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COMPENDIUM OF IMPEDANCE FORMUILAS

ABSTRACT

A list of impedance formulas is presented which can be applied to the
vibration excitation of simple structures such as beams, plates, rings,
and beam-plate systems. Infinite, semi-infinite, and finite systems
are considered. Most of the formulas have been taken from the exist-
ing literature; others are derived. In the latter case short deri-
vations are given in the Appendixes.
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LIST OF SYMBOLS

radius

width of a beam

propagation veloéity for bending waves
propagation velocity for longitudinal waves

propagation veloclty for torsional waves

transmission coefficient
frequency

thickness

\/jz

% = wave number for bending waves
length 4

surface mass or linear mass
reflection coefflcient
particle velocity

angular veloclty
coordinates

bending stiffness of beams; for rectangular cross section

3
5 - Ebb

12
torsional stiffness of beams

bending rigidity of plates; for rectangular cross section

b _ __ En
- N
12(1-12)

-ii-
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torsional rigidity of plates
Young's modulus

force

shear stiffness

length

moment

mechanical power

reflection coefficient for bending wave near fields
cross sectional area of beams
force impedance

moment impedance

source 1impedance

loss factor

radius of gyration
wavelength

Poisson's number

density

angular frequency
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I. INTRODUCTION

The concept of mechanical impedance is very useful in solving vi-
bration problems because it allows expression of the energy transfer |,
from a vibration source to a structure, and from one structure to
another, in fairly simple terms. It is an especially convenient
concept for engineers with background in electrical engineering be-
cause of the analogy with electrical and mechanical impedances.

A particular example of the usefulness of the impedance concept 1is
the design of vibration mounts, where the vibration reduction can
be predicted rather accurately if all the impedances involved are
known. But there is one difficulty: In many practical cases the
impedances are not known, and therefore one is forced to represent
certain parts of structures by lumped masses, springs and dashpots.
This approach is convenient and useful for low frequencies or for
heavy and very compact structures, but for higher frequencies and

light structures it may be very misleading.il&/ Thus, one is faced
with the problem of getting more information about the impedances

of real structures.

It is hoped that the present report will provide some of this infor- .
mation. The report gives the impedance of structures which are more
complicated than lumped masses and springs, but still.simple enough
to be treated mathematically.

Most of the formulas of this report deal with infinite systems.
This is not'as serious a restriction as 1t might appear provided
that one is not interested in the response of a system at a given
frequency, but rather in the average behavior in a frequency band.
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" It will even be shown in Section II-A4 that the input impedance of

an infinite system governs the flow of mechanical power into a
finite system of the same kind. )

There are two types of impedances listed in this report; one of them

is the force impedance Z_ which is given by

F

(I-1)

(F = exciting force, v = particle velocity at the excitation point);
the other one i1s the moment impedance ZM given’by
M

z (I-2)

(M = exciting moment, w.= angular velocity at the excitation.point).

In both cases only point forces or moments are considered. This
means that the excitation is localized in a region which is very
small compared to the wavelength in the structure, otherwise the
formulas cannot be applied.

The more famlliar force impedance is used if all the excitation is
given by a force; one example might be the excitation of a structure
by an engine (pump, etc.) provided that the vibrations of the

engine (etc.) are purely perpendicular to the structure. If there

is also some "rocking" of the engine, the exciting moment, and there-
fore the moment impedance, has to be taken into accouqt, too.
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Since most of the formulas glven In thls report have restricted.
raﬁges of applicability, an-attempt has been made to give not only
the equatlions but also the corresponding restrictions. With regard '
to sign convention we emphasize that we have assumed harmonic motion
of angular'frequency o with the time dependence expressed by eiwt.
This 1s in agreement with Cremer's worki/ from which many of the
formulas were taken. If harmonic motion of the form e—iwt is
assumed, -i instead of +1 must be inserted in the formulas. Thus,

in the present report an impedance with a positive imaginary part

is mass-like, while an impedance with a negative imaginary part is

stiffness-like.
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II. FORCE IMPEDANCE OF BEAMS

A. Excitation of Bending Wéves

. The impedance of beams or systems of beams (for sketches of the

cases considered in the following, see Fig. 1) which are excited by
a point force acting perpendicularly to the beam can be calculated
by solving the one-dimensional bending wave equation

by o
T -kv=0 , _ (II-1)

o

A

X

under the proper boundary conditions. In Eq. (II-1), v is the

~ transverse veloclty of the beam

k= o” — | (1T-2)

the bending wave number, m the mass per length, S the cross-sectional
area of the beam, ¥ the radius of gyration, and E is Young's modulus.

Equation (II-1) is valid, provided that the bending wavelength A =
27/k ds much larger than the thickness h of the beam. In general,
Eq. (II-1) can be used if

AS 6h . ' ' (11-3)

A similar, somewhat less stringent restriction holds for the width
of the beam. '
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S 1. Impedance of Uniform Infinlte Beams

The term "infinite beam" does not mean that the beam must actually
be of infinite length. All the followlng results are correct if the
beam is ﬁighly damped or otherwgse-terminated in such a manner so
that no reflected bending waves come back from that side of the beam
which ié assumed to go to infinity. Methods for terminating beams
have been described by Kurtze, Tamm, and Vogel.6

a) Beam extending from x = -® to X = 4®

.In this case (investigated by Cremeri/ the boundary condltions at SR |

the driving point are, first that the angular velocity is zero, and .
second, .that the exciting force is equal to the transverse force of

the bending wave. This gives for the impedance .

“a,

N
o
i

2,3
ESEC K (141) (II-4)

- .

2me(141) =

@

- where ¢ = = bending wave veloclty. The gebmetry for this case 1s

shown in Fig. la.

b) Beam extending from x = O to .x =

This case was also consldered by Cremer.i/ See Flg. 1b for a sketch
of the geometry. Using as boundary conditions, first that the exclt-
Ing force is equal to the transverse force of the bending wave and
second, that there is no bending moment, he obtained

me
Zp =5 (}+1) . (II-5)
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2. Impedance of Beams with One Reflecting Device

To make the following formulas as general as.possible we define a
reflecting device as any inhomogeneity in material or cross-section
which causes a reflection of bending waves.' A list of reflection
coefficients r for some‘spedial cases is given in Appendix A. This
list includes the reflectlon coefficilents for the reflected non-
propagating wave (near field) as well as the reflected propagating
wave (far field). We shall always assume that the distance between
the driving force and the closest reflecting device 1s greater than
half a wavelength. This allows us to neglect the complicatibns '
caused by the reflected non-pfopagating wave (near field).

