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Abstract

Wave propagation and random media are defined and the nature of the

mathematical problems arising in wave propagation in random media is described.

The two principal types of methods for solving these problems - honest and

dishonest methods - are explained. These methods are first illustrated by

considering the geometrical optics of a random medium by one method of each

type. Some new results are obtained by an honest method and some errors in

a previous work are pointed out. Comparison is made between the results of

the two methods and the reasons why they disagree are explained. As a sec-

ond illustration of an honest method, an analysis of the reduced wave equa-

tion in a random medium is presented. Some known results are obtained in a

new way which is simpler than the usual one and which appears to be capable

of yielding further results.
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1. Introduction

Wave propagation is one of the means by which energy travels. 'Propa-

gation' is the process whereby the energy moves from one region of space to

an adjacent region, and 'wave' is a gereral teim for a moving spatial dis-

tribution of energy. The matter in the region of space through which the

propagation occurs is called the transmission medium. A random or stochas-

tic medium is a family of media together with a probability distribution

which specifies the probabilities of the various members of the family.

Thus wave propagation in a random medium refers to propagation in each mem-

ber of the family of media, together with the probability of each member.

This probability, when associated with the wave motion in each medium,

characterizes a random wave motion.

Mathematically a wave motion is described by a vector-valued function

u(x,t) of the pobition vector x and the time t. As a consequence of the

physical laws governing the wave motion, the function u(x,t) satisfies cer-

tain equations. Usually they are partial differential equations pf hyper-

bolic type and often of symmetric hyperbolic type. The transmission medium

is characterized by a vector-valued function n(x,t) which enter the coeffi-

cients of the equations. A wave propagation problem is that of determining

a solution u(x,t) of the equations which satisfies certain auxiliary condi-

tions. These conditions are usually initial and boundary conditions. The

problem is said to be well set, well posed or properly posed if it possesses

a unique solution which depends continuously, in an appropriate norm, upon

the data given in the auxiliary conditions and upon the coefficients in the

equation.

A random medium is characterized by a family of functions n(x,t,w) de-

pending upon a parameter w. Here w is a point in a probability space a in
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which a probability measure dP(w) is defined. Of course the function

n(x,tw) must be measurable with respect to dP(w). If a well-posed wave

propagation problem is formulated for the random medium, it has a solu-

tion u(xjt,w) for each w. This family of solutions describes a random wave

motion. The equations satisfied by u with the coefficient n(x,t,w) are

called stochastic equations - stochastic differential equations if they are

differential equations. Thus in this case wave propagation in a randum me-

dium is part of the subject of stochastic differential equations.

The reasons for studying random wave propagation are exactly the same

as those for studying any other random phenomenon. There are essentially

two such reasons. In the first place, we may wish to consider a case in

which the medium is not known precisely, but in which it is known to be a

member of a certain family of media. If we also know the probability that

it is any particular member of the family, we can determine the probability

that the wave motion is any one of the associated family of wave motions.

Then we ca& determine the expected or mean wave motion, as well as its

variance and other statistics. This statistical information can be used

to estimate what is likely to be the wave motion in the case under consider-

ation. In particular some statistical properties of u may depend orly upon

known statistics of n. When we consider many media, all of which are mem-

bers of the same family, we may expect the statistics of the corresponding

wave motions to correspond to those of the random wave motion occurring in

the random medium.

In the second place we may wish to consider a known medium with very

complex properties. Then the associated wave motion will also be very com-

plex and its precise determination may be impractical. Certain statistical

properties of the wave motion in a random medium, of which the medium in
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question is a member, may be less complex and more easily determinable. In

other words, it may be easier to solve the random problem. If the random

medium is appropriately chosen, these statistical properties may be closely

related to the actual properties of the wave motion in the known medium

under consideration.

We shall see that there are two kinds of methods used to solve problems

of wave propagation in random media. These may be called 'honest' and 'dis-

honest' methods respectively. In an honest method the solution u(xlt,w) is

first determined for each value of w. This solution may sometimes be found

exactly and explicitly, but more often it is expressed in the form of a

series in some parameter, or as a sequence of iteratesj or by some other

approximation procedure. In the process of solving for u(xt,w) randomness

plays no role and therefore it provides no advantage. The second step in

an honest method is to compute the mean value of u(xt,w), as well as its

variance and other statistics, from the explicit expression. In this step

randomness may have the helpful effect of yielding simpler expressions for

the statistics of u than those for u itself.

In a dishonest method randomness is utilized before u(x,t,w) is deter-

mined. For example, if the mean value <U> is sought, the original equations

for u may be 'averaged' to yield equations for <U>. In such cases the aver-

aged equations also involve terms like - 2> or <hu>. Dishonesty enters

through the assumption that 2 > U> or 4*iu> = <LX> or some similar

unproved assumption. The reason for making such assumptions is to obtain

determinate equations for <U>. Other examples of dishonest methods will be

described later. In all cases probability is introduced before u is deter-

mined and an unproved assumption is made about some statistical property of

the random wave motion. The assumption usually simplifies the problem so
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that it becomes solvable.

