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TR336
Dipoles in Dissipative Media*
by
Ronold W. P. King
Gordon McKay Laboratory, Harvard University

Cambridge, Massachusetts

Abstract

The generzl problem of antennas in dissipative media is reviewed with
reference to possible applications and types of antennas. The question of bare
and insulated antennas is discussed with reference to the highly-conducting
czater-driven cylinder of small cross section.. The delta-function generator as

convenient idealization of feeding by transmission lines 1s considered; ihe

[

apparent difficulty of terminals short-circuited by the conducting medium is

resolved.

The problem of determining the admittance, the distribution of current,
and the electromagretic field for 2 cylindrical antenna in a conducting dielectric
is presented with emphasis on the dual requirements of reascnable accuracy
and simplicity. Methods used to solve the integral equation for the current in
antennas in air are reviewed, and the limitations of their results for the

calculation of the complete eleztromagnetic field are pointed out.

A\n approximate methcd of solving the integral equation for the current
in an antenna in a dissipative medium is described, and a simple, reasonably
accarate solution is displayed. The specific evaluation of currents and
impedances for half-wave dipoles and electrically short artennas is summarized.
The separation of the current into a nrincipal part for wl.ich the electromagnetic
field may be evaluated in closed form, and a part that may be neglected in

important special cascs is explained.

*Supported in part by Contract Nonr-1866(32) and the Sandia Corporation.
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The complete electromagnztic field of 2 half-wave dipole in a dissipative
medium is determined first in cylindrical coordinates, then in spheroidal
coordinates. The nature of the wave fronts and the polarization of the electric
field are considered fairly close to the antenna and at greater distances. Similar
results for the electrically short antenna are also given- The power dissipated

FR=S

i finite parts of the mediura is determined.
Introduction

The single antenna and arrays of antznnas in a dissipative medium are
aralytically and experimentally interesting and cffer difficult problems that have
numerous applications. These include, for example, communicating from a
submerged submarine or from a mine shaft, and carrying oat geophysical
explorations with antennas directly irmbedded in the earth or lowered into air-
filled holes. Of more recent interest is the use of antennas as probes in the
study of ionized regions and plasma sheaths by means of rockefs. In general,
the regions involved do not consist of a single, homogeneous ard isotropic
medium. There may be two distinct layers such as the sea ox the earth and the
air above it; alternatively, as 1in the interior of the earth, or in a plasma sheath
in the ionosphere, the medium may have continuously varying properties or it
may be stratified in one way or another. Experimental and theoretical studies
of bare and insulated antennas and arrays in and over dissipative and dielectric
media that are isotropic, have continuously varying properties, oi are strati-
fied in a reguler manner are in progress. However, this report is limited to
a study of the properties of single antennas of moderate length in an infinite,

homogeneous, isotropic, dissipative medium.

Investigations that reicte to antenunas in dissipative media may be
separated into two groups: (a) those which are concerned only witk the
electromagnetic field at large distances from a source, so that in the interest
of simplicity, the antenna may be idealized far beyond practical availability;
{b} those that treat the circuit properties of the antenna itself as weil as the
field that it generates. The source used in the former group usually consists
of a Ilertzian dipole or infinitesimal doublct that is represented mathematically

by a periodically varying electric moment concentrated at a point.
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Physically, such a doublet may be visualized as made up of equal positive and
negative charges oscillating back and forth in opposite directions along a line
in the lirmit as the charges become infirite and the length of their path vanishes.
In the second group are studies of thin cylindrical antennas and of biconical
structures immersed in dissipative media. The antenna may be in direct
contact with the conducting medium or it may be surrounded by an intervening
layer of insulation. Note that a sufficiently short antenna iz the physically
realizable approximation of an infinitesirnal doublet, insofar as the distant

field is concerned.

An early study of the radiation of a Hertzian dipole immersed in a
dissipative medium was made by C. T. Tai [1], who obtaincd the eiectro-
magnetic field and the Poynting vector in the well-known forms for doublets in
air, but with the permittivity and propagation constants both complex instead of
real. He noted that the total power transferred into a dissipative medium, as
obtained from an integration of the normal component of the Poynting vector
over a sphere with its center at the doublet, becomes infinite when the radius
of the sphere is reduccd to zero and concluded that "it is impossible to speak
of the total power radiated by a Hertzian dipole when the latter is in direct
contact with a dissipative medium. " He then proceeded to analyze the doublet
enclused in an insulating sphere [2]. Actually,the power transferred across a
spherical surface that encloses charges oscillating along a line is not obviously
defined in the limit as the radius of the enclosing sphere vanishes. Indeed, it
is shown in a later section that the power radiated by an electrically short
dipole in a dissipative meaium cannot be ¢btained oy integrating the normal
component of the Poynting vecto: over a spherical surface. It may be remarked
in passing that the infinitesimal doublet has been used as an idealized source in
numerous fairly recent studies of the electromagnetic field in a conducting
half-space |3, 4, 5, 6], since the properties of a finite radiating system could in
this way be avoided.

The integral equation and its formal solution for the current in a
cylindrical antenna of finite length immersed in a dissipative medium was
formulated by Tai [7] in a manner paralleling the analysis of King and

Middleton [8] for an antenna in the air. The essential difference is that
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the previouvsly real permittivity and propagation constant have become compiex,
with a resulting complication of the kernel and of integrals that occur in the
iteration. Owing to a lack of tabulated functions, Tai did not evaluate his formal
solution. Indeed, the analytical difficulty associated with the infinite admittance
of the delta-function generator--which was not well understood at the tire--

led him to drop further work on the cylinder and turn his attention to the mozre
tractable problem of the insulated biconical antenna in a2 dissipative medium.
Tai's work on the dipole has been extended somewhat by Macrakis [9],

Harrison [10], and Harrison and Denton [11] who made approximate evaluations
of the impedance; more recently King and Harrison [12], and Kihg, Harrison,
anl Denton[13], have carried out complete analyses of the circuit properties
respectively of the half-wave dipole and of the electrically short antenna in a
digsipative medium. These studies are based on the approximate method
proposed by King [14] for the solution of the integral equation for the current in
a cylindrical antenna. The present investigation is directed to the determination
of the circuit properties of a thin cylindrical antenna of moderate but arbitrary
length and to a2 consideracion of the complete electromagnetic fields generated

by the currents in such antennas.
Review of the Theosy of Cylindrical Antennas in Air

Since the analysis of the properties of an anienna in a diasipative
medium 1is a considerable complication of the problem of the same anienna in a
perfect dielectric, it is well to review briefly the extensive theory of the
cylindrical antenna in air. A simple, physically realizable circuit consists of
a cylindrical conductor, center-driven frorn a balanced two-wire transmission
line, ac shown in Fig. la. Since the currents in the antenna and in the line
satisfy two simultaneous integral equations, their determination is a formidable
problem. If the two conductors of the transmission line are very close together,
the significant interaction of the line and the antenna is confined to a small
region near their actual junction. For the line, this may be approximated by a
reactive network of lurnped elements characteristic of the line combined with the
impedance Zo of the antenna also as a lumped element, as shown in Fig. 1b.
Frowun the point of view of the antenna, the driving field across the end of the

feeding line, which is distributed over a short length of the antenna, may be
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treated as an impressed field that is concentrated in a ring around the center
of the antenna, in the form Ez (z)5(z) , where &(z) is the Dirac delta function.
Clearly, this emi i: cquivalent to a discontinuity in scalar potential across z
pair of knife edges separated ty a vanishingly small distance at z = 0. Such an
idealized generator at the cente:r of the antenna evidently includes an infinite
capacitance across the knife edges, so that the input susceptancc must also be
infinite. It was shown by Wu and King [15] that in principie the infinite current
associated with this capacitance may be subtracted out. Moreover, since it is
confined to an extremely short distance adjacent to the knife edges, it is in
practice automatically omitted irormn the total current when this is determined
approximately by any method of solution that represents the current by a few
terms in a series oi continuous functions. Thus, the practical problem may be
approximated by an isolated cylindrical antenna with a delta-function generator
at its center, as shown in Fig.lc. The impedance of this antenna, after the
knife-edge current has been subtracted out or omitted, is the lumped load for a
transmission line with a suitable terminal-zone network. The nature of the
lumped, corrective networks required for different connections to various types

ot iines 15 discussed elsewhere [16].

The scrious attermnpt to determine the distribution of current in a thin
cylindrical antenna by analytical means rather than by assuming it empirically,
as is still commonly done in the so-called emf{ method, Legins with the work
of L. V. King [17] and especially of Hallén [18] whose integral equation is the
basis of most modern theories. For a perfectly conducting tube of very small
wall thickness and radius a that extends from z = -h to 2z = h, the integral

equation may be expressed in the form

h
4'7rp.;1 A () 5 1{(z') K (2, 2') dz’
*h
-i4

4 ¢ 1€ ...
=—J§:"I-[Ccoskoz+-z-vosmxo|z|] (1)

where, as shown in Fig. lc, [{z}!) iz the total axial current at z'.
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2

If I{z} includes currents on the inner and outer surfaces of the iz, it
follows that
Iih} = & {2
e : . ; . .
v, at the center of the antenna is that of an :dealized delta-iunction generator.