.a) Beams extending from x = -® to x = 4% with a reflecting
device at x = -£; (£ may be positive or negative)

The impedance of this structure (shown in Fig. lc) can be found as a
limiting case of Eq. (B6) in Appendix B. This equation gives for

ry = r,-rL =0

Ume .
Ty = (11-6)
F o1 4 pe2iKS

b) Beams extending from x = 0 to x = +° with a reflecting
device at x = £

In this case (shown in Fig. 1d) a derivation very similar to the one
in Appendix B can be made. The main difference is that the impedance
of the initial wave is glven by Eq. (II-5) instead of Eq. (II-4).
Furthermore, use is made of the fact that for a free end (at x = 0)
the reflection coefficients are -i and 1-i, respectively. Thus, we
get the following expression for the impedance
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1 . -2iks ‘ ’
+ re .

Z

mc
i = _é"' (l'!'i)

¢

Por many applications it might be of interest to find the mean square
veloclty ;z-at the driving point if the beam is excited by a broad
frequency band. Contour integration of Eq. (II—75 shows that.

—_ 42 o . .
ve = 2£F£ 1+ Irl2 : (1I-8)
m“ec= 1 - |r|

This result can be extended easily to.beams with internal losses
characterized by a loss factor n. In this case we have

—_— -nkf - .
5 2|F|?1 4 [p]? K

ve = = — . (I1-9)

o X B2 T [r|E e

3. Impedance of Beams with More Refleétinélﬁévices

a) Beams extending from x = -® to x = +¥, with refleéting
devices at x = -L and x = £ (L and 4 positive)

This case, shown in Fig. le, is treated in the second part of.

Appendix B. Eq. (B6) derived therein leads to the following ex-

pression for the force impedance

- ~21k (4+L)
l—rﬂrLe M

l—i+rLe'21kL+rze-21kz+(

ZF = Ume

—T (II-10)
1+i)I'ZI‘Le 2ik (£+L) .

(For ry = O, Eq. (II-10) is identical with Eq. (II-6)).
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The mean square velocity at the driving point for broadband

-excitation is obtained by integrating Eq. (B6) over frequency.

This gilves

2 2
2
N ] i b A M (11-11)
2 2 2 ° v
16cm 1 - lrerl

o)

If the damping of the beam is si%nificant, Eq. (II-11) can be ex-
I2

tended by inserting lrErL|2 e K £4L1) in place of lrer

b) Beams extending from x = -» to X = 4», with several
reflecting ‘devices on both sides of the driving point.

Equation (II-10) also holds for this case. We only have to assume
that instead of- simple reflecting devices at x = ~L and x'= £,

_ there are two "black boxes" containing more than one inhomogeneity.

The problem is now reduced to determining the reflection coeffi-
clents r; and r, of the "black boxes.”" Unfortunately the reflection
coefficients 'of systems more complicated than those given in
Appendix A are hard to compute. But the average behavior, which 1s
given by Eq. (II-11), can easily be found if we remember that (if

no internal losses occur) the energy coming to a reflecting point

is equal to the sum of the reflected and transmitted energy. Or

in terms of the reflection coeffilcient lrl and the transmission
coefficient d

lr|® =1 - |4]® . (1I-12)

If we insert this equation in (II-11), we get




2
_ ldl|2 - ‘dg| _ 1 3 (II 13)
27 16c%m? |a2]+]a3]-laya,|?  16cPn” [aZ|4la5] T

% { Report No. 774 Bolt Beranek and Newman Inc.
!

The latter apﬁroximation holds for Idll < 1, |d2| <L 1.

] Equation (II-13) is correct if the damping is small. This condition
can be written as:

!d§| + |d2|2 S o~k (£+L)

L., The Power Flow Into Finite Beams

At this stage it seems appropriate to give a general expression for
the average mechanical power that flows into a beam from a vibration
source. To this end we consider a finite beam of length £ and loss
factor 1. This beam is excited by a point force F at the point EO.
The velocity of the beam can then be found in terms of the eigen-

[ functions ¢n(x) and elgenfrequencies w . Thus we get (for example
see Ref. 7.

® iw¢ £) ¢, (x)
= E: (II-14)
m
5 n=0 @/ —0® 1nm f¢ dx
i Therefore the mechanical power P transmitted into the beam 1s
2
- 2 < WA 57 (4
P = %-Re Fvop = %ﬁi E: 5 — 52 (I1-15)
n=0 |o° - o + 1w’ Je, d
n
N
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Averaging over all possible exclting points,zoand over a broad
frequency band Aw gives

-— T

P =7 (II-16)

&
Bl

Here AN is the number of resonance frequencies in the frequency
band Aw. If there are several resonance frequencies within the
band of interest, we can approximate Eq. (II-16) by inserting the

asymptotic formula

AN _cf . |
R . (IT-17)

Thus we get

= 2 1 1.2 1 ‘
P~ F° g— =73%F" Re{z— : (I1-18)

which 1s exactly the formula that gives the power that is trans-

mitted from a point source into an infinite beam (see Eq. (II-4)).

Equations (IT-16) and (II-18) show that the average power is in-
dependent of the loss factor m and the length of the beam. This
fact has an interesting consequence for the power transmitted into
a beam with reflecting devices. ’

If the reflection coefficients are rather high it is a good approxi-

mation to assume that the part of the beam which is driven and which
is between two reflecting devices (which are a distance £ apart)

-1G-
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behaves like a finite beam of length £ with additibnalqdamping.
This means that Egs. (II-16) and (II-18) hold in this case, too;
or to put it.in another way, the average mechanical power which '
1s transmitted into a beam is, approximately, unaffected by the
presence of reflecting devices, and can easily'be computed if
the impedance of thg corresponding infinite system is known.

5. Impedance of Beams Driven wlth Non-Zero Impedance Sources

In all formulas glven above we have assumed that the source does
not influence the beam impedance; i.e., the source impedance ZS
has been assumed zero, or at least much smaller than the impedance

of the beam. But there are many cases in practice where the source
impedance ZS cannot be neglected (e.g., a heavy machine mounted on
a beam).

