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ABSTRACT

A theory by which pneumatic tire sinkage and
motion resistance can be calculated has been de-
veloped. The formulae based on this theory have
been verified by comparing experimental results
obtalned from tests conducted on séveral different
solls with predicted results using the equations.
The agreemeht between experimental and predicted

regsults was_acceptabley
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PROJECT TITLE: ANALYSIS OF TOWED PNEUMATIC TIRES MOVING ON
SOFT GROUND

I. BACKGROUND:
The observation that a pneumatic tire with a low infla-
tion pressure performed better in soft soll than the
same tire with a high inflation pressure is not new or
uncommen. However, until recently the underlying re-
lationships between the soil and the pneumatic tire had
not been developed to allow adequate explanations of
this phenomena or numerical predictions of sinkage, re-
sistance, drawbar pull, etc. A study of the availlable
literature reveals that numerous papers, studles, and
test results have been published covering pneumatic
tires., However, no method exists in this literature
to predict the relationships between sinkage, motion
resistance, inflation pressure and lcading of a towed
pneumatic tire in any given socil which would serve to
explain the increase in performance assoclated with a
decrease in inflation pressure. It was evident that
although attempts have been made to develop a solution
to obtain these definitions, the lack of a system or

means to define soil strength hindered these efforts,




A purely empirical approach exists in an equation in-
troduced by Omelianov (1). His equation would be suit-
able for prediction of motion resistance wlthin re-
stricted 1limits if the various parameters were known.

The equation is:

where:
R is the resistance (Kg)
W is the load (Kg)
P, is the inflation pressure (Kg/cm?)
D is the diameter (cm)
k is a soil characteristic (Kg/cm3)
c,y and c, are dimensionless factors related to the
tire.
The shortcomings of Omelianov's equation originate from
the inadegquacy of a single soll parameter in the math-

ematical description of cross-country mobility problems.

Because a theory and technique for performance evaluation
of low inflated pneumatic tires 1s necessary, the Land
Locomotion Laboratory has started a project to fill the

gap. A discussion of this development and first results

are presented in this paper.




IT.

A.

THEORETICAL APPROACH:

Sinkage

The difference in the behavior of low and high in-
flation pressure tires is dependent upon the degree
of tire deflection due to the load. A high infla-
tion pressure relative to the ground pressure re-
sults in little deflection and the tire can be
considered to operate as a rigid wheel. A tire
with a low inflation pressure relative to ground
pressure experiences 1argé deflection and an ex-
tensive change in the character of the loading
area. For this loading condition the tire must

be treated as a track rather than a wheel. The
relationship between the inflation pressure and
the ground pressure must be considered in treat-
ing the pneumatic tire since a very definite dif-
ference in treatment exlists between tires having
low and high inflation pressure relative to ground

pressure.




To determine sinkage of the pneumatic tire, we first
consider the general relationship for the sinkage of
a footing in soil. For this problem the ground con-
tact area of a wheel shown in Figure 1 is taken as

the footing.

The sum of the ground pressure under a footing 1s

equal to the load on the footing.
A

W= Pg dA

where:
W is the load on the footing (1lbs)
Pg 1s the ground pressure (psi)

A is the ground contact area (sq. in.)

The ground pressure may be expressed by a baslc

equation introduced by the Land Locomotion Lab-
oratory, expressing an empirical soll stress-strain

relationship for vertical displacement (2):

k
where:

k., 1s the cohesive modulus of sinkage [ b ) ]
in,

m
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FIGURE 1. GROUND CONTACT AREA OF A WHEEL

FIGURE 2. TIRE WITH HIGH INFLATION PRESSURE

FIGURE 3. FLAT GROUND CONTACT AREA




-

k¢ 1s the frictional modulus of sinkage Eiuﬁi—c;ﬁsﬂ
in -

b 1s the smaller size of the footing (in.)
z 1s the sinkage of the footing (in.)

n 1is the exponent ol sinkage (dimensionless)

By combining equations 1 and 2 we obtain an expression

relating load and sinkage:

A A
W = /
(o]

“e k4)zRdA
zd
pg (2)dA = (o— + %4 3
0
It has been shown (3, 4) that in the case of a rigid wheel,

equation 3 may be tranéformed to the following form:

(2n+l
Woz © 0 By KLy VB
= B el
or <
z - 3W } an+l b
T B (g + bky) VD

where:

D is the diameter of the rigid wheel (in.)

