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A
COMPENDIUM OF IMPEDANCE FORMULAS

[ ABSTRACT

I A list of impedance formulas is presented which can be applied to the

vibration excitation of simple structures such as beams, plates, rings,

and beam-plate systems. Infinite, semi-infinite, and finite systems

are considered. Most of the formulas have been taken from the exist-

ing literature; others are derived. In the latter case short deri-

[ vations are given in the Appendixes.

L

L

1.

I
I

I
l1-i

l



R Report No. 774 Bolt Beranek and Newman Inc.

LIST OF SYMBOLS

[ a = radius

b = width of a beam

j c = propagation velocity for bending waves

c L = propagation velocity for longitudinal waves

cT = propagation velocity for torsional waves

L I'd 12 = transmission coefficient

f = frequency

L h = thickness

k = - = wave number for bending wavesc

I 2length

m = surface mass or linear mass

r = reflection coefficient

v = particle velocity

w = angular velocity

x,y = coordinates

B = bending stiffness of beams; for rectangular cross section

Eh3 b
B 12

B' = torsional stiffness of beams

[ D = bending rigidity of plates; for rectangular cross section

D= Eh3

12(1-2)
-i-
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D' = torsional rigidity of plates

E = Young's modulus

F = force

G = shear stiffness

L = length

M = moment

P = mechanical power

I R = reflection coefficient for bending wave near fields

IS = cross sectional area of beams

ZF = force impedance

ZM = moment impedance

ZS  = source impedance

1. = loss factor

.1= radius of gyration

= wavelength

j = Poisson's number

p = density

a) 2wf = angular frequency

1
I
I
I
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LI. INTRODUCTION
The concept of mechanical impedance is very useful in solving vi-

j bration problems because it allows expression of the energy transfer

from a vibration source to a structure, and from one structure to

I another, in fairly simple terms. It is an especially convenient
concept for engineers with background in electrical engineering be-

1cause of the analogy with electrical and mechanical impedances.
A particular example of the usefulness of the impedance concept is

L. the design of vibration mounts, where the vibration reduction can
be predicted rather accurately if all the impedances involved are

j known. But there is one difficulty: In many practical cases the

impedances are not known, and therefore one is forced to represent

Lcertain parts of structures by lumped masses, springs and dashpots.
This approach is convenient and useful for low frequencies or for

Lheavy and very compact structures, but for higher frequencies and
light structures it may be very misleading. -- 4/ Thus, one is faced

with the problem of getting more information about the impedances

of real structures.

IIt is hoped that the present report will provide some of this infor-
mation. The report gives the impedance of structures which are more

I complicated than lumped masses and springs, but still simple enough

to be'treated mathematically.I
Most of the formulas of this report deal with infinite systems.

This is not as serious a restriction as it might appear provided

that one is not interested in the response of a system at a given

1frequency, but rather in the average behavior in a frequency band.

1.
I --
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It will even be shown in Section II-A4 that the input impedance of
an infinite system governs the flow of mechanical power into a

1 finite system of the same kind.

There are two types of impedances listed in this report; one of them

is the force impedance ZF which is given by

_-F (I-i)l F V.

L(F= exciting force, v = particle velocity at the excitation point);
the other one is the moment impedance ZM given by

[ML (1-2)

(M = exciting moment, w = angular velocity at the excitation point).

In both cases only point forces or moments are considered. This

means that the excitation is localized in a region which is very

small compared to the wavelength in the structure, otherwise the

Iformulas cannot be applied.
The more familiar force impedance is used if all the excitation is

given by a force; one example might be the excitation of a structure

I by an engine (pump, etc.) provided that the vibrations of the

engine (etc.) are purely perpendicular to the structure. If there

is also some "rocking" of the engine, the exciting moment, and there-

I fore the moment impedance. has to be taken into account, too.

-

O ~-2-9
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Since most of the formulas given in this report have restricted

ranges of applicability, an -attempt has been made to give not only

the equations but also the corresponding restrictions. With regard

to sign convention we emphasize that we have assumed harmonic motion

of angular frequency m with the time dependence expressed by eimt

j This is in agreement with Cremer's work-/ from which many of the

formulas were taken. If harmonic motion of the form e-iat is

assumed, -i instead of +i must be inserted in the formulas.' Thus,

in the present report an impedance with a positive imaginary part

.is mass-like, while an impedance with a negative imaginary part is
- stiffness-like.

-

'° I.

[1
i
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II. IORCE IMPEDANCE OF BEAMS

A. Excitation of Bending Waves

. The impedance of beams or systems of beams (for sketches of the

cases considered in the following, see Fig. 1) which are excited by

a point force acting perpendicularly to the beam can be calculated

by solving the one-dimensional bending wave equation

t4
d 4v _k4 (1-
dx

under the proper boundary conditions. In Eq. (II-1), v is the

transverse velocity of the beam

k(w ESI2)1/ (11-2)

the bending wave number, m the mass per length, S the cross-sectional

area of the beam, x the radius of gyration, and E is Young's modulus.

Equation (II-1) is valid, provided that the bending wavelength W =

2/k is much larger than the thickness h of the beam. In general,

I Eq. (3I-l) can be used if

I Z > 6h . (11-3)

A similar, somewhat less stringent restriction holds for the width

of the beam.

