NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
A PREDTECTION DIVERSITY COMBINER

R. A. Parkhurst

30 March 1961

DIAMOND ORDNANCE FUZE LABORATORIES
ORDNANCE CORPS • DEPARTMENT OF THE ARMY
WASHINGTON 25, D. C.
A PREDETECTION DIVERSITY COMBINER

R. A. Parkhurst

FOR THE COMMANDER:
Approved by

R. D. Hatcher
Chief, Laboratory 500

Qualified requesters may obtain copies of this report from ASTIA.
ABSTRACT

A two channel, predetection diversity combiner is described. The combiner uses two commercial telemetry receivers as a basis; the necessary subcircuits were constructed to (1) combine the expected signal from two antennas to improve the signal-to-noise ratio and (2) measure the relative phase of the signals at the two antennas.

Photographs demonstrate the improved signal-to-noise ratio of the system.

1. INTRODUCTION

Diversity combining is the process of using two or more signals of identical intelligence received from two or more sources to produce a more reliable signal containing the desired intelligence. One combination method is the use of two receiving systems to receive two different carriers with identical modulation and combine the detected outputs of two receivers. Such a system is termed a post-detection frequency diversity system.

Similarly, diversity may be accomplished by receiving a single transmitted signal through two antenna systems and separate receivers, the antennas being at different locations. Since the same carrier is to be received by both receivers, it is possible to combine the signals in the receivers before detection. This type of system is called a predetection space diversity combiner.

Other methods encompass time diversity, signal selection diversity, and polarization diversity. In all cases a statistical improvement in signal-to-noise ratio is obtained. Thus, the goal of combining is to assure that, should one signal channel fail due to fading or other reasons, the other will still provide the signal.

Diversity differs from redundancy in the following manner: An AM dual-channel pre- or post-detection combiner system with a unity signal-to-noise ratio in both channels can provide up to 3 db improvement in signal-to-noise ratio over the signal in either channel. This increase depends upon the system used and is due to the signals in each channel being coherent, whereas the noise in the individual channels is uncorrelated.

A thorough discussion of diversity is not attempted here since numerous articles are available in the literature. One comprehensive article is Linear Diversity Combining Techniques by D. G. Brenan, IRE Proceedings, June 1959.

2. DESCRIPTION OF COMBINER

A dual-channel diversity combiner was constructed based primarily on two dual IF telemetry receivers. The receiving system contained two
antennas, space and polarization diversified, two dual IF receivers, three FM detectors and the combining circuitry.

The overall system was designed to serve two purposes; first, the relative phase between the signals in the two antennas was to be measured. This phase was expected to change at rates up to 30 rad/sec. Secondly, the signals from the two antennas were to be combined as a space diversity receiving system. This paradoxical situation was resolved by using both of the IF amplifiers in each receiver and some additional circuitry to mix the LO of one receiver with the signal in the other.

A block diagram of the overall system is shown in figure 1. The first LO's of each receiver were tied together so that the two 30-Mc IF's obtained from the same carrier entering each antenna would be identical. One common LO could have been used, but should it have failed, the whole system would have been inoperative.

In receiver 2 the 30-Mc signal is converted to 5 Mc by the second LO. This signal is amplified by IF amplifier 2a and fed to one input of a phase comparator.

The 30 Mc of receiver 1 is converted to 5 Mc by its second LO. The frequency of this LO is voltage controllable, however, and is maintained at the proper frequency necessary to keep the 5-Mc IF in amplifier 2a identical with the 5 Mc in amplifier 2a. The two 5-Mc signals are phase locked by the phase comparator, in which the 5 Mc from IF strip 2a is compared with the 5 Mc from IF strip 1a. Any error voltage generated due to phase differences is used to control the LO of receiver 1.

Thus the two 5-Mc signals are phase coherent. The phase detector maintains an inherent 90° shift between the two signals, so the function of the adder is to shift one signal +45° and the other -45°, thereby placing them in phase addition. The two signals are then added in a common plate load in the first limiter stage of a conventional limiter-discriminator detector.

AGC voltage developed by the detector is fed to both 30-Mc IF amplifiers and the 5-Mc amplifiers used for the combiner. This assures that, should the signal fade in one channel, the AGC generated by the signal from the other channel will suppress the gain of the low signal channel and thereby hold down the noise fed to the combiner from that channel.

