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NONLINrEAR THE)URIF-J FOR THIN SHELLS

by 0

J. Lyell Sanders, Jr.X

4 p

ABSTRACT

Strain-displacement relations for thin shells valid for large

displacements are derived. With these as a starting point approximate

strain-displacement relations and equilibrium equations are derived by

making certain simplifying assumptions. In particular the middle surface

strains are assumed small and the rotations are assumed moderately small.

The resulting equations are suitable as a starting point for stability

investigations or other problems in which the effects of deframation on

equilibrium cannot be ignored, but in which the rotations are not too

large. "

The linearized forms of several of the sets of equations derived

herein roincide with small deflection theories in the literature.

INTRODUCTION

One of the important uses to which a large displacement theory of

thin shells can be put is the investigation of stability. The marq papers

in the literature on the stability of shells have dealt almost exclusively

with cylinders, spheres, and cones, and the differential equations governing

the phenomenon have been derived specifically for these geometrical shapes,

It would seem to be desirable to have a unified treatment based on a general

theory for an arbitrary middle surface. The practically important cases of

the shallow shell and the shell of revolution with symmetric deformations

have been adequately treated (references 1 and 2) but the general problem

X Associate Professor of Structural Mechanics, Harvard University
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presents difficulties not found in the special cases. It is the purpose of '

the present paper to derive an exact theory for large deflections of a thin

shell with an arbitrary middle surface and then by making certain simplifying

assumptions to derive from this several theories suitable for application.

An incomplete treatment of the general large deflection theory of thin

shells has been given by Novozhilov in reference 3. He derives a theory for

small middle surface strains but does not go into detail on further

simplifications or discuss approximate squilibri'um equations. He indicates

that the next step is to assume that the rotations are small. His results

for the small strain theory differ from those in the present paper.

In the western litorature there have been several papers dealing with

the general large deflection theory, in particular the paper by Synge and

Chien (reference 4), the series of papers by Chien (references 5 and 6) and 5

the recent paper by Ericksen and Truesdell (reference 7). The intrinsic

* theory of shells developed by Syrge and Chien avoids the use of displace- 0

mants as unknowns of the problem. The thaory of shells is deduced from thi

three dimensional theory of elasticity and then by means of series

expansions in powers of a small thickness parameter approximate theories

of thin shells are derived. A large number of problem types is found

classified according to the relative orders of magnitude of various a

quantities. This approach has been criticized by several authors (see

references 8, 9 and 10). In the paper of Ericksen and Truesdell there is

a unified treatment of shells and curved rods developed as two and one 0

dimension&l theories respectively without an attempt to deduce these from

the three dimensional theory of elasticity. The constitutive relations

ere purposely left out of consideration since they are unnecessary for

the description of strain and the establishment of equilibrium conditions.

The authors are interested only in exact theory and do not discuss the
S
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simplifications of small strains and rotations. 0

The papers of Synge and Chien and that of Ericksen and Truesdell on the

shell problem are unorthodcx and difficult to relate to most of the rest of

the literature. The authors have aimed at a maximum of generality, perhaps

more than necessary for the technological applications of the theory.

In the present paper a large deflection theory for thin shells is

developed in which transverse shear and normal strains are neglected. With.

out further approximations the equations Are very complicated, but since

largo middle surface strains are almost never encounteved in engineering

applications, an effort is made to derive simpler equations based on the

assumption of small strains. Considerably more simplification is gained

when the rotations as well as the middle surface strains are assumed to be

small. In this way a theory for shells is derived comparable to the

von Karman theory for plates. The equations corresponding to other minor

9 simplifications are also presented. The main part of the paper is written

in tensor notation but the principal results are reproduced in the ordinary

notation in an appendix.
S

DEIVATION OF EKACT EQUATIONS FOR LARGE DISPLACDEMTS

Geometrical Preliminaries C

Let the undeformed middle surface of the shell be given by the equations

x i -,x i(ta)  (i- 1, 29,3 ;a- l, 2) (1)

where the xi  are cartesian coordinates in space and the t are curvi-

linear coordinates on the surface. Let the displacements Ui  of material

points on the middle surface of the shell be resolved into components

tangential and normal to the undeformed middle surface as expressed by the

following equation

S



- U"( )x W()N (2)

ax 
i

where x a n are tangent votoru Lo the coordinate curves on the un-

deformed middle surface and N' is the unit normal to the undeformed

middle surface. In this paper the coordinates t will be used to label

material particles on both the undeformed middle surface and the deformed

middle surface.