For the cases Jec. (II-Al) (without reflecting devices) the in-~
fluence of the source éan easily be computed_by adding the source
impedance to the beam impedance as given in Eqs. (II-4) or (II-5).

For all other cases (with reflecting devices) simply adding the
soufce impedance would be incoeorrect, because of the interaction at
the driving point of the source and the waves reflected back from
the reflecting devices. We therefore must know the reflection
coefficlents for the propagating waves and non-propagating waves
at the_driving pbint. If these quantities are denoted Ty and Rs
respectively, we get by extension of Section II.A.2.a

(l—i)(i-rrs eigikz)

-2iks

Zp = %mc(l+i) + z%] . (II-20)
l-i+re (1+Rs+irs)

-11-,
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Extension of Eq. (II-18) in Section IIL.A.2.b gives Z%W

-21k4
; 1 -r_re ™"
g, =|me(l+l) . 5 1 5 (I1-21)
F 2 8 1 21kt :
1+3re (1+Rs—rs)

We see that Eqs. (II-20) and (II-21) cannot be obtalned by adding
Zy to Eq. (II-6) or Eq. (II-7). The reason for this somewhat sur-
prising result 1s that 1n general the reflection coefficlent ry at
the source does not depend only on the force impedance Zs of the
source but also on the moment impedance at the driving point. It
can be shown for example that Eq. (II-21) becomes ‘

L =21kl
) e 4z (I1-22)
l4re '

= mc
Z = 2(1+1
(compare with Eq. Ii—7) provided that the moment impedance of the
source vanishes. Equation (II-22) can be proved by putting v = 0
in Egs. (A13) and (All4) and introducing the resulting expressions
into Eq. (II-21).

B. Excitation of Longitudinal Waves

The impedance of beams (for sketches of the geometries see Fig. 2)
exclted by a force acting in the direction of the beam axis can be
computed from the equation for longitudinal vibrations in beams

CR - (T1-23)

In this equation v is the longitudinal particle velocity,

-12-




Report No. TT4 Bolt Beranek and Newman Inc,

cr, =V % '  (IT-24)

i1s the velocity of propagation for longltudinal waves, E is’Young's
modulus, and p is the denslty of the beam material,

Equations (II-23) and (II-24) are valid only when the cross-sectlonal
dimensions of the beam“are very small compared to the longltudinal

wavelength.

1. Impedance of Uniform Infinite Beams

The longitudinal impedance of a beam extending from x = -» to
X = 4o and driven at some point in between is given by (see Fig, 2a)

Zp = 28 pop = 28\[Ep (II-25)
(S = cross section of the beam).

For a beam extending from x = 0 to x = +» and driven at x = O the
. impedance is (see Fig. 2b) '

Zg = Spey = S\[Ep . (I1-26)

2. Impedance of Beams with Reflecting Devices

The impedance of beams with discontinuities can be calculated by

using the methods given in Appendix B. Since all waves are propa-
gating, the formulas obtained are correct even if the distance be-
tween the source and the discontinulty is much smaller than a wave-
length., Furthermore there is a simple relation between the reflection
coefficient and uhe'impedance looking into ﬁhe.discontinuity; thus the
behavior of the beam cah be expressed solely by impedances in a falrly
simple way.

-13-
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a) Beams extending from x = 0 to x = @ with a reflecting
L (4 > 0)
If the reflection coefficient at x = £ 1s r we get (see Fig. 2¢)

device at x

-

- 1 -pe-2ikl
Zp,= S\[Ee T —mg (11-27)

l+re”
o D
(k .—’ _CL) .

If ZD is the impedance looking into the discontinuity the reflection
coefficient can be written as '

ZD - Sﬁ; . .
r = _D—'l'?'TETE o (II-28)

b) Beams extending from X = -® to X = 4» with reflecting
-L

devices at x = £ and x

Il

In this case the impedance turns out to be (see Fig. 24)

_ 1 -y o~21k(£+L) ( _ |
Zn = 29/Ep — — IT-29
F SVf— 1 3 e O rLe—QikL + mpre 1K (I4T)

(r, = reflection coefficient at x = 4; T = reflection coefficient at

The values for r, and r; can be obtained from Eq. (IT-28) if the
impedances at x = £ and x = -L are known.

_1%_'
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Finally, it should be mentioned that for longitudinal waves the
effect of a finite source impedance ZS can always be taken into -
account simply by adding it to the impedance of the structure.

-15-




Pt

ru% wd

poass

ootk o

Report No. T7T4 ' Bolt Beranek and Newman Inc.

II¥. FORCE IMPEDANCE CF PLATES
A. Impedance of Infinite ISotropic Plates

If a force F acts perpendicularly to a plate, the impedanqe”can
be found by solving the plate equation which is an extehsion of
(II1-1). If A is the Laplacian operator, the velocity v of
the plate is given by solutions of '
AAV - k“v =0 . a (III-1)
As in the one-dimensional case, this equation - and‘therefofe'the

impedance given below - is only correct when inequality Eq. (II-3)
is fulfilled.. - '

The impedance of point driven plates has been calculated by sev-

eral author58 2,10 in different ways. ' The result is

7, =80 _ g\/on . 7 (III-2)
F k2 ‘
In this equation D is the bending rigidity* and m the surface

mass of the plate.

Equation (III-2) also-holds for plates consisting of several
layers, - provided that they are connected in such a way that only
pure bending motion occurs. In this case D is the bending
rigidity of the combination and m its surface mass. For homo-
geneous plates Eq. (III-2) can also be expressed in terms of
Young's modulus E or in terms -of the velocity of 1ongitudina1
waves Cy. Thus we get

* Because of the lateral contraction, the bending rigidity of
beams is always a little smaller than the bending rigidity
of plates. But. for most practical cases they can be set equal

-16-
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2
c. ph ' . .
_ 2 [Ep _ L ~ 2 | )
ZF = 2.3 h I:ﬁﬁ = 2,3 —I-I:L?_ 2.3 CL ph (III 23.)

(p = density, n .= Poisson's ratio.)

B. Impedahce of Infinite Orthotrqpic Plates

Orthctropic plates have different bending stiffnesses for vibra—
tions in different directions, Examples of orthotropic plates
are: plates made of non-isotroplc material, plates with grooves
or ribs, corrugated plates, or grillages consisting of crossed
beams.