Dishonest methods have the advantage over honest ones that they simplify

the problem to be solved. As a consequence, a problem which can be solved

honestly only by a perturbation method might be solved dishonestly without

the use of a perturbation expansion. Then the Iishonest solution would be

applicable for all values of the relevant parameter while the honest solution

would be valid only for small values of it. For this and similar reasons,

many of the significant and non-trivial results in the theory of wave propa-

gation in random media have been obtained by dishonest methods. Many of

these results have compared well with experiment. Thus one of the important

mathematical problems in this field is to justify the dishonest methods by

showing that their results, in some sense, are approximations to honest solu-

tions. A clear understanding of the circumstances in which this is the case

would permit the introduction of many more useful dishonest procedures.

Most of the work on this subject has been done since 1945, having been

stimulated by practical problems of radio wave propagation through the atmos-

phere and ionosphere, sound wave propagation in the ocean and the atmosphere,

light transmission through the atmosphere, etc. The recent book by L.A.

Chernov Ill contains a rathdr complete bibliography and an understandable

account of the present state of this subject. Additional material is con-

tained in the book by V.I. Tatarski[ 2]. The related subject of random wave

motion in a non-random medium is surveyed by M. Born and E. Wolf [3, Chap. 10]

Some other work is contained in the symposium volumes edited by W.C. Hoffman L J

and Z. Kopal.>']. Because of the complete bibliographies in these books, we

shall give relatively few references.
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Physicists have studied extensively the propagation of waves through

random collections of discrete scatterers. A clear formulation of a prob-

lem of this type, together with a new dishonest method for treating it, was

given by L.L. Foldy[61 . This method was generalized to other problems by

M. Lax[7], who has also reviewed much of the previous work in this field.

Many problems have been treated by this method and others by V. TwerskyL8 ] •

Recently, J. Bazer[9] proved that for a one-dimensional scattering problem,

this method does yield the correct result. I. Kay and R.A. SilvermanllOj "

investigated the accuracy of another method, the single scattering approxi-

mation, by determining the extent to which randomness reduces the importance

of multiple scattering.

The next section describes how wave propagation in a random medium

applies to the problem of the twinkling of a star. In Section 3 we consi-

der light rays in a slightly inhomogeneous medium, and in Section 4 we apply

these results to a random medium obtaining some new results. We then compare

these honest results with corresponding dishonest ones in Section 5, where

we treat a light ray in a random medium as a Mazkoff process. In Sections

6 and 7 we use the results of Sections 3 and 4 to determine the phase and

amplitude fluctuations of a wave in a random medium. Our results are exten-

sions of previously known ones. This completes our discussion of geometri-

cal optics in a random medium . In the final section we present a brief new

treatment of the reduced wave equation in a random medium. This section is

independent of the preceding ones.

2. An application

Before illustrating the techniques used to analyze wave propagation in

random media, we shall describe a physical phenomenon in which such propaga-

tion plays a role. It is the scintillation or twinkling of a star. The most
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appropriate theory of wave propagation to describe this phenomenon is geo-

metrical optics. According to this theory, light travels along certain

straight or curved paths called rays. These rays are determined by ordinary

differential equations in which appears the index of refraction n(x,t), a

scalar function which characterizes the transmission medium. This medium is

the earth's atmosphere in the present case. If nwl the rays are straight lines

which emanate from the star in all directions. One of them (really a narrow

beam) enters the eye of an observer who is viewing the star. The direction

from which the ray enters the eye is the apparent direction of the star.

Actually n(x~t) differs from unity by a small amount. As a consequence, the

rays deviate slightly from straight lines and enter the observer's eye from

slightly different directions at successive instants of time. Therefore the

star appears to be moving about its mean position. Its apparent intensity

also fluctuates.

We would like to calculate the apparent direction and intensity as func-

tions of time. To do so it would be necessary to know the index n(x,t). This

is practically impossible because the variation of n(xt) with time and posi-

tion results from the trubulent motion of the atmosphere. Consequently analy-

sis would appear to be impossible. In the face of this difficulty we treat

the atmosphere as a random medium. The random medium must be so chosen that

its important statistical properties correspond to measurable properties of

the atmosphere. In this way we give up the possibility of calculating the

apparent direction and intensity at any particular time. Instead we can calcu-

late statistical properties of the apparent direction and intensity which may

be related to the actual temporal distribution of apparent directions and in-

tensities. We shall consider this example further in the next section. In

doing so we shall make use of the fact that a ray traverses the atmosphere so



-7-

quickly that the index does not change significantly during the traversal.

Consequently we may assume that the index is independent of time in deter-

mining the rays.