Az {z) is the vector potential at the suriface of the cylinder. 1t is in the Loreniz

gauge that satisfies the Sommerfeid radiaticn condition. The kernel K is

given by
-jk R : -jk R
K(z,2) = 5= | S22 a0 2801 (3)
0 2
where R = \/(z-:’:')2 + (22 sin%‘)z s R1 =/{z - z‘)z t+a (4)

e

As usual, u is the permeability; h 1207 ohms, ¢ is the characteristic
impedance of free space; ko = w/c is the wave number C is 2 constant to

be determined from the boundary condition (2).

Approximate solutions of integral equations substantially like (1) have
been obtained by Hallén and others by a method of iteration which depends
implicitly on the observation that the ratio Az(z)/I(z) of the vector pctential to
the current along the antenna 15 approximately constant and predominantly real.

Solutions of this type appear in the form

: ' 2
2mVE M (2} + M {2)/¥ + My(2)/¥" + o

Iz) = (5)
¥ | F () + Fyin)/ Wi Fy(h)/ wie .
where
Mo(z) = sinko(h - lzl), Fo(h) = cos koh . (6)

The first-order terms, Ml(z) and Fl(h) may be expressed in terms of
generalized sine and cosine integrals, the higher order terms are more
complicated and must be evaluated by numerical methods. Unfortunately, even
with the n:ost sophisticated definiticn of the expansion parameter W , at least

a second-urder solution is required in order to obtain quantitative accuracy




—y -

TR336 -2-

for antennas with electrical lengths in the range 0 < koh <27 . A solution of
this iype ic that of King 2nd Middieton [8,19] in which ¥ is defined to be the

absolute value of the function

h
v{z) = M;l(z) XMc(z’)K(z,z’)dz' (6)
-h
at the point where M _(z) has its greatest value in the range ¢ <z <h .
Extensive romputatio;xs of the impedances [19] cf cylindric2l antennas in the
range of electrical half-lengths giver by € < koh < 7 show the second-order
King-Middleton values to be in good agreement with experiment. The distri-
butior.s of current for selected lengths have also been computed, but the second-
order formula is far too complicated for the convenient evaluation of electro-
magnetic fields. For this purpose the rather crude zero-order term has been

used.

The quantitative accuracy of second-order resvits calculated ‘rom (5) in
the King-Middletonm have been verified theoretically on the one hand by the
comparabie variational solutions of the integral equation {1} by Storer {25} and
Tai [21]; and, on the other hand, by the dsta:led study of the integral equation
with Fourier series methods by Duncan and Hinchey {22]. These investigators
converted the integral equation into a set of simultaneous equations with the
Fourie~ coefficients of the current distribution as the unknowns and then carried
out calculations to the 25tn-ovder. The numerical results for koh = w/2 and 7T and
with h/a = 60 ard 5007 differ by only about 2 percent or less from the King-
Middleton values. Significantly, even with a solution of such high crder, there
is still no sign of the large current associated with the knife edges at the

driving point of the delta-function generator.

The reason for the rather slow convergence of the series in (5) even
with a rather carefully selected expansion parameter has been traced by Wu [23]
to the inethod of cvaluation of the arbitrary constant C in terms of the boundary
condition (2). Unfortunately, it is precisely at z = h where the ratio of vector
potential to curient departs most from the assumed constant value--it actuzally
becomes infinite at this point. It 1s the zero-order form of C , namely ,

Cz-%ot,ankoh, which leads to the zero-order distribution, sinko(h - lz]) .
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it tur:s.s outthat, for the input current and the current zlong most of the antenna,
a better value of C would be:C=-%° tanko(h + 6) where 8 is 2 small length
that increases with the radius of the antenna. Evidently, such a value of C
leads to 2 small nor-vanishing zerc-order current 2t z = h in viclation of (2).
Primarily owing to ilie rather poor approximation in the zero-order value of C,
the soluticon (5) even in second-order does not maintain its accuracy as the length
of the antenna 1s increased. In order to hand.e specifically the very long an-
tenna, Wu [23] deveclcped an asymptotic sclution of the integral equation (1}
bascd on the Wiener-Hop{ technique and a method of evaluating C which
properly locates the distribution of current along the antenna, instead of re-
quiring it to vanish at the end. The impedance of long antennas has been
computed from the new formula by Beaton and Wu [24] for electrical lengths up
to koh = 30 . The new theory does not vield a simple expression for the current
ior use in the evaluation of electromagnetic fields. However, the radiation

field can be obtaincd directly from the Fourier transform of the current.

The major charactecristics of the radiation field of dipoles 1 air may be
determined with reasonable accuracy from the simple sinusoidal distribution
that is the leading term in the iterated solutions for the current. However, this
zero-order current has the serious defect that its value at the driving point is
at best a rough approximation of the correct input current. Moreover, if it is
used to calculate the radiated power with the Poynting-vector theorem, the
result may be in error by as much as 50 percent, if it is assumed to apply to
center-driven antennas with practically significant radii. It follows that even if

the field patterns calculated from a sinusoidally distributed current are an

terminals and the power radiated may be grossly in error and mutually
inconsistent. If the input admittance is known accurately from a higher-order
theory, these difficulties are nol serious for antennas in air, since the correct
total power supplied is then available and it is known without further calculation
that this is equal to the power radiated. When an antenna ic immersed in a
conducting medium the problem is much more complicated, since power is

dissipated throughout the medium.
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What i required for the quantitatively accurate representation of the
circuit and field properties of dipole antennas and 2rrays is a formuia for the
current that 1s sufficienily simpie to permit the evaluation of the field and at
the same time sufficiently accurate to yield good approximations of the input
admittance and of the radiated power. Such a formula has been derived by
Storer [10] by variational methods and by King [14] with a2 modified iterative
procedure. Since the former is not conveniently applied io more than one
antenna, and a future study of coupled antennas in dissipative media is contem-
piated, aucention is focussed on the latter, which is as useful for parallel arrays

as for a singie antenna.

The required relatively simple formula for the current is obtained as the

approximate solution of a rearranged form of the integral equation (1), viz.,

h
ral
4 A (2) - A (W= \ 2K (2, z')dz"
Yo Tz zV T a "
-h
_ _j4m ~ e
¢ F _(h) [Uuoz + ZVoMoz] (7)
o o
where the new kernel is
Kd(z,z’) = K{z,2z') - K(h,z') (8)
and
-je, &
° -h
The shorthand symbols
F _=cosk z~coskh: (10)
oz o o}
and
= gin k - I
M, = sink_(h lzl) (11)

are used, together with Fo(h) which ie defined in (6). The advantagzs of the
rearranged form (7) of the integral equation (1) are several. The integral is,

as indicated, proportional to the vector potential difference rather than to the
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vector potential itself, so that it vanishes at z = h as does the current. The
right-hand member of the equation is the sum of two terris that are individually
reiated to well-known distributions of current and vector potential difference.
The shifted cosine, Foz , is 2 close approximation of the current and the vector
potential difference along an unloaded receiving antenna in the plane wave front
of a distant transmitting antenna. The sine term, M, is the zero-order
distribution along a center-driven antenna; it is much more exactly the distribu-
tion oif both current and vector potential along an ideal two-wire transmission
iine with an open end at 2 = h and a delta-function genera‘or at z = 0. These
facts suggest that Foz may be interpreted as an approximation of the distribu-
tion of current or of the vector potential difference that is maintained by the
interaction of the more widely separated elements in an antenna, whereas Moz
is the distribution maintained by a generator when, as in the transmission line,

there is no significant interaction between widely separated current eiements.

