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Dipoles in Dissipative Media*

by

Ronold W. P. King

Gordon McKay Laboratory, Hiarvard University

Cambridge, Massachusetts

Abstract

The general problem of antennas in dissipative media is reviewed with

reference to possible applications and types of antennas. The question of bare

and insulated antennas is discussed with reference to the highly-conducting

ce I.-er-driven cylinder of small cross sectioi,. The delta-function generator as

a convcnient idealization of feeding by transmission lines is consideredi Lhe

apparent difficulty of terminals short-circuited by the conducting medium is

resolved.

The problem of determining the admittance, the distribution of current,
and the electromagretic field for a cylindrical antenna in a conducting dielectric

is presented with enmphasis on the dual requirements of reasonable accuracy

and simplicity. Methods used to solve the integral equation for the current in

antennas in air are reviewed, and the limitations of their results for the
calculation of the complete elec:tromagnetic field are pointed out.

An approximate method of solving the integral equation for the current

in an antenna in a dissipative medium is described, and a simple, reasonably

accirate solution is displayed. The specific evaluation of currents and

impedances for half-wave dipoles and electrically short ar tennas is summarized.

The separation of the current into a principal part for vXich the electromagnetic

field may be evaluated in closed form, and a part that may be neglected in

important special cases is explained.

*Supported in part by Contract Nonr-1866 (32) and the Sandia Corporation.
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The complete electromagn-tic field of a half-wave dipole in a dissipative

medium is determined first in cylindrical coordinates, then in sphcroidal

coordinates. The nature of the wave fronts and the polarization of the electric

field are considered fairly close to the antenna and at greater distances. Similar

results for the electrically short antenna are also given- The power dissiated

1- finite parts of the medium is determined.

Introduction

The single antenna and arrays of antannas in a dissipative m(.dium are

aralytically and experimentally interesting and offer difficult problems that have

numerous applications. These include, for example, communicating from a

submerged submarine or from a mine shaft, and carrying oat geophysical

exploration3 with antennas direztly imbedded in the earth or lowered into air-

filled holes. Of more recent interest is the use of antennas as probes in the

study of ionized regions and plasma sheaths by neans of rockets. In general,

the regions involved do not consist of a single, homogeneous ard isotropic

medium- There may be two distinct layers such as the sea oz the earth and the

air above it; alternatively, as in the interior of the earth, or in a plasma sheath

in the ionosphere, the medium Ilmay have continuously varying properties or it

may be stratified in one way or another. Experimental and theoretical studies

of bare and insulated antennas and arrays in and over dissipative and dielectric

nedia that are isotropic, have continuously varying properties, or are strati-

fied in a regular manner are in progress. However, this .eport is limited to

a study of the properties of sixrgle antennas of moderate length in an infinite,
homogeneous, isotropic, dissipative medium.

Investigations that relate to antennas in dissipative media may be

separated into two groups: (a) those which are concerned only with the

electromagnetic field at large distances from a source, so that in the interest

Of simplicity, the antenna may be idea]ized far beyond practical availability;

(b) those that treat the circuit properties of the antenna itself as well as the

field that it generates. The dource used ir, the former group usually consists

of a Ilertzian dipole or infinitesimal doublct that is represented mathematically

by a periodically varying electric moment concentrated at a point.
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Physically, such a doublet may be visualized as made up of equal positive and

negative charges oscillating back and forth in opposite directions along a line

in the limit as the charges become infinite and the length of their path vanishes.

In the second group are studies of thin cylindrical antennas and of biconical

structures immersed in dissiDative media. The antenna may be in direct

contact with the conducting medium or it may be surrounded by an intervening

layer of insulation. Note that a sufficiently short antenna is the physically

realizable approximation of an infinitesimal doublet, insofar as the distant

field is concerned.

An early study of the radiation of a Hertzian dipole immersed in a

dissipative medium was made by C. T. Tai [1], who obtained the electro-

magnetic field and the Poynting vector in the well-known forms for doublets in

air, but with the permittivity and propagation constants both complex instead of

real. He noted that the total power transferred into a dissipative medium, as

obtained from an integration of the normal component of the Poynting vector

over a sphere with its center at the doublet, becomes infinite when the radius

of the sphere is reduccd to zero and concluded that "it is impossible to speak

of the total power radiated by a Hertzian dipole when the latter is in direct

contact with a dissipative medium. " He then proceeded to analyze the doublet

enclubed in an insulating sphere [2]. Actually, the power transferred across a

spherical surface that encloses charges oscillating along a line is not obviously

defined in the limit as the radius of the enclosing sphere vanishes. Indeed, it

is shown in a later section that the power radiated by an electrically short

dipole in a dissipative mecsiun-i cannot be obtained oy integrating the normal

component of the Poynting vector over a spherical surface. It may be remarked
in passing that the infinitesimal doublet has been used as an idealized source in
numerous fairly recent studies of the electromagnetic field in a conducting

half-space [3, 4, 5, 6], since the properties of a finite radiating syscein could in

this way be avoided.

The integral equation and its formal solution for the current in a

cylindrical antenna of finite length immersed in a dissipative medium was

formulated by Tai [7] in a manner paralleling the analysis of King and

Middleton [8] for an antenna in the air. The essential difference is that
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the previously real permittivity and propagation constant have become complex,
with a resulting complication of the kernel and of integrals that occur in the

iteration. Owing to a lack of tabulated functions, Tai did not evaluate his formal

solution. Indeed, the analytical difficulty associated with the infinite admittance

of the delta-function generator- -which was not well understood at the tinae--

led him to drop further work on the cylinder -nd turn his attention to the more

tractable problem of the insulated biconical antenna in a dissipative medium.

Tai's work on the dipole has been extended somewhat by Macrakis 19],

Harrison [10], and Harrison and Denton [11] who made approximate evaluations

of the impedance; more recently King and Harrison [12], and King, Harrison,

and Denton[13], have carried out complete analyses of the circuit properties

respectively of the half-wave dipole and of the electrically short antenna in a

dissipative medium. These studies are based on the approximate method

proposed by King [14] for the solution of the integral equation for the current in

a cylindrical antenna. The present investigation is directed to the determination

of the circuit properties of a thin cylindrical antenna of moderate but arbitrary

length and to a consideration of the complete electromagnetic fields generated

by the currents in such antennas.

Review of the Tbeory of Cylindrical Antennas in Air

Since the analysis of the properties of an antenna in a dissipative

medium is a considerable complication of the problem of the same anltenna in a

perfect dielectric, it is well to review briefly the extensi.ve theory of the

cylindrical antenna in air. A simple, physically realizable circuit consists of

a cylindrical conductor, center-driven from a balanced two-wire transmission

line. ao shown in Fig. la. Since the currents in the antenna and in the line

satisfy two simultaneous integral equations, their determination is a formidable

problem. If the two conductors of the transmission line are very close together,

the significant interaction of the line and the antenna is confined to a small

region near their actual jwiction. For the line, this may be approximated by a

reactive network of lumped elements characteristic of the line combined with the

impedance Z° of the antenna also as a lumped element, as shown in Fig. lb.

From the point of view of the antenna, the driving field across the end of the

feeding line, which is distributed over a short length of the antenna, may be
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treated as an impressed field that is concentrated in a ring around the center

of the antenna, in the form Ee (z) 6 (z) , where 6(z) is the Dirac delta function.

Clearly, this emf iL :quivalent to a discontinuity in scalar potential across a

pair of knife edges separated by a vanishingly small distance at z = 0. Such an

dealized generator at the cente:. of the antenna evidently includes an infinite

capacitance across the knife edges, so that the input susceptancc must also be

infinite. It was shown by Wu and King [15] that in principle the infinite current

associated with this capacitance may be subtracted out. Moreover, since it is

confined to an extremely slho d.istance adjacent to the knife edges, it is in

practice automatically omitted from the total currcnt -..hen this is determiied

approximately by any method of solution that represents the current by a few

terms in a series of continuous functions. Thus, the practical problem may be

approximated by an isolated Lylindrical antenna with a delta-function generator

at its center, as shown in Fig. ic. The impedance of this antenna, after the

knife-edge current has been subtracted out or omitted, is the lumped load for a

transmission line with a suitable terminal-zone network. The nature of the

lumped, corrective networks required for different connections to various types

of lines is discussed elsewhere [16].