The two 30-Mc IF signals (one in each receiver) will differ in phase due to the relative location of the transmitter to the two antennas. Also, in the case of a spinning transmitter, the polarization of the antennas, one RH and one LH, causes a frequency difference in the two receivers equal to the spin rate of the transmitter.

\[\text{Double Sideband Suppressed Carrier Modulator - Case OD 1205 Patent Disclosure (DOFL), J. A. Kaiser}\]
The rate at which the controlled LO must be able to correct is determined by inequalities in the phase response by the two IF amplifiers and spin acceleration of the transmitter; that is, with no modulation, if the 30-Mc signals differed by 10 cps, the controlled LO would have to be held 10 cps from the uncontrolled LO. The rate at which the spin varied from 10 cps to some other value would govern the response time required by the LO control loop. This would normally be a very slow rate -- on the order of a few cps.

As soon as frequency modulation is applied to the carrier, the 30 Mc in each receiver will deviate. As the deviation takes place, the only difference between the two signals will be due to differences in phase slopes of the two systems. The rate of phase change will be the modulation rate times the phase rate difference, which would place very high-frequency response requirements on the control system. The major limiting factor in upper frequency response is the signal delay time through the 5-Mc IF strip. This delay time actually limited the response of the control system to around 10 kc under its best operating conditions.

Figure 2 shows, from top to bottom, the response curves of channel lb, 2b, and the combined channel. As can be seen the response curves are not identical, and the signals in any two channels would experience phase anomalies when modulated.

Figure 3 shows Lissajou patterns of the phase relation between the two 5-Mc IF signals at the upper and lower limits of the IF passband. This picture was made with an unmodulated carrier tuned plus and minus 250 kc from the center frequency. Figure 4 shows a Lissajou pattern generated by (a) an unmodulated carrier and (b) a carrier deviated about ±200 kc at a 1-kc rate. As would be expected from the two ellipses at the edge of the passband (figure 3), the modulated signal causes a blur as the elliptical trace changes dimensions.

Figure 5 shows the effect of reducing the signal in each channel. The upper trace represents No. 1 signal output (see block diagram). The middle trace represents No. 2 signal output and the lower trace is the signal from the detector of the combined IF amplifiers. This picture demonstrates the ability of the system to suppress the noise generated by either channel when the signal in that channel is lost.

Figure 6 shows the ability of the combiner to "pluck a signal from the noise." Here the signals in both receivers were reduced until they became obscured by noise. The combiner, due to its extra improved signal-to-noise ratio, was able to produce a still visible signal.

In all cases the photographs were made using the modulation source as the synchronizing signal to the oscilloscope.

Returning to the block diagram, it is seen that the second LO of receiver 2 is sampled, amplified and mixed with an amplified sample of the 30-Mc IF of receiver 1. The 5 Mc in IF lb thus is a heterodyned
replica of the signal in antenna 1 and the 5 Mc in IF 2b similarly represents the signal in antenna 2. If, due to spinning, the frequencies differ in channel 1 and channel 2 by a few cps, the phase detector comparing IF's 1b and 2b will deliver an output frequency proportional to the spin rate.

In the bench set up, one receiver was fed from a signal generator through a slotted line, the other receiver was fed from the tap on the line. In this manner, the relative phase of the RF entering to the two receivers could be varied by sliding the tap along the line. As the tap was moved, the phase angle was represented by a positive or negative voltage at the phase detector, while the amplitude of the signal from the combiner detector remained constant.

If the tie between the two first local oscillators were removed, the 30-Mc IF's would differ by about 30 kc. By retuning the combiner second LO slightly, the 5-Mc IF's could be phase locked together, that is, the two second local oscillators would be locked about 30 kc apart, thus presenting two identical 5 Mc signals to the combiner phase comparator. The overall system did not work so well under these conditions as when the first LO's were tied together. Also, when operating with the first LO's unlocked, the difference frequency would be displayed in the output of the RF phase measuring detector.

Figures 7, 8, 9, and 10 are schematic diagrams of the various sub-chasses used in the diversity combiner.

The author wishes to express appreciation for the work performed by Mr. Nicholas DiSalvo in the layout and construction of the combiner subchassis.
Passband of 5 mc
IF amplifier 1b

Passband of 5 mc
IF amplifier 2b

Passband of combined 5 mc channel

Horizontal sweep is about
300 kc per division

Figure 2. Response Curves
Carrier deviated + 250 Kc from center frequency

Carrier deviated - 250 Kc from center frequency

Vertical signal is 5 Mc IF from channel 1

Horizontal signal is 5 Mc IF from channel 2

Figure 3. Phase relationship between 5 Mc IF signals of channels 1 and 2 at edges of IF passband.
Carrier unmodulated

Carrier deviated 200 Kc at 1 Kc rate

Vertical signal is 5 Mc IF from channel 1

Horizontal signal is 5 Mc IF from channel 2

Figure 4. Phase relationships between 5 Mc IF signals of channels 1 and 2.
Figure 5. Ability of combiner to retain signal output when one channel fades.
Signals in both channels reduced to below noise level—Combined output still produces signal.