-.

i.
-4
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1. Impedance of Uniform Infinite Beams

The term "infinite beam" does not mean that the beam must actually

j be of infinite length. All the following results are correct if the

beam is highly damped or otherwise terminated in such a manner so

I that no reflected bending waves come back from that side of the beam

which is assumed to go to infinity. Methods for terminating beams

have been described by Kurtze, Tamm, and Vogel.f/

a) Beam extending from x = -C to x =

In this case (investigated by Cremer5/ the boundary conditions at

the driving point are, first that the angular velocity is zero, and.

second, .that the exciting force is equal to the transverse force of

the bending wave. This gives for the impedance

ZF = 2mc(l+i) (1+ 2SEK2k3 (lii) (II-4)

where c = bending wave velocity. The geometry for this case is

shown in Fig. la.

b) Beam extending from x = 0 to.x =___

j This case was also considered by Cremer.5/  See Fig. lb for a sketch

of the geometry. Using as boundary conditions, first that the excit-

ing force is equal to the transverse force of the bending wave and

second, that there is no bending moment, he obtained

I ZF mc (l+i) (11-5)F 2

I
I-

-5-
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2. Impedance of Beams with One Reflecting Device

To make the following formulas as general as possible we define a

reflecting device as any inhomogeneity in material or cross-section

which causes a reflection of bending waves. A list of reflection

coefficients r for some special cases is given in Appendix A. This

list includes the reflection coefficients for the reflected non-

propagating wave (near field) as well as the reflected propagating

1. wave (far field). We shal.l always assume that the distance'between

the driving force and the closest reflecting device is greater than

L half a wavelength. This allows us to neglect the complications

caused by the reflected non-propagating wave (near field).

La) Beams extending from x= - to x = 4w with a reflecting

device at x (may be positive or negative)

The impedance of this structure (shown in Fig. lc) can be found as a

limiting case of Eq. (B6) in Appendix B. This equation gives for

rL = r,-r L = 0

ZF 1i r -2ikZ (11-6)
1i+ re

b) Beams extending from x = 0 to x = 4 with a reflecting

L device at x 2

In this case (shown in Fig. ld) a derivation very similar to the one

in App.endix B can be made. The main difference is that the impedance

of the initial wave is given by Eq. (11-5) instead of Eq. (11-4).

IFurthermore, use is made of the fact that for a free end (at x = 0)
the reflection coefficients are -i and 1-i, respectively. Thus, we

Jget the following expression for the impedance

-
1 -6-

I
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zi 1 + r -2ik"2  (II-7)

I For many applications it might be of interest to find the mean square
velocity - at the driving point if the beam is excited by a broad

0
frequency band. Contour integration of Eq. (II-7) shows that.

I ~-- 2IF i l+ I

o n x 2  " (11-8)

This result can be extended easily to.beams with internal losses

j characterized by a loss factor n. In this case we have

c2 m2  1 - r12 e - Tk ° (11-9)

3. Impedance of Beams with More Reflecting Devices

a) Beams extending from x = -- to x = +*, with reflecting

devices at x = -L and x = I (L and I positive)

This case, shown in Fig. le, is treated in the second part of.

Appendix B. Eq. (B6) derived therein leads to the following ex-

pression for the force impedance

I-rx e -2ik(I+L)

ZF = 4mc l21kLr £ lk(+L) (II-10)

1-~re +rye_2k.+(l+i)rjrLe_2ik£L

J (For rj 0, Eq. (ll-10) is identical with Eq. (11-6)).

1 -7-



I IReport No. 7 7 4 Bolt Beranek and Newman Inc.

The mean square velocity at the driving point for broadband

*exciotation is obtained by integrating Eq. (B6) over frequency.

This gives

__ 22 2 , I r j l + ,I r X II - l
v2 (11F1

.0 F,2 2+~L2~216c 2m 1

If the damping of the beam is significant, Eq. (II-11) can be ex-

tended by inserting Ir rL 12 e - lk T' + L ) in place of IrLrL 1.

b) Beams extending from x = -o to x = +w, with several

reflecting devices on both sides of the driving point.

Equation (II-10) also holds for 'this case. We only have to assume

that instead of-simple reflecting devices at x = -L and x'= A,

Lthere are t-wo "black boxes" containing more than one inhomogeneity.

The problem is now reduced to determining the reflection coeffi-.

cients rI and r2 of the "black boxes." Unfortunately the reflection

L- coefficients 'of systems more complicated than those given in

Appendix A are hard to compute. But the average behavior, which is

given by Eq. (II-11), can easily be found if we remember that (if

no internal losses occur) the energy coming to a reflecting point

Iis equal to the sum of the reflected and transmitted energy. Or

in terms of the reflection coefficient Irl and the transmission

[cefficient d

L Ir12 = 1 d 2  . (11-12)

If we insert this equation in (II-11), we get

L

L I

I



Report No. 774 Bolt Beranek and Newman Inc.

[ 2 1 3 -1Id112 12 21 3
___ 1- 13

F~l~ 12lc m2I 211'j1 1c012 2o2 Id~l 2 1 1 (11-13)
SIF 2 2 1 1 2

• The latter app'roximation holds for Idll << 1, Id21 << 1.

L[ Equation (ii-13) is correct if the damping is small. This condition

can be written as:

Id 21 + Id212 > e -k(1+L)

L" 4. The Power Flow Into Finite Beams

At this stage it seems appropriate to give a general expression for

the average mechanical power that flows into a beam from a vibration

jsource. To this end we consider a finite beam of length I and loss
factor T° This beam is excited by a point force F at the point 10
The velocity of the beam can then be found in terms of the eigen-

functions 0n(x) and eigenfrequencies n" Thus we get (or example

see Ref. n

m O _ + 2 n(x)F n (11-14)

LTherefore the mechanical power P transmitted into the beam is

-1 F ((22)
Re :vn=O 22 (1 1-15)

-9-L_

[I"



Report No. 774 Bolt Beranek and Newman Inc.

Averaging over all possible exciting points I0 and over a broad

frequency band Am gives

-. 7r F2 AN (II-16)

Here AN is the number of resonance frequencies in the frequency

band Aw. If there are several resonance frequencies within the

band of interest, we can approximate Eq. (11-16) by inserting the

asymptotic formult.

AN c2
Am 2 (11-17)

LThus we get

21 1F2 Re{+ (11-18)11
.which is exactly-the formula that gives the power that is trans-

j mitted from a point source into an infinite beam (see Eq. (11-4)).

Equations (11-16) and (11-18) show that the average power is in-

dependent of the loss factor n and the length of the beam. This

fact has an interesting consequence for the power transmitted into

a beam with reflecting devices.