The serious attempt to det-rmine the distribution of current in a thin

cylindrical antenna by analytical means rather than by assuming it empirically,

as is still commonly done in the so -called emf method, begins with the work

of L. V. King [17] and especially of Hallen [18]whose integral equation is the

basis of most modern theories. For a perfectly conducting tube of very small

wall thickness and radius a that extends from z = -h to z = h , the integral

equation may be expressed in the form

h

4'ix A (z) = I(z') K (z, z') dz'
0 z -h

= - L . Ccosk z + Ve sinkIz] ()

where, as shown in Fig. 1c, (zl) i the total axial current at z'



TR336 -6-

T% i ncludes currents on the inner and outer surfaces oi the : 1t i- i

IIfollows ta

Ve at the center of the antenna is that of an idealized delta-function generator.0
A z (z) is the vector potential at the surface of the cylinder. It is in the Lorentz

gauge that satisfies the Sommerfeld radiation condition. The kernel K is

given by

e -jk R e-jk °R I

K('Z'T R d e l (3)

2) GO.z 2where R =(z-z') z + (2a sin Z , R, = /z - z) +a (4)

As usual, u is the permeability; h 1Z07" ohms, C is the characteristic
.00

impedance of free space; k0 = w/c is the wave number C is a constant to

be determined from the boundary condition (2).

Approximate solutions of integral equations substantially like (1) have

been obtained by Hallen and others by a method of iteration which depends

implicitly on the observation that the ratio Az (z)/I(z) of the vector p( tential to

the current along the antenna is approximately constant and predominantly real.

Solutions of this type appear in the form

JZ~rV. oMz/ -+ /w+m~)-
.[o-" '(+) + 0Z z ) /  +( 5

whe re
M.(z) =sink (h - 1zI) , F (h) = cos k h (6)

The first-order terms, M,(z) and Fl(h) may be expressed in terms of

generalized sine and cosine integrals, the higher order terms are more

complicated and must be evaluated by namerical methods. Unfortunately, even

with the most sophisticated defi-iticn of the expansion parameter V , at least

a second-urder solution is required in order to obtain quantitative accuracy
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for antennas with electrical lengths in the range 0 < k h < -I - A solution of

this type ic tl_-t o-f King an4 Mddeton [8. 191 in which V is defined to be the

absolute value of the function

h

V(z) = M 0(z) Mo(Z')K( . z:)dz (6)

-h

at the point where M (z) has its greatest value in the range 0 < z < h

Extensive romputations of the impedances [19] of cylindri-cra antennas in the

range of electrical half-lengths given by 0 < k h < 7 show the second-order

King-Middleton values to be in good agreement with experiment. The distri-

butions of current for selected lengths have also been computed, but the second-

order formula is far too complicated for the convenient evaluation of electro-

magnetic fields. For this purpose the rather crude zero-order term has been

used.

The quantitative accuracy of second-order results calculated "rom (5) in

the King-Middleton 4 rom have been verified theoretically on the one hand by the

comparable variational solutions of the integral equation (1) by Storer [20] and

Tai [I1]; and, on the other hand, by the deta:led study of the integral equation

with Fourier series methods by Duncan and Hinchey [22]. These investigators

converted the integral equation into a set of simultaneous equations with the

Fourie- coefficients of the current distribution as the unknowns and then carried

out calculations to the 25th-order. The numerical results for k h = 7r/2 and -,r ando

with h/a = 60 and 500"rr differ by only about 2 percent or less from the King-

Middleton values. Significantly, even with a solution of such high order, there

is still no sign of the large current associated with the knife edges at the

driving point of the delta-function generator.

The reason for the rather slow convergence of the series in (5) even

with a rather carefully selected expansion parameter has been traced by Wu [23]

to the method of cvaluation of the arbitrary constant C in terms of the boundary

condition (2). Unfortunately, it is precisely at z = h where the ratio of vector

potential to curient departs most from the assumed const11t value--it actually

becomes infinite at this point. It is the zero-order form of C , namely
e

Cr-- tank h, which leads to the zero-order distribution. sink (h - 1z ) .
0 0
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it tur i ± out that, for the input current and the current along most of the antenna,

a better value of C would be:C- tank0 (h + 6) ,here 6 is a small length

that increases with the radius of the antenna. Evidently, such a value of C

leads to a small non-vanishing zerc-order current at z = h in viclation of (2).

Primarily owing to the rather poor approximation in the zero-order value of C,

the solution (5.1 even in second-order does not maintain its accuracy as the length

of the antenna is increased. In order to handle specifically the very long an-

tenna, Wu [23] devclcpcd an asymptotic solution of the integral equation (1)

ba-d on the Wiener-Hopf technique and a method of evaluating C which

properly locates the distribution of current along the antenna, instead tf re-

quiring it to vanish at the end. The impedance of long antennas has been

computed from the new formula by Beaton and Wu [24] for electrical lengths up

Lo k h = 30 . The new theory does not yield a simple expression for the current
0

for use in the evaluation of electromagnetic fields. However, the radiation

field can be obtaincd directly from. the Fourier transform of the current.

The major characteristics of the radiation field of dipoles in air may be

determined with reasonable accuracy from the simple sinusoidal distribution

that is the leading term in the iterated solutions for the current. However, this

zero-order current has the serious defect that its value at the driving point is

at best a rough approximation of the correct input current. Moreover, if it is

used to calculate the radiated power with the Poynting-vector theorem, the

result may be in error by as much as 50 percent, if it is assumed to apply to

center-driven antennas with practically significant radii. It follows that even if

the field patterns calculated from a sinusoidally distributed current are an

acceptable approximation, the power apparently supplied to the antenna at its

terminals and the power radiated may be grossly in error and mutually

inconsistent. If the input admittance is known accurately from a higher-order

theory, these difficulties are nut serious for antennas in air, since the correct

total power supplied is then available and it is known without further calcuiation

that this is equal to the power radiated. When an antenna is immersed in a

conducting medium the problem is much more complicated, since power is

dissipated throughout the medium.
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What i. required for the quartitativeiy accurate representation of the

circuit and field prope rties of dipole antennas and arrays is a formula for the

current that is sufficieny simple to permit the evaluation of the field and at

the same time sufficiently accurate tz yield good approximations of the input

admittance and of the radiated power. Such a formula has been derived by

Storer [10] by variational methods and by King [14] with a modified iterative

procedure. Since the former is not conveniently applied to more than one

antenna, and a future study of coupled antennas in dissipative media is contem-

pated, attention is focussed on the latter, which is as useful for parallel arrays

as for a singie antenna.

The required relatively simple formula for the current is obtained as the

approximate solution of a rearranged form of the integral equation (1), viz.,

h

4"ru- [A (z) - A (h)l= \ I(z')K.(z. z')dz'
.0 Z. Z a

-h

j4 r [u. 0- + VeM] (7)oFo(h) oz

where the new kernel is

Kd(z, z) = K(z,z') - K(h, z') (8)

and

h

U J ' A(h) !(z') K (h,z')dz (9)
0

The shorthand symbols

F = cos k z - cos k h. (10)oz 0 0

and

Moz = sink o (h z ) (11)

are used, together with F° (h) which is defined in (6). The advantages of the

rearranged form (7) of the integral equation (I) are several. The integral is,

as indicated, proportional to the vector potential difference rather than to the
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vector potential itself, so that it vanishes at z = h as does the current. The

right-hand member of the equation is the sum of two terris that are individually

related to well-known distributions of current and vector potential difference.

The shifted cosine, Foz , is a close approximation of the current and the vector

potential difference along an unloaded receiving antenna in the plane wave front

of a distant transmitting antenna. The sine term, Moz I is the zero-order

distribution along a centcr-driven antenna; it is much more exactly the distribu-

tion ol both current and vector potential along an ideal two-wire transmission

Hne with an open end at z = h and a delta-function generator at z = 0. These

facts suggest that F may be interpreted as an approximation of the distribu-

Lion of current or of the vector potential difference that is maintained by the

interaction of the more widely separated elements in an antenna, whereas M

is the distribution maintained by a generator when, as in the transmission line,

there is no significant interaction between widely separated current elements.

