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On the Conduction of Heat in a Melting Slab 

by 

Stephen J. Citron* 

Purdue University 

Abstract: A new method for the solution of the problem of heat conduction 

in a melting slab, where the molten material is immediately removed upon 

formation, is presented. No restrictions are placed on the boundary con- 

ditions which may be imposed on the slab and the material properties are 

allowed to be temperature dependent. The problem of determining the tem- 

perature distribution in the slab and the amount of material melted is re- 

duced to finding the solution of an ordinary differential equation on the amount 

of material melted. This reduction from a partial differential equation prob- 

lem is accomplished by determining a Taylor's series expansion in space for 

the temperature distribution. The equation so obtained for the determination 

of the amount of material melted is of a form readily solved numerically. 

Comparisons with known results for a slab insulated on one face and subjected 

to a constant heat input on the other face are given. 

^Assistant Professor of Aeronautical and Engineering Sciences. This paper 
was written while the author was on leave at the Institute of Flight Sciences, 
Columbia University. 



INTRODUCTION 

Problems involving free (moving) boundaries are of great current 

interest in heat conduction.  However, due to the difficulties caused 

by the non-linearity of the problem when the motion of the boundary is 

unknown analytical solutions in general cannot be found.  Work done by 

Landau    , Dewey, Schlesinger, Sashkin,   and Lotkin    among others 

all utilize high speed computers for the solution of the partial 

differential equations involved.  Because of the inherent complexity 

of obtaining numerical solutions to the non-linear partial differential 

equations it is of interest to consider if the problem can be further 

reduced before any numerical work is begun. 

Ik) 
Recently Boley    developed a method in which the problem is 

reformulated so as to require the solution of two ordinary integro- 

differential equations.  By expanding the equations in powers of the 

time after melting starts, an exact analytical solution is obtained 

which is particularly useful for small times.  The author y    devised 

a method of successive approximations by means of which a solution may be 

obtained by solving an ordinary differential equation on the amount of 

material melted. 

The purpose of the present work is to present a new method of 

reducing the problem of determining the temperature distribution and 

the amount of material melted to one requiring the solution of an ordinary 

differential equation.  It differs from the method of reference    in 

that it eliminates the need for the successive approximation procedure 



used there.  The main feature of the present method is the expansion 

in space' of the temperature distribution in a Taylor series.  The one 

boundary condition on the temperature which is not identically satisfied 

by the expansion yields an ordinary differential equation for the 

determination of the amount of material melted.  The initial conditions 

for this new equation are found by using the initial temperature dis- 

tribution or an analytical starting solution as will be discussed later. 

Once this equation has been solved (and hence the amount of material 
« 

nelted as a function of time is known) the temperature distribution at 

any time can be immediately calculated. 

A comparison of solutions obtained by this method with certain 

known results for a slab insulated on one face and subjected to a 

constant heat input on the other are given.  The example used to demonstrate 

the method was chosen as it is an important limiting case encountered 

in ablation problems.  In addition, this problem has been studied by 

others using techniques more complex than the method to be presented. 

The problem thus furnishes, by comparison, an illustration of the 

simplicity of the method developed here. 

PROBLEM FORMULATION 

Consider the slab shown in Fig. (l) with temperature-dependent 

thermal properties subjected to an arbitrary heat input Q(t) on one face. 

No restrictions are placed on the boundary conditions which may be 

prescribed on the other face of the slab.  Once melting occurs at the 

heated side the problem to be solved requires the determination of the 

temperature distribution T(x,t) in the slab and the amount of material 

melted as a function of time s(t).  The molten material is taken to be 

immediately removed upon formation. 
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For the determination of T(x,t) and s(t) the solution of the 

heHt conduction equation 

ä   S-Äm^T "I   =   oCn^T     sc*\*x<^       (1) 

must be found subject to two initial condition and three boundary 

conditions 

^ Tcs,*^ - T* 

c^ QOrt = --%(T*) VT(s^ + ^\_s      (2) 

^>x 
^ &CT, 3T,..^ - « c*<> 

"a x 

The first condition gives the temperature distribution at the start 

of melting t = t*.  Condition b) requires that the melting face be main- 

tained at the melting temperature T* while condition c) specifies the 

division of the incident heat flux between the part entering the solid 

and the part going toward overcoming the latent heat of melting L .  The 

function G(T, «FT/ >•••) in condition d) represents an arbitrary boundary 

condition on the temperature at the face x = 1.  Condition e) is an initial 

condition on the amount of material melted. 