Figure 6. Ability of combiner to retain signal output when both channels fade.
Figure 9. Local oscillator control chassis.
DISTRIBUTION (Continued)

Commanding General
Aberdeen Proving Ground, Maryland
Attn: BRL—Terminal Ballistics Laboratory, E. Minor
Attn: BRL—Weapons Systems Laboratory, F. E. Grubbs
Attn: Technical Library, Br. No. 3, Bldg 400, D & P Services
Attn: E. Bryant, Proj Officer – Willow Proj 1.2 (2 copies)

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
Attn: Library
Attn: Mr. M. Weinstein
Attn: Atomic Applications Library, Special Weapons Dev Div

Commanding Officer
Chemical Warfare Laboratories
Army Chemical Center, Maryland
Attn: Librarian, Tech Library (Bldg 330)
Attn: Mr. D. Riggotti, Proj Officer – Willow Proj 2.1

Commanding Officer
U.S. Army Signal Research & Development Laboratory
Fort Monmouth, New Jersey
Attn: Electronic Components Research Dept
Attn: Tech Library
Attn: SIGRA/SL-P, Lt E. T. Hunter

Commanding Officer
Ordnance Materials Research Office
Watertown Arsenal
Watertown, Mass.
Attn: Dr. L. Foster

Commanding Officer
U.S. Army, Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina

Commanding General
OTAC
Detroit Arsenal
Centerline, Michigan
Attn: Mr. C. Salter

Commanding General
White Sands Missile Range, New Mexico
Attn: ORDDW-BS-OM, G. Elder

Ernest O. Lawrence Radiation Laboratory
Livermore, California
Attn: Library
DISTRIBUTION (Continued)

Commanding General
Ordnance Special Weapons-Ammunition Command
Dover, New Jersey

U.S. Continental Army Command
Liaison Group
The Pentagon (Rm 3E366)
Washington 25, D. C.

Commandant
U.S. Army Artillery & Guided Missile School
Fort Sill, Oklahoma
Attn: Combat Development Dept

Commandant
Command & General Staff College
Fort Leavenworth, Kansas
Attn: Archives

The Surgeon General
U.S. Army
Washington 25, D. C.
Attn: Special Ass' t for Nuclear Energy
Attn: Research & Development Div

Department of the Navy
Washington 25, D. C.
Attn: Chief, Office of Naval Research (Bldg T-3)

Commander
U.S. Naval Ordnance Laboratory
Corona, California
Attn: Documents Librarian

Commander
U.S. Naval Ordnance Laboratory
White Oak, Silver Spring 19, Maryland
Attn: Tech Library

Department of the Navy
Bureau of Naval Weapons
Washington 25, D. C.
Attn: DLI-3, Tech Library

Commander
Naval Research Laboratory
Washington 25, D. C.
Attn: Tech Library

Los Alamos Scientific Laboratory
Los Alamos, New Mexico
Attn: R. Watt/J-16
DISTRIBUTION (Continued)

Department of the Air Force
Deputy Chief of Staff for Development
The Pentagon, Washington 25, D. C.
 Attn: Director of Research & Development

Commander
Air Research & Development Command
Andrews Air Force Base
Washington 35, D. C.

Air Force Cambridge Research Center
Bedford, Mass.
 Attn: R. Roberts

Commander
Air Force Special Weapons Center
Kirtland Air Force Base, New Mexico
 Attn: Code ENVSE, L Stewart
 Attn: Lt. Col. F. Grose
 Attn: Capt. J. O'Brien, Proj Officer, Willow Proj 8.1 (2 copies)

Commander
Wright Air Development Division
Wright-Patterson Air Force Base, Ohio
 Attn: Lt. Col. V. Bryson
 Attn: Mr. K. Collier, Proj Officer, Willow Proj 8.3 (2 copies)

Commander
Air Force Ballistic Missile Div (AFMC)
P.O. Box 282
Inglewood, California
 Attn: WDSOT (4 copies)

Commander
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia
 Attn: TIPDR (10 copies)