If the reflection coefficients are rather high it is a good approxi-

mation to assume that the part of the beam which is driven and which

j is between two reflecting devices (which are a distance I apart)

1
-IC

I
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[ behaves like a finite beam of length A with additional damping.

This means that Eqs. (11-16) and (11-18) hold in this case, too;

or to put it.in another .way, the average mechanical power which

is transmitted into a beam is, approximately, unaffected by the

presence of reflecting devices, and can easily be computed if

the impedance of the corresponding infinite system is known.

5. Impedance of Beams Driven with Non-Zero Impedance Sources

In all formulas given above we have assumed that the source does

not influence the beam impedance; i.e., the source impedance Z s
has been assumed zero, or at least much smaller than the impedance

of the beam. But there are many cases in practice where the source

impedance Zs cannot be neglected (e.g., a heavy machine mounted on

[a beam).

For the cases sec.(II-Al) (without reflecting devices) the in-'

fluence of the source can easily be computed by adding the source

bimpedance to the beam impedance as given in Eqs. (11-4) or (11-5).

For all other cases (with reflecting devices) simply adding the

Isource impedance would be incorrect, because of the interaction at
the driving point of the source and the waves reflected back from

tthe reflecting devices. We therefore must know the reflection

coefficients for the propagating waves and non-propagating waves

at the driving point. If these quantities are denoted rs and Rs

respectively, we get by extension of Section II.A.2.a

; (l~i)Ii~rr s e - i )

SF  [2mc(l+i) zs f l-i+re-21k (l+Rs+ir (

F +

-ll
-1-
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L Extension of E:. (11-18) in Section II.Ao2.b gives .

mn 1 1 -r. re-21kiZF c2___ + Zs 1e - 2 1k X (1I-21)

2 + + re (1+R s-rs)

We see that Eqs. (11-20) and (II- 2l) cannot be obtained by adding

Zs to Eq. (11-6) or Eq. (11-7). The reason for this somewhat sur-

prising result is that in general the reflection coefficient r at
ISL the source does not depend only on the force impedance Zs of the

source but also on the moment impedance at the driving point. It
[can be shown for example that Eq. (11-21) becomes

l +ire-2ik

12 1+re-2k|Z = m--(l+i) l~e2k s (II-22)

(cbmpare with Eq. 11-7) provided that the moment impedance of the

source vanishes. Equation (11-22) ian be proved by putting v = 0

L in Eqs.(A13) and (A14) and introducing the resulting expressions
into Eq. (11-21).

B. Excitation of Longitudinal Waves

fThe impedance of beams (for sketches of the geometries see Fig. 2)

excited by a force acting in the diriection of the beam axis can be

computed from the equation for longitudinal vibrations in beams

2 2

d v +- -= 0 (11-23)

dx2  cL2

!L

In this equation v is the longitudinal particle velocity,

1
-12-
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c E (1f-24)
P

is the velocity of propagation for longitudinal waves, E is'Young's

modulus, and p is the density of the beam material.

Equations (11-23) and (11-24) are valid only when the cross-sectional

I dimensions of the beam°are very small compared to the longitudinal
wavelength.

I .1. Impedance of Uniform Infinite Beams

The longitudinal impedance of a beam extending from x = - to-

x =4- and driven at some point in between is given by (see Fig. 2a)

ZF  2S pc L  2SV p (11-25)

(S'= cross section of the beam).

*For a beam extending from x = 0 to x = +c and driven at x = 0 the

impedance is (see Fig. 2b)

zF I L = Ep (11-26)

1 2. Impedance of Beams with Reflecting Devices

The impedance of beams with discontinuities can be calculated by
using the methods given in Appendix B. Since all waves are propa-

gating, the formulas obtained are correct even if the distance be-

tween the source and the discontinuity is much smaller than a wave-

length. Furthermore there is a simple relation between the reflection

I coefficlent and rhe *mpedance looking into the discontinuity; thus the

behavior of the beam can be expressed solely by impedances in a fairly

simple way.

-13-
I . .
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r .Ia) Beams extending from x = 0 to x = with a reflecting

device at x = (2> 0)

If the reflection coefficient at x = 2 is r we get (see Fig. 2c)

I-re -2ikl
Z F. 3V l+re21k' (11-27)

If Z D is the impedance looking into the discontinuity the reflection

Icoefficient can be written as

r= Ep (11-28)
ZD + S VE p
ZD____+__________._____(II-_____8)_

b) Beams extending from x = -w to x = +w with reflecting

devices at x 2 and x = -L

i In this case the impedance turns out to be (see Fig. 2d)

1 - rjrL e21k(O+L)
ZF = 2S I+rie-2ikY + rLe-21kL + rjrLe-2ik(I+L) (11-29)

(r,= reflection coefficient at x = 2; rL = reflection coefficient at

.Ix = -L).

The values for rX and rL can be obtained from Eq. (11-28) if the

3 impedances at x = Land x = -L are known.

I

I
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Finally, it should be mentioned that for longitudinal waves the

effect of a finite source impedance ZS can always be taken into

I account simply by adding it to the impedance of the structure.

I1
I
I

I.

I
I

I
I *1

I
1 -15-
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g III. FORCE IMPEDANCE OF PLATES

A. Impedance of Infinite Isotropic Plates

If a force F acts perpendicularly to a plate, the impedance can
be found by solving the-plate equation which is an exteh~ion of

Eq. (ii-1). If A is the Laplacian operator, the velocity v of

the plate is given by solutions of

- kv=0 . (Ikv-i0

As in the one-dimensional case, this equation - and-therefore the

impedance given below - is only correct when inequality Eq. (11-3)

Lis fulfilled..

L The impedance of point driven plates has been calculated by sev-

eral authors8 9-10/ in different ways. The result is

Z 8- (111-2)k2

In this equation D is the bending rigidity* and m the surface

mass of the plate.