3. Light rays in a slightly inhomogeneous medium

Let n(x,e) denote the index of refraction of a random medium, which may

be written as

n(x,e) = 1 + e iL(x) . (1)

The quantity e measures the deviation of the index from unity. The index also

depends upon a parameter w which we shall not write explicitly. We wish to

determine the ray x(s,e) which starts from the origin in the direction of the

unit vector u. Here s denotes arclength along the ray. The ray also depends

upon w. The equations which x satisfies are

(n't . Vn (2)

O(0) 0 0 (3)

S(0) u, 2 1) (4)

These equations have a unique solution vhich depends continuously upon n and u

in an appropriate norm, if n is continuously differentiable. Thus the problem

(2) - (4) is weLl posed.

To find x we shall determine its derivatives with respect to e at e = 0

and then express x by means of its Taylor series in e. Thus we shall employ

an honest method, in the first phase of which probability plays no role. Let

us first set e = 0 in (2) - (4) and denote *(s,O) by 1'0(s). Then we obtain

X11 = 0 (5)

o -0 (6)

0
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The solution of (5) - (7) is

(S) - u. (8)

Now we differentiate (2) - (4) with respect to e, set e 0, and denot,_

x (s,O) byx (s), obtaining

x (xi rxo ( IXo)] If (9)
S0 0

1(0)= t(o) -o . (1o)

The right side of (9) is just the component of V4 which is normal to x' = U.

Let us call it the transverse gradient and denote it by VT .. Then the solu-

tion of (9) and (10) is

B

i(s) f (s-t) VT (ut)dt. (11)

0

Differentiating (2) - (4) twice with respect to e at e 0 yields

x =(s 2(X+ -VT)vT 4.()vT 2 X -2xl -E VT 4(x)-2-xxo -V (x0 ) (12)

x ( () - 0 .(15)

The solution of (12) and (13) is

0x (s) = 2 (s-t) . VT 4 - 2- -u )22( V,)VT ]dt. (14)

0

In the integrand, the argument of p is ut. Thus to the second order in e we

have
2

=se x(~ (S) + 2- xE + O(e~)(5
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4. Light rays in a random medium

Let us now take account of the randomness and compute some statistical

properties of x(s,e). Let us begin with the mean -value <X(se) > which is

just the sum of the mean values of the terms on the right side of (15).

Since x 0 (s) = us is independent of . and therefore of w, <-o(s)> us. From

(11), by interchanging the order of taking the mean value with integration

and differentiation, which we assume to be permissible, we obtain

s

(s)> f (s8-t) V <i(It>dt. (16)
0

In (16) only 4i> occurs. We see that it is not yet necessary to specify the

probability space 2, the measure dP(w) nor 4(x,w) if instead we give <4(x)>.

We therefore assume that

4(x)>= 0 • (17)

From (16) and (17) it follows that

<( . (18)

To compute the mean value of x (s), which is given by (14), we must

know the mean values of certain quadratic expressions in 4 and its deriva-

tives. They can be determined from the correlation function X (

which will also be required in later calculations. Therefore we assume that

it is given by

P 1 22 . (19)

Here the mean square fluctuation <i2 > is assumed to be a constant and the

correlation coefficient N is assumed to be a function of the distance 1*1-*2 1

only. By the Schwartz inequality it follows that INI _ 1. Of course N(0)=l.
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We also require that N'(0) = 0 and that N(-) = 0. It follows that Nrr(0) - 0.

In addition N should become small beyond a distance a which we shall call the

correlation distance.

From the assumption that <2 > is constant we have <T 2> VT4< > = 0.

Thus the mean of the second term in the integrand in (14) is zero. To com-

pute the mean of the first term we use (11) for x and the first term becomesE

t 2

ff (s-t2)(t2-t1 ) LI(Utl) .VT2] VT.2i(Ut 2 ) dt 1dt 2  (20)

0 0

The expression in brackets can be rewritten as (VTl_*7T2)VT2( t 2)(utl) and

since VTI = - VT 2 ) when applied to functions of t2- t I its mean value is

2 2 VF2 (21)1
4< 2(VT1VT2)VT2N(t2-tll) - < >VT2T2 t2tl)] . (21)

e 2

If we set it 2 -tlj = r then N = N(r) and VT2 = VT . Since V N ( r ) is a func-

tion of r only, its transverse gradient is zero. Therefore (21) and the mean

of (20) are zero. In a similar way we find that the mean of the last term in

(14) is also zero. Thus only the third term remains and we obtain

a

-~-2 r2 3
<:3s,C)>= us -ue f (s-t)<(VT 1) > dt + O(e) (22)

0

22

<(VT ))2> 412> im Vl .VT 2 N(Ix-X 2 1)

2 2 2 2 2<4 >V N(0) 3 <p > N(0) .(23)

Thus finally., taking account of the fact that V
2 N(0) = 3Nrr(0), w e obtain

- _ 2 <.2> Nr(O)s 2) + 0(63) . (24)(s,,)> V + " rr O s 2
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From (24) we can solve for the length s such that a ray of this length

travels a mean distance L in its original direction. This value of s is

L 2 < 2 >N (O)L' + O(e 3 ) - (25)

Equation (24) gives the mean location of the endpoint of a ray of length

s which starts from the origin in the direction u. This mean position is on

the straight line through the origin in this direction, which we expect to be

the case from symmetry. However, its distance from the origin is less than s,

as we also expect. The terms given in (24) do not suffice to compute <(sc)>

for very large values of es. This can be seen by noting that for such values,

the mean position of the endpoint would lie in the direction -u, according to

(24) since Nrr(0) ;5 0. This result is unreasonable, as is the fact that the

mean distance from the origin to the endpoint would exceed s for very large

es. We conclude that the approximation (24) for -(s,e)> is not uniform in s.

