value. In both cases the new value gf
f(k,a,2) is, -

(<]

f(k,a,2) = (kh)? cosh ka cosh kz (76]

Expressions for the functions J,(n, w) and J;(n, w) may be found in Appendix B. The func-
tions N, and N, needed for Jy(n, w) are

Ny=-2(kn)? 14,32, + A,7,]

. * [77] .

f

N

. 2=, 2(kW? (4,2, - 4,2,]

The z-derivative of Kp(n)is

aKD L]

h._a:' =1(n, w+) +1(n, w_) . (78]

" The function e (6) is unchanged but f(k,a,2) becomes

f(k,a,2) = (kh)? cosh ka sinh kz . [(79]
The functions N, and N, needdd for /1, (n, w«) are .
Ny=-2K02 1437, + 4,2 )
) (80]
N, = 2(kr)*[4,Z, - 4,2,]

16
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STRENGTHS, OF THE> SINGULARITIES USED TO REPRESENT A HYDROFOIL

(2
The strength of vorticity along the span of a hydrofoil is a function of the chord and
o
lift developed at any section and the free-streamevelocity. If the vorticity is assumed to have
an elliptic distribution, the vorticity per unit length I (n) in the equations for ¢, has the form
®

®

I(n) =

oL 772 2 CC’L U 172
npUhb 32 m

1-— 81

In this expression L is the total lift and C is the average lift coefficient of the foil.
The strength per unit length of the horizontal line doublet, used to represent the dis-

placement effect of the hydrofoil, may be written in terms of a shape parameter A as follows
L]

1
1(n) = — X2 (U [82]
8A2

where ¢(7) is the maximum width of the hydrofoil section. If the hydrofoil had a circular
cross section, A would be unity and #(n) would be the usual strength of a line doublet
Lock!© has compyted A for a number of different geometric cross sections. For typical hydro-

foil sections A is apprqximat,eoly

. A=0.42 1+ c/r) [83)

where ¢/t is the length-width ratio of the section.
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APPENDIX A
INTEGRAL RELATIONS USED IN,THE POTENTIAL FIINCTIONg

The integral relations used for the potential functions in the foregoing analysis are
discussed in Wu's report! and are summarized here. If the relations are known for one of the
singularities, the others may be obtained by differentiation or integration. If the basic inte-
gral relation is given for the source, the doublet relations are obtained by differentiating this
function with respect to one of the coordinates. The integral relation for the semi-infinite
vortex sheet is obtained by integrating the expression for the vertical doublet from the posi-
tion of the hydrofoil downstream to infinity, o

As'the potential of a source is proportional to the reciprocal of the distagce, the first
integral relation is

P

! - f eIzl g (kva? + 42 ar (1A]

\/zz + y2 + %2 0

where the zeroth-order Bessel function Jo (k Vz? + y?) may be defined by the integral

' n/2
Jo (& V22 + y3) = -f cos (kz cos #) cos (ky sin 6) d6
4
. 0 L] L]

1 n/2

= - f lcos kw,_ + cos kw_] do {2A]

¢ ! .0 .
where .
w+=zc050+§/sin0 .
{3A]
w_=2zcos 6~ ysin @
Equation {2A] may also be written as the real part of
1 n/2 . 1 n/2
. ik k
Jo(k\/z2+y2=l?e—f ™+ e ap = e — [ &+ g9

4

()] ”-n/2
(4A]
*
* L ]
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If Equations [1A] and [4A] are combined, the potential fo? the source is .

®
1 n o r ik ’
sk f 6 fe*"lzl et gk (54
\/z2 + y2 + 22 " “n/2 0
The potential for the horizontal doublet is obtained by finding the z-derivative of
Equation [5A].
(]
o
p P
" ‘ - Re — cos 0d0 fe—"|z| e kdk [6A]
[z2 + ‘y2 P 22]3/2 m /2 A .
The potential of a vertical doublet is obtained by finding the z-derivative of 5
Equation [5A].
TI/2 o0
L ke
i - ke 2212 d0 f e=klzl ¢ g [74]
[22 + _1/2 + 22]3/2 4 /2 5

If z in this expression is replaced by z - £, the potential of a semi-infinite distribution

of doublets is obtained, by integrating both sides of the equation over £ from zero to infinity.