This interpretation is confirmed by the facL that i. (7) Moz has the . ..pl.de

c..^ffic.io.n, Ie  tp nrfal driving voltage of the generator. whereas the

coefficient U of F is proportional to that part of the vector potential that

has been subtracted out on the left because it is active along the entire antenna.

in general and as a first approximation, a concentrated generator excites a

current with the distribution Moz ; a distributed field excites a current with the

distribution F

An approximate solution of (7) may be obtained if the integral is separ-

ated into two parts of which the one varies like Moz , the ether like Foz

This separation is easily accomplished by inspection, once the kernel has been

expanded as follow:

Kd(z; z') = KdR(z, z') + jKdI(Z, z') 1 Za)

where

7r Fcosk R coskoR I cOSkoR cosk R
Z)= 0 - o h o o o lh (lab)

KdR(z) R h d- RR Rlh
-.I-
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and

, [siko0 hs.ko 1  sin ko RI
Kdl(Z,Z) z')=- -- _-, [ (IZc)

_hR Rlh

The subscript h on R and R1 denot-es the values defined in (4) with z = h

Since R and R becone very small and KdR(z, z') correspondingly very large

when z' is near z , it follows that the principal contributions to the part of

the integrol that has KdR(z, z') as kernel come from elements of current very

near z' = z This means that the part A R(z) of Az (z) that depends on

KdR(z, z') varies like I(z) . On the other hand, since KdI(z, z') is very small

when z' is near z , the principal contributions to that part Azi (z) of Az(z)

that depends on K6 1(z, z') come from all the elements of current that are at

some distance from z . if it is now assumed that the current is the sum of

two parts,

(z.) = TAUz) + V.vZ) (13)

which by definition have the leading terms

iu(z) - ; iv(z) - ' oz(1)

it is clear that (7) may be separated reasonably into the following parts:

h

S[ Iu(z') Kd (z, z') JvZKd(z z')] dz' F (h) oz
-h 0

h zr e

Iv (z')KdR(Z, z dz' -Fo(h) MOz (16)
-h

Each of these integral equations may now be solved by iteration in the King-

Middleton manner, and their solutions for IU(z) and IV(z) combined in (18)

to give I(z) . The formula for the current so obtained may then be substituted

in (9) in order to evaluate the constant U in terms of Ve The result is

jZ7Ve [sink (h-jz:) + T(h)(cosk z - cosk h)]
I(z) = 0od cos k0h + higher order terms (17)

oR o
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The indeterminate form obtained when koh = 7r/z may be evaluated to give

jZ0.rV
e

(z) = d [ sink O IzI + T (-) cos k0 z] + higher order terms (18)

The real expansion parameter 'VdR and the complex constant T(h) are

expressed iin terms of tabulated sine, cosine, and exponential integrals. They

are functions of h/a and k h . Explicit formulas and numerical values are in

the literature [14, 25]. The higher order terms ii (17) and (18) involve essentially

the same integrals as the corresponding terms in the Kin*g-Middleton solution

(5), but their contributions to 1(zl , at least in the first- and second-order

terms, are very much smaller. It follows that the quasi-zero-order terms in

(17) and (18) have an accuracy that lies somewhere between the first- and the
second-order solution in the form (5) in the range 0 < k h < 31r/2 . Moreover,
the error is largely in the susceptive part of the current in a small region very

near the driving point. As a spucific example, consider a half-wave antenna

with h/a = 75 . The distribution of current as obtained from (18) is shown, in

Fig. 2 . The corresponding admittance and impedance are

[Yo010= (9.87 - j4.67) x 10 "mhos ;[Z0 ]0 = 82.8 + j39. Zohms

The second-order theoretical values (which are in good agreement viith

experiment) are:

[Yo]2 = (9. 38 - j4. 52) x 10- 3 mhos ; [Zo]= 86.5 - j41. 7 ohms

The values obtaincd by the emf method independent of h/a are

Yemf = (10. 22 - j5.94) x 10-3 mhos; Zemf = 73.13 + j42. 5ohms

As compared with the second-order valae, the admittance given by (18) for the

half-wave dipole is about 5 percent in error in the conductance, 3 percent in the

susceptance; the corresponding errors ii, the values obtained by the emf method

are 9 percent and 31 percer.t. For greater lengths the results of the emf

method deteriorate very rapidly.

It may be concluded that (17) and (18) combine reasonable accuracy with

simplicity in both the distribution of current and the admittance.
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The Cylindrical Antenna in a Dissipative Medium

i. The General Case

The physical problem under consideration is to determine the current

in a highly conducting cylindrical antenna immersed in a homogeneous,

isotropic, dissipative medium of great extent. The antenna is center-driven,

for example, from a shielded-pair line that lies in the neutral plane. As with

the antenna in air. it is convenient to approximate this configuration by an ideal

line with the impedance of the antenna and a suitable terminal-zone network as

a lumped load. For this purpose the antenna is imagined center-driven by a
delta-function generator. In this case, the knife edges of the generator term-

inals are equivalent to an infinite admittance that includes both a capacitance

and a conductance. The infinite current that is associated with the charging of

the knife-edge capacitance and that c-robbu from one edge to the other by way of

the dissipative medim may again be subtracted out in principle, since it is

confined to an extremely short distance on each side of the gencrator. In
practice, it is excluded from a solution that approximates the current in the

antenna by a series of continuous functions.

The inLugial equation for a perfectly conducting cylindrical antenna

immersed in an infinite, homogeneous, isotropic, dissipative medium and

center-driven by a delta-function generator is formally like the equation for the
. Ge .

same antenna in air if the complex dielectric factor = 7e -j - is 3ubstituted

for io and ti replaces p0  It is assumed that p is real. This is equiva-

lent to the replacement of the real wave number k ° = W/-o by the complex
0 0~

propagation constant

k = P - ja- T -FJ = W/j71 if(p) - jg(p)] (19)

where p= a-e/We and f(p) h( sinh- lp) , g(p) = sinh(l1sinh- p)

Tables of the functions f(p) a..d g(p) are available in the literature [26]. In

addition, the real characteristic impedance o = 7 =  i/ko is replaced

by the complex value

e(20a)
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where

F 2 , = T-

r. these relations c and or are the real effective permittivity and con-

ductivity, respectively. In terms of the complex permittivity c = E' - j€"

and the complex condictivity - = a' - jo-" the real, effective values are given

by

C = Co =er = C -r e = r' + we" (21)

In the rearranged form (7) the integral equation is

h
I(z) K (z zMkz 1 (2

-<kd(Zz)z = kkh) Lk Fkz + o k
-h

h

U= jia l(z ').Kk(h, z') dz' (23)Uk =4rk

-h

F (h) = coskh = cos hcosh ah + j sinPhsinh ah (24)

Fk = cos kz - coskh

(cosrPzcosh az - cosPh cosh ah) + j(sin zsinh az - sin h sinhah) (25)

Mkz = sink(h -Iz I)

= sinp(h -Iz1) cosha.(h - Iz1)- 5c.s (h -Iz1) snha(h -Iz1) (26)

The kernels are given by

= Kk(Z, z, Kk(h,z" ejkRl e-jkRlh (27)
kd(z z') -" R I Rlh

The difference kernel may be separated into two parts as follows:

I kR(z, z') kKI(Z, z')4+JKki(Zz')
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where

cosPR1 coshR 1  cos 3 Rh coshaR.
-K -zzI (28*,)KkR(Z, z) = R Rh

Kkl(Z, z') = -R 1
1 sinPRl(coshaR, - sinh aRl) + j cos3Rl sinhaRl]

+ Rlh[ sin 3 Rlh(coshaRlh - sinhaRlh) +jcospRlhsinhaRlh] (2Lc)

Note that KkI(z, z') is not real when a/ 0; it does reduce to the real

KdI(z, z') whe a = 0 . This equation (22) has a much more complicated

ke:nel than (7) and the right member is also more involred, since the

distribution terms Fkz and Mkz are complex, and contain the additional

parameter a .