If the distance between the grooves, ribs,'etc..(whatever.iSv

. larger) and the plate thickness is much smaller than the short-
. , A est bending wavelength on the plate, the bending vibrations are
‘described by the following equation first obtained by Huberlg/

5 a‘* oty

rﬁwu-—-l ru-vw‘

2
__E.+ 2D —s—75 + D — - Omv = o . (I1I-3)
ay ¥ oy

Here D, is the bending rigidity in the stiffest direction (i.e.,
for example, in the direction of the grooves or ribs), D_ is
the rigidity in the least stiff direction (i.e., perpendicular
to the grooves or ribs), and m is the average surface mass.

ny is also a kind of rigidity which may either be measured
(see the papers by Hoppma 13 ) or calculated.

WM

el A

For a corrugated plate (illustrated in Fig. 3a) the rigidities

are given byl4 15

.

-17-
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3 3
= . - & ___Eh .y _ 8 __Eh “ )
D, =EI, ;D =¢ 04D Dy = & T 5 (III-4)
for a plate with ribs (illustrated in Fig. 3b) we have
' Euh3 B!
D, =EI. ; D_ = ; D, = 2D' + =— (III-5) .
h3 u

X X y ? Ry
12{u+t( =3 —1)}
H

In these equations E is Young's mdaulus, Ix is the moment of lnertia
along the x axis, p 1s Polisson's ratio, D' is the torsional rigidity
of the plate without ribs, and B' is the torsional stiffness of one
rib. The dimensions g,s,h,u,t,H are defined in the figures.

Finally for grills consisting of'perpendicular beams (illustrated
in Fig. 3c) we get '

B B BJ B/ o
R - e _
=3 Ny tT =2 7t (I11-6)

Here B is the bending stiffness and B! the torsional stiffness of
the beams (see Fig. 3).

The force impedance of orthotropic plates for bending waves was

recently calculated by Heckl.lé/ The result is
(mQDny)l/4
Zp = b —rdy (ITI-7)

: ﬂ/m.
with a = = (1 -.—51—)

-18-
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In this equation K(a) is the complete elliptical integral of the
first kind, for which tabulated values are available (for example "
see Ref. 17).

it D > D D, the Values of a become ima_gj_nary In ‘chis case e

Xy
the transformation

1¥d2 l+a

K(ia) = —i- K 0‘)
for a = ia has to be made.

For most practical cases nyz Dny’ then Eq. (III-7) can be
approximated by : '

| Ze z'8 (;n bey)1{4 (III-8)

Comparison with Eq. (III-2) shows that for orthotropic plates
\/Dny is analogous to D in isotropic plates.

.C. Impedance of a Homogeneous Plate, Infinite in One Direction,

Simply Supported in the Other One

In this case the impedance can be found by expanding the velocity
o :

and the force in series of the form z; f(x) sin E%X and inserting

these in the bending wave equation. After some calculations the
impedance turns out to be glven by

[~}

141 Z 1 1 ) o DY,
== - sin” — (ITI-9)
F 8/ Dm (\/nevz_ka 42 vna 2,,2,2

s n=1 T 4+k“ 4

-19-
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. (£ is the distance betweenfthe support edges, Yo thé.coordinate

of the driving point). The geometry is shown in Fig. 4.

As pointed out in Eq. (C-20) of Appendix C, Eq. (III-9) can be
obtéined also as a limiting case of the impedance of a beam-plate
system. '

" For vefy small valués of f and low frequencies: 1.e., for

ke <~g , Eq. (III-9) can be approximated by

2 Mg )

o L
1 . iwg ) _
= = =—%— sin” —— _ . (I1I-9a)

F 213D

We see that in this case the plate acts as a spring with a stiff-
ness constant given by

21D
. nwy
22 sin2 7 °

For very large .values of 4 and high frequencies, i.e., for kf{ >> 7
the sums in Eq. (III-9) can be evaluated to gilve Zp = 8 VDm which
is the impedance of a plate infinite in both directiomns.

For the intermediate range, the reciprocal impedance for a plate
driven in the center (yo'=-%) is plotted in Fig. 4 and Fig. 5.

The full lines show the real part, the dashed lines the imaginary
part. It can be seen that for n > 9 g the average value of i

Vo sw/ﬁ'n}

Re A } is very close to unity, and the average value of Im A
is negrly zero. . Thus for high frequencies the impedance_bf such
a semi-infinite plate is very c¢lose to the impedance of an:infinite
plate [see Eq. (III-2)]. This result also holds for plates finite

F .

-20~
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in both directlons (see, e.g., Skudrzykié/). If one 1s especially
interested in the mechanical power transmi@ted by a‘pbint force

" into a finite isotropic or orthotroplic plate, one can show that

fhe'power averaged in frequency is inversely proportional to the
force impedance of the infinité system. This fact can be ex-
pressed by the formula

P = Z|F|® Re {“-‘%;1 _ : (III-10)

The proof for this equation can be given in exactly the same way
as 1t was given in the one-dimensional case. (see Section II-A4).

-21-
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IV. FORCE IMPEDANCE OF BEAM-PLATE SYSTEMS

A, Impedance of Systems Infinite in Both Directions

This .problem (see Fig. 6a):was solved by G. Lamblg/ using the
notatlons

mass per length of the bean,

o

mp = surface mass of the plate,

bending stiffness of the beam,

B =
D = bending rigidity of the plate,*
1/4 . 1/4
kB-_Q_(wQTE_) - _g_(a@in_?_) I I
- - 3 - - 3 = - k4
GB B P Cp D CB kP
the result is**
3 +o0
'z‘1‘=""‘“‘2ch f = 173 1775 (IV-1)
F B B 4 4 2iD,, 4 _4 2 .2\ 2,2y
—® X ‘KB+7§_(kP‘X ) BKP—xA) +1(kP+x ) }

* It should be noted that Mg and mP,and B and D have different
dimensions, e.g., in the case of rectangular cross-sections we

have
Eghgb Egh
My = PghgPs Mp = pphp B = —75 D=m
For dimensions see Fig. 6a.
*¥%¥ Since we assumed harmonic motion of the form e"'m’t we have +1

where there is -i in Lamb's expressions.