Equation 4 may also be used for pneumatic tires of high
inflation pressure. Such a tire 1s shown in Figure 2.

It can be seen that when py >.pg max> the




tire has to be treated as a rigid wheel; where by is

the inflation pressure, (psi).

However, if the load determines a sinkage (equation 4)
'that would result in pg méx (equation 2) larger than
p,» the tire deflects and will have a flat ground

contact area if the stiffness of the carcass is neg-

lected (Figure 3).

The equilibrium of the ground contact area yields:

pi - pg max

But p, pax 18 & function of the sinkage (equation 2).

and:

N
|

- t K¢

The test results show that the carcass pressure can-
not be neglected without excessive inaccuracy. There-
fore, the experimental value of the carcass pressure

(pc) has been introduced as done by'other investigators

(5).




The sinkage equation for a low inflated tire be-

comes
py +p, |1

zo: kc 5
T tk¢

J. S, Ageikin published a simlilar equation in the

Russian magazine, Automotive Industry (6).

Resistance

The resistance to motion of a towed tire can be ap-
proximated under the following assumptions. The
bulk of the resistance 1s caused by two effects:
Compression of soll and the flexure of the soft
tire. The compaction resistance (RC) can be cal-
culated using equation 3. The work (L) spent to

compact the soil under the tire along 2 distance

can be obtained as follows:

L = [1 fOA p(z)dad /£

If z is constant along £ and the width of the rut

(b) is also invariable

ZO
L = b/?j p(z)dz
(@]




and the compaction resistance:

Substituting equation 2:
k %o_n
Rc=b(—b9+k¢)‘/o’ zdz

This yields:

(ke + bk¢)z n+1

Rc n+1 ©
If equation 5 is substituted into equation 6 the
sinkage (z) can be eliminated:
n+l
. [b(pl+ pg)] n N .

(n+1)(k, + 1::14‘1,)1/"1

The deflection resistance (Rd) is due to carcass
deflection and can be only obtalned experimentally.
It has been found that the followlng equation 1s

accurate enough for practical purposes:

_ K
R. =w £ L 8
d (py)2

where M and a are experimental factors,.




The resistance can now be approximated as:
n-+1

R=R0+Rd=l:b(pi+pc)]n _— £ 9
——— (Pi)
(n+1) (kg + blg) T

Optimum Inflation Pressure

Since the resistance 1s a function of the inflation
pressure, an optimum inflation pressure (pio) can
be found at which the resistance is minimal., Dif-
ferentliating equation 9 wlth respect to pressure

we have:

1
n+1 n
dR _b[““n J[b(pi * P ] Y

4 - it a+l
Dy (n+1) (i, + bky) n Py

when:

dR
dpi

n(a+l)=lthaF}n l?%"’ bk‘f’:] 10
b b

From which pio can be found if the other values are

(piO + pC) (piO)

known.

Critical Pressure
As stated previously, a tire is treated as a rigid
wheel or as a soft tire depending on the inflation

pressure if other conditions are fixed. Therefore,

10




a critical pressure must exist that separates the

two cases. The following considerations lead to
an equation that gives the approximate order of

this limiting pressure.

The mechanical equilibrium of the tire (Figure 4)

can be expressed by three equations:

Lo
W bﬁl(pi-+ pc) + b d//' Pydx 11
o
n+l
b(p, + ]n
H=R=|:(pi pc) +w-—f—é— 12
1 (py)
o v
(n+1) (k, + bk)
212 22
Hd - Wa + b(pi + pc) 5 ~b u//ﬂ pxxdg - Re

Some simplifications are now introduced to obtailn a

solution for equations 11, 12, and 13:

where B depends on n and equals the distance between
the center of gravity of the p = f (z) curve and the

bottom of the root (Figure 5). If n = 1 and B = 3.