- . 2 xr
_ [1 + —————] =
y?+ 22 22+ y? 4+ 22
n,'2 oo .
- Re Limit SSH‘Z f ao f e-—klz' eiky sin 0 [eik (x =& cos f’]gjfm ak [8A]
sc,,,=°° 8 /2 cos 0 - .
-

Near the upper limit where £ is very much larger than z, the integral over 0 for any &

becomes

Em sin v cos (kv V1 - (v //ffm)2) du

9 (2 sin (k ¢, cos t) cos (ky sin 0) o g
= Ao = =
” cos 0 . 4 f
0 0 w1 - (u/k §m)2
[9A]
- L4 ol
20
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In the limit as £ approaches infinity, this integral becomes

° ¢
[ ] o0 ®

2 sin u

— cos ky f du = cos ky [10A]

w u

[
Therefore, the two integral relations for the semi-infinite line distribution of doublets are the

5 real parts of

L4 L} _2__ =Re sgn zf e_klzl e”‘y dk [IIA]
y2 + 22 0
o4 F K
P T _ g SEnz f eklzl ¥4 g (104

2 3 cos 0
2+ 2 <§7:/ 2,42, 52 ™ %2

When Boundary Condition II is applied in the case of the semi-infinite line distribution

of doublets, the kernel function L.y (n) from Equation [19] is
1

2 o0

L Re o f L E (hyay2) db [13A]
= ——— a’ X
Vi () ¢ 2ni / cos 0 g (k,2,2)
~n/2 0
For subcritical Froude number
inh k& h kz

g F(k,a,z) = sgn (z-a) e—k'z—a' — e k(z+a) , e kh w [14A]

sinh kA

If the hyperbolic functions are written in their exponential forms

o oo
- F(kya,2) = sgn (2nh +z-a) e~kl2nh+z-a| _ 2 &k @ nh'—tztia) o

n=0 n=1

_ E 'e—k(2nh+z+a)+ E 'o=k (2nh ~z=a) . [15A]

n=0 n =

L
L J
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e
If the sign of n is changed in the second and fourth sums, the terms combine to give

L
] o ]
F (k,a,2) = E sgn (2nh+z-a) e~kl2nh+z—al _ E sgn (2nh+ z+a)e"‘|2""+"+"I
n = =—o00 n = —oo
[16A]
If the integral relation of Equation [12A] is used
L, () A ~ 2nh+z2-a z
v, =3 2
1 2 2 2
n'= —oo (- +(2n£z+z—a) \/z2+(r]—y)2+(2nh+z—a)2
L4 -]
i, 2nh+ 2+ a e z [17A]
. 2 2
(m=-%)°+ (2nh+z+a) \/z2+(r,—y)2+(2nh+z+a)2
In the supercritical range of Froude number, the last term in the expression for F (k,a,2) is
—cosh kA instead of sinh kA; see Equations [25] and [26]. Then in the kernel function
LV'l (n) the terms in the infinite sums alternate in sign.
® ° -
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APPENDIX B
EVALUATION OF THE INTEGRALS BY CONTOUR INTEGRATION

The wavemaking potentials derived in this report are obtained from the real or imagi-
nary part of an integral of the type

R Lim=dJd(nw,)+J(p w) -7y, w,)+1(n, w) (1B]
-*
Whereas the kernel functions of the potentials K (n) and their 2- derivatives are of the type

I (n, w), the > and y-derivatives are of the type J (ny, ©). In thls expression J (n, w) and
I(n, w) are the real and imaginary parts of the complex integral

n/2
J(n, w) -3 I(n, w) = f e(0) M(w, 0) do ®  [2B]

where M(w, 0) is the principal value of the integral

= thw d .
M (e, 0y = f [(£,a,2) e kh — (3B]
0 g(k)[F2cos20—mr;c—h]

In these equations », and w_ are as defined in Equation [32], and w is written for either w,

or w_. The functions e(f) and f(k,a,2) depend upon the type of singularity, and ¢ (%) is

g (k) =.sinh kA cosh kk [4B]

The integrals are not defined for F = 1.