Thus more terms in the series are required for large values of es. They in-

volve third and higher order correlation functions and moments of 4.

Let us now compute the mean value of (s,C . From (15) we have

r+6 ] + +C 2 x (s) + O(e (26)

In writing (26) we made use of the fact that u- x = 0. By using (11) and

(14) in (26) we obtain

22 s
r 2 2(st)vTld -2

2 s f (st)(VT )2 dt + 0(c 3 )

0 0

(27)

The mean value of the third term on the right side in (27) has been computed

in reducing (23) to (24). To compute the mean of the second term we write it

as follows
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S S

<(-)2> < f (Ut)VTg(t l )dtI  f(st 2)T(t 2 )dt2 >

0 0

<2> ff (st)(S"t2)VTl. VT2 N( I utl- t 2 1)dtldt 2

0 0

s s

2> ff(8-tl)(St) V2 N(Itl-t 2 1)dtldt 2 . (28)

0 0

We now define r and r by0

t1 = r0 + r/2 t2 = r° - r/2. (29)

Then (28) becomes, if we define N(-r) N(r),

<(xE)2> -_2> S2ro)2_ VT N(r)drodr

-s -r/2

- <12> f -(r/2) s -r)2- 2'] V2 N(r)dr dr • (30)

o /2

Upon performing the integration with respect to r0 and combining the resulting

integrals we obtain from (30)

<( >)2> - 42>f VT N(r)[3 - rs 2 + 1 dr . (31)

0

To sillily (31) we note that

VT N(r) = 2r 1 Nr(r) * (32)
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With the aid of (32), we can rewrite (31) as

2 <('x )2> e 2 2> Nr(r)[r 2s2 + '.]dr (33)

0

Now (27) becomes

< ,\ 2  2 2 2 s2 4o3.

<1 X\' , r~ _E 2B>L +l~ T 3 Edr - 2s Nrr(O +0O(e)
-('O > < L> N r(r )  - 23 r Nrr(0

(34)

For values of s large compared to the correlation distance a, (34) can be sim-

plified to 0

2 <2>3L f r Nr(r)dr 2Nrr(O + 0(e

Equation (34) or (35) gives the mean square distance between the end-

points of a ray of length s. Let p denote the transverse displacement of the

endpoint of a ray of length s from the straight line tangent to the ray at its
2

initial point. Then equation (33) gives, to order e , the mean square value

<p 2>. For s large compared to the correlation distance a, (33) yields for
<2>

2 <2 s3<Jr2> 4e 2 Nrdr + 0(e 3 ) 
(36)

0

By substraction of (36) from (35) we obtain the mean square distance which

the ray travels along its original direction. For a large compared to a, it

is

<I .(s,e) 2> s2 + 2e <2> Nrr(O)s 3 + O(e 3 ) . (37)
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Let us finally calculate the mean square value of X'(sE) - 'u. This is

the mean square value of 2 - 2 cos m(se) where m is the angle between xf and

u. From (15) we have

-2 2- 2.( ~ -+ u) = (x) +0O(el)((38)

From (38) and (11) we obtain

<4 -)2 2 ( VT4 > + 0(e3) (39)

By proceeding as in (28) - (33) we find

<(" U) > 22 F r.- 2 (1 <cosc(S)>) 4 4e <1U > L(s)ls rjrdL (e)

(40)

For s large compared to a this becomes

(X1 - =)> 2 2, - <cosc(s) 4e 2> S r + (e3)

0

(41)

If the right side of (41) is small compared to unity, we have

2(1 - <cos a>) - <a2 >. Then (41) gives the mean square value of m.

The results (36) and (41) can be written simply in terms of the ray dif-

fusion coefficient D which is defined by

D -c 2 < 2 > f r-1 Nr(r)dr. (42)

0

Then (36) and (41) become
2 > Ds3 + 0(E3 ). (43)

2 3

<m> 4Ds +O(e3) (44)
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An incorrect form of (41) was derived by L.A. Chernov [,p.17, eq.31.

His method of derivation is the same as that given here but he did not intro-

duce a small parameter e and expand systematically in powers of it. As a

consequence he made an error in going from his eq. (25) to eq. (26) on page

16. Therefore his result eq. (31) and his diffusion coefficient eq. (34)

page 17 are incorrect.

5. Light rays as a Markoff process

In the preceding section we treated light rays in a slightly inhomogene-

ous random medium by an honest method. We computed the mean values of some

quantities associated with the rays and obtained simple expressions for them

when the ray length s was large compared to the correlation distance a. Al-

though the results are correct, they are not useful for very large values of

s, as can be seen by examining them. We must conclude that the quantities we

have calculated in powers of e are not uniform in a.