This interpretation is confirmed by the faci that in {7) M has the amplitude
\4 oz r
. e -
cocfficient Voo, the actual driving voltage of the generator, whereas the

coefficient U of Foz is proporticnal to that part of the vector potential that
has been subtracted out on the left because it is active along the entire antenna.
In general and as a first approximation, a concentrated generator excites 2
current with the distribution M ; a distributed field excites a current with the

distribution ¥
Oz

An approximate solution of (7) may be obtained if ihe integral is separ-

ated into two parts of which the one varies like Mo the cther like Foz

2 H
This separation is easily accomplished by inspection, once the kernel has been

expanded as follows:

Kd(z;z') = KdR(z,z') + jKdI(z,z') (123}

where

coskoR c-oskoRh -:.oskoR1 ) cos koRih

dé' = Rl R

(12b)

=

R Ry

T
1
K. (z,2') = 5= S‘
dR'™? 2T ih
-
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and
Tlsink R sink [sink R, sink R
X4z, 2" = 2_1” ({ R° - R°Rh]der z -L e 1. R° “‘-l . {12c)
EAl h 1 1

The subscript h on R and Rl denote s the values defined in (4} with z =h .
Since R and Ry becorr.e very small and KdR(z,z') correspondingly very large
when z' is near z, it fcllows that the principal contributions to the part of

the integral that has KdR(z, z') as kernel come from elements of current very
near z'=z . This means that the part AzR‘z) of Az(z) that depends on
KdR(z, z'} varies like I(z) . On the other hand, since KdI(z,z') is very small
when z' is near z , the principal contributions to that part AzI(z) of Az(z)
that depends on Kdl(z’ z'} come from all the elements of current that are at
some distance frora z . If it 1s now assumed that the current is the sum of

two parts,

Hz) =1 (z) + i..(z)
=) = 1,(2) + t(2) (13)
which by definition have the leading terms
. T LV 4 A
IU(Z) ~ FOZ N LV(Z) haadiF 178 (1-)

it is clear that (7) may be separated reasonably into the following parts:

h
Y rglan Ry e, 20 + L2 Kyl 2 da’ 2 fﬁ%‘% Fox (1)
-h

h e

S' Iy (2)Kyp (2,20 d2' 2 5 M, (16)

“h o o

Each of these integral equations may now be solved by iteration in the King-
Middleton manner, and their solutions for IU(z) and IV(Z) combined in {18)
to give I(z) . The formula for the current so obtained may then be substituted

in (9) in order to evaluate the constant U in terms of Vz . The result is

j2mwve [sink (h-]z!) + T(h){cosk z - cosk_h)
Iz) = 0 0 (o} 0
g v cecs koh

}«!- higher order terms({17)
o dR
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The indeterminate form obtained when koh = /2 may be evaluated to give

j2rve
o
Co¥ar

I(z) = [sinkolz!-l + T (%) cos koz] + higher order terms {(18)
The real expansion parameter ¥ 4R and the cocmplex constant T(h) are
expressed in terms of tabulated sine, cosine, and exponential integrals. They
are functions of h/a and koh . Explicit formulas and numerical vaiues are in
the literature [14,25]. The higher order terms ia (17) and (18) involve essentially
the same integrals as the corresponding terms in the King~Middleton solution
{5), but their contributions to I{z}, at least in the first- and second-order
terms, are very much smaller, It follows that the quasi-zero-order terms in
{17) and (18) have an accuracy that lies somewhere between the first- and the
second-order salution in the form (5) in the range 0 _<_koh <3w/2. Mozreover,
the error is largely in the susceptive part of the current in a small region very
near the driving point. As a spccific example, consider a hali-wave antenna
with h/a = 75 . The distribution of current as obtained from {i8} is shown in

Fig. 2. The corresponding admittance and impedance are

[Y,], = (9.87 - j4.67) x 10 °mhos ;[2_]_ = 82.8 + j39. 2 ohms

The second-order theoretical values {which are in good agreement with

experiment) are:

[¥,], = (9.3¢ - j4.52) x 10'3mhos;[z°]z = 86.5 4 j41.7 ohms

The values obtaincd by the emf method independent of h/a are

. -3 - 45
Yemf = (10.22 - j5.94) x 10 ~mbhos; zemi = 73.13 + j4Z.50hms

As compared with the secuad-order value, the admittance given by (18) for the
half-wave dipole is about 5 percent in errur in the conductance, 3 percent in the
susceptance; the corresponding errors iu the values obtained by the em{ method
are 9 percent and 3] percernt. For greater lengths the results of the emf

method deteriorate very rapidly.

It may be concluded that (17} and (18) combine reasonable accuracy with

simplicity in both the distribution of current and the admittance.
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The Cylindrical Antenna in a Dissipative Medium
i. The General Case

The physical problem under consideration is to determine the current
in a highly conducting cylindrical antenna immersed in a homogeneous,
isotropic, dissipative medium of great extent. The antenna is center-driven,
for example, {rom a shielded-pair line that lies in the neutral plane. As with
the antenna in air, it is convenient to approximate this configuration by an ideal
line with <he impedance of the antenna and a suitable terminal-zone network as
a lumped load. For this purpose the antenna is imagined center-driven by a
delta-function generator. In this case, the knife edges of the generator term-
inals are equivalent to an infinite admittance that includes both a capacitance
and a conductance. The infinite current that is associated with the charging of
the knife-edge capacitance and that crosses irom one edge to the other by way of
the dissipative medium may again be subtracted out in principle, since it is
confined to an extremely short distance on each s:de of the gencrater. In
practice, it is excluded from a solution that approximatzs the current in the

antenna by a series of continuous functions.

The inlegial equation for a perfectly conducting cylindrical antenna
immersed in an infinite, homogeneous, 1sotropic, dissipative medium and
center-driven by a delta-function generator is formally like thg_ equation for the
same antenna in air if the complex dielectric factor & = €, -j —ws is substituted
for € and p replaces B, - Itis assumed that p is real. This is equiva-
lent to the replacement of the real wave number ko “"‘@E_o by the complex

propagation constant

k=p-ja=aw/pe, /1-jp=ow/ne lf(p) - jglp)] {19)

where p = o-e/wee and f{(p) -rh(—ll- sinh—lp) , glp)= sinh(%—sinh-lp) .

Tables of the functions f(p) a.d g{p) are ava:lable in the literature (26]. In
addition, the real characteristic impedance ’§o = ‘”10760 = wpo/ko is replaced
by the complex value

4 :/%: Qkp-' = Caejd (202.)
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where

g = —2E | dotan g (20t)

a
o > g
Z Z
VB tea
In these relations €, and o are the real effective permittivity and con-

ductivity, respectively. Interms of the complex permittivity € = €' - je"

and the complex condvctivity o = o' - jo" the real, effective values are given

by
o
ee=eo€er=e'-—w— y u-e=o-'+ wel (21)
In the rearranged form (7) the integral equation is
h -~
S' 1z K 4(z, ) d2! = i‘i—]}’—(t"—‘% l_Ukaz + —é—vsmkz] (22)
-h
where
h
u, = gl S‘l(z')..‘(k(h, 2')dz! (23)
-h
qu(h) = c-os kh = cosPhcoshah + jsinfhsinh ah (24)
sz = coskz - coskh
= {cosPacoshaz - cosPh cosh ah) + j{sinf z sinhaz - sinph sinhah) {25)
My, = sink(h -]z}
= sinB(h - |z]|) cosha(h - |z]) - icosP(h -|z]) sinha(h -|z]) (26)
The kernels are given by
K, g(z,2") = K (z,2") - K, (h,2") 2 £ ;;lle -e inilh (27)

The difference kernel may be separated into two parts as follows:

Ky p(z, 2') = Ky p(z,2') + jK,(2,2") (28a)




TR336 -15-
where

cosB R, coshaR cosfB R, coshaR,
K, (z,2") = 1 1 h h
kR*™? R R

(28:)

1 h

Kz, z') = -R]' [sinBR (coshaR, - sinh aR ) + jcos PR, sinhaR]

2 W . . .
+ th[smﬁt{lh(coshuth - sinhaR}, ) + Jcosﬁthsmho,th] (2¢c)

Note that Kkl(z’ z') is not real when o # 0; it dees reduce to the real
KdI(z, z') whe a=0. This equation (22) has a much more complicated
ke:nel than (7) and the right member is also more invoived, since the
distribution terms Frs and M, , are complex, and contain the additional

parameter a .

The type of solution desired for the current in an antenna in a dissipative
medium is one corresponding to {17) for the antenna in air that provides good
approxumaiions of both the dis nd the 2dmittance in a form
that is sufficiently simple to permit the direct integration of ihe integrals for
the electromagnetic field. It is in order to cbtain such a solution that the form
{22) of the integral equation was chosen. The approximate solution of this
equation may be carried out in a manner closely paralieling the procedure
described for the antenna in air. Indeed, the kernel (27) has already been
separated into two parts such that the one KkR(z, z') , is very large when =z'
is near 2z so that the principal contributions to AzR(z) are from the currents
near z ; and the other, KkI(z,z') , is relatively small near z'= z so that the
principal contributions to AzI(z.) are from currcnte at some distance from z .
As before in (13), the current may be expressed as the sum ¢f two terms and

the integral equation appropriately separated into two parts as in (15) and (16):

h J4TKU,
y[ IU(Z')de(z,z') + jIV(z')KkI(z,z')] dz' 2 m—) Fi, (29)
-h
h
3 jemwkvy
g Iv(z')KkR(z, z')dz' = —————prk(h) M., - (30)
-h
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These equations may be solved separately by iteration and the resulting solutions
added to obtain I(z) in terms of Vz and Uk . Uk may then be expressed in

terms of VE with the substitution of I{z) in (24) . The solution for the current

is
JZ'TrkV . higher
z) =~ [sink(h ~|z}) + T, (h) (coskz - coskh)] + {order (31)
wpwkpcos kh =i \terms

where Vl R is a complex expansicn parameter and -k("x) a complex constant
that depends on h/a, Bh, and a/f . Unfortunately, the integral functions
that cccur 1n Tk(h)- are not in general available in tabulated form. However,
explicit evaluation has been carried out for the half-wave dipole [12] in a
moderately conducting medium such that Bh = 7/2 and ah <1 and for the
electrically short dipole [13] in an arbitrary medium defined by gh < 0.3,
a<B.