The 1nLegrals in Equations [2B] and [3B] have singularities in the integrands and
must be evaluated by means of a contour integration. In the integral defining M (w, 0) there
are no singularities in the quotient f(k,a,z)/ ‘g (k). There is a simple pole in the integrand,
however, when % = ko, where & is defined by the equation

koh F2 cos? 0 = tanh kgh (5B]

In the complex 4-plane there are infinitely many singularities on the imaginary axis, and the
contour of integration must be chosen in such a way that this axis is excluded and the inte-

grand remains finite. If v is positive, Contour I of Figure 2, which is in the upper part of
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e I‘ ky tia
0 - - A
B L] - &
|k| EIEIF;‘!
Lk| efm/4 |ie| &= 774

(-3

: l _H'.D +1c B

0 - -— {4

Contour | w>0 Contour (I w<0

Figure 2 — Contours in the Complex k-Plane for Evaluating the Integrals
-]
the plane, may be used. If w is negative, Contour II in the lower part of the plane may be
used. The signs of w, and w_ for different ranges of z and 6 are shown in Table 1 for posi-

tive values of n — y. For negative values of 7y - ¥, w, and w_ are interchanged. In this table

n-y
z

tan 61 =

[6B]

TABLE 1

Signs of w, and w_ for Different Ranges of z and 6

*

w, >0 0 <O<n/2 Contour 1
z>0 w_>0 . 0 <0<n/2-0, Contour I
w_<0 m/2-0,<0<n/2 Contour 11
* w_<0 0 <O<n/2 Contour II
z<0 w, <0 0 <0<n/2-86, Contour II
v, >0 n/2-0,<0<n/2 . Contou.rl

Figure 2 shows the pole within Contour I at ko + ta, where a approaches the limit zero.
Therefore in the integration about Contour I, there is a residue term which provides wave-
making; but there is no residue or wavemaking associated with Contour II. For large positive

values of z, 7, is very small and w, and w_ are positive over most of the range of 0. For
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small hegative values of z, there is wavemaking ahead of the hydrofoil which decreases as z

s increases and vanishes as % approaches minus infinity, Therefore, Boundary Condition III is
satisfied. If the pole were exactly on the axis and shared equally by both contours, there
would be as much wavemaking ahead of the hydrofoil as downstream from it. This clearly
contradicts Boundary Condition III, and Figure 2 gives the correct location of the pole. This

. analysis is equivalent to the use of a fictitious viscosity to locate the singularity,

When w is positive, the integration around Contour I gives

B B B
f[ ]dk=—f[ ]ke‘0d0+f[ 16im7/8d (k| + 2mi Res (k) [7B]
A A 0

In the l;mit, when A 'and B become infinite, the integral over the arc AB vanishes. Along OB

@® &

| k| e'™/% = K(1+1) (8B]

When w is negative, the integration around Contour II gives

@

B B
f[ ]rflr=f[ 1 (1-4) aK (9B]
A [i]

If the term for the integration along OB is given the subscript 2 and the term for the residue,

subscript 3, then M is given by the sum of M, and M, where )

P f(K (1+isgnw), a,2) e—Klwl eiKw (14 isgnw) i
a0 =g tanh (KA (1+1
. - :
"o 7 (K (1+isgnw)) [F2 cos2 9 — (1+isgn 1,))]
KA (1 +isgnw)
P oK V3 ,’(k (1+isgn w)’ a,z) e‘KlWI ein dK
=2 sgn w - g (K (1+isgnw)) ) ,
0 I [Kh (1+isgnw) £% cos? 6 - tanh (KA (1 +isgnw))]
[ ]
. . (10B]
i (1 ) f(k ik qw
(2 + w .a,z
M3 (w0, 6) = ol 0:%2) ¢ (11B]
) g (ko) [F% cos? 6 - sech? kA1
]
* ]
.
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To obtain the real and imaginary parts of ¥, (w, 6), let

. Ny +isgnwN,={(K{lsisgnw), a,2) . (12B]
K 1+2
Dy+isgnwD,= gk ( ;{;sgnw)) [KA (1+isgnw) F? cos? 6 - tanh (KA (1+isgnw))]
(13B]
. L
The real and imaginary parts of K, (n) are
n/2 o0
2h L4 _Klwl . )
Ty, w) = - = f e(0)do [ e IC, sgn w sin Kw + C, cos Kul dK  [14B]
()} [} *
ﬂ/2 5 oo e
: = K|
1, (n, w)=——”- f e (0)do f e IC, sgn wcos Kw - C, sin Kwl dk (15B] «
- 0 0
where '
© N, D, +N,D, N,D,-N,D,
Ciys—m——n———; Cp= o~ (16B]
1 p2,p2 2 2, p2
1YY Dy +D;