Equation (111-2) also-holds for plates consisting of several

Llayers, provided that they are connected in such a way that only
pure bending motion occurs. In this case D is the bending

rigidity of the combination and m its surface mass. For homo-
geneous plates Eq. (111-2) can also be expressed in terms of

Young's modulus E or in terms-of the velocity of longitudinal

waves cL. Thus we get

• Because of the lateral contraction, the bending rigidity of
beams is always a little smaller than the bending rigidity

iof plates. But. for most practical cases they can be set equal
-16-

I.
I.!

I -



Report No. 774 Bolt.Beranek and Newman Inc.

CL ph 2

ZF =2.3h 2 -. 2.3 2 2.3 cL ph (III-2a)V i-* = I-'.P
(p = density, ..= Poisson's ratio.)

B. Impedance of Infinite Orthotropic Plates

Orthotropic plates have different bending stiffnesses for vibra-

tions in different directions. Examples of orthotropic plates
are: plates made of non-isotropic material, plates with grooves

or ribs, corrugated plates, or grillages consisting of crossed

beams.

If the distance between the grooves, ribs, etc. (whatever is
larger) and the plate thickness is much smaller than the short-

est bending wavelength on the plate, the bending vibrations are

L described by the following eq;.tation first obtained by Hubel1/:

L4v 2Dy 4v + 4v  2Dx 7  + 2 y + D W2mv =O. (11-3)

Here Dx is the bending rigidity in the stiffest direction (i.e.,
I for example; in the direction of the grooves or ribs), D is

the rigidity in the least stiff direction (i.e., perpendicular

to the grooves or ribs), and m is the average surface mass.
D is also a kind of rigidity which may either be measured
Xy 7-r caultd
(see the papers by HoppmaIn-) or calculated.

For a corrugated plate (illustrated in Fig. 3a) the rigidities

Lare given by'

-17-I
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1 Eh3  s Eh3

12(

I for a plate with ribs (illus.trated in Fig. 3b) we have

Euh3  B1 -5

Dx =EIX ;Dy = 3  ;Dy =.2D'+ -(III-)

12 l[+t( .h 3 )1U H
In these equations E is Young's modulus, I x is the moment of inertia

along the x axis, p is Poisson's ratio, D' is the torsional. rigidity

of the plate without ribs, and B' is the torsional stiffness of one

rib. The dimensions g,s,h,.u,t,H are defined in the figures.

I
L Finally for grills consisting of 'perpendicular beams (illustrated

in Fig. 3c) we get

B B B 01 D 2 D B B(2(Tii-6)

Here B is the bending stiffness and B' the torsional stiffness of

the beams (see Fig. 3).

The force impedance of orthotropic plates for bending waves was

recently calculated by Heckl.1 / The result is

(m2DD y,)I/4
F Ka (111-7)

with a (1 D

-18-
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i In this equation K(a) is the complete elliptical integral of the

first kind, for which tabulated values are available (for example*

I see Ref. 17).

I If Dxy \f5,5i the values of a become imaginary. In this case

the transformation

K(ia)= . K( =a

for a ia has to be made.

For most practical cases Dx DxD, then Eq. (11-7) can be

approximated by

ZF 8 (mn DxI ) (111-8)

Comparison with Eq. (111-2) shows that for orthotropic plates

q xDy is analogous to D in isotropic plates.

C. Impedance of a Homogeneous Plate, Infinite in One Direction,

ISimply Supported in the Other One
In this case the impedance can be found by expanding the velocity

and the force in series of the form f(X) sin ny and inserting

these in the bending wave equation. After some calculations the

impedance turns out to be given by

1 41 n2l - n~ry0
I 1F = 1 n 2 s2 ikn2 Vn2 2+k22 2 7 (111-9)

- -- 19-
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VI (I is the distance between the support edges, yo the coordinate

L of the driving point). The geometry is shown in Fig. 4.

L As pointed out in Eq. (C-20) of Appendix C, Eq. (111-9) can be

obtained also as a-limiting case of the impedance of a beam-plate

I_ system.

L For very small values of 2 and low frequencies: i.e., for

kj <I P Eq. (111-9) can be approximated byL
IF D sin2ny (Ill-9a)

I ZF -T--D

We see that in this case the plate acts as a spring with a stiff-

I ness constant given by

2r3S= 2 sin 2  Yo

For very large values of A and high frequencies, i.e., for k >7r

L the sums in Eq. (111-9) can be evaluated to give ZF = 8 which

is the impedance of a plate infinite in both directions.L
For the intermediate range, the reciprocal impedance for a plate

j driven in the center (yo = 1) is plotted in Fig. 4 and Fig. 5.

The full lines show the real part, the dashed lines the imaginary

L It can be seen that for n > 9g the average value off 8

Re r Dmn is very close to unity, and the average value of
is negrly zero. Thus for high frequencies the impedance .of sch

F

h a semi-infinite plate is very close to the impedance of an infinite

plate [see Eq. (111-2)]. This result also holds for plates finite

-20-I.
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in both directions (see, e.g., Skudrzyk-/). If one is especially

interested in the mechanical power transmitted by a point force

into a finite isotropic or orthotropic plate, one can show that

I-the power averaged in frequency is inversely proportional to the
force impedance of the infinit& system. This fact can be ex-

pressed by the formula

("-iio

21 FI Re {(III-l)

The proof for this equation can be given in exactly the same way

j as it was given in the one-dimensional case (see Section II-A4).

L

L

I

! -21-
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IV. FORCE IMPEDANCE OF BEAM-PLATE SYSTEMS

A. Impedance of Systems Infinite in Both Directions

L. This.problem (see Fig. 6a).was solved by G. Lambl/ using the

notations

L
mB = mass per length of the beam,

L MP = surface mass of the plate,

B bending stiffness of the beam,

D = bending rigidity of the plate,*

2 B /4 2 .__1/4 = mk--
k B W- kp C p -- r = CB ,B F~=w4 P P

i-.

the result is**

1 2 B f x (IV-l)

ZF iin1 f 4 4 2iD 4 4 2  2 v0x kB+-(k 2kx+ik+

L

L It should be noted that mB and mp, and B and D have different

dimensions, e.g., in the case of rectangular cross-sections we

j have

12 ;,mh B ~D - 2
L mB=pBhBb, mP = pPhp 12 12(1_P2.)