Some of the important formulas of the theory of surfaces will be used

repeatedly and are reproduced here for convenient reference. For the un-

deformed middle surface the formula for the squared element of arc ds 2

in terms of the first fundamental form g, is

d2 ,a ,
ds~ mxiii dede -g4 dede 3

the element of area is

dA -Vr ded 2  (4)

where g is the determinant of g ; and the equations of Gause,

Weingarten and Codazzi are

b ()

N1,
a b- x (6))as a 'P

b , r -b ' (7)

where a coma denotes covariant differentiation with respect to the metric

go, and where the second fundamental form ba , as here used, differs

in sign from the usual definition.

After the displacement Ui given by equation (2), the material

particle original3ly at x i will move to the point y i given by



yi x
i + Ui

ex +U U + WNi (8)

This is the equation of the deformed middle surface in terms of the

parameters . Tangent vectors to the coordinate curves on the deformed

middle surface are given by

where

*pxy ,,ag " + Up+b W (10)

yL -Ni bPU (12)

a ' a ap

Also define

-Ye i1 (13)

coc U (14)

where is the unit normal to the deformed middle surface (see equation -

(73)). Tndioes on X. , gC and v will always be raised or lowered with

the metric gO . Where necessary a bar indicates a quantity defined with

respect to the deformed middle surface. The squared element of arc on the

deformed middle surface is given by

a
2 . Y dyd - (is)

In terms of x and Ika

G - XTX +IL (16

The element of area 0 on the deformed middle surface is given by

e



dr -VM djd~ e 1'6 dA (17)

The equations of Gauss, Weingarten and Codazzi are

17 . - (Bi

* B -B(20)

where Bo is the second fundamental form of the deformed middle surface.

A slash is used to denote covariant differentiation with respect to the

metric 0 . For scalars and cartesian tensors (as W , or It' ) there
Gap

is no difference between a slash and a comma. An expression for B in

term of ).ot  lt , V and cosm can be derived as follows A
oAP

(,y .bp )x + (% X. )N j7 0
d P Pa ,Y a aYP

*(bYX. -g )cos - (Iy,+b,)v (21)

* The following identity will prove to be useful

71 Ir OX + P cosm 0 (22)

yqulibriim Bz~utiona

In the coordinate system of the deformed middle surface the equilibrium

equations of the shell are the same as in the linear theory and need not be

a derived here. They are (see reference 10)t

force equilibrium

BP Q4 + P 0 (23)

a - NOP+ 0(24s)

5 up



& moment equilibrium

(N*P+BaMT) 0 (26)

where NOP is the membrane stress resultant, I is the bending moment 0*

resultant, and Qa is the transverse shear stress resultant, all defined

with respect to the deformed shell. The quantities a and are applied

load intensities per unit of area of the deformed middle surface, i is

the covariant permutation tensor in the deformed coordinate system.

The above equilibrium equations are exact but, of course, the ten

stress quantities entering into them do not furnish a complete description

of the state of stress throughout the thickness of the shell. However, in

thin shell theory it is always assumed that the etate of stress is adequately ,

described in terms of these quantities.

Finite Strains .* 0

The strain quantities entering into a thin shell theory are a matter

for definition. The literature of the subject shows a wide variety or

choices of strain-displacement relations, particularly for the bending

strains. Soe choices have been shown to be better than others (see

reference 11) but at the present time no set of conditions sufficient to

render the choice unique has bean generally agreed upon. In the present

paper the choice has been guided by two considerations, the first of which

was the desire to derive a theory which admits a principle of virtual work. 0

This rdquirement forces a close relation between the equilibrium equations

and the strain-displacement relations. The second consideration was

simplicity. The resultant cnoice will be shown. to furnish an adequate 0

description of the deformation of the shell provided the Kirchoff hypotheses

are accepted as adequate descriptions of the displacements.