Before proceeding with the general solution it is convenient to fix 

the moving boundary and put Eq. (l) and Eq. (2) in non-dimensional form. 

in 
We first define new non-dimensional/dependent variables 

* The condition of radiation incident on the melting boundary may be 
expressed in the same form as condition c) in Eq. (2). 
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(3) 

The slab is now of fixed unit length whileT measures the non-dimensional 

time after melting has begun. The following dimensionless quantities are 

also introduced* 

äTV set) 
i 

Eq. (1) then becomes 

Q(V>- Qjrf) 

* <T*> OO 

3 CÄ301   =c$23£ +K<S\^      0<V* 
(5) 

under the conditions corresponding to those of Eq. (2) given below 

00 

(6) 

It may also be noted from Eq. (uc) that continuity of  ^fl/jV« 

it T = o requires that S = o for M *" ctf 

The quantity Q  is a reference value of the heat imput. 
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PROBLEM SOLUTION 

The method of solution depends on the assumption that it is possible 

to express the temperature distribution in the slab in a power series 

expansion in space about the melting face z = 1.  This assumption is to 

be checked a posteriori by verifying that all equations and conditions are 

satisfied by a convergent series or, lacking that, that the expansion 

formally satisfies all differential equations and conditions and in addition 

checks some known results. 

The Taylor series expansion of the temperature is given formally by 

(7) 

where the coefficients of the powers of (z - 1) must be determined.  These 

coefficients are found by utilizing the boundary conditions at z ■> 1 and 

the differential equation governing the problem Eq. (5).  From Eq.  (6 b,c) 

we have 

^\ v   2 W 
(8) 

The higher order coefficients are then obtained by using these expressions with 

Eq. (5).  For this purpose we rewrite Eq. (5) in the form 

(9) 
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Thus the second derivative of Q    with respect to z, 

evaluated at 2 = 1, is given in terms of the first derivative of 

£) with respect to z and of the value of 0    at z = 1, both known 

quantities from Eq. (8).  In a similar manner all higher derivatives 

of 0   may be found from Eq. (9) by successively differentiating both 

sides.  The n'th derivative of O     with respect to z will be a function 

of the n - 1 preceeding derivatives which will have already been 

evaluated.  As examples the third and fourth differential coefficients 

are given below.* 

£ (10) 

The term  ^  ^^(t,T^       occurring in the expression for 

^2.S   (y -y^    "    above is found by differentiating Eq. (6c) with 
-*$*      * 

respect to T. 

*  It has been assumed that it is possible to interchange the order of T 

and z differentiations.  Note also that^(l,r) = 1 from its definition. 
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Once the coefficients of the expansion have been obtained, 

substitution of Eq. (7) into Eq. (6d) [the only boundary condition 

which has not been identically satisfied by the expansion] yields 

an ordinary differential equation for the determination of 5 (T). 

If, for example, the slab were insulated at z ■ o then Eq. (6d) 

becomes "öö (O,T) ■ o and substitution of Eq. (7) into this relation 

yields the equation 

for the determination of %  (T). 

Note that the first term is the expansion of Q (Z,T) is a 

constant, the second and third terms contain JS> (T) and S (x), the 

fourth and fifth terms contain 5 (T), i> (T) and M   (T).  In general 

the In  and in  + 1 terms of the expansion will contain S(T) and its 

first n derivatives.  It may also be seen from the expansion that the 

highest derivative of 8  (T ) occurring always appears in a linear manner. 