L For dimensions see Fig. 6a.
•* Since we assumed harmonic motion of the form e we have +i

I. where there is -i in Lamb's expressions.

-22-£
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For kB B r mkV l- >> 1 the following approximation can be obtained
DP

1 1 4 m+ 3-r-2 0 r+ 3- r 2 sin-c° - r)
2r(l-r 2  

2r (l+r

L (1v-2)

Physically Eq. (IV-2) shows that if the beam is much stiffer than

the plate and the frequency not too low, the force impedance of a

beam-plate system is nearly the same as the impedance of the beam

j alone [compare with Eq. (11-4)].

j On the other hand it can be shown that if the stiffness of the beam

is not much higher than that of the plate, the impedance of the beam-

plate system is approximately the impedance of the plate given by

Eq. (111-2).

B. Impedance of Systems, Infinite in One Direction and Simply

Supported in the Other One

This problem, whose geometry is shown in Fig. 6b, is treated in

Appendix C. Basically, the calculations show that for beams much

stiffer than the plate, the beam-plate system behaves like a simply

supported beam with a loss factor

2 m p
i 'Bp (IV-3)

4and an additional linear mass

I
1-23-
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SAm B : - mp (IV-4)
P

I The added damping and mass arise from the waves coupled to the plate

from the beam.I
I

L

i

L

L

-.24-I
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V. FORCE IMPEDANCE OF RINGS

According to Love2- / the radial velocity v of a ring with radius a,

j -linear mass m and bending stiffness B is given by

ma4(6vv v) + 2 2 2v i p r. 3Pt(v-i)I m--a IV + 2 6-- + 6-0 0 v p=mt" )]. (Vl

In this equation Pt is the pressure in the tangential direction,

j which in our case is zero, pr is the pressure in radial direction,

which in our case is FS(W) (F = driving force, 5(0) = delta function),

and O is the angle around the ring.

Equation (V-l) is valid only when the thickness of the ring is much
smaller than one wavelength (This also means that the thickness

has to be very small compared with the radius.) and when cD < CL

Where cL is the longitudinal velocity in the ring material.

I

L_ A rather straightforward method of solving Eq. (V-l) under given

boundary conditions is to expand the velocity in terms of the eigen-

L-functions cos nO. With the use of this method the velocity at the

driving point may be obtained:

002 
(V 2)

v° = Z vn =i oa (1+n 2  n 2 ( n 2 _1 ) 2

n=l n=O

where =(V-3)
ma w

-. ...- Eh 2

For rings with rectangular cross section a = ,, 4 2
S12pa 5

-25 -
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I 3 From these equations we get the so-called "modal impedance"

I Z~~n = F =iwlnra[ 22n(vL)

1 +n -n.(21)2

n n

I Using the equation for .the resonance frequencies n of the ring

(see Lov e2)•

2 B n (n -1) , (V-5)
ma n2+l

we get

I ZFn= icmnra (ln 2 )(1 " (v-6)
In

If the actual rather than the modal impedance is of interest, we

I have to carry out the summation in Eq. (V-2). For n2 >> 1 this

can be done analytically. The result is

F 4 a ctn rp + ] (V-7)

where = (1/a) 1/ 4

-

l

-26-I
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VI. MOMENT IMPEDANCE OF BEAMS

A. Excitation of Bending Waves

IThe moment impedance of beams* excited into flexural wave motion
can be found by calculations which are nearly identical to those

used in Section II-A. This is not surprising since the bending

wave equation for the angular velocity w has the same form asI Eci. (II-1).

The moment impedance of a beam extending from x = -o to x +w driven

at x = 0 is

_ 
2kZF.

zM- 2ESx k (1+1) F- (vI-1)

[ZF = force impedance given by Eq. (II-4)].

For a beam extending from x = C to x = += driven at x = 0, we get
2wdw(under the boundary conditio, x=0)

_ZF

ZM = (VI-2)

{ [ZF = force impedance given by Eq. (11-5)].

For the geometries considered here see Fig. 1 and replace the
force by a moment, e.g., by two opposite forces a short distance
apart.

L
L -27-
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It Is-now very easy to find the moment impedance of- beams with

reflecting devices; all we have to do is to use the equation in

Section II, to replace mc by mc/k2 , and to insert the reflection

coefficients rw for angular velocities instead of the reflection

coefficient r for flexural velocities. The latter substitution is

no problem at all, because it turns out that in general rw = -r.

This means that the list in Appendix B is useful for moment im-

L pedances, too*.

jThus we can summarize: The moment impedance of a beam can be found

from the force impedance of the same beam by replacing mc by mc/k
2

and r by -r.

B. Excitation of Torsional Waves

If a beam is excited by a moment in such a way that torsional waves

are excited, the moment impedance can be found by solving the tor-

sional wave equation

2 2
dw + w(VI-3)

dx 2 C+T 2

for the proper boundary conditions**. In Eq. (VI-3)

cT (vI-4)

* The reflection coefficient Rw for the near field could also be

L found in a very simple way because of the general relation
Rw = iR.

F Strictly speaking Eq. (VI-3) is true only for cylindrical beams,
but it is also a very good approximation for rectangular beams
as long as the ratio of the lengths of the two sides is not too
large compared to unity.

-28-
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Eis the propagation velocity for torsiondil waves and G = 2(1-h±)

the shear modulus.

Since Eqs. (VI-3) and (gI-4) are very similar to Eqs. (11-23) and

(11-24), the moment impedances for torsional waves are also very

similar to the force impedances for longitudinal waves.

I
L For a beam extending from x +0 to x = -o, driven somewhere in

between we get

zM  2S 2 VFG (V-5)

(S = cross-section of the beam, xc radius of gyration).

For a beam extending from x = 0 to x = 0, driven at x = 0 we get

zM  sK2_ p (M-6)

For beams with reflecting devices we can use Eq. (II-27)-(II-29),

if we replace S by S2. and E by G.