The type of solution desired for the current in an antenna in a dissipative

medium is one corresponding to (17) for the antenna in air that provides good
dUulruxiati~u, -of bOt- th-e 4-A 1_: .. -/Vt

that is sufficiently simple to permit the direct integration of the integrals for

the electromagnetic field. It is in order to obtain such a solution that the form

(22) of the integral equation was chosen. The approximate solution of this

equation may be carried out in a manner closely paralleling the procedure

described for the antcnna in air. Indeed, the kernel (Z7) has already been

separated into two parts such that the one KkR(Z, z') , is very large when ?'

is near z so that the principal contributions to A zR(z) are from the currents

near z ; and the other, Kki(z, z') , is relatively small near z' = z so that the
principal contributions to AzI(.) are from currcntz at some distance from z

As before in (13), the current may be expressed as the sun rf two terms and

the integral equation appropriately separated into two parts as in (15) and (16):

hj47rkU 
k

Iu (z,)Kkd(z, z+') jlv(z') Kk(Z, zt)]dz' - (29)
-h 'aWPFk(h) Fkz

-h

h j27rkV0(
SIv(') KkR(Z zt)dz' wpFk(h) Mkz

* -h
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These equations may be solved separately by iteration and the resulting solutions

added to obtain I(z) in terms of Ve and Uk may then be expressed in
oo

terms of Ve0 with the substitution of 1(z) in (24) . The solution for the current

is

j27rkV ehigher
I(z) = [sink(h - !z I) + T _kl) (coskz - coskh)] + order (31)kRdosherms

where R is a complex expansion parameter and Tk(h ) a complex constant
VkR k h)

that depends on h/a, Ph , and a/P Unfortunately, the integral functions

that occur in Tk(h) are not in general available in tabulated form. However,

explicit evaluation has been carried out for the half-wave dipole [12] in a

moderately conducting medium such that Ph = 7r/2 and ah < I and for the

electrically short dipole [131 in an arbitrary medium defined by Ph < 0.3,

a< P.

2. The Half-Wave Dipole

For the half-wave dipole, the approximations coshah L 1 and

sinhah ah are made and (31) reduced to the form

=_ Zjr(l - ja/P.) [sinlzI- I + T!(I)cos Pz] + higher order terms (32)Ve A ./-o kR
o, er

where

T ( ) =-[1 + Tk(L)] [1 - jah (33)
4 L 4 jah (3

The normalized current I(z)/Ve ) is shown in Fig. 3 with I(z) = " 4 jI z
o0 e z z

as a function of z with 2a/P = T e/W oEe r as parameter. The normalized
impedance Z ,/T and admittance Y/ V,/ are shown in Fig. 4. Both the

distributions of current and the impedance are in agreement with experimental

results obtained by Iizuka. It may be added that measurements have been made

with larger values of a-e/e cocer than those used in the theoretical calculations

represented in Fig. 4. These indicate that the resistance curve in Fig. 4

reaches a maximum as a-e/wEocer is increased further and then bends down to

approa, h zero. The corresponding d1istributions of current change from concave

outward as in Fig. 3 to concavir inward as 0-C/wc er is increased.
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3. The Electrically Short Antenna

The current in the electrically short antenna defined by ah < 1 , Ph < 1

is readily obtained from (31) as a series in powers of Ph and ah. The first

few terms are:

I~)=j2rkh k2 h2 (1 (-_) 2 h2 - ik 3 h 3 (1 2\(34

*d R 3 '' I) h/2 3 h2)

The corresponding admittance is

Y (k) = G (k) + JBo(k) (35a)

where

___ F-F. 2_1 -6; 2. . "r-
G (k = 27 Z- Ph +'.p3 h 3F/3) 1 - 7iI+ 1)' - 4+5 J (35b)

0i f 3( 1 18 +

=edk L e P /I (

n fl~ wJ1)( A §3h3F(- 1.a 4' p4 4  (r24\

In these formulas

F l+ 3 1n2 1 1.08 (36)

and

n(  - ) .°(k°) R(37)

Also

to (38)

These expressions are general and apply to all values of a and that satisfy
the relations Ph < 0. 3 ,a]' < 0. 3 . The fact that it is neccssary to retain

terms up to and including fourth powers of the small quantity Ph is an Indica-

tion of the compijrated nature of the admittance of an antenna in a dissipative

medium with no restriction on a . The reason is obvious: if a = 0 as in a

perfect dielectric, the leading terms are

G0 (k0 ) :.- 2Ir ( - B (k )~27r13h (39)
0 re dR ( - )0 0) e d



TR336 -1 ° -

Or. the other hand, when a = as in salt water, 
334irFBh3 (40)

G(k) 0o(k) 3Ce4Vodk e- d R

..,here F is defined. in (36). Note that G (k ) in (39) is a pure radiation con-

0 0

ductance; it is very small compared with the suscep-cance. In (40) Go(k) is

determined entirely by dissipation in the medium, the contribution from

radiation is negligible; Go(k) is very large compared with B O(k) . It is clear

from th- ...... cxpression (35a) that the radiation conductance predominates

for only a very small range of a near zero. This indicates that the short

dipole behaves as a radiating antenna only when a is very small; ior larger

values it is essentially a pair of electrodes.
Z (k) _to(k) X(k)

The normalized impedance - 0e + j 0 and admittance

Y ticir = . IL'IF 4 i1 (k)V of qs:hort anenn-A with 8h=0.3 and p,= 10O °  '  e - ' '  e -- o e ..
are shown in Fig. 5 as -- function of a/p. The curves for Ro (k)/r e and

Go(k)r e are also shown on a logarithmic scale in Fig. 6 in order to show their

extremely rapid rise in the range of vcry small values of a/P . Note that

Ro(k)/Ke has a maxinum between a/P = 0. 5 and 0.6 .

If the medium in which the admittance Yo (k) is measured is an ionized

region such as the ionosphere, the conductance Go (k) and the susceptance

Bo(k) may be related directly to .,ae concentration of electrons and to their

collision frequency. Details are given elsewhere [13].

The Electromagnetic Field of an Antenna in a Dissipative Medium

1. The General Case and the Field at Distant Points

The electromagnetic field of a cylindrical antenna of half-length h with a

total axial current I(z) when immersed in a dissipative medium may be deter-

mined from the vector potential

he -jkR

A (r) = i(z) R dz' (41)

-h

where
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R v(z- zI) + p + a - Za cos e,

( 4

-hen e.p.ressed in the cylindrical coordinates e z The formula ( may

be used to determine the vector potential at any point except within distances of

the ends of the antenna comparable with its radius a . At distances r =

from the center of the antenna that are large compared with the half-length h

that is, when

r >> , R = r - z'cos 9, (43)

an approximate formula for the vector potential in the radiation zone may be

used. This is

A r I(z,)e jk cos edz' (44)
-h

The corresponding non-vanishing cylindrical components of the magnetic and

electric fields are given by

8Az(r) 2 D. (r) k D (r)_~j -/5-Lz" - 1 8 Az~r
Beor) - E ;E l(r) )z- = -- - )" (45)

In the radiation zone the significant Lomponents are conveniently expressed in

the spherical coordinates, r ,0, 0 . They are given by

Br(r) = -jkAr(r) sin 0 E (r) = -jwAr (r) sine (46)

In order to determine the complete electromagnetic field it is necessary

to evaluate the integral in (41) or at least the derivatives of this integral

required in (45). For the radiation field at distances that satisfy (43) it is

sufficient to evaluate the simpler integral in (44). A simple and reasonably

accurate representation of the current in a cylindrical antenna of zero to mod-

erate length is that given in (3]). Unfortunately, if this distribution is
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substituted in (41) and (45) is evaluated, one of the tbree terms involved cannot

be obtained in closed form. On the other hand, the integration of (44) is

straightforward. With (46) the result is

V e e -jkr

kBr(-) E2r ( ) [Fr(0, kh) + Tk(h) G(J ,kh)] (47)
kr r  kh

where .Fr (e, kh) = cos(khcos 8) - coskh 
[P

m sin e % "-

Gn(y kh) sinkhcos(khcos))cos 0 - coskhsin(khcos) (49)

Msin 0 cos e 0~

These expressions can be separated into real and imaginary parts and the

electric and magnetic fields evaluated. However, since the amplitude decreasc

as e- ar/r , it is evident that the range of r in which the field is significant

-and in which (43) is satisfied is not great unless a is sufficiently small to

satisfy the conditions

a2h 2 << 1 , sinh ah !-- ah, cosh ah-l . (50)

Nevertheless, the general directional properties of the field not very close to

the antenna may be determined from (48) and (49) even when a = P. When (50)

is satisfied the field factors defined in (48) and (49) become somewhat simpler.