INITIAL CONDITIONS 

In practice the series for the temperature will be terminated 

after a finite number of terms, say }n or in + 1. The n'th order 

differential equation on JS (T) resulting from satisfying Eq. (6d) then 

requires n initial conditions of which only two are already known, 

namely £ (o) = JS  (o) ■ o. Two ways are now suggested of determining 

the additional initial conditions required to start the solution. The 

two methods given here will later be compared through examples. 
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1) If an analytical solution for S (T) is known in the 

neighborhood of T = o then & (x) and the first n - 1 derivatives 

of S  (T) may be calculated at some time it  within the range of 

.m-» 

Ü2) 

validity of the solution.  The values of  fftt^ "ö^CO,-• • «)  ,&'CT,^ 

thus calculated are used as initial conditions for starting the 

numerical solution of Eq. (6d) at x ■ T. •  The solution proceeds 

by substituting these values into Eq. (6d) from which a value of 

^—5(*0   ls caicuiated>  Having a value of  '^!L^
T, 

the values of S(T2), "^_i> (T2), . . . ^ n   ,5 (T2) where 

^r        "3«rm", 

T9 = T, +  ^ T are determined from 

The process is then repeated so as to cover the time interval of interest. 

It should be noted that the initial condition on the temperature Eq. (6a) 

is automatically satisfied by using the exact starting solution. 

A method of obtaining the analytical starting solution required 

Ik] by the above procedure has been given by Boley     who explicitly gives 

as an example the starting solution for the case of a semi-infinite solid 

of constant thermal properties under constant heat flux at the melting 

boundary.  The analogous formula for the slab obtained by the method of 



-9- 

reference [k]   is later given in the present paper for use as a starting 

solution in the examples which follow.  Boley's method, presented here 

in brief for completeness, consists in dealing mathematically with a 

fictitious solid of constant dimensions under an equivalent unknown 

heat input.  This results in two ordinary integro-differential equations 

for i8> (T) and the fictitious heat input which must be solved simul- 

taneously.  By expanding these quantities about T ■ o in the proper 

manner it is possible to determine an analytical solution valid about 

T ■ o. 

2) When the thermal properties of the slab are variable it 

may prove difficult to determine an analytical starting solution,for 

the period after melting has begun,as described above. We therefore 

require a different method of determining values of &, %&  . ••* *» .ö 

at T ■ o to start the numerical solution of Eq. (6d) and we do this 

by satisfying the one remaining condition, the initial condition on 

the temperature Eq. (6a), in an approximate manner.  If, for example, 

2n or 2n + 1 terms are retained in the expansion of & given by Eq. (7) 

then there are n initial conditions to be determined, namely the values 

of   JS l©^ %   "•_£ te\ %    • * • •  w   £<»^  .  we have already shown, 

however, that £  (0) = £ (0) <* o which leaves n - 2 initial values to 

be found   ^Sl»> ^ V* £*<«■> > y" &i*\     .  These n - 2 
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values are used to match the Initial temperature distribution at n - 2 

points therefore approximately satisfying the only remaining condition.* 

The numerical integration can now proceed exactly as given under  method 

1 above. 

EXAMPLE 

The general method of solution given above and the two methods 

of starting the solution will now be illustrated by considering the 

problem of a slab of constant thermal properties insulated at x = 1 

and subjected to a constant heat flux Q on the other side.  The accuracy 

of the results will be demonstrated by comparison with the conditions 

which are known exactly for the problem .   *   'l   These conditions 

are; 

1 ) the total time for complete melting   given by 

JL 

,i.        7  .m-iT KA       (15) 

I 2  tt   IT* • 

2) the melting rate when s = 2;  £   a 1 

(U) 

3)  the temperature distribution at the start of melting 

and the temperature distribution in the neighborhood of this time derived 

by the method of reference [k]. 

*  Note that since Eq. (6b, c,d) will be satisfied the approximate temper- 
ature distribution at T • o actually matches the exact distribution at 
n - 1 points and has in addition the correct slope at z = 1 and the 
correct condition at z  » o. 
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Th e temperature distribution at the start of melting is 

given by 

r* [    ^ JL       f  L^     x      (15) 

where 

* -- A 
Since 0  (o, ^f* ) a 1 we find for the relation between V AMA «I 

V   *   _JU       (  \ -v 2  f?/xe^t 2/w<0 (16) 

In the numerical work which follows we shall use the 

numerical values 

(17) W '- 2  x V =2 

Substitution of this value of V into Eq. (16) then yields *K  «.39 

We proceed by first giving the analytical solution for 

JS  (T) valid in the neighborhood of T = o which is derived by the 

method of reference [k] 

£(*>> *   fcoT*'2- + V>,TX ♦ W-Y Z+ • ••        (18) 
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where 

bo   -   -Ji     £   a° 

\>\   -   - J-     £>   a.» 

