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NONLINEAR THEORISZS SGR THIN SHELLS
by .
Jo Lyell Sanders, Ir.X

ABSTRACT

Strain-displacement relations for thin shells valid for large
displacements are derived, With these as a starting point approximate
strain-displacement relations and equilibrium equations are derived by
making certain simplifying sassumptions, In particular the middle surface
strains are assumed small and the rotations are assumed moderately small,
The resulting equations are suitable as a starting point for stability
invastigetions or other problems in which the effscts of deformation on
equilibrium cannot be ignored, but in which the rotations are not too
large,

The linearized forms of several of the sets of equations derived
herein coincide with small deflsction theories in the literature,

INTRODUCTION
One of the important uses to which a large displacement theory of

thin shells can be put is the investigation of stability., The many papers
in the literature on the stability of shells have dealt almost exclusively
with cylinders, spheres, and cones, and the differential equations governing
the phenomenon have been derived spscifically for thess geometrical shapes,
It would seem to be desirable to have a unified treatment based on a general
theory for an arbitrary middle surface, The practically important cases of
the shallow shell and the shell of revolution with symmetric deformations
have been adequately treated (refersnces 1 and 2) but the general problem

R pssociste Professor of Structural Mechanics, Harvard University *

®

o &

[




® oo @

-2
presents difficulties not found in the specisl cases. It is the purpose of’
the present paper to derive an exact theory for large deflections of a thin
sheil with an arbitrary middle surface and then by making certain simplifying
assurptions to derive from this several theories suitable for application.

An incomplete treatment of the general large deflection theory of thir
shells has bean given by Novozhilov in refersnce 3. He derives a theory for
smoll middle surface strains but does not go into detail on further
simplifications or discuss spproximate squilibrium squations. He indicates
that the next step iz to assume that the rotations are small. His results
for the small strain theory differ from those in the present paper,

In the western litorsture there have been several papers dealing with
the gensral large deflection theory, in particular the paper by Synge and
Chien (reference L), the series of papers by Chien (refsrences 5 and 6) and
the recent paper by Ericksen snd Truesdell (raference 7). The intrinsic
theory of shells developed by Synge and Chien avoids the use of displace-
nants as unknowns of the problem. The theory of shells is deduced from the
three dimensional theory of elasticity and then by means of series
expansions in powsrs of a small thicimess parameter approximate theories
of thin shells are derived. A large number of problem types is found
classified according to the relative orders of magnitude of various
quantities. This approach has been criticized by several authors (see
references 8, 5 and 10), In the paper of Ericksen and Truesdell thers is
a unified treatment of shells and curved rods developed as two and one
dimensionsl theories respsctively without an attempt to deduce these from
the three dimensional theory of elasticity. The constitutive relations
ere purposely left out of consideration since they are unnecessary for
the description of strain and the establishment of equilibrium conditions.

The suthors are interested only in exact theory and do not discuss the
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simplifications of small strains and rotations.

The papers of Synge and Chien and that of Ericksen and Truesdell on the
shall problem are unorthodcx and difficult to relate to most of the rest of
the literaturs. The authors have aimed at a maximum of generality, perha;;b
mors than necessary for the technological applications of the theory.

In ths present psper a largs deflection theory for thin shells is
developed in which transverse shear and normal strains are neglected., Withe
out further approximations the equations are very complicated; but sincs
large middle surface strains are almost never encounteied in engineering
applications, an effort is made to derive simpler equations based on the
assumption of small strains, Considerably more simplification is gained
when the rotations as well as the middle surface strains are assumed to be
small, In this way a theory for shells is derived comparsble to the
von Karman theory for plates., The equations corresponding to other ainor
simplifications are @lso presented, The main part of the paper is written .
in tensor notation but the principal results are reproduced in the ordinary
notation in an appendix.

DERIVATION OF EXACT EQUATIONS FOR LARGE DISPLACEMENTS

Geometrical Preliminaries

Let the undeformed middle surface of the shell bs given by the equations
Sede®  (Wx1,2,35am1,2) (1)

where the xi are cartesian coordinates in space and the E“ are curvie
linear coordinates on the surface, Let the displacements Ui of material
points on the middle surface of the shell be resolved into compenents
tangentisl and nomal to the undeformed middle surface as expressed by the
following equation

v
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L=
vt - v, « wowt (2)
’

i axt

where X « L) == are tangent vsitory Lo ths coordinate curves on the une- '
2

13
deformed middle surface and Nj‘ is the unit nomal to the undeformed

middle surface. In this paper the coordinates E“ will be used to label
material particles on both the undeformed middle surface and the deformed
niddle surface,