-29-
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[ VII: MOMENT IMPEDANCE OF PLATES

In the case of a force acting on a plate it is possible to give an

impedance which is independent of the shape and size of the area

over which the force is acting, provided that the area is suffi-I ciently small. Unfortunately the same does not hold in the case

of moment impedance.i
If the moment is applied in form of a dipole of forces with mutual

j distance.d, the moment impedance found by using Eq. (III-1) is,

according to Cremer 2,

Z D =I (kd << 1) (VII-l)

.ic (l-ln2kd)

On the other hand for a moment applied over a disc of radius a

L Dyer x/ found using Eq. (III-1)

- 4D 1 (ka << 1) (VII-2)
M- i 1n ka

* L
We see that the moment impedance is not independent of the shape

and area over which it is applied; furthermore for a--- 0 the

absolute value of the impedance would go to zero.

These.difficulties still exist if the'more accurate bending wave
.21/equations by Mindlin-' are used; these equations also take into

Iaccount the local shear deformations which always exist near the
source. In this case Dyer 22/ found for the impedance applied over

a disc of radius a

-30-
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=2D(I+L) (VII-3)

rIn ka+ r r

In this equation h is the thickness -of the plate. The quantities

i I L and the third term in the denominator can be found from Fig. 7.

I Although Eqs. (VII-1)-(VII-3) give very different values, they

have one common feature--the real parts in the denominator are

equal. This fact is of physical significance since the power trans-

mitted by a localized moment is

p = jIM2 IRe I (VII-4)1
In the first two cases this gives

P =M.1 M 1 M12  k 2  VI5I 32D = 8 (

in the third case we get

M2w (vII-5a)
P 16DiI+L)

which is not very different from Eq. (VII-5).

I In summary: If only the mechanical power transmitted by a localized

moment is of interest, the area and shape over which the moment is

applied is not of interest. In this case the power is approximately

I
1 .o -31-
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given by Eq. (VII-5). If, however, the impedance itself is important

(e.g., when it has to be added to a source impedance), it is

j necessary to use Eq. (VII-3).

I-32I

i
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I VIII. MOMENT IMPEDANCE OF RINGS

The moment irfipedance of. rings can be found in a way that is very

similar to that used .in Section V. If a dipole of forces with

moment M is acting in the radial direction, the angular velocity

at the excitation point is

wo M 1 n , (VIII-1 )
w iira (2ra)2  _ (l+n2 )-n2 (n2 _l) 2a

. n=l

with

a B

ma 4cu

From Eq. (VIII.-I) we find for the modal moment impedance

i ZMn o n n2/ M2  n VII2

( ( n see Eq. V-5).

1. The asymptotic value of i/ZM for n2 >> 1 turns out to be

!z 1 2 33 (ctnwrp + 1) (VIII-3)

M16ricia

where p (1/a )l/4

-33-
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- o APPENDIX A

I LIST OF REFLECTION COEFFICIENTS FOR BENDING WAVES ON BEAMSt

•1. Change in Cross-Section or Material

If m1 , B1, k, denote the mass, bending stiffness, and wave number

before the .discontinuity, and m2, B2, k2 the same parameters behind
it, the reflection coefficient r for the wave field is given by (see

CremerS_/)

r= 2a (l-2) - i(-a)2  (Al)

." p(+a)2 + 2a(l+p2)

For the near-field reflection coefficient Cremer obtains

2R= f (- W)-  2) (A2)
3 (,+a') + 2(l+p 2 )

1 B 2 k2where m1B1 and =k

2. Impeding Masses

If m, 0, K denote the mass, rotatory inertia and the.radius of

gyration of the added mass, and m, k the surface mass and bending

wave number of the beam, the reflection coefficients are givei by

(see Cremer-/)

• For sketches of the geometries see Fig. 8.

-34-
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2 2 (A3)rL =E ( + 2 3)_i ( 4+ ,_ 3_ 2p1' )

and

R 2 323 2 (A)(P W3-1( 2 3i - IE ) .(

m

Here the Abbreviations E m K and P =-0 k are introduced.
mo  m

For frequencies more than ohe octave above the "Sperrfrequenz" which

is given by kK = I the above equations can be approximately written as

l lr12 =  2m) 2 R =-(1-i) (AM)
m 0k

3. Corners and Other Junctions

I a) Vibrations in the Plane Formed by the Beams.

This case was investigated by Cremer5J taking into consideration the

I excitation of longitudinal waves. The corresponding formulas can be

found in Cremer's paper. For many practical cases, however, it is not

necessary to use these rather complicated formulas, since the errors

are not too great in the region where the simple bending wave theory

is valid [see Eq. (I-1)]. Therefore, for most cases the approximate

formulas

r +ia Rq 1-i (A6)1 +--q 1+ =- q (6

are sufficient.

i -35-
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I Here q is given by the bending stiffness.B and the wave number k

of the primary beam and the same'quantities Bv and k of the

adjbined beams

*~ B .. . (AV)
v=lL

b. Vibrations Perpendicular to the Plane Formedby the Beams

If this case is treated accurately,.the excitation of tu..sional

waves must be considered.- This leads to the rather complicated

L expressions given ifiRef. 11. If the excitation of torsional waves

is neglected the reflection coefficients are-

-r (A8)"

= +q

! and

R i-I (A9)R = q1+q

The quantity q is given by Eq. (A7) but since the bending stiffness

is in general different along different axes the numerical value of

q might be very different.

Equations (A8) and (A9) are not very good approximations, and are
especially poor at low frequencies. They can serve *only as very

rough estimates.