2. The Half~Wave Dipole

For the half-wave dipole, the approximations coshah =1 and

sinhah = ah are made and (31) reduced to the form

vel(;L-— = :_jZ'rr(rl ;i;/ﬁ) [sinB|z|- 1 + T} (4)cos Bz] + higher order terms (32)
Je )
oY er

where

T g -1 TR R (33)

Ju.h

The normalized current I(z)/Ve ,/ is shown in Fig. 3 with I(2) = Iz" + jI;

as a function of z with 2a/f= ¢ /we ‘€ as parameter. The normalized

impedance Z ,/—; and adr‘nttance Yo/ 7_; are shown in Fig. 4. Both the
distributions of current and the impedance are in agreement with experimental
results obtained by lizuka. It may be added that measurements have been made
with larger values of o-e/w €5Cer than those used in the theoretical calculations
represented in Fig. 4. These indicate that the resistance curve in Fig. 4
reaches 2 maximum as ¢ /weoeer is increased further and then bends down to
approach zero. The corresponding Jdistributions of current change from concave

outward as in Fig. 3 to concaveinward as :re/w €€er is increased.




373

&7

I 298
V4 E

I\ 13 1 |

o)

q

(vez)" .373\ .298)_.49 .\

I I t ] L 4 I

L

I:/V Vel

FIG.3 NORMALIZED CURRENT I,=1I'%+jI, IN HALF-
WAVE DIPOLE IN MEDIUM WITH CONDUCTIVITY
o AND DIELECTRIC CONSTANT ¢ = ey¢,

O\.oé\ee n \ |

5
IL/V e

[¢))

10 %10~
Amp/Volt




Ohms : . . ; . : r— Mhos
200 gh=1L diox1073
N 2
N _ @ _
i \\\ Q=2 - =10 19
~
N RVE
160 AN 48
~N
~
~
i \\/ i
~
RVe S~ G
120- Sl & 1 J&

N
N
- \\ 8 43
\\\/g; B
o Sl i
I \ \\ ]
\_ X \/e—f-
X Ve, TS
- T T . _:] |
0 ) i ] ] L L ! ] o)
0 05 6] 15 20 .25 30 35 40
weg€r
FIG. 4 |IMPEDANCE AND ADMITTANCE OF A DIPOLE WITH ELECTRICAL

HALF LENGTH Bh= /2 WHEN IMMERSED IN A MEDIUM
WITH CONDUCTIVITY o AND DIELECTRIC CONSTANT e = ¢q¢, ;
B=wVpe =27/ )




P N . L T O T U VO O oo O v O SO N O o WL I

TR336 -17-
3. The Electrically Short Antenna

The current in the electrically short antenna defined by ah<1,Bh<1

is readily obtainzd from (31) as a series in powers of 8h and ah. The first

1 . (34)

3{Q-3) \ h_Z)JI

few terms are:

j 2,2 2,2 .33 2
- R 1 5 - L) s o2 R aR
dR

The corresponding admittance is

Y (k) = G (k) + jB (k) (35a)
where
2T Zal_ ¥.3, 3 [ az\'} §4 4 ( az . 0.4 ¢
G (k) = - = 18h + 28°0°F/3) |1 - =5 [+57=—= |1 - 1055 + 5= 35b)
AANRATR L i Al e [
B_{k) =—Z.7.5—-J\8“ {1 - ﬁ\* e[, o, o) ot -9-(5 0% +Efﬂ {35¢)
o ¥Rl pd 3| 27gt amIBT T2 gl

In these focrmulas

F=l+=g75—=1+-573 (36)
and
Q = 2in{2h/a) (37)
Also
W
e=4E, g =4 (38)

These expressions are general and apply to all values of @ and P that satisfy
the reiations Ph < 0.3, ah €0.3. The fact that it is necessary to retain
terms up to and including fourth powers of the small quantity Ph is an indica-
tion of the compiicated nature of the admittance of an artenna in z dissipative
medium with no restriction on a . The reason is obvious:if a =0 asina

perfect dielectric, the leading terms are

4. 4
~ . 2mB"h . ZWQh
o W, (0 3) ol%o) = T o
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On the other hand, when a = as in salt water,

PPN 3.3
. 47 - 47mFB8 h

G (k) 2 x@Tpa B (k)2-222 (40)
o §’e’+’d“ o 3§e\i/ aR

whore F is definsd in (36). Note that Go(ko) in (39) is a pure radiation con-
ductance; it is very small compared with the suscaptance. In (40) Go(k) is
determined entirely by dissipation in the medium, the contribution from
radiation is negligible; Go(k) is very large compared with Bo(k) . Itis clear
rom the gencr
for only a very small range of a near zero. This indicates that the short
dipole behaves as a radiating antenna only when a is very small; ifor larger
values it i essentially a pair of electrodes.

Zo(k) .{o(_k) X (k)

The normalized impedance e = +j t") and admittance

= G (k)i + B (k) ofa short antenna with ¢ Bh=0.3 and Q=10

Y
o' ’e

are shown in Fig. 5 as 2 function of a/B. The curves for Ro(k)/g’e and

L34
Go(k)§e are also shown on a logarithmic scale in Fig. 6 in order to show their
extremely rapid rise in the range of very small values of a/B . Note that

Ro(k)/te has a maximum between a/B = 0.5 and 0.6 .

If the medium in which the admittance Yo(k) is measured is an ionized
region such as the ionosphere, the conductance Go(k) and the susceptance
Bo(k) may be related directly to .ae concentration of electrons and to their

collision frequency. Details are given elsewhere [13].
The Electromagnetic Field of an Antenna in a Dissipative Medium
1. The General Case and the Field at Distant Points

The electromagnetic field of a cyiindrical antenna of half-length h with a
total axial current I{(z) when immersed in a dissipative medium may be deter-
mined from the vector potential

B kR
A (x) =f; gi(z ) S da! (41)
-h

where
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3
R = V/(z -z + PZ +a2 - 2a cos 68!
. "o L 2
2f(z -2z +p (42)
when expressed in the cylindrical coordinates F, 8, z . The formula {41} may

be used to determine the vector potential at any point except within distances of
2

the ends of the antenna comparable with its radius a . At distances r=y/2z2 +p
[

from the center of the antenna that are large compared with the half-length h ,

that is, when

r2>>h2, R=r-2z'cosb, (43)

an approximate formula for the vector potential in the radiation zone may be

used. This is

. I
-jkr .
R (zneln'cos 8q,0 (44)
“h

The corresponding non-vanishing cylindrical components of the magnetic and

electric fields are given by

2 .
. oA (r) .kZ 97A (r) _.k& 1 9 8A (r)
Botr) = ~—g5— i Bplr) == g Bylr) = = pyp (pgp) - (49)

In the radiation zone the significant components are conveniently expressed in

the spherical coordinates, r, 0, . They are given by
B;(r) = -jkAl(r) sin 8 ; Eg (r) = -ij;(r) sin® . (46)

In order to determine the complete electromagnetic field it is necessary
to evaluate the integral in (41) or at least the derivatives of this integral
required in (45). For the radiation field at distances that satisfy (43} it is
sufficient to evaluate the simpler integral in (44). A simple and reasonabiy
accurate representation of the current in a cylindrical antenna of zero to mod-

erate lengtH is that given in (3)). Jnfortunately, if this distribution is
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substituted in (4]) and (45) is evaluated, one of the three terms involved cannot
be obtained in closed form. On the other hand, the integration of (44) is

straightforward. With (46} the result is

3}

4e -jkr
gzr(?) = E; () =-%i—;m [F,,(6, kh) + T, (h)G_(6,kh)] {47)
where
'Fm(e’ kh) = cos(kh cos;?rze- cos kh (48)
Gm(e,kh) - sinkhcos(khcosegiioos SO-S %os kh si_n(khcosg) ) (45)

These expressions can be separated into real and imaginary parts and the
electric and magnetic fields evaluated. However, since the amplitude decreascs
as e-ar/r , it is evident that the range of r in which the field is significant
and in which {43) is satisfied is not great unless a is sufficiently small to

satisfy the conditions

a®n? << 1, sinhahtah, coshahtl . (503

Nevertheless, the general directional properties of the field not very close to
the antenna may be determined from (48} and {49) even when a = . When (50)
is satisfied the field factors defined in (48) and (49} become somewhat simpler.