To obtain results which are valid for large values of s a dishonest method

has been employed[]. It consists in treating the ray direction *' (s) as a

random function of the arclength s. The fundamental unproved assumption on

which the method is based is that '(s) is a continuous Markoff process.

This means that the probability that the ray has a given direction at s + da

depends only upon the probability distribution at s. Let us denote this pro-

bability density by P(G,$,s). Then as a consequence of conservation of pro-

bability, P satisfies the Chapman-Kolmogoroff equation. The differential

form of this equation is the Fokker-Planck equation

n1) (sin 9 P) + - lm - (4)
sin2 P As -*o

Here <x, > is the mean square value of the angle a between x t(s) and -' (a +,s)
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when x'(s) is given. We have calculated it in the preceding section and it

is given by (4o). From (4o) it follows at once that < 2> is of order (As )2

for small As and thus the limit in (45) is zero. However, if we use (44) for

<X 2 > instead of (40), and neglect O(e 3), the limit in (45) is D and (45) be-

comes

P D (sin 9 PC)@+ 2 ()46)
Ps8= sin -- +sin29 Po "

It would seem to be inconsistent to use (44), which is valid for S

large compared to the correlation distance a, and then to let s tend to zero.

But this kind of procedure is common in applied mathematics. It can usually

be Justified by interpreting it as determining an asymptotic expansion with

respect to some appropriate parameter. In the present case this is so and

the parameter is the correlation distance a. To show this we shall compute

the limit of s-1a<m2 > as a tends to zero, by means of (40). In doing so we

-1
first observe that, from dimensional considerations, N is a function of a r,

say N(r) = M(a-lr). Now (40) yields

ri
lim s-1a <a.2 > iim 4E2 < L2 > S- I  (a s)i- r- _Ma-l r)d

a-to a-*o ]
0

-i
as8

,E2 <2 >- lim[aM(a-a)-a-s x-lM,(x)dx]

0

e42 <2> f x-iM,(x)dx . (47)

0

From (47) and (42) we see that for any s 0, (4s) l <m2 > - D as a tends to

zero. Then the limit in (45) is D. We now see that (46) is valid in the
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limit in which the correlation distance a tends to zero. Thus the solution

of (46) is the leading term in the expansion of P for small values of a.

We have seen that the assumption that x'(s) is a continuous Markoff pro-

cess leads to (45). When a tends to zero (45) becomes (46). If P is inde-

pendent of 0, which is the case for all s if it is so for s = 0, (46) further

simplifies to

P D (sin P) (48)
Ps= sin- 9 "

Let us now solve (48) subject to the 'initial' condition

4 =a) . (49)

This 'initial' condition corresponds to the ray at s = 0 certainly pointing

in the direction 9 = 0. The solution of (48) and (49) is expressible in terms

of Legendre polynomials Pn(cos 9) as

00

P(sG,) (2n+l)Pn(COS G)en(n+l)Ds (50)
n=o

From (50) we see that P(-,@,O) = i/4-A so that for large s all directions be-

come equally probable. From (50) we easily find

<cos >= e2Ds . (51)

Let us compare (51) with the result for <cos m> which can be obtained

from (40). We observe that a and 9 are defined in the same way so that the

two results should agree. However, they do not agree. Since (4o) was ob-

tained by an honest method and (51) by a dishonest one, we might be tempted to

conclude that the dishonest method has yielded an incorrect result. But the

preceding discussion in this section shows that this is not the proper conclu-

sion. Instead we must recognize that the two results have different domains
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of validity. The result (4o) is Valid for small values of s while (51) is

valid for large values of s. If we expand (41) for s large and (51) for s

small we obtain agreement to two terms:

<cos C> , 1 - 2Ds % <cos 9>. (52)

This agreement shows that the two domains of validity overlap slightly. Of

course the question of whether the result (51) is valid at all, since it is

based on the Markoffian assumption, is not answered by these considerations.

The result (51) can be used to determine the mean square distance be-

tween the endpoints of a ray of length s. To use it for this purpose we

write
S s

<,,(5)12> --< '(tl)dtI  -+ (t2)dt2

0 0

s S

f <x'I(tl1 'X'(t 2)> dtldt2

0 0

s s

= ff <cos Q(tl, t2 )> dt1 dt2
0 0

s 5

= ff exp(-2Dltl-t21) dtldt2

0 0

I Kl 2D~ (D -2D 2. (55)
-D 2D2

For small s this becomes

< xs > 8 2 _-2Ds3 . 54)
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The first term of this result does agree, but the second does not agree,

with (35), which gives the previously calculated value of < (s)2> for

large a. That result involves Nr(0) in addition to D, while all the re-

sults of the present method involve only D. We must conclude that the

domains of validity of (53) and (34) do not overlap.