Lot 9 be a simply connected region on the deformed middle surface

enclosed by the curve U The following identity follows from equiations

(23) to (26).

f [(N7.3PQa-,pP)87, (Q" B ?&.f)69

('A (1 QP)8% Ca(1 P4BGMT)8PjdA - 0 (27)

By application of the diverge,-.-, theorem for a curved surface (27) my be

transformned into the following identity which is the preliminary form of the

principle of virtual work and all subsequent derivations will proceed from it.

(087. Qa0+04a 6 0 )R d; + P F d

f [0(87, *,XB 61W-; 8$) + Qa(69 ,BP81+8
P/eI~ ap / a P a

+ 0(0 B8)d (28) 01

wehere the virtual displacements 61T , 817 and rotations 80 , 80 referaa
to components in the directions of the tangents and normal to the deformed

middle surf~ce. In (28) the ters on the left hand side are interpretable

ae the external virtual work of edge loads and surface loads respectively.

The right hand aidi, of (28) might be interpreted as internal virtual work

if the coefficien~ts of NP, Q* and Mpwere identified with strain

increments. Such an identification will be postponed until later. First

these coefficients will be written in a different form.

By definition

6U' 8Uoyi + 67, Ri - Uaix + 8W Ni (29)

Naw



8Ui - (6W- -B 68e)-i~ + (8V +Bpa8)yi0  6Ut

. O (8 -pbO8U0)N' + (8Ua +bpaW)xi (30)

From which: 4

p/ y a p (31)0

19/, Byjll - Y 8y + Coft 8I± (32) 4

The rotation around the normal 80 is given in terms of displacements by

the formula

2 /a (33)

By the use of (31) and the fact that Be is symmetric (33) becomes

6.0 z , p( xW6i.T,p ) (34) .
2

Also 8% - . yPx8~ 8),±I ) t (5
ap pa

From (31) and (35) the coefficient of NOP in (28) is

). xyjI 1LA WY4I 6L -1- i~u 8O (36)

The natural definition of the finite membrane strain ±s ti . S 4

E a..(G -g ) (37)

The coefficient of Q in (28) is

8 8D 89c *B6 80 - v 8XT+ cosm 8p +% (38)
a Po 0 y a 0 0

Since the intention is to derive a theory in which transverse shear strains

are neglected, set 8ya - 0 which gives

0. - vXYy - cos 8A (39)
y a a3~

which serves to relate rotations to displacements. From (9), (13), (14) and

(39)



111y, - V 87LY + cos:. 8g S,(0

a y a 6 - (o)

or since 1~~-0 it follows that

A finite transverse shear strain T. consistent with (38) and the require-

ment y. a 0 may be defined as follows

.Yv + c030 (42)
ay a

The coefficient of MOP in (28) may be found in terms of B and G

as folows. From (hl)

,

% yi. 8T+ y 87

*B/1 + yi 8111 "
, i i a.

,p ,a p(43)

since 0180~ a 0 . Now recall

ap A~

so 8Bap *y i 8 i + N±i8 71

P/4 + B 7y ~ (44)

Which gives

80p/. 8B - Bj, ,P ( (45)

From (9) and (35)

o 2 p6ya yn ) (676)

From (145) and (4~6) the coefficient of 0 in (28) reduces to



6B - 1 BY6(y .

oP 2 a ,~

- 8B
4 1 BY-1'6 A

. 8B (4~7)

- P -B~ - 8

Using the foregoing results the right hand side of (28) may be written

f [08% 4 H 0(8B -f yl )dI (4&8)

