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ABSTRACT

A theory by which pneumatic tire sinkage and

motion resistance can be calculated has been de-

veloped. The formulae based on this theory have

been verified by comparing experimental results

obtained from tests conducted on several different

soils with predicted results using the equations.

The agreement between experimental and predicted

results was acceptable.
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PROJECT TITLE. ANALYSIS OF TOWED PNEUMATIC TIRES MOVING ON
SOFT GROUND

I. BACKGROUND:

The observation that a pneumatic tire with a low infla-

tion pressure performed better in soft soil than the

same tire with a high inflation pressure is not new or

uncommon. However, until recently the underlying re-

lationships between the soil and the pneumatic tire had

not been developed to allow adequate explanations of

this phenomena or numerical predictions of sinkage, re-

sistance, drawbar pull, etc. A study of the available

literature reveals that numerous papers, studies, and

test results have been published covering pneumatic

tires. However, no method exists in this literature

to predict the relationships between sinkage, motion

resistance, inflation pressure and loading of a towed

pneumatic tire in any given soil which would serve to

explain the increase in performance associated with a

decrease in inflation pressure. It was evident that

although attempts have been made to develop a solution

to obtain these definitions, the lack of a system or

means to define soil strength hindered these efforts.

1



A purely empirical approach exists in an equation in-

troduced by Omelianov (1). His equation would be suit-

able for prediction of motion resistance within re-

stricted limits if the various parameters were known.

The equation is:

3 3
R=c W pi + c 2 W W p-

1 kD iD

where:

R is the resistance (Kg)

W is the load (Kg)

p. is the inflation pressure (Kg/cm2 )

D is the diameter (cm)

k is a soil characteristic (Kg/cm3 )

c and c 2 are dimensionless factors related to the
tire.

The shortcomings of Omelianov's equation originate from

the inadequacy of a single soil parameter in the math-

ematical description of cross-country mobility problems.

Because a theory and technique for performance evaluation

of low inflated pneumatic tires is necessary, the Land

Locomotion Laboratory has started a project to fill the

gap. A discussion of this development and first results

are presented in this paper.

2



110 THEORETICAL APPROACH:

A. Sinkage

The difference in the behavior of low and high in-

flation pressure tires is dependent upon the degree

of tire deflection due to the load. A high infla-

tion pressure relative to the ground pressure re-

sults in little deflection and the tire can be

considered to operate as a rigid wheel. A tire

with a low inflation pressure relative to ground

pressure experiences large deflection and an ex-

tensive change in the character of the loading

area. For this loading condition the tire must

be treated as a track rather than a wheel. The

relationship between the inflation pressure and

the ground pressure must be considered in treat-

ing the pneumatic tire since a very definite dif-

ference in treatment exists between tires having

low and high inflation pressure relative to ground

pressure.

3



To determine sinkage of the pneumatic tire, we first

consider the general relationship for the sinkage of

a footing in soil. For this problem the ground con-

tact area of a wheel shown in Figure 1 is taken as

the footing.

The sum of the ground pressure under a footing is

equal to the load on the footing.
•A

W 1 A PgdA

where:

W is the load on the footing (lbs)

Pg is the ground pressure (psi)

A is the ground contact area (sq. in.)

The ground pressure may be expressed by a basic

equation introduced by the Land Locomotion Lab-

oratory, expressing an empirical soil stress-strain

relationship for vertical displacement (2):

kc

*pg ( e + k)zn

where:

kc is the cohesive modulus of sinkage lbs (1

-in.

4
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P Pg

FIGURE 1. GROUND CONTACT AREA OF A WHEEL

pP
gmax g

FIGURE 2. TIRE WITH HIGH INFLATION PRESSURE

•V p
P ...

gmax L /.

FIGURE 3. FLAT GROUND CONTACT AREA
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ko is the frictional modulus of' sinkage lbs (n+-

b is the smaller size of the footing (in.)

z is the sinkage of the footing (in.)

n is the exponent of' sinkage (dimensionless)

By combining equations 1 and 2 we obtain an expression

relating load and sinkage:

f AA 

k

W pg (z)dA = (k + k)zndA 3
0 0

It has been shown (3, 4) that in the case of a rigid wheel,

equation 3 may be transformed to the following form:

2n+l

(3-n)- --Z- b +% kp) D'f-

or

Z: 3W 1 2n+l 4z (-3-n) (k. + bko) -

where:

D is the diameter of the rigid wheel (in.)

Equation 4 may also be used for pneumatic tires of high

inflation pressure. Such a tire is shown in Figure 2.