Let us finally compute <x(s)-2 > by the present method. This is

the mean square value of the distance which the ray travels along its ini-

tial direction. It is given by

< (s).-)2>= ff <Cos G(tI)Cos (t 2 )> dldt 2  (55)

0 0

By using (50) we finally obtain

s u)2 e'
3D 18D2 (l

S d2 2Ds3 . (56)

The second form of (56) holds for small Ds. Its first term agrees with

(37), which gives the same quantity computed by the previous method. How-

ever, the second term does not agree.

By substraction of (56) from (53) we obtain <p2>, the mean square trans-

verse displacement of the endpoint of the ray from its initial tangent line.

It is given by

2 2s 1 e('i. e 6Ds>
- D2  9 2 + m

3D D
4 - 3 (57)~3

The second form of (57), which holds for small Do, agrees with (43), obtained

by the previous method.
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These calculations suffice to illustrate this method and to show to

what extent its results agree, or disagree, with those of the preceding

honest method.

6. Phase fluctuations

In geometrical optics rays do not occur individually but only in normal

congruences. A normal congruence is a two parameter family of rays, all of

which are normal to some smooth surfaL . Every surface normal to the rays of

such a congrience is called a wavefront. With every normal congruence of

rays we associate a complex valued field v( ) which we write as

v(-) = A(-) eik (-). (58)

The possibly complex factor A(:) is called the amplitude of the field and

0(X) is called its phase. These quantities are uniquely defined in terms of

v by the requirements that be independent of the propagation constant k

and that A depend upon k at most through a factor of a power of k. The pro-

pagation constant k is equal to 27t/X where X is the wavelength of the field

in a region of refractive index equal to unity. The amplitude A( ) may be

either a scalar or a vector. The real time harmonic field V(',t) determined
by ~~[v e-)i gvnb V_",t)-R vt

by v() is given by V(,t) Re.v()eI Here t denotes the time and v

the angular frequency of the field.

Let x = z(,p) be the equation of a wavefront S0, i.e. a surface ortho-

gonal to a normal congruence of rays. We shall suppose that the parameters

m and p are so chosen that at ao0 0 the following equations hold

) 2 1,-+. -l1 --1 -1- -l -+ -+ -+(z )2' (z~) 1, CL 0, ua,= P 1 z u up 2 zP, z X z P= U. (59)
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Here u deLotes the unit normal to S while P1 and p2 are the principle radii

of SO at , P . These equations imply that at m o10o the parameters m and p

measure arclength along the lines of principle curvature on S .

We denote b-r I(Ma,Ps) the ray normal to S at m.3- Thus measuring s

from So, we have

*(m, 0,0) = "(M, 0) (60)

x(,,+ u(,) (61)

The ray through a given point y is determined by the values of m,3 and s such

that

= X(MP, s) .(62)

Once these values are determined, we define the phase 0(y) by
ss

()= n[(axMnt)dt =s + f (a,,t)dt (63)

0 0

We have taken 0 to be zero on S0

To evaluate 0 we must first solve (62) which we shall do by expansion in

powers of e. By using (15) we can write (62) as

Y = xo(M'O's) + C xE(a,P,s) + o( 2). (64)

Here xI(M, 0, R) is given by

x° = (M 0) + su(M,0) • (65)

Let us set e = 0 in (64) and denote the solution by m 0 , )so. Then by dif-

ferentiating (64) with respect to e and setting e . 0 we obtain

o = % (00 ,, o30 ) + 4 0 ,o,0o,S0 ) + S -(0,8 0,s) + x( ,so).

(66)



By using (65) and (59) and the fact that u = 0 we readily obtain from

(66) the results

= s + -1 (68)

ol1

1 + . o 1  (69)

0o2

se 0 . (69)

We now use these results in (63). Since p. V'(x + . + e 1 for

e- 0, we obtain

0

V + f o(M.,0t dt

0

s°
S 0(t) - L + ( )z(

'(° (i + + OW (70)
1+ 0 0 oP2

We next use (ii) for - in (70) and compute the mean value of $( ) A
E "

lengthy but rather straightforward calculation yields

2 so

> <p.E > -+ - -s+2) 1 f (r 0)N(r) + 0( •

0 (71)

If P1 and p2 are both finite then, for large s, (71) becomes

<0(-)> . so(l + e2 <2>) + 0(.3 ) . (72)
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Thus the mean phase increases linearly with s as if the medium had the con-0

stant index of refraction n* 1 + e 2.2 >.

The variance a2(yj is given by

a2~~Q>] [2y < - <¢y) >

r2 2 -_2

=<L+ o+ s1 + CO+ 1E $>j> + 06
S2< + 0(e3) . (73)

From (70) and (73) we have

as
0 0

or El)f f > dtdt + 0(c3

0 0

0

2e 2 <42> f (So-r)N(r)dr + O(e3 (74)

0

For large s0 this becomes

O

0

In concluding our discussion of the phase $, we should observe that 0 is

a solution of the eiconal equation

(V ) 2  n . (76)

It is a solution which satisfies the boundary condition

0 = 0 on S . (77)

There are two such solutions which merely differ in sign. Thus the analysis

of this section has concerned the solution of a boundary value problem for a
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random partial differential equation of first order. The anal,sis was based

upon the solution of the equation by means of the characteristics, which are

the rays in the present case.