4. Terminations

U For clamped ends: r = -i; R -(l-i) AIO)

For simply supported ends: r = -1; R = 0 . (All)

1. For free ends: r = -i; R =1-i (A12)

-36-
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If it is possible to describe the termination by a force impedance

Z. and a moment impedance = Zm , the reflection coefficients

are given by

and r - (lil+rv)-2( Tiv) (A13)

L[ and

R-21 (1-rv), (A14)L R = .(1-i)(I+i-v)-2(-r-iv) (l)

where v = - i-Z M and r = B Z- ZF

The reflection coefficients for free, clamped and supported 
beams

can easily be verified from these equations. Also, the case of a

beam attached to a plate'or to a large mass-Is included in Eq. (A13)

and (AI4). It should be mentioned that Irl is always unity whefa v

and r are reali.e., when ZF and ZM are purely imaginary.

i

L

L
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APPENDIX B

IMPEDANCE OF BEAMS WITH REFLECTING DEVICES

A model of a beam with two reflecting devices is shown in Fig. le.

I To derive the -velocity at the driving point we issume that L and I

are at least larger than half a bending wavelength; this implies

that the near fields excited at the discontinuities can be ne-

Ig.lected.

The velocity at the driving point x =.O can be calculated by noting

that the primary waves excited at x = 0 propagate to x = 2 or

" x = -L. At these points they are partially reflected and propagate*

*in the opposite direction until they encounter the next disconti-

I nuity where they are reflected once more, etc. The addition of all

these partial waves gives the actual velocity.

I The velocity of the primary waves is given by Cremer/'as

I F (ei k  -ie - k x ) for x > 0

and (Bl)

II v (e+ikx -iek) fo.r.x 0

I If we first consider the v+ wave only, we find (neglecting near fields)

that after the first reflection the wave has ,.tb form

F e-ik(29-x) (B2)
V RI =f ir 2  (

I (r = reflection coefficient at x =

-38-
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[ If the wave described by Eq. (B2) hits the discontinuity at x =-L,

another reflected 1.ave is generated, namely

_ F -ik(21+2L+x) (3VR2 =-C e -(B3)

The next reflections at x = I and x = -L give

• [ .F -ik(21-x)-ik+)
v R3 Tcm r Ler r e*1kL1 (B4)
VR3 = rL e r.2i eA

i_ ahd

I~. v Frr e. -ik(2i+2L+x) -2ik(L+.)SVR 4" = --. r Ir L e r Lr i e-2kLA (B5)

and so on. It can be seen immediately that the summation of all of

the reflections forms a geometrical series .in-rLrA e2ik(L+A). The

summation therefore can be carried out easify, *and if we do this fbr

v and v we obtain

l-i+r L e2kL e- 2ik+(l+i)rrL e-2ik(+L)

Vo = - (+L(B6)
= _l-r r L eikAL
* AL

t (v° = velocity at x = 0).

-
L
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APPENDIX C

FORCE IMPEDANCE OF A FINITE PLATE BEAM SYSTEM

IThe input impedance of an infinite bar which is attached over its
entire length to an infinite plate was derived by LambL2/ . An

extension of this problem will be treated, namely, the force im-

pedance of a finite beam attached to a plate. The geometry of

the system can be seen in Fig. 6b. To simplify the calculations

it is assumed that the plate and the beam are simply supported
*. at the lines y = 0 and y = 2, i.e., the velocities and the mo-

ments at these lines are'..zero.

We assume the plate and the beam to be thin, so that the vibra-

tions of the pldte are given by

AAv -k 4v = 0 (Cl)

and the vibrations of the beh fi by

dVB 4 i(

dy7- k B P

In these and the following equations the subscript B corresponds to

the beam andP to the plate: A is the Laplacian operator, kB , kp

the bending wave numbers, B the bending stiffness of the beam, and

D the bending rigidity of the plate.* pB is the pressure acting on
I

S* See note on p. 22.

-40-
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Lthe beam and consists of two parts, the exciting pressure PBE given

by a point force F applied at a point yo, and a pressure PBR which

.[includes the backward reaction from the plate.

Because of the simple boundary conditions, the veloc.ity of the
beam can be expressed as

v B Z Bn sI___
VB= v ~n (c3)

n=1

* To'find the unknown coefficients vBn;.-we must know the pressures

pB and PBR. To this end we expand the velocity of the plate in a

* series similar to Eq. (C3). (This can be done because of the
similarity of the boundary conditions.) We write

1.

p fn(X) n (C4)
. n=l .

The functions fn(x) describe the propagation otf bending waves into

the plate. They can be found by inserting Eq: (C4) into Eq. (Cl)

• "giving

d- fn(.) -2 n 2n (X)+ ( 4  k4] fn(X) = 0 (c5)'7 n2 x2  n"..

This equation can easily be solved by introducing the exponential

function. Thus we get

-41-
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fX) = v e eax+vpn+e pn+ (6)

n Pn- vPn-n+V

where

22 2 22
2 niT2+ 72 +and k+ (C7)

For our model we must consider that no waves can come from infinity.

I Therefore, we have two different solutions for x < 0, and x > 0.

.00

= ( p x+vn X sin --T y for x > 0VP+ V pn+ e ne

I .n=l

and (c8)

L 00

vP= vpeipx+vt eax )sin fl.r y for x < 0 .
- n=l

Because of the symmetry of the problem we can put VPn+ = Pn-.
and v'n+ = V1n_ Furthermore, it is sufficient to consider one

Lof the 'equations (C8) and to double the reacting pressure obtained
in this way.