There is obviously some difficulty in defining a finite bending strain

tensor because the coefficient of MaP in this expression is not the

exact variation of anything. However, a way to proceed suggests itself if

(48) is rewritten in the following form

J (NaP-B~.~6o + MaB JP d! (4J9)

Define a finite bending strain tensor by * *

K B =b (o)

Define a modified membrane stress tensor by

1PNcP - PMya )Y
Since 13O in symmetric there will be no loss in generality by defining a

modified bending moment tensor by

252

Note that the third moment equilibrium equation (equation (26)) is

equivalent to the statement that 0 is symmetric. In terms of the

newljy defined quantities (49) becomes

f (;IP8E OP-P8K up )dl* (53)



The details will not be shown here but this expression for the internal e

virtual work may be derived from the three dimensional theory by integration

through the thickness of the shell and without approximation provided the -

displacements are restricted by the Kirchoff hypotheses. The appearance of a

the modified tensor and TO rather than Nap and MO may seem

somewhat strange but then there is no reason why these quantities should not

be adopted as the stress quantities entering 
into the theory rather than

and 0 . Infact there is anadvantage in thatboth and

are symmetric and thus there are fewer unknowns to deal with. This must

simply mean that the equilibrium equations containing Na and Ma are

slightly more general than is appropriate for a theory in which the dis-

placements are restricted by the Kirchoff hypotheses. Moreover, in the 0

present theory, there are the same number of stress quantities as there are

strain quantities. If both a principle of minimum potential energy and a

principle of minimum complementary energy (for an elastic shell) are to be 4 0 0

possible of formulation in the theory, then it is ordinarily necessary that

the constitutive relations be invertible. This is possible only if there

are the ae number of stress quantities as strain quantities.

The 5to strain tensors E and I (or equivalently the two tensors

0 and Be ) furnish an adequate description of the deformation of the

shell as shown by the following argument. In the first place the deformation A

of the shell is completely described in terms of the displacementsof points

on the middle surface provided the displacements throughout the thickness

are restricted by the Kirchoff hypotheses. Secondly, from the theory of

surfaces, a knowledge of 0 and B as functions of t and subject

to the Gauss and Codazzi integrability conditions , -_ch in the present case •

are equivalent to compatibility conditions) completely determines the deformed

middle surface together with a coordinate system (the deformed t system)



except for a rigid body motion.

Modified Equilibrium Equations '

Since new stress quantities have been introduced the equilibrium

equations (23) to (26) are no longer appropriate for the theory being -

developed here. Appropriate equations can be derived from the expression

(53) for internal virtual work. 5

+B8+

f' (086Eo+W6Ko)dI f UTV(5U'p1 /4Bp9

S+ +10'PG.w, +Br 67 +2BrT6U +BTB 69)JdI,P /ar p P a a T

1(PBCY6a+ r/.8-2 + W80y,5 dn

S 0

+ -B 70BB pP)8Wldl (54)

The line integral around U is the external virtual work of the edge

forces and moments. If a principle of virtual work is required to hold,

and if tlt-j portion of the shefl within U is in equilibrium, then the

interna:% virtual work must equal the external virtual work for arbitrary

virtual displacements. Thus the condition of equilibrium is that the last

integral in (54) vanishes. This leads to tha following equilibrium equations

(surface forces have been omitted in this derivation for simplicity).

a+ 2 .> + BP la - 0 (55)

00-B P -BB o (56)
oY p a ye

Equations (55) and (56) are in fact identical to the equations (23) to (25)

with e eliminated. Equation (26) is accounted for by the symmetry of



1 . If -c dafined by

(57)

is introduced as an approximation to Q , then the equilibrium equations,

in an expanded form, may be written

S B ~P BYB W 0  (59)

Tha principle of virtual work reads

S[(WP+RnPV) 8U1 . + QaI + ro ] di

0 4
4(89 +B 8)+ (6$ +6W -BP61T)

+BC 84 ) a / a p

f S (i8Eq +V , a A )K d ()

It is something of a matter of personal preference, but it ii this form of k

the principle of virtual work (with the Z and y terms present) which

will be used in the remainder of the paper.