Specifically,

Fm(G,kh) = Fmr(e,kh) + jnthi(G, kh) (51a)
where
_ cos(Bhcos d) - cosBh .
Fmr(e, kh) = o (51b)
_ 8in(Bhcos @) cos O - sinfh
Fmi(e’ kh) = sin © .
Similarly,

G_(0,kh) = G_ (0,kh) + jah F_.(0,kh) (52a)
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where
. _ sinPh cos (Bhcos 0)cos 8 - cos Bh sin {fh cos 0)
Cmr(@’ kh) = sin® cos @ (52b)
Gm‘ (0,kh) = sinfhsin(BhcosB)tan®d . (52c)

Also in (47),
coskh = cos8h + jahsin 8h . (53)

When Bh = /2, (51) and (52) become

P vl
1 ) ar . sin {3 cos Q)cos8 - 1
Fmn(0:3™ - joh) = ¥,,,(8, 3} + joh sin 0 _l (54a)
G (0 .];7;-_ 3 h)‘F (@ 1—T-)+ hsin(ECOSO)tanO (54b)
m ’ 2 ‘]a = m ’ 2 _10' 2
where
- cos (%cos 6)
F_(0,7) = — (5ic)

Since from (53) coskh £ jah, it follows with the readily verified approximation

{that is valid only when Bh = 7/2)

tan® sin(Fcos 8) & ZF_(0,7) (55)
and the definition (33), that (47) becomes
ve e-(a + jB)r '
r.__0 . s Ay [l = jahw/2 _'11\-]
Bo =V ¥ Elmw’ 2t Tk(z)(l ~jah )I;n(e’ Z' (56a)
where
. T
cos 8 - sin(=cos 8)
Ty = 2 :1-% i
Hn® 3 = ——=mocess — - (1 "2 Fp(03) - (56b)

'thig is the complete field generated by the current (32). Note that Hm(e,zrz)
8 the part of the field contributed by the component of current sinf Izl-] .
The factor (1 - jahw/2)/(1 - jeh) in (57) as compared with (32) is a conse~-

quence of the atienuation of the field over the small distances z'cos® in
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R=r-2z"cos®. The field factors F ( . 1) and i (G ) are shown in
Fig. 7.
If the approximate relation on the right in (56b) is substituted in (56a),

the approximate electric field is given by

Vee'(a +iBjr s
r_ o] ____ ' ]a Tz 11'_
Eg = v T [1 +T (4)( - joh ) ]Fm(e’z)' (57)

kr

This field would be maintained accurately by the current

i(z)
e ——
Vo €er

and only approximately by (32).

LB 3 )] cone o

4
o kr 2
Note that in (32) the input current 1s propor-
= T+ Ty )]
The

The correct current in (32) yields

tional to [-1 + Tf{(%)] whereas in (58) it is proportional to [1 -
Siace the former gives the correct value, the latter is evidently in error.
explanation for this discrepancy is clear,
the correct field in (56a) and the correct radiated power. If the current is
approximated by a purely cosinusoidal distribution, its amplitude can be adjusted
so that the input current is correct with the factor [-1 + T! (4)] , or so that
TeT(].

In the former case the power radiated is too small, in the latter case the input

the field and the power radiated are correct with the factor {1 -

current is too large.

1 rd - e e . AT 1 n - - - A
Gl‘apus of ihe electiic field deflued in \17,wucu ph =TT, a= 0 s h/a = 75

are shown in Fig. 8. It may be concluded from the forms of (54a) and (54b) that
the field patterns when ah is small do not differ greatly from those when a = 0.
Significant differences may be anticipated when ah is not small compared with
For

one, in particular, when a is of the same order of magnitude as §

their evaluation the complex parameter Tk(h) must be computed.
2. The Field Near the Dipole; Approximate Currents and Cylindrical Coordinates

In order to determine the electromagnetic field nearer the antenna than
is permitted by the condition (43) it is necessary to carry out extensive numer-
ical computations for individual cases or to make approximations in the distri~

bution of current in order to obtain an integrable form. Fortunately, the latter
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procedure is straightforward, since the term sink(h - |z]) in the general
expression for the current (31} is integrable when substituted in (41) and (45).
However, it is not to be expected that a satisfactory approximation can be
achieved :if the entire term Tk(h) (coskz - coskh) in (31} is simply omitted.

In particular, it ie essential that the total power supplied ' o the antcnna be 2
good approximation even if the distributicr. of current along the antenna is some-
what in error. This may be achieved by a rearrangement of (31) in the

following manner:

I(z) = [1(0)/A( 0)][A(z) + B(z)] (59a)
where
™~ P T . -
Aty = h o+ 7wy [Locoskh) | jsink(h -|z]) | (59b)
7L k' °\ swmnkh /| coskh |
and
B(z) = T,(h) | cosk - 1+ (Logoskh) lzl-] (59¢)
- k l_ ’ \ sinkh 51 i A )
Note that
. J2mkV
i(0)= VY (k)= W A(0D) (594)

where Yo(k) is the admittance. The two parts of the current, A(z) and B(z),

or
O

thn Al mbsedlassts A
vaal Qidvilivucavn

o
are chosen s¢ that B{0) - 0 and, hence, contributes only
along the antenna and not at all to the input current and the admittance, which

are de. rmined entirely by A(0) . The plan is to neglect B(z) in the integra-
tion to determine the electromagnetic field since it contains thc tcrm that has

not been integrated iu clused form. The anticipated erxor is, therefore, that
made by the omission of B(z) . Investigation shows that A(z) alone is quite a
good approximation when fh < 37m/4 and very poor when Ph ~ 7. It is
particularly good when ph < /2 and the maximum current 1s at the driving
point. Indeed, when Bh = m/2 and (ah)? << 1 , B(z)= Tk(;);-)[cospusinplzl-l].
The contribution by this component of current, shown shaded in Fig. 9 when

a =0, is seen to be quite small.  Similarly, when $h <1,

W |, 28 |zl
B (z) = Tk\h) =5 (1 - ;7) -(1 - h )} . This is the very small difference
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between triangular and parabolic distributions when required to have the same

value at z=0. If B(z) is neglected in (59a) the approximate distribution is
simply '
Iz} 2 g(0) SR 12]) o gy c3p/s o0 <8 (60}

where I(0) is given in (59d).

When (60) is substituted in (41) the vector potential itself cannot be
obtained in closed form. However, the derivatives required in (45) may be

expressed as follows [27]:

Be(_zt) __1_%%%1 | e kRIh o tiR2n Zcoskhc_jkr] (61)
7y o jwpl(0) fz-h ~jkR)p , z+h -jkR2n _ 2z 1l o JKT
E()(l') = 4,".}_\ [R + R?_h —coskhe (62)
- R1nonikRap ik |
E,(F) = ~al0) [ — - £ coskhe Jk‘J (63)
2h
where

R, =z -02+pf, Ry =zt +p?, r=/zhed o (64)

For the part of the current represented by {b0) thesz expressions are accurate
and give the complete electromagnetic field within distances of the cyiindrical
antenna comparable with the radius a . Since all distances are measured f{rom
the axis rather than the surface of the cylinder, these expressions have no mean-
ing for p<a. They are useful particularly for determining the near field of

antennas with $h < m/2 .

If (61) - (63) Are multiplied by el**

electromagnetic field. However, the formulas so obtained permit nc simple

, the real part is the instantaneous
physical interpretation other than that the snds and center of the antenna may
be regarded as the origins of complicated outward-traveling disturbances. A
somewhat simpler picture inay be obtained for the half-wave dipole in spheroidal

coordinates and for the electrically short antenna in spherical coordinates.
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3. The Hali-Wave Dipole; Spheroidal Coordinates*
When Ph = 7/2 the normalized distribution of current in (60) is

z) _cosPpz cosha(h__!zu ; sinBlz]sinh a(h - |z{)

1z) _
i{0o) ~ cosheh coshah (63)
The associated distribution of charge per unit length is obtained from
’ : 4 A i dI
2'z) = Re q{z) + jIm g{z) =B] dzz (€6a)
where in normalized form,
- z | .
Re [CIC}’S;Z)_I Bcos Bzsinh afh - izi) asinp |z|coshalh ~ [z]) (66b)
V) pcoshah

Feqz)] _ smﬁlzlcosho.(h - |z]) + acosPzsinh aih -| z!\-l ,
Im | =75y | = 7, BScoshah | (66c)

The real and imaginary parts of I{z)/1{0) and c q(z)/1(0) are shown in Fig. 10

for ah=0, 0.1, 0.5, 1.0, and v/2; c is the velocity of light.