The coefficients vpn+ and vn can be expressed in terms of VBn
Pn+ Pn+ n

- - . by using the following boundary conditions.

vB vp+; .or vBn =vPn+ for x= (09)

--it
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and

Vp+(c)Lv-P+ 0 for x 0 
(el0)

The first of these equatibns expresses the fact that the velocity

of the beam and the plate must be equal at the line x = 0. The

Lsecond equation means that the angular velocity at x = 0 must be

zero, because there are no bending moments in the x direction.L
Equation (C10), together with Eq. (08) and Eq. (09), gives

_VB"I VBni (o2+ipa) (Cil)

Pn+2
P

and

VBn (p 2 -ipa) (C12)
-IPn+ -2k2

P

Now we are able to express the pressure PBR in terms of vBn. The

pressure is given by

2D (V+013)
PBR iw I = 0

Equations (08), (cll), (012), and (013) yield, after some algebra,

_ 2D V(p 2 a ipa 2 ) snr 014)
PBR -" L-- sin -y

n=l

S-43-
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L Now we can expand the exciting pressure PBE in the same series by

writing

PBE PBEn sin - y (C15)I n=1

[ where PBEn can easily be computed in the special case.of a point

force

PBE = F6(y-yo) (C16)

which has the Fourier coefficients

- nryo2 2

PBEn F sin r 2C17)

By inserting Eqs. (013), (c14), (015), and (C17) in*Eq. (C2) we

get

[ ( i 4 2 iw cy01°cpvn - F s in n2Y B _iP l~2 ) 2 C8

This expression gives us the quantities VBn. We get finally

n7ry0
2i sin --r-sin -y (19)

--kn-2i+ -_a7

I.

-44-L
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[ This equation is very similar to that derived by LambJ/; the main

difference is that a sum instead of an integral is obtained for

the finite case.

To obtain some further information from Eq. (C19) let us investi-

gate two special cases:. first, the case'of a very light and

flexible beam on a stiff plate; second, the case of a very stiff

[beam attached on a rather flexible plate;
LCase A

In this case, especially when there is no beam, i.e., B = 0, wea
get, for the velocity at the driving point

v + Z sin 2  - 1 . (C20)
BO 2k 2 D T k2 1 2_n2 22 k2 L2 + n 2 '

p n=1 P P

Equation (C20) is identical with Eq. (111-9), as expected.

Case B

V In this case, which occurs very often in practice (e.g., when a

thin plate is stiffened by a stringer), it is reasonable to compare

I the vibrations of the beam-plate system with the vibrations of a

damped beam.

In the case of a point-driven damped beam we insert the complex

I. value .

24V k (li~ (021)

-45 -
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! I in Eq. (C2).. The vibrations can be calculated as shown above.

The only difference is that there is no reacting pressure PBR"

'I - Thus we get for the velocity of a point-driven damped beam

- 2iaF n---" sin (22)

To compare this equation with Eq. (C19) we take into consideration -

that for D << Bkp the value of the sum in Eq. (C19) is mainly

determined by the behavior pf the denominator in the vicinity of

nr. = kB . Therefore, we make no great error if we put n r/1 = kB

in the last term of the denominator of Eq. (C19). So we get

IF sin - sin fl2y21 F I(C23)

~If we compare this result with Eq. (022), we see that the coupling

of a flexible plate to a stiff beam has approximately the sameh effect as dmping the beam with a loss factor

L BT_4 _ 4

B 21 2(024)

~and changing the bending wave number because of an "additional mass"

of magnitude

K -46-
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2,~- (C25)

These two equations can be simplified a little more if we set
4 4I k~ k , which 1s at least correct if beam and plate are made

out of the same material. Hence

km. P AB (C26)*P jm P~ ..

*-47
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(a) eq. (11, 4) (b) eq. (1, 5)-

1F F

X .~ *.O n. X=

*(c) e .(11,6) (d) eq: (]1, )

F
I rL - ~ NOTE:

n TO FIND THE MOMENT IMPEDANCE
'I USE THE CORRESPONDING
X=-L X=IEQUATION FOR FORCE IMPEDANCE
IAND REPLACE cm BY cm/k 2

(e) eq. (]a,I10AND I I)- AND r BY -r. -

FIG.i LIST OF BEAM IMPED4NCE (BENDING)
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F

)<0

I. (b) eq. (1[, 2-6)

* L

F -

x=O' .

* (c) eq. (]1, 27)

*X=-L X-0 =

(d) eq. (]a, 29)

FIG. 2 LIST OF BEAM IMPEDANCES (LONGITUDINAL)
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:1
Sh

(a) CORRUGATED PLATE

-y

- (b) P'LATE WITH RIB-S

BEAMS OF STIFFNESS B2 AND'D 2

I-1 I i BEAMS OF-STIFFNESS
~ ~i LB, A ND D,

IIII-1 H F_ IF_/' --]

(c) GRILLS

SI

FIG. 3 DIMENSIONS- OF ORTHOTROPIC PLATES

(IMPEDANCES eq. 1h,4-JIE,7)

I



REPORT NO.774 BOLT BERANEK &k NEWMAN INC
0

'oo

0

0

0z

00a

0 L

0-ce

0 ' 0(10
(DI-0

- LL/

0I f~Z W {~18Z}
*~1~~JAT 8

IL 0I



I REPORT NO-774 BOLT BERANEK a NEWMAN INC

0

00

.1z a
0 CZ

0

0 -

do". L).

0 Z

0d -



REPORT NO.774 BOLT BERANEK & NEWMAN INC

h BEAMPLTIi

(a) INFINITE CASE: IMPEDANCE,SEE SECTION IAI
IY=O Y=.9

PLATE

xL

Y
X , fX

/ BEAM x=O

/EXCITATION
POINT

j CROSS-SECTION, SEE UPPER SKETCH

(b) FINITE SYSTEM

FIG.6 SKETCH OF BEAM PLATE SYSTEM

I.
I
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2

L /jo-I
i0-1 0o

6 a a

Lh
I _lh

ar

4aLATE

* j FIG.? QUANTITIES FOR THE. CALCULATION OF THE
£ THIN PLATE MOMENT IMPEDANCE
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F F

me
m ; B , k m m2 Bp; k 2  )

in; BI; k m;k U m;kI
eq. (Al AND A2) eq. (A3-A5)

I B k; , kB, *k

'F FORCE ACTINGFPERPENDICULAR
S.1TO PLANE

B;k B B;k

eq. (A6) eq. (A8) AND (A9)
I

B3 ; k3  B3 ; k3

L F

jF / ,,,eq. (AIO)

FA eq. (A11) Z F;Z M u

I eq.(12) eq. (A13) AND (A14)

FIG. 8 LIST OF REFLECTION COEFFICIENTS
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