*°    -HmV- 

5TTV   L ' ) 
and 

a0 - -2o( \ I + 1   7 >»* ^ *">* * ü /*Ä^2mdl\(19) 

The temperature distribution derived by the same method 

of reference [^] is given by 

T* vK? C 2 *      2»^  2      2fc\ 

] 



-13- 

- T*IK7 t § */*■  *±   & 1 e ^^^ t 

jTHr-v r-v vu*    i ^A  */& (2 

The expansion for the temperature distribution in this example 

obtained by retaining the first five terms of Eq. (7) is given by 

■ 2 j 

(21) 

4 

4 ! 

Utilizing this expansion the condition that the slab be 

insulated at x = 1 (z = o) becomes 

v = ür-^iV- ts 
<22> 

6 <■ in-i" ) 
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The analytical starting solution of Eq. (18) was used to 

determine values of J^T) and S  (T) at x - .Ok,   the point chosen to 

begin the numerical Integration.  The value of S   (,0U) was then calculated from 

Eq. (22) when first four and then five terms of the temperature expansion 

were retained.  Substitution of these values into Eq. (22) retaining the 

corresponding number of terms then yields expressions for the temperature 

distribution at T a .Ok.    The temperature distributions at T ■ .ok 

calculated from Eq. (20) by retaining first four and then five terms in 

the expansion are compared in Fig. (2) with the exact temperature distri- 

bution at this time given by Eq. (20).  The figure shows the good agreement 

obtained. 

The solutions for S   (T ) calculated by numerically integrating 

Eq. (22) after T ■ .Ok  are shown in Fig. (3).  The error in the value 

of T. is only k.9%  in the four-term expansion and is reduced to 2.5% in 

the five-term expansion.  It may also be seen from Eq. (22) that the 

correct final melting rate *>,  ■  2 n   is reached in both the four 

and five-term expansions. 

It remains to illustrate the method of solution when an 

analytical starting solution is not known.  For this purpose seven terms 

were retained in the expansion for the temperature.  The expansion now 

contains terms up to £ (T) which enables the matching of one additional 
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point of the approximate temperature distribution with the exact 

distribution at  T = o as was previously discussed.  The point chosen 

was the insulated fact X » j£ (r *• o).  A comparison of the approximate 

distribution thus calculated with the exact distribution given by 

Eq. (l^) is shown in Fig. (k).    The agreement between the two temperature 

distributions is again good. 

The results of numerically integrating Eq. (22) starting at 

T = o with the additional terms retained is shown in Fig. (5).  A 

comparison is made in the figure with the solution obtained by retaining 

only five terms of the expansion and starting the numerical integration 

at T • .Ok  with the exact starting solution. 
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SYMBOLS 

x = space variable 

c > time variable 

k(f) " thermal conductivity 

c(x) m specific heat 

p m density 

Vt (y) » k/ P c,  thermal diffusivity 

L * latent heat of melting 

1 m slab length 

Q(t) = incident heat flux 

Q      m        reference value of the heat flux o 

T(x,t)  m        slab temperature distribution 

T (x)   *   slab temperature distribution when melting begins 

T      »   melting temperature 

* 
t       *   time at which melting begins 

s(t)    =   position of solid boundary after melting has begun 
(amount of material melted) 

5 =   s/1, non-dimensional form of s 

z =   1 - x  , non-dimensional space variable 
1-8 

T        -'  jkJr) (t - c*) 
i2 

T.      *   non-dimensional time after melting has begun at which 
slab is completely melted 

* 
6 m        T/T , non-dimensional temperature variable 

* * 
2M      ■   c_(T )T , ratio of heat content at melting to latent heat 

of fusion 
n L 



r                 ■ 

*% 

*Q(T) Q(T) 

% 

A   (T)      = Jk{T) 

AC?) 

C   m        = C^ 
C(T») 
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