Some of the important formulas of the theory of surfaces will be used
repeatedly and are reproduced here for convenient reference. For the un-
deformed middle surfacs the formula for the squared element of arc d32
in terms of the first fundamental fom gap is

2 4.4
ae? w xl2t aedf - 8 4t (3)
the element of area is
A =V agtag? (L)

where g 1s the determinant of 805 3 and the equations of Gauss,
Weingarten and Codazzi are

.
[y

1 1
Xop ™" bdﬂ" (5)
4 1
Ky = oy (6)
Papyy  Pay,p 0

whers a comma denotes covariant differentiation with respect to the metric
g o and whers the second fundamental form bap s 88 here used, differs
in sign from the usual definition.

After the Jdisplacement vt given by equation (2), the material
particle originally at x' will move to the point y> given by

A e gt
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Aat ot

e xt o u% .ot (8)
’“
This is the equation of the deformed middle surface in terms of the

parameters Ea . Tangent vectors to the coordinate curves on the deformed

middle surface are given by

Ay

yf,, - XIXTY + (9)
where
Mg "“fo’fp = &gy * Ug g * bog¥ (10)
)‘: * )‘Ta = gw)‘aa (11)
o = 7 Ni-w pr (12)
Also define
. x;LcNi (13)
cose = NIRE ()

where T ic the unit normal to the deformed middle surface (see equation -
(73))e Indices on xaﬂ » By and v will always be raised or lowered with
the metric ‘cp + Where necessary a bar indicates a quantity defined with
respect to the deformed middle surface, The squared element of arc on the
deformed middle surface is given by

=2 h A 8
@ -yt oty 4B - Op A (19)
In terms of x@ and "u
Gap ~ ).:k ” + “a"p (26)

The element of area di on the deformed middle surface is given by

. e, wsra v e v i mmew r o ey s Mem Avip e e o menes & VWS e e A me P
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d&F =/ agtag? -I/g A (17)
The equations of Gauss, Weingarten and Codazzi are
y} s " Bapni (18)
N .
LR - o (19)
Bop/x = Per/p (20)

where B“p is the second fundamental form of the deformed middle surfsse,
A slash is used to denote covariant differentiation with respect o the
metric @ o * For scalars and cartesian tensors (as W, y or W )} there
is no difference between a slash and a comma, An expression for B in

a8

terms of xap 2By s Y and cosm can be derived as follows

a

-yNi.-yaa

- "[ (Xz,p ’bg“'a)xf* + ( “ﬂ,ﬂ-)‘zb‘fﬁ )N"JN"

.

- (b e Ve B)eosm - () p«fbﬁ.rl-t“)\' ()
The following identity will prove to be useful

y:'alfl " vﬁ}‘pa + Ky COB = 0 (22)

A4

Bquilibriun Yqustions ' '
In the coordinate system of the deformed middle surface the equilibrium
aquations of the shell are the same as in the linear theory and need not be
derived here. They are (see reference 10):
force equilibrium

N??x-rﬂﬁch-fip-O (23)

Wy = Bgh® +5 =0 (25)

T O T T - -
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moment equilibrium ’/E.

p -0 (25) .2

a ).‘z

- p - 3 ::5!

suB(Nuﬂ+B:H )=0 (26) ‘g?’;'

where Naﬂ is the membrane stress resultant, Map is the bending moment @g‘
resultant, and Q% is the transverse shear stress resultant, all defined ‘é

- - e

with respect to tha deformed shell, The quantities p“ and p are applied a3
R

load intensities per unit of area of the deformed middle surface, Eap is %

the covariant permutation tensor in the deformed coordinate system, ”.;.
The above equilibrium equations are exact tut, of course, the ten o

stress quantities entering into them do not furnish a complete description

of the state of stress throughout the thickness of the shell, However, in

thin shell theory it is always assumed that the state of stress is adequaiely
described in terms of these quantities,
Zinite Strains

The strain quantities entering into & thin shell theory are & matter
for definition, The literature of the subject shows a wide variety of
choices of strain-displacement relations, particularly for the bending
strains, Soms choices have been shown to be better than others (see .
reference 11) but st the present time no set of conditions sufficient to f’g‘r
render the choice unique has besn generslly agreed upon, In the present
paper the choice has been guided by two considerations, the first of which
wag the desire to derive a theory which admits a principle of virtual work,

]
This requirément forces a closs relation between the equilibrium equations r
and the strain-displacement relations. The second consideration was
simplicity. The resultant cnoice will be show. to furnish an adequate ®

description of the deformation of the shell provided ‘he Kirchoff hypotheses

are accepted as adequate descriptions of the displacements.
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Let S be & simply connscted region on the deformed middle surface

enclosed by the curve T . The following identity follows from eqaations
(23) to (26).