11

=0 13




w
o 4
hes— 2 ——]
d
-l x , L
R * Zx  z,
c r k]
= P
Pgmax"Pi“"pc *
) ——s=tond

FIGURE 4. MECHANICAL EQUILIBRIUM OF A TOWED TIRE

T 77 LI

FIGURE 5. PRESSURE DISTRIBUTION UNDER THE TIRE

12



The integral involved in equation 11 can be solved

as follows:

25 1 4o
bd/f P, dx = b(»f3.4 k¢)‘/P Zdx = b(ﬁ_ +k )2 J( (1j§§)ndx
o )
but:
n
b(—*— + k¢) = b(py + Pe)
denoting:
= (1- X)) and, dx = - ¢ 43
vy o= ( 77) £,y

and the integration leads to:

b(py + pc)'£2 14
(n + 1)

The solution of the integral in equation 13 can be
obtained in a similar way, and yields the following

expression:
b(py + pc)f
(n + 1)(n + 2)

-

Equation 11 becomes:

W= b(py + pe) (91 + 22

13




Using equation 12 and the result of the second in-

tegral, another equation can be

obtained from equa-

tion 13:

(- n+l T 17
b . n :’/ n {
[(pi . pcﬂ W L 1 D __1 P1 * Pe !

ﬁ 1 p, 2 2 3 kg :
(n41) (k= bleg)™ i | BTkl

L n- o = bkg L

g2 2 B
+ W —'{’1 b( ) | ! L e o 1
g TPy P TR T () T >
Using the following notation:
/ N l_
g.D _ 1 [ P4t p VW 1
= - \ 3 F s ——
2 3 Ke no 1
b K
1

" n-1)(n - 2)

and substituting f& from equation 14 into eguation

15:
r .|

5(p; + o)

r

AN

L

14

— ng; b

\\

|

2

2
P / W J 16
; ~F — K .
2 \b(py + p,) “2> /2 = 0

1
1

.




N

WE 2 |F

Equation 17 is an equation of second degree 1n.ﬂ2

S0
fs = -B-VB°-_4AC 184
2A
where:
2
B=:%E-;A:-—§-K b(py+pPe) 3 C = RJ

The positive value of the square root ylelds a neg-

ative solution, which has no physical meaning.

Solving equation 14 for.l& :

£y = Lij -FL, 188
b(py + P,)
Equations 18A and 18B could be used for drawbar pull
calculations since the ground contact area 1s now
determined. Equation 18R can also serve as a basis

for computing the deflection. Irom the triangle in

Figure 6,

2 ;[ 2 s 2
BN - eV

15




FIGURE 6. GEOMETRICAL CONFIGURATION OF A DEFLECTED
TIRE

FIGURE 7. GEOMETRICAL CONFIGURATION OF A
UNDEFLECTED TIRE

16




pcrit,'

Equation 18B also shows that with higher inflation
pressure (pi) the length ,fl of the flat portion
of the ground contact area decreases, for:

=0

= : l
Py ® Poriticar’ 71

and:
_.,..L__ =]-_i‘[2 20
b
(pi+pc)

When the deflection is zero, no carcass pressure

occurs (p, = 0) and £, can be found as shown in

Figure 7T:
22 ='\/DzO - zg‘ 21

Equations 20 and 21 now yield:

W
p = 22
Tt mppz, - z,°

Since F =

1
AT ,-and z can be substituted from

equation 4, our final equation reads as follows:
(n+1)W

|
" W 2/20+1 W I /on+1\1/2
(3-n) (ke +bke gD’ (3-n) (ke +bkg)

17




ITI.

TESTS.