-p2-
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For kB §~r3 = kg TE >> 1 the following approximation can be obtained
D P Mp

11 4 1D 3-r° . -l

Physically Eq. (IV-2) shows that 1if the beam is much stiffer than
the plate and the frequency not too low, the force impedance of a
beam-plate system is nearly the same as the impedance of the beam
alone [compare with Eq. (II-4)].

On the other hand it can be shown that 1f the stiffness of the beam
is not much higher than that of the plate, the impedance of the beam-
plate system is appfoximately the impedance of the pléte given by

Eq. (III-2).

B. Impedance of Systems, Infinite in One Direction and Simply
Supported in the Other One

This problem, whose geometry is shown in Fig. 6b, 1s treated in
Appendix C. Basically, the calculations show that for beams much
stiffer than the plate, tﬁe beam-plate system behaves like a simply
supported beam with a loss factor '

(IV-3)

=3

Q
"le n
of [

and an additional linear mass i

-23-
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AmB = = mp ) . (Tv-4)

The added damping and mass arise from the waves coupled to the plate
from the beam. ‘ ' '
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V. FORCE IMPEDANCE OF RINGS

According to Lovegg/ the radlal velocity v of a ring with radius a,

"linear mass m and bending stiffness B is gilven by

6 4 2 2 Bep op

o°v d'v B 2 2 0°%v _ i)~ *r t
+ 2 + WV - —— - . (v-1)

( 5 aqu 3¢° ) 362 ™Mag? 3¢

In this equation Py 1s the pressure in the téngential direction,
whilch in our case is zero, p, is the pressure in radial direction,
which in our case is F8(¢) (F = driving force, 5(¢) = delta function),

and ¢ 1s the angle around the ring.

Equation (V-1) is valid only when the thickness of the‘ring is much
smaller than one wavelength (This also means that the thickness
has to be very small compared with the radius.) and when o < 23,

where ¢y, is the longitudinal veloclity in the ring material.

A rather stralghtforward method of solving Eq. (V-1) under given
boundary conditions is to expand the velocity in terms of the eigen-

-functions cos n¢. With the use of this method the velocity at the

driving point may be obtained:

oo [+ 2
F n .
Vo= ), V= o 2, 2.2 (v-2)
°  ~ n e A0 (14n) - n®(n"-1)%
‘ B
where a = —_T—Q— . . (V'3)
ma o
- En®
For rings with rectangular cross section a = 1552255

-25-
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From these.equations we get the so-called "modal impedance"

1 -
- _F _ lomra 2 2, 2 .42 _
Zo = 5. = [l+n -n.(.n 1) aJ : (v-4)
Using the equation for the resonance frequencies w, of the ring
(see Lovel) . - ‘
o? = B n2(n2-1)2 - (V-5)
n 4 2 2 . : :
ma n +1
we get
o
- 2 . W,
_ 1lin joy
Zpy = lomma ( 2 )(1 - ;ﬁ ) . . (v-6)

If the actual rather than the modal impedance is of interest, we
have to carry out the summation in Eq. (V-2). For n® S>> 1 this
can be done analytically. The result is )

2% = ET%EE {ctn ™ + 1} (v-7)

where B = (1/d)1/4.

-26-
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VI. MOMENT IMPEDANCE OF BEAMS

A. Excitation of Bending Waves

The moment impedance of beams* excited into flexural wave motion
can be found by calculations which are nearly 1d¢ntical to those
used in Section II-A. This 1s not surprilsing since the bending
wave equation for the angular veloclty w has the same form as
Eq. (II-1).

The moment impedance of a beam extending from x = -® to x +» driven
at x = 0 1s
2 2o .
_ 2ESxk’k _F , '
Zy = o= (141) = 5 | ‘ (Vi-1)

[Zz = force impedance given by Eq. (II-4)].

For a beam extending from x = C to x = 4= driven at x = 0, we get

2
(under the boundary conditiown g—g = 0)
ax~ | x=0
7 = °F
M= 2 (vi-2)

[ZF = force impedance given by Eq. (II-5)].

* For the geometries considered here see Fig. 1 and replace the

force by a moment, e.g., by two opposite forces a short distance
apart.

-27-
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It is-now very easy to find the moment impedance of beams with
reflecting devices; all we have to do is to use the equation in
Section II, to replace mc by mc/k2, and to Insert the reflection
coefficients Ty for angular velocities instead of the reflection
coefficient r for flexural velocities. The latter substitution is
no problem at all, because it turns out that in general Tw = T
This means that the list in Appendix B is useful for moment im-
pedances, too*. '

Thus we can summarlze: The moment impedance of a beam can be fgﬁnd
from the force lmpedance of the same beam by replacing mc by mc/k2

and r by -r.

B. Excitation of Torsional Waves

If a beam is excited by a moment in such a way that torsional waves
are exclted, the moment impedance can be found by solving the tor-
slonal wave equation

w=0 _ (VI-3)

for the proper boundary conditions*¥, In Eq. (VI-3)

cr =\/ 2 | (VI-4)

*¥ The reflection coefficient Ry for the near field could also be
found in a very simple way because of the general relation
Ry = iR.

*% Strictly speaking Eq. (VI-3) is true only for cylindrical beams,
but 1t is also a very good approximation for rectangular beams
as long as the ratio of the lengths of the two sides is not too
large compared to unity.

-28-




s Ryt < TRt ORI

NP

e

g

e

. tW«

g s
)

o

tﬁﬁ-w

Report No. 774 Bolt Beranek and Newman Inc.

is the propagation veloclty for torsiopél waves and G = §R§%§3'is
the shear modulus. '

Since Egs. (VI-3) and (VI-4) are very similar to Egs. (II-23) and
(I1-24), the moment impedances for torsional waves are also very .
Ssimilar to the force impedances for 1quithdinal waves.

[

For a beam extending from x = 4o to x = -o, driven somewhere in
between we get '

2 . 2 ' ' -
Zy = oSk \/qp | (VI-5)
(S = cross-section of the beam, x = radius of gyration).