[ CBonfatisPal, + (B P 5)oR
3

+ (n%.qﬁ)% +3 cﬁ(n“pm"u‘fﬁ)smd' .0 (27)

By application of the divergencs theorem for a curved surface (27) may be
transformed into the following identity which is ths preliminary form of the
principle of virtual work and 1l subsequent derivations will proceed from it.

ﬁ (N“ﬁsva“smx“p%)ﬁa ds +J' <spav§+§aw)¢x
[ 5
. J' (% (sl T,/ *Bog-2o58) + Q“(aﬁ/a-aﬁavaﬁa)

+ WB(eg, ) -F B0 JeR 2 e

where the virtual displacements 60, , W and rotations 6&f, , 6§ refer l;;
to components in the directions of the tangents and normal to the deformed ;’s
middle surfsce, In (28) the terms on the left hand side are interpretable . ?i:%'
a9 the external virtusl work of edge loads and surface loads respectively. %ﬁ?
The right hand side of (28) might be interpreted as internal virtual work f"i.
if tha coefficients of N“ﬁ » Q“, and Hap were identified with strain $‘)
increments, Such an identification will be postponed until later, First %h:
these coefficients will be written in a different form. ;gl

By definition %g;

sut - 5ﬁ°‘y1 + oW~ st *c + 6W N (29) S

Now
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GU}B - (67-3 apaﬁ“)ﬁi . (6[7%+B§5W)yi‘c - ‘mfp
- (8% o-b GBGUQ)Ni + (50"‘5+b;5w)xfa (30)
From which:
atrp ot B aaaw - xﬁox: + KBy (31)
GW/c - BzGUY - vYS)\I + cos By, (32)*

The rotation around the normal &F is given in terms of displacements by

the formula
o = 3 ¢l (33)
By the use of (31) and the fact that B o8 is symmetric (33) becomes
5 = 5 20, LAY (3k)
Also Eogth = %{xwaxzmgsua-stxg-uaaup) (39)

From (31) and (35) the coefficient of N in (28) is
1 Y Y <1 Y 1
g(xﬁaxampbu;xﬂaxpmas%) 3 s(xwxamaup) -3 coap {36)
The natural definition of the finive membrane strain is thus
E, = 3G -g.) (37)
a3 2" "af “of
The coefficient of Q% in (28) is
- u
By, = !E.W/(x - Bﬁaﬂ‘ﬁ + 5¢a VYBXG + cose bp + 5¢a (38)
Since the intention is to derive a theory in which transverse shear strains
are neglected, set sya = 0 which gives
- Y.
&8, vrsxa cose By, (39)

which serves to relate rotations to displacements, From (9), (13), (1b) and
(39)




-ty

ted oy ot + coms Bu = = ¢
N 5y,a vYéka + cosuy u, 6¢a (ko)

or since Wy =0 it follows that
?

88, = ¥, o0 (1) ’

® oo ®

A finite transverse shear strain vy, consistent with (38) and the require-

ment Y " 0 may be defined as follows

i
Yo = Ty,

- AT
Agly * bq COSO (42)

The coefficient of M® in (28) may be found in terms of B e 4 O ;

as follows, From (L1)
CYRE/ Y
.-3B aaﬁiani N yfpsﬁfc
- 7

sinos NiaM 2 0. Now recall
i
Bap W‘:‘dy s
e 1
80 6By = ¥ 0N, + N;‘asy’p

- v.i .1
5¢5/ (o BQy :Taynp

Which gives

- J Y A% P
o/ = B = By p

From (9) and (35)

- I V2. N S SN £
e“ﬁsﬂ’ E(ynﬁﬁy:“ y,aﬁy’ﬂ)

From (45) and (L6) the coefficient of ¥ in (28) reduces to

o
(L3)
. i ]
[ ]
()
) [ ]
(15)
(L6) ’
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6Bg = 5 BaOV,g )

1 .,
-5}3“3-2850

e By
- « BY
8B BaanBY (u7)

Using the foregoing results the right hand side of (28) may be written
-BYSE,
J’ [Wamap + M“B(asaa BY6E,, )1ak (48)
g
There is obviously some difficulty in defining & finite bending strain N
tensor bscauss the coefficient of MQ'B in this expression is not the