In order to check the validity of equations 5 and 8,
numerous experiments were performed. The test tire
was tested in three different types of soil which
were classified by the sinkage parameters of the

Land Locomotion Soil-Value System; k k¢ and n (2).

c?
The first soll was sand characterized by ko, = O,
k¢ = 7.0 and n = 0.8. The second soil was an arti-
ficial soil (7) and its soill values were k, = 21 O,
k¢ = 4.0 and n = 0.43. Finally, natural soll was
used that had the iollowing soll values: k, = 9.9,

k¢ = 13.2, and n = 0.86

A 7.00 x 16 tire with the tread stripped off to
eliminate 1ts haphazard effects, was used. The

tests were conducted in a 10 x 3 x 1 ft. soll

bin. A simple carriage (Figure 8) to permit var-
iation in wheel load was constructed and used through-
out the tests The carriage was pulled by means of

a spring scale as shown in Figure 9. Each test was

performed 1in the following manner:

18




ADVIYYVYD ILSAL '8

JdNoOIA

19




TEST CARRIAGE AND SPRING SCALE

FIGURE 9.
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The load on the tire was measured while the front

bars of the carrlage were exactly horizontal.

The dimensions of the print area were measured on
hard ground. Fine sand was poured around the
ground contact area to identify the area so that
when the tire was 1lifted the print-area was easy

to measure (Figure 10).

Next, the tire deflection (§) was obtained on hard

ground.

A large steel plate was placed on the soil horil-
zontally to approximate hard ground conditions.
The carriage was set on the plate and the front
bars were adjusted to horizontal position. Then,
the carriage was towed on the steel plate and the

motlion reslstance due to tire deflectlon recorded.

The plate and the carriage were removed, and the
soll was loosened and leveled. The helght of the
soll level was marked relative to a reference point

and the carriage was placed on the soll. The front

2l
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TIRE PRINT.

FIGURE 10,



bars were agaln adjusted, and the carriage was

pulled along the bin (Figure 10). At the end

of the run the carriage was immediately lifted.
The total motion resistance was determined by
the spring scale and the distance was measured
between the bottom of the rcot and the reference
point mentioned previously. Sinkage was deter-
mined from the difference between the soil level
to reference point and root to reference point
distances. Figure 1l shows a tire moving in

sand.

Finally, the number of weights and/or the in-
flation pressure was changed for the next run

and the procedure repeated.

IV. DISCUSSION OF TEST RESULTS:

Although several simplifying assumptions were made

for equation 5, adequate agreement between test re-

sults and theoretical predictions was found. Ex-

periments and predicted values are plotted in Fig-

ures 12 through 21. Equation 5 yielded somewhat

higher sinkage values than actual tests in sand,

23




SOFT TIRE IN SAND

FIGURE 11.
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particularly at lower loads and higher inflation pres-
sures. The agreement 1s qulte satisfactory for higher
loads. Predictions were well Justified for natural and

artificial soills.

Figures 22 through 26 are plots of tire print area on a
rigid surface as a functlon of the inflation pressure
for varicus loads. The carcass pressure is the dif-
ference Pbetween the average ground pressure ~%— and

the inflation pressure:

Pe = 4 - py

As can be seen:

Pe = —%— =Py = cecnstant

for a given locad;, so we may conglder the carcass pres-
sure as l1ndependent of inflatlon pressure., Consequently,
the ground pressure (pi + pc) can be assumed unchanged
for hard and soft ground operation. Therefore, the use

of a p, value obtained from hard grcund test seems to

30
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be justified for all sinkage predictions. The main
reason for the disagreement between theoretical and
experimental values for tests conducted in sand 1is
that the critical pressure defined by equation 23 1is
12.3 psi for W - 300 1bs in sand. Theoretical pre-
dictions could not have been 1in agreement with tests
when the inflation pressure was higher than 12 psi.
Furthermore, at an inflation pressure of 9.6 psi the
addition of the carcass pressure (2.4 psi in this
case) yilelds about 12 psi ground pressure and an al-
most rigid tire. The application of the rigid wheel
equation (equation 4) seems to be proper for inflation

pressures higher than p,,. - Pg-

The results of resistance predictions (equation 9)

and actual tests are compared in Figures 27 through

37. As 1n the case of sinkage, the agreement between
predicted and experimental results 1s more satisfactory

for the natural and artificial soils than for sand.
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The second member of equation 9, R = Rc + Rd’ was

handled as follows: The deflection resistance can be

expressed:
Rd = ftw
where:
ro= £ in equation 8.
t o (p)®
i
or:
oo -4
t 7 W

Figure 38 shows f,_ as a function of the inflation pres-

sure. For practical purposes, we may assume that ft
is independent of the weight. The curve, Figure 38,

is similar to a hyperbole and can be defined as:

The constants, p and a, characteristics of the test
tire, can be obtained by transforming the curve to
logarithmic form (Figure 39:

log £ = log p- a log 0y

In this case, p and a are taken as C0.10 and 0.6%

respectively.
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Optimum inflation pressure wag calculated as described

previously, and the results are shown in Figure 40,
The values of the theoretical optimum pressure (po) ars

alsc shown in Figures 27 through 37 and 41 through 45,

A further indication of the accuracy of equation 9 is
furnished in Figures 41 througn U45. Here, the resist-
ance predicted by equation 9 is plotted but experimental
values were used for sinkage instead of theoretical
ones. The improved agreement between predicted and
experimental resistance as compared tc the accuracy
obtained in Figures 27 through 37 is due to the elim-

ination of the inaccuracy involved in equation 5.

The critical pressure is plotted for different n and

k values, hence for different soils in Figure 46

(k equals + kg ). As expected, the critical pres-
sure lncreases when the hardness of the so0ll increases.

(The harder the soil, the higher k and n becomes.)

CONCLUSIONS:
A. Equation 5 is suitable to predict the sinkage of a
tire if the inflation pressure is smaller than the

critical pressure lessened by the carcass pressure.

49




 pu
++

W

-

' %
$+
g

T
[¢)>
¢

»
[\Y)
HT

] o
.

: ©

. :
) &
1R B

LS

T
1111
Inani

IT1T
Tt

w
.
N
]
Sl 1L

UM INFLATION PRESSURE

TIM

w
(3%}
HH

P

IENBaEENN)
INEEESana)
Trry

3 : 0 500 600  LOAD

jsume

ITITIIT IGUS NN am TTTETTT AR ARRAARASRE ARNARERRE

FIGURE 40. OPTIMUM INFLATION PRESSURE VS WEIGHT

50




(ADOVINIS AFINSVAN NO dFsvd
muzﬁ.ﬂwmm IVOILAYOAHL) ANVS ‘AvVOT *dT1-00¢€
‘SLINSAY TVIILIYOAHL ANV TVININWINAIXA ‘1% TINDIL

yirtiet [ TrITa Ty EEaGUERE ERN R CENEE ERUENGREEESRANS I EGSE CEREUDN S LAREAS L 3
! . ¢ . { -
4 (4 o1 8 9 . (4
I e e e et 1t 1
L smmu )IRENE Funa| ITIYrT
N L SITING I jaEad ISt

0
11

o
[\

THT
il

I ES B

It

it
o8 T LR 0L 1
3 aNVS {iHHHH SR

F =

g

s ‘SdT 00¢ AVOT HHH T T
TVINAWIYAIX A SSESECECRISRSSRE g

:
T
t
+
—+
t
3
pa m
pa s

H Hifee=---- - TVDILHYOIHL H Hsd1

~
1
1
T

In
!

1
Iy

I SERR
1T

_:_
Nisans sNmRs Al

TR T TR R e TR
I.L

t TR
w‘ﬂm AONVLSISHY ._H<

i e U

51




‘sLINSAA

(IDVIINIS AFYNSVANW NO dIsvd
AONVLISISAY TVOILAYOIHL) ANVS ‘AVOT *dT1-00%

TVIOILIJYOHHL AN

1

V TVINIWIHIIXT ‘2% J34NOIld

N

JOILVTINI

TTITT

) B 1

1l

44
gt

{44

ot

{133
ierd
o A

-4

k..