Specifically,

FrM(G0, kh) = Fmr(0, kh) + jahFmi(0, kh) (5] a)

where

F (0, kh) cos(Phcos6) - cosPh (5 1b)
mr''Y sinO

(0, kh) = sin(h cos 0) cos 0 - sin ph

Fi sin 0

Similarly,

Gm(0) kh) = Gmr(0, kh) + jah Fmi(O, kh) (52a)
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where

G (0, kh) = sinh cos (Phcos 0) cosG - cos Ph sin(Ph cos e) (52b)

sin cosG

Gm; (0, kh) = sin Ph sin (Ph cos 0) tan 0 (52c)

Also in (47),

cos kh = cos Ph + jahsin Ph (53)

When Ph = ?r/2 , (51) and (52) become

1 sin (2cos 0) cos- I 1

Fm(0 -1-7r - jah) = Fm ) + jah [sin o (54a)
1 n" .21si"E

*m(017r - jah) = Fm 7r) + jah sin(-!cos 0)tan@ (54b)

- here 

7F cos (-cos 0)

F_ ) = sin (54c)

Since from (53) coskh - jah , it follows with the readily verifice approximation

(that is valid only when Ph = 7r/2)

tan 0 sin(--cos 0) -Fm(,2) (55)

and the definition (33), that (47) becomes

V e e-(a + jP)r 1  -) ahrr/
Wkr Lm'' k&\ ch i" (56a)Wk r r 2~, 1 r- jah %1 ?11

where

cosO - sin(--cose)
2(1-7 (56b)

H m( 2-) = sin 0 cos6 - (1 -2-) F,--).(5b

This is the complete field generated by the current (32). Note that Hm(0,Z)

is the part of the field contributed by the component of current sin Pz -) .

The factor (I - jah7r/Z)/(l - jch) in (57) as compared with (32) is a conse-

quence of the attenuation of the field over the small distances z'cos 0 in

- _ __ --
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R = r - z'cosO . The field factors F (0,Zs) and Hm(0 -) are shown in

Fig. 7,

If the approximate relation on the right in (56b) is substituted in (56a),

the approximate electric field is given by

vee-(Ci+jA) r I -1
r = o r+ 1 ( jah) Fm(O,_) (57)

Ee  '#krr T 4( 1 - jah ]

This field would be maintained accurately by the current

I(z) -j27r(l- a/P1 7r Ti(I) Cos(

o kr F- (58)
0 e

and only approximately by (32). Note that in (32) the input current is propor-
tional to 1 + Tk(1)1 whereas in (58) it is proportional to [1 - T'(-)] .

Since the former gives the correct value, the latter is evidently in error. The

explanation for this discrepancy is clear. The correct current in (32) yields

the correct field in (56a) and the correct radiated power. If the current is

approximated by a purely cosinusoidal distribution, its amplitude can be adjusted

so that the input current is correct with the factor [-I + T (-)] , or so that

the field and the power radiated are correct with the factor [I - -L + T ]

In the former case the power radiated is too small, in the latter case the input

current is too large.

G.VaP115 01 LIIC UIl~tLII iLLC'd UiLCUdi] (417) Wheui 'h = '7r, a = 0 , a=7

are shown in Fig. 8. It may be concluded from the forms of (54a) and (54b) that

the field patterns when ah is small do not differ greatly from those when a = 0.

Significant differences may be anticipated when ah is not small compared with

one, in particular, when a is of the same order of magnitude as P . For

their evaluation the complex parameter Tk(h) must be computed.

2. The Field Near the Dipole; Approximate Currents and Cylindrical Coordinates

In order to determine the electromagnetic field nearer the antenna than

is permitted by the condition (43) it is necessary to carry out extensive numer-

ical computations for individual cases or to make approximations in the distri-

bution of current in order to obtain an integrable form. Fortunately, the latter

K _ _ _ _ _ _ _ _
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procedure is straightforward, since the term sink(h -z ) in the general

expression for the current (31) is integrable when substituted in (41) and (45).

However, it is not to be expected that a satisfactory approximation can be

achieved .f the entire term Tk(h) (coskz - coskh) in (31) is simply omitted.
In particular, it is esosentil that the total power supplied " o the antenna 'be a

good approximation even if the distributir, of current along the antenna is some-

what in error. This may be achieved by a reazrangement of (31) in the

following manner:

1(z) = [1(0 ),A( 0 )] [A(z) + B(z)] (59a)

where
_- 4. T (h) (i_- coh sink(h I (59b)

L \ sin.Kn / J L coski j

and

B(z) = Tk(h) coskz - 1 + (1 - cosh sink (59C)
ks LC sin sin I_ c

Note that

1(0) = VeY (k) (jZTrkV 0j A() (59d)
0 0 WIV

where Y0 (k) is the admittance. The two parts of the current, A(z) and B(z),
are chosen so that B(0) - 0 and, hence, contributes only to the distribution
along the antenna and not at all to the input current and the admittance, which

are de, rmined entirely by A( 0) . The plan is to neglect B(z) in the integra-

tion to determine the electromagnetic field since it contains thc term that has

not been integrated !,L closed form. The anticipated error is, therefore, that

niade by the omission of B(z) . Investigation shows that A(z) alone is quite a

good approximation when Ph < 37r/4 and very poor when Ph ,-- ir . It is

particularly good when Ph < -/Z and the maximum current is at the driving

point. Indeed, when Ph = 7r/2 and (ah) << 1 , B(z) = Tk( )[cosz+sinp3IzI-1].

The contribution by this component of current, shown shaded in Fig. 9 when

a = 0 , is seen to be quite small. Similarly, when Ph < 1

B (z) =Tk h) ( - ) 1 . This is the very small difference

k h h
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between triangular and parabolic distributions when required to have the same

value at z = 0 . If B(z) is neglected in (59a) the approximate distribution is

simply 
_______ -______

I(z) 1(0) psk(h ikh . ,lh < 31r/4, < (6,)

where I 0) is given in (59d).

When (60) is substituted in (41) the vector potential itself cannot be

obtained in cloded form. However, the derivatives required in (45) may be

expressed as follows [27]:

Be(-) = 4,r Jklh 're (61)e 47CLe+ e-ildRZh Z coskhcJ

ECl) = jco1p(0( z - h -jkRIh z + h -jkR2h - Zcoskhe-jkr(
Lpr I h- e + e- coej (62)4 - -eI I h R2h r

- -jI(O) [-jkRlh e-jkRh 2 -jkrJ7
E(r) = 4 e + -- cos kh (63)4 rk LRlh R~h r e

where

R h R r =R/z 2 +p (64)

For the part of the current represented by (60) these empressions are accurate

and give the complete electromagnetic field within distances of the cylindrical

antenna comparable with the radius a . Since all distances are measured from

the axis rather than the surface of the cylinder, these expressions have no mean-

ing for p < a . They are useful particularly for determining the near field of

antennas with Ph < 7r/2 .