SIMIL STRAIN APPROXIMATION

Equilibrium Euations

In almost all practical applications of shell theory the middle surface

strains are small whether or not the displacements are small, in which case

the exact equations can be simplified somewhat. Since by definition the

middle surface strain is
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Ep 2 cc

small middle surface strain means that the intrinsic geometry of the deformed

middle surface is almost the same as that of the undeformed middle surface.

Thus for sufficient y small middle surface strains (and exactly for in-

extensional bending) covariant differentiation with respect to G ma be

replaced by covariant differentiation with respect to g$ " The equilibrium

equations become4

~0
4, C

-B JO BB V (62)

)a - Po

40

Strain-Displacement Relations

A short investigation shows that the expression for E given by (37)

and (16) is not simplified at all by the assumption of small strains. The 0 •

expression for B a given by (21) (and K C given by (50)) is slightly

a A emso
simplified because the expressions for come and v in ter= of I

4 and % (see equations (74) and (75) later in the paper) can be simplified

brepa~c V G lwm4t.Te axssion far K is obvioualy tl

quite complicated.

oenstitutive Relations

Consistent constitutive relations for the linear small strain theory of

thin elastic shells have been derived in references 3l, 12 and 13. These

derivations require only minor modifications in the case of finite dis-

placements and small strains so they will not be reproduced here. For a

thin shell of uniform thickness h composed of an isotropic hookean 0

matrial, the constitutive relations are the same as in Love's first

approximation, namely the linear relations



(1V) 9h~ V9 (lv9 (63)

gpcr 6  avg0 Y6 0

1L Eh3Ka . (l+v)g,,gV - vggf6(64)

e According to reference 31 these relations may be used even if the definition I*
of K in terms of displacements is altered by the addition of terms of the

form BY . A similar argument to that in reference Ui shows that

may be altered by addition of terms of the form B%1" . Note that in the

case of small strain the indices on W and may be raised and

lowered with the metric g instead of 0 with negligible error.

If the material of the shell is not elastic and isotropic the relations

(63) and (64) must be replaced by others appropriate for the material. How-

ever, the strain-displacement relations and the equilibrium equations given

previously are unaffected by the material so long as transverse shear and

normal strains can be neglected.

APPROXIMATION OF S=!AL STRAINS AND MODERATELY SMALL ROTATIONS

The exact theory was considerably simplified by the assumption that

the middle surface strains are small, but the equations are still very S

complicated. Considerable additional simplification can be achieved if

the rotations are assumed small also. This simplification will be carried
* 4

out in the following.

For infinitesimal displacements and rotations it is evident from (33)

and (38) that the rotations are given by the formulas

(65

2 pp(65

and

a t -p a (66 )

For small but finite rotations it is convenient to think of the expressions



in (65) and (66) as -- tations (just as in the linear theory of shells).
Purely for convenience, suppose that the coordinates C have the units of

length so that $ , 0a and E are dimensionless. The following order
of magnitude assumptions will lead to a theory one step beyond the linear b

theory in refinement.

$ or 4U -Up, )wo(e) (67)

$0 or pe o(e) (68)

U +U + b W o(c 2 ) (69)

2 asp Poe op
where 6 is a number small compared to unity. Write X in the form

44,
9 +:,(U U ) + 1-(U +U +2b WXo P 2aPP 2o 2asp P o W

gap - o
0 
+ U U,p+Up, +2b W) (70)

From (16) and (37) we find that Eop is 0(62 ) and is given approximately

by the expression

p1 2 o
The order of magnitude assumption (69) was made so that these terms would4.4

not domirte the expression for Rp j otherwise the linear theory would
result.