52

IIT

‘sdT 00% ‘AVOT
TVINININNIIXI

ADONV.ISISTH




(IDVIINIS AIUNSVIN NO dISveg

ADONVLISISHY TVIILAYOIAHL) ANVS ‘AVOT "dT1-00S
‘SLINSHY TVIILAYOIHL ANV TVINIWIHIIXT ‘€% TUNDLI

¥l (4] 01 8 9 14 2
LSRRI G ARARA RN AR RN R R RN L8 &
A T A H
HE1sqd g H Hﬁbwwmvmm NOILLVTJINI
09 H
A T g 08 H
£ 5 00
HH aNvs
*sdT 00S ‘AVOT
TVININIYIdXH i
~==-==eTYOILAYOTHL >
92!
w07
ADVINIS ATINSVIW NO gISVd ADNV.LSISHY TYVDIETIOIHL .wlvu.
2
Q
o3|
i "SI i op 1l

53




(IDOVINIS AFINSVINW NO qIsvd
AONVISISTE TVIOILAYOAHL) ANVS ‘dVOT "9d71-009
‘SLTINSHYE "TVIOILAYOIHL ANV TVININWIYIIXH

Liliid i3l

100 LEL

Liliiiild

8 9

---------

anasnans;

NSSIUd NOILV'TANI

Py JANOIA

aNvs
‘Sd"1 009 ‘AVO'1
TYINIWNIYIdXHE

........ TVOILIYOTHL

aiasvd IDNV.LSIS

54

It

TTIT

R

L

—

RS By

ADNVLSIS!

()]

IO IItT




(IDVINIS ATINSVAW NO didsvd
ADNVLISISHEY TVIILIYOTHL) ANVS ‘AVOT "dT1-00L

‘SLTNSEY TVIOILIAYOIHL ANV TVININWIYIAIXE 'S% TUNDII

KAl . 01 Y 8 = 9 4
: inas sase: H +
d: F¥d NOILVTANI st
T
1 1111 11 = I
] T st
aNVvs
; *sdT 00. -AVOT
AVLNINWIIAIIXH
cem - - TVOILIYOHdHL o)
HE R R !
IDWNIS AIUNSVIANW NO dJdSVd IONV.LSISHY "TVDI m
-
>
2
D -
=
-_.nm—

55




STIOS LNFYIALAIA YOI TYNSSHYL TVIILIED

91 14!

21 0

q
.vx‘_‘ 3 =y

—
«©

|

9%y Y NDIA

SdT 005 =M AVOT

TYIL 91-00°L

\
oO\

gl

\

\
\
]

WAV

\\
\
\

TTETHM dIDIY V 3MIT SFAVHAT IUIL JHL
HOIHM JAOYV HUNSSHYd NOILVTANI TVDILIED

(A

91

N¥4

¥e

‘d FYNSSTYd NOILVTINI

1

(I1sd)

56




Within limits of tire geometry, the sinkage is in-
dependent of the load since an increase in load re-
sults in an increase of tire deflectlion rather than
an increase in sinkage. This condition persists
until the combined inflation and carcass pressure

equals or exceeds the critical pressure.

Equation 9 can be used for resistance predictions.
It shows that a narrow tire 1s superior to a wilde
one 1if the ground contact area 1is the same. In
other words a longitudinally shaped ground contact
area is favorable. The increase invweight in order
to obtain more traction might not be profitable be-

cause of the increase in resistance.

There are many pressure reducing devices 1n use,
but the reduction is only useful if the pressure
is reduced below the critical pressure. Above

the critical pressure, the tire behaves as a
rigid wheel and the advantages of less sinkage and
more traction obtained from the flat ground con-

tact area are not utiligzed.
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VI. RECOMMENDATIONS:

It is recommended that the procedure outlined in this
paper be used for towed pneumatic tire performance

prediction.

Further investigations are recommended to establish

the importance of the optimum inflation pressure.

The effect of the critical pressure appears to be
of utmost importance. It 1s suggested that 1t be
considered whenever inflation pressure reducing de-

vices are used for improved mobility,.

It is also suggested that further investigations be
made to establish a sclentific method to predict
tractive effort or drawbar pull for low inflated

tires operating on soft ground.

A serles of tests should be conducted to obtain ex-

perimental values of u, a, and Pe for different tires.
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