Let the spheroidal coordinates k_, k_ , and ¢ ke introduced where

ke = a.e/h is the vaciprocal of the eccentrizity of 2 sphercid with semi-major

axis a, and with its focz at the ends of the antenna, ky = /h is the corre-

hl
sponding quantity for an orthogonal hyperboloid of two sheets, and ¢ is the
azimuthai angle. These coordinates are related to the cylindrical coordinates

by

2 2
2= hv/(ke - 1)(} - kh) z = hkhke ;

they are illustrated in Fig 11. Note that 1 s k, S , =1 s ky S 1. The

spheroidal components of the electrymagnelic field that correspond to the
cylindrical components (61) - (63) are quite complicated when a £0. Itis
convenient tn express the instantaneous value of each component as the sum of

three terms as foilcws:

3

3 3
By(T,t) = Z By, (T,t) , E(7,t) = z (0, B F,0= Z Ey;(7,t)(67)
i = i=1

*
Much of the work in this section was carried out originally by Mr. S. T. Yu.
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where
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cos(mk, /2) sinfut - wke/zﬂl

J

- cos(mk, /2)sin{wt + § - wk_/2)
Ey (7,8 = -5 A, E_ h - & }

L Vg

Ly ]
"o
-

—

M

-t

S’

11t

'

e Y N
L/ - D - )

~

r 1
| sin{Tk /2)coslut + £ - 7k /2)
E, (T t)= ¢ A, —
[
[ V& -k - 1) 1
s mak ;{ Tak
1(0} h e
A, = 5 cosh|—g ) exp | - 75 ) ;
sin(wkh/Z)cos(wt - 'u'ke/Z)
B-Z(x 8 = -pA,

7/
JxZ - 1) - k%)
h e n

sin(‘zrkh/Z)cos (Wt +d- 'rrke/Z)

2 2 Z
Jul -1y - k)

ccs('n'kh/Z) sin(wt + & - 7rke/2)

\Akg - kD) - 1)

10 ,"n'ukh\ ( ’I'ro,ke)
A, =5 smhkZﬁ exp |~ 2§ ;
cos (ut-%'rr /kg'i-k;‘l - 1)
Bgzir,t) = piy

Jal - -kl

Y '_'“)
k,cos (wt + 4 'z'wﬁ‘e +kp -1,

3
Qo ik - nad -y - k)

Ee3(r yt) = guA

{682)

(68d)

(68c)

(684d)

(69

fr
-

(69b)

(69¢)

(694d)

(70a}

{70b)
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. khcos(wt+9{-—'rr k +kh 1)
Eh3(r,t) = §5A3 (70c)

6241l - el - bl - 1)

/ \
1{0) [ e ) Ta Jk, + Ry

5 =52k sinh \ 2 exp l 2;3 (70d)
Note that Bh=.w/2, 4= tan"l(a/B), = wp/ 24 62

The third part of the field as given in (70a) - (70d) may' be expressed in

the spherical coordinates r, 0, and ¢ in the following equivalent form:

Byt t) = ) SOSWEBI) ginn (B8) exp(-ax) (T1a)
- t 1{0)

Ey,(r,t) = S5— So8l ‘ff:fo fr) sinh(lZ’%)exp(-ar) (71b)

E_, (r,t)=0 (71c)

These rather elaborate expressions fer the electromagnetic field reduce
to a simple and readily interpreted form when the attenuation of the medium is

rather small. Specifically, if the following inequality is satisfied:
a/B < ah <<} (72)

the entire electromagnetic field of the half-wave dipole is well approximated by
the first terms {68a) - (68c) in the sums in (67) with ¢ = 0 and with

'rruk
A1 %,_if—q%exp(- 78 )-;,-(g%exp(ua) . (73)

Except {or the addition of the exponential term in the amplitude (73), the lieid
given by (68a) - (68c) with g = 0 1s like that for the same antenna in 2ir. The
components BQ(;’ t) and Ee (?,t) are in phase with each other and both are a
quarter period out of phase with Eh(?, t) . The surfaces of constant phase are
the spheroids ke = constant and these expand outward in such a manner that
the end point of the semi~major axis travels with the velocity ¢ . The electric
field at any point is elliptically polarized as shown in Fig. 11. The components

BQ(?,t) and Ee (?, t) decreacse in amplitude with distance from the antenna in
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a manncr that approaches 1/r at great distances; the component Eh(?, t),

on the other hand, decreases in a manner that approaches l/r2 . The entire
field is exponr~ntially attenuated in amplitude with the semi-major axis a, = hke
as the variable. The instantaneous value of the outwardly directed component
Sh (?, t) of the Poynting vector associated with the electromagnetic field that

satisfies (72) is

geI?‘(O) cos? (mky /2) exp ( - mak_/B)

. 2
S, (r,t) = 27 kﬁ‘ / = sin” (wt 'rrke/Z) (74)
‘ L - k) (k- 1)
where §e =wp/B . The time-average power transferred across a spheroidal
surface with semi-major axis a, = hke is
T = 11°(OR® ¢ 2*% (75)

where Rg = 73.1 ohms. Since terms of the order of magnitnde gh have heen
neglected, the exponential in (75} reduces to unity when a_ approaches h, and
e

(75) reduces to the value for air. The diffevence

T, - T,, =3 I°(0)RE [o720%el - oT20Re2] (76)

e

el

where a, and a,, are the semi-major axes of two spheroids with a s

-

>a ,
is the power dissipated in heating the slightly conducting medium in the volurx(:e1
between the two surfaces. As pointed out in conjunction with (57) and (58) the
correct power when the approximate distribution of current (60) with Bh = 7/2
is used is obtained with the value of I(0) given by (58) instead of the correct
+alue given by {34). Alternatively, the correct power is also obtained if I(0)

is obtained from (32) and the correct input resistant Ro is substituted iz {76)

for the radiation resistance Rz as computed with the approximate current.

When a is not sufficiently small to satisfy (72) with Bh = m/2 the
complete expressions (67) with (68a) - (70d) must be used for the electromag-
netic field. These cannot be combined to give a simple picture of outward
traveling surfaces of constant phase at all points cutside the half-wave dipole.
It is not even convenient to coinbine the first and second parts of the field inte

a spheroidal wave and treat the third part in the forms (71a) - (7l¢c) as a
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spherical wave originating at the center sinze components of both the second
and third parts become infinite aioag the z axis and only their sum is finite.
However if a relatively small region in the vicinity of the antenna is excluded,
the complete field can be approximated by sphero.dal waves similar to those
which obtain when the attenuation constant is small. In effect, the spherical
wave originating at the centei of the antenna must be approximated by a

spheroidal wave. It is readily verified that if the gquantity

. 2.2 o
d:x-ﬁ-(l-kh)/ke 177)

is small enough so that it may be neglected completely, the third past of the
field given by {70a) - (70d4) may be approximated by

cos {wt - 'rrke/?.)

By ,(T,t) £ pA, - (78a)
23\T > 3
ol - - k)
- . cos(wt + ¢ - 7rke/2)
B T, 0058 A, —— = (78b)
ﬁke - k) (- k)
- k) cos (wt + 4 - 'n'ke/Z
E,3(r,t) =¢ A {78¢)
a3 2 2.2
ke,/(ke - ) (kG - 1)
mak
0 . ,
Ay= 20 i (33 expi - —52) - (784)

It is Lo be noted ihat over a considerablc range near the z axis kh is very
near one so that d = 0. In the vicinity of the equatorial plane where kh is
very small, the excluded range is determined by the magnitude of ke , it is
indicated in Fig. 12. Specifically, for example, d < 0.1 when

2 2
(1 - kh)/ke <0.19,

With the approximate expressions (78z2) - (78d) and (68a) - (69d) the

following combinations may be made:
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Bs2

Eez(r,t) + Ee3(r,t) = -

Ehl(r ,t) + Eh3(r ,t)

where

D,

F)

(F,t) + By (T, 1) =

With the additional notation,

D,

F

2

-30-
. 3
Bl chos(wt ..Le, 23 ool :ITaxe) 79
2mh 5 5 xpA 28 {79a)
Jo - 00 -
g 1(0) D,costwt + 4 - Tk /2) oK,
5 expf{ - ) {79b)
27h \/(kz' - 1’2)(1 i 2) 2p
e h kh
¢ 1(0) F, cos(wt+¢ - mk_/2) mak
. a < =3 e
R exp( - —3g>)  (19)
Jeg - ) g - 1)
'rra.k,n 'n’kh ) o
= sinh ( 7B ) sin(— ) - sinh (—2—6) {794d)
Tak Tk k
h, . h, h _. -
= cosh (—Z—ﬁ—-) Sm(T’ + i; sinh (7—5—%) (79e)
'Tro.kh 'rrkh
= cosh( 2B ) cos { > ) (80a)
7ro.kh T
= Sinh(_ﬁi_— } cos (-—2-— ) {80b)

the complete field may be obtained by combining (79a) and (79b) respectively
with (68a) and (68b), and (79c) with (69c). The results are