If (61) - (63) 'are multiplied by ejwt the real part is the instantaneous

electromagnetic field. However, the formulas so obtained permit no simple

physical interpretation other than that the .ends and center of the antenna may

be regarded as the origins of complicated outward-traveling disturbauces. A

somewhat simpler picture may be obtained for the half-wave dipole in spheroidal

coordinates and for the electrically short antenna in spher;cal coordinates.
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3. The Half-Wave Dipole; Spheroidal Coordinates

Whe~n Ph =-7f/2 the normalized distribution of current in (60) is

),(z _ co:3 z cosh a(h-- I z ) + jsinf3JzlsinhcL(h - Izi) (5
1(0) - coshah - ~ coshah (5

The associated distribution of charge per unit length is obtained from

")=Re q(z) + j Imq(z) = dI(z)tod (66a)

where in normalized form,

Re g UcZh P ~CosPz sinh a(h - z) - sin P z I cosh a(h - z)(6b
I J(G Pcosh ah

Im rcq ~'z si Icosh a(h - I z1) + a cos Pz sinh ci(h -IzI~ '66')Lm 19)l - Pcoshah

The real and imaginary parts of I(z)/I(0) and c q(z)/I(O) are shown in Fig. 10

for ih = 0, 0. 1 OA 0.r 1. 0 ,aPnd yr,/2 ; c is the velocity of light.

Let the spheroidal coordinates kh , k e , and TD be introduced where
Ic = a /h~ is the recipr ocal of the eccentricity of a sphcrcid with sei-major

e el
axis a eand with its foci at the ends of the antenna, k h- a h/h is the corre-
sponding quantity for an orthogonal hyperboloid of two sheets, and (P is the

azimuth-,J angle. These coordinates are related to the cylindrical coordinates

by

they are illustrated in Fig 11. Note that I != k e ! -l -I :S k l _ . Th e
spheroidal components of the electiormagneLic field that correspond to the

cylindrical cornponents (61) - (63) are quite complicated when a / 0 . it is

convenient v') express the instantaneous value of each component as the sum of

three terms as folicws:

33 3

(r 3 t)(tL), Ee 7 E~(rt , E11( , t)=3 Ehi( rIt) (67

Much of the work in thia section was carried out originally by Mr. S. T. Yu.
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where

- 1 . _cs(7rkh/
2 ) sin(t - 7rk/Z) (8a)

L /(ke -1)(1 -k)

[cos(- kh/2) sin (wt + - 7T!/)1

h/2) e -~ /)

Eel(r, t) = -aA! 2 2~k " )1-_ (68b)

Eh 1(r, t)= aA . ......... (68c)

L e kh)(e- J

firak [rak

A cosh --- exp - (68d)

I +in(vkh/2) Cos(wt - 7ke/2)r22( , t) )- f 2 2(k -l (1 -k- " e " 2 
°

s in ('t-kh/2.) c ks (w. + -7rke/2 )Ee2(r t) -aA- 2 (69b)

F-h2( It) aA2 os (irkh/2 ) sin(wit + -7rke/2 ) (6c
Eh(kt  k )a~ (69))

A? = 27r sinh exp -rke (69d)

Cos (W h I (70a)-+ k
BP3( 0t = iiA ~kz 2 _ ) (1 - kh(70a

e h)
EeiPr, ) = aA3 Ceo(tt+ 71(70b)

z _ 2 ) (k? -k z 2 (1

-~~~~~~ h eU - -i_ h- T-- -' ... - --- '- --- "- . ... .. . ..... . .. .. .
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hCOS Wt + _ W ,rV + k2 "1)

E h3(r , t ) = % Aq _ (70c)
(k + k 2 - 1) -k -  2 

_
k

_
-

__)

e h 'e Ah e

A3 =7rh sinh ZP/ e 2P (70d)

Note that =./,(/P) , = +

The third part of the field as given in (70a) - (70d) may, be expressed in

the spherical coordinates r , 0, and 0 in the following equivalent form:

rt (0) cos(W - 3r) sinh -2 a)- exp(-ar) (71a)

t 3 t PZ LTO-I sin@ % 2P

= 0I(O) cos(wt + Pr) La
* rsinh ( - )ep-ar) (71b)

Er3 (r, 0 0 (71c)

These rather elaborate expressions for the electromagnetic field reduce

to a simple and readily interpreted form when the attenuation of the medium is

rather small. Specifically, if the following inepa itv is satisfied:

a!P < ah << 1 (72)

the entire electromagnetic field of the half-wave dipole is well approximated by

the first terms (68a) - (6 8c) in the sums in (67) with $ 0 and with
7rak

A 1  ) exP e -( c ) .. exp(-aa,) (73)

Except for the addition of the exponential term in the amplitude (73), the field

given by (68a) - (68c) with = 0 is like that for the same antenna in air. The

components B,(r, t) and Ee (, t) are in phase with each other and both are a

quarter period out of phase with Eh(r, t) . The surfaces of constant phase are

the spheroids k e = constant and these expand outward in such a manner that

the end point of the semi-major axis travels with the velocity c . The electric

field at any point is elliptically polarized as shown in Fig. 11. The components

B@i, t) and Ee (r, t) decrease in amplitude with distance from the antenna in

Li
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a manncr that approaches 1/r at great distances; the component Eh(r, t)
2on the other hand, decreases in a manner that approaches 1/,r . The entire

field is exponntially attenuated in amplitude with the semi-major ais a = hk
as the variable. The instantaneous value of the outwardly directed component

Sh (r, t) of the Poynting vector associated with the electromagnetic field that

satisfies (72) is

el 2 (0) cos 2 (7rkh/2) exp - 7rake/) s (
Sh(r, t) . .... sin 2(wt - irk/2) (74)

h e

where e = WP/. The time-average power transferred across a spheroidal
surface with semi-major axis a = hk is

T (0) o()Re e 2ae (75)

where Re = 73. 1 ohms. Since terms of the order of rnagnihide ah bahe been

neglected, the exponential in (75) ,educes to unity when a e approaches h , and

(75) reduces to the value for a;-" The diffe-ence

Tel - T Z I Re [e-2 aael -e 2aae (76)Tel - e2 = 0 o-e( )

where ael and a 2 arc the semi-major axes of two spheroids with ae2 > aell

is the power dissipated in heating the slightly conducting medium in the volume

between the two surfaces. As pointed out in conjunction with (57) and (58) the

correct power when the approximate distribution of current (60) with Ph = 7r/2

is used is obtained with the value of 1(0) given by (58) instead of the correct

,alue given by k32). Alternatively, the correct power is also obtained if 1(0)

is obtained from (32) and the correct input resistant R0 is substitutee if. (76)

for the radiation resistance Re as computed with the approximate current.
0

When a is not sufficiently small to satisfy (72) with Ph = r/2 the

complete expressions (67) %ith (68a) - (70d) must be used for the electromag-

netic field. These cannot be combined to give a simple picture of outward

traveling surfaces of constant phase at all points outside the half-wave dipole.

It is not even convenient to counbine the first and second parts of the field into

a spheroidal wave and treat the third part in the forms (71a) - (71c) as a
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spherical wave originating at the center sinze components of buti Lhe second

and third parts become infinite along the z axis and only their sum is finite.

However if a relatively small region in the vicinity of the antenna is excluded,

the complete field can be approximated by sphero'dal waves similar to those

which obtain when the attenuation constant is small. In effect, the spherical

wave originating at the centei of the antenna must be approximated by a

spheroidal wave. It is readily verified that if the quaritity

d : I - /I- (I _k-h )/k2 7,)

is small enough so that it may be neglected completely, the third part of the

field given by (70a) - (70d) may be approximated by

cos (cot - 7rke /2)
B T (r t) A3 / -2 2(78a)

k- -)( I R. k

cos (wt + - e )  (78b)E e3 (r , t) a A23 
(78be- kh) (1 -kh)

kh cos (wot + i - rke/2(
E h3(r, t) A3 )(k(78c)

e e h e

irak
A () sin (a 7ke

3 ( 27h P () exp( - 2 (78d)

It is to be noted that over a considerable range near the z axis kh is very

near one so that d " 0 . In the vicinity of the equatorial plane where kh is

very small, the excluded range is determined by the magnitude of ke , it is

indicated in Fig. 12. Specifically, for example, d < 0. 1 when

With the approximate expressions (78a) - (78d) and (68a) - (69d) the

following combinations may be made:
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B@,(r, t) + B 3 (r, t) :: .. ....h Dz~(kZ - e/ exp (- - ---ae) (79a)

l(0) D2 cos(wt * - 7hke/Z) irake
Ee2 (r0,t) + e 3 (r,t) - z 2h k ( cxp-(- .) b

(0) D cos(wt rk/) ak
- ~jr~t i- ) = -h exp( --- 79)