For a beam extending from x = O to X = », driven at x = O we get

Zy = Sx\ap o (VI-6)

For beams with reflecting devices we can use Eq. (II-27)-(II-29),
if we replace S by sk and E by G. :

-29-
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VII: MOMENT IMPEDANCE OF PLATES

In the case of a force actding on a plate it is possible to gilve an
impedance whilch 1s independent of the shape and size of the area
over which the force is acting, provided that the area is suffi-
cilently small. Unfortuna%ely the same does not hold in the case
of moment impedance.

If the moment 1is applied in fopm of a dipole of forces with mutual

distance . d, the‘moment impedance found by using Eq. (ITI-1) 1is,
according to Cremergl/, . ‘

Zyy = 4D - (kd << 1) . (VII-1)
® 3+ = (1-1n2ka) ;

IS

On.the other hand for a moment applied over a disc of radius a
e 22/ <

Dy found using Eq. (III-1)
Zy = E&P. . 1 (ka << 1) . (VII-2)
- F 1n ka

We see that the moment impedance is not independent of the shape
and area over which it is applied; furthermore for a—s 0O the
absolute value of the impedance would go to zero.

These.difficulties still exist if the more accurate bending wave
equations by Mindlingi/ are used; these equations also take into
account the local shear deformations which always exist near the
source. In this case Dyergg/ found for the impedance applied over
a disc of radius a

-30-
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g o -2D(1+L) :
™Mo L 1. . 120 (h
CDEE - i_—\ln ka + T I (ﬁ\f‘]

In this equation h is -the thickness of the plate. The guantities
L and the third term in the denominator can be found from Fig. 7.

(VII-3)

Although Egs. (VII-1)-(VII-3) give very different values, they

have one common feature--the real'parts in the denominator are
equal. ‘This fact 1s of physical significance since the power trans-
mitted by a localized moment is : ‘

12 1| .
P = z|M%|Re {Z'M‘} . ~ (VII-b)
In the first two cases thils gives

D R

P =z =3 el (VII-5)
in the third case we get
2
_ M
P = 18p(14T) - (VII-5a)

which is not very different from Eq. (VII-5).

In sumﬁary: If only the mechanlical power transmitted by a localized
moment is of interest, the area and shape over which the moment is
applied is not of interest. In this case the power is approximately
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P

given by Eq. (VII-5). If, however,the impedance itself is important
(e.g., when 1t has to be added to a source impedance), it is
necessary to use Eq. (VII-3).

o swx ¥

- —————— tr—— w— » &
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VIII. MOMENT IMPéBENCE OF RINGS

The moment impedance of. rings can be found in a way that is very
similar to that used in Section V. If a dipole of forces with

moment M 1s acting in the radial direction, the angular velocity
at the excitation point is

o

4 -
M .
W o= : , (VIII-1)
o  lwmra (2mra) 2 EZ 1+n 2(n 1)2 .
n-l
with

a = ——%}——
ma w2

From Eq. (VIII-1) we find for the modal moment impedance

2

2 w 2
_ l+4n __n\ (2ma -
A iwtmra( " ) (1 —a@) <———n) . (VIII-2)

(mh see Eq. V-5).

The asymptotic value of l/ZM for n° S>> 1 turns out to be

1__p (ctnmd + 1) . (VIII-3)

N

MWhere.B = (l/oz):l'/LL
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- ° APPENDIX A

LIST OF REFLECTION COEFFICIENTS FOR BENDING WAVES ON BEAMS¥

‘1. Change in Cross-Section or Material

B

If ml, Bl’ ki denote the mass, bending stiffneés, and wave number
before the,discontiﬁuity, and s, B2, k2 the same parameters behind
;t, the reflectlion coefficient r for the wave field is given by (see_'

Cremeri/)
3 2 2 .
r = 2a(1-8) - 1p(1-a) (A1)
B(14a)® + 2a(148°)
For the near-field reflection coefficient Cremer obtains ' —
* ' 2
. roBl®)- 1p(1-a7) (a2)
- 2 2 ?
. B(1+a)“ + 20(1+8°)
. m,B k
where - a = m2B2 and B = Eg
171 1

2. Impeding Masses

If m,s @, K denote the mass, rotatory inertig and the radius of
gyration of the added mass, and m, k the surface mass and bending
wave number of the beam, the reflection coefficlents are glven by
(see Cremeré/)

* For sketches of the geometries see Fig. 8.
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-u+€2u%-§€2u4

(wrePu3) -1 (b €Bu3-2eR™)

P (A3)

and "
_ 2 3 l€2u4+i( €2u4) . ()
R = .
(p+€ u3) 1 (bp-€? 3—%€2u4)
m M5 .
Here the dbbreviations € = ™5 K and u = k are introduced.
(o)

For fwequencies more than ohe octave above the "Sperrfrequenz which
is given by kK = 1 the above equations can be approximately wrltten as

2
1-|r|? = (22)
0

3 R=-(1-1) . = , (A5)
3. Corners and Other Junctions
a) Vibrations in the Plane Formed by the Beams.

This case was 1investigated by Cremefz/rtaking into-consideration the
excitation of longitudinal waves. The corresponding formulas can be
found in Cremer's paper. For many practical cases, however, it is not
necessary to use these rather complicated formulas, since the errors
are not too great in tﬁe region where the simple bending wave theory

is valid [see Eq. (II-1)]. Therefore, for most cases the approximate
formulas

_ A4+ia R 0 &
r=-Tq 3 R=-a71g (46)
are sufficient.
_35_
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Here q is glven by the bending stiffness.B and the wave number k
of the primary beam and the same-quantities Bv and kV of the
adJjoined beams

£

a= BK (A7)

<
ﬂ,tvﬂte
t
-

v v

b. Vibrations Perpendicular to the Plane Formed'by the Beams

If this case 1s treated accurately,.the excltation of to‘sional

waves must be considered.r This leads to the rather complicated
expressions given in'Ref. 11. If the excitation of torsional waves
is neglected the refléction coefficients are-

: 1-1 ‘ ' .

r = T;aﬂ K ‘ (68)
and

R=aqif - (A9)

The quantlty q 1s given by Egq. (A7) but since the bending stiffness m 
is in general different along different axes the numerical value of
g might be very different.

Equations (A8) and (A9) are not very good approximations, and are
especlally poor at low frequencies. They can serve only as very

rough estimates.