7. Amplitude fluctuations

The amplitude A(') also satisfies a first order partial differential

equation in which O) occurs. For a scalar A it is

V.(A2V) = 0 . (78)

Let us seek the solution which has the prescribed value A0 (M, ) on the sur-

face S given by x = z 3). Thus

A z(m, p)] = A° (a,, ) , (79)

These equations can be solved for A by the method of characteristics. Because

of the special form of (78) the solution can be obtained easily by integrating

(78) over a volume. Now the volume integral of the divergence of a vector is

equal to the surface integral of the normal component of the vector. To sim-

plify this surface integral we choose as the volume a region bounded by a tube

of rays, the wa-efront S and another wavefront S. Since VO is tangent to the0

rays, the surface integral over the tube vanishes. Thus only the integrals

over the two portions of the wavefronts remain and we obtain

fA21VId,- A21vIdo = 0 • (80)

f f 0St S.

In (80) S' and S' are the two portions of the wavefronts, do and do- are the
0 0

elements of area, and we have made use of the fact that V7 is normal to the

wavefronts, pointing inward on S and outward on S. Since (80) holds for every
0

choice of S' and the corresponding S' determined by the rays, we can conclude
0

that
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2 2 (8l1)do
A lV I = A2(0) Iv7(0)L (1

Here do/do is the ratio of corresponding area elements on So and S, and the

argument zero denotes s = 0 which corresponds to a point on So. Since

jV j - n, we obtain from (81) and (79) the result

n - 1)(, /2 dcr1/2

Ar(,,s)] = Ao(,) ( - ad-- "(82)

To evaluate A we must compute dd/do, which is the Jacobian of the map-

ping of S onto S by means of rays. This mapping is given by the function

(c,3,s) with s having the constant value corresponding to S. If m and 3

are defined as before at m on So, then along the ray through this point

we have

d--- " (mo, 0., S) x o •()
0

If we use (64) for x(a,p,s), (83) becomes

[ 1 s )zM+e x [(l+P s)Z+ e e

0

1 ps 1su 1 EL+ls\a e l+P 2)(x~a

~E(1+P15)u.(zx 2x 8) + IE(+ 1 )xM e 2 e )] 2

1 8(1P20)+ e(lpls) (ZM x60) (1+P2 B)U.(X x Z +]4O(e

- 1 -13 ,0 62 .1 - -l84). ,

(1+-1 S) (1+P_ s) + e[E(l+p1- z' + (1+xp- (1.



Now (82) yields for A the result

A0(2 2 )s Ao( O) +(I+P I a) z e

z+x + o(). (85)

Here we have introduced A which is defined by
0

A 0 (mjOs) - AO(Q, )(l+pls)-1/2(l+p-ls)-1/2 (86)
-4

To obtain A at a fixed point, say y, we must insert for c,3 and a in

(85) the solutions of (62). They are + emE + o(m 2), 0o+ C+ 0(C 2 ) and

so+ 0(e 2). Then (85) yields

A(y) -A0(Q . 0 S ) 1 - +P2 a- " " +s) M . EQ.

- + eAl[oAm + AO0 } + 0(E2). (87)

*)+4(-* ~ ~ 2 mC 0(7

From (87) we find at once that

<A(y)> - A o(M., , ) + 0(E2). (88)

Next we compute the variance of A(y).

<A > - <k>= < [() - A >+0(89)

We shall evaluate it in the special case in which Ao - A o0 0. Then after a

lengthy calculation, we find for s >> a,
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22 
4 >C s A 2'2 {1(+ + 2( + 22= L+ P +2 7'1

+ (s P +s)+ + T 2 (90)
(Pl+s)(p 2+s) (P2+s)2 J

Here

C f (V,2) 2N(r)dr j [2Nr- 3 ]d (91)
0 0

When p1  p 2 
= p, (90) simplifies to

2 >2 e24 S 2 2
<( 20 + so + 2p (92)

If the initial wavefront is a plane, p = o and (92) becomes

22 22 52 95)
<A2>-<A>2 =2E2 A 2 (93)

3 0

If the initial wavefront is a point, p = 0 and (92) yields
2

<2>- Cs3 A2  (94)

The result (93) is the same as that of Krasilnikov[ ] while (94) is similar

to, but not identical with, that of P.G. Bergmann

8. The reduced wave equation in a random medium

Let us consider the solution u(x) of the following problem

A u + k n (x)u .- B(') (95)

lim ixi -liknu -0. (96)

X+1~., 00q•-
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Equation (95) is the reduced wave equation with a source term corresponding

to a source of unit strength located at the origin x - 0. Equation (96) is

the radiation condition which asserts that the solution u describes outward.-

ly propagating waves. This problem is well posed for a large class of re-

fractive indices n(x). Let us assume that n(x) has the form

n('x*) - 1 + e L('x) •(97)

Of course n, jL and therefore u also depend upon the variable w which ranges

over the probability space fl, but we shall not write it explicitly.