&

%
s

t

exact variation of anything. However, a way to proceed suggests itself if He
(48) is rewritten in the following form E '
249
B _pPMr%)sE_ + MP x %
J‘ [N aﬁ J6Eqq + MP6BdR (L) %
z .
Define a finite bending strain tensor by ’ {D ®
K,=B -b i
o " Pap = Pap (50) \
Define a modified membrane stress tensor by ’
X
T o 1P o it (51) ,
Since ncﬂ is symmetric thers will be no loss in generality by defining a .
modified bending moment tensor by e
. Lo afe) (52 *
Note that the third moment equilibrium equation (equation (26)) is °
equivalent to the statement that N is syrmetric. In terms of the
nevly defined quantities (L9) bacomes
)

Bor _+
{ e 88, Waxuﬂ)d (53)
E]




The details will not be shown here but this expression for the internal
virtual work may be derived from the three dimensional theory by integration

through the thickness of the shell and without approximation provided the

displacements are restricted by the Kirchoff hypotheses. The appearance of
the modified tensors T’B and 'ﬂup rather than NcB and M"B may seem
somewhat strange but then there is no reason why thess quantities should not
be adopted as the stress quantities entering into the theory rather than
Ncﬁ and M"‘ﬁ « In fact thers is an advantage in that both W and Eaﬁ
are symmetric and thus there are fewer unknowns to deal with, This must
aimply mean that the equilibrium equations containing Nu‘e and H"‘p are
slightly more general than is appropriate for a theory in which the dis-
placements are restricted by the Kirchoff hypotheses. Moreover, in the
present theory, there are the same number of stress quantities as there are
strain quantities, If both a principle of mininmum potentisl energy and s
principle of minimum complementary energy (for an elastic shell) are to be
possible of formulation in the theory, then it is ordinarily necessary that
the constitutive relations be invertible, This is possible only if there
are the same number of stress quantities as strain quantities,

The iWo strain tensors E:g and K ” (or equivalently the two tensora
Gaa and Baa ) furnish an adequate deseription of the deformation of the
shell as shown by the following argument, In the first place the deformation
of the shell is completely described in terms of the displacementsof points
on the middle surface provided the displacements throughout the thickness -
are restricted by the Kirchoff hypotheses. Secondly, from the theory of
surfaces, a knowledge of G o and B o as functions of Ea and subject
to the Qauss and Codazzi integrability conditions ,....ch in the present case
are equivalent to compatibility conditions) completely determines the deformed
middle surface together with a coordinate system (the deformed Ea system)

Fxis,
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except for a rigid body motion.
Modified Equilibrium Equations

Since new stress quantities have been introduced the equilibrium
squations (23) to (26) are no longer appropriate for the theory being
devaloped here, Appropriate equations can be derived from the expression
(53) for internal virtual work.

J‘ W5z cgiﬂ"ﬁsx o) - f l.‘r«"‘i(slf‘a /a*Bog)
3 3

= Ly Y, ¥
« WP (LsH a6 /asUYmeeUY /a*BB, 6N 1K

- § [(ﬂ“ﬁmﬁ!ﬁ*)stra . ‘Fr/’ﬁsi' + ?Ppsgia]ip 4 :
e

[ Cp i o,
g

. @r/’ﬁw-s a\eﬁ-BIB wﬂ)smax (5h)

The line integral around C is the external virtual work of the edge
forces and moments. If a principle of virtual work is required to hold,
and if th portion of the shell within € is in equilibrium, then the
internad virtual work must equal the external virtual work for arbitrary
virtual displacements, Thus the condition of equilibrium is that the last
integral in (5L) vanishes, This leads to tho following equilibrium equations
(surface forces have been omitted in this derivation for simplicity).

ol o 2
Ta%a-sasw“ﬁ-n‘gnww-o (56)

Bquations (55) and (56) are in fact identical to the equations (23) to (25)
with Q% eliminated. Equation (26) is accounted for by the symmetry of
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P, 1r Y aqofined by
T - “!;'g (57)

is introduced as an approximation to Q° , then the equilibrium equations,
in an expanded form, may be written

¥E o+ BT () -0 (58)
Y, - BGBW - BzBBY?F\B -0 (59)
wE-F.o0 (60)

Tha principle of virtual work reads

f [P Bpﬂ‘”’ )60, + Q¥ + M"Bsgap]n 8

T

f fﬂ“"(auB /a +B aw) +?5“(5¢ +5W ..spatr)

+ PP‘B(% /a+BYéff \«BIB‘3 6W) Jdk

. J‘ R qaa.‘d“ayum"%xua)dl (&)
g
Tt is something of a matter of personal preference, but it is this form of
the principle of virtual work (with the U* and vy, tems present) which
will be used in the remainder of the paper.