L4, Terminations

For clamped ends: r=-i; R =-(1-1) . {A10)
(A11)
(A12)

H
I
lL'
oy
i
(@)

For simply eupported ends:

Il

!
e
-
o)

Il
-

]
s

For free ends:

-36-




o et PSS et CNBOTNE

[Pap——
+

pont  pre

L =7

Report No. 774 - Bolt Beranek and Newman Inc.

If it is possible to describe the termination by a force impedance

5 P and a moment impedance % = ZM, the reflection coefficlents

©  are given by

- _ sliigjlizv;-zizijvg
r= 1-1)(1t7v)-2(T-1v (A13)

and
R = =21 (1-7v) | (A14)
A1-1)(X4rv)-2(7-1v) ° .
s . _ lo -l
w?ere vV = - Bl ZM and T = Bk3 ZF

The reflection coefﬁ;cients for free, clamped and supported beams
can easily be verified from these equations.' Also, the case of a
beam attached to a plate'or to a large mass-is included in Eg. (Al1l3)
and (A14). It should be mentioned that |r| 1s always unity when v
and T are req%'i.e., when ZF and ZM are purely imaginary.
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APPENDIX B
IMPEDANCE OF BEAMS WITH REFLECTING DEVICES

A model of a beam with two reflecting devices is shown in Fig. le.
To derive the-velocity at the dyiving point we assume that L and £
are at least 1aréer than half a bending wavelength; this impliles

" that the near fields excited at the discontinuities can be ne-
“glected.

The velocity at the driving point x

:0 can be calculated by noting
that the primary waves exclted at x = O propagate to x = £ or .
x = -L. At these points they are partially reflected and propagate’

in the opposite direction until they encounter the next disconti-

nulty where they are reflected once more, etc. The addition of all
these 'partial waves gives the actual velocity.

The veloclity of the primary waves is given by Cremeri/'aé

_ F ", -1kx , _-kx
v, = Tem (e 1e™™") for x » O
and (B1)
v_ = E%ﬁ (e+ikx -iekx) for.x £ O

If we first consider the v, wave only, we find (neglecting near fields)

that after the first reflection the wave has the form

v, = EE‘ v, o~ 1k(2£-x) (B2)

r, = reflection coefficient at x = £).
2

-

-38-




N SRR e it PO
o Py

'w r—aw»n'w

"

Report No. 774 s Bolt Beranek and Newman Inc.

If the wave described by Eq. (B2) hits the discontinuity at x = -IL,
another reflected wave 1s generated, namely

_F -ik(2442L+x) )
VRe = Tem T4TL © . . '(B3)
The next feflectioné at x = £ and x = -L give
_.F ~1k(24-x) 21k (L) -
VR3 T Tem 'L © LT TpTy (B4)

and
__F. -1k(24+2L4x) - —21k(L+&).
VRY T Tem TTL ? riFy ©

and so on. It can be seen immediately that the summation of all of
the reflections forms a geometrical serigs'in-rer e-21k(L+£).
summation therefore can be carried out easily, -and if we do this for

§+ and v_ we obtain

~21KT, -1kl ‘
g l-i4r, e +r, e +(1+i)r£rL

o ~ Tcm o1k (Z+L)
. l—rer e

e—21k(£+L)
(B6)

v

(vo = velocity at x = 0).

_3 9..

A '-\M\:;m

(B5) - |

The
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APPENDIX C
: FORCE IMPEDANCE OF A FINITE PLATE BEAM SYSTEM

The Input 1mpedance of an infinite bar which is attached over its
entire length to an infinlte plate was derived by Lamblg/. An
extension of thls problem will be treated, namely, the force im-
pedance of a finite beam attached to a plate. The geometry of
the system can be seen in Fig. 6b. To simplify the‘calbulations
it 1s assumed that the platq and the beam are simply supported
at the lines y = 0 and y = £, 1.e., the velocities and the mo-

ments at these lines are zero.

We assume the plate and the beam to be thin, so that the vibra-
tions of the pldate are given by )

, .
AAVE - kp vp = O (c1)

and the vibrations of the be&m by i

- —r——— —— e,

n
dwv
g 2 -y Vg - vy (c2)
y

In these and the following equations the subscript B corresponds to
the beam and 'P to the plate. A is the Laplacian operator, kB’ kP
the bending wave numbers, B the bending stiffness of the beam, and
D the bending rigidity of the plate.* Pp is the pressure acting on

¥ See note on p. 22.
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.

the beam and consists of two parts, the exciting pressure Ppp given
by a point force F applied at a point Yos and a pressure Ppgr which

. Includes the backward reaction from the plate.

Because of the simple boundary conditions, the velocity of the
beam can be expressed as ' '

vg = }Z Vg, Sin 2%1_ . . (c3)

To find the unknown coefficients an;.We must know the preséures
pé and pBRf' To thls end we expand the velocity of the plate in a
series-similar to Eq. (C3). (This can be done because of the

" similarity of the boundary conditions.) We write

v = L fplx) s I | L (ch)

The functions fn(x) describe the propagation df'bending waves into

' the plate. They can be found by inserting Eq: (CL) into Eq. (C1)

giving

-

4 22 2 4
EQE £ (%) -2 Bz_g_ a—d—z £ (x)+ { (%’I) -kl;] £.(x) =0 . (C5)
X X -

This equation can easily be solved by introducing the exponential
function. Thus we get

o
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eipx+v, e—ipx+v

oxX
Pn_e +v

—Oﬂx -
Pn+ lgn+e 1. (06)

where .

2 2 - e 2
_ 2 nm = 2., nmw
p _\/kP - .2 and © .-\/kP + el | (c7)

.

For bur model we must considér that no waves can come from infinity. .

Therefore, we have two different solutions for x ¢ O, and x > O.

[+ <]
= -lpx, oy -oX or
Vpy = E: (an+e +an+e )sin 7Y for x > 0O
. n=1 )

and ' - ~ (c8)

_ ipx ox nw '
Vp. = E: _(an_e +Vp, € )sin =7 ¥ for x <O
n=1 \- . .

Because of the symmetry of the problem we can put Vent = Ven-
and V§n+ = Vﬁn—’ Furthermore, 1t 1is sufficient to consider one
of the equations (C8) and to double the reacting pressure obtained
in this way.

' _
Pt and Vot cap be expressed. in terms of Van

by using the following boundary conditions.