It seems reasonable to suppose that u can be represented as a power se-

ries in e
-* 2 -3

(-,C) = u0 ( ) + eul(X) + e u2(x) + 0(6 ) . (98)

Upon inserting (97) and (98) into (95) and (96), and equating to zero the

coefficient of each power of e, we obtain

im +ku - 0 (100)
2 2

Au 0 1 +.Vz k i0 5(xo (lOO)

Au + k ul= - 2k2 u (101)

urn jj -- iku-ik =0 (102)

AU2 + k
2u 2 = - k

2  2U0 - 2k2 ±uI  (103)

lim 01 iku_ u -0. C)X 0iox)
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The solution of (99) and (100) is

0 eiklIl (105)t I •

To solve (101) and (102) we apply Green's theorem to the interior of a large

sphere and assume that the integral over the sphere tends to zero as its ra-

dius becomes infinite. Then we obtain

k2 f e ikl hI o4 •lU(X) x X1 )31 (106)

In a similar way we can obtain the solution u 2() of (103) and (104), which

is

u2(x) L 0 1)u°') + 24(')u (x']d1 (107)

Let us now compute the mean value of u which requires the calculation of

the three mean values <Uo>, <ui> and .'u 2 >. From (105), since u is indepen-
dent of and therefore of w, <Uo> = uO . From (106), since u1 is linear in 4

and since we assume that <ji> = 0, it follows that <u1> 0 0. To compute <,% 2>

from (107) we require <2i > and <4u1 >. We assume that <. 2()> - <> is a con-
stant, and we compute <j.u1> by using (106) as follows:

< Ul(x)>=.f ik.I

e_______ N (jx-x'jUo(X')d '
= 2 I

22 eikr2 f r N(r)u o( ++)d d (108)
= 2 rf
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In (108) we have introduced the correlation coefficient N(.l-x'I) -

< ( ) (, )>/< 2>, which is assumed to be a function of the distance [ -'

only.

The angular integration in (108) on a sphere of radius r can be per-

formed explicitly by making use of the following easily-proved mean value

theorem which is a consequence of (99)

! f o( +)d o( ) sin kr

U , U(') sin kixi eik(r'lxl) r> . (109)

0krr> (l9

When (109) is inserted into (108) it becomes

<<41(x~ul~> u(x)u22 <2>[ f eN(r)sin kr dr

+ e'iklIxlsin krl} fe2ikrN(r)dr]

lx

=-iUo0(-x) k4L2>[ (e 2ikr-l)N4(r)- (e 21k(r" l'x )_l)N(r)dr]

(oo

(110)

For l'I >> a, which holds at points many correlation lengths from the source,

(110) can be simplified to

<P(X)Ul(X)> 0 <1 0 (X•(u)

Here we have introduced the constant 0 which is defined by

-ik f (e 2kr-l)N(r)dr • (112)

0
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Now when (1ii) is used in it, (107) yields

k2  2 eikl'x-' I
< c2(x)>= <i±>1+2 )J Uo( t)d' . (113)

Upon collecting our results we have

( )> Uo 2('O> +o(C

+ i? (1+20)J u (xt~ + O(EC) (114)

Although (114) gives <U> explicitly, it is advantageous to rewrite it as an

integral equation for <i>. Since <ui> differs from u by O(E 2), the differ-

ence between e 2<U> and E2 u is O(e4 ) and we may write (114) as0

<u(') >-. Uo(X) + ek2 2 ik-x'(

If 0(e5 ) is omitted, this equation becomes an integral equation for <u(*)>.

It is equivalent to the following differential equation and radiation condi-

tion for <U>

2 2,(6A <u + k2(n*) U> .-- ("X) (116)

xr jkn -0

Here the effective index n* is de-fined by

2 22(* =1+ e <4.L>(1 +23)

<4 (+ 2 - ikf (e ir)N(r)K) .(8
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Our results (116) and (117) show that up to and including terms of order e2

the mean value of u propagates as if in a medium of complex refractive index

n* given by (118). This is the main result of this section. The imaginary

part of kn* is the attenuation coefficient m for a wave in this medium. From

(118) it is given by

22 > k2 f (1 - cos 2kr)N(r)dr . (119)

This result agrees with that obtained previously by another method. [1]

The solution of (116) and (117) ts

( > ei *IXI
X(120)

By comparing (120) with (105) we see that <U(X)> is given by replacing k by

kn* in uo(X). This same rule applies to all pairs of solutions u0 and <%>

of problems which differ from (95), (96) or (116), (117) merely in the source

term. From (120) we have

I< e-alxl
=-- .X (121)

The method which we have used to derive (116) and (117) can also be used

2 2,>_ <U,)2.
to determine <M2 (")> and from it the variance <U2(i)>- <u(x)> . The quantity

<a> is often called the coherent wave and <i>2 the coherent intensity while

the variance is called the incoherent intensity. Since it should be clear how

to obtain an equation for <u 2> which is correct through terms in e 2 we shall

not carry out this calculation.
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