BQ(?, t) = -

Ee(r,t) = -

Dsin(wt + & - Tk_/2) mak
B 3 —*— exp(- =57 (81a)
(kg = 1)1 -k )
¢ 1(0) Dsin(wt + g+ 4 - 'n'ke/Z) Tak,
27h 7 > exp( - =35 ) (81b)
ﬂke - X 01 - k)
g, 1(0) Fcos (vt + g+V- que/z) Tak,,
= exp (- 33 ) (8ic)

Z 2\ 2
JwE-k&yud -
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where
D= /p?+DS, & =tanliD,/m) (82a)
and
r ]
F= JFC+FS, ¥ =-tan {(F,/F)) . (82b)

The formulas (8la) - (81c) for the spheroidal components of the field of a half-
wave dipelz (ph = 7/2) ina dissipative medium without restriction on the
conductivity are substantially like the formulas for the same antenna in a medium

that is only slightly conducting. However, the fcrmulas for the unresiricted

141
o+

mediwn are not useful in a regicn near the antenna where the approximation

d =0 is nota good approximation. In addition, they are more complicated
owing to the appearance of the different phases A and W in the expressions
for the mutualiy perpendicular components Ee(?,t) and Eh(}.’t) of the

electric field.

The time-average component of the Poynting vector perpendicular to the

spheroidal surfaces ke = constant is

_ 2 DZ cos g exp (- mak_/B)
_ I7(0) e
Spir) = =3 2 —_— (83)
87"h (1 - kh) /(kz _ kz)(kz - 1)
e h"*"e
The total time-average power transferred across a sphercidal surface for
which k> 2.2 is
2 . 1
¢ 1°(0) exp ( - wak_/B) 2
_ e e D
Te = 2,2 5 z dky (84)
4m(l + a”/p%) q1-k

where §e = wp/B . Owing to the complicated form of D as a function of kh R

the integral in (84) has not been evaluated.

The general formulas (81a) - (81c) indicate that the electromagnetic
field of a half-wave dipole in an arbitrary dissipative medium may be inter-
preted in terms of expanding spheroidal surfaces except very near the antenna

where more complicated conditions exist. These suriaces expand with foci
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at the ends of the antenna and with an outward phase velocity aloag the z axis

that ig given by

Vo = w/p (85)

where B is the real part of the omplex propagation constant k as deiined in
(19). Ho:;ever, although the phase of Bq,(?,t) ; Ee(?,t), or Eh(?,t) remainsg
constant as each spheroid moves out along a hyperbola defined by a particular

value of k the actual phases at different points along such a spheroid are not

b

the same. hThat is, the expanding spheroids are surfaces of constant phase, but
the constant value on each spheroid is a function of kh . Thus, respectively,
for By(T,t), E,(¥,t), and E,(7,t) the phases, (wt+a - 7k /2),
(wt+ L+ A - 'n'ke/Z), and (Wt + ¢ +W - 7rke/2) remain constant* as t and ke
increase together. At each point on a given spheroid ke = constant, the phaze
of Ee(;, t) differs from that of BQ(}’.,t) by the constant angle ¢ = tan-l(a/ﬁ) .
The phases uf the two mutually perpendicular components of the electric field

differ by the angle (A - ¥) which is a function of kh'

In 2 medium that is dissipationlegs or has very low aitenuation, the
electric field is elliptically polarized with principal axes tangent and perpen-
dicular to the spheroidal surfaces uf constant phase as shown in Fig. 12. In the
dissipative medium witah a unrestricted, the principal axes of the ellipses
described by the electric vector are rotated from these tangents and perpen-
diculars by an angle ' that is a function of kh . The polarization ellipses
for the electric fieid and their angle of inclination with respect to the direction
of Eh(?, t) may be determined if the time is eliminated between the expressions
for Ee(?,t) and Eh(?,t) as given in (81b) and (8lc). Let these formulas

be expressed as follows:

% -
This is strictly true for Bcp(?,t) and Ee(r ,t), since ke does not occur in
the phase term A . It is not actually true for Eh(?, t) owing to the occur-

rence of ke in the term (kh/k..) ginh (Tro./'Zﬁ) in F, which contributez to the

1
phase in ¥ . However, this term is small, except quite near the ends of the

antenna, so that the general picture is not altered significantly.
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Ee(r ,t) = Ee sin($§i+ A ) {86)
E (F,t) = By cos(Q4+ V) (87)
wheie
g0 D exp(-‘lrake/ZB)
E - -2 (88)
[ Th J 2 3 7
(kg =k M1 - k)
g 1(0) Fexp(-'rruke/Zﬁ.)
E = (89)
h 27h /2——2———2——-—
(ke- kh)(ke -1)
and
Q= (wt+d- wke/Z) . {90)
1f {(86) and (87) are solved for sin  and cos 2, and these quantities are then
squared and added to equal one, the following equation is obtained:
2,~ 2.~ —_ -
Eh(r , ) Ee(r , t) ZEh(r , t) Ee(r , £) 2
+ + = sin (W ~-4)=cos (V-2a) 151)
2 2 = B
Eh Ec h™e

This is the equation of an ellipse that has its principal axes rotated with respect
to the directions of Eh and Ee . Let the direction of El'i be rotated from Eh
by an angle 6' as shown in Fig. 12. The direction of Eé is then rotated by
the same angle with respect to Ee . The new components F.‘.l'_l and E"3 are

related to the old cnes by the formulas

E

h El'lcose' - Eé sin 9’ (92a)

E
e

L]

E) sin ot + Eé cos8' . (92b)

If the angle 9' is chosen so that

ZEh Ee
2 2
Ee h

tan2 @' = sin{(W-a) , (93)




TR33¢ -34-

the new equation is

E;l(r,t) I lE'(r £y ]2 )
L J = cos“ (W - 4) (94)
24
where
[ ! \ 2 _ cosze‘ ., 2sin{¥ - A)sin6'cos 8! sinze' o
=T = 3 T E & + 2 ( Sa}
h| E) h e E;
[ \2 _ sinze' . 2sin{¥ - A)sinB'cos @’ cosze' -
(F = 5— + BB + > . (93b)
e} Eh h~e Ee

The equation (94) is that of an ellipse with semi-priacipal axes E}'1 cos (¥ - 4)

and E:3 cos{¥ -A) . Note that when ¥=4A , as in a dissipationless medium,

@'=0, B! =E, , B!' =E_. Itcanbe aryued from symmetry or determined
A o} R’ Te e o

directly from the formulas, that ' = 0 when kh =0, 1; it follows that the

electric field is still linearly polarized parallel to the antenna both along the

z axis and in the equatorial plane just as when immersed in air.
4. The Electrically Short Antenna

As pointed vut fcllowing (59a) - (59d), the approximate distribution of

current (60) in the form
I(z) = 100) (1 - |z| /h) (96)

for the electrically short antenna (Bh < 0.3, ah<0. 3) is a particularly good
approximation since the omitted term, B(z) = I‘k(h) [(1 - -——) -(1- }zx )]
is very small. The 1nput current is to be determined from the more accurate
formula (34) . Since (96) is a special case of (6C) with kh small in its 1eal and
imaginary parts, it follows that the rigorous expressions (61) - (63) for the
electromagnetic field of the distribution (60) apply. They may be converted into
a more common but also slightly more restricted form by a series expansion in

powers of the small quantity kh and the quantity h/r , which must also be

assumed small . The distance r = v@ + 2% is measured from the center of

the dipole to the point where the field is calculated. The approximations include
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Ry, 51 -hcosd + (h sinG))2 /2r (972)
R, =r +hLcos?d + (hsin e)2 /er {97b)
coskh & 1 - k°h2/2 | (97¢)

With these approximations the complete electromagnetic field in the spherical

coordinates r , €@, & has the familiar form

’

B@(r) 2 J-EZI-STQM I-% - J_Z'—‘ e'-jkr sin @ (98a)
(8 T 4
- n P . --
Eqir) ¢ l“—ﬁ{"ﬂ kL -—l—g]e KT gino (98b)
* r kr
E (r) 2 YL0h ) 2 . 11%-] e KT ging . (98¢}
l_r AT _j

Note that wp/k = ,/;;7? = £ . Inthis derivation terms of the order of magnitude
lkh]4 and h3/r3 and higher powers have been neglected. This means that the
field given in (97a) - (97c) is not valid in the immediate vicinity of the antenna
as are the more general expressions (61) - (63;. [f desired, the above formulas
may be expressed in terms of the equivaient electric moment P, with the

relation

h
jwp,, = S I{z)dz = {OO)h . (99)

Ty

!