SHALL STRAIN APPROXIMATION

Bquilibriun Equations

In almost all practical applications of shell theory the middle surface
strains are emall whether or not the displacements are small, in which case
the exact eruations can be simplified somewhat, Since by definition the
middle surface strain is
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1
Bap ~ 2CopEep

small middle surface strain means that the intrinsic geometry of the deformed

).

middle surface is almost the same as that of the undeformed middle surface.
Thus for sufficiently small middle surface strains (and exactly for in-
extensional bending) covariant differentiation with respect to G , may be

af
replaced by covariant differentiation with respect to g‘,‘a + The equilibrium

equations becone
Njﬁwﬂdﬂ@ﬁﬂ"")'u#-o
T, - Baﬁ'ﬂ“‘e - BIBETW +p=0 (62)
'ﬂ"‘ﬁ i

Strain.Displacement Relations '

A short investigation shows that the expression for Eap given by (37)
and (16) is not simplified at all by the assumption of small strains, The

expression for Ba‘3 given by (21) (and X o8 given by (50)) is slightly

simplified hecause the expressicns for cosm and v® in temms of A

o
and p (sse equations (7h) and (75) later in the paper) can be simplified

W replacihg Y g br unity. The expreasion for X op is obviously stiNn
quite complicated.

Constitutive Relations

Consistent constitutive relations for the linear small strain theory of
thin elastic shells have been derived in references 11, 12 and 13. These
derivations require only minor modifications in the case of finite dise
placements and small strains so they will not be reproducsd here, For a
thin shell of uniform thickness h composed of an isotropic hookean
matarial, the constitutive relations are the same as in Love's first
spproximation, namely the linear relations
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EhSpq = (1+v)gwgﬁ5N' - Vgungéﬂ' (63)
1 3 5 5

iz B Kdﬁ - (14-».:)gwg%?fY - vgaﬁgﬁﬁ' (6h)

According to reference 11 these relations may be used even if the definition

of X in terms of displacements is altered by the addition of terms of the

af
form B:E « A similar argument to that in reference 11 shows that 'Na'ﬁ

nay be alIired by sddition of terms of the form Bf,n‘“' . Note that in the
case of ama’l strain the indices on i and 'nﬂﬁ may bs raised and
lowered with the metric gﬂﬁ instead of GGB with negligible error.

If the material of the shell is not elastic and isotropic the relations
(63) ard (6L) must be replaced by others appropriate for the material, How-
ever, the strain-displacement relations and the equilibrium equations given
previously are unaffected by the material so long as transverse shear ard

normal strains can be neglected,

APPROXIMATION OF SMALL STRAINS AND MODERATELY SMALL ROTATIONS

Tha axact theory was considerably simplified by the assumption that
the middle surface strains are small, but the equations are still very
complicatéd. Considerable additional simplification can be achieved if
the rotations are assumed small also. This simplification will be carried
out in the following.

For infinitesimal displacements and rotations it is evident from (33)
and (38) that the rotations are given by the formulas

1
R T (65)

¢a b 'w,a + bﬁ"ﬁ = He (66)

For small but finite rotations it is convenient to think of the expression\s
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—
in {65) and (66) as -.tations (just as in the linear theory of shells).
Purely for convenience, suppose that the coordinates E‘x have the units of
length so that ¢, ¢c: and E g 57 dimensionless. The following order

of magnitude assumptions will lead to a theory one step beyond the linear
theory in refinement,

1en
g or E(baﬁ . o = 0fe) (67)
g or u, = 0(e) (68)
.1.(33 Ug,a) *+ by » O(e?) (69)

where ¢ 41z a number small compared to unity, Write )‘aﬁ in the fom

1l 1l
)‘aﬂ gaﬁ + E(Ua,p"uﬁ,a) + E(Uc,pwﬁ,a*abaﬂw)

1
" Bop - P + 50y Yy, o*2 ") (70)
From (16) and {37) we find that E o8 is 0(c?) and s given approximately

N

by the expression '

1
B 'E(Ua,p*uﬁ Ot ban+ 3

The order of magnitude assumption (69) was made so that these terms would

+ % zaaﬁa ()

not domirite the expression for R o 3 otherwise the linear thesry would
result,

In order to simplify the expression for Bﬁﬁ expressions for e and

Cosw 4&re needed. An expression for Ni may be found by taking the croas
product of the tangent vectors yi

Nk - zidkyiaydp {72)

Onitting the details, this leads to the following expression for N in
terms of lcp and By
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-1/ £ PG ﬁ"i’krﬁ i) (73)

Fron (33), (14) and (73) .
§ PO g, (1)

comn = 3 /B BT g (79)