Vg = Vpyi Or vp, = vp . for x = 0 (c9)

o.
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and

ov

=t =0forx=0 . (c10)

The first of these equations expresses the fact that thé veiocity
of the beam and the plate must be equal at the line x = 0. The
second equation means that the angular velocity.at x = O must be
zero, because there are no bending moments in the x direction.

Equation (C10), together with Eq. (C8) and Eq. (653, gives

<

B 2

Vpnt = ——% (c“+1ipo) (c11)
2kP

and

v
Bn 2

N%n+ = —=5 (p=-ipo) (c12)
2kP .

Now we are able to express the pressure Prr in terms of VBn* The
pressure 1s given by .

3Av '
2D P+
PER = To {—35——] oo . (c13)

Equations (c8), (c11), (c12), and (C13) yield, after some algebra,

o0

2 2
Ppr = 1g Z an(p o -.1po“) sin %11 y . (c14)
n=1

-43-
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‘Now we can expand the exclting pressure PpE in the same series by

writing

) Ppgn SIn 7 Y (c15)
: n:l .

where PpEn ¢an easlly be computed in the special case.of a point
force .

Ppg = F6(y-3,) (c16)

which has the Fourier coefficienté

nmy
= 2 F sin 7 2 .C17)

PpEn ]

By inserting Egs. (C13), (Cl14), (C15), and (C17) in Eq. (C2) we
get

4 nmy -
{(Q}) _kg] Van T %—1% F sin TO + 2 %(cpg-ipge) Ven - (c18)

We get finally

"
nmy
D1 F it sin——[—o-sin-r—l—-wy
VB T TBI - ] (c19)
_1fnT 4o Q
VE kg2l F{T— 1/ k 4 n g
_hh . C e
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This equatlon is very simillar to that derived by Lamblg/; the main
difference is that a sum instead of an integral is obtained for
the flnite case.

To obtain some further information from Eq. (C19) let us investi-
gate two special cases:. first, the case of a very light and
flexible beam on a stiff plate; second, the case of a very stiff
beam attached on a rather flexible plate;

Case A

In this case, especially when there is no beam, i.e., B = O, we
get, for the velocity at the driving point

(-] : S
aF : 1
-1 . (c20
B0 ¥ * 23 ). sin® [ k ze 5 2 Z 2, 2 2] (c20)
P n=1 -n T kP +nT

Equation (C20) 1s identical with Eq. (III-9), as expected.

Case B

In this case, which occurs very often in practice (e.g., when a
thin plate is stiffened by a stringer), it is'reasonable to compare
the vibrations of the beam-plate system wilth the vibrations of a
damp?d beam. '

In the case of a point-driven damped beam we insert the complex

e mAmons e

value

Eg = kg (1-1n) , ‘ (ce1)

=45
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in Eq. (C2).. The vibrations can be calculated as shown above.
The only difference. is that there is no reacting pressure PpR*
Thus we get for the veloclty of a point-driven damped beam

[+ N
sin —p—
- 2laF : , sin Y (ca2)

To compare this equation with Eq. (C19) we take into consideration =
that for D << Bk, the value of the sum in Eq. (C19) is mainly ‘
determined by the'behavior of the denominator in the vicinity of
nvyl'= k@. 'Eperqfore, we make no'great error if we put nv/z = KB

in the last term of the denominator of Eq. (C19). So we get

nwy -
© . O nmy
sin 7 sin 7

%g>4 -kg +21 % (kg‘Kg)(\[;g%;g- f\[;g§;%;>

If we compare this result with Eq. (C22), we see that the coupling

v = 21iwF
-B BZ
n=1(

. (023)

of a flexible plate to a stiff beam has approximately the same
effect as damping the beam with a loss factor

~ D %' _EE_____ (cak)

and changing the bending wave number because of an "additional mass"
of magnitude

46
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1/=§====_‘ . .(025)

Tﬁese two equations can be simplified a little more if we set

.kP > kg, which is at least correct if beam and plate are made

out aof the same material. Hence

m
2 P 2
Mo = — — ;5 A = = mp . (c26)
R~ %, Wy g ¥p . _
“47-
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(a) eq. (I,4)
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(c) ed.(m,s6)

.
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1

(b) egq.(I,5)
F
l | r.
[
1 Y
U
X‘-‘O x:f

(d) eq: (I,7)

NOTE: .

" TO FIND THE MOMENT IMPEDANCE
USE THE CORRESPONDING
EQUATION FOR FORCE IMPEDANCE
AND REPLACE cm BY cm/k?
AND r BY -r. .

FIG. 1 LIST OF BEAM IMPEDANCE (BENDING)
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\ "4
l
X=0
{a) eq. (IO, 25) -
F—s— 7
|
X=0
(b) egq. (I, 26) . ' ol
-- .
. M
F% -~
LJ.
X=0 X=1
(c) eq.(m,27) _
r . F r
L 4
- -
| I I
R Vd
' U I LJ
X=-L  X=0 X =4

(d) eq. (I,29)

FIG.2 LIST OF BEAM IMPEDANCES (LONGITUDINAL)
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“(a) CORRUGATED PLATE
Sougyyguguuy
— >y

(b) PLATE WITH RIBS

' : / / BEAMS OF STIFFNESS B, AND D,
/ / L BEAMS OF -STIFFNESS

B, AND D,

(c) GRILLS

FIG.3 DIMENSIONS OF ORTHOTROPIC PLATES'
- (IMPEDANCES eq.'m,4—-]I[,7)
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(a) INFINITE CASE: IMPEDANCE,SEE SECTION T A
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CROSS-SECTION, SEE UPPER SKETCH
(b) FINITE SYSTEM

FIG.6 SKETCH OF BEAM PLATE SYSTEM
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m,; B, k,_j / m; k u m;k
eq. (Al AND A2) eq. (A3 — A5)
Bl’fﬁkl Bl;ﬂk|
FORCE ACTING
F PERPENDICULAR
l TO PLANE
o L } 2
Bwk BZ’kz B’k 82’k2
eq. (A6) eq. (A8) AND (A9)
\ v/

83;k3 B3;k3
F
] 2
\¥ ¥ eq.(AIQ)
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F W
| z
Ly \IW eq.(A”) ZF;ZM//
F
L eq. (A13) AND (Al14)
 a— 1 eq.(Al2)

FIG.8 LIST OF REFLECTION COEFFICIENTS
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