For a short dipole in air, k=k_ is real; wp/k= ¢, - The instantancous

field is obtained from the real parts of (98a) - (98c) when express<d in polar

form and multiplied by eI¥t Specifically,
IS (1), R N
B(p(r ,t) = e 5 cos (Wt - ko r + tan ko r)sin® (100a)

r

¢ 10 A - i vt .
3 cos[wt - k rt+tan (k- l/kor)] sin® (100L)
o

—-

Eg(r,t) ==z




)
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g Hom 1+ ilr? i
3 cosfut - kor + cot ko r)cos® . {190c)

E (r,t) = == .
oF

Thesc expressions do uoi in general peimit the simple interpretation of spher-
ical surfcces of constant phase that travel radially outward with a definite phase
velocity as is true in terms of spheroidal waves of the half-wave dipole in air.
Each component may be so interpreted, but the phase velocities of all three
components arc different until k r becomes sufficiently great in the radiation
zone so that kc'z, 25> 1 R tan'lkor /2, cot_lkor 2 0. The radiation-zone

field is

pOI(O)koh
‘P(r t) = (r,ti/c = —drr sin(wt - ko r)sin® (10'a)
BSRE 8 () 39
El{r,t) = ———5— cos(wt - k t)cos =0 . {101b)
T 27y °

These formulas represent a true spherical wave. All coinponents expand with
the same phase velocity ¢ B; (?, t) and E; (?, t) are in phase with =ach
-
other and a quarter period out of phase with Ez(?,t) . B;(_zf, t) and E;(r , t)
decrease as 1/r; Er(?, t) decreases as l/r2 go that when r is large this
r

component is insignificant as indicated in (101D} .

The radial component of the complex Foynting vector for the field in
(100a) - (100c) is

2
B (101 5% 5 R
(s ——5—2 |4 L sin®e, (102)
32 r* kir
c J
and the total time-average power radiated is
Z:rr K
T =Re \ a® | S_(r)r?sin0 20 =11%(0) RS (103)
e r 2 o
0 0

where the radiation resgisiance is
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¢ k2h®
0.2 - 20k, h2ohms . (1C4)

e
Ry = or

Since the approximate cur.ent (96) was used tc determine the power radiated
. e . . .
instead nf the mcre 2ccurate current (34), Ro in {104} :s only an approximaticn

of the actual input resisiance cbtained from {35). The more accurate value has

(1¢5)

where W, = 2(n 2 - 1) and 2= 2n(Zh/a). When € =10, h/a = 75, the ratio
Vdr/( Q- 3) = 0.95, so that {104) is in error by about 5 percent. The error

decreases as h/a increases.

When the medium is dissipative with k = B - ja , the components of the

{ield may be expressed as foilows:

- T 3 - -3 )
Bq,(r)=l’1—;£§)h J1:E+.‘;’:.+_12_-‘ e e Jﬁrsine {106a)
r |
2 2
B (T) = wul{C)h j 1, a B -a \ + g
] 47 T 2 2, 2 2 2.2 2 2
B +alr B"+a")r7/ (B +a)r
s —-2—2“%-2—3 R (106b}
B " +a )" I

- wull0)h [ B

E {r)-= I > J >
r 27 L(ﬁz + ol (B2 +ad)2rs  \(8%+ a2) o

————P——-;L—-) :l e-a’re-jﬁrcose (106¢)

The real part of the complex Poynting vector is

2,2
0] p*n¢, 2
73 (1+-§—L)e ot

.\
—
=
Q2
=

Re S (») =
r( ) 27
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where
Z 4u/[5 2 .
L= + {168}
,e 2.2, 2222 2,,2.2,.2 3 !
{i+.7/87Pr (1+u/ﬁ)ﬁ- (1+e7/B7) B7r

and where . = wp/B . The .otal time-average power transferred outward
across a spherical surface . radius r is the integral of (107) over the surface
of the sphere. The resait is
. 2
j10)]% 8%%¢

e , o ~2ar
Te VL A {(1+5L)e . {109}

As in the case of (103) this formula is ar approximation that is quite good only
for extremely thin anternas. It may be corrected to apply to antennas of
somewhat greater thickncss by multiplying (109) by the factor Vdr/( Q- 3).

it 1s important to note that {102) cannol be used to determinc the radiztion
resistance of the short antenna in a dissipative medium since it is not possibie
tc reduce the spherical surface across which the power Te is transferred to
an envelope that encloses only the antenna and no part of the medium. The
smallest spherical surface that contains the antenna has the radius r = h, but,
since in the transformation from cylindrical to spherical coordinates, terms of
the order of magnitude (h/r) have been neglected in comparison with unity,
¢109) is meaningful only when r > h . Since a sphere of radius r >h contains
a significant part of the dissipative vhedium  the power transferred across its
surface is not the total power radiated from the dipole. Note in particular, that

the lim:it r = { is meaningless.

The actual power supplied to the arntenna may be obtamed from the

driving-point admittance Y (k) in (34) in the form T_ = iveig oK) =%i( )IZR;k).
Since the complete exprcssions for G (1(‘ and Bo(ﬁ) are rather long, it will
2 2

serve for purposes of illustration to c0n31der the two special cases, o << B~
and a = $, for which the formulas are much simpler. The resistance Ro(k)
is given by
G (k)
o

R (k) = —5—2—— | (110)
¢ G2 (k) + BZ (k)
[e] o]
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When o°<< p%, G2 (k) << BX(K) so that
2.2
, Golk) C B hw,

FA Q_ 3
R {k) & g U 29_(___l—l {111)
c Bg(k) 67 (S 3) [ 8%n

if only the leading terms are retained. When a=§8, Gi(k) >> Bi(k) , so that
from (40)

.1 SYar
R EETm T T4m PR (112)
The power per unit input current, Pr , that is dissipated within a sphere

of radius r > h is defined as follows in terms of the power Te suppiied to the

antenna and the power -'l_‘er transferred outward to the region beyond the sphere:

—  — 2.2
200 - T 8% nr ¥
__'"e “er’ _ v Se Yar e -2ar ‘-
Pr = II(O)iZ = Ro(k) T O-3) {1+ ﬁ,,)e . (i13)

When az << (32 this becomes

2,2,
p ot BN o [@-3) | -2er 114-)
roer(Q-3) B [ Bh
where
L =% +—=2 ) (114b)
fr ﬁ3r3
When a =8,
¢ v, | 2.2
_edrf{ 1 _ B"h -2Br .
Pr- T l,ﬁh 3(9_3)(1+L)e J {115a)
where
1 1 1 -
L={z 455 + —=—=) . {115b)
Br ﬁer 2‘331.3
It ic Inszzuciive to consider a numerical example, Let the power

dissipated within tl 2 radian sphere Pr = 1 be determined for an antenaa with
Bh=0.3 and h/aZ 75. When ol <<p?, e 0¥ 2o 20/Bsy g0/, 14,
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With these values, the power supplied to the antenna per unit current is

ST -1 z 2

ZT_/10)[% = R_(K) = 1.71 (1 + 140 a/B)watts/amp’; (116a)
the power transferred beyond the radian sphere per unit current is

— 2
2T _/110))% = 1.71 (1 + 20/p) watts/amp? ; (116b)

er
and the power dissipated as heat in the medium within the radian sphere is
2
P =236 a/B watts/amp” . {116c)

When a = 8, the corresponding vaiues are

— 2

ZTe/’iI‘O;ib = To(k) = 1550. 5 wails farp (1174}

- v 12 R 2

zrer/;z\ou = 0.8! watte/amp (117b)
2

P_=1989.7 watts /amp (117¢)

From these numerical results it is clea: ihat when a/B is as smiali as
10.-3 or smaller, 90 percent or more of the power supplied to the antenna is
transferred beyond the radian sphere. When a/B is no greater than 0.1, only
about 3 percent is dissipated outside; 92 percent is used to heat the medium
inside the radian sphere. When a = B virtually all of the power is dissipated
as heat within the radian sphere. The fraction transferred beyond it is only
about 0. 04 percent. Note that when a = § the inpul susceptance of the antenna
is small, so that virtually the entire impedance is resistive. The antenna
eifectively does not radiate, but acts like a pair of electrodes with very small

surface arca--hence the raiber high resistance.
Conclusion

The general problem of a cylindrical antenna immersed in a dissipative
medium has been formulated in 2 manner that permits the determination not only
of the distribution of current and the admittance, but also ol the slectromagnetic
f1eld. The analytical procedure is approximate but quantitatively sufficiently
accurate to be of practical value. It may be extended to treat coupled antennas

in a dissipative medium.
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