Eh( rt) + Eh3r t)dk h)(k e  1)

whcre

rakh  'rkh r (7d

D2 = sinh (- - sin(---) - sinh ((7-d'

F 1 = cosh (-(-W sin(+ + /2) s h - e

t) sin E(r ) p 2 (79c)

e h e

With the additional notation,

7rakh 7rkh
D = cosh( ) cos ( ) (80a)

Irakh rkh (
F2 = sinh( ) cos(7e)

the complete field may be obtained by combining (79a) and (79b) respectively

with (68a) and (68b), and (79c) with (69c). The results are

B(,)= - ()D sin(wt + A - 7rk/2) Iruk(8arh - exp(- (8a)

Di coh r 2 Co -

in(O) Dsin(rt +k+ A -Coks/Z) irke,
we(6t)- a, (68 bk) kan(d (79c e( 6--- (Tub)

VaI(O) Fcos(wt + A + - irke/2) rake
E r exp( -Z- ) (8ic)"" *< )( - )

. . .... . . . .. . . . . . ..
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..-here

D =/D D " L tan- (D,/- (82a

and

/ ? 2 -1(Fz_!
F = /b. + F 2 , V = -tz.n (F2 /F1 ) (82b)

The formulas (81a) - (81c) for the spheroidal components of the field of a half-

wave dipol.e (ph = 7r/2) in a dissipative medium without restriction on the

conductivity are substantially like the formulas for the same antenna in a medium

that is only slightly conducting. However, the formulas for the unrestricted

meditun are not useful in a region near the antenna where the approximation

d 1 0 is not a good approximation. In addition, they are more complicated

owing to the appearance of the different phases A and W in the expressions
for the iinutualiy perpendicular components Ee(7, t) and ht I f

nh sE at) of the

electric field.

The time-average component of the Poynting vector perpendicular to the

spheroidal surfaces k = constant is
e

l (0) D zcos exp- 7rake/ (
h 87r h (1- (83)

h /k- kh)(k2 - 1)

The total time-average power transferred across d spheroidal surface for

which k > 2.2 ise -

-Te= 1 2(0) exp ( - eP) I D 2e/k(84)
e r(1e 4p(l 2.51 _h dkh (84)

47( .a /P -1 h k

where e = up/P . Owing to the complicated form of D as a function of kh,

the integral in (84) has not been evaluated.

The general formulas (81a) - (81c) indicate that the electromagnetic

field of a half-wave dipole in an arbitrary dissipative medium may be inter-

preted in terms of expanding upheroidal surfaces except very near the antenna

where more complicated conditions exist. These surfaces expand with foci
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at the ends of the antenna and with an outward phase velocity along the z axis

that is given by

v =(85)p

where 3 is the real part of the :omplex propagation constant k as defined in

(19). However, although the phase of B,(r, t) j Ee(r, t) , or Eh(t, t) remaine,

constant as each spheroid moves out along a hyperbola defined by a particular

value of kh , the actual phases at different points along such a spheroid are not

the same. That is, the expanding spheroids are surfaces of constant phase, but

the constant value on each spheroid is a function of kh . Thus, respectively,

for B (7,t), Ee(rt) , and Eh( rt) the phases, (tot + - rke/2),

(wt + - A - .ke /2), and (wt + $ +V- 7rke /2) remain constant as t and k

increase together. At each point on a given spheroid ke = constant, the phase

of Ee(, t) differs from that of B@ (rt) by the constant angle t tan- (a/P)

The phases of the two mutually perpendicular components of the electric field

differ by the angle (A - W) which is a function of kh.

In a medium that is dissipationless or has very low dttenuation, the

electric field is elliptically polarized with principal axes tangent and perpen-

dicular to the spheroidal surfaces of constant phase as shown in Fig. 12. In the

dissipative medium with a unrestricted, the principal axes of the ellipses

described by the electric vector are rotated from these tangents and perpen-

diculars by an angle e, that is a function of kh . The polarization ellipses

for the electric field and their angle of inclination with respect to the direction

of Eh(r , t) may be determined if the time is eliminated between the expressions

for Ee(r, t) and Eh( r,t) as given in (81b) and (81c). Let these formulas

be expressed as follows:

This is strictly true for B-(rt) and Ee(r ,t), since k does not occur in

the phase term A . It is not actually true for Eh(r, t) owing to the occur-

rence of ke in the term (kh/kc) sinh (7ra/ZP) in F I which contributee to the

phase in V . However, this term is small, except quite near the ends of the

antenna, so that the general picture is not altered significantly.
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Ee(r t) = Ee sin(+ A ) (86)

Eh(rt) = EhCos( + V (87)

'1(0) D exp (-7rake/2P)
E - -- (88)ee h~ h

e "kh)(l -kh)

I(0) Fexp(-7rake/2p)

E/k2a ek~l (89)ek h )( e -1)

and

(wt + -rk e /2 )  (90)

If (86) and (87) are solved for sin j and cos £ , and these quantities are then

squared and added to equal one, the following equation is obtained-

E(r , t) E (hr t) t) Ee( ' t)
2-+ e + h o

EE EhE sin(-A)-cos (V-A) (9)

This is the equation of an elli.pse that has its principal axes rotated with respect

to the directions of Eh and Ee Let the direction of Ek be rotated from Eh

by an angle 0' as shown in Fig. 12. The direction of E' is then ruLated by
e

the same angle with respect to E * The new components E' and E' are
e h e

related to the old ones by the formulas

Eh = E cosO' - E' sin0' (9Za)
e

E = Esin 0' + Ee cos '0 (92b)

If the angle 8' is chosen so that

ZE h E

tan 2' = he sin(V - a) (93)
E he ~ h
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the new equation is

I [E~~ (r, t) 12 LE e(r,t) j 2 =Ozv ()+[ I ; =Cos (94)

where
wherZ cos e' 2 2sin(V-A) sin8'cos01 sinZ (0 5a)

E A, " EhEeI a~E~ I = \ _ in2 'Ih e

E2  (9 3b)
Eh e

The equation (94) is that of an ellipse with semni-principal axes E cos (V - A)

and E! cos (Vf -A) Note that when V = A , as in a dissipationless medium,e
I V = E. .E = E it can be arg.ued from symmetry or detemined81= 'O n n I e e - .. . ....

directly from the formulas, that 0' = 0 when kh = 0 , 1 ; it follows that the

electric field is still linearly polarized parallel to the antenna both along the

z axis and in the equatorial plane just as when immersed in air.

4. The Electrically Short Antenna

As pointed out following (59a) - (59d), the approximalte distribution of

current (60) in the form

I(z) = T(0) (1 - Iz /h) (96)

for the electrically short antenna (ph < 0. 3, a h < 0. 3) is a particularly good

approximation since the omitted term, B(z) = [(1 - - (1 - _)]

is very small. The input current is to be determined from the more accurate

formula (34) . Since (96) is a special case of (6C) with kh small in its ;e.%I ane

imaginary parts, it follows that the rigorous expressions (61) - (63) for the

electromagnetic field of the distribution (60) apply. They may be converted into

a more common but also slightly more restricted form by a series expansion in

powers of the small quantity kh and the quantity h/r , which must also be

assumed small -The distance r = . Z is measured from the center ofr
the dipole to the point where the field is calculated. The approximations include
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Rlh " r - h cos 8 + (hsinO) 2 /2r (97a)

R2h "r + h cos 0 + (hsin @)2 / Z r  (97b)

cos kh I - k2h2/2 (97c)

With thesp approximations the complete ele-.tromagnetic field in the spherical

coordinates r , 0 , 4 has the familiar form
B@( r--"  4 h kL '_ e-jsine

B(r)- sin 6 (98a)
&. r

r - -j sin E (98b)

(r wpl(O)h 2 -jkr4Er (r e sin ) (98c)

Note that Wji/k =/P =g . In this derivation terms of the order of magnitude

I kh1 4 and h3ir3 and higher powers have been neglected. This means that the

field given in (97a) - (97c) is not valid in the immediate vicinity of the antenna

as are the more general expressions (61) - (63". [f desired, the above formulas

may be expressed in terms of the equivaient electric moment pz with the

relation

h

JDP = I(z) dz = 1(0)h (99)

For a short dipole in air, k k is real; wp/k = o " The instantaneous

field is obtained from the real parts of (98a) - (98c) when expressed in polar

form and multiplied by e j )t . Specifically,

PoI(O)h 1l +k r 2
B0rt)= 40 cos (ot - k0 r + tan ko r)sin 0 (lOOa)

r

EoI(O)h /1 -kr + k r(
E( , ,1 )  47r k 3 cos [wt t-k r+tan- i(kr 1/ko r)]sine (1001G)

0
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Eo (O)h /I + k2 rl
t)= cos ,. t - ko r + cot k° r)cosG (lOOc)r 27r k 3r

Io

These expressions do LIUL in general peimit thb simple interpretation of spher-

ical surkces of constant phase that travel radially outward with a definite phase

velocity as is true in terms of spheroidal waves of the half-wave dipole in air.