It can be seen that when Pj > Pg max' the

6



tire has to be treated as a rigid wheel; where pi is

the inflation pressure, (psi).

However, if the load determines a sinkage (equation 4)

that would result in pg max (equation 2) larger than

Pi' the tire deflects and will have a flat ground

contact area if the stiffness of the carcass is neg-

lected (Figure 3).

The equilibrium of the ground contact area yields:

Pi= Pg max

But pg max is a function of the sinkage (equation 2).

Pj=Pg max (c + kO) zo

and:

zo = kc
b_ ++ s-

The test results show that the carcass pressure can-

not be neglected without excessive inaccuracy. There-

fore, the experimental value of the carcass pressure

(PC) has been introduced as done by other investigators

(5).

7



The sinkage equation for a low inflated tire be-

comes:

Z 0 =e kb +

J. S. Ageikin published a similar equation in the

Russian magazine, Automotive Industry (6).

B. Resistance

The resistance to motion of a towed tire can be ap-

proximated under the following assumptions. The

bulk of the resistance is caused by two effects:

Compression of soil and the flexure of the soft

tire. The compaction resistance (Rc) can be cal-

culated using equation 3. The work (L) spent to

compact the soil under the tire along ) distance

can be obtained as follows:

L = 1 A p(z)dAd)
0 0

If z is constant along I and the width of the rut

(b) is also invariable

L =bý J z p(z)dz
0

8



and the compaction resistance:

Rc -- I' = b oZp(z)dz

Substituting equation 2:

Re = b ±( + k0•z foZndz

This yields:

(kc bk5) n + 16n +1

If equation 5 is substituted into equation 6 the

sinkage (z) can be eliminated:
[b J n+l

Rc- P)Pi + PC )(n + 1) (kc + bk,)I/n'

The deflection resistance (Rd) is due to carcass

deflection and can be only obtained experimentally.

It has been found that the following equation is

accurate enough for practical purposes:

Rd =W (p8)a

where / and a are experimental factors.

9



The resistance can now be approximated as:

[b~p + ] n A•

R = Rc + Rd [ (P1 + P) () 9
(n+l) (k c + bko)n

C. Optimum Inflation Pressure

Since the resistance is a function of the inflation

pressure, an optimum inflation pressure (p io) can

be found at which the resistance is minimal. Dif-

ferentiating equation 9 with respect to pressure

we have:

b~n l+l l~(

dPi (n+l)(kc + bko) Pa+l

when:

dR 0
dpi

FnWa~ ___+_ko
(Pio + p)(Pi.)n(a+l)= n Lkc b ] 10

From which pio can be found if the other values are

known.

D. Critical Pressure

As stated previously, a tire is treated as a rigid

wheel or as a soft tire depending on the inflation

pressure if other conditions are fixed. Therefore,

10



a critical pressure must exist that separates the

two cases. The following considerations lead to

an equation that gives the approximate order of

this limiting pressure.

The mechanical equilibrium of the tire (Figure 4)

can be expressed by three equations:

12

W b-Pl(pi+ pc) + b Pxdx 11

0n+1

Lb(Pi+ P•--
H = R = [c ] nW 12

n
(n+l) (kc + bkp)

Hd -Wa + b(p + pc) 2 -b PxXdx - Rc 0 13
0

Some simplifications are now introduced to obtain a

solution for equations 11, 12, and 13:

c = O a = __I ; Zo - zx - z°
ýe 2 x 22

where j3 depends on n and equals the distance between

the center of gravity of the p = f (z) curve and the

bottom of the root (Figure 5). If n = 1 and G = 3.

11



Zx zo

pg max: =p + P

FIGURE 4. MECHANICAL EQUILIBRIUM OF A TOWED TIRE

12

z

FIGURE 5. PRESSURE DISTRIBUTION UNDER THE TIRE
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The integral involved in equation 11 can be solved

as follows:
12 -R2 n kcn 2 x

b xd. = b(-c kI) ZxdX = b(b-- +ko)zo (l-2) ndx

0 00

but:

b( + ko)zo = b(Pi + Pc)

denoting:

y = (1-x)and, dx =- •dy
2 2

and the integration leads to:

b(Pi + Pc).,'2 14
(n+ 1)

The solution of the integral in equation 13 can be

obtained in a similar way, and yields the following

expression:2 2
b(pi + pc)j2

(n + l)(n + 2)

Equation 11 becomes:

W b(pi + Pc) (&1 + n2)