In order to simplify the expression for B expressions for v and
cosco are needed. An expression for f may be found by taking the cross
product of the tangent vectors 7 A

i pI tlk~~ (72)
Omitting the details, this leads to the folowing expression for in

terms of X and 114



4 H' ~1,IO 6~Y(l (73)

From (13), (14) and (73)

coft yr P SY~.) 8 p (75)1

From G.- gap 0(2) it follows that 1 + 0(s2) then from (67)

to (70) and (74) and (75) it follows that

V, --PI + 0(C2)  (76)

cosco 1 + oC2) (77)

From the foregoing and (21) the first approximation to B.- bap is

T B b~ b(U -U )
ap 4P oCp 2 P ysa ajy ,

u-W, .bi + U .b(U -U )(78)cp - V boyp uy 2 p yo: ay

A difficultV here is that this expression is not symmetric in a and

p However, it can easily be shown that the antisymmetric part is 0

negligibl%.

T -T byb(U +U )yV + (79)

NOW ( 0 ptp) + bopW - 0(a2)

so +U ).-b w + 0(62 ) (80)2 GtP UPP$ op

and then T -T .(b~b -bfb )W + higher order terms, (81)
OP Tpa Pa a Yp

but the first tem on the right hand side of (81) vanishes so T - Ta•

is negligible (compared to T 8 + T ). The symmetric part of T. can

be taken as the first approximation to the bending strain, giving



K --.(~± .~± +-(c by+& by)O
c3 2 ay~ Pc 2 y fa

or~p~ byU -Ub -U ) (82) '

Alternatively it can do no harm to include some higher order terms in 0

K if for some applications it simplifies the equations. The following '

approximation of K may be used instead (see equation (21))

K bb, - b

Oap .bYU +b Tb W

mW + by U +b A + bTU ,bibW (83)pap ap T op Yo, Pr
which is symetric as it stands. Both alternative expressions are linear z

in the displacements. The expression (82) for the bending strain is the

same as the one derived in references 11 and 14. The expression (83) does

not seem to have appeared before in the literature. Either expression

belongs to a consistent shell theory in the sense of Koiter (reference U).

When transverse shear strains are neglected, the condition O u 0

serves to relate 8$ to the displacements as in (39). By analo the a

following fxression should be used for y in the present case

ya 04 +A-O+ a .a by (84)