From Gcﬂ - By 0(e?) it follows that 1/5 «1 +0(s%) $ then from (67)
to (70) and (74) and (75) it follows that

v6 - -ua + 0(62) (76)
cose = 1 + 0(e?) (m
Prom the foregoing and (21) the first approximation to B i baﬁ is
- - Y = -
FRLPELPLES KR AR R
. o] Y Y(uy
W o * Olep * o gty t b (U, aVa,y) (78)

4 difticulty here is that this expression is not symmetric in a and
p « Howsver, it can easily be ghown that the antisymmetric part is
negligibla,

1
Taaarpcuib(u'rp'bup*)--é-bp(ra c‘r) ()

1 2
Now E(Ua,p ' a) +b¢w 0(e<)

1 2 .
80 ’i(uc,pwa,c) = -bapw + 0(e“) (80)
and then  T.; - Tg, (be -bYb, ﬁ)w + higher order terms , (81)
but the first term on the right hand side of (81) vanishes so T i Tﬁa
is negligible (compared to T op + Tﬂ a)' The symmetric part of T o can

be taken as the first approximation to the bending strain, giving

® oo ®
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37“

or P, 0%, * BN ) (62)

N
voa Ve, * T Pally,p 8,
Alternatively it can do no harm to include some higher order terms in
X of if for some applications it simplifies the equations. The following

approximation of X g T be used instead (see equation (21))

« b\ - -
Kup bﬁ"‘rﬂ ua’p baﬁ

5P + B et bpbww

.l ¥ ¥ ¥
Woap * Ba,ply * Bly,p * Ol q * Bbec¥ (83)

vwhich is symmetric as it stands, Both alternative expressions are linear
in the displacements, The expression (82) for the bending strain is the
same as the one derived in references 11 and 1L, The expression (83) does
not seem to have appeared vefore in the literature, Either expression
belongs to a consistent shell theory in the senss of Koiter (reference 11),

When transverse shear strains are neglected, the condition &rc =0
serves to relate &7 g to the displacements as in (39)., By analogy the
following €xpression should be used for Yo in the present case

Ya-¢c+u“-¢a+w,u-b';v? (8L)

Approximate Equilibrium Equationa

Approximate equilibrium equations corresponding to the approximate
strain-displacenment eguations may be found by the same method used to
derive the equilibrium equations (55) and (56), Since the strains are
small dX may be replaced by dA and we have
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+ bﬁb‘]wp + [‘U‘;‘p - baﬁw"p + (ucN“ﬁ)’pjaw + ['H"’g - 3“]5% }dA (82) ;ﬁg. .
By inspesction the equilibrium equations are 2;;;
1 1 1 )
‘N:g * bf}law * 7 eaﬁ(m):a * E(bgncT):T - E(bzma):'f * bﬁac * pﬁ =0 %%’"
CHE
Qfa - buﬁﬂap + (uaN“p),ﬂ +p=0 (87) % \
Hp - o T

okt o

where the load terms p° and p have been supplied, Thesa equations express

ALY

equilibrium of forcesand moments in directions parallel to the tangents and

il

nor.al to the undeformed middle surface. In the left-hand side of (85) ¢¢ .

:;;.'

L fag e
g

.
35 bl

could be expressed in terms of displacements and the term Q“&ya could
be omitted, The result for the squilibrium equations wouid be (86) and (87)
with %° eliminated by means of (88), If the expression (83) is used for

the bending strain, the first two equitibrium equations are slightly different
and read as follows

w:zd-bsyuw+%:°B(W‘;)’a+(b$ﬂ°r)’n+biﬁq+pp-O (86)1

.oty e ol
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P
a2,
e
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X

3.
- - 1 J :,s_‘,,g
3':“ bcpw + (u(;l"‘a)’p bp‘:’%iqﬂ +pw0 (87) %
Boundary Conditions :?é
The Kirchoff boundary conditions may be obtained from the boundary e

integral in (85) which when written out reads
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hat

;ﬁ{m"p - -]2& P 4 %— bP o L P leu, + @Ay Yow + Wsﬁa}nﬁ ds

A Y Y Y
(89)
Let t be the unit tangent to the curve G , then mg = ethY is the unit
normal to C in the surface S . Let
Po = Pyte * Pl (50)
where ¢s and ¢n are scalars, From (90)
e d % o (o Yir 1,8
¢s [} R ( W,c/fbaUY)t
LN T
L as + baUYt (91)