13



Using equation 12 and the result of the second in-

tegral, another equation can be obtained from equa-

tion 13:

n+1 17

[(Pi" PI n- P + Pc)n
__ __ __ __ W D 1 __

1 p 2 3 kC

ii i c
(n+.l (k bV) b

02
+w b( i 2 0 152- b (p i - C- 2 (n-,-I,) (n--2) 0

Using the following notationm

/ \, 1

j D _ IiPI"L n 1

2 3 bk n

K=
(n-- l)(n 2)

and substituting from equation 9.4 into equation

15:

__ W PO!--W -T F b P" C.b(pi + pc) 2i

F- -

2 2!
W -0- KJ9  0  6

L -

14



RJ -X WE + •2- b(p+P) 0 17

Equation 17 is an equation of second degree in 2

80:

P2 = -B-TB'-4AC 18A
2A

where:

-B - ; A = - ] b(pi+pc) ; C = RJ

The positive value of the square root yields a neg-

ative solution, which has no physical meaning.

Solving equation 14 for

W - -F22 18B
b(pi + pc)

Equations 18A and 18B could be used for drawbar pull

calculations since the ground contact area is now

determined. Equation 183 can also serve as a basis

for computing the deflection. Irom the triangle in

Figure 6.
2 2

D( 1 (D - D 1) 19

15



FIGURE 6. GEOMETRICAL CONFIGURATION OF A DEFLECTED
TIRE

FIGURE 7. GEOMETRICAL CONFIGURATION OF A
UNDEFLECTED TIRE
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Equation 18B also shows that with higher inflation

pressure (pi) the length 11 of the flat portion

of the ground contact area decreases, for:

Pi = Pcritical 0

and-

W FR2 20
b (PPc) 

2

When the deflection is zero, no carcass pressure

occurs (P~c = 0) and 2 can be found as shown in

Figure 7:

4Dz - Z 21

Equations 20 and 21 now yield:

w
Pcrit - ; 22Peit =Fb )ýzo - Zo 02

Since F 1 .and z can be substituted fromn+l 1

equation 4, our final equation reads as follows:

-i (n + 1)W 1
Peit b(D GBn3W ]22nir 3W' 2 +i112b 3-n)(kc+bk;)WJ -(3-n)(kc+bk,) )

17



III. TESTS.

In order to check the validity of equations 5 and 8,

numerous experiments were performed. The test tire

was tested in three different types of soil which

were classified by the sinkage parameters of the

Land Locomotion Soil-Value System; kc, ko and n (2).

The first soil was sand characterized by kc = 0,

ko - 7.0 and n = 0.8. The second soil was an arti-

ficial soil (7) and its soll values were kc = 21 0,

ko = 4.0 and n 0.43. Finally, natural soil was

used that had the iollowing soil values: kc = 9.9,

ko = 13.2, and n = 0.86

A 7.00 x 16 tire with the tread stripped off to

eliminate its haphazard effects, was used. The

tests were conducted in a 10 x 3 x 1 ft. soil

bin. A simple carriage (Figure 8) to permit var-

iation in wheel load was constructed and used through-

out the tests The carriage was pulled by means of'

a spring scale as shown in Figure 9. Each test was

performed in the following manner:

18
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A. The load on the tire was measured while the front

bars of the carriage were exactly horizontal.

B. The dimensions of the print area were measured on

hard ground. Fine sand was poured around the

ground contact area to identify the area so that

when the tire was lifted the print-area was easy

to measure (Figure 10).

C. Next, the tire deflection (8) was obtained on hard

ground.

D. A large steel plate was placed on the soil hori-

zontally to approximate hard ground conditions.

The carriage was set on the plate and the front

bars were adjusted to horizontal position. Then,

the carriage was towed on the steel plate and the

motion resistance due to tire deflection recorded.

E. The plate and the carriage were removed, and the

soil was loosened and leveled. The height of the

soil level was marked relative to a reference point

and the carriage was placed on the soil. The front

21
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bars were again adJusted, and the carriage was

pulled along the bin (Figure 10). At the end

of the run the carriage was immediately lifted.

The total motion resistance was determined by

the spring scale and the distance was measured

between the bottom of the root and the reference

point mentioned previously, Sinkage was deter-

mined from the difference between the soil level

to reference point and root to reference point

distances. Figure 11 shows a tire moving in

sand,

Fo Finally, the number of weights and/or the in-

flation pressure was changed for the next run

and the procedure repeated.

IV. DISCUSSION OF TEST RESULTS.

Although several simplifying assumptions were made

for equation 5, adequate agreement between test re-

sults and theoretical predictions was found. Ex-

periments and predicted values are plotted in Fig-

ures 12 through 21. Equation 5 yielded somewhat

higher sinkage values than actual tests in sand,

23
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particularly at lower loads and higher inflation pres-

sures. The agreement is quite satisfactory for higher

loads. Predictions were well Justified for natural and

artificial soils.