Approximate Equilibrium kuations

Approximate equi ibrium equations corresponding to the approximate

strain-displacement equations mar be found by the same method used to •

derive the equilibrium equations (5%) and (56). Since the strains are

small dl may be replaced by dA and we have



f 1VP(8% P + b4(6U + .8U )) p-b 6 + W b6U da~~~p 2 2 , , ap ,aa Y,
CS

+ + + 28W - b~v8UY ) ( 1, TL

~~~+ b PP ay + 1. 6aY(O7( ) + 1.b~~ - +bPa+P.

fe O y a 2 a , 2 a 2 a T

C s

By inspection the equilibrium equations are

(86)

b- + (it 1 ,,) + p o (87)
,a PP

been 0T (88)

where the load terms pC and p have been supplied. Thesa equations express *
0

equilibrium of forcesand moments in directions parallel to the tangents and

norwal to the undeformed middle surface. In the left-hand side of (85)

could be expressed in terms of displacements and the term IfN could

be omitted. The result for the equilibrium equations would be (86) and (87)

with Tf eliminated by means of (88). If the expression (83) is used for

the bending strain, the first two equilibrium equations are slightly different ,

and read as follows

10-+ P~P~ar + + (bPrya) + AV+p 0 (8)

b + (p1  b~ 0 , + ~p w 0 (86)'

Boundary Conditions

e The Kirchoff boundary conditions may be obtained from the boundary , O

integral in (85) which when written out reads

a



(89)

Let t be the unit tangent to the curve C ,then n, zp*C i heuit ;r

S nomal to C in te surface S Let (

Oa 0 aS% a nna (90)

where 0.adO r clr.From (90)

, (-W +bYU )t"
Os 0'a )aa

Obviously 0s is not independent of W and Ua on C Tha last tem

in (89), namely,

V4W6,,n, do rg[ d" +C +b8U ta)t. + 80e.Jn5 da (92)
C

becomes, upon integrating by parts,

C ,- tan )8W + Pbat'tTnU + Onan'nOdS (93)

assuming C has a continuously turning tangent. Altogether (89) becomes

2 Y 2 Y 2 y Y 6p

+ *(~np + g On + !(RcPta)JW + " nn8p~ondo (94~)a do,

From this the boundary conditions on C may be read off. They are:

prescribe &OPPV + 1 V - 1 ~ + bV~tt or 5

2 2 T 2 Y Y tZL or

+ + : ( t ) or W (96)

o h4na or On 0 7)

For the alternative theory with (83) for the bending strain and



-'-4®

(P6 ', ( 7)' and (M ) for equilitrium equations, the boundary conditions aie: 0

prescribe C - I ,aP + b (88+t6 t)*yJn or U (95)'

FURTHR APPR0IMATIONS "

Small Rotation About the Normal

If the rotation about the normal can be neglected compared to the other 4" •

two rotations, then the equations can be simplified flrther. The importance

of the rotation about the normal is not entirely established at the present

time and no general condition under which it can be neglected is known.

Several linear theories for thin shells have been constructed which differ

from Loves first approxiation onhe by terms in the bending strain

proportional to the rotation about the normal. The differences between these

theories and Love's are tabulated in reference where the general validity

of these theories is questioned. That the rotation about the nomal can prn

sometimes neglected is evidenced by the fact that these theories lead

to very nearly the same results as more accurate theories in some specifi

applications. See, for example, reference i. On the other hand these
theories lead to erroneous results in other applications. See references

16 and 17. I
For those cases in which the approximation is valid the strains 3

and K given by equations (71) and (82) can be simplified to read

+b pW + (98)

K0 (99)

4



The corresponding approximate equilibrium equations (obtained via the virtual a

work principle) are

-b b - bag po0 (100) ,

-b + +(i ~ *p.0 (101) 4 (4

0(102) --

and the boundary conditions are to prescribe:

CRI nt+tb 101n or U (103)

a ds

Onor (105)

When these equations are linearized they reduce, essentially, to those

given in reference 10.
The Donnell-Mushtari-Vlasov Approximation

A further simplification of the above equations is possible under the

assumptions discussed in reference 13. This consists in neglecting the

term containing U in the expression for i with the following results
aa

for straizM,

2 -,(U +U ) +b W +- WW (106)
op 2 oPP Picaop 2 in *

1~2ap ~ o (107)

O(108)

for equilibrium equations,

,C+ p -0 o (109)

4a" ba P + (W, ) + P 0 (10)

Oct UP



4a ". o (111)

and for boundary conditions prescribe

rp porU(112)

ikmtp or W (113)

Marguerre's Shallow Shell Equations

If applied to a shallow shell the preceding equations can be fuirther~

simplified because of the geometry. Suppose that the shell is nearly flat Z

and parallel to the x3 - z - 0 plane, and that the squares of the slopes