Obviously ¢s is not independent of W amd Uc on C, Tha last tem
in (89), namely,

§n°55¢unﬁ ds = SW[- ngi:,bgauYta)tu + o n Jn as (92)
c
becomes, upon integrating by parts,
d a,b
g [Es-(ﬁ"et ERLE APyl 00, + Pf'anunﬁﬁﬁnlds (93)

assmming C has a contimuously turning tangent, Altogether (89) becomes

? {ma& - ??-‘ a"ﬂm + % b‘:m‘p - %- bgﬁw + b:ﬁapt*tsjnpwg
C

+ f&np + uaWnp + -d%(hapnata)]&?l + 'ﬂaﬁnanﬁéﬂn Bda . (9k)

From this the boundary conditions on C may bs read off, They arot

1 1 1l
prescribe [N . 3 e“ﬂﬁmz +3 bf?f"ﬂ -3 bgﬂ“'f + b?ﬁat*%]np or U_ (95)
n '@nﬁ + p.aWnp + a%(ﬁnpta) or W (96)
n ?lcanunﬁ or g (sm
For the alternative theory with (83) for the bending strain and
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fE1 (87)! and (88) for equilibrium equations, the boundary conditions axe:
R} i i qu; el

prescribe e 1% ecgﬂq + bg(6$+t6t1')ﬁ¥]nﬁ or U (95)*
" 'Qana + ppﬂapna + d%-(ﬂ""ﬁtanp) or W (96)¢
n ?faananp or 8§ N (s7)!

FURTHER APPROXIMATIONS

[ i

Small Rotation About the Nomrmal

Pl

If the rotation about the normal can bs neglected compared to the other
two rotations, then the equations can be simplified further, The importance
of the rotation about the nomal is not entirely established at the present
time and no general condition under which it can te neglected is known,

Several linear theories for thin shells have been constructed which differ

o

6 Lot w3 By er w::.

from Love!s first approximation only by terms in the bending strain

»

proportional to the rotation about the normal. The differsncesbetween these

.‘
Vet

theories and Love's are tabulated in reference 11 where the general validity
of these theories is questioned. That the rotation about the normal can
sometimes b neglected is evidenced by the fact that these theories lead oot G
to very nearly the same results as more accurate theories in some specific
applications, See, for example, reference 15, On the other hand these
theories lead to erroneous results in other applications., See refarences

16 and 17,

For those cases in which the approximation is valid the strains X

o
and ch given by equations (7L) and (82) can be simplified to read
Eﬂﬂ - %‘(Ua,amp,a) + bcpw + % u.“p.p (98)
1
%ap * 2Fa,5 %, o) 9)
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The corresponding approximate equilibrium equations (obtained via the virtual

work principle) ars

¥ 0% . %Y L C a0
B0 Ty TP
3:: - bcﬁﬁ + (pa'NQﬁ),B +p=0
¥ ..o
sB
and the boundary conditions are to prescribe:
a, 5
mﬂﬁ + byt trw]"p or U

'@np + uaWnB + gg(WBtanﬂ) or W

Haﬁnanﬂ or ¢n

(200)

(101)

{102) -

(203)
(10k)

(105)

When these equations are linearized they reduce, essentially, to those

given in reference 10,

The Donnell-Mushtari-Vliasov Approximation

A further simplification of the above equations is possible under the

sgsumptions discussed in reference 13, This consizts in neglecting the

term containing Uc in the expression for By with the following results

for straiis,

1 1
Eap - -Z-(Uc,ﬂmﬂ,c) + bcﬁw +5 w,aw’

1 .
Kﬂﬁ " §<¢°Jp+¢ﬂ’¢) " -H:Gﬁ

B

Y'<:"'¢a+w,¢x

for equilibrium equations,
1 at o

'Q?a- baaw + (wﬂh"ﬁ)’p +p=0

(106)

(207)
(103)

(109)

(110)
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E‘:‘g -Tao0 (112)
and for boundary conditions prescribe
h"ﬁnp or U, (122)
(oﬁ.w,an“ﬁ)nﬂ +a‘%@f‘ptcnﬁ) or W (113)
ﬂapnang or 8 (11k)

Marguerre's Shallow Shell Equations

If applied to a shallow shell the preceding equations can be further .
simplified bscause of the geometry. Suppose that the shell is nearly flat
and parallel to the x3 = z = 0 plane, and that the squares of thes slopes

ol the shell with respect to the 2z = 0 plane may be neglected. Then,
approximately:

bog * %08 (115)
Since the displacements U‘z are considered small compared to W , the
horigontal displacements Ua and the vertical displacements W are given
spproximately in terms of Ua and W by