Figures 22 through 26 are plots of tire print area on a

rigid surface as a function of the inflation pressure

for various loads. The carcass pressure is the dif--

ference between the average ground pressure -W- and
A

the inflation pressure:

PC W Pi
A

As can be seen:

= A - P = constantPc A

for a given load, so we may consider the carcass pres-

sure as independent of inflation pressure. Consequently,

the ground pressure (Pi + p.) can be assumed unchanged

for hard and soft ground operation. Therefore, the use

of a Pc value obtained from hard ground test seems to
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be Justified for all sinkage predictions. The main

reason for the disagreement between theoretical and

experimental values for tests conducted in sand is

that the critical pressure defined by equation 23 is

12.3 psi for W - 300 lbs in sand. Theoretical pre-

dictions could not have been in agreement with tests

when the inflation pressure was higher than 12 psi.

Furthermore, at an inflation pressure of 9.6 psi the

addition of the carcass pressure (2.4 psi in this

case) yields about 12 psi ground pressure and an al-

most rigid tire. The application of the rigid wheel

equation (equation 4) seems to be proper for inflation

pressures higher than Pcr - PC'

The results of resistance predictions (equation 9)

and actual tests are compared in Figures 27 through

37, As in the case of sinkage, the agreement between

predicted and experimental results is more satisfactory

for the natural and artificial soils than for sand.
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The second member of equation 9,R R= c + R

handled as follows: The deflection resistance can be

expressed:

Rd f t"

where:

f= in equation 8.
t (pi)a

or:

Rd

Figure 38 shows ft as a function of the inflation pres-

sure. For practical purposes, we may assume that ft

is independent of the weight. The curve, Figure 38,

is similar to a hyperbole and can be defined as:

t :(pi)a

The constants, 4 and a, characteristics of the test

tire, can be obtained by transforming the curve to

logarithriic form (Figure 39):

i0 log f,- loJ 9.

In this case, • and a are taken as 0,10 and 0.64+

respec tively.
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Optimum inflation pressure was calculated as described

previously, and the results are shown in Figure 40.

The values of the theoretical optimum pressure (po) are

also shown in Figures 27 through 37 and 41 through 45.

A further indication of the accuracy of equation 9 is

furnished in Figures 41 through 45. Here, the resist-

ance predicted by equation 9 is plotted but experimental

values were used for sinkage instead of theoretical

ones. The improved agreement between predicted and

experimental resistance as compared to the accuracy

obtained in Figures 27 through 37 is due to the elim-

ination of the inaccuracy involved in equation 5o

The critical pressure is plotted for different n and

k values, hence for different soils in Figure 46

(k equals k + kb ). As expected, the critical pres-b

sure increases when the hardness of the soil increases,

(The harder the soil, the higher k and. n becomes.)

V. CONCLUSIONS:

A. Equation 5 is suitable to predict the sinkage of a

tire if the inflation pressure is smaller than the

critical pressure lessened by the carcass pressure.
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Within limits of tire geometry, the sinkage is in-

dependent of the load since an increase in load re-

sults in an increase of tire deflection rather than

an increase in sinkage. This condition persists

until the combined inflation and carcass pressure

equals or exceeds the critical pressure.

B. Equation 9 can be used for resistance predictions.

It shows that a narrow tire is superior to a wide

one if the ground contact area is the same. In

other words a longitudinally shaped ground contact

area is favorable. The increase in'MVeight in order

to obtain more traction might not be profitable be-

cause of the increase in resistance.

C. There are many pressure reducing devices in use,

but the reduction is only useful if the pressure

is reduced below the critical pressure. Above

the critical pressure, the tire behaves as a

rigid wheel and the advantages of less sinkage and

more traction obtained from the flat ground con-

tact area are not utilized.
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VI. RECOMMENDATIONS:

It is recommended that the procedure outlined in this

paper be used for towed pneumatic tire performance

prediction.

Further investigations are recommended to establish

the importance of the optimum inflation pressure.

The effect of the critical pressure appears to be

of utmost importance. It is suggested that it be

considered whenever inflation pressure reducing de-

vices are used for improved mobility.

It is also suggested that further investigations be

made to establish a scientific method to predict

tractive effort or drawbar pull for low inflated

tires operating on soft ground.

A series of tests should be conducted to obtain ex-

perimental values of p, a, and pc for different tires.
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