National Bureau of Standards
Washington 25, D. C.
 Attn: Library

U.S. Atomic Energy Commission
Washington 25, D. C.
 Attn: Tech Reports Library

U.S. Atomic Energy Commission
Germantown, Maryland
 Attn: Div of Military Applications (DMA)
DISTRIBUTION (Continued)

Chief, Defense Atomic Support Agency
Washington 25, D. C.
 Attn: DASRA
 Attn: DASATP
 Attn: DASAG/Library (2 copies)

Commander, Field Command
Defense Atomic Support Agency
Sandia Base,
Albuquerque, New Mexico
 Attn: FCWT
 Attn: FCDR

Director, Advanced Research Projects Agency,
Washington 25, D. C.
 Attn: Chief, Tech Operations Div

Sandia Corporation
Sandia Base
Albuquerque, New Mexico
 Attn: Dr. T. Cook
 Attn: Dr. J. Easley
 Attn: Dr. W. Snyder

Bell Telephone Laboratories
Whippany, New Jersey
 Attn: Mr. S. C. Rogers

Boeing Airplane Company
Seattle, Washington
 Dr. B. Hicks

Bulova Research & Development Laboratories
Bulova Park
Flushing, Long Island, New York 70
 Attn: O. Brockmyer

CONVAIR
Division of General Dynamics Corporation
San Diego 12, California
 Attn: Radiation Systems Section; R. E. Honer/J. Kluck

General Atomic Division General Dynamics
John Jay Hopkins Laboratory for Pure & Applied Science
San Diego 12, California
 Attn: V. A. J. van Lint

Ministry of Supply Staff
British Joint Services Mission
3100 Massachusetts Avenue, N. W.
Washington 8, D. C.
 Attn: Reports Officer (2 copies)
 Thru: Office, Chief of Ordnance, The Pentagon
 Attn: ORDTN
DISTRIBUTION (Continued)

General Electric Corporation
Electronics Laboratory
Syracuse, New York
Attn: Mr. J. Sinisgalli

Hughes Aircraft Company
Research Laboratory
Culver City, California
Attn: T. D. Hanscom

International Business Machines Corporation
Oswego, New York
Attn: R. Bohan

Radiation Effects Information Center
Battelle Memorial Institute
Columbus, Ohio

Senior Army Rocket & Guided Missile Agency Representative

Bell Telephone Laboratories
Whippany, New Jersey

ORTISE
Box 62, Oak Ridge, Tenn

Director, Office Special Weapons Development,
USCONARC, Fort Bliss, Texas

Infernal

Hinman, W. S. Jr./McEvoy, R. W.
Apstein, M./Gerwin, H. L./Guarino, P. A./Kalmus, H. P.
Fong, L. B. C./Schwenk, C. C.
Hardin, C. D., Lab 100
Horton, B. M., Lab 200
Rotman, L., Lab 300
Landis, P. E./Tencinardi, T. E., Lab 400
Hatcher, R. D., Lab 500
Flyer, I. N., Lab 600
Campagna, J. H./Apolenlis, C. J., Div 700
DeMasi, R., Div 800
Franklin, P. J./Horsey, E. F., Lab 900
Seaton, J. V., 260
DOFL Library (5 copies)
Technical reports - 800 (3 copies)
Technical library office, 010 (10 copies)

(Two pages of abstract cards follow.)
A PREDICTION DIVERSITY COMBINER -- R. A. Parkhurst

TR-226, 30 March 1961, 4 pp text, 10 pp illustrations,
Department of the Army Proj 5996-09-003, OMS No. 5010.21.83006,
DOFL Proj 24250, UNCLASSIFIED Report

A two channel, prediction diversity combiner is described. The combiner uses two commercial telemetry receivers as a basis; the necessary subchasses were constructed to (1) combine the expected signal from two antennas to improve the signal-to-noise ratio and (2) measure the relative phase of the signals at the two antennas.

Photographs demonstrate the improved signal-to-noise ratio of the system.
A PREDETECTION DIVERSITY COMBINER -- R. A. Parkhurst

TR-926, 30 March 1961, 4 pp text, 10 pp illustrations
Department of the Army Proj 5906-09-003, OMS No. 5010.21.3008,
DOFL Proj 24230, UNCLASSIFIED Report

A two channel, predetection diversity combiner is described. The
combiner uses two commercial telemetry receivers as a basis;
the necessary subchasses were constructed to (1) combine the
expected signal from two antennas to improve the signal-to-noise
ratio and (2) measure the relative phase of the signals at the
two antennas.

Photographs demonstrate the improved signal-to-noise ratio of
the system.