Each component may be so inte epreted, but the phase velocities of all three

components ar different until k r becomes sufficiently great in the radiation
kZ 2 >>1 1zone so that rr 1 tan -kr r/ , cot' k r 0 . The radiation-zone

field is

r r PO tI(O)k h

B (r,t) = , c = 47rr sin(wt - k0 r) sinO (101a)

o - oI(O)k o0h
E r )= cos(ut - k X)cos 6 :- 0 (101b)

These formulas represent a true spherical wave. All components expand with

the same phase vciocity c ; B (r, t) and E. (r, t) are in phase with each

other and a quarter period out of phase with E r(r, t) . B1(r, t) and E0(r, t)

decrease as I/r ; E r t) decreases as 1/r so th.t when r is large this

component is insignificant as indicated in (10b)

The radial component of the Lomplex Poynting vector for the field in

(100a) - (lOOc) is

S"(i )= (0 --- 1 sin (102)
32 7r 2 krj

and the total time-average power radiated is

27r "r

Rne d 1 2 (0)Re (103)

0 0

where the radiation resisLance is
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k- h2e 00o'
Re  - 20k h ohms (IC4)

Since thp approximate cur, ent (96) was used tc determine the power radiated

instead of the mere aczurate current (34), Re in (104) :s only an approximaticn
0

of the actual .nput res-stance cbtained from (35). The more accurate value has

as its leading tera,

0 0 drRo(ko%)- - 3(I C5)

where 'V =2((n" 1) and 2 = 21n(Zh/a). When S2 = 10, h/a 1 75, the rati;o

dr /( 2- 3) = 0.95, so that (104) is in error by about 5 percent. The error

decreases as h/a increases.

When the redium is dissipative with k = - ja , the components of the

field may be expressed as follows:

7 1~() e~ -Ii r r le r
W- 40h r e A-+ sin 0 (106a)

41 L r J

upl(O)h 1 a a 2
E () 4,12 z z 2l r 3) + 2 2L + .)r (P+a r (. +a )r

2 ap I e- ar e'Jprsin (I 06b)
• ( + a2 ) ? , 3+ar J

fh[j+ 2ap +j( a
E(r) +.Ij1

r 2 r L ( 2 + ) r Z 2 ( P + 4 . ) 2r 3 ( P z + a -)

2 _ a 2  
] eO0' ejprcose (10 6 c)2Y 2 23)1(tP +a a) r3

The real part of the complex Poynting vector is

Re Sr(r) 1I(0) ' 2 h'e (1 + L)e ear(7

ri
ir
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where

J" 2: + 4/+ 2(108'
G /P)Pr (I + 2 / + a /P 3r

and where e = ta iP . Thf .otal time-average power transferred outward

across a spherical surface , radius r is the integral of (107) over the surface

of the sphere. The result is

1i(0)2 Lz  2 **2a
iz~ (1 + L~e (109)T e 1 2 rP

As in the case of (103) this fi-rmula is an approximation that is quite good only

for extremely thin antennas. it may be corrected to apply to antennas of

so.-.ewhat greater thickness by multiplying (109) by the factor V /( Q- 3).
It is important to nete that (100.) cannot be used to determnine the radiation

i"esistan.e oi the snort antenna in a dissipaLive medium since i is not possible

tc reduce the spherical surface across which the power T is transferred toIe
an envelope that encloses only the antenna and no part of the medium.. The

smallest spherical surface that contains the anrerina has the radius r = h. but,

since in the transformation from cylindrical to spherical coordinates, terms oj

the order of magnitude (h/r)3 have been neglected in comparison with unity,

I09) is meaningful only when r > h . Since a sphere of radius r > h contains

a significant part of the dissipative _e edium, thi power transferred across its

surface is not the total power radiated from the dipole. Note in particular, that

the linit r = C is meaningless.

The actual power stpplied to the antenna may be obtained fron the

driving-point admittance Y (k) in (34) in the form Te = G C

Since the complete exprcssions for Go(k) and B 0 (k) are rather long, it %,-ill

serve for purposes of illustration to consider the two special cases, a << P2

and a = P , for which the formulas are much simpler. The resistance R (k)

is given by

R. (k) OG1 (10)
GR(k) + 15 (k)

c. 2 (110
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When a2<< P, G2(k) <<Bo2(k) so that

'G°(k---) a e h d  1!6tf-3]Z

R (k) I Bok) 0 h 2d r 6 - 3)(111)
C B2 (k) -67r( -3)

if only the leading terms are retained. When a = ( -k) >> B6 (k ) " so that

from (40)

' " 47r h(112)

The power per unit input current, Pr that is dissipated within a sphere

of radius r > h is defined as follows in terms of the power T supplied to the

antenna and the power Ter transferred outward to the region beyond the sphere:

, - e er' . e.d -Zar

P 11(o)1 =r R(k) 6(- 3) r(i + L) (113)

r 26 Q

When a << this becomes

22
ephb'ydr 

-1

r .16(3)3  - ar 114-1

where

Pr P3 r3

When a = P e L 'd 1-Y (I + L)e 2P 
(IIa)

Pr~ = -- [Ph -3( Q -3) (i+r] z (la

where

P= P + -- r Z 2 )Z 3  ( Il l5 b )

it i - .-,t.Ve to consider a numerical example. Let the power

dissipated within t] .3 radian sphere Pr = I be determined for an antsiia with

Ph = 0.3 and h/a 75 . When a 2 << P2 , eZar = e 2a/P I - 2 ; L 4

I!
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With these values, the power supplied to the antenna per unit current is

ZT /11(0) 2  R_(k) = 1. 71 (1 + 140 a/P)watts/amp-; (l16a)

the power transferred beyond the radian sphere per unit current is

Z /(0)J= 1. 71 1 + 2a/p) watts/amp2  ( (6b)

and the power dissipated as heat in the medium within the radian sphere is

P = 236 a/P wat.s/anp l (i6c)r

When a = P , the corresponding values areIz o14 .. .. ... , 2 ,*. .

2Te/'ii() = (k) = 99 u. S waLL,; zp ,I, alJ

2T /IT'A'I I2 81 2 (17b%erlI  -%-,/ "I I.w t s .. .( l b

P = 1989.7 watts/amp2  (117c)

From these numerical results it is cleai liat when a/P is as srall as

10 or smaller, 90 percent or more of the power supplied to the antenna is
transferred beyond the radian sphere. When cL/P is no greater than 0. 1, only

about 3 percent is dissipated outside; 92 percent is used to heat the medium

inside the radian sphere. When a = P virtually all of the power is dissipated

as heat within the radian sphere. The fraction transferred beyond it is only

about 0. 04 percent. Note that when a = P the input susceptance of the antenna

is small, so that virtually the entire impedance is resistive. The antenna

effectively does not radiate, but acts like a pair of electrodes with very small

surface area--hence the rather high resistance.

Conclusion

The general problem of a cylindrical antenna immersed in a dissipative

medium has been formulated in a manner that permits the determination not only

of the distribution of current and the admittance, but also of the electromagnetic

iidd. !he analytical procedure is approximate but quantitatively sufficiently

accurate to be of practical value. It may be extended to treat coupled antennas

i'x a dissipative medium.
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