The values of N, and N, must be determined for the

particular singularity under consideration.
These are functions of the following quantities:

Al=sinh Ka cos Ka . A2=cosh Ka sin Ka
(17B]
A3 = cosh Ka cos Ka A4 = sinh Ka sin Ka
Z, =sinh Kz cos Kz 22=cosh Kz sin Kz i
. . [18B]
23 = cosh Kz cos Kz Z4=smh Kz sin K2z

Then the expressions for ), and /), are
*

1
1" agp

[19B]
1

N
[}

(Kh F? cos? 0 (I ~Ht,) - Hy + 1]

’ 2 2
D,= Py [KA F? cos O(Hy+Hy)-H,
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L ]
where

H, = sinh 2KA cos 2 KA % H, = cosh 2KA sin 2 KA

e [20B]

H3 = cosh 2 KA cos 2KA

H4 = g8inh 2KA sin 2KA

As K becomes small Ny and N, in Equation (16B] are of magnitude (KR)Y", where n is equal
to or greater than unity for all the singularities considered. In the denominator D,and D,
have magnitudes (KA)3 and KA [F2 cos? 6 ~ 1], respectively. Therefore, C, and C, are de-
fined for all values of K and 6 in the subcritical range of Froude number. In the supercritical
range of Froude number, F cos 6 may also be greater than unity and becomes equal to unity *
when 6 = 6, defined by
cos 6, =1/F [21B]

When the value of the integrand is investigated as 6 approaches 64 from both sides of the
singularity, the Cauchy principal value is found to exist and the integrals in Equations [14B]
and [15B] are defined.

The real and imaginary parts of the functions defining K ; (1) for the subcritical range

®

of Froude number are

. "2 ¢ (6) f (kgra,2) (1+ sgnw) sin kow kydo -
J. (n,0) = —h 29B
3 (1) sinh kh cosh kgh [F2 cos? 6 - sech? koAl
"2 () f (kgsa,2) (1 +sgnw) cos kow k,do
I3(n,wy = -4 [23B]
o sinh kgh cosh koh [F2 cos? 0 - sech? koAl

© -

As long as the Froude number is less Lhar.i unity, the smallest value ko can assume is always
greater than zero and these expressions are defined for all values of kg and 6.11

In the supercritical range of Frc.)ude number, the expressions for J3(n, ) and 15 (n, w)
are the same except for the lower limit of the integral which is 0, instead of zgro. As kqis
zero when 6 = 6, these expressions appear to ha.ve singularities for these values of the pa-
rameters. The difficulty is avoided, however, if the integration is evaluated over ko instead
of 6. If Equation [5B] is differentiated

455 hdk
= [24B]
2F2 cos 0 sin 6

F2cos2 6-sech2k0h

27
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then

r2 7 e(0).f (kya,2) (1 +sgnw) sin kgw kydk
I3 (n,0) = - 2 sinh kyk cosh k.4 cos 0 sin 0 1356]
.21-" ' 0 0
22 e(0) f(kya,2) (1+sgn w) cos kyw kydk
1 (17, W)= - —— - - {26B]
o F2 4 sinh kyh cosh koh cos 0 sin 9

The integrands of these integrals have no singularities and converge to zero as %, approaches
infinity and 6 approaches /9.

The derivatives of £ () with respect to z, y,

.

h % -,(U)w )""(in')_l['](ﬂv +)+J(1,,1L )]

and z are

[27B],

.

where e (0) in Equation [2B] is replaced by the product of cos 9 and its former value

aL .

h " ~Hmaw,) + 1y w_) 43 [ (g, 0,) - J (n, ) [28B]
where e (0) is replaced by the product of sin 6 and its former value. In both cases f(k,q,2)
becomes the product of # and its former value,

oL . ,
A e J(pywy) + J(n,w0_) -4 U, w) + 1{n,w_)] [29B]

where e (0) is unchanged but f(k,a,2) is replaced by the z-derivative of its former value
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