o: the shell with respect to the z = 0 plane may be neglected. Then,

approximately:

Since the displacements U are considered small compared to W , the

horizontal displacements U and the vertical displacements I are given
a

approximately in terms of U and W by IZ
a 4

W'd€

In terms of ff and W the membrane strain E$ (equation (106)) becomes: '"

R !,:(U + +f * W +2W +W W) (327)
ap 2 asp Poe A Ap Op PC ,A ,p

The strain K and Ya are as before (in equations (107) and (108)). The

conditions of equilibrium in the horizontal and vertical directions are

1) + 0 (11)

,a + [(,,+Wa)1 ], 0eP-o (119)
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0(120)

where p' is the horizontal load intensity and is the vertical load

intensit7y. The boundary conditions are to prescribe 
4

,oo (121)

OP (Z, tW ln, + AOt n or W (12

a nn or~d5 a~ (122).

These are Marguerre's shallow shell equations in tensor form (reference 1).

CONCLUDING REAKS

Several nonlinear theories for thin shells have been derived in

increasing stages of approximation. The linearization of these equations,

which is more or less obvious, has been omitted but in most cases the .0 •

resulting linear equations are essentially the same as shell equations

already given in the literature. In all cases the theories are first

approximation theories in the sense that transverse shear and normal strains :-

are neglec+9d.

In each of the theories derived in this paper the equilibrium equations -TI

4and strain-displacement relations are related by a principle of virtual work

and hence the usual variational principles may be formulated and proved,

These derivations are also more or less obvious and have been omitted. IV

The additional manipulations necessary to apply the equations to

stability problems has not been given either, but the process is well known

and, of course, different manipulations may be required in different special

cases.



SHELL EQUATIONS IN ORDINARY NOTATION

In the ordinary notation with lines of curvature for coordinates (as

used in references 9 and 14) the expressions (71) for middle surface strains O

and (82) for bending strains are, respectively

1 1
U + +

11 1 g

aU2 + a2 + w 1 2 1 2 (A-1)

22 Z 2 a U !2

au a"u

11 2.02 +_ 1 IL 1a,0 G2-12 2 2 a 28 l_ _ _ (_-2

The transverse shear strains are given by

1~ 1W al

102 I a 2 (A- 2)
2 Y 2

"122 3 2 " Y q a- " ; :& 1 l2 l2*<r ITO

-22.

The rotations are given by

02- -2 aq + U21 A4

aw (A-lh) .

0 22 '_

0

Y' a'-l 2U



The equilibrium equations (86), (87), and (88) now read *

L l2 ad_ a42 ife
4- 2  ; 222 +

+ aa p .0(A-s) 0

a,2 12 8032 a2  a=.- .

12 +("11 2 2 )0 +0l210 A5
a2

* 
)  

+ a o (A-6)
'K22

+ a2a (1+12 + d2 ' -0 (A-6).+L a l2 n + 22?) + 4g? M2%2

+ a~ 1 1222) + U * 0 (A-7)

aa' 2l(~~2~~8 2 l

e2~ "12 at
T b'y1f22 + V cn11s-a2t aY212 0 (A-9)

The boundary conditions on an edge aconstant are to prescribe



or ' "

+ or U ~ 2 _ _

1112 22 "1 *+ :2 : 1+22 or U2  ®R

* (A-10)

orW

or

The boundary conditions on an edge t2 " constant are the same as these with

the subscripts 1 and 2 interchanged except for the second one in which the

sign of the tem involving 0 should be changed.

The terms in the preceding equations which drop out when rotations

around the normal are neglected have a solid underline. The terms which

drop out in the Donnell-Mushtari-Vlasov approximation are those with either

a solid underline o: a dashed underline.

The bending strains of the alternative theory (equation (83)) in the

present notation are

1 2

equilru eqaiosae~2

Gi2 Uctc -'r2 al S' alcV,2 Pi
au7

1 '3 1 '02 1 'alea
12 - -*-4ax I+ 02)1

The membrane strains are the same as those given by (A-b). The force

equilibrium equations are



aa2g l + - 2  a+ + + ' 2a )- •

7' 72 F 2 -12 -a f22 R, '1+ RJ

1 a- +

alc2 11,

4 -+Y 2 2) - 7 )f] + G2p 1  - o (A-12)

_ + al a M + + a1C'P1
a2 "12 a al

I a a_ a a a a 2 1112
4 gp l + + R22) +

4 )1- 2 C(1+3 22) ) + a_=e2p2  0 (A-13)

2

aaA2  aalZ2  (11 +122 1,+I
-- ---- a(- 22 - la 2( -2 .:L2)

~4~-) Pi R2

A -~d~,11Y2112)+ -a a1q~ 12 UIlP2W22) + ly2~n 0 0(1-14)

The moment equilibrium equations are the same as (1-8) and (A-9).

On an edge 2 - constant the boundary conditions are to prescribe

~1 + , or U U

1 + 2'91 + 11 ,+7 )0 or12 R2 2-2.2
S(A-15) 5)

-o 7

' or 0

On an edge - constant the boundary conditions are the same as these with

the subscripts I and 2 interchanged except in the second line the term with

should be changed in sign.
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