U ~0 +2 W
a a 14
(2126)
Wi

In terms of Ua and W the membrane strain E

1
Bep * 00,5, 0%%, 0,078, 8%, ™, ¥ ) (nn

The strain Kup and y, &re as before (in equations (107) and (108)). The

conditions of equilibrium in the hordzontal and vertical directions are

ncg + f)a =0 (118)
’
Lo+ [z g JNP] 45 w0 (119)

a8 (equation (106)) becomes:
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n"sg =0 (120)

where B° 4s the horizontal load intensity and p is the vertical load
intensity, The boundary conditions are to prescribe

Naﬁng or U; (221)
¥ . (z,a+w’a)Nq'B]ng + E“;(ﬂtanp) or W (222)
Wncnﬁ or ¢n (123).

These are Marguerre's shallow shell equations in tensor form (reference 1),

CONCLUDING REMARKS

Ssversl nonlinear theories for thin shells have been derived in
increasing stages of approximation. The linearization of these squations,
which is more or less obvious, has been omitted but in most cases the
resulting linear equations are essentislly the same as shell equations
already given in the literature. In all cases the theories are firat
approximation theories in the sense that transverse shear and normal strains
are neglactad,

In each of the theories derived in this paper the equilibrium equations
and strain-displacement relations sre related by & principle of virtusl work
and hence the usual variational principles may be formulated and proved,
These derivations are also more or less obvious and have been omitted,

The sdditional manipulations necassary to apply the equations to :
stability problems has not been given either, bui the process is well kmown

and, of course, different manipulations may be required in different special

cases,
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SHELL EQUATIONS IN ORDINARY NOTATION

In the ordinary notation with lines of curvature for coordinates (as
used in references 9 and 1) the expressions (71) for middle surface strains

and (82) for berding strains are, respectively

SR AL R
‘12'%(311‘?2*%%'El]ﬁ;%"l'ql?é%uz*”l“z)

%92 '%%*%‘2‘:’&?‘9’1 (4-2)
e R T R TR Py

T (4=3)

The rotations ars given by
¢1 - 1 W

¢2=-u2--i91'-+g§ (A-L)
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The equilibrium equations (86), (87), and (88) now reed

X XN g
11 Yoo B .
g I, T ﬁ“a(ﬂ' * E;‘) * 3{‘“2“1“11*“2“2’12)
3
+ 'a'zz"(“ﬁwlz*ﬁ“a 22) * %Py = 0

%’%‘2*%’&2‘%7‘22"1“51”

d¢ 3 ‘H 3a,
”S%lh" :152 aslnl 1’:|.1 e,

(A-5)

(A-6)

(4-7)

(4-8)

(A9)

The boundary conditions on an edge El = constant ares to prescribe
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¥ »* (Eé; - EE;)P[12 + E(N'llmzz)ﬁ or U,
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or Ul
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e
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(A-10)

Sk
A

+ = +uN. +pN, or W S8
Y a, 3%, B BN fif“f;
£5ie

My or #

The boundary conditions on an edge 52 = constant are the same as these with

S

the subscripts 1 and 2 interchanged except for the second one in which the
sign of the term involving @ should be changed.

The terms in the preceding equations which drop out when rotations
around the normal are neglected have a solid underline, The terms which
drop out in the Donnell-Mushtari-Vlasov approximation are those with eitheg
a 80lid underline o: a dashed underline.

The bending strains of the alternative theory (aquation (83)) in the

present notation are

3 auv 3
e 4R R

af, 3a v 3a

1 %P2 1 2 1,1 %2 1. %% W

”"’2'353?5*_"“1“2551_’51“5(35555*“1“25{”1)+“27 (a-12)
aﬂl a¢ -] a¢2 "

The membrane strains are the same as those given by (A«l), The force

equilibrium equations are
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e

A T ? 52 2
aal Q, o
EEAR AL *i‘%"n

% 2t
+ T“"f”lz"“z 2) * 7 ael (M ¥5)8) + aya,p, = 0

3, 2, N, T, %, T1122
-5-€-;.-—+—a—€—2—--013(}il )"ala(nl .Rg_)

(A-12)

(A-13)

+ 'El'(“ Ry rag) + 862 el rau ) + qap, = 0 (4-14)

The moment equilibrium equations are the same as (4-8) and (A-9).

On an edge El = constant the boundary conditions are to prescribe

Nll*% or Uy
n ﬁlz )8 or U,

g -1;522

'Hu or ¢l

+p1'N +u23112 or W

(A-15)
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On an edge 52 = constant the boundary conditions are the same as these with
the subscripts 1 and 2 interchanged except in the second line the term with